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Abstract

As single cell molecular data expand, there is an increasing need for algorithms that efficiently query and
prioritize gene programs, cell types and states in single-cell sequencing data, particularly in cell atlases. Here
we present scDECAF, a statistical learning algorithm to identify cell types, states and programs in single-cell
gene expression data using vector representation of gene sets, which improves biological interpretation by
selecting a subset of most biologically relevant programs. We applied scDECAF to scRNAseq data from
PBMC, Lung, Pancreas, Brain and slide-tags snRNA of human prefrontal cortex for automatic cell type
annotation. We demonstrate that scDECAF can recover perturbed gene programs in Lupus PBMC cells
stimulated with IFNbeta and TGFBeta-induced cells undergoing epithelial-to-mesenchymal transition.
scDECAF delineates patient-specific heterogeneity in cellular programs in Ovarian Cancer data. Using a
healthy PBMC reference, we apply scDECAF to a mapped query PBMC COVID-19 case-control dataset and
identify multicellular programs associated with severe COVID-19. scDECAF can improve biological
interpretation and complement reference mapping analysis, and provides a method for gene set and pathway
analysis in single cell gene expression data.
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Introduction

The maturation of single-cell sequencing technologies has increased the capacity to generate vast amounts
of single-cell data, leading to the emergence of cell atlases such as the Human Cell Atlas’. These atlases
have opened the way to understanding cell types, disease-associated genes, and programs in which they
act. The identification of cell types, states and gene programs allows researchers to decipher the
mechanisms of disease, empowering the development of new drugs and therapies. Cell types and states can
be identified using various computational methods?*#° that transfer annotations from single-cell
references®”®, by means of tissue-specific cell type markers®'®or classifiers®*. For example, Seurat V4° and
SingleR’ leverage existing reference scRNAseq datasets for cell type annotation, whereas CellAssign® and
Garnett'® can deliver the same task with cell type markers.

Gene programs can capture coordinated differences between cell populations and represent subtle,
continuous cell phenotypes that are not captured by cell type annotations. Cell-intrinsic gene programs can
be identified by scoring single-cell data with gene sets that represent molecular pathways or transcriptional
signatures. Scoring methods apply gene signature knowledge-bases using rank-based or factorization-based
approaches™'2"® to obtain per-cell scores that facilitate the interpretation of cellular phenotypes across a
dataset. For example, Spectra™ is a Bayesian approach that can discern cell type-specific phenotypes from
global programs while refining the definition of a gene set depending on the context. Alternatively, to obtain
gene programs that span across cell types, recent methods like DIALOGUE™, aim to uncover multicellular
processes in single-cell RNAseq data.

Deep learning-based solutions based on Variational Autoencoders, including VEGA'" and expiMap'®, learn a
disentangled lower-dimensional representation of gene expression in cells, whereby each dimension of the
latent space corresponds to an input gene program. While both VEGA and expiMap are scalable approaches
to quantify known gene programs in datasets with millions of cells, expiMap additionally allows for selection
of a subset of gene programs that are more relevant for reconstruction of gene expression. These methods
identify cell type-specific enrichment of gene programs in diseases or perturbations, however, since
Variational Autoencoders are inherently data denoising and compression techniques, they are susceptible to
the strength of the biological signal or effect size of the perturbation in the data and may not perform
optimally in the absence of sufficiently large biological effects. Furthermore, interpretable deep learning
approaches can not be applied to integrated cell atlases such as the adult lung cell atlas'’ that contains 2.2
million cells from across multiple studies. In order to identify disease- or perturbation-specific gene programs
in integrated atlases, the interpretable deep learning approaches have to be used at the train time for data
integration.

In this work, we present a statistical learning approach that learns vector representations of gene sets to
identify cell types and gene expression programs in single-cell gene expression data. Similar to interpretable
deep learning models, our approach can learn disentangled representations of cellular gene expression
profiles and select the most relevant subset of gene programs among a collection of gene sets. Unlike these
approaches, our method can be applied downstream of data integration workflows to identification of cell
types, states and programs in existing atlases. Our method is capable of a sparse selection of gene sets that
prioritizes pathways and signatures to enhance biological interpretation of data, which is not offered by
existing statistical learning approaches.
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Results

Cell to gene-set assignment by similarity of vector representations in the
vector space recovers gene programs

To interrogate similarities between the expression profiles of individual cells in a dataset and patterns
encoded by a gene set, we developed scDECAF (Single-cell disentanglement by canonical factors), which
enables reference-free automated annotation of cells with either discrete labels, such as cell types and
states, or continuous phenotype scores for gene expression programs (Figure 1A). Our method uses
canonical correlation analysis (CCA)"®" to construct a shared lower-dimensional space between binarised
gene lists and unlabelled single-cell gene expression profiles. This lower-dimensional space provides vector
representations of gene sets and gene expression profiles while simultaneously maximizing the correlation
between the two. The association between individual cells and phenotype is determined based on the
similarity of their representations in CCA space. Thus, scDECAF can leverage existing large knowledge
bases in the interpretation of heterogeneous single cell datasets for either cell type annotation or gene
signature scoring. To improve interpretability, scDECAF offers a “discovery mode” - a sparsity inducing
procedure that supports the identification of relevant gene sets prior to learning the shared lower-dimensional
space. This additional filtering step selects for gene sets that are most relevant for reconstruction of a lower
dimensional embedding of cells, using a multi-response penalized linear regression model®® (See Materials
and Methods). This is a principled, data-driven alternative to manual gene set selection, which can introduce
unwanted bias.

We applied scDECAF to PBMC cells from individuals with Systemic Lupus Erythematosus (SLE) perturbed
by IFNB stimulation?' and Hallmark gene sets??. scDECAF correctly identified IFNa response, which is
known to be induced by IFNB?', in stimulated cells (Figure 1B). scDECAF additionally identified IFNy
response in cells of lymphoid lineage in both control and interferon stimulated cells, consistent with
established role of IFNy signaling in SLE? and its specificity to the lymphoid lineage®*. Reduced
angiogenesis®® and oxygen reactive species pathway activity®® in interferon-stimulated were also identified by
scDECAF, and are likewise supported by literature®>* (Figure 1B). When compared to standard GSEA
(Figure 1C), many Hallmark gene sets identified through the sparse gene program selection procedure of
scDECAF were also statistically enriched in interferon-stimulated B cells. However, scDECAF additionally
identified a number of gene programs that were not detected by standard GSEA, namely the
PI3k-AKT-mTOR signaling program, which is known to be elevated in human SLE B cells*” . Overall these
results suggest that scDECAF can recover well-studied gene programs and identify new programs not
detected by conventional GSEA analysis.
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Figure 1: scDECAF quantifies cell states and gene programs by learning vector representations of

cells and gene sets.

A. scDECAF uses Canonical Correlation Analysis (CCA) to learn a lower-dimensional space

shared between

single cell gene expression profiles and gene sets. In this space, cells and gene sets are represented as
vectors and there is an optimal correlation between gene expression profiles and patterns specified by the
gene sets. The proximity between the vector representation of the cells and gene sets is used for cell type
annotation, or to score gene programs and transcriptional signatures. Additionally, the learned space can be
sparsified, which allows the selection of most biologically relevant gene set terms. B. The activity score of

most biologically relevant Hallmark gene sets selected and quantified by scDECAF in a
lupus PBMC dataset. C. Comparison of GSEA and scDECAF in identifying Hallmark gene
IFN-g stimulated B cells compared to unstimulated B cells.

IFN-B stimulated
sets enriched in
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Cell to marker gene-set assignment by vector representation for cell type
annotation

To benchmark scDECAF for cell type annotation, we systematically compared scDECAF to a broad
range of cell type annotation tools, including marker list-based methods and those that require
reference single cell gene expression datasets. We assessed the performance using published
annotations as ground truth. To run scDECAF, we obtained the tissue-specific cell type markers
from PanglaoDB? or CellMarker?® , which are single cell-specific cell marker knowledge bases.

We first compared scDECAF to four reference-based methods (SingleR’, Scmap?, Garnett'® and Seurat v4°)
to annotate sorted PBMC cells from healthy donors® (Figure 2A, C) and fine-grade, postnatal mouse cells
from dentate gyrus®' . We used independent data for query and reference datasets (See Materials and
Methods). To ensure comparable ground truths between methods that require an annotated reference
scRNAseq dataset (SingleR, Scmap, Seurat v4, Garnett) and those that use input gene lists (Garnett,
scDECAF), we harmonized cell type labels between the different resources by manual annotation
(Supplementary Table 3 and 6). All methods were run on default settings and compared using F1 score
(Figure 2).

We observed a higher median F1 score across the range of cell types for scDECAF annotations relative to
reference-based methods in the PBMC dataset (Figure 2A). The subtle differences between some
lymphocyte populations, such as CD8 and CD4 T cells, can be difficult to discern and may explain the varied
performance on the PBMC dataset across methods. While scDECAF outperformed scmap and Garnett in the
Dentate Gyrus dataset (Figure 2B), the median F1 score for scDECAF was comparable to singleR and
Seurat v4 owing to the failed annotation of GABA cells. Taking a closer look at the F1 score per cell type,
scDECAF maintained a high accuracy across all cell types in the sorted PBMC dataset (Figure 2C), and
across all but GABA cells in the Dentate Gyrus dataset (Figure 2D). We postulated that this observation
could be explained by either the poor quality of marker list used to annotate this population of cells (i.e.
marker list does not contain sufficiently relevant gene markers to characterize GABA cells in postnatal
neurogenesis), or a high degree of similarity between marker lists for cell types present in the dataset that
are different, but have very similar transcriptional profiles (i.e. marker genes for the cell types are highly
overlapping, and genes are similarly expressed in two or more cell types). We, therefore, extended the
evaluations to datasets with more diverse cell states.

To further investigate the robustness of our method in annotating rare cell types and cell states, we
performed additional benchmarking that used more complex datasets (Figure 2E-F). To increase the
complexity of the classification task, we chose two datasets (Baron et al.*? and Tabula Muris mouse lung
dataset®) that contain a larger number of cell types and overlapping phenotypes (cell states) that are difficult
to discern. We included an additional 5 methods (Cell-ID'?, AUCell', Vision®*, CellAssign®, Scmap-cluster,
and CHETAH?®®) to compare the performance of scDECAF with a greater variety of reference-free tools,
including probabilistic and rank-based methods, against reference-based methods for more diverse datasets.

In Baron Pancreas (Figure 2E), scDECAF was the third with the largest median F1 score after SingleR (first)
and Cell Assign (second). While SingleR and CellAssign failed to annotate the rare Schwann cells, scDECAF
recovered more than 75% of this population. In general, we see that most methods can correctly annotate
some rare cell types of the pancreatic islet, such as stellate and delta cells, but not others, specifically
epsilon. Many methods also fail to annotate mast, schwann, and endothelial cells, while scDECAF could
correctly annotate these cell types. Among the methods considered, the per-cell-type F1 scores for
scDECAF and Cell-ID had low variance and had a F1 of less than 0.2 for one cell population only - the rest of
the methods failed to correctly annotate two or more cell types.
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Figure 2: The performance of scDECAF relative to cell type annotation and gene set scoring
methods.

Comparison of cell type annotation accuracy in a diverse range of datasets. Per cell type F1-score is
compared between methods in PBMC (A,C), Dentate Gyrus (B,D), Pancreas (E) and Lung (F) datasets.
scDECAF cell type predictions (top row) versus marker-based annotation of cell types (bottom row) in a
spatial snRNA of human prefrontal cortex measured by slide-tags (G). The size of the points in C and D
represent the population size for the cell type. Higher F1-score indicates better performance.
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In the mouse lung dataset from the Tabular Muris consortium (Figure 2F), all methods but Garnett had a
median F1 larger than 0.8, annotating a reasonably large proportion of cells accurately. We observed that
reference-based methods generally perform better in distinguishing difficult-to-discern cell states such as
classical versus non-classical cell states compared to methods relying on marker lists for cell annotation.
None of the methods could recover the mast cell population in the Tabula Muris mouse lung cell dataset,
potentially due to high degree of similarity to monocyte cells. The reduced performance of scDECAF and
other marker list-based methods may be explained by the current lack of appropriate marker gene sets for
mast cells and monocytes, and different cell states (classical and non-classical) for monocytes. Additionally,
to demonstrate applications of the method in spatial transcriptomics, we applied scDECAF to annotate cell
types in a slide-tags single-nucleus RNA (snRNA) of the human prefrontal cortex®® (Figure 2G). scDECAF
was able to annotate cell types in this spatial transcriptomic data with 92% accuracy (Supplementary Figure
1).

A notable observation is that the performance of some reference-free methods - such as scDECAF, Vision,
AUCell and CellAssign - was generally comparable to reference-based methods that were designed for cell
type annotation. Our benchmarking illustrates that automatic cell type annotation may not require entire
reference datasets. This may be an advantage in some biological contexts where appropriate reference
datasets are not available, or where it is a goal to look for unexpected cell types, for example, the presence
of neural cells in pancreatic islets is possible due to Pancreas-Brain crosstalk®, but they are not pancreatic
cell types and will be absent in pancreatic references. The flexibility of sScDECAF allows the user to define
new labels in testing hypotheses, discover context-specific phenotypes and investigate spatial patterns of
gene signatures. This may involve the application of scDECAF in a cell type annotation workflow alongside
reference-based methods, or as is discussed below, in the characterisation of continuous phenotypes.

scDECAF captures transcriptomic signals during EMT

Phenotypic heterogeneity within cell types is observed in biology but is not captured by cell type annotation
methods. scDECAF allows researchers to associate the phenotypic heterogeneity observed in their data with
functional information contained in knowledge bases and gene signatures, independent of clustering
annotations. To assess the ability of scDECAF scores to identify cells along a spectrum of continuous
biological states we used a well-studied, constrained biological problem: epithelial-to-mesenchymal transition
(EMT). We used time course data® (Supplementary Figure 2) where the authors exposed cancer cell lines
to EMT inducers and performed scRNA-sequencing across 5 timepoints during EMT (0, 8 hours, 1 day, 3
days and 7 days) as well as 3 additional timepoints following the withdrawal of the EMT inducer (8 hours
removed, 1 day removed, 3 days removed). We would therefore expect cells to lie on a continuum of EMT
phenotypes and for scDECAF scores to reflect this transition. We used a pseudobulk differential expression
analysis to define enriched gene sets that could be used to demonstrate the ability of sScDECAF scores to
reflect phenotypic heterogeneity.

A DE analysis between pseudo-bulked epithelial cells (‘Control’ cells at time point 0) and pseudo-bulked
mesenchymal cells (‘EMT’ at days 3 and 7) revealed 800 differentially expressed genes (Supplementary
Table 1). The top 50 up- and down- regulated genes (Figure 3A) show a clear separation of control and
EMT time points (highlighted). There is some variation in expression between other timepoints, showing the
continuous nature of the EMT process, and variation between cell lines demonstrating the context specificity
of EMT induction®. To minimize this variation and allow a clearer interpretation of enriched gene sets, we
continued to restrict our comparison to Control and EMT timepoints (0 and 3-7 days). The 588 enriched gene
sets (Supplementary Table 2) from this analysis reflect the expected phenotypes of cells undergoing
TGFB1-induced EMT. Enriched gene sets include those that capture downstream TGFB1 signaling and
process of EMT in cancers (Figure 3B). These expected transcriptomic shifts are observed in scDECAF
phenotypes scores (Figure 3C), where score separations are consistent across cell lines (Supplementary
Figure 3).

To illustrate the importance of per-cell scores that capture phenotypic variation in a dataset, we compared the
distribution of scDECAF scores with those produced by Vision** (Figure 3C). Although Vision scores show
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some variation between phenotypes, scDECAF scores show a stronger, more distinct difference. The
mesenchymal cell populations (3-7 days) that have undergone EMT have observable differences in score for
the Verrecchia TGFB1 and EMT breast tumor gene sets, compared to the Control (0 days) group of cells and
to a lesser extent the final time point in the experiment (MET, 1-3d removed). The inverse is observed for the
Mcbryan signature of downregulated TGFB1 targets that was down-regulated during EMT. This
demonstrates that meaningful variation of per-cell scores capture phenotypic heterogeneity and enable the
exploration of relevant biology.
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Figure 3: Correspondence between single-cell and pseudo-bulk methods for gene set analysis

A. Heatmap of batch-corrected logCPM expression values for pseudo-bulked samples of three cell lines
(A549, DU145, MCF7) across 6 time points (0d, 8h, 1d, 3-7d, 8h removed, 1-3d removed) of a
TGFB1-induced EMT time course. Heatmap is subset to the top 50 upregulated and 50 downregulated
genes identified in the differential expression analysis between Control (0 days) and EMT (3-7 days) groups.
Pseudo-bulk samples are aggregates of each time point within each cell line and columns are ordered by
time course. B. Gene set analysis barcode plots for three gene sets from the C2 collection of MSigDB.
Genes are horizontally ranked by log-fold change from the differential expression analysis between Control
and EMT groups (See Methods) and the trace lines above the bars indicate enrichment. C. Boxplots of
scores calculated by scDECAF and Vision for the same three gene sets in B). Scores are for cells across all
three cell lines (A549, DU145, MCF7) at the Control (0 days exposure to TGFB1), EMT (3 & 7 days
exposure) and MET (3 days removed from TGFB1) time points.
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Discovery of biologically relevant gene programs in an Ovarian Cancer dataset

Single-cell transcriptomic data can contain diverse cell types and phenotypic heterogeneity that is difficult to
summarize using pairwise comparisons between groups of cells. Few tools provide gene set scores for
individual cells, where these scores are metrics that represent either some statistical test or aggregated
expression for each gene signature'3*3%42_ Further, existing methods don't prioritize gene sets for the user in
a way that summarizes the major sources of variation in the dataset. Here we demonstrate how scDECAF’s
“discovery” (sparse gene set selection) mode, that is, the sparse gene program selection mode, identifies
biologically relevant gene sets out of the thousands of gene sets in the C2 collection of MSigDB.

We analyzed an ovarian cancer dataset that contains malignant cells, fibroblasts, and immune populations
from the ascites effusions of 6 patients*® (Supplementary Figure 4). scDECAF pruned 5,529 gene sets
down to 91, and the gene set scores were further investigated using the cell type annotations, patient
information and tSNE coordinates reported in the paper (Figure 4A). We found that many of the 91
prioritized gene sets showed elevated scores in expected cell types, such as malignant cells expressing
ZEB1 targets (AIGNER_ZEB1_TARGETS) or stem cell transcriptional programs
(YAMASHITA LIVER_CANCER_STEM_CELL_UP), fibroblasts expressing VEGFA targets
(WESTON_VEGFA _TARGETS_12HR), and B cell clusters having elevated scores for antigen presentation
(PELLICCIOTTA_HDAC_IN_ANTIGEN_PRESENTATION_UP). There are also subtle differences observed
across patient clusters, such as stronger expression of ZEB1 targets in Patient 3 malignant cells compared to
other patients. Since ZEB1 suppresses its targets to downregulate epithelial genes and promote
invasiveness, increased expression of ZEB1 targets would indicate maintenance of epithelial cell identity. We
also observe that fibroblasts in Patient 5.1 that have relatively higher scores for
WESTON_VEGFA TARGETS 12HR, indicating stronger VEGFA signaling in these cells.

For gene sets with recognisable themes, we summarized the scores with hierarchical clustering to show that
scDECAF has selected biologically relevant gene sets that broadly correspond to the phenotypes of cell type
clusters (Figure 4B). For example, cancer-related gene sets were associated with malignant cell clusters,
while gene sets relating to ECM remodeling and cancer-associated fibroblast phenotypes clustered with
fibroblast clusters.

We also investigated the data by cluster, using the cluster annotations provided by the authors, to show that
scDECAF captures phenotypic heterogeneity between clusters of the same cell type (Figure 4C;
Supplementary Figure 5). For example, while malignant cell clusters scored highly for cancer related gene
sets (LANDIS BREAST CANCER_PROGRESSION _UP & WNT_SIGNALING) consistently across patients,
scores were more elevated in some clusters. Clusters 1, 4 and particularly 2 have higher
LANDIS_BREAST_CANCER_PROGRESSION_UP scores and shorter box plots that indicate a tighter score
distribution within the cluster. This may reflect an increased aggressiveness in the cancers of these patients.
Similarly, two cancer clusters (2 and 3) with relatively higher WNT_SIGNALING scores might reflect
patient-specific differences in Wnt signaling. Some cell types displayed even stronger score differences
between clusters, such as MARTIN_NFKB_TARGETS_UP scores in fibroblasts, where clusters 8 and 9 are
the only clusters with score distributions above zero and clusters 6 and 7 are much lower for this pathway.
This phenotypic heterogeneity across fibroblast populations from different patients may reflect different levels
of NFKB signaling across tumor microenvironments. In the case of
TARTE_PLASMA CELL VS B LYMPHYOCYTE_UP scores, which are strongly elevated in the B cell
cluster, gene set scores may help to confirm cell type annotations or assist in distinguishing between
phenotypically similar cell types, such as plasma and B cells, where annotation may have failed.
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Figure 4: The scDECAF “discovery” pipeline reveals known and novel biology

The scDECAF “discovery” pipeline was applied to an ovarian cancer dataset, providing per-cell scores for 91
pruned gene sets. A. Using the tSNE embedding from the original paper*® we highlight the correspondence
of scDECAF scores with patient and cell type clusters; tSNEs are coloured by cell type, patient, or scDECAF
score. Cluster and cell type annotations from the original paper were used throughout the figure. Cell type
colors are used in B and C. B. The heatmap shows the mean scDECAF score for each cluster for a
selection of 34 gene sets, coloured by biological theme (rows) and cell type (columns), following hierarchical
clustering. C. Boxplots show the scDECAF scores within each cluster for gene sets of interest, coloured by
cell type.
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Sparse gene program selection coupled with reference mapping reveals
multicellular processes associated with severe COVID-19

Recent computational developments*-*¢ have empowered understanding the biological processes in disease
progression at single cell resolution through construction of healthy single cell references and mapping query
disease samples onto them for contextualization. Recent findings suggest that disease-specific cell states in
case-control scRNAseq datasets can be optimally found by mapping to a healthy reference atlas*’ . Here, we
construct a CITE-seq reference of healthy PBMC cells by totalVI*® and map a CITE-seq PBMC dataset
containing cells from healthy individuals and COVID-19 patients*® (Figure 5A) to identify cell types in the
query. Differential abundance analysis using Milo® identified significant compositional changes in Platelets,
Plasmablasts, pDCs , Erythrocytes and cell states in CD14 Monocytes that were increased in severe
COVID-19 compared to healthy controls (Figure 5B, Supplementary Figure 5 A-B).

We applied scDECAF to the embedding of query cells post reference mapping to identify biologically relevant
gene programs from the MSigDB Hallmark collection and score the transcriptional activity of these gene sets.
We used the Milo graph to obtain neighborhood groups by merging statistically significant neighborhoods
that had consistent log fold-changes and summarized the activity levels per neighborhood group. We then
tested for differential activity of the selected gene sets to identify gene programs associated with severe
COVID-19 within each neighborhood group (Supplementary Figure 5C). The differential activity analysis on
the K-nearest neighbor Milo graph revealed that while CD14 Monocytes, Platelets and pDCs had undergone
both compositional and gene program changes in severe COVID-19, Plasmablasts had only undergone a
composition change (Figure 5B).

The prioritized Hallmark gene programs identified by scDECAF - that were also found to have differential
activity in severe COVID-19 at the cell state level (Figure 5C) - were consistent with previous reports*®°'-53
on deregulation of IL6-Jak-STAT3 signaling, inflammatory response, Interferon alpha response, interferon
gamma response, IL2-STAT signaling, TNFA signaling via NFKB, heme metabolism, and G2M checkpoint in
COVID-19 in pDCs and CD14 Monocytes (Figure 5C). In addition to observing coordinated activity of
interferon alpha and gamma response, we also detected coordinated activity of TNFA signaling via NFKB
(Figure 5C) in cell types that had differential activity of interferon alpha and gamma response in severe
COVID-19 patients compared to healthy individuals, suggesting a multicellular program associated with
severe COVID-19. For platelets specifically, we found that IL2-STAT5 signaling had differential activity in cells
from patients with severe COVID-19. The role of STAT5 in platelet production is already established in
hematopotesis®, indicating the relevance of the IL2-STAT5 program in platelets from COVID-19 patients
identified by scDECAF. Since most patient samples were 9-15 days post infection, detection of reduced
differential activity of Early Estrogen Response in pDC and CD14 Monocytes was also a reasonable finding
given its role in repression of interferon signaling®® . This suggests that the impaired Early Estrogen
Response in these cell types interfered with modulation of immune response and led to the development of
severe disease stage.

These findings collectively suggest that scDECAF can be used for post-hoc identification of cell type-specific
gene programs and multicellular processes, that is, coordinated gene programs across cell types, that are
associated with disease or perturbations. When applied downstream of reference mapping and differential
abundance workflows, scDECAF can be used to decouple cell-intrinsic gene program activity from cell
compositional changes.
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Figure 5: Application of scDECAF to PBMC cells from COVID-19 patients and healthy individuals
mapped onto a healthy CITE-seq PBMC reference delineates compositional and cell-intrinsic gene
program changes associated with disease severity that are coordinated across cell types.

A. UMAP representation of an integrated healthy PBMC reference and a COVID-19 case-control CITE-seq
dataset coloured by cell type, query and disease status. B. Milo Neighbourhood Graph constructed from the
UMAP in A subset to cells from the COVID-19 case-control query, highlighting differentially abundance cell states
in severe COVID-19 compared to healthy individuals and changes in transcriptional activity in a number of
Hallmark gene programs selected by scDECAF within those cell states. CD14 Monocytes, Platelets and
pDCs undergo both compositional and transcriptional shifts in COVID-19, while Plasmablasts only undergo
compositional changes in the query dataset. C. Heatmap of t-statistics for differential pathway activity in
COVID-19 in cell neighborhoods identified in B for Hallmark gene programs selected by scDECAF. Pathway
activity is quantified by scDECAF. For each cell type and pathway, the most significant t-statistic over all cell
neighborhoods was chosen. Color represents the sign of the t-statistic, size represents the significance of the
test (-log,, FDR).
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Discussion

In this work, we demonstrated that scDECAF can identify cell types and states, efficiently query gene
programs and aid biological interpretation using gene set representations.

We applied scDECAF to cell type annotation benchmark datasets from four tissues, using tissue-specific cell
type markers from databases such as CellMarker. Where good quality marker lists are available, the
accuracy of scDECAF in cell type annotation was comparable to annotation transfer from a reference. In
general, we observed that reference-based cell type annotation algorithms outperform marker list-based
methods, largely due to some cell types being difficult to distinguish and lacking a high quality marker list.
However, marker list-based methods can empower the discovery of cell types and states in biological
contexts where they have not been previously found or reported, allowing for the identification of cell types
not present in reference datasets. We extended our evaluations to spatial transcriptomics where we were
able to annotate cell types with high accuracy where spatial gene signatures were available.

We used molecular signatures from MSigDB to infer gene program expression and demonstrate that
scDECAF scores could distinguish subpopulations between EMT time points for known differentially
regulated gene sets. Additionally, we demonstrated that scDECAF can recover perturbed gene programs in
PBMC cells from Lupus treated with IFN-beta. scDECAF also identified B cell-specific programs in
IFN-beta-treated cells that could not be found by conventional GSEA analysis. Similar to other score-based
methods, scDECAF is cell type-agnostic; it can reveal gene programs that are present across cell types and
those that exhibit cell type-specific activity. Therefore, scDECAF should not be used to replace GSEA where
cell type-specific enrichment is of interest.

In our experiments, we observed that the learned vector representations of cellular gene expression profiles
and gene sets strongly depend on the number of input gene sets (Supplementary Note 1). This implies that
the strength (magnitude) of the scores can change as gene sets are added or removed from the input list. To
mitigate this issue, scDECAF uses a cell embedding to select the subset of programs that are most relevant
for reconstruction of the embedding. To show how this works in practice we applied scDECAF to an ovarian
cancer dataset using thousands of signatures from MSigDB to identify 91 biologically relevant programs. In
this example, we demonstrated how scDECAF can be used to discover patient-specific phenotypes and aid
the interpretation of a heterogeneous cancer dataset.

Rood et al*® highlighted a need for algorithms for efficient interrogation of gene programs, cell types and state
among the key computational challenges for cell atlases in medicine. In addition to limited scalability to
large-scale atlases, ranked- and factorisation-based gene program scoring methods would work optimally
with batch-corrected data which may not be available for integrated atlases. While interpretable deep
generative models are scalable to cell atlases, they can not be applied to existing integrated atlases or
reference mapping. Application of sScDECAF to PBMC cells from COVID-19 patients and healthy individuals
mapped onto an existing healthy CITE-seq PBMC reference, in conjunction with differential gene program
activity analysis, delineated compositional and cell-intrinsic gene program changes associated with disease
severe COVID-19 that are coordinated across cell types.

The sparse gene program selection module of scDECAF only requires a cell embedding, which is available
for integrated atlases or existing references, making our method versatile to a range of analyses.
Additionally, scDECAF can be applied to cell-specific Bayes Factors from deep generative models or
cell-specific scores from matrix factorization-based methods. This work can, therefore, complement
reference mapping and differential abundance analysis frameworks, and other conventional gene programs
activity inferring tools. We, therefore, expect that scDECAF can be used for efficient query of cell types,
states and programs in single cell RNA sequencing data, particularly in cell atlases.
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Materials and Methods

scDECAF Learns vector representations of cells and gene sets by
Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis® involves finding a lower-dimensional representation of two datasets X and Y
, wWhere the correlation between X and Y is maximized. scDECAF uses CCA to find lower-dimensional
representation of cells (X) and a binary matrix encoding gene sets (Y) in scRNA-seq data, where gene
expression in the cells is maximally correlated with the patterns induced by genes in the gene sets. Let n
represent the number of genes, p number of cells in X and g the number of gene sets in Y. Assume that the
columns of anp and Ynxq have been centered and scaled. CCA finds upxr and vqxr, r < min(p, q), that

maximize cor(Xu, Yv) - that is, it solves
.. T T
maximize u X Yv

subject to WX Xu < 1, v X Xv < 1L

The vectors u and v are lower-dimensional representations of gene expression data and gene set binary
encodings respectively, and are called the canonical variates. We use Witten et al.’® (2009), implementation
of CCA to find u and v. These vectors are then L2 normalized:

u v
and Vo«
[[ull [lv]l

u <

Cell-gene set assighment by similarity of vector representations in the vector space

scDECAF operates in two modes: cell type annotation and phenotype scoring, with the additional option of
performing gene set selection (sparsity inducing mode) with phenotype scoring. In phenotype scoring mode,
a score is assigned to each query gene set per cell. This score is determined by the similarity of vector
representation of cells and gene set in the latent space learned by CCA. For example, the score SC], for cell ¢

and gene set j is determined as

. 2
s =1-— dlst(u,v,) ,
¢j ¢ j

where dist(u, v) is the Euclidean distance, and 1 < ¢ < p, 1 < j < q. Note that since u and v are L2
normalized, scj is equivalent to cosine similarity between vector representation u of cell ¢ and the vector
representation vj of gene set j on the latent space. Therefore, scj measures the strength of association

between the label of the jth gene set and gene expression in cell c.

In the cell type annotation mode, the label of the closest gene set v,
d: argmin dLst(vd, uc)

is assigned to cell c.

The dimensions of the latent space learned by CCA only capture cell-gene set similarities and cell-to-cell
transcriptional similarities are lost in this latent space. Dimension Reduction techniques such as tSNE and
UMAP produce embedding of the cells that preserve local and global structures in scRNA-seq data. We,
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therefore, refine the initial cell-gene set assignments, that are determined based on the distance in CCA
space, according to a local or global neighborhood of the cell on a gene expression embedding, say the
UMAP embedding of the cells. This is motivated by the fact that cells with similar transcriptional profiles that
are close to each other on UMAP embedding should be more likely to have identical labels.

Label refinement for cell ¢ is performed by replacing the initial label with the label supported by the majority
of cells in a small or large neighborhood of the cell, NC, weighted by the distance of the cells from cell c. For

each query cell ¢, we extract the k nearest neighbors NC. We compute the standard deviation of the nearest
distances:

Y (dist(cn))’

nenN
c

k )

where dist(c,n) is the Euclidean distance of the query cell ¢ and its neighbors n on the (e.g. UMAP)
embedding. We the apply the Gaussian Kernel to distances as follows:

_ dist(c,n}z
2xstd
D =e "
- )
c,n,N .

The probability of assigning each label y observed in the neighborhood to the query cell ¢ is computed as:

Z I(y(i):y)XDc,n,,N

p(Y =ylX =¢ NC) _ N ] C’
Z DCn,N

/ENC Je

where y(i) is the label of i-th nearest neighbor. The label with maximum probability is considered as the
refined label. that is:

y', = argmax p(Y =y|X = NC)
The uncertainty in the assigned label is estimated using:

uc.y,Nc =1 - p(Y =y|X = ¢ NC)

finally, if uncertainty is larger than a user-specific value, k, that is cells in NC are highly heterogeneous in

labels, the cell label is assigned as “Unknown” - that is:

y.r _ g"fc if Uey Ne <K
‘ Unknouwn otherwise
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A model-based strategy for selection of relevant gene sets

The learned CCA space is dependent on the number of gene sets included in the list of query gene sets. The
cell-gene set assignments, distribution of scores and the strength of associations will vary as certain gene
sets are included in, or excluded from the query list. For optimal performance, the gene sets most relevant to
the data should be selected from a query list during sparse gene set selection mode.

We define the gene set selection problem as a multi-response penalized linear regression problem, where
mean expression of genes in each gene set is included as a predictor. The coordinates of the cells on each
dimension of the UMAP embedding are the response variables (hence why the model is a multi-response
regression: response 1, say Z, is the coordinate of the cells on the first dimension of the UMAP, and z, is

the coordinate of the cells on the second dimension of UMAP). We use Lasso and Elastic-Net Penalized
Generalized Linear models (GLM) of Friedman et al.?°(2010) , which solves the following problem:

N
min <3 w (2,8, + 8 + 2|~ @lBIL/2 + el | @

where z, is the coordinate of cell c on a UMAP dimension (i.e the response), X, is the scores for gene sets in

cell ¢ where score is simply the average expression of genes in the gene set, and A is the penalty
(regularization) term. The optimal penalty, A, is determined by 10-fold cross validation, whereas « is specified
by the user and determines if a Lasso (a = 1) or Elastic-Net (a = 0.5) model should be fitted . In practice,
the model in (2) selects a subset of gene sets that minimizes the mean squared error of the predicted UMAP
coordinates from the observed UMAP coordinates - that is, gene sets that are predictive of the position of the
cell on UMAP embedding. This results in selection of gene sets that are expressed or inactivated uniformly in
all cells in the cell clusters. These gene sets, therefore, are likely to represent transcriptional programs
governing a cluster of cells. The model in (2) is fitted simultaneously to all response variables when fitting a
penalized GLM model with the assumption that each UMAP dimension follows a normal distribution.

Datasets

We report an extensive list of datasets at Appendix Table S1.

Gene set analysis in interferon stimulated Lupus PBMC

Single cell RNA counts from control and IFNB-stimulated lupus PBMC cells?® were normalized by
SCTransform® and 2000 HVG. We then ran scDECAF with Hallmark gene sets?**%. The optimal shrinkage
value for sparse gene program selection was determined by inspecting the reconstruction (of the UMAP
embedding) error plot. We set the sparsity regularizer parameter lambda to exp(-4), which corresponded to
the lowest reconstruction error. Once the set of gene programs resulting in optimal reconstruction were
identified, we ran scDECAF on the selected set to compute gene program activity scores per cell. To
compare the results with standard gene set enrichment analysis, we used fgsea® to identify Hallmark gene
sets enriched in B cells in response to interferon stimulation.

Cell type labeling benchmarks

For the cell type annotation benchmarking we downloaded and processed 8 datasets, from 4 tissues (Table 1
Appendix). These datasets were downloaded and processed using Seurat, including highly variable gene
(HVG) selection and SCTransform normalization, where the corresponding reference dataset was used when
required by a method. Datasets were subset to an appropriate number of HVGs (See Description of datasets
and processing in Supplementary information). Since reference and query datasets did not always contain
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the same cell types, labels were either mapped if there was an appropriate matching cell type
(Supplementary Tables 3-6), or excluded.

In our evaluations, we found that scDECAF works well with 2000 HVGs (this number is also recommended
for data integration). However, if there is a strong similarity between gene sets, e.g. cell types or phenotypes
are indistinguishable, or there is a minimal overlap between genes in the gene sets and the selected HVG
genes (that is, most of the genes in the gene sets are not highly variable), users may select a larger number
of HVG for scDECAF analysis depending on the complexity of the dataset. In practice, we observe that cell
clusters are more discernible with 2000 HVG genes. We used UMAP as the input embedding for all cell type
annotation benchmarking.

In cell type annotation mode, the initial labels of the cells undergo a refinement, or smoothing, based on a
neighborhood N, around the cell. This neighborhood is determined by the value of k: if k is small, labels are
refined considering local similarity of cells. If k is large, the global similarity of cells is considered for label
refinement.

We evaluate the accuracy of cell type classification algorithms by comparing the predictions to previously
published cell type labels. Accuracy is determined by F1-score and label mapping scheme described in
(Supplementary Tables 3-6) :

F _ precision*recall
1 " precision + recall

Algorithms for benchmarking
Garnett

Garnett'® finds some seed cells for each cell type based on a list of input marker list. It then trains a classifier
on the data using the seed cells. The classifier is then used to predict the identity of the cells. We used the
marker lists provided on their github page https://cole-trapnell-lab.github.io/garnett/classifiers/

scmap

Scmap?® is a reference-based cell type annotation technique that computes the similarity of cells in the query
dataset with the cells in the reference by cosine similarity. The cells in the query dataset are assigned with
identical labels as cells if the reference, if similarity is larger than a threshold. Label assignment can be
performed at cell cluster or individual cells level. We used the Biocondutor implementation of scmap
https://www.bioconductor.org/packages/release/bioc/html/scmap.html

SingleR

SingleR’ is also a reference-based cell type annotation algorithm. SingleR annotates cells in the query
dataset based on the Spearman correlation of gene expression with the expression levels in the reference
dataset. We used the Biocondutor implementation of SingleR
https://www.bioconductor.org/packages/release/bioc/html/SingleR.html

Seurat v4

We followed Seurat's official vignette for mapping and annotation of query datasets
https://satijalab.org/seurat/articles/integration_mapping.html
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cellAssign

cellAssign® probabilistically assigns each cell in a single-cell RNA-seq dataset to a cell type based
on a priori known markers for cell types. We used the github implementation here
https://github.com/Irrationone/cellassign

AUCell

AUCell" allows the identification of cells with active gene sets (e.g. signatures, gene modules...) in
single-cell RNA-seq data. AUCell uses the Area Under the Curve (AUC) to calculate whether a
critical subset of the input gene set is enriched within the expressed genes for each cell. We used
the Bioconductor implementation of AUCell.
https://www.bioconductor.org/packages/release/bioc/html/AUCell.html

CelliD

CelliD'? is a tool for unbiased extraction of Single Cell gene signatures using Multiple
Correspondence  Analysis. We wused the Bioconductor implementation of CelliD.
https://www.bioconductor.org/packages/release/bioc/html/CelliD.html

Vision
Vision** is a gene set scoring method that provides a representative score for each gene signature

in every cell using normalized aggregate expression. This software is available on github:
https://github.com/YoseflLab/VISION

CHETAH

CHETAH® is a scRNA-seq classifier. CHETAH creates a classification tree by hierarchical clustering
of the reference data. CHETAH classifies the input cells to the cell types of the references. We used
the Biocondutor implementation here
https://www.bioconductor.org/packages/release/bioc/html/CHETAH.html

Phenotype scoring in the Ovarian Cancer and time-course EMT datasets

Datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) database including 9,609
high-grade serous ovarian cancer cells from malignant ascites samples* (GSE146026) and 8,419 cells from
3 cell lines (A549, DU145, MCF7) across 8 time points of EMT induction®® (GSE147405). From the time
course data, we used only the TGFB1-induced samples and excluded the OCVA420 cell line due to low cell
numbers across time points.

Non-expressed genes and duplicated gene names were filtered from both datasets and 3000 features
(genes) were selected prior to analysis The normalized counts for the ovarian cancer dataset were otherwise
used as provided by lzar et al.*}, whereas Seurat was used to normalize the EMT time course dataset.
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scDECAF was applied to both datasets to obtain phenotype scores across C2 gene sets from MSigDB%83,
When running scDECAF, 10 components were calculated, UMAP was used for input embeddings
(Supplementary Figures 2 & 4) and standardization and k=10 were used. For the ovarian cancer dataset,
scDECAF pipeline was run on discovery mode (sparse gene set selection) and gene sets were pruned down
to 91 gene sets. To prune gene sets we used a lasso penalty A = e and UMAP as the input embedding.

Vision** was used to obtain gene set scores for comparison with scDECAF scores. Counts were normalized
using scater®® but not log-transformed, pooling within Vision was set to false and gene set scores were
obtained for the same C2 gene sets used in the scDECAF analysis above.

Pseudo-bulk differential expression analysis

Pseudo-bulk samples were obtained by aggregating each cell line at each time point to reflect a bulk
RNA-seq experiment, giving 18 pseudo-bulk samples. Some time points were merged (3 & 7 days, 1 & 3
days removed) to balance pseudo-bulk sample library sizes. Pseudo-bulked samples were filtered and
normalized using standard edgeR®" pipelines. Genes were retained only if they were expressed at a logCPM
>= 0.5 in at least 10% of samples. Cell line batch effects were estimated using limma®? and removed for
visualization. A quasi-likelihood framework was applied to identify genes that were differentially expressed
between what we define as ‘Control’ and ‘EMT’ cells, corresponding to day O cells and day 3-7 cells,
respectively. We used P-value and FDR thresholds of 0.05 and performed Benjamani-Hochberg P-value
correction.

Competitive gene set enrichment analyses were also performed on pseudo-bulk samples using limma.
Enrichment was performed with gene sets in the C2 collection of MSigDB, for gene sets with more than 10
genes.

COVID-19 CITE-seq PBMC

Reference building and query mapping of the healthy CITE-seq PBMC and healthy and COVID-19 PBMC
datasets were performed by totalVI4® as described in scvi-tools tutorial
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVl_reference_mapping.html

The RNA modality of the query CITE-seq dataset was normalized by SCTransform and 2000 HVG. We then
ran scDECAF with Hallmark gene sets. The optimal shrinkage value for sparse gene program selection was
determined by inspecting the reconstruction (of the joint totalVl embedding) error plot. We set the sparsity
regularizer parameter lambda to exp(-4.5), which corresponded to the lowest reconstruction error. This
resulted in selection of 40 Hallmark gene sets. Once the set of gene programs resulting in optimal
reconstruction were identified, we ran scDECAF on the selected set to compute gene program activity scores
per cell.

We used Milo® to carry out differential abundance analysis between severe COVID-19 and healthy query
cells. Milo neighborhood graph was constructed using the 2-dimensional UMAP representation of the query
data in the integrated embedding, setting the k-nearest neighbor parameter to 30. We used default
parameters for all other remaining arguments. Differential abundance (DA) was determined based on Spatial
FDR < 0.05. Neighborhoods with consistent DA logFC and spatial FDR < 0.05 were grouped using the
groupNhoods() function. We then tested for the differential activity of the 40 selected gene sets in severe
COVID-19 versus healthy in each neighborhood group using the testDiffExp() function in miloR, which calls
limma under the hood akin to differential gene expression. These analyses were performed within query
data, on the integrated embedding, that is post reference mapping, which is found to result in optimal
detection of disease-specific cell states using healthy cell atlases*” . To summarize differential pathway
activity over all the neighborhood groups in a cell type, we reported the most significant t-statistic (smallest
adjusted P-Value from limma’s moderated t-statistic) in neighborhood groups of a cell type.
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Supplementary Materials

Supplementary Figure 1
Confusion matrix for cell type predictions in the slide-tags snRNA from human prefrontal cortex
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Supplementary Figure 2

The UMAP embeddings used by scDECAF to calculate scores for each cell line - A549 (A), DU145 (B), and
MCF7(B) - in the EMT dataset, using 3000 HVGs each. Cells are coloured by TGFB1 exposure time (left
UMAP) and EMT status annotation (right UMAP) used for differential expression analysis.
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Supplementary Figure 3

Boxplots of scores calculated by scDECAF and Vision for the same three gene sets in Figure 3, faceted by
cell line. Scores are for cells across all three cell lines (A549, DU145, MCF7) at the Control (0O days exposure
to TGFB1), EMT (3 & 7 days exposure) and MET (3 days removed from TGFB1) time points.
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Supplementary Figure 4

The UMAP embedding used by scDECAF to calculate scores for the ovarian cancer dataset, coloured by cell
type (A) or patient (B).
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Supplementary Figure 5
The t-SNE embedding of the ovarian cancer dataset coloured by cluster annotations. The embedding and
cluster annotations used were provided by the original paper.
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Supplementary Figure 6

Differential pathway activity test at cell neighborhood level using Milo for Hallmark gene programs selected
and quantified by scDECAF. A. Differential Abundance (Spatial FDR < 5%) results by Milo summarized at
cell type level. B. The same results summarized by days from onset. C. Heatmap of t-statistics for differential
activity of Hallmark pathways selected (among the full Hallmark gene sets) and scored by scDECAF in each
Milo neighborhood group, annotated by cell type.
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Description of datasets and processing

Tissue type Dataset type Description Access
PBMC Query Sorted healthy donor Zheng et al. (via 10x
PBMC Datasets)
PBMC Reference 10x donor PBMC 10x Datasets
Dentate Gyrus Query Fine-grade postnatal Hochgerner et al.
mouse dentate gyrus (GSE95315)
Dentate Gyrus Reference Post- and perinatal Hochgerner et al.
mouse dentate gyrus (GSE104323)
Pancreas Query Pancreatic islets from 4 Baron et al. (via
donors scRNAseq Bioconductor
package)
Pancreas Reference Pancreatic islets from Segerstolpe et al. (via
human sample scRNAseq Bioconductor
package)
Lung Query Lung tissue from mouse Tabula Muris
Consortium
Lung Reference Mouse lung atlas Travaglini et al.

Table 1: Datasets used for training in each tissue type and corresponding query datasets

10x PBMC datasets

Sorted peripheral blood mononuclear (PBMC) cells from healthy donors from Zheng et al*® were used as the
“target” or “query” dataset to benchmark reference-based and reference-free cell type annotation methods.
Data was subsetted on 5000 HVG for the analysis. Where a single cell reference was required, we used the
8000 PBMCs from a healthy donor®* . Data was subsetted on 3000 HVGs for the analysis. Datasets were
obtained from the 10x support dataset collection http://support.10xgenomics.com/single-cell/datasets. Data
was normalized by SCTransform normalization.

Pancreas

Human Pancreas datasets from Baron® et al. and Segerstolpe®® et al. studies were accessed via the
scRNAseq® Biocondutor package. The dataset by Baron et al. contains 10,000 single-cells of pancreatic
islets from 4 human donors sequenced by inDrop. This dataset was used as the “target” or “query” dataset to
benchmark reference-based and reference-free cell type annotation methods. The dataset by Segerstolpe et
al. consists of 2,209 cells from human pancreatic islets. This dataset was used as the reference to annotate
cells in Baron et al., where a reference was required to annotate the cells. To run scDECAF and Seurat v4,
we used 2000 HVGs and applied SCTransform?® normalization. For all other workflows, we applied scran®’
normalization.
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Dentate Gyrus Brain

Single cells from Peri- and postnatal neurogenesis in the dentate gyrus in mice was obtained from
Hochgerner®' et al. Transcriptome of 5454 single cells from dentate gyrus sampled at postnatal day 12, 16,
24 and 35 were used as the “target” or “query” for cell type annotation. This dataset is available under GEO
accession GSE95315 . Where a reference single cell dataset was required, we used 24185 single cells from
dentate gyrus sampled at ages ranging from embryonal day 16.5 to postnatal day 132, available from
GSE104323. To run scDECAF and Seurat v4, we used 3000 HVGs and applied SCTransform normalization.
For all other workflows, we applied scran normalization.

Lung

Single cell transcriptomics from 5449 mouse lung cells obtained from Tabula Muris® (Tabula Muris Lung 10x)
were used as “target” or “query” for cell type annotation. Where a single cell reference was required, we
used 24,618 mouse lung cells from Travaglini®® et al. We used 3000 HVGs for the analysis and applied
SCTransform normalization.

Kang PBMC

Single cell transcriptomics of 25,000 PBMC cells from 8 lupus patient samples with and without stimulation
with interferon (IFN)-B2'. Data was downloaded from https:/figshare.com/ndownloader/files/34464122 . We
used 2000 HVGs for the analysis and applied SCTransform normalization.

Slide-tags snRNA-seq on human prefrontal cortex

Normalized single-nucleus gene expression and spatial coordinates for 4067 cells from the human prefrontal
cortex was downloaded from the Broad Institute Single Cell Portal. We used scanpy®® to subset the data on
500 (none-spatial) highly variable genes. We then scored the cells for each cell type using top 500 spatially
highly variable genes provided by the original study. Predicted cell types were compared to cell type
annotations provided by the authors.
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Supplementary note 1
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A. Example of a sparsity inducing operator plot in Kang et al., IFNbeta-stimulated PBMC dataset. Top is the
number of gene sets surviving selection for different values of shrinkage operator lambda (x-axis) and the
reconstruction error of the embedding (y-axis). Dotted lines indicate values for lambda which result in least
mean squared error for reconstruction of the cell embedding. As the sparsity penalty increases (from left to
right), less gene sets are retained, which is also coupled with highest mean squared error in the
reconstruction of cell embedding. B. Adjusted R? for the association between scDECAF scores (x-axis) and
IFNalpha signature scores (y-axis) in Monocyte cells in Kang et al. for different values of shrinkage operator,
lambda. The association between scDECAF scores and IFN signature of cells decreases as more gene sets
are included in the set of input gene sets. This highlights the importance of using the sparsity selection mode
prior to learning vector representations of the gene sets.
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