
MUSTANG: MULTI-SAMPLE SPATIAL TRANSCRIPTOMICS DATA ANALYSIS WITH CROSS-SAMPLE TRANSCRIPTIONAL SIMILARITY GUIDANCE

A PREPRINT

Seyednami Niyakan

Department of Electrical & Computer Engineering
Texas A&M University
College Station, TX 77843
naminiyakan@tamu.edu

Jianting Sheng

Houston Methodist Hospital
Houston, TX
jsheng@houstonmethodist.org

Yuliang Cao

Houston Methodist Hospital
Houston, TX
ycao@houstonmethodist.org

Xiang Zhang

Baylor college of medicine
Houston, TX
xiangz@bcm.edu

Zhan Xu

Baylor college of medicine
Houston, TX
zhan.xu@bcm.edu

Ling Wu

Baylor college of medicine
Houston, TX
ling.wu@bcm.edu

Stephen T.C. Wong

Houston Methodist Hospital
Houston, TX
stwong@houstonmethodist.org

Xiaoning Qian

Departments of Electrical & Computer Engineering,
Computer Science & Engineering
Texas A&M University
College Station, TX 77843
xqian@ece.tamu.edu

September 8, 2023

ABSTRACT

Spatially resolved transcriptomics has revolutionized genome-scale transcriptomic profiling by providing high-resolution characterization of transcriptional patterns. We here present our spatial transcriptomics analysis framework, MUSTANG (MULTi-sample Spatial Transcriptomics data ANalysis with cross-sample transcriptional similarity Guidance), which is capable of performing multi-sample spatial transcriptomics spot cellular deconvolution by allowing both cross-sample expression based similarity information sharing as well as spatial correlation in gene expression patterns within samples. Experiments on two real-world spatial transcriptomics datasets demonstrate the effectiveness of MUSTANG in revealing biological insights inherent in cellular characterization of tissue samples under the study. MUSTANG is publicly available at <https://github.com/namini94/MUSTANG>

1 Introduction

Recent advances in single-cell RNA sequencing (scRNA-seq) have enhanced our knowledge of different cellular development processes and can help better characterize heterogeneity of cell types in many complex tissues (Hwang *et al.*, 2018; Niyakan *et al.*, 2021). However, in original scRNA-seq approaches spatial information is not retained

when preparing samples with tissue dissociation and cell isolation Zhao *et al.* (2021). Thus, scRNA-seq technologies lack the spatial resolution, which can be crucial for characterizing cellular heterogeneity in the spatial context when investigating tissue organizations Miller *et al.* (2021); Moses and Pachter (2022). To address this limitation, spatial transcriptomics (ST) technologies can measure gene expression at a variety of spatial locations (spots) in a tissue sample while preserving the source position of each expression datapoint Marx (2021). Since the processes by which cells evolve into tissue compartments and interact with each other depend on interactions with the environment around it, spatial information which is naturally preserved by ST technologies presents ample opportunities for enhancing our understanding of disease progression and tissue development Walker *et al.* (2022).

Despite the rapid development of ST technologies, many of them still lack single-cell resolutions, such as Visium 10x Genomics (2022), Slide-seq Rodrigues *et al.* (2019) and HDST Vickovic *et al.* (2019). In these approaches, each tissue is divided into a grid or lattice of spots, with each spot in the grid typically being 50–100 μ m wide, covering around 10–60 cells. These ST technologies output a high-dimensional, spatially-localized gene expression count vector for each spot, representing an aggregated gene expression of the cells in the spot Zhang *et al.* (2023). As a result of the accumulated measurement at each detected spot, the measured signal is generally a mixture of multiple homogeneous or heterogeneous cell types, which may make it difficult to explore the spatial distribution of cell types in complex tissues Tu *et al.* (2023). Spot deconvolution methods aim to separate the contribution of different cell types in each spot, allowing for cell type identification and characterization. This enables the analysis of cell-type specific gene expression patterns and functional annotations, which is necessary for understanding the heterogeneity and cellular composition of complex tissues Ma and Zhou (2022). As a result of crucial need for methods capable of deconvolving cell type fractions for each spot to improve interpretability and analysis of gene expression patterns, recently several spot deconvolution tools have been developed such as CARD Ma and Zhou (2022), BayesTME Zhang *et al.* (2023), STdeconvolve Miller *et al.* (2022), Cell2location Kleshchevnikov *et al.* (2022), DestVI Lopez *et al.* (2022), RCTD Cable *et al.* (2022), EnDecon Tu *et al.* (2023), SPOTlight Elosua-Bayes *et al.* (2021), and UniCell Charytonowicz *et al.* (2023).

One of the limitations of many existing spot deconvolution methods is the requirement for a reference profile of cell-type expression. Previous studies of RNA-seq data deconvolution algorithms have shown that choice of reference is more important than methods of choice in determining deconvolution performance. A reference-free spot deconvolution pipeline that does not rely on pre-existing reference atlases or datasets, assures an unbiased analysis of spatial transcriptomics data Cobos *et al.* (2020). Recently, two reference-free tools, STdeconvolve and BayesTME have been developed to deconvolve underlying cell types comprising multi-cellular spot resolution ST datasets Miller *et al.* (2022); Zhang *et al.* (2023). STdeconvolve is based on latent Dirichlet allocation (LDA), a generative statistical model commonly used in natural language processing for discovering latent topics in collections of documents Miller *et al.* (2022). On the other hand, BayesTME is a Bayesian hierarchical generative model capable of performing spot deconvolution for aggregated gene expression measurements at spots in ST datasets, explicitly modeling the aggregated counts via a Bayesian factorized model formulation Zhang *et al.* (2023).

While many of these ST analysis methods focus on analyzing individual ST samples, recent advances in high-throughput sequencing technologies, coupled with spatially resolved experimental techniques, have facilitated the generation of multi-sample ST datasets, enabling data integration and statistical modeling for more robust comparisons, validation, and identification of spatially regulated gene expression patterns Andersson *et al.* (2021); Mantri *et al.* (2021); Maynard *et al.* (2021a). For example, multi-sample ST allows more comprehensive investigation of gene expression spatial dynamics across different conditions (e.g., knock-out vs. wild-type) or experimental settings (e.g. treatment responders vs. non-responders) Allen *et al.* (2022). Additionally, Comparative analysis between samples offers insights into the spatial regulation of gene expression, unveiling spatial clusters and coordinated gene modules that would be overlooked in single-sample ST analysis. However, despite the ample opportunities that multi-sample ST data analysis may offer, to the best of our knowledge, there are no available spot deconvolution tools for integrative analysis of multi-sample ST datasets. Recently, a hybrid machine learning and Bayesian statistical modeling framework called MAPLE has been developed for spot clustering of multi-sample ST data but does not perform spot cell-type deconvolution which is crucial for characterization of tissue samples Allen *et al.* (2022).

To fill these gaps, here, we introduce MUSTANG, a multi-sample spatial transcriptomics data analysis framework, to simultaneously derive the spot cellular deconvolution of multiple tissue samples without the need for reference cell type expression profiles. MUSTANG is designed based on the assumption that the same or similar cell types exhibit consistent gene expression profiles across samples. It adjusts for potential batch effects as crucial multi-sample experiments considerations to enable cross-sample transcriptional information sharing to aid in parameter estimation. With that, spatial correlation in gene expression patterns within samples is further accommodated by constructing and employing a spot “*similarity*” graph that includes both transcriptional and spatial similarity edges between spots across samples. By aligning and integrating multiple tissue samples, MUSTANG can effectively leverage shared information

and increase the robustness of joint spot cell-type deconvolution analysis across multiple ST samples. In summary, our key technical contributions include:

- MUSTANG is the first reference-free spot deconvolution method for multi-sample ST data analysis, to the best of our knowledge.
- MUSTANG allows both intra-sample and inter-sample information sharing by introducing a new spot similarity graph.
- Besides modeling spot spatial dependency, MUSTANG implements batch correction across ST samples in the workflow to avoid obscuring inherent biological signal when sharing transcriptional information.

To demonstrate the capability of MUSTANG for revealing the true underlying spot-level cell-type proportions in multi-sample ST datasets, we have applied MUSTANG to two real-world ST datasets of different tissue types and show that it can be effectively used for unveiling the inherent biological signal in tissue architectures.

2 Methods

Given gene count matrices of all spots across tissue samples and spatial coordinates for spot centroid positions, MUSTANG performs spot cellular deconvolution for multi-sample ST data. The overall workflow of MUSTANG is presented in Figure 1. MUSTANG includes four main steps: (i) construction of spot transcriptional adjacency matrix of expression-based information sharing across tissue samples after batch effect correction; (ii) construction of spot spatial adjacency matrix to allow spatial correlation between physically neighboring spots within the samples; (iii) construction of the spot "similarity" graph based on the spot transcriptional and spatial adjacency matrices; (iv) deconvolution of aggregated spot-level gene expression measurements to signals coming from different cell-types based on a Bayesian hierarchical model. Here, we discuss each step in more details, respectively:

2.1 Spot Transcriptional Adjacency Matrix

MUSTANG first identifies the common genes across multiple input tissue samples and then concatenates the spot count matrices of all samples $\{1, \dots, N\}$ over the common genes (Figure 1.A). Then, MUSTANG performs the common data preprocessing steps similar as typical scRNA-seq data analysis, such as normalization, feature selection and dimension reduction. First, the combined gene expression matrix of all tissue samples are log transformed and normalized using library size. Then, the top 2000 (optional) highly variable genes are selected based on the variance of the log-expression profiles. We further perform Principal Component Analysis (PCA) on the normalized expression profiles of selected top highly variable genes across all the spots from tissue samples. Then, the reduced-dimension transcriptional matrix of all spots by top 50 principal components (PC) is retained to capture as much variation as possible while scaling up with complexity of analyzing high-dimensional data. In order to remove any unwanted technical batch effect from the analysis such as the case that tissue samples are from different sequencing technologies or samples are generated from multiple experiments or across different laboratories, MUSTANG performs batch effect correction on the retained top PCs. One powerful method for batch correction is the Harmony algorithm Korsunsky *et al.* (2019). MUSTANG uses Harmony to adjust for batch effects from the PCs and ensures that the subsequent analyses are not confounded by technical variability. Later, based on the batch corrected top 50 PCs, the K-nearest neighbor (KNN) graph of spots is constructed. Basically, in the KNN graph the nodes represent spots across ST samples and two spots are connected with an edge if they are within the k-most transcriptionally similar spots from each other for user-selected resolution parameter k. We measure the transcriptional similarity between spots by calculating the Euclidean distance of the batch corrected top 50 PC scores. Here, in MUSTANG we suggest selecting k to be 50 considering computation-performance trade-off. Additionally, we weigh the edges between two spots i and j in the KNN graph by $\frac{1}{1+Dist(i,j)}$ where $Dist(i,j)$ is the corresponding PC-based Euclidean distance between the two spots. This way, the edges between spots that are transcriptionally more similar will be weighed with higher values. Then, MUSTANG applies unsupervised graph-based Louvain clustering on the weighted KNN graph to get clusters of spots that are transcriptionally similar Blondel *et al.* (2008). Lastly, MUSTANG constructs the spot transcriptional adjacency matrix based on the spot membership in the resulted Louvain clustering results. If T is the cross-sample spot transcriptional adjacency matrix, then the value $T_{ij} = T_{ji} = 1$ at spots i and j means that i and j are in same transcriptional Louvain clustering class of spots and they are not within a same tissue sample (Figure 1.B).

2.2 Spot Spatial Adjacency Matrix

The next step in MUSTANG constructs spot spatial adjacency matrix. In this step MUSTANG only uses the coordinates of all the spots. Initially, we add different constant values to all spot coordinates of different samples so that it could be

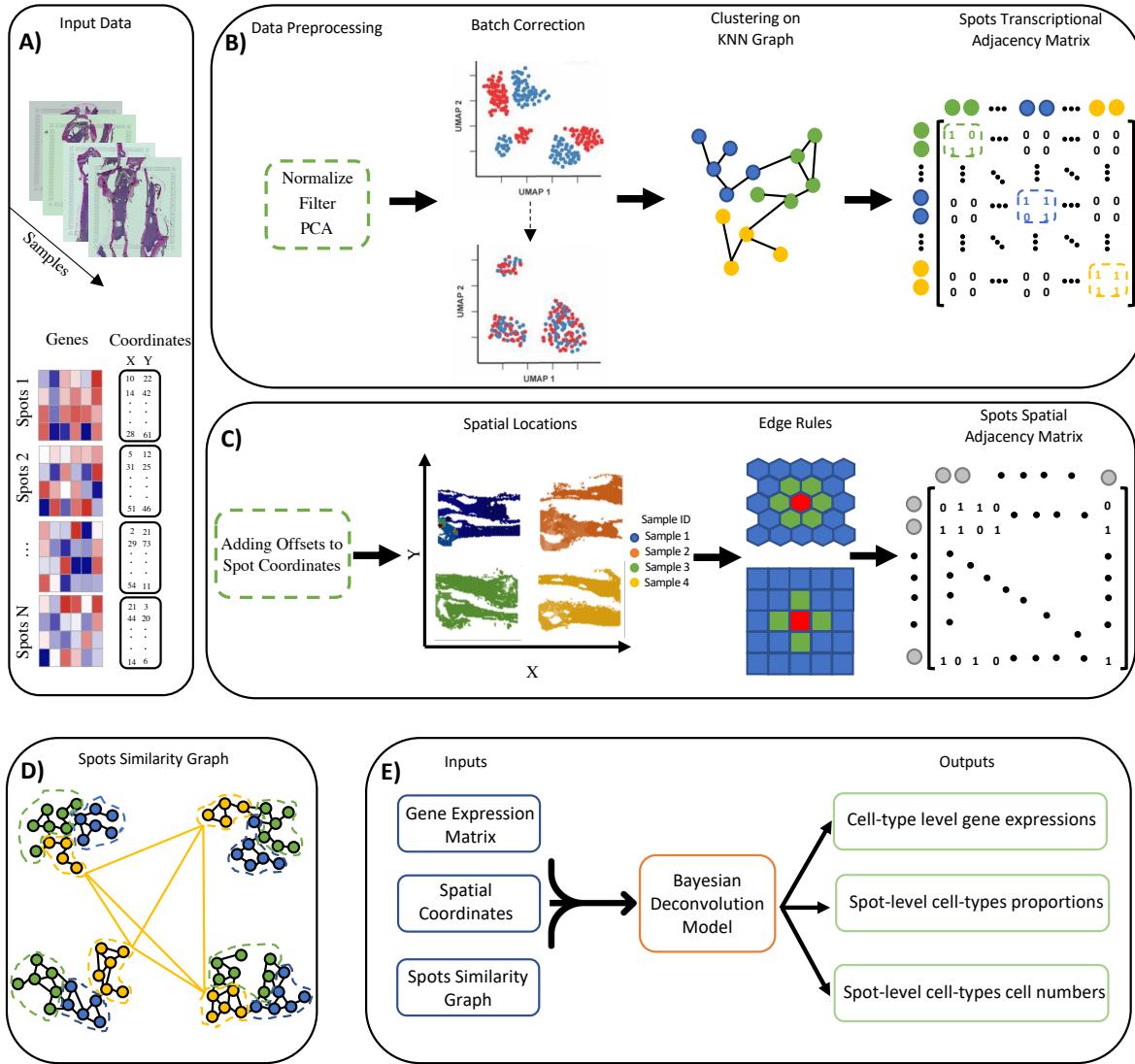


Figure 1: The MUSTANG framework to analyze multi-sample spatial expression data. A) MUSTANG requires gene expression matrices of all the spots across tissue samples as well as the spatial coordinates of the spots. The gene expression matrices are concatenated to form a single expression matrix of genes for all spots. B) MUSTANG performs standard scRNA-seq data preprocessing steps such as normalization, gene filtering and then dimension reduction of gene expression matrices of the combined spots across samples via principal component analysis (PCA). The top principal components are batch-corrected to remove any unwanted technical confounders. Then MUSTANG performs Louvain clustering on the K-nearest neighbor graph constructed based on the batch corrected top PCs, to get the clusters of similar spots. The spot transcriptional adjacency matrix is then constructed based on the resulted spot cluster memberships. C) MUSTANG adds different offset values to the spatial coordinates of the spots from different ST samples so that they can be aligned properly. Depending on the sequencing technology layout (e.g. lattice or hexagonal), the spots spatial adjacency matrix is determined. D) The spot similarity graph is constructed by MUSTANG based on the summation of spots spatial and transcriptional adjacency matrices. Spots are colored by their corresponding transcriptional clusters. The edges in black indicate the spatial neighbouring connection between two spots and the yellow colored edges demonstrate the transcriptional similarity between yellow colored spots. E) Final step of MUSTANG corresponds to joint Bayesian deconvolution analysis based on raw concatenated gene expression matrix, spatial coordinates with added offsets, and the spot similarity graph.

possible to overlay the physical locations of spots from different samples on a single layout without spots from different samples getting overlapped or neighboured as shown in Figure 1.C. Then, based on the geometric representations of

spots in ST sequencing technologies, such as lattice layouts (e.g., Slide-seq Rodrigues *et al.* (2019)) or hexagonal layouts (e.g., Visium 10x Genomics (2022)), neighbors can be identified for each spot based on shared edges. This edge rule leads to four and six neighbors for non-boundary spots in lattice and hexagonal layouts, respectively. Finally, MUSTANG constructs the spots spatial adjacency matrix based on the described edge rule. If we call the spots spatial adjacency matrix \mathbf{S} , then the value $\mathbf{S}_{ij} = \mathbf{S}_{ji} = 1$ means that i and j have a shared edge between them (Figure 1.C).

2.3 Spot Similarity Graph

After deriving both spot transcriptional and spatial adjacency matrices, MUSTANG constructs the overall spot “similarity” graph. The adjacency matrix of spot similarity graph is a binary matrix which is resulted after taking the logic “OR” operation between pairwise indices of spot transcriptional and spatial matrices \mathbf{T} and \mathbf{S} . More specifically, if we denote the spot similarity graph adjacency matrix by \mathbf{A} , $\mathbf{A}_{ij} = \mathbf{T}_{ij} \vee \mathbf{S}_{ij}$, where “ \vee ” indicates the “OR” operator. Figure 1.D shows an example of how a spot similarity graph might look like for a ST dataset with four tissue samples. In this figure, spots are colored based on their transcriptional cluster labels. The black colored edges are the edges according to the spot spatial adjacency matrix. On the other hand, the yellow colored edges indicate the transcriptional similarity between yellow colored spots. Note that for simplicity, only the transcriptional edges between yellow colored spots are drawn and transcriptional edges between blue and green spots are not shown in the figure. Additionally, it worth mentioning that each yellow edge between a pair of yellow spots in the corresponding clusters is representative of all edges from spots of one cluster to another in Figure 1.D

2.4 Joint Bayesian Deconvolution Analysis

The last step of our MUSTANG workflow corresponds to joint Bayesian deconvolution analysis of raw concatenated gene expression matrix to preserve information in the original ST data, together with the spot similarity graph and spatial coordinates with added offsets. Our joint Bayesian deconvolution model, is based on the Poisson discrete deconvolution model recently introduced in BayesTME for single sample analysis of ST data Zhang *et al.* (2023). More precisely, in this Poisson model, the raw aggregated expression measurement of gene g at spot s , denoted as Y_{sg} , are factorized as the summation of k (i.e. number of cell types) different Poisson distributed read counts Y_{sgk} . In fact, each of these reads models the total expression count of gene g in the cells of type k that are at spot s . Thus, based on this factorization we can explicitly model the raw ST counts Y_{sg} :

$$Y_{sg} = \sum_k Y_{sgk} \sim \text{Pois}(\sum_k \beta_k d_{sk} \phi_{kg}), \quad (1)$$

where the rate parameter of the Poisson distributions is controlled with three parameters β_k , d_{sk} and ϕ_{kg} . The cell type dependent parameter β_k quantifies the expected total count for cells of type k and d_{sk} represents the number of cells of type k that are at spot s . The parameter ϕ_{kg} captures the normalized gene expression profile of gene g in cell type k . This way of modeling gene expression in ST data assures biological considerations such as monotonic relationship between the number of cells and aggregated read measurement in each spot as well as different expression profiles for each gene in various cell types. To complete the Poisson discrete deconvolution model, Dirichlet and gamma distribution priors are imposed on ϕ_k and β_k parameters, respectively. Additionally, the prior on d_{sk} is constructed hierarchically based on the heavy-tailed Bayesian variant of the graph-fused Binomial tree as described in Tansey *et al.* (2017). In this Binomial tree model, the cell type assignment probabilities in each spot are decomposed into a series of binomial decisions where the prior on each binomial probability encourages spatial smoothness across spots. Specifically, such spatial smoothness on cell type assignment probabilities is achieved by imposing the sparsity inducing grouped horseshoe distribution Xu *et al.* (2016) over the graph fussed LASSO Wang *et al.* (2016) (i.e. zeroth-order graph trend filtering) penalized cell type assignment probabilities:

$$\begin{aligned} D_s &\sim \text{Binom}(n_{max}, 1 - \sigma(\theta_{s0})), \\ d_{sk} &\sim \text{Binom}(D_s - \sum_{r=1}^{k-1} d_{sr}, \sigma(\theta_{sk})), \quad \forall 1 < k < K \\ (\Delta_{Spatial} \Theta)_j &\sim \text{Grouped Horseshoe}(\lambda). \end{aligned} \quad (2)$$

In equation (2), n_{max} is the maximum possible number of cells in each spot, for which we set to be 100 in our experiments. The parameter D_s is the total number of cells in spot s out of possible n_{max} cells and θ_{sk} captures the cell type k probability proportions at spot s . Lastly, $\Delta_{Spatial}$ is the edge-oriented zeroth-order graph trend filtering matrix of the spot spatial graph with a hyper-parameter λ controlling the global degree of smoothness.

Here, in our joint Bayesian deconvolution model while performing multi-sample ST data analysis in MUSTANG, we further allow information sharing across tissue samples in the Poisson discrete deconvolution model. We take advantage

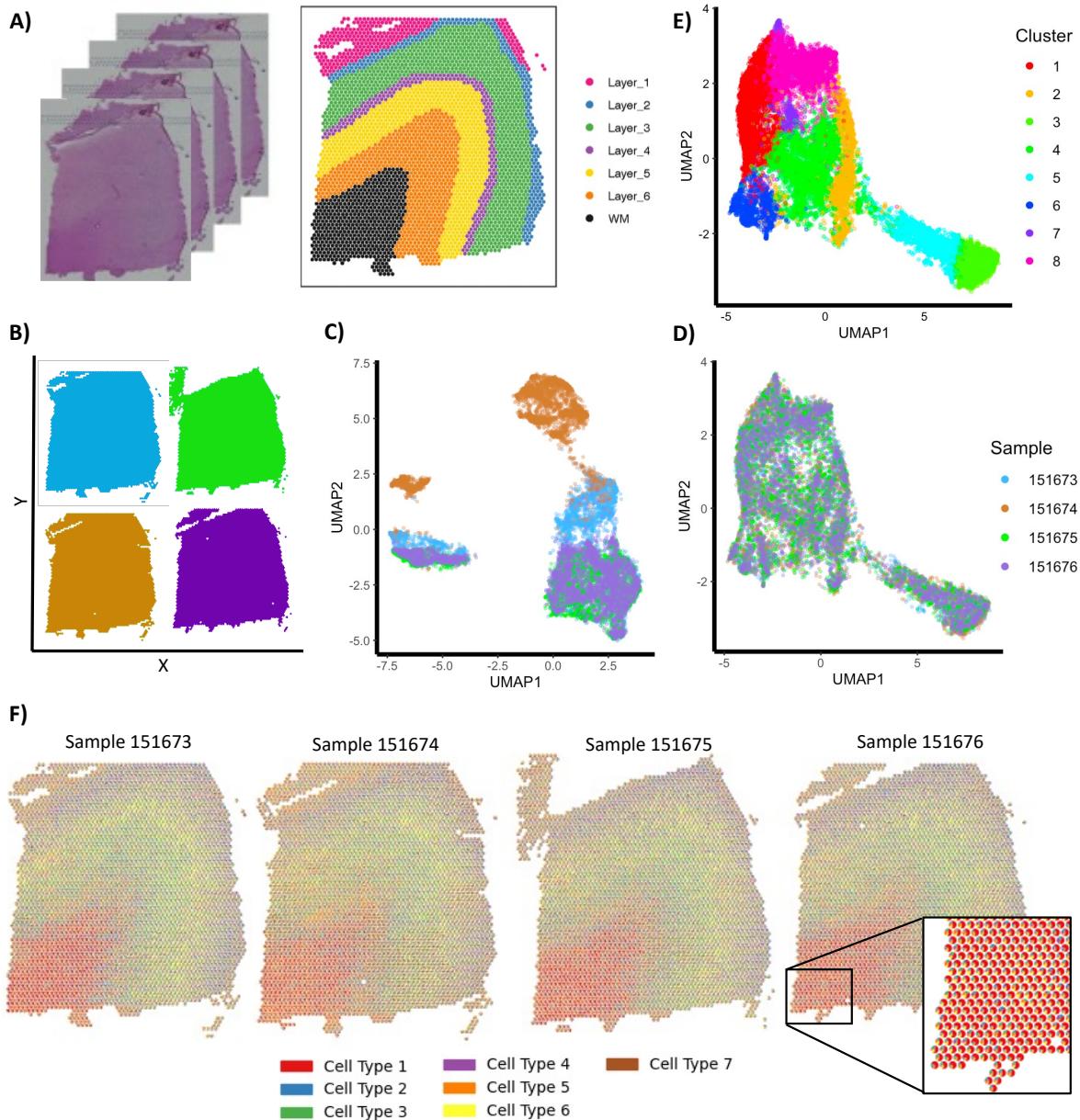


Figure 2: Analysis of four human brain DLPFC tissue samples with MUSTANG. A) H&E staining images of four tissue samples (right) and the reference annotations of spots for the sample 151673 (left). B) Overlaying tissue samples on a grid space to construct spot spatial adjacency matrix. C) UMAP embedding visualization of spots by top 50 PCs before and D) after batch correction. E) Visualization of clustering based on batch-corrected top 50 PCs. The spots are colored based on their transcriptional cluster label inferred from Louvain clustering. F) Spot-based spatial pie charts of MUSTANG-inferred cell type proportions across all four DLPFC tissue samples matching the reference annotations from the original study.

of the prior knowledge inherited in the spot similarity graph that we constructed in the MUSTANG workflow as detailed in the previous section. Specifically, we include transcriptional similarity in addition to the spatial similarity to take into consideration of the biological belief that spots that have similar batch-corrected transcriptional profiles might also have similar cell type composition as well. This is done by taking advantage of the zeroth-order graph trend filtering matrix of the spot similarity graph in the hierarchical prior in equation (2). In MUSTANG, we impose the grouped horseshoe distribution over the graph fussed LASSO penalized cell type assignment probabilities based on the spot similarity

graph as:

$$(\Delta_{Similarity} \Theta)_j \sim \text{Grouped Horseshoe}(\lambda). \quad (3)$$

This results in inferring both transcriptionally and spatially smooth cell type proportions, allowing to borrow signal strengths from both inter-sample and intra-sample spots for effective joint analysis of multiple tissue samples in a given ST dataset.

The posterior inference procedure of the joint Bayesian deconvolution model in MUSTANG is based on Gibbs sampling. The full derivations for all complete conditionals and Gibbs sampling based updates are similar as Zhang *et al.* (2023) and detailed in the supplementary materials. During the inference process, we use Markov chain thinning with five thinning steps between each sample. We collect 100 Markov chain Monte Carlo (MCMC) samples after 1200 burn-in iterations for our consequent analyses and evaluation.

3 Results & Discussion

We have evaluated our MUSTANG for analysis of multi-sample ST data from two real-world ST datasets generated by the 10X Genomics Visium platform 10x Genomics (2022). First, a human brain ST dataset is used to quantitatively benchmark the spot deconvolution performance of MUSTANG. Specifically, the significance of different components in MUSTANG enabling multi-sample ST analysis will be demonstrated in this ablation study comparing with BayesTME and a simpler version of MUSTANG that does not take spot transcriptional adjacency matrix into account. We then analyze a mouse bone marrow tissue ST dataset to characterize tumor microenvironment. The matched immunofluorescence (IF) staining images are used to validate the findings by analyzing bone tissue samples with MUSTANG.

3.1 Human Brain Data

In a recent study Maynard *et al.* (2021b), spatial expression profiles of 12 dorsolateral prefrontal cortex (DLPFC) tissue samples were generated. Based on the selected DLPFC layer-specific gene makers and cytoarchitecture consideration, six cortical layers (i.e. L1-L6) and white matter (WM) for each brain tissue sample were annotated. Here, we use the ST expression profiles of four samples (Sample ID: 151673 to 151676) from this dataset to showcase the benefits of simultaneously deconvolving tissue samples using our proposed MUSTANG.

Figure 2.A shows the Hematoxylin and Eosin (H&E) staining images of four DLPFC tissue samples from the human brain ST dataset as well as the cortical layers and white matter reference annotations for sample 151673 from the original study. Following our MUSTANG workflow, we first start analyzing the samples by constructing spot transcriptional and spatial adjacency matrices. As shown in Figure 2.B, we derive the spot spatial adjacency matrix by adding offsets to spatial coordinates of DLPFC tissue samples and overlaying them on the ST grid space based on the Visium platform. In the transcriptional space, we follow the data preprocessing steps previously described in Section 2.1 to derive the dimension-reduced top 50 PCs for spot-aggregated gene expression counts. Figure 2.C displays the UMAP (Uniform Manifold Approximation and Projection McInnes *et al.* (2020)) embedding of the derived top 50 PCs. It can be seen that there is strong batch effect in this dataset as spots from different tissue samples are clustered based on their sample ID rather than their underlying biological cell types. Although these samples are from the same tissue and sequencing platform, this observed batch effect in the data calls for the need of batch effect correction when analyzing multiple tissue samples to reduce the potential influence from any confounding technical factor. We therefore implement Harmony in MUSTANG to derive the batch corrected top 50 PCs. The UMAP embedding of the batch corrected PCs are shown in Figure 2.D, where the spots from different samples are now mixed together while preserving potential expression differences. We further construct the KNN graph of spots based on these top PCs and apply Louvain clustering, resulting 8 distinct transcriptional sub-populations. In Figure 2.E, the spots from four samples are colored by their transcriptional clusters in the UMAP embedding space. With that, the spot transcriptional adjacency matrix and consequently, the spot similarity graph, can be constructed. Finally, we fit our joint Bayesian deconvolution model to the concatenated data with $K = 7$ cell types (i.e. six cortical layers plus white matter). Based on the collected post burn-in MCMC samples, we derive the posteriors of the joint deconvolution model parameters such as spot-wise cell type proportions, cell types cell numbers and normalized cell-type specific gene expression. Figure 2.F demonstrates the spatial scatter pie chart plot of our four DLPFC tissue samples, in which spots are plotted in their physical coordinates and at each spot there is a circular pie chart representing the inferred proportions of assigned cell types in that spot. The high similarity between the spatial patterns of cell type proportions in the spatial pie chart plots of all four samples and the ground truth annotations from the original study demonstrates the capability of MUSTANG to simultaneously infer the underlying spot-wise biological cell type proportions across multiple tissue samples.

As the ground truth cell type proportions and cell type cell numbers does not exist for multi-cell resolution ST data, inspired by the guidelines described in the recent benchmarking study of cell type deconvolution methods for ST

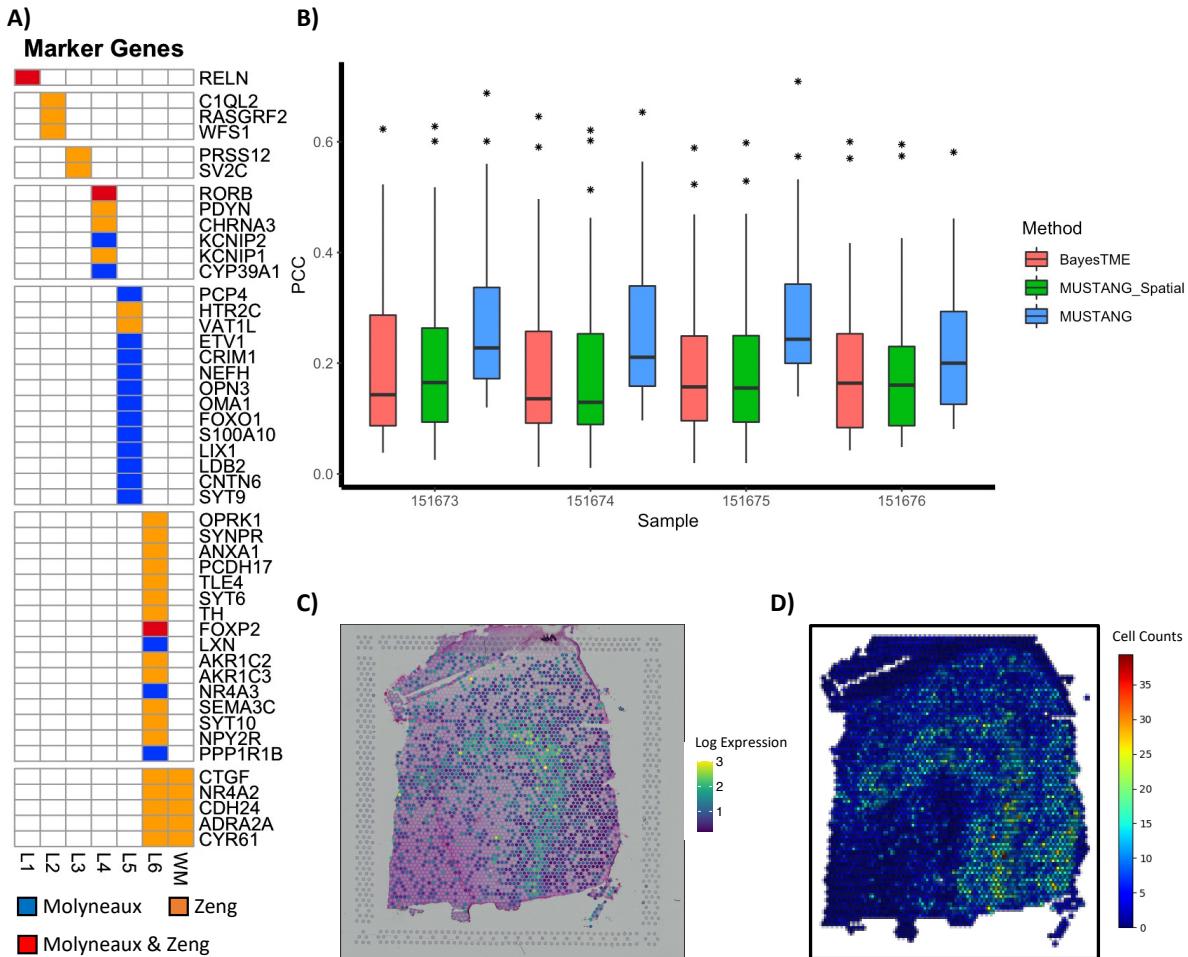


Figure 3: Quantitative performance benchmarking on four DLPFC tissue samples. A) List of layer-specific gene markers from two brain tissue studies Molyneaux *et al.* (2008); Zeng *et al.* (2012). B) Boxplots showing the calculated PCC values for three different reference-free cell type deconvolution methods: MUSTANG, MUSTANG_Spatial and BayesTME. Higher PCC values indicate better deconvolution performance identifying annotated cell types. C) Spot-level log2 expression visualization of the L5 layer marker gene PCP4 correlates with the spatial pattern of D) MUSTANG-inferred cell numbers for the L5 layer best paired cell type for the sample 151674.

data Li *et al.* (2023), we quantify the cell type cell number inference performance of MUSTANG based on the Pearson correlation coefficient (PCC) between the predicted spot-wise cell counts of specific cell type (i.e. d_{sk} in Equation 1) and the corresponding marker genes' expression profiles. Specifically, we benchmark MUSTANG with BayesTME, which is a ST data deconvolution tool capable of inferring cell type cell numbers without the need for paired reference expression profiles. As BayesTME is designed for single sample analysis, we analyze each brain tissue sample separately using BayesTME as the baseline.

To calculate the PCC values, we first gather the list of known layer-specific marker genes from two previous brain studies Molyneaux *et al.* (2008); Zeng *et al.* (2012) that were also used in the original DLPFC dataset paper Maynard *et al.* (2021b). Specifically, we only use those marker genes that are annotated to be related to only one of the DLPFC layers except for white matter (WM) layer, for which as we could not find any WM-specific markers in the two references, we select the marker genes that are shared between layer 6 and WM. The heatmap plot in Figure 3.A shows the list of selected layer-specific marker genes. The colors in the plot represent the corresponding reference papers that reported the corresponding marker genes.

Next, we extract the layer-specific gene expression profiles of DLPFC layers based on the “pseudo-bulking” approach noted in the original study of the DLPFC dataset Maynard *et al.* (2021b), in which the UMI counts for each gene within each layer across 12 spatial replicates are summed up to generate layer-enriched expression profiles. The

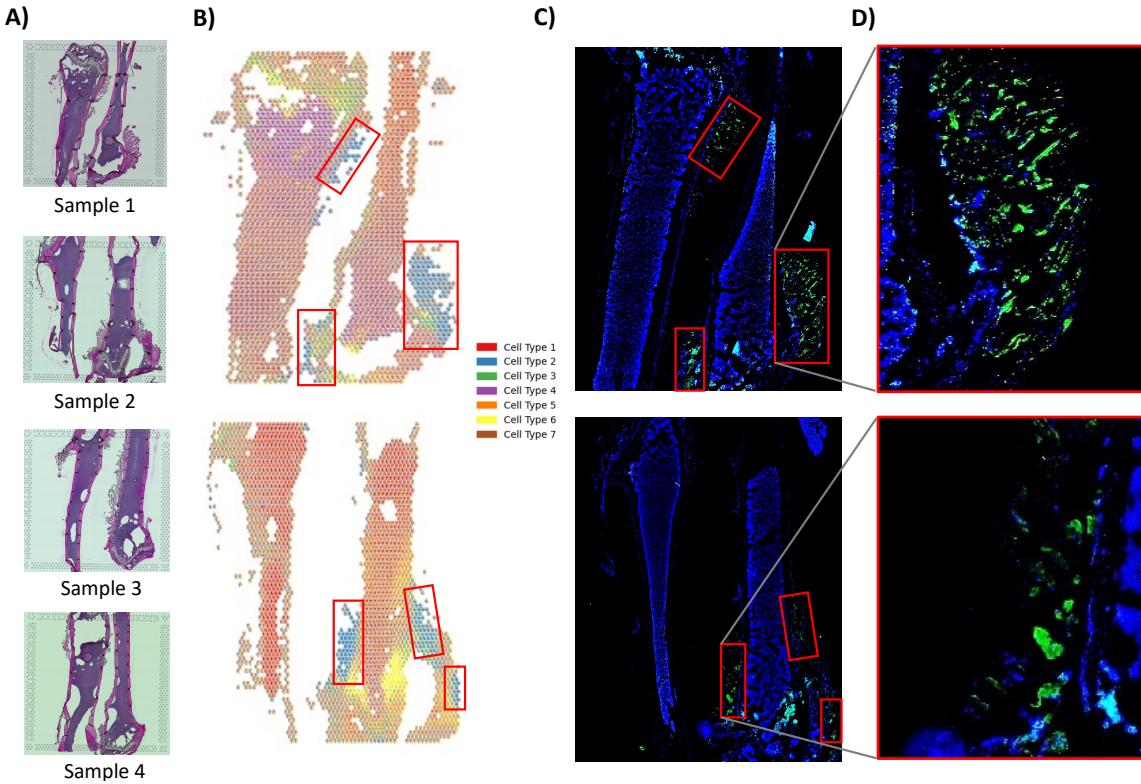


Figure 4: Analysis of four mouse bone marrow tissue samples with MUSTANG. A) H&E staining images of the four samples profiles with Visium platform. B) Spot-based spatial pie charts of MUSTANG-inferred cell type proportions for (top) sample 1 and (below) sample 2. C) Matching IF staining images of (top) sample 1 and (below) sample 2. D) Closer look at the IF staining image regions with high density of green dots, indicating the presence of tumor cells.

layer-specific gene expression profiles of DLPFC layers have shown previously in Maynard *et al.* (2021b) to capture biological properties inherent in DLPFC layers. This pseudo-bulk data is available as “sce_layer data” for download through the `fetch_data` function in `spatialLIBD` R package. Following the instructions for cell type deconvolution benchmarking described in Li *et al.* (2023), for each DLPFC layer, we calculate the PCC between the expression profile of each layer in the extracted pseudo-bulk data and the inferred normalized expression profile of all cell types (i.e. ϕ_{kg} in Equation 1) from MUSTANG, choose the best-paired inferred cell type with the highest PCC and match it to that layer. After assignment, this chosen cell type would be ignored in the future steps. Then, we repeat the aforementioned steps on the next layer until all layers are iterated. For now, each layer should be paired with the best suitable cell type without duplication.

Finally, to complete the quantitative comparison between different ST analysis methods, for each DLPFC layer, we calculate the PCC value between the corresponding marker gene expression of that layer in Figure 3.A and the inferred expression corresponding to the best-paired cell type. we calculate PCC values for each of the four tissue samples separately after jointly analyzing them with MUSTANG. We repeat the same procedure for analyzing tissue samples separately using BayesTME and calculate the corresponding PCC values. The boxplots in Figure 3.B shows the PCC values for each method on each sample separately. As depicted in the figure, on all four tissue samples, jointly analyzing them with MUSTANG leads to higher average PCC values comparing to separately deconvolving them using BayesTME. This superior performance of MUSTANG, illustrates the benefit of simultaneously analyzing tissue samples with an approach that allows for effective cross-sample information sharing. As an example of the spatial expression pattern of the marker genes and inferred cell-type cell numbers, we have visualized the log2 expression of the L5 layer marker gene *PCP4* as well as the MUSTANG inferred cell numbers for the L5 layer best paired cell type for the sample 151674 in Figures 3.C and 3.D, respectively. The derived PCC value for this gene is 0.42. Here, we would like to emphasize that due to the nature of quantitative analysis we did in this section while STdeconvolve deconvolution model does not explicitly model cell type cell numbers (i.e. d_{sk} in our deconvolution model), it is not possible to benchmark STdeconvolve with other comparing methods for the presented performance evaluation results. It worth mentioning that adjusting for this parameter during the deconvolution of aggregated ST signals in multi-cellular spot

resolution ST datasets is crucial to assure biological considerations such as monotonic relationship between the number of cells and aggregated read measurement in each spot. As currently, to the best of our knowledge only MUSTANG and BayesTME adjust for this source of variation, we have only included these methods results in Figure 3.B and excluded STdeconvolve from this quantitative analysis.

To better understand the corresponding contributions of different components in MUSTANG to its superior performance for multi-sample ST data analysis, we further conduct the ablation study that analyzes the tissue samples with a simplified version of MUSTANG without using the spot transcriptional adjacency matrix across samples. This means that we deconvolve tissue samples without cross-sample transcriptional information sharing. We call this simpler version of MUSTANG, “MUSTANG_Spatial” as after removing transcriptional edges from spot similarity graph, it gets reduced to using only the spot spatial coordinates. As shown in Figure 3.B, the PCC values in all four samples get significantly lower in the obtained results by “MUSTANG_Spatial” in comparison with those by the complete MUSTANG workflow. Clearly, removing transcriptional information sharing from MUSTANG, leads to on average similar PCC values of the results using BayesTME that deconvolves tissue samples separately. This is expected as BayesTME, similar as “MUSTANG_Spatial”, only allows within-sample information sharing across physically neighboring spots by performing spatial smoothing on cell type assignment probabilities. This ablation study, clarifies the significance of intra-sample transcriptional similarity guidance on boosting the performance of MUSTANG.

3.2 Mouse Bone Marrow Data

The tumor microenvironment (TME) plays a critical role in tumor development, progression, and therapeutic response Kalbasi and Ribas (2020). Recently, several studies have reported that the spatial organization of TME is the key determinant of the disease behavior and treatment outcomes Fu *et al.* (2021); Blise *et al.* (2022). Thus, a comprehensive understanding of the spatial architecture and expression patterns of TME holds great promise for the development of novel therapeutic treatment strategies. Taking advantage of the TME spatial transcriptomics data helps unveil the underlying complex spatial organization and intricate interplay between tumor cells and their microenvironment.

For the second application of MUSTANG analyzing ST data of tissue samples, we study and characterize mouse bone marrow tissue tumor microenvironment. We have profiled the bone tissue of 6-8 weeks mouse after bone lesions generation by Intra-iliac injection (IIA). For spatial analysis, ST data are obtained via the 10X Visium platform to profile four bone marrow tissue sections. Specifically, thin (10- μ m) mouse bone marrow sections were mounted directly onto separate designated capture areas on the 10x Visium spatial gene expression slides and data preprocessing was done per the manufacturer’s protocols. In brief, after H&E staining, each section was imaged using color bright field by Cytation 5. The sections were then processed following the 10X Visium gene expression protocols until the cDNA libraries were constructed, which were later sequenced by Novaseq 6000 system with 150bp paired end reads, aiming at 300 million raw reads per section. The H&E staining images of the four bone tissue sections are shown in Figure 4. The Visium Spatial Gene Expression Solution from 10x Genomics allows for the analysis of mRNA using high-throughput sequencing and subsequently maps a transcript’s expression pattern in tissue sections using high-resolution microscope imaging. This provides gene expression data at 5,000 capture spots in each Visium slide within the context of tissue architecture, tissue microenvironments, and cell groups. SpaceRanger was used to process Visium spatial RNA-seq output and brightfield and fluorescence microscope images to detect tissue, align reads and generate feature-spot matrices. SpaceRanger built-in function `mkfastq` was used to wrap Illumina’s `bc12fastq` to correctly demultiplex Visium-prepared sequencing runs and to convert barcode and read data to FASTQ files. SpaceRanger function `count` was used to take a microscope slide image and FASTQ files from SpaceRanger `mkfastq` and perform alignment, tissue detection, fiducial detection, and barcode/UMI counting. In our study, raw sequence reads were mapped to mice reference genome (mm10) to obtain the gene expression profile at each spot.

In order to identify and characterize the spatial organization of tumor cells within the bone marrow tissue TME, we jointly analyze the ST data from the four bone tissue sections with MUSTANG. We follow the same MUSTANG workflow steps described in detail in section 2 to infer the deconvolved components of the bone tissue samples. We pick the number of cell types K based on the results of applying unsupervised cell type number inference algorithms implemented in BayesTME Zhang *et al.* (2023) and STdeconvolve Miller *et al.* (2022) to each of the individual four bone tissue samples leading to 8 different inferred number of cell types. We then select the K to be 7 as it is the most frequently inferred value of total cell type numbers out of the eight derived values by BayesTME and STdeconvolve. (Four occurrence; Details in the supplementary materials).

After simultaneously analyzing the four bone tissue samples using MUSTANG, we plot the spatial scatter pie chart visualization of the inferred deconvolved cell type proportions. The spatial pie chart plots for samples one and two are visualized in Figure 4.B. To validate the identification of tumor cell types in the bone marrow TME by MUSTANG, we generate matched immunofluorescence (IF) staining images for each bone tissue sections separately. Specifically, the bone sections were stained with antibodies to depict the potential tumor cell enriched tissue section parts (The detailed

protocol for generation of IF staining images can be found in the supplementary materials). The generated IF staining images for bone tissue samples one and two are shown in Figure 4.C. The green dots in the IF staining images highlight the tumor cell enriched parts (Figure 4.D). Matching the green dots regions in IF staining images with the spatial pie chart plots of tissue samples from MUSTANG, revealed the presence of high MUSTANG-inferred proportions of cell type 2 (colored with blue in Figure 4.B). We plot red boxes to highlight the regions of IF staining images of bone tissue samples with high enrichment of green dots (i.e. tumor cells) and overlay the boxes on the spatial pie charts. The spots in the matching red boxes of the spatial pie charts are composed of high inferred cell type number 2 proportions with MUSTANG. This demonstrates the capability of MUSTANG to identify tumor cell type cells in the bone marrow TME.

4 Conclusions

We have developed MUSTANG, a multi-sample ST data analysis workflow that jointly analyzes multiple tissue samples by leveraging transcriptional information sharing across samples as well as spatial dependency in gene expression patterns within samples.

By our proposed workflow, including spot similarity graph construction and batch effect correction removing unwanted nuisance factors obscuring the inherent biological signal in ST data, the joint Bayesian deconvolution model in MUSTANG extends the previous developments for reference-free single-sample ST data analysis Zhang *et al.* (2023) to joint multi-sample ST data analysis, allowing for robust simultaneous spatial characterization of cell sub-populations across spots in all tissue samples. We have introduced a new spot-based knowledge graph, spot similarity graph, that captures sufficient and comprehensive similarity information between spots to be used in our joint Bayesian deconvolution model to improve the multi-sample analysis performance beyond existing methods analyzing single ST samples separately. By providing extensive results on two real-world multi-sample ST data, we have demonstrated the superior performance of MUSTANG in terms of cell type deconvolution and spatial characterization of complex tissue environments. Future work concerns further improving the capability of MUSTANG to decipher tissue structures by performing joint cell-cell interaction analysis between cells of different sub-populations across multi-sample tissue samples.

A. Supplementary Materials

A.1 Gibbs sampling inference

Here, we provide the detailed posterior Gibbs sampling procedure for the joint Bayesian deconvolution model described in section 2.4.

Sampling Y_{sgk} . Since we are modeling the raw ST counts Y_{sg} as

$$Y_{sg} = \sum_k Y_{sgk} \sim \text{Pois}(\sum_k \beta_k d_{sk} \phi_{kg}), \quad (4)$$

and leveraging the relationship between the Poisson and Multinomial distribution, the Y_{sgk} parameters can be sampled from a Multinomial distribution. If we define the auxiliary variables $\pi_{sk} = \frac{\beta_k d_{sk} \phi_{kg}}{\sum_k \beta_k d_{sk} \phi_{kg}}$, then

$$(Y_{sg1}, \dots, Y_{sgK} | -) \sim \text{Mult}(Y_{sg}; \pi_{s1}, \dots, \pi_{sK}). \quad (5)$$

Sampling β_k . To infer the cell type dependent expected total counts parameter β_k , we write its posterior as

$$\begin{aligned} P(\beta_k | Y_{sgk}, d_{sk}, \phi_{kg}) &= \prod_s \prod_g P(Y_{sgk} | \beta_k, d_{sk}, \phi_{kg}) P(\beta_k) \\ &\propto \prod_s P(Y_{sk.} | \beta_k, d_{sk}, \phi_{kg}) P(\beta_k) \end{aligned} \quad (6)$$

where $Y_{sk.}$ is $(Y_{sk1}, \dots, Y_{skG})$. Then, we can write the likelihood of reads $Y_{sk.}$ as

$$\begin{aligned} P(Y_{sk.} | \beta_k, d_{sk}, \phi_{kg}) &= \prod_g \frac{\exp(-\beta_k d_{sk} \phi_{kg}) (\beta_k d_{sk} \phi_{kg})^{Y_{skg}}}{Y_{sgk}!} \\ &= \frac{\exp(-\beta_k d_{sk} \sum_g \phi_{kg}) (\beta_k d_{sk})^{\sum_g Y_{skg}} \prod_g \phi_{kg}^{Y_{skg}}}{\prod_g Y_{skg}!} \\ &= \frac{\exp(-\beta_k d_{sk}) (\beta_k d_{sk})^{Y_{sk}} \prod_g \phi_{kg}^{Y_{skg}}}{\prod_g Y_{skg}!} \end{aligned} \quad (7)$$

where in the last equation we take advantage of facts that $\sum_g \phi_{kg} = 1$ and $\sum_g Y_{skg} = Y_{sk}$. Now, based on Equation 7, we can simplify the posterior of cell type dependent parameter β_k in Equation 6 as

$$\begin{aligned} P(\beta_k | Y_{sgk}, d_{sk}, \phi_{kg}) &\propto \prod_s P(Y_{sk.} | \beta_k, d_{sk}, \phi_{kg}) P(\beta_k) \\ &= \exp(-\beta_k \sum_s d_{sk}) \beta_k^{\sum_s Y_{sk}} \left(\prod_s \frac{\prod_g \phi_{kg}^{Y_{skg}}}{\prod_g Y_{skg}!} d_{sk}^{Y_{sk}} \right) P(\beta_k) \\ &= \exp(-\beta_k \sum_s d_{sk}) \beta_k^{\sum_s Y_{sk}} \left(\prod_s \frac{\prod_g \phi_{kg}^{Y_{skg}}}{\prod_g Y_{skg}!} d_{sk}^{Y_{sk}} \right) \left(\frac{f^e}{\Gamma(e)} \beta_k^{e-1} \exp(-f \beta_k) \right) \\ &\propto \exp(-\beta_k (\sum_s d_{sk} + f)) \beta_k^{\sum_s Y_{sk} + e - 1}. \end{aligned} \quad (8)$$

Note that in Equation 8, we leverage the Gamma prior distribution (i.e. $\text{Gamma}(e, f)$) we imposed on β_k as described in the main text. Thus, based on Equation 8 we can update the β_k as

$$(\beta_k | -) \sim \text{Gamma}(\sum_s Y_{sk} + e, \sum_s d_{sk} + f). \quad (9)$$

Sampling ϕ_k . As described in the main text, we impose Dirichlet prior distribution over the normalized cell type dependent gene expression profile parameter $\phi_k = (\phi_{k1}, \dots, \phi_{kG})$ (i.e. $\phi_k \sim \text{Dir}(\alpha_k)$) and $\sum_g \phi_{kg} = 1$. We have

$$\begin{aligned} Y_{sk1}, \dots, Y_{skG} &\sim \text{Mult}\left(\sum_g Y_{skg}; \frac{\beta_k d_{sk} \phi_{k1}}{\sum_g \beta_k d_{sk} \phi_{kg}}, \dots, \frac{\beta_k d_{sk} \phi_{kG}}{\sum_g \beta_k d_{sk} \phi_{kg}}\right) \\ &= \text{Mult}\left(\sum_g Y_{skg}; \phi_{k1}, \dots, \phi_{kG}\right) \end{aligned} \quad (10)$$

Thus, the normalized gene expression profiles can be updated using the Dirichlet-Multinomial conjugacy as

$$(\phi_k | -) \sim \text{Dir}(\alpha_k + \sum_s Y_{sk1}, \dots, \alpha_k + \sum_s Y_{skG}) \quad (11)$$

Sampling D_s and d_{sk} . By modeling the cell number distribution as hidden markov model (HMM) and exploiting the forward-filtering backward-sampling algorithm introduced in Zhang *et al.* (2023), we can update d_{sk} in efficient approach. Specifically, in the forward-filtering algorithm we calculate the "alpha" values of our hidden latent stats which includes the cell type cell numbers (i.e. x_k) which we define as

$$\alpha(x_k) = P(d_{sk}, Y_{s1:k}) \quad (12)$$

and in the backward-sampling, based on the derivations in Zhang *et al.* (2023), the cell type cell number values are updated based on

$$P(d_{sk}|x_{k+1}, Y_{1:T}) \propto \alpha(x_k) P(x_{k+1}|x_k). \quad (13)$$

A.2 Inferring total number of cell types (K) for mouse bone marrow data

Here, we describe the results of applying unsupervised cell type number inference algorithms implemented in BayesTME Zhang *et al.* (2023) and STdeconvolve Miller *et al.* (2022) to each of the individual four mouse bone marrow tissue samples. Based on the instructions in Miller *et al.* (2022), to find optimal number of cell types in bone tissue samples with STdeconvolve, we fit a number of different Latent Dirichlet allocation (LDA) models with different K values and then based on the inferred number of "rare" predicted cell-types and perplexity values, we pick the number of cell types. Specifically, we change K from 2 to 15 for each bone tissue sample and plot the perplexity and number of "rare" predicted cell types versus the K values. Figure S1 shows the STdeconvolve inferred perplexity and number of "rare" cell types versus different K values for four bone marrow samples one to four respectively. As described in STdeconvolve workflow Miller *et al.* (2022), we pick the number of cell types to be the value from that perplexity stabilizes and has the lowest number of rare sub predicted cell types to avoid over-clustering. This leads to inferring 6, 7, 6 and 7 number of cell types for Samples 1 to 4 respectively (Table 1).

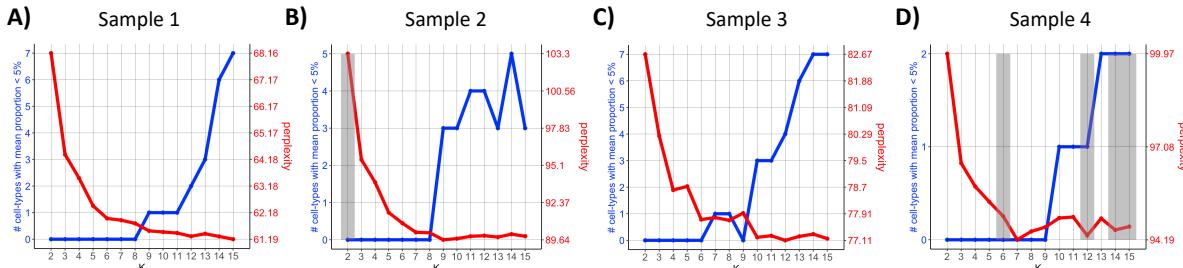


Figure S1: Inferring the number of cell types with STdeconvolve. Inferred perplexity and number of "rare" cell types are plotted versus different K values for four profiled bone marrow tissue samples.

Then, we use BayesTME to infer total number of cell types (K). Specifically, BayesTME does this by performing 5-fold cross-validation for each $K = (2, \dots, 12)$ values with 5% of spots held out in each fold. Then, in each fold, a Poisson based discrete deconvolution model is fitted over a discrete grid of λ smoothness values ($10^0, 10^1, \dots, 10^5$) and average log-likelihood for the held out spots are calculated. Finally, the K with highest averaged likelihood is picked to be the total number of cell types Zhang *et al.* (2023). Figure S2 shows the calculated average cross-validation log-likelihood versus the number of cell types for each of four bone tissue samples. Based on these figures, the inferred total number of cell types for samples 1 to 4 is 8, 7, 7 and 8 respectively (Table 1).

Table 1 summarizes the inferred total number of cell types from STdeconvolve and BayesTME. We then select the K to be 7 in our multi-sample analysis with MUSTANG as it is the most frequently inferred value of total cell type numbers out of the eight derived values.

Table 1: Inferred total number of cell types (K) from STdeconvolve and BayesTME

Method	Sample 1	Sample 2	Sample 3	Sample 4
STdeconvolve	6	7	6	7
BayesTME	8	7	7	8

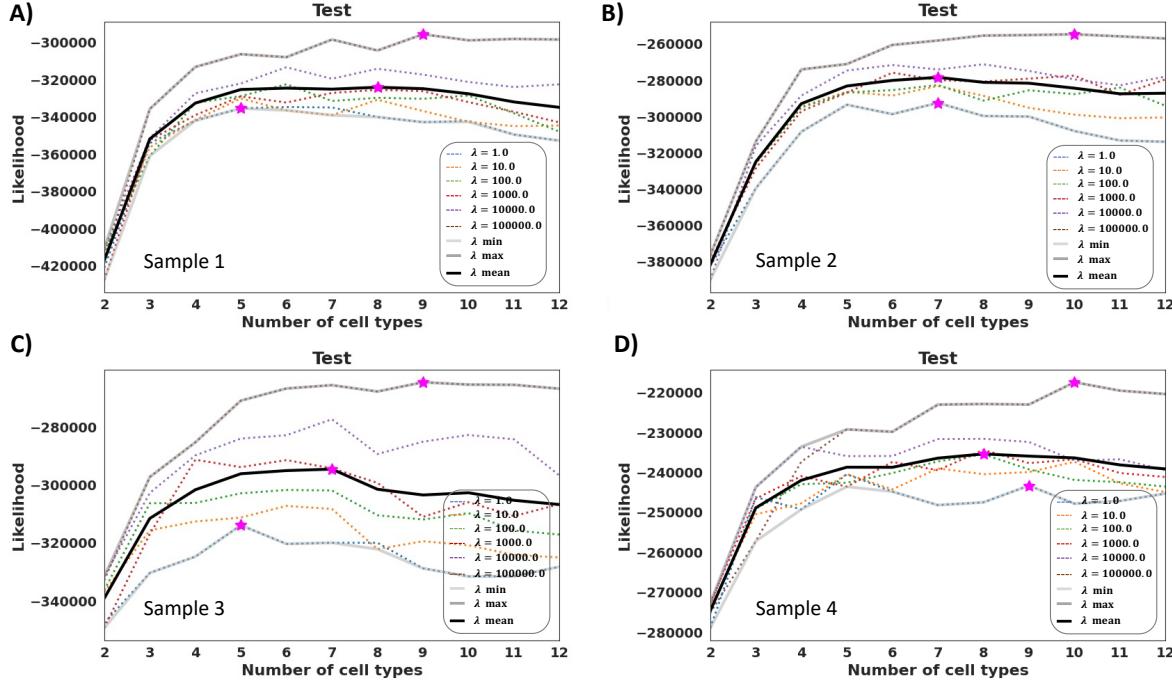


Figure S2: Inferring the number of cell types with MUSTANG. The cross-validation log-likelihood for different values of λ as well as the average log-likelihood across different K values are shown for four different bone tissue samples.

A.3 Immunofluorescence (IF) staining images generation protocol

Here, we describe the protocols for immunofluorescent staining of thick sections and bone clearing. Briefly, femur bone sections were cleaned, pretreated with 1mg/ml sodium borohydride solution and then blocked before whole-mount staining. Then, the bone sections were stained with antibodies. Immunofluorescent staining were performed within 1 ml staining buffer for three days at 4°C with constant rotation and followed by a whole day of PBS washing. The stained samples were then dehydrated by a series of methanol solutions before completely cleared by BABB solution. The bone sections were later sealed in imaging glass cassettes with BABB solution. The images were taken by an Olympus FV1200 MPE confocal microscope.

A.4 Additional results with mouse bone marrow data

Here, we present the additional results of jointly analyzing four bone tissue samples as well as the IF staining images for the profiled tissue samples that highlights the tumor cells. Specifically, here, we focus on mouse bone marrow tissue samples 3 and 4 as the results of other two samples are discussed in detail in section 3.2. Figure S3.A shows the spatial pie chart plots generated by MUSTANG for samples three and four and same as what we described in section 3.2, the IF staining images are generated and used to validate MUSTANG results by identifying tumor cells in bone marrow TME. Figure ??B shows the matched IF staining images for the bone marrow tissue samples three and four. As the figures suggest the green dots that highlight the tumor cells regions can be matched with the tissue areas in samples three and four that have high proportions of cells of cell type 2, illustrating the capability of MUSTANG to characterize tumor cells in mouse bone marrow TME.

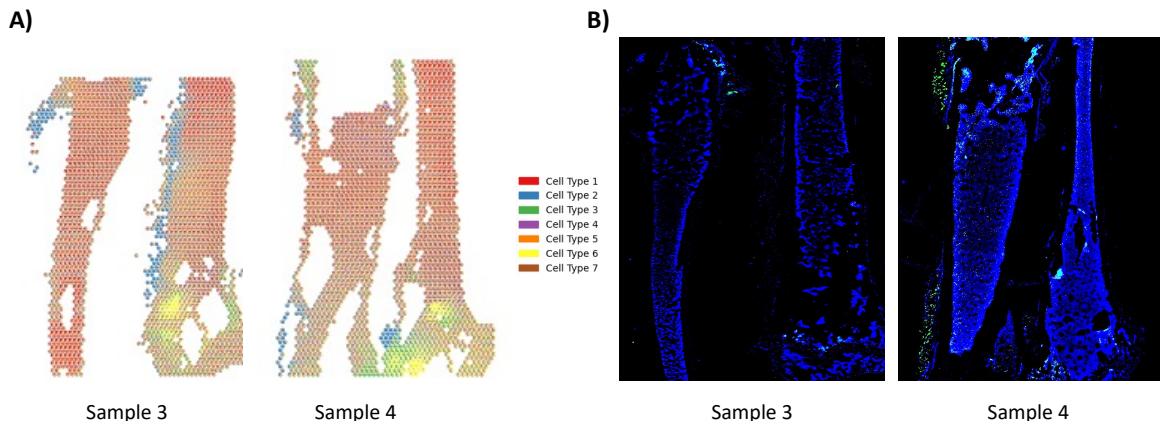


Figure S3: Additional results of jointly analyzing mouse bone marrow samples with MUSTANG. A) Spot-based spatial pie charts of MUSTANG-inferred cell type proportions for (left) sample 3 and (right) sample 4. B) Matching IF staining images of (left) sample 3 and (right) sample 4.

References

10x Genomics (2022). 10x genomics: Visium spatial gene expression.

Allen, C. *et al.* (2022). Maple: A hybrid framework for multi-sample spatial transcriptomics data. *bioRxiv*.

Andersson, A. *et al.* (2021). Spatial deconvolution of her2-positive breast cancer delineates tumor-associated cell type interactions. *Nature communications*, **12**(1), 36–44.

Blise, K. E. *et al.* (2022). Single-cell spatial architectures associated with clinical outcome in head and neck squamous cell carcinoma. *npj Precis. Onc.*, **6**(10).

Blondel, V. D. *et al.* (2008). Fast unfolding of communities in large networks. *J. Stat. Mech.*, **50**, 36–44.

Cable, D. M. *et al.* (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. *Nat Biotechnol*, **40**, 517–526.

Charytonowicz, D. *et al.* (2023). Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with unicell deconvolve. *Nat Commun*, **14**(1350).

Cobos, F. A. *et al.* (2020). Benchmarking of cell type deconvolution pipelines for transcriptomics data. *Nat Commun*, **11**(5650).

Elosua-Bayes, M. *et al.* (2021). Spotlight: seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. *Nucleic acids research*, **49**(9).

Fu, T. *et al.* (2021). Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. *J Hematol Oncol*, **14**(1).

Hwang, B. *et al.* (2018). Single-cell rna sequencing technologies and bioinformatics pipelines. *Exp Mol Med*, **50**, 1–14.

Kalbasi, A. and Ribas, A. (2020). Tumour-intrinsic resistance to immune checkpoint blockade. *Nature reviews. Immunology*, **20**(1), 25–39.

Kleshchevnikov, V. *et al.* (2022). Cell2location maps fine-grained cell types in spatial transcriptomics. *Nat Biotechnol*, **40**, 661–671.

Korsunsky, I. *et al.* (2019). Fast, sensitive and accurate integration of single-cell data with harmony. *Nat Methods*, **16**, 1289–1296.

Li, H. *et al.* (2023). A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. *Nat Commun*, **14**(1548).

Lopez, R. *et al.* (2022). Destvi identifies continuums of cell types in spatial transcriptomics data. *Nat Biotechnol*, **40**, 1360–1369.

Ma, Y. and Zhou, X. (2022). Spatially informed cell type deconvolution for spatial transcriptomics. *Nat Biotechnol*, **40**(9), 1349–1359.

Mantri, M. *et al.* (2021). Spatiotemporal single-cell rna sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. *Nat Commun*, **12**(1771).

Marx, V. (2021). Method of the year: spatially resolved transcriptomics. *Nat Methods*, **18**, 9–14.

Maynard, K. R. *et al.* (2021a). Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. *Nat Neurosci*, **24**, 425–436.

Maynard, K. R. *et al.* (2021b). Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. *Nature neuroscience*, **24**(3), 425–436.

McInnes, L. *et al.* (2020). Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*.

Miller, B. F. *et al.* (2021). Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. *Genome research*, **31**(10), 1843–1855.

Miller, B. F. *et al.* (2022). Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. *Nat Commun*, **13**(2339).

Molyneaux, B. J. *et al.* (2008). Neuronal subtype specification in the cerebral cortex. *Nat Rev Neurosci*, **8**, 427–437.

Moses, L. and Pachter, L. (2022). Museum of spatial transcriptomics. *Nature methods*, **19**(5), 534–546.

Niyakan, S. *et al.* (2021). Simcd: Simultaneous clustering and differential expression analysis for single-cell transcriptomic data. *arXiv preprint arXiv:2104.01512*.

Rodrigues, S. G. *et al.* (2019). Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. *Science*, **363**(6434), 1463–1467.

Tansey, W. *et al.* (2017). Multiscale spatial density smoothing: an application to large-scale radiological survey and anomaly detection. *Journal of the American Statistical Association*, **112**(519), 1047–1063.

Tu, J.-J. *et al.* (2023). Endecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning. *Bioinformatics*, **39**(1).

Vickovic, S. *et al.* (2019). High-definition spatial transcriptomics for in situ tissue profiling. *Nature Methods*, **16**(10), 987–990.

Walker, B. L. *et al.* (2022). Deciphering tissue structure and function using spatial transcriptomics. *Commun Biol*, **5**(220).

Wang, Y.-X. *et al.* (2016). Trend filtering on graphs. *Journal of Machine Learning Research*, **17**(105), 1–41.

Xu, Z. *et al.* (2016). Bayesian grouped horseshoe regression with application to additive models. *Advances in Artificial Intelligence*, **9992**.

Zeng, H. *et al.* (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. *Cell*, **149**(2), 483–496.

Zhang, H. *et al.* (2023). Bayestme: An end-to-end method for multiscale spatial transcriptional profiling of the tissue microenvironment. *Cell systems*, **14**(7), 605–619.

Zhao, E. *et al.* (2021). Spatial transcriptomics at subspot resolution with bayesspace. *Nat Biotechnol*, **39**, 1375–1384.