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ABSTRACT

Spatially resolved transcriptomics has revolutionized genome-scale transcriptomic profiling by pro-
viding high-resolution characterization of transcriptional patterns. We here present our spatial tran-
scriptomics analysis framework, MUSTANG (MUlti-sample Spatial Transcriptomics data ANalysis
with cross-sample transcriptional similarity Guidance), which is capable of performing multi-sample
spatial transcriptomics spot cellular deconvolution by allowing both cross-sample expression based
similarity information sharing as well as spatial correlation in gene expression patterns within sam-
ples. Experiments on two real-world spatial transcriptomics datasets demonstrate the effectiveness of
MUSTANG in revealing biological insights inherent in cellular characterization of tissue samples
under the study. MUSTANG is publicly available at at https://github.com/namini94/MUSTANG

1 Introduction

Recent advances in single-cell RNA sequencing (scRNA-seq) have enhanced our knowledge of different cellular
development processes and can help better characterize heterogeneity of cell types in many complex tissues (Hwang
et al., 2018; Niyakan et al., 2021). However, in original scRNA-seq approaches spatial information is not retained
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when preparing samples with tissue dissociation and cell isolation Zhao et al. (2021). Thus, scRNA-seq technologies
lack the spatial resolution, which can be crucial for characterizing cellular heterogeneity in the spatial context when
investigating tissue organizations Miller et al. (2021); Moses and Pachter (2022). To address this limitation, spatial
transcriptomics (ST) technologies can measure gene expression at a variety of spatial locations (spots) in a tissue sample
while preserving the source position of each expression datapoint Marx (2021). Since the processes by which cells
evolve into tissue compartments and interact with each other depend on interactions with the environment around it,
spatial information which is naturally preserved by ST technologies presents ample opportunities for enhancing our
understanding of disease progression and tissue development Walker et al. (2022).

Despite the rapid development of ST technologies, many of them still lack single-cell resolutions, such as Visium 10x
Genomics (2022), Slide-seq Rodriques et al. (2019) and HDST Vickovic et al. (2019). In these approaches, each tissue
is divided into a grid or lattice of spots, with each spot in the grid typically being 50–100µm wide, covering around
10–60 cells. These ST technologies output a high-dimensional, spatially-localized gene expression count vector for
each spot, representing an aggregated gene expression of the cells in the spot Zhang et al. (2023). As a result of the
accumulated measurement at each detected spot, the measured signal is generally a mixture of multiple homogeneous
or heterogeneous cell types, which may make it difficult to explore the spatial distribution of cell types in complex
tissues Tu et al. (2023). Spot deconvolution methods aim to separate the contribution of different cell types in each
spot, allowing for cell type identification and characterization. This enables the analysis of cell-type specific gene
expression patterns and functional annotations, which is necessary for understanding the heterogeneity and cellular
composition of complex tissues Ma and Zhou (2022). As a result of crucial need for methods capable of deconvolving
cell type fractions for each spot to improve interpretability and analysis of gene expression patterns, recently several
spot deconvolution tools have been developed such as CARD Ma and Zhou (2022), BayesTME Zhang et al. (2023),
STdeconvolve Miller et al. (2022), Cell2location Kleshchevnikov et al. (2022), DestVI Lopez et al. (2022), RCTD
Cable et al. (2022), EnDecon Tu et al. (2023), SPOTlight Elosua-Bayes et al. (2021), and UniCell Charytonowicz et al.
(2023).

One of the limitations of many existing spot deconvolution methods is the requirement for a reference profile of cell-type
expression. Previous studies of RNA-seq data deconvolution algorithms have shown that choice of reference is more
important than methods of choice in determining deconvolution performance. A reference-free spot deconvolution
pipeline that does not rely on pre-existing reference atlases or datasets, assures an unbiased analysis of spatial
transcriptomics data Cobos et al. (2020). Recently, two reference-free tools, STdeconvolve and BayesTME have
been developed to deconvolve underlying cell types comprising multi-cellular spot resolution ST datasets Miller et al.
(2022); Zhang et al. (2023). STdeconvolve is based on latent Dirichlet allocation (LDA), a generative statistical
model commonly used in natural language processing for discovering latent topics in collections of documents Miller
et al. (2022). On the other hand, BayesTME is a Bayesian hierarchical generative model capable of performing spot
deconvolution for aggregated gene expression measurements at spots in ST datasets, explicitly modeling the aggregated
counts via a Bayesian factorized model formulation Zhang et al. (2023).

While many of these ST analysis methods focus on analyzing individual ST samples, recent advances in high-throughput
sequencing technologies, coupled with spatially resolved experimental techniques, have facilitated the generation of
multi-sample ST datasets, enabling data integration and statistical modeling for more robust comparisons, validation,
and identification of spatially regulated gene expression patterns Andersson et al. (2021); Mantri et al. (2021); Maynard
et al. (2021a). For example, multi-sample ST allows more comprehensive investigation of gene expression spatial
dynamics across different conditions (e.g., knock-out vs. wild-type) or experimental settings (e.g. treatment responders
vs. non-responders) Allen et al. (2022). Additionally, Comparative analysis between samples offers insights into the
spatial regulation of gene expression, unveiling spatial clusters and coordinated gene modules that would be overlooked
in single-sample ST analysis. However, despite the ample opportunities that multi-sample ST data analysis may offer,
to the best of our knowledge, there are no available spot deconvolution tools for integrative analysis of multi-sample
ST datasets. Recently, a hybrid machine learning and Bayesian statistical modeling framework called MAPLE has
been developed for spot clustering of multi-sample ST data but does not perform spot cell-type deconvolution which is
crucial for characterization of tissue samples Allen et al. (2022).

To fill these gaps, here, we introduce MUSTANG, a multi-sample spatial transcriptomics data analysis framework,
to simultaneously derive the spot cellular deconvolution of multiple tissue samples without the need for reference
cell type expression profiles. MUSTANG is designed based on the assumption that the same or similar cell types
exhibit consistent gene expression profiles across samples. It adjusts for potential batch effects as crucial multi-sample
experiments considerations to enable cross-sample transcriptional information sharing to aid in parameter estimation.
With that, spatial correlation in gene expression patterns within samples is further accomodated by constructing and
employing a spot “similarity” graph that includes both transcriptional and spatial similarity edges between spots across
samples. By aligning and integrating multiple tissue samples, MUSTANG can effectively leverage shared information
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and increase the robustness of joint spot cell-type deconvolution analysis across multiple ST samples. In summary, our
key technical contributions include:

• MUSTANG is the first reference-free spot deconvolution method for multi-sample ST data analysis, to the
best of our knowledge.

• MUSTANG allows both intra-sample and inter-sample information sharing by introducing a new spot similarity
graph.

• Besides modeling spot spatial dependency, MUSTANT implements batch correction across ST samples in the
workflow to avoid obscuring inherent biological signal when sharing transcriptional information.

To demonstrate the capability of MUSTANG for revealing the true underlying spot-level cell-type proportions in
multi-sample ST datasets, we have applied MUSTANG to two real-world ST datasets of different tissue types and show
that it can be effectively used for unveiling the inherent biological signal in tissue architectures.

2 Methods

Given gene count matrices of all spots across tissue samples and spatial coordinates for spot centroid positions,
MUSTANG performs spot cellular deconvolution for multi-sample ST data. The overall workflow of MUSTANG is
presented in Figure 1. MUSTANG includes four main steps: (i) construction of spot transcriptional adjacency matrix of
expression-based information sharing across tissue samples after batch effect correction; (ii) construction of spot spatial
adjacency matrix to allow spatial correlation between physically neighboring spots within the samples; (iii) construction
of the spot "similarity" graph based on the spot transcriptional and spatial adjacency matrices; (iv) deconvolution of
aggregated spot-level gene expression measurements to signals coming from different cell-types based on a Bayesian
hierarchical model. Here, we discuss each step in more details, respectively:

2.1 Spot Transcriptional Adjacency Matrix

MUSTANG first identifies the common genes across multiple input tissue samples and then concatenates the spot count
matrices of all samples {1, ..., N} over the common genes (Figure 1.A). Then, MUSTANG performs the common data
preprocessing steps similar as typical scRNA-seq data analysis, such as normalization, feature selection and dimension
reduction. First, the combined gene expression matrix of all tissue samples are log transformed and normalized using
library size. Then, the top 2000 (optional) highly variable genes are selected based on the variance of the log-expression
profiles. We further perform Principal Component Analysis (PCA) on the normalized expression profiles of selected
top highly variable genes across all the spots from tissue samples. Then, the reduced-dimension transcriptional matrix
of all spots by top 50 principal components (PC) is retained to capture as much variation as possible while scaling up
with complexity of analyzing high-dimensional data. In order to remove any unwanted technical batch effect from
the analysis such as the case that tissue samples are from different sequencing technologies or samples are generated
from multiple experiments or across different laboratories, MUSTANG performs batch effect correction on the retained
top PCs. One powerful method for batch correction is the Harmony algorithm Korsunsky et al. (2019). MUSTANG
uses Harmony to adjust for batch effects from the PCs and ensures that the subsequent analyses are not confounded by
technical variability. Later, based on the batch corrected top 50 PCs, the K-nearest neighbor (KNN) graph of spots is
constructed. Basically, in the KNN graph the nodes represent spots across ST samples and two spots are connected
with an edge if they are within the k-most transcriptionally similar spots from each other for user-selected resolution
parameter k. We measure the transcriptional similarity between spots by calculating the Euclidean distance of the batch
corrected top 50 PC scores. Here, in MUSTANG we suggest selecting k to be 50 considering computation-performance
trade-off. Additionally, we weigh the edges between two spots i and j in the KNN graph by 1

1+Dist(i,j) where Dist(i, j)

is the corresponding PC-based Euclidean distance between the two spots. This way, the edges between spots that are
transcriptionally more similar will be weighed with higher values. Then, MUSTANG applies unsupervised graph-based
Louvain clustering on the weighted KNN graph to get clusters of spots that are transcriptionally similar Blondel et al.
(2008). Lastly, MUSTANG constructs the spot transcriptional adjacency matrix based on the spot membership in
the resulted Louvain clustering results. If T is the cross-sample spot transcriptional adjacency matrix, then the value
Tij = Tji = 1 at spots i and j means that i and j are in same transcriptional Louvain clustering class of spots and they
are not within a same tissue sample (Figure 1.B).

2.2 Spot Spatial Adjacency Matrix

The next step in MUSTANG constructs spot spatial adjacency matrix. In this step MUSTANG only uses the coordinates
of all the spots. Initially, we add different constant values to all spot coordinates of different samples so that it could be
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Figure 1: The MUSTANG framework to analyze multi-sample spatial expression data. A) MUSTANG requires gene
expression matrices of all the spots across tissue samples as well as the spatial coordinates of the spots. The gene
expression matrices are concatenated to form a single expression matrix of genes for all spots. B) MUSTANG performs
standard scRNA-seq data preprocessing steps such as normalization, gene filtering and then dimension reduction of gene
expression matrices of the combined spots across samples via principal component analysis (PCA). The top principal
components are batch-corrected to remove any unwanted technical confounders. Then MUSTANG performs Louvain
clustering on the K-nearest neighbor graph constructed based on the batch corrected top PCs, to get the clusters of similar
spots. The spot transcriptional adjacency matrix is then constructed based on the resulted spot cluster memberships. C)
MUSTANG adds different offset values to the spatial coordinates of the spots from different ST samples so that they
can be aligned properly. Depending on the sequencing technology layout (e.g. lattice or hexagonal), the spots spatial
adjacency matrix is determined. D) The spot similarity graph is constructed by MUSTANG based on the summation of
spots spatial and transcriptional adjacency matrices. Spots are colored by their corresponding transcriptional clusters.
The edges in black indicate the spatial neighbouring connection between two spots and the yellow colored edges
demonstrate the transcriptional similarity between yellow colored spots. E) Final step of MUSTANG corresponds to
joint Bayesian deconvolution analysis based on raw concatenated gene expression matrix, spatial coordinates with
added offsets, and the spot similarity graph.

possible to overlay the physical locations of spots from different samples on a single layout without spots from different
samples getting overlapped or neighboured as shown in Figure 1.C. Then, based on the geometric representations of
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spots in ST sequencing technologies, such as lattice layouts (e.g., Slide-seq Rodriques et al. (2019)) or hexagonal
layouts (e.g., Visium 10x Genomics (2022)) , neighbors can be identified for each spot based on shared edges. This
edge rule leads to four and six neighbors for non-boundary spots in lattice and hexagonal layouts, respectively. Finally,
MUSTANG constructs the spots spatial adjacency matrix based on the described edge rule. If we call the spots spatial
adjacency matrix S, then the value Sij = Sji = 1 means that i and j have a shared edge between them (Figure 1.C).

2.3 Spot Similarity Graph

After deriving both spot transcriptional and spatial adjacency matrices, MUSTANG constructs the overall spot “similar-
ity” graph. The adjacency matrix of spot similarity graph is a binary matrix which is resulted after taking the logic “OR”
operation between pairwise indices of spot transcriptional and spatial matrices T and S. More specifically, if we denote
the spot similarity graph adjacency matrix by A, Aij = Tij ∨ Sij, where “∨” indicates the “OR” operator. Figure 1.D
shows an example of how a spot similarity graph might look like for a ST dataset with four tissue samples. In this
figure, spots are colored based on their transcriptional cluster labels. The black colored edges are the edges according to
the spot spatial adjacency matrix. On the other hand, the yellow colored edges indicate the transcriptional similarity
between yellow colored spots. Note that for simplicity, only the transcriptional edges between yellow colored spots
are drawn and transcriptional edges between blue and green spots are not shown in the figure. Additionally, it worth
mentioning that each yellow edge between a pair of yellow spots in the corresponding clusters is representative of all
edges from spots of one cluster to another in Figure 1.D

2.4 Joint Bayesian Deconvolution Analysis

The last step of our MUSTANG workflow corresponds to joint Bayesian deconvolution analysis of raw concatenated
gene expression matrix to preserve information in the original ST data, together with the spot similarity graph and
spatial coordinates with added offsets. Our joint Bayesian deconvolution model, is based on the Poisson discrete
deconvolution model recently introduced in BayesTME for single sample analysis of ST data Zhang et al. (2023). More
precisely, in this Poisson model, the raw aggregated expression measurement of gene g at spot s, denoted as Ysg, are
factorized as the summation of k (i.e. number of cell types) different Poisson distributed read counts Ysgk. In fact, each
of these reads models the total expression count of gene g in the cells of type k that are at spot s. Thus, based on this
factorization we can explicitly model the raw ST counts Ysg:

Ysg =
∑
k

Ysgk ∼ Pois(
∑
k

βkdskϕkg), (1)

where the rate parameter of the Poisson distributions is controlled with three parameters βk, dsk and ϕkg. The cell
type dependent parameter βk quantifies the expected total count for cells of type k and dsk represents the number
of cells of type k that are at spot s. The parameter ϕkg captures the normalized gene expression profile of gene g in
cell type k. This way of modeling gene expression in ST data assures biological considerations such as monotonic
relationship between the number of cells and aggregated read measurement in each spot as well as different expression
profiles for each gene in various cell types. To complete the Poisson discrete deconvolution model, Dirichlet and gamma
distribution priors are imposed on ϕk and βk parameters, respectively. Additionally, the prior on dsk is constructed
hierarchically based on the heavy-tailed Bayesian variant of the graph-fused Binomial tree as described in Tansey
et al. (2017). In this Binomial tree model, the cell type assignment probabilities in each spot are decomposed into a
series of binomial decisions where the prior on each binomial probability encourages spatial smoothness across spots.
Specifically, such spatial smoothness on cell type assignment probabilities is achieved by imposing the sparsity inducing
grouped horseshoe distribution Xu et al. (2016) over the graph fussed LASSO Wang et al. (2016) (i.e. zeroth-order
graph trend filtering) penalized cell type assignment probabilities:

Ds ∼Binom(nmax, 1− σ(θs0)),

dsk ∼Binom(Ds −
k−1∑
r=1

dsr , σ(θsk)), ∀1 < k < K

(∆SpatialΘ)j ∼Grouped Horseshoe(λ).

(2)

In equation (2), nmax is the maximum possible number of cells in each spot, for which we set to be 100 in our
experiments. The parameter Ds is the total number of cells in spot s out of possible nmax cells and θsk captures the
cell type k probability proportions at spot s. Lastly, ∆Spatial is the edge-oriented zeroth-order graph trend filtering
matrix of the spot spatial graph with a hyper-parameter λ controlling the global degree of smoothness.

Here, in our joint Bayesian deconvolution model while performing multi-sample ST data analysis in MUSTANG, we
further allow information sharing across tissue samples in the Poisson discrete deconvolution model. We take advantage
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Figure 2: Analysis of four human brain DLPFC tissue samples with MUSTANG. A) H&E staining images of four
tissue samples (right) and the reference annotations of spots for the sample 151673 (left). B) Overlaying tissue samples
on a grid space to construct spot spatial adjacency matrix. C) UMAP embedding visualization of spots by top 50 PCs
before and D) after batch correction. E) Visualization of clustering based on batch corrected top 50 PCs. The spots are
colored based on their transcriptional cluster label inferred from Louvain clustering. F) Spot-based spatial pie charts of
MUSTANG-inferred cell type proportions across all four DLPFC tissue samples matching the reference annotations
from the original study.

of the prior knowledge inherited in the spot similarity graph that we constructed in the MUSTANG workflow as detailed
in the previous section. Specifically, we include transcriptional similarity in addition to the spatial similarity to take into
consideration of the biological belief that spots that have similar batch corrected transcriptional profiles might also have
similar cell type composition as well. This is done by taking advantage of the zeroth-order graph trend filtering matrix
of the spot similarity graph in the hierarchical prior in equation (2). In MUSTANG, we impose the grouped horseshoe
distribution over the graph fussed LASSO penalized cell type assignment probabilities based on the spot similarity
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graph as:
(∆SimilarityΘ)j ∼ Grouped Horseshoe(λ). (3)

This results in inferring both transcriptionally and spatially smooth cell type proportions, allowing to borrow signal
strengths from both inter-sample and intra-sample spots for effective joint analysis of multiple tissue samples in a given
ST dataset.

The posterior inference procedure of the joint Bayesian deconvolution model in MUSTANG is based on Gibbs sampling.
The full derivations for all complete conditionals and Gibbs sampling based updates are similar as Zhang et al. (2023)
and detailed in the supplementary materials. During the inference process, we use Markov chain thinning with five
thinning steps between each sample. We collect 100 Markov chain Monte Carlo (MCMC) samples after 1200 burn-in
iterations for our consequent analyses and evaluation.

3 Results & Discussion

We have evaluated our MUSTANG for analysis of multi-sample ST data from two real-world ST datasets generated by
the 10X Genomics Visium platform 10x Genomics (2022). First, a human brain ST dataset is used to quantitatively
benchmark the spot deconvolution performance of MUSTANG. Specifically, the significance of different components in
MUSTANG enabling multi-sample ST analysis will be demonstrated in this ablation study comparing with BayesTME
and a simpler version of MUSTANG that does not take spot transcriptional adjacency matrix into account. We then ana-
lyze a mouse bone marrow tissue ST dataset to characterize tumor microenvironment. The matched immunofluorescence
(IF) staining images are used to validate the findings by analyzing bone tissue samples with MUSTANG.

3.1 Human Brain Data

In a recent study Maynard et al. (2021b), spatial expression profiles of 12 dorsolateral prefrontal cortex (DLPFC) tissue
samples were generated. Based on the selected DLPFC layer-specific gene makers and cytoarchitecture consideration,
six cortical layers (i.e. L1-L6) and white matter (WM) for each brain tissue sample were annotated. Here, we use the
ST expression profiles of four samples (Sample ID: 151673 to 151676) from this dataset to showcase the benefits of
simultaneously denconvolving tissue samples using our proposed MUSTANG.

Figure 2.A shows the Hematoxylin and Eosin (H&E) staining images of four DLPFC tissue samples from the human
brain ST dataset as well as the cortical layers and white matter reference annotations for sample 151673 from the original
study. Following our MUSTANG workflow, we first start analyzing the samples by constructing spot transcriptional
and spatial adjacency matrices. As shown in Figure 2.B, we derive the spot spatial adjacency matrix by adding offsets
to spatial coordinates of DLPFC tissue samples and overlaying them on the ST grid space based on the Visium platform.
In the transcriptional space, we follow the data preprocessing steps previously described in Section 2.1 to derive the
dimension-reduced top 50 PCs for spot-aggregated gene expression counts. Figure 2.C displays the UMAP (Uniform
Manifold Approximation and Projection McInnes et al. (2020)) embedding of the derived top 50 PCs. It can seen
that there is strong batch effect in this dataset as spots from different tissue samples are clustered based on the their
sample ID rather than their underlying biological cell types. Although these samples are from the same tissue and
sequencing platform, this observed batch effect in the data calls for the need of batch effect correction when analyzing
multiple tissue samples to reduce the potential influence from any confounding technical factor. We therefore implement
Harmony in MUSTANG to derive the batch corrected top 50 PCs. The UMAP embedding of the batch corrected PCs
are shown in Figure 2.D, where the spots from different samples are now mixed together while preserving potential
expression differences. We further construct the KNN graph of spots based on these top PCs and apply Louvain
clustering, resulting 8 distinct transcriptional sub-populations. In Figure 2.E, the spots from four samples are colored by
their transcriptional clusters in the UMAP embedding space. With that, the spot transcriptional adjacency matrix and
consequently, the spot similarity graph, can be constructed. Finally, we fit our joint Bayesian deconvolution model to
the concatenated data with K = 7 cell types (i.e. six cortical layers plus white matter). Based on the collected post
burn-in MCMC samples, we derive the posteriors of the joint deconvolution model parameters such as spot-wise cell
type proportions, cell types cell numbers and normalized cell-type specific gene expression. Figure 2.F demonstrates the
spatial scatter pie chart plot of our four DLPFC tissue samples, in which spots are plotted in their physical coordinates
and at each spot there is a circular pie chart representing the inferred proportions of assigned cell types in that spot. The
high similarity between the spatial patterns of cell type proportions in the spatial pie chart plots of all four samples and
the ground truth annotations from the original study demonstrates the capability of MUSTANG to simultaneously infer
the underlying spot-wise biological cell type proportions across multiple tissue samples.

As the ground truth cell type proportions and cell type cell numbers does not exist for multi-cell resolution ST data,
inspired by the guidelines described in the recent benchmarking study of cell type deconvolution methods for ST
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Figure 3: Quantitative performance benchmarking on four DLPFC tissue samples. A) List of layer-specific gene
markers from two brain tissue studies Molyneaux et al. (2008); Zeng et al. (2012). B) Boxplots showing the calculated
PCC values for three different reference-free cell type deconvolution methods: MUSTANG, MUSTANG_Spatial
and BayesTME. Higher PCC values indicate better deconvolution performance identifying annotated cell types. C)
Spot-level log2 expression visualization of the L5 layer marker gene PCP4 correlates with the spatial pattern of D)
MUSTANG-inferred cell numbers for the L5 layer best paired cell type for the sample 151674.

data Li et al. (2023), we quantify the cell type cell number inference performance of MUSTANG based on the Pearson
correlation coefficient (PCC) between the predicted spot-wise cell counts of specific cell type (i.e. dsk in Equation 1) and
the corresponding marker genes’ expression profiles. Specifically, we benchmark MUSTANG with BayesTME, which is
a ST data deconvolution tool capable of inferring cell type cell numbers without the need for paired reference expression
profiles. As BayesTME is designed for single sample analysis, we analyze each brain tissue sample separately using
BayesTME as the baseline.

To calculate the PCC values, we first gather the list of known layer-specific marker genes from two previous brain studies
Molyneaux et al. (2008); Zeng et al. (2012) that were also used in the original DLPFC dataset paper Maynard et al.
(2021b). Specifically, we only use those marker genes that are annotated to be related to only one of the DLPFC layers
except for white matter (WM) layer, for which as we could not find any WM-specific markers in the two references, we
select the marker genes that are shared between layer 6 and WM. The heatmap plot in Figure 3.A shows the list of
selected layer-specific marker genes. The colors in the plot represent the corresponding reference papers that reported
the corresponding marker genes.

Next, we extract the layer-specific gene expression profiles of DLPFC layers based on the “pseudo-bulking” approach
noted in the original study of the DLPFC dataset Maynard et al. (2021b), in which the UMI counts for each gene
within each layer across 12 spatial replicates are summed up to generate layer-enriched expression profiles. The
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A) B)

Sample 1

Sample 2

Sample 3

Sample 4

C) D)

Figure 4: Analysis of four mouse bone marrow tissue samples with MUSTANG. A) H&E staining images of the four
samples profiles with Visium platform. B) Spot-based spatial pie charts of MUSTANG-inferred cell type proportions
for (top) sample 1 and (below) sample 2. C) Matching IF staining images of (top) sample 1 and (below) sample 2. D)
Closer look at the IF staining image regions with high density of green dots, indicating the presence of tumor cells.

layer-specific gene expression profiles of DLPFC layers have shown previously in Maynard et al. (2021b) to capture
biological properties inherent in DLPFC layers. This pseudo-bulk data is availabe as “sce_layer data” for download
through the fetch_data function in spatialLIBD R package. Following the instructions for cell type deconvolution
benchmarking described in Li et al. (2023), for each DLPFC layer, we calculate the PCC between the expression profile
of each layer in the extracted pseudo-bulk data and the inferred normalized expression profile of all cell types (i.e. ϕkg

in Equation 1) from MUSTANG, choose the best-paired inferred cell type with the highest PCC and match it to that
layer. After assignment, this chosen cell type would be ignored in the future steps. Then, we repeat the aforementioned
steps on the next layer until all layers are iterated. For now, each layer should be paired with the best suitable cell type
without duplication.

Finally, to complete the quantitative comparison between different ST analysis methods, for each DLPFC layer, we
calculate the PCC value between the corresponding marker gene expression of that layer in Figure 3.A and the inferred
expression corresponding to the best-paired cell type. we calculate PCC values for each of the four tissue samples
separately after jointly analyzing them with MUSTANG. We repeat the same procedure for analyzing tissue samples
separately using BayesTME and calculate the corresponding PCC values. The boxplots in Figure 3.B shows the
PCC values for each method on each sample separately. As depicted in the figure, on all four tissue samples, jointly
analyzing them with MUSTANG leads to higher average PCC values comparing to separately deconvolving them using
BayesTME. This superior performance of MUSTANG, illustrates the benefit of simultaneously analyzing tissue samples
with an approach that allows for effective cross-sample information sharing. As an example of the spatial expression
pattern of the marker genes and inferred cell-type cell numbers, we have visualized the log2 expression of the L5 layer
marker gene PCP4 as well as the MUSTANG inferred cell numbers for the L5 layer best paired cell type for the sample
151674 in Figures 3.C and 3.D, respectively. The derived PCC value for this gene is 0.42. Here, we would like to
emphasize that due to the nature of quantitative analysis we did in this section while STdeconvolve deconvolution
model does not explicitly model cell type cell numbers (i.e. dsk in our deconvolution model), it is not possible to
benchmark STdencovolve with other comparing methods for the presented performance evaluation results. It worth
mentioning that adjusting for this parameter during the deconvolution of aggregated ST signals in multi-cellular spot

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.08.556895doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556895
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - SEPTEMBER 8, 2023

resolution ST datasets is crucial to assure biological considerations such as monotonic relationship between the number
of cells and aggregated read measurement in each spot. As currently, to the best of our knowledge only MUSTANG and
BayesTME adjust for this source of variation, we have only included these methods results in Figure 3.B and excluded
STdeconvolve from this quantitative analysis.

To better understand the corresponding contributions of different components in MUSTANG to its superior performance
for multi-sample ST data analysis, we further conduct the ablation study that analyzes the tissue samples with a
simplified version of MUSTANG without using the spot transcriptional adjacency matrix across samples. This means
that we deconvolve tissue samples without cross-sample transcriptional information sharing. We call this simpler
version of MUSTANG, “MUSTANG_Spatial” as after removing transcriptional edges from spot similarity graph, it
gets reduced to using only the spot spatial coordinates. As shown in Figure 3.B, the PCC values in all four samples
get significantly lower in the obtained results by “MUSTANG_Spatial” in comparison with those by the complete
MUSTANG workflow. Clearly, removing transcriptional information sharing from MUSTANG, leads to on average
similar PCC values of the results using BayesTME that deconvolves tissue samples separately. This is expected
as BayesTME, similar as “MUSTANG_Spatial”, only allows within-sample information sharing across physically
neighboring spots by performing spatial smoothing on cell type assignment probabilities. This ablation study, clarifies
the significance of intra-sample transcriptional similarity guidance on boosting the performance of MUSTANG.

3.2 Mouse Bone Marrow Data

The tumor microenvironment (TME) plays a critical role in tumor development, progression, and therapeutic re-
sponse Kalbasi and Ribas (2020). Recently, several studies have reported that the spatial organization of TME is the key
determinant of the disease behavior and treatment outcomes Fu et al. (2021); Blise et al. (2022). Thus, a comprehensive
understanding of the spatial architecture and expression patterns of TME holds great promise for the development
of novel therapeutic treatment strategies. Taking advantage of the TME spatial transcriptomics data helps unveil the
underlying complex spatial organization and intricate interplay between tumor cells and their microenvironment.

For the second application of MUSTANG analyzing ST data of tissue samples, we study and characterize mouse bone
marrow tissue tumor microenvironment. We have profiled the bone tissue of 6-8 weeks mouse after bone lesions
generation by Intra-iliac injection (IIA). For spatial analysis, ST data are obtained via the 10X Visium platform to
profile four bone marrow tissue sections. Specifically, thin (10-µm) mouse bone marrow sections were mounted directly
onto separate designated capture areas on the 10x Visium spatial gene expression slides and data preprocessing was
done per the manufacturer’s protocols. In brief, after H&E staining, each section was imaged using color bright field by
Cytation 5. The sections were then processed following the 10X Visium gene expression protocols until the cDNA
libraries were constructed, which were later sequenced by Novaseq 6000 system with 150bp paired end reads, aiming at
300 million raw reads per section. The H&E staining images of the four bone tissue sections are shown in Figure 4. The
Visium Spatial Gene Expression Solution from 10x Genomics allows for the analysis of mRNA using high-throughput
sequencing and subsequently maps a transcript’s expression pattern in tissue sections using high-resolution microscope
imaging. This provides gene expression data at 5,000 capture spots in each Visium slide within the context of tissue
architecture, tissue microenvironments, and cell groups. SpaceRanger was used to process Visium spatial RNA-seq
output and brightfield and fluorescence microscope images to detect tissue, align reads and generate feature-spot
matrices. SpaceRanger built-in function mkfastq was used to wrap Illumina’s bcl2fastq to correctly demultiplex
Visium-prepared sequencing runs and to convert barcode and read data to FASTQ files. SpaceRanger function count
was used to take a microscope slide image and FASTQ files from SpaceRanger mkfastq and perform alignment, tissue
detection, fiducial detection, and barcode/UMI counting. In our study, raw sequence reads were mapped to mice
reference genome (mm10) to obtain the gene expression profile at each spot.

In order to identify and characterize the spatial organization of tumor cells within the bone marrow tissue TME, we
jointly analyze the ST data from the four bone tissue sections with MUSTANG. We follow the same MUSTANG
workflow steps described in detail in section 2 to infer the deconvolved components of the bone tissue samples. We
pick the number of cell types K based on the results of applying unsupervised cell type number inference algorithms
implemented in BayesTME Zhang et al. (2023) and STdeconvolve Miller et al. (2022) to each of the individual four
bone tissue samples leading to 8 different inferred number of cell types. We then select the K to be 7 as it is the most
frequently inferred value of total cell type numbers out of the eight derived values by BayesTME and STdeconvolve.
(Four occurrence; Details in the supplementary materials).

After simultaneously analyzing the four bone tissue samples using MUSTANG, we plot the spatial scatter pie chart
visualization of the inferred deconvolved cell type proportions. The spatial pie chart plots for samples one and two are
visualized in Figure 4.B. To validate the identification of tumor cell types in the bone marrow TME by MUSTANG, we
generate matched immunofluorescence (IF) staining images for each bone tissue sections separately. Specifically, the
bone sections were stained with antibodies to depict the potential tumor cell enriched tissue section parts (The detailed
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protocol for generation of IF staining images can be found in the supplementary materials). The generated IF staining
images for bone tissue samples one and two are shown in Figure 4.C. The green dots in the IF staining images highlight
the tumor cell enriched parts (Figure 4.D). Matching the green dots regions in IF staining images with the spatial pie
chart plots of tissue samples from MUSTANG, revealed the presence of high MUSTANG-inferred proportions of cell
type 2 (colored with blue in Figure 4.B). We plot red boxes to highlight the regions of IF staining images of bone tissue
samples with high enrichment of green dots (i.e. tumor cells) and overlay the boxes on the spatial pie charts. The spots
in the matching red boxes of the spatial pie charts are composed of high inferred cell type number 2 proportions with
MUSTANG. This demonstrates the capability of MUSTANG to identify tumor cell type cells in the bone marrow TME.

4 Conclusions

We have developed MUSTANG, a multi-sample ST data analysis workflow that jointly analyzes multiple tissue samples
by leveraging transcriptional information sharing across samples as well as spatial dependency in gene expression
patterns within samples.

By our proposed workflow, including spot similarity graph construction and batch effect correction removing unwanted
nuisance factors obscuring the inherent biological signal in ST data, the joint Bayesian decovolution model in MUS-
TANG extends the previous developments for reference-free single-sample ST data analysis Zhang et al. (2023) to joint
multi-sample ST data analysis, allowing for robust simultaneous spatial characterization of cell sub-populations across
spots in all tissue samples. We have introduced a new spot-based knowledge graph, spot similarity graph, that captures
sufficient and comprehensive similarity information between spots to be used in our joint Bayesian deconvolution model
to improve the multi-sample analysis performance beyond existing methods analyzing single ST samples separately. By
providing extensive results on two real-world multi-sample ST data, we have demonstrated the superior performance of
MUSTANG in terms of cell type deconvolution and spatial characterization of complex tissue environments. Future
work concerns further improving the capability of MUSTANG to decipher tissue structures by performing joint cell-cell
interaction analysis between cells of different sub-populations across multi-sample tissue samples.
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A. Supplementary Materials

A.1 Gibbs sampling inference

Here, we provide the detailed posterior Gibbs sampling procedure for the joint Bayesian deconvolution model described
in section 2.4.

Sampling Ysgk. Since we are modeling the raw ST counts Ysg as

Ysg =
∑
k

Ysgk ∼ Pois(
∑
k

βkdskϕkg), (4)

and leveraging the relationship between the Poisson and Multinomial distribution, the Ysgk parameters can be sampled
from a Multinomial distribution. If we define the auxiliary variables πsk =

βkdskϕkg∑
k βkdskϕkg

, then

(Ysg1, ..., YsgK |−) ∼ Mult(Ysg;πs1, ..., πsK). (5)

Sampling βk. To infer the cell type dependent expected total counts parameter βk, we write its posterior as

P (βk|Ysgk, dsk, ϕkg) =
∏
s

∏
g

P (Ysgk|βk, dsk, ϕkg)P (βk)

∝
∏
s

P (Ysk.|βk, dsk, ϕkg)P (βk) (6)

where Ysk. is (Ysk1, ..., YskG). Then, we can write the likelihood of reads Ysk. as

P (Ysk.|βk, dsk, ϕkg) =
∏
g

exp(−βkdskϕkg)(βkdskϕkg)
Yskg

Ysgk!

=
exp(−βkdsk

∑
g ϕkg)(βkdsk)

∑
g Yskg

∏
g ϕ

Yskg

kg∏
g Yskg!

=
exp(−βkdsk)(βkdsk)

Ysk
∏

g ϕ
Yskg

kg∏
g Yskg!

(7)

where in the last equation we take advantage of facts that
∑

g ϕkg = 1 and
∑

g Yskg = Ysk. Now, based on Equation 7,
we can simplify the posterior of cell type dependent parameter βk in Equation 6 as

P (βk|Ysgk, dsk, ϕkg) ∝
∏
s

P (Ysk.|βk, dsk, ϕkg)P (βk)

= exp(−βk

∑
s

dsk)β
∑

s Ysk

k (
∏
s

∏
g ϕ

Yskg

kg∏
g Yskg!

dYsk

sk )P (βk)

= exp(−βk

∑
s

dsk)β
∑

s Ysk

k (
∏
s

∏
g ϕ

Yskg

kg∏
g Yskg!

dYsk

sk )(
fe

Γ(e)
βe−1
k exp(−fβk))

∝ exp(−βk(
∑
s

dsk + f))β
∑

s Ysk+e−1
k . (8)

Note that in Equation 8, we leverage the Gamma prior distribution (i.e. Gamma(e, f)) we imposed on βk as described
in the main text. Thus, based on Equation 8 we can update the βk as

(βk|−) ∼ Gamma(
∑
s

Ysk + e,
∑
s

dsk + f). (9)
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Sampling ϕk. As described in the main text, we impose Dirichlet prior distribution over the normalized cell type
dependent gene expression profile parameter ϕk = (ϕk1, ..., ϕkG) (i.e. ϕk ∼ Dir(αk)) and

∑
g ϕkg = 1. We have

Ysk1, ..., YskG ∼ Mult(
∑
g

Yskg;
βkdskϕk1∑
g βkdskϕkg

, ...,
βkdskϕkG∑
g βkdskϕkg

)

= Mult(
∑
g

Yskg;ϕk1, ..., ϕkG) (10)

Thus, the normalized gene expression profiles can be updated using the Dirichlet-Multinomial conjugacy as

(ϕk|−) ∼ Dir(αk +
∑
s

Ysk1, ..., αk +
∑
s

YskG) (11)

Sampling Ds and dsk. By modeling the cell number distribution as hidden markov model (HMM) and exploiting
the forward-filtering backward-sampling algorithm introduced in Zhang et al. (2023), we can update dsk in efficient
approach. Specifically, in the forward-filtering algorithm we calculate the "alpha" values of our hidden latent stats
which includes the cell type cell numbers (i.e. xk) which we define as

α(xk) = P (dsk, Ys1:k) (12)

and in the backward-sampling, based on the derivations in Zhang et al. (2023), the cell type cell number values are
updated based on

P (dsk|xk+1, Y1:T ) ∝ α(xk)P (xk+1|xk). (13)

A.2 Inferring total number of cell types (K) for mouse bone marrow data

Here, we describe the results of applying unsupervised cell type number inference algorithms implemented in BayesTME
Zhang et al. (2023) and STdeconvolve Miller et al. (2022) to each of the individual four mouse bone marrow tissue
samples. Based on the instructions in Miller et al. (2022), to find optimal number of cell types in bone tissue samples
with STdeconvolve, we fit a number of different Latent Dirichlet allocation (LDA) models with different K values and
then based on the inferred number of “rare” predicted cell-types and perplexity values, we pick the number of cell
types. Specifically, we change K from and 2 to 15 for each bone tissue sample and plot the perplexity and number of
"rare" predicted cell types versus the K values. Figure S1 shows the STdeconvolve inferred perplexity and number
of "rare" cell types versus different K values for four bone marrow samples one to four respectively. As described in
STdeconvolve workflow Miller et al. (2022), we pick the number of cell types to be the value from that perplexity
stabilizes and has the lowest number of rare sub predicted cell types to avoid over-clustering. This leads to inferring 6,
7, 6 and 7 number of cell types for Samples 1 to 4 respectively (Table 1).

A) B) C) D)Sample 1 Sample 2 Sample 3 Sample 4

Figure S1: Inferring the number of cell types with STdeconvolve. Inferred perplexity and number of "rare" cell types
are plotted versus different K values for four profiled bone marrow tissue samples.

Then, we use BayesTME to infer total number of cell types (K). Specifically, BayesTME does this by performing
5-fold cross-validation for each K = (2, ..., 12) values with 5% of spots held out in each fold. Then, in each fold, a
Poisson based discrete deconvolution model is fitted over a discrete grid of λ smoothness values (100, 101, ..., 105)
and average log-likelihood for the held out spots are calculated. Finally, the K with highest averaged likelihood is
picked to be the total number of cell typesZhang et al. (2023). Figure S2 shows the calculated average cross-validation
log-likelihood versus the number of cell types for each of four bone tissue samples. Based on these figures, the inferred
total number of cell types for samples 1 to 4 is 8, 7, 7 and 8 respectively (Table 1).

Table 1 summarizes the inferred total number of cell types from STdeconvolve and BayesTME. We then select the K to
be 7 in our multi-sample analysis with MUSTANG as it is the most frequently inferred value of total cell type numbers
out of the eight derived values.
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Table 1: Inferred total number of cell types (K) from STdeconvolve and BayesTME

Method Sample 1 Sample 2 Sample 3 Sample 4
STdeconvolve 6 7 6 7

BayesTME 8 7 7 8
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Sample 1 Sample 2

Sample 3 Sample 4

Figure S2: Inferring the number of cell types with MUSTANG. The cross-validation log-likelihood for different values
of λ as well as the average log-likelihood across different K values are shown for four different bone tissue samples.

A.3 Immunofluorescence (IF) staining images generation protocol

Here, we describe the protocols for immunofluorescent staining of thick sections and bone clearing. Briefly, femur bone
sections were cleaned, pretreated with 1mg/ml sodium borohydride solution and then blocked before whole-mount
staining. Then, the bone sections were stained with antibodies. Immunofluorescent staining were performed within 1 ml
staining buffer for three days at 4°C with constant rotation and followed by a whole day of PBS washing. The stained
samples were then dehydrated by a series of methanol solutions before completely cleared by BABB solution. The
bone sections were later sealed in imaging glass cassettes with BABB solution. The images were taken by an Olympus
FV1200 MPE confocal microscope.

A.4 Additional results with mouse bone marrow data

Here, we present the additional results of jointly analyzing four bone tissue samples as well as the IF staining images
for the profiled tissue samples that highlights the tumor cells. Specifically, here, we focus on mouse bone marrow tissue
samples 3 and 4 as the results of other two samples are discussed in detail in section 3.2. Figure S3.A shows the spatial
pie chart plots generated by MUSTANG for samples three and four and sames as what we described in section 3.2, the
IF staining images are generated and used to validate MUSTANG results by identifying tumor cells in bone marrow
TME. Figure ??.B shows the matched IF staining images for the bone marrow tissue samples three and four. As the
figures suggest the green dots that highlight the tumor cells regions can be matched with the tissue areas in samples
three and four that have high proportions of cells of cell type 2, illustrating the capability of MUSTANG to characterize
tumor cells in mouse bone marrow TME.
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Sample 3 Sample 4 Sample 3 Sample 4

A) B)

Figure S3: Additional results of jointly analyzing mouse bone marrow samples with MUSTANG. A) Spot-based spatial
pie charts of MUSTANG-inferred cell type proportions for (left) sample 3 and (right) sample 4. B) Matching IF staining
images of (left) sample 3 and (right) sample 4.
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