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Abstract:

The highly plastic nature of Alveolar Macrophage (AM) plays a crucial role in the defense
against inhaled particulates and pathogens in the lungs. Depending upon the signal, AM acquires
either classically activated M1 phenotype or alternatively activated M2 phenotype. These
phenotypes have specific functions and unique metabolic traits such as upregulated glycolysis
and pentose phosphate pathway in M1 phase and enhanced oxidative phosphorylation and
tricarboxylic acid cycle during M2 phase that help maintain the sterility of the lungs. In this
study, we investigate the metabolic shift in the activated phases of AM (M1 and M2 phase) and
highlight the roles of pathways other than the typical players of central carbon metabolism.
Pathogenesis is a complex and elongated process where the heightened requirement for energy is
matched by metabolic shifts that supplement immune response and maintain homeostasis. The
first step of pathogenesis is fever; however, analyzing the role of physical parameters such as
temperature is challenging. Here, we observe the effect of an increase in temperature on
pathways such as glycolysis, pentose phosphate pathway, oxidative phosphorylation,
tricarboxylic acid cycle, amino acid metabolism, and leukotriene metabolism. We report the role
of temperature as a catalyst to the immune response of the cell. The activity of pathways such as
pyruvate metabolism, arachidonic acid metabolism, chondroitin/heparan sulfate biosynthesis,
and heparan sulfate degradation are found to be important driving forces in the M1/M2
phenotype. We have also identified a list of 34 reactions such as nitric oxide production from
arginine and the conversion of glycogenin to UDP which play major roles in the metabolic

models and prompt the shift of the M2 phenotype to M1 and vice versa. In future, these reactions
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could further be probed as major contributors in designing effective therapeutic targets against

severe respiratory diseases.

Author Summary

Alveolar macrophage (AM) is highly plastic in nature and has a wide range of functions
including invasion/killing of bacteria to maintaining the homeostasis in the lungs. The regulatory
mechanism involved in the alveolar macrophage polarization is essential to fight against severe
respiratory conditions (pathogens and particulates). Over the years, experiments on mouse/rat
models have been used to draw insightful inferences. However, recent advances have highlighted
the lack of transmission from non-human models to successful in vivo human experiments.
Hence using genome-scale metabolic (GSM) models to understand the unique metabolic traits of
human alveolar macrophages and comprehend the complex metabolic underpinnings that govern
the polarization can lead to novel therapeutic strategies. The GSM models of AMs thus far, has
not incorporated the activated phases of AM. Here, we aim to exhaustively dissect the metabolic
landscape and capabilities of AM in its healthy and activated stages. We carefully explore the
changes in reaction fluxes under each of the conditions to understand the role and function of all
the pathways with special attention to pathways away from central carbon metabolism.
Understanding the characteristics of each phase of AM has applications that could help improve

the therapeutic approaches against respiratory conditions.

Introduction
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Alveolar Macrophages (AM) are the first line of defense against respiratory pathogens and are
highly plastic in nature(1). Depending upon the interactions with pathogens, AMs can be
polarized into several subsets(1). The two main subsets known are: classically activated or pro-
inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2)
macrophages(2,3). M1 macrophages respond to microbial factors like Lipopolysaccharide (LPS)
and Thl pro-inflammatory cytokines that play a significant role in bacterial killing and
recruitment of other immune cells(4-7). M2 macrophages, on the other hand, can be induced by
interleukin 4(IL-4) that promotes anti-inflammatory activities such as resolution to inflammation
and repairing of the damaged cells(8). Both the phenotypes are marked by their unique metabolic
niches - such as enhanced Glycolysis and Pentose Phosphate Pathway (PPP) in the M1 phase and
Oxidative Phosphorylation (OXPHOS), Tricarboxylic Acid Cycle (TCA), and Fatty Acid
Oxidation (FAQ) in M2 phase(9). The reprogramming of AMs towards M1 or M2 phenotype is
contingent upon specific signaling molecules including IFN-y (type II interferon), LPS, IL-4, and
immune complexes (Ic)(10). The resultant phenotype is influenced by the prevailing
physiological demands, such as pathogenic bacterial killing or tissue restoration, that determine
the sequential progression of the phenotype development(8,11,12). In infected lung tissue, AMs
are first polarized to the M1 phenotype and later to M2 phenotype for a healthy immune
response(13). However, alterations in the interaction could be catastrophic to the cell(1). The
shift in phenotypes of AM plays an important role in regulating the body’s immune response and
metabolism(14,15). Yet, the regulatory mechanisms governing the polarization are not
completely understood and little attention has been dedicated to the role of physical parameters

such as temperature (1-3).
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89

90 The thermal component of fever and its effect on inflammation is one of the most poorly
91 understood aspects of pathogenesis (16,17). Fever is the first immune response against
92  respiratory pathogens such as tuberculosis, influenza, and SARS-CoV2. The increase in core
93  temperature enables the formation of pro-inflammatory M1 cells to combat the invading
94  bacteria(18). However, it has also been reported that fever enables the M2 phenotypic behavior
95 to maintain homeostasis in the lungs(16). Hence, understanding the relationship between fever
96 and macrophage polarization is crucial to understand the regulation of macrophage function *°.
97  Experimental analysis on a mouse model by increasing core temperature to 39.5 °C, was found
98 to have significant positive effect on the modulation of macrophage function (19). However,
99  several documented examples provide evidence on the disparity between the experimental
100  conclusions in rodent studies and humans(20). Due to the challenges associated with human
101 experimental studies, systems biology approaches can be utilized for reconstructing context-
102  specific (i.e., M1 or M2 phase or elevated temperature) Genome-Scale Metabolic (GSM) models.
103  Systems biology has been proven to be very useful for pragmatic modelling and theoretical
104  exploration of complex biological systems(21). By the integration of high-throughput omics data
105  (metabolomics, proteomics, or transcriptomics), the reconstruction of human GSM models of
106  pancreatic cancer(22), tuberculosis(23), obesity and diabetes’s(24), neurodegenerative
107  diseases(25) has led to discovery of novel therapeutic targets and better understanding of the
108  metabolic shifts.

109

110 GSM models are computational context specific (species, cells, tissue, etc.) knowledgebases

111 capable of dissecting systemic metabolic phenomena(26). A GSM model contains all annotated
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112 metabolic reactions and pathways within a biological system?®. Using Flux Balance Analysis
113  (FBA) and Flux Variability Analysis (FVA) the fluxes of the reactions can be predicted for a
114  given condition/timepoint. The study by Gelbach et al, on M1 and M2 subtypes of human
115  colorectal cancer cells via generation of GSM models marks a significant step towards
116  understanding and manipulating the polarization mechanism of macrophages(27). However, it is
117  also important to explore the metabolic network and capabilities of M1 and M2 phenotypes in
118  tissue-specific macrophages (e.g., AM) where they show unique behaviors and patterns. The
119  early GSM of AM was curated by Bordbar et al, from the global human model, Recon1(28), in
120 2010 and was further used to model tuberculosis infected AM(23). However, the model did not
121  consider other potential states (e.g., M1 and M2 phase of AM) which is why it is highly critical
122  to dissect the metabolic interactions in AM in its activated state with pathogens to fully
123 understand the progression of the disease. However, thus far not much attention has been
124  devoted to the contextualization of the AM model to represent M1 and M2 state and the effects
125  of physical parameters such as temperature(4,17,29).

126

127  In this study, three context specific GSM models were generated by integrating transcriptomics
128  data of healthy AM, and its activated phases: M1 and M2. Figure 1 shows the overview of steps
129  involved in generation, curation, and analysis of the three GSM models. Integration techniques
130  such as IMAT (30) and E-flux(31) were used for GSM model reconstruction from Human1(32).
131 The metabolic models were further curated by using a tool called OptExpand (inhouse tool,
132 currently unpublished) that can be used to identify and resolve Thermodynamically Infeasible
133 Cycles (TICs). These models were used to investigate the altered metabolism of activated AM

134 (M1 and M2 phase) compared to that of healthy AM and compare M1 and M2 phases with each
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135  other as well. The healthy AM model was validated by reproducing experimentally reported rate
136 of ATP production and Nitric Oxide production(33,34). The comparison of the flux ranges
137 showed enhancement in Glycolysis, Pentose Phosphate Pathway (PPP), and shift in
138  Tricarboxylic Acid Cycle (TCA) to accumulate succinate and itaconate in M1 phase. M2 phase
139  reaction fluxes show upregulation of Oxidative Phosphorylation (OXPHQOS), uninterrupted TCA
140  cycle, and upregulated Fatty Acid Synthesis (FAS). These observed metabolic shifts in M1 and
141 M2 phases are in accordance with the previously reported evidence from literature(34). In
142  addition, the metabolic pathway was found to be more active as the temperature increases from
143  38°C to 41°C. Some unique characteristics of pathways such as Pyruvate Metabolism,
144  Glycolysis, Carnitine Shuttle (mitochondria) pathway, and Bile Acid Synthesis (BAS) were
145  further explored to understand specific nature of each activated state, highlighting the role of
146 Chondroitin/Heparan Biosynthesis and Heparan Sulphate degradation as a potential point of
147  manipulation in M1/M2 balance. Going forward, the context specific activated AM GSM models
148  will be used to study interaction with respiratory pathogens. In addition, models of a system of
149  immune cells such as AM, Neutrophils, and Mast cells, could be developed to analyze the
150 intercellular interactions during pathogenesis.

151

152  Results and Discussion

153

154  Metabolic Model Reconstruction of Alveolar Macrophage (AM) Metabolism

155

156  Genome scale metabolic (GSM) models provide an improved understanding on the metabolic

157  basis of different biological processes and have been widely used for biomedical
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158  applications(26). These sophisticated cellular systems of metabolic reactions in conjunction with
159  their corresponding genes and enzymes provide novel insight into the initiation and progression
160  of diseases(35). The interconnection between the genes, metabolites, and reactions are converted
161  into mathematical representation and fluxes are predicted by performing computational flux
162  analysis such as flux balance analysis (FBA) and flux variability analysis (FVA)(36,37). The
163  latest global human metabolic reconstruction, Humanl1(32) is an extensively curated
164  representation of human metabolism that combines two parallel lineages, namely
165 Recon(28,38,39) and Human metabolic Reaction (HMR)(40). With 20% higher total reactions,
166  33% higher metabolites, and higher mass balance than those of any available human
167  reconstructions, Humnl has successfully been used to reconstruct cell-specific GSMs for liver,
168 liver cancer, blood, blood cancer etc.(32). Hence, this standardized model allows the convenient
169 integration of omics data to reconstruct AM specific metabolic model.

170

171 In this work, metabolic reconstruction of healthy AM, M1 phase, and M2 phase was obtained by
172  integrating gene expression values of metabolic genes(9,41,42) onto the Humanl model. These
173 transcriptomic profiles were acquired from GEO databases (GSE8823, GSE40885, and
174  GSE41649 for AM, M1 phase and M2 phase, respectively). Among various methods available to
175 integrate omics data, iIMAT(30), a switch approach, indicates the presence/absence of a specific
176  reaction depending on the relevant gene(s) having higher expression levels at a specific
177  condition. On the other hand, a valve approach such as E-flux(31), uses gene expression levels to
178  control the flux of the corresponding reactions. The healthy AM model obtained upon the
179  implementation of iIMAT consists of 4,554 reactions (governed by 2,173 metabolic genes ) and

180 3,967 metabolites (2,003 unique) distributed across eight intracellular compartments
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181  (Extracellular, Peroxisome, Mitochondria, Cytosol, Lysosome, Endoplasmic reticulum, Golgi
182  apparatus, Inner mitochondria, and Nucleus); while the model generated by E-flux consists of
183 8,073 reactions and 5,380 metabolites (2,823 unique) across these eight compartments with the
184  same number of metabolic genes. Since both these approaches employ different fundamental
185  assumptions (as mentioned above) and are usually more successful in different applications(43).
186  The sensitivity of iIMAT approach to user defined threshold typically leads to higher number of
187  reactions to be omitted or sometimes leads to exclusion of important reactions from the pruned
188  model. In our case, this resulted in a version of the pruned model capable of producing biomass,
189  but it failed to include important pathways such as NO production, glycerolipid metabolism,
190 heme synthesis, and porphyrin metabolism. The E-flux-generated model, on the other hand,
191  consists of comparatively higher number of reactions, metabolites, and included all the important
192  pathways mentioned earlier. Figure 2 shows the distribution of active reactions in the important
193  AM pathways. Additional information on each model can be found in supplementary files.
194  Similar observations were obtained while implementing iIMAT and E-flux with the expression
195  values of 2,951 and 2,390 metabolic genes to reconstruct GSM models for M1 and M2 phases
196  respectively (additional information on the gene expression values, distribution of pathways,
197  reactions, and metabolites for all the models are available in supplementary files). The GSM
198  model developed upon the E-flux method for M1 phase consists of 7,986 reactions, and 5,602
199 (2,821 unique) metabolites and the similar model of M2 phase model consists of 7,884 reactions
200 and 5,936 (2,969 unique) metabolites. On the other hand, the pruned models obtained from
201  iIMAT implementation were significantly smaller with important biological pathways missing.

202  Hence, for the purpose of our study, E-flux was able to incorporate all the important AM
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203  pathways, active reactions, and metabolites (with a higher number of unique metabolites). This
204  allowed us to exhaustively investigate the metabolic shift occurring during polarization.

205

206 The models were next validated to ensure their ability to simulate biologically significant
207  processes by reproducing important metabolite production rates and characteristic behavior as
208  reported in literature. FBA is used to optimize the production rates of important healthy AM
209  metabolites while maintaining the maximal level of biomass (i.e., 0.03 h!). AM are tissue
210 resident macrophages that populate the lung environment during birth and last for the lifespan of
211 the individuals typically(23). Since AMs do not readily multiply, the biomass function comprises
212 of mainly cellular maintenance requirements such as proteins, lipids, DNA repair, ATP
213  maintenance and RNA turnover(23). The model was optimized for ATP production and NO
214  production that yielded the flux of 0.6 mm/h/g cell DW and 0.03 mm/h/g cell DW respectively.
215  These in-silico values were very close to the values of 0.71 mmol/h/g cell DW and 0.037
216  mmol/h/g cell DW, respectively, as obtained from in vitro experiment(33,34). Hence, the healthy
217  AM model obtained via E-flux algorithm is capable of reproducing important experimentally
218  reported production rates.

219

220 Similar to healthy AM model, the activated phase models should also be able to recapitulate the
221 relevant metabolic reprogramming. To this end, with the help of the GSM of healthy AM as the
222 base, the M1/M2 phase reaction fluxes were compared that generated four possible scenarios:
223 overlap of flux with increase, complete overlap with decrease, partial overlap with increase, and
224  no overlap with increase in forward direction. As reported in literature for M1 phase, we

225  observed increased activity (complete overlap and partial overlap) for glycolysis pathway(9).

10
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226  Pentose Phosphate Pathway (PPP) shows 48% of the reactions have increased fluxes which
227 include important reactions such as formation of Ribulose 5-phosphate and its conversion to
228 Ribose 5-phosphate with production of NADPH. This is a crucial step in energy production
229  during M1 phase(9). We also found the increased production of succinate and itaconate in the
230 TCA cycle which limits the formation of precursors that aid oxidative phosphorylation
231 (OXPHOS) and electron transport chain (ETC)(9,44). Similarly, the comparison of the reaction
232 fluxes between M2 phase and healthy AM showed increased activities in OXPHQOS, fatty acid
233 oxidation (FAO), and TCA cycle without extra accumulation of succinate and itaconate
234  metabolites. FAO impairs the anti-inflammatory responses and helps OXPHOS increase the
235  production of ATP through TCA cycle. These metabolic traits are well supported by
236 literature(9,45) and thus establish the credibility of our context-specific GSM models of the
237  activated phases.

238

239 A Response to Fever: Increase in Temperature

240

241  Fever is the highly evolved systematic inflammatory response that is not limited to the site of
242  infection but affects the whole body(16). The heat of fever is reported to supplement the
243  performance of immune cells by increasing stress on pathogens and infected cells(17). However,
244  the advantages of fever in different conditions are still not clear. For instance, lowering of
245  temperature could be more beneficial than its increase in cases of extreme inflammation(18). The
246  study of effects of physical parameters such as temperature in human physiology is very
247  important but is extremely challenging to investigate due to numerous limitations such as higher

248  cost to conduct in vivo or in vitro studies to gather human cell data(46,47). Here, we study the

11
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249  fluctuation in the thermodynamic feasibility of reactions and pathways in response to change in
250 temperature by calculating change in Gibbs free energy (AG) of reactions and Max/Min Driving
251  Force (MDF) of the pathways(48). Starting from the core temperature of human body (37°C), the
252 analysis is completed till 40°C, beyond which fever is considered fatal(49).

253

254  Equilibrator was used to calculate the standard Gibbs free energy of formation (AfG°) for the
255  reactions of interest(50). Equilibrator so far is equipped to calculate the standard Gibbs free
256  energy of reactions with KEGG(51) and BIGG IDs(52), hence limiting the number of full
257  pathways we could analyze. In addition, due to the lack of available AM and temperature
258  specific metabolomics, the metabolite concentration ranges were set to be 1 nM to 10 mM which
259 s the typical metabolite range for a biological system capable of capturing adequate cellular
260  physiology(48). The response of pathways such as glycolysis, OXPHQOS, PPP, TCA cycle,
261 amino sugar and nucleotide sugar metabolism, leukotriene metabolism and some amino acid
262  biosynthesis pathways (proline/alanine, and arginine biosynthesis) were investigated by
263  calculating MDF. The change in Gibbs free energy at different temperatures gave us insight into
264  the thermodynamic feasibility of each reaction and pathway during the progression of fever
265  (increase in temperature). A steady increase in MDF for all the pathways was observed
266 indicating that the increase in temperature as positive catalyst for metabolism. The study detailed
267 and specific response of each reaction/pathway to temperature will be possible with further
268 advancement in human metabolomics experimental data generation. The calculated MDF for all
269  of the above pathways was above 10KJ/mol, indicating the thermodynamic favorability of the
270  pathways as the temperature increases. With the low driving force (less than 3 KJ/mol) the

271  reactions are found to be heavily dependent on kinetic parameters such as enzyme concentration

12
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272 and turnover rate (i.e., Kcat)(53). However, the dependence of the reaction rate on the kinetics
273 decreases with the increase in driving force. It is reported that with a driving force of 10KJ/mol
274  or higher. the reactions occur in forward direction with negligible flux in reverse direction(48).
275 In Figure 3a, the reaction with the maximum AG in glycolysis pathway is highlighted with
276  orange. Similarly, the reactions from TCA cycle (Figure 3b) with maximum Gibbs free energy
277  are also highlighted. Both the reactions in the pathways are key steps for ATP production which
278 are found to be more feasible with the increase in temperature. The change occurring in
279  leukotriene metabolism in comparison to A¢G° is also shown in Figure 3c, which indicates the
280 increasing thermodynamic feasibility of reactions in Leukotriene metabolism with the increase in
281 temperature. Full details on all the other pathways mentioned above are present in the
282  supplementary files. Assuming the set metabolite concentration is favorable and the AfG° values
283  are accurate, as the temperature increases the thermodynamic feasibility of the pathways also
284  increases, the reactions occur in the forward direction spontaneously with less enzymatic effort.
285  This phenomenon ultimately supports the biological need for enhanced metabolic activities to
286 illicit immune response in the cell. We observed small but noticeable changes in MDF values
287 and AG values for all the reactions and pathways. With further advances on availability of
288  experimental data, in future we can further explore the extent of effect of temperature.

289

290 The enzymes govern the direction and rate of reactions at a molecular level. The change in Gibbs
291  free energy for a reaction is directly associated with the enzyme turnover rate also known as Keat.
292  To study the change in the enzyme turnover rate during the macrophage polarization, four
293  enzymes catalyzing reactions from the pathways mentioned above were selected. To determine

294  suitable values of kca, deep learning pipeline DLKcat(54) trained on SABIO-RK(55) database

13
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295  were first used. Non-trivial differences in these predicted values prompted us to put together a
296 new enzyme structure-aware method of calculation for kca. Due to paucity of exhaustive
297  experimental kcat measurements, we shortlisted four enzymes that were part of our prior analysis
298 and had literature evidence towards inflammatory or anti-inflammatory responses(56-60). The
299  proteins, GRPHR (glyoxylate and hydroxypyruvate reductase). OCD1 (ornithine decarboxylase
300 1), GLS (glutaminase), and GNE (glucosamine (UDP-N-acetyl)-2-epimerase/N-
301 acetylmannosamine kinase) catalyze the reactions, glyoxalate to glycolate in mitochondria,
302  conversion of ornithine to putrescine and carbon dioxide in extracellular matrix, conversion of
303  glutamine to glutamate and ammonia, and N-acetyl-D-mannosamine to N-acetylmannosamine-6-
304 phosphate in cytoplasm respectively. Next, enzyme turnover rate (kcat) and saturation (K) were
305 used to explain the change in concentration of these enzymes (E) at different values of maximum
306  velocity (Vmax). Vmax represents the maximum possible flux for the reactions in each of the
307 activated phases obtained from FVA. All the calculations for determining E can be found in
308 supplemental files. We found that enzyme concentration and the enzyme saturation relation
309 differ for each gene with the change in Vmax, indicating the difference in their role during
310 inflammation/anti-inflammation responses. The enzyme concentration was higher at all
311  saturation points in M1 phase for GRHPR and ODC1 gene, while the GLS concentration was
312 high for M2 phase and GNE enzyme concentration was found similar for both the phases. The
313  activity of each of these enzymes provides insight into the metabolic reprogramming occurring
314 in AM while acquiring the desired phenotype. For example, the presence of glyoxalate at various
315  concentrations has been associated with inflammation and diseases which are governed by
316 GRHPR(56). Similarly, the conversion of ornithine to putrescine which occurs in presence of

317 OCDL1 is a key in vivo biomarker for higher parasite survivals(57,58). In order to further explore

14
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318 and understand the metabolic shift at pathways and reactions levels, we next investigated the
319 individual reactions fluxes of activated AM GSM models with Healthy AM.

320

321  De novo Metabolic Reprogramming in AM Polarization Mechanism

322

323 AM in the lungs act as the first line of defense against respiratory pathogens since these
324 phagocytize pollutants and pathogens that act as a trigger to activate an innate immune
325  response(14). M1 and M2 macrophages acquire distinct phenotypes which are usually driven by
326  different stimuli. M1 macrophages are stimulated by LPS and IFN-y which enable the production
327  of pro-inflammatory cytokines such as IL-1, IL-12, 1L-23, ROS(59). On the other hand, M2
328  phase is stimulated by IL-4 or IL-13 which promotes anti-inflammatory cytokines releasing IL-
329  10(60-63). Expanding our attention beyond the typical players of central carbon metabolism, we
330 see the activity of pathways such as pyruvate metabolism, arachidonic acid metabolism,
331 chondroitin/heparan sulphate biosynthesis, and heparan sulphate (HS) degradation to be major
332 contributors to inflammatory or anti-inflammatory responses. Despite the increasing interest in
333  AM polarization and their unique contribution to the progression and suppression of diseases, not
334 much attention has been given to these pathways (pyruvate metabolism, arachidonic acid
335  metabolism, chondroitin/heparan sulphate biosynthesis, and Heparan Sulphate (HS) degradation)
336 in lung pathogenesis. Figure 4 shows the flux distribution in seven different pathways that play

337  important role during AM polarization.
338

339  As pathogens invade the lung microenvironment, the polarization shifts firstly toward M1
340 phenotype development(61). M2 phase is usually described as the anti-inflammatory stage where

341  the cell mainly focuses on remodeling and tissue repair(62). For a long time, it was believed that
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342 M1 and M2 phases were drastically different both phenotypically and functionally(62).
343  However, recent interest in the ambiguous nature of M2 phase has led to the discovery that M2
344  phase cells can be further divided into M2a, M2b, M2c, and M2d subtypes and each of these
345  subtypes has its unique functions ranging from tissue repair to phagocytosis and some level of
346  pathogen defense as well(64,65). To understand the metabolic shift in AM when it acquires
347  M1/M2 phenotypes, the flux range of a specific reaction in the activated phase was compared
348  with the flux range in healthy AM.

349

350 To fight the invading microorganism, cells increase toxicity to reduce the chances of survival.
351  The M1 model exhibited higher activity in bile acid synthesis and arachidonic acid metabolism.
352  These pathways increase the toxicity in the cell hence limiting the growth of pathogens(66-68) .
353  The reactions, 5,6-Ep-15S-HETE and 5,15-DIHETE from arachidonic acid metabolism had
354 increased flux space in comparison to healthy state. These reactions are involved in the
355  formation of oxygenated polyunsaturated fatty acids called oxylipins. Oxylipins play a very
356 important role in the regulation of inflammation and the formation of other important leukotriene
357  metabolites such as LTA4(69-71). Additionally, the activity of glycolysis was not found to be
358  completely inhibited in M2 phase despite OXPHOS and TCA cycle showing distinctly enhanced
359  fluxes. The nature of glycolysis activity has been a point of debate in AM polarization and with
360 recent findings(65) that indicate M2d subtype delineates proinflammatory responses, we propose
361 all M2 subtype population may not exhibit inhibited glycolysis activity based on our in-silico
362  predictions. However, most of the energy does come from OXPHOS in M2 subtypes. Our M2
363  model, as stated before, was able to capture the enhanced fluxes in OXPHOS and TCA cycle and

364  predicts over 90% of reactions to be enhanced in carnitine shuttle (mitochondria) pathway. With
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365 the help of carnitine shuttle (mitochondria) pathway, long-chain fatty acids that are impermeable
366 to mitochondrial membranes are migrated into the matrix for B-oxidation and energy
367  production(72). Hence, upregulated activity of carnitine shuttle pathway is unique to M2 phase
368 as we did not observe similar activity in M1 phase. In fact, the flux analysis of M1 phase with
369  healthy state showed us over 80% of the reactions to have inhibited fluxes. Figure 5 portrays the
370  complex regulatory pathways in AM polarization.

371

372 Upon exploring further, the activity of Chondroitin/heparan sulfate biosynthesis and HS
373  degradation were found to be specific to each phase as well. These pathways either contribute to
374  the formation or degradation of an important metabolite called Heparan sulphate. The formation
375  of heparan sulfate is a crucial step for the recruitment, adhesion, crawling, and transmigration of
376  leukocytes from the circulation to the site of inflammation(73). And the mechanism related to
377  the initiation of the inflammatory response is Chondroitin/heparan sulfate biosynthesis(74,75).
378  The role of formation and degradation of HS has been a topic of interest during lung injury and
379 inflammation; however, it has not been highly studied(75). We found all the active reactions
380  were enhanced in M1 phase from Chondroitin/heparan sulphate biosynthesis while the Heparan
381  Sulphate (HS) degradation was found to be enhanced during M2 phase when compared to
382  healthy AM. Hence, the in-silico activity of Chondroitin/heparan biosynthesis suggests enhanced
383 inflammatory response while HS degradation is related to the versatile function in M2 phase or
384  slightly inhibited inflammatory response. We further explored the activity of these pathways
385  between M1 and M2 phase and expanded on it in the next section.

386
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387  Furthermore, the activity of pathways such as pyruvate metabolism was expected to be enhanced
388  as pyruvate is a key mediator in cellular metabolism. In addition to the typical glycolysis to TCA
389  cycle pathway, pyruvate can also be derived from lactate and from amino acids such as arginine
390 (76). Despite being such a key modulator, the pyruvate metabolism, as a whole, was found to be
391 inhibited in M1 as well as M2 phase from our models with respect to the flux activity in healthy
392  AM. We found that the reactions contributing to the direct formation of pyruvate were mostly
393 inhibited in both the activated macrophages. A study by Abusalamah(77) suggests that
394  incorporating pyruvate as sodium pyruvate in growth media for macrophages inhibited immune
395 response of the cell and also had positive impact on the bacterial growth(77). We found the
396 overall activity of pyruvate metabolism was inhibited in the sense that excess pyruvate
397  production is inhibited. The key reaction such as PEP to pyruvate at the end of glycolysis and
398 pyruvate to OAA at the beginning of TCA maintained high fluxes but other reactions that
399  contribute to pyruvate through different mechanisms were inhibited. This indicates that not only
400  pyruvate metabolite but the whole metabolism plays a crucial role during polarization.

401

402

403  Delicate Balance between M1 and M2 Cells

404  Pathogenesis in the lungs is usually marked by an influx of M1 cells which later turn into M2
405  cells(78). However, interaction with certain pathogens inhibits or promotes the development of
406  certain phenotypes to ensure the survival of the virus. For example, the interaction between
407  tuberculosis and AM is sometimes reported to promote M2 cells in comparison to M1, and

408  reports on progression of cancer cells also mention the positive role of the M2 phenotype(79-
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409  81). The imbalance in the M1/M2 cells can be deleterious to the lungs that can cause prolonged
410 and unwanted inflammation in the absence of the process that shut it down. In addition, without
411  the necessary inflammation, AMs cannot effectively activate other immune cells to fight
412  invading organisms(82). Hence it is very important for AM to shift towards the phenotype which
413  is best suited to fight the invading pathogens. The unique metabolic shift in M1 and M2
414  phenotypes with respect to healthy AM is crucial to understand the diseased state, however, it is
415  equally important to understand the rebuttal mechanism of theAM(83). One way to study how
416  AM maintains defense against pathogens could be by understanding the balance between M1 and
417 M2 phenotypes and the possible reaction activities that can promote the shift from one phenotype
418 to another. With increased interest in the role of AM as the first line of defense against
419  respiratory pathogens, a lot of attention has been given to the signaling pathways(84-86).
420  Manipulating signals to the cell has yielded promising results in obtaining M2 cells from M1 and
421  vice versa, especially in rodents and in vitro studies(87,88). However, not much attention has
422  been given to reactions and pathways in human cells(23). Identifying the specific pathways
423  (reactions and metabolites) through GSM models could be a huge step forward to obtain highly
424  effective therapeutic targets and shift the development of cells toward the desired phenotype(89).
425  We compared the fluxes obtained from FVA with the M1 phase as the base condition. The
426  activity of M2 phase fluxes was categorized into five different conditions (namely, complete
427  overlap: widened flux space, complete overlap: shrunk flux space, partial overlap: increase, no
428  overlap: definite increase in forward direction, and no overlap: definite increase in reverse

429  direction).

430
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431  Earlier, we noted that despite being a key intermediatory metabolite, the metabolic shift in AM
432  resulted in limited pyruvate production in both M1 and M2 phases with respect to healthy AM.
433 By comparing the M1 fluxes with M2 phase fluxes, we observed all the reactions contributing to
434  pyruvate production in the cytoplasm were inhibited (complete overlap, shrunk flux space)
435  whereas the mitochondrial reactions are enhanced (complete overlap, widened flux space). In
436  Figure 6, it is shown that in the cytoplasm only one reaction (malate to pyruvate) has enhanced
437  fluxes with higher fluxes toward the production of D-Lactate. On the contrary, enhanced fluxes
438  were observed in multiple reactions that lead to pyruvate with more L-lactate production. The
439  pyruvate produced in mitochondria is directly used up for OAA which promotes OXPHOS and
440 TCA cycle. And lactate plays an important role in the maintenance of acid-base balance in the
441  cell and plays a crucial role in the maintenance and resolution of inflammation(90,91). Hence,
442  the in-silico flux activity suggests pyruvate metabolism is a key player to ensure proper
443  inflammatory response and anti-inflammatory responses. Further experimental studies in human
444  alveolar macrophage could establish not only pyruvate metabolite as an important factor but also
445  recognize the regulation of pyruvate metabolism as a key step in pathogenesis. In addition to the
446  metabolites from pyruvate metabolism, glycogen was also found to play an important role in
447  regulating the inflammatory/anti-inflammatory responses of each phenotype. We observed the
448  category with "definite increase in forward and reverse direction™ consisted of mainly reactions

449  related to glycogen.

450  Glycogen is one of the major sources of nutrients in AM and it has been linked to important roles
451 in inflammation as well as maintaining surfactant production ensuring the correct lung expansion
452  during breathing(92,93). The upregulated activity of this category of reactions starts from the

453  production of glycogenin G8 from glycogenin in cytoplasm and finally results in the production
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454  of glycogenin G4G4. Although the importance of glycogenin as an enzyme for the regulation of
455  glycogen is talked about but it’s true potential is not fully explored(92). The in-silico activity of
456  these reactions highlights the role of glycogen as a potential target to manipulate the shift of the
457  phenotypes. To further examine the role of these reactions, FBA and FVA were used to constrain
458  the model by turning off the reactions completely or by limiting the flux of each reaction. We
459  found that by turning off the reaction, UTP: alpha-D-galactose-1-phosphate uridylyltransferase,
460 the solution becomes infeasible. This reaction is responsible for the conversion of UTP and
461  alpha-D-galactose-1-phosphate to UDP-galactose in the cytoplasm. UDP-galactose is an
462  essential metabolite for building galactose-containing proteins and fats that play crucial roles
463 related to chemical signaling, building chemical structures, transporting molecules, and

464  producing energy(94).

465 To be able to force M2 cells behave like M1 and vice versa, we added multiple constraints on the
466  GSM models. Human AM consists of complex and large regulatory networks and the generated
467 GSM models closely resemble the three states of the cell. We know certain metabolites and
468  reaction activities are very distinct to each phenotype such as higher ATP production in the M2
469  phase, and the phenomena of NO production via inducible nitric oxide synthetase (iNOS) in the
470 M1 phase or via arginase in the M2 phase. Additional constraints in the flux range of reactions
471  that are distinctly higher in the M2 phase in comparison to the M1 phase were also incorporated.
472  Understanding the complex nature of biological systems that consists of numerous alternative
473  pathways, we were able to shortlist 34 reactions which when constrained in the M2 phase gives
474 us a modified flux range that is closer to the M1 phase. The list of reactions and the flux
475  constraint information are available in supplementary files. The shift in certain reactions is very

476  distinct and closely resembles the M1 phase, for example, the conversion of glucose-1-phosphate

21


https://doi.org/10.1101/2023.09.08.556783
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.556783; this version posted September 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

477  to glucose-6-phosphate (initial step of glycolysis) shifted from -10 to 18 mm/h/g cell DW to -5.9
478  to 18.6 mm/h/g cell DW. Also, an important step of PPP in the M1 phase, that is the conversion
479  of ribose-1-phosphate to ribose-5-phosphate, which is also a major contributor to the production
480 of NADPH is shifted. The high-level activity of pathways such as chondroitin/heparan sulfate
481  biosynthesis and bile acid synthesis were also observed. Constraining the exchange of ATP,
482  production of NO from arginine, conversion of glycogenin to UDP allowed the shift to M2 from

483  ML1. The details on the flux constraints added are available on the supplemental files.

484  We calculated the distance between M1 and M2 GSM model and M1 and Modified M2 GSM
485 model by applying approaches as described in Methods and Materials. The obtained Jaccard
486  similarity index for M1 vs M2 and M1 vs modified M2 is 0.0108 and 0.0305, and the average
487  Jaccard distance calculated was found to be 0.73 and 0.71 respectively. Jaccard distance is the
488  measure of dissimilarity between two sets and has been used to analyze the heterogeneity of
489  bacteria and Human cells GSM models(95). However, there have been concerns regarding the
490  correct representation of flux modulations via Jaccard distance. The calculated values for Jaccard
491  similarity index and the average Jaccard distances do not show a vast difference between the two
492  conditions. Hence, we further explored Hausdorff distance, a highly versatile and robust
493  approach in flux modulation analysis. It gives a comprehensive measure of the dissimilarity or
494  similarity between different conditions(96). The average Hausdorff distance between M1 and M2
495  phase is 53.9806 while the average between the M1 phase and modified M2 was found to be
496  37.9455. Additionally, the sum of the distances for both cases was found to be 4.4329 x 10° and
497  3.1161x10° respectively. The Hausdorff distance is a unitless measure elucidating the overall
498  dissimilarity between two sets of data and hence the values obtained clearly indicate the decrease

499 in distance when modifications are introduced to the M2 GSM model. Moreover, the t-SNE (t-
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500 distributed Stochastic Neighbor Embedding) plot was used to visualize the structure of each data
501  set representing the M1 phase, M2 phase, and Modified M2 to observe the overall shift from M2

502  to M1 phenotype as shown in Figure 7.

503 Conclusion

504  The role of AM in health and disease has been a point of debate for a long time and through
505  continuous effort from the scientific community, it has been possible to establish the versatile
506 nature this cell exhibits(83). From the inflammatory responses to activation of other immune
507 cells to maintaining lung homeostasis, the interest in the role of AM has opened doors to many
508 interesting possibilities(2). Most experimental studies are limited to rodents and murine species
509  but understanding the behavior of these cells in humans is crucial(97). Hence, Genome-Scale
510 Metabolic models are a great initiative to understand and predict the behavior of cells under
511  stress (pathogen invasion, nutrient deficiency, high/low temperature, etc.) conditions(21). Here,
512 we successfully reconstructed three GSM models of healthy AM and its activated phases (M1
513 and M2) by integrating transcriptomics into the Humanl model. These models are capable of
514  reproducing key biological phenomena of each state of AM cell. Here, we highlight the role of
515 fever in the very early stages of pathogenesis as generally a positive reinforcement to the cell.
516 Due to lack of temperature-specific transcriptomics and metabolite concentration ranges, we
517 used a biologically feasible range (1 uM to 10 mM) of a cell and observed a steady increase in
518 MDF of pathways. The exhaustive analysis of metabolic shifts in the activated phases with
519  respect to healthy AM and flux comparison of M2 phase vs M1 phase was conducted. Hence, the
520 reactions responsible for the production of oxylipins, that are directly responsible for eliciting

521  inflammatory responses and chondroitin/heparan sulfate biosynthesis to be enhanced in the M1
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522  phase whereas the M2 phase showed upregulated carnitine shuttle (mitochondria), and Heparan
523  Sulphate degradation. Pyruvate Metabolism showed similar downregulated behavior in both
524  phases when compared to healthy AM but when compared among themselves, pyruvate
525  metabolism seemed to favor the production of OAA in the M2 phase which helps the high
526  activity of OXPHQOS, TCA cycle, and ETC in mitochondria. By understanding the key metabolic
527  shifts, we were able to identify 34 reactions that include ATP production, NO production,
528 glycogenin regulation, and galactose regulation reactions (such as conversion of alpha-D-
529  galactose-1-phosphate to UDP-galactose in cytosol) which when relaxed or constrained, shift M1
530 phenotype to M2 and vice versa in some capacity. We can further refine and make this shift more
531  prominent with the incorporation of metabolomics and or proteomics data. In the absence of such
532 information, manipulating the reaction fluxes resulted in new flux ranges in M2 that have high
533  correlations with the M1 phase and vice versa. In future, experimental validation could lead to
534  pathways such as Heparan Sulphate degradation, Pyruvate Metabolism, and reactions involving
535  glycogenin and galactose regulation as key players in pathogenesis. By using these GSM models,
536 the interaction of pathogens with the AM in healthy state and activated state can be exhaustively
537  explored. With further incorporation of human specific metabolomics/proteomics datasets when

538 available, the temperature associated behavior of the cells could also be further studied.

539 Methods and Materials

540

541  Transcriptomics Data Processing

542

543  An exhaustive literature search was conducted to identify the appropriate set of transcriptomics

544  data which included the transcriptomic profiles of healthy non-smokers(41), AM induced by
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545  Lipopolysaccharides (LPS) and interleukin-4 resembling M1 phase(42) and M2 phase(98),
546  respectively. The data obtained were used as input for Gene Set Enrichment Analysis (GSEA)
547  tool(99). GSEA is a tool that is used for pathway analysis based on the transcriptomic state of the
548  cells and was used to compare the pathway activity of healthy AM with the M1 phase, healthy
549  AM with the M2 phase, and M1 phase vs. M2 phase. In this process, genes are ranked based on
550 the correlation between their expression and the class distinction using any suitable metric.
551  GSEA calculates the enrichment score (ES) and its significance level using p-values(99). The
552  output from the GSEA run generated lists of enriched pathways for the M1 and M2 phase. An
553  exhaustive literature search was conducted to identify the appropriate set of transcriptomics data
554  which included the transcriptomic profiles of healthy non-smokers’(41) AM induced by
555  Lipopolysaccharides (LPS) and interleukin-4 resembling M1 phase(42) and M2 phase(98),
556  respectively. The data obtained were used as input for Gene Set Enrichment Analysis (GSEA)
557  tool(99). GSEA is a tool that is used for pathway analysis based on the transcriptomic state of the
558  cells and was used to compare the pathway activity of healthy AM with the M1 phase, healthy
559  AM with the M2 phase, and M1 phase vs. M2 phase. In this process, genes are ranked based on
560 the correlation between their expression and the class distinction using any suitable metric.
561  GSEA calculates the enrichment score (ES) and its significance level using p-values(99). The
562  output from the GSEA run generated lists of enriched pathways for the M1 and M2 phase that
563  mainly focused on signaling pathways.

564

565 Using the raw data set, we deduced a list of genes that were also present in the Humanl

566  metabolic model. The list of genes for healthy AM, M1 phase, and M2 phase were 2,173, 2,951,
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567 and 2,390 respectively. The expression values of these genes were integrated into Humanl
568  model to reconstruct models of healthy AM and its activated phases.

569

570 GSM Model Reconstruction

571

572  The transcriptomics data obtained for each of the phenotypes of AM was integrated into
573 Humanl, a global human metabolic reconstruction consisting of 13,417 reactions, 10,138
574  metabolites (4,164 unique), and 3625 genes(32). Three context-specific AM metabolic
575  reconstructions were obtained by implementing both switch and valve approaches of omics
576 integration. Among various methods available in both the categories of switch and valve
577  approach, IMAT and E-flux were used in our study. iMAT (integrative metabolic analysis tool)
578 is an optimization-based program that can be used to integrate the available omics data with
579  GSM network models for the prediction of metabolic fluxes(30). The modified version of IMAT
580 was used where instead of classifying the overall reactions into three categories (highly
581  expressed, lowly expressed, and moderately expressed), the reactions were divided as either
582  highly expressed or lowly expressed with the biomass precursors always included in the highly
583  expressed set. The formulation was constructed in such a way that all the reactions from the
584  highly expressed set were always made active and the minimum number from the lowly
585  expressed reaction set was added to obtain the specified objective. This resulted in a pruned
586 mode significantly smaller than the original human model with reactions, and metabolites
587  specific to AM and its activated stages. On the other hand, E-flux only requires the change of the
588  upper bound and lower bound on each reaction depending on the gene expression level(31). The

589  bounds are normalized to range between -1000 to 1000. The forward reactions consisted of a
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590 lower bound of 0 and a unique upper bound according to the gene expression levels. The
591  backward reactions ranged from a unique lower limit to 0 as an upper bound. And the reversible
592  reactions ranged from -M to M where M is the unique value obtained for each reaction. Hence,
593 GSM models for healthy AM, M1, and M2 phases were obtained by implication of both
594  approaches. We compared iMAT and E-flux algorithms and the details are discussed in the
595  Results and Discussion section. To ensure the biological relevance of these GSM models, we
596 used techniques such as Flux Balance Analysis (FBA)(36) and Flux Variability Analysis
597  (FVA)(37) to analyze and improve model connectivity.

598

599  Flux Balance and Flux Variability Analysis

600

601  Flux Balance Analysis (FBA) is used in this study to analyze the flow of metabolites in different
602  conditions. FBA is a widely used approach to study biochemical networks, namely, genome-
603  scale metabolic models that contain the known metabolic reactions in a biological system and the
604  genes that encode each enzyme(36). The GSM model is represented by a stoichiometric matrix
605  which contains metabolites as columns and the rows are represented by reactions. The upper and
606  lower bounds act as a constraint on each of the reactions based on nutrient availability and other
607  microenvironment conditions. FBA generates a flux value for each reaction. Flux Variability
608  Analysis (FVA) is an extension of FBA which calculates the maximum and minimum possible
609  flux for all the reactions in the model at a specific condition(37).

610

611  Model Curation

612
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613  The three metabolic models were curated by using the classic design-build-test-refine cycle to be
614  able to ensure proper network connectivity and accurate reflection of the metabolic capabilities
615 of the alveolar macrophage cell. Despite the generated models being capable of producing
616  biomass, key metabolite productions such as NO, succinate, and itaconate were found to be
617  different than what was expected in this cell. This could be due to the presence of
618  thermodynamically infeasible cycles (TICs). TICs are cycles created by reactions that carry
619  fluxes even in the absence of nutrients essential for cellular growth and functionality. The TICs
620  can cause the metabolic model to produce metabolites higher/lower than expected, by activating
621  reactions that would be off in a biological scenario. However, if essential reactions are
622  eliminated or the directionality of these reactions are changed without proper review, the
623  behavior of the metabolic model might shift away from the known biological phenomena of the
624  cell. Hence, it is extremely important to refine metabolic models by using efficient and effective
625  methods.

626

627 We used OptExpand (inhouse tool, currently unpublished), that has been developed as an
628  expansion upon OptFill, a tool previously developed by our group with different
629  functionalities(100). The initial function of OptExpand was to refine GSMs by removing TICs;
630  however, the process of removing TICs from GSMs was found to be much more difficult than
631  the process of incorporating reactions without creating TICs, and thus the method was upgraded
632  to be able to expand a minimal model i.e., minimum number of biochemical reactions required to
633  satisfy the objective, in our models the number was found to be 143) by adding reactions from a
634 database (the database consisted of all but these 143 reactions from Humanl). OptExpand

635 generated three possible solutions to avoid formation of any TICs and ensure optimal
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636  connectivity. These solutions consisted of either blocking a reaction completely or changing the
637  direction of the reaction. Before incorporating any changes, an exhaustive literature search was
638 conducted to ensure that none of the biologically relevant pathways were omitted fully or
639  partially affected due to these changes. Special attention was given to novel AM pathways such
640 as production of NO from arginine in healthy AM, production of succinate, itaconate and citrate
641 in TCA cycle during M1 phase and citrulline and urea production in NO cycle during M2 phase.
642 FBA and FVA techniques are used to check the fluxes of the metabolic models ensuring proper
643  network connectivity. All the fluxes from FBA and FVA in the absence of nutrients were found
644  to be zero as expected in healthy and activated AM GSM models and in other conditions the
645  fluxes were found to be in accordance with the biological nature of AM.

646

647

648  Thermodynamic Analysis

649

650 Standard Gibbs Free Energy was calculated for reactions using the equilibrator tool(50).
651  Equilibrator is a tool that uses the composition contribution method to calculate the Gibbs free
652  energy of formation at standard conditions. After acquiring the list of standard Gibbs Free
653  Energy, MAX/MIN driving force (MDF) for the pathways of interest was calculated by using the
654  concentration of metabolites ranging from 1 nM to 10 Mm(50). The range was selected due to a
655 lack of specific experimental metabolomics data and literature evidences suggesting that in the
656  context of metabolic reactions occurring in living cells, the metabolite concentration usually
657  ranges from 1 nM to 10 Mm(50). The MDF analysis was performed with the specified metabolic

658  concentration range to obtain change in Gibbs free energy (AG) at different temperatures. The
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659  value of Gibbs free energy was further used to calculate the enzyme turnover rate and enzyme
660  saturation (K).

661

662  The maximum possible flux obtained from FVA was used to calculate the enzyme turnover rates
663  for the reactions of interest. We compared the Kcat values obtained from DLKcx(101) and
664  SABIO-RK(55) and found modest agreement at best. To this end, we put together elements of a
665 new method (to be deployed in larger scale soon) which is capable of reliable Kcat prediction by
666  explicit molecular modeling of respective enzyme structures, and phylogenetic closeness
667  quantification with other enzymes (with the same EC number) but with reported experimental
668 Kt measurements from SABIO-RK. Each of these enzyme structures for this study was
669  predicted using geometric deep learning variant structure predictor. These structures were
670  pairwise-similarity matched (using TM-Align) against all other enzymes of the similary family
671  that have reported Kcat in SABIO-RK. These similarity scores were used as a weighting term to
672  ascertain the degree of kinship on the K¢ value of the target enzyme at hand. The inclusion of
673  these bio-aware parameters has allowed us to have high confidence in the Kca value obtained,
674  which would be missing if we just used a sequence-based Kca predictor instead. The steps and
675  details regarding the whole protocol for Kc calculation can be found in supplementary files. The
676  relationship between the K, and K was determined for four different enzymes with two Vmax

677  values obtained from FVA (M1 and M2 phase). The equation(102) used is mentioned below:

v 1
678 E= dinc X — (1)

AG
kcat- (1 - eRT)
679

680
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681
682  Structure Informed Kca Prediction (SI Kcar)

683

684  The sequential protocol followed for ket prediction (illustrated in Figure 8) was demonstrated in
685 one of our most recent works (103) which starts with the data retrieval from SABIO-RK
686  database (43) using specific identifiers such as E.C Number, KEGG Reaction ID, and KEGG
687  Compound IDs. The 3D structures of enzymes are predicted from protein sequences using the
688  RGN2 algorithm, while simultaneously collecting experimentally resolved structures from RCSB
689  PDB (45). Structural comparisons are then made between predicted and experimental structures
690  to assess their similarities (46,47). Utilizing a weighted approach, Kca values are predicted by
691  considering both structural similarity (Sw) and K¢ data from SABIO-RK. To gauge the

692  uncertainty in predicted Kcat values, pairwise protein sequence alignment is employed.

693

694  Measure of Similarity/Dissimilarity between GSM models

695  The list of reactions that could in any capacity insinuate the metabolic shift from one phenotype
696 to another was deduced by targeting the reactions that displayed distinct flux ranges in both the
697  phenotypes. For example, we started with the list of reactions which had no overlap and definite
698 increase/decrease in forward or backward direction and added some major known metabolic
699 traits. Constraining some reaction fluxes in combination of relaxing certain others could allow

700 the shift of the metabolic fluxes from M2 from M1.
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701 To measure the overall impact and the level of shift upon the inclusion of the constraints added
702 in the GSM models, we explored methods such as Hausdorff distance, Jaccard distance, and
703  Jaccard index. Jaccard index calculates the value based on the intersection and union of a single
704  point data that can be obtained via Eflux2(104). FBA is used to obtain an allowable metabolic
705  flux distribution in a steady-state system in a GSM model, but the obtained fluxes are not unique
706  solutions. We know the GSM models are in general underdetermined, context-specific, and
707  physiologically meaningful flux solutions that can be narrowed down to a unique solution by
708 introducing additional constraints(105). Eflux2 is an extension of FBA that infers a metabolic
709  flux distribution from transcriptomics data and overcomes the shortcoming of E-flux by
710  providing a unique solution. By using this unique solution, the Jaccard similarity index was
711 calculated. Jaccard similarity index is a measure of similarity between two sets of data ranging
712 from 0% to 100%, where the higher percentage indicates higher similarity(106). However, the
713 unique solution of E-flux2 changes with the change in the set value of the objective function. For
714  example, the solution set obtained with the maximum biomass obtained from FBA is different
715  from the solution with the biomass set as the maximum flux from FVA. Since there is no definite
716  growth rate for alveolar macrophage reported to the extent of our knowledge. Hence, the flux
717  ranges from FVA were used for the calculation of Jaccard distance and Hausdorff distance. The
718  additional information including formulation and calculation of Jaccard index, Jaccard distance

719  and Hausdorff distance is available in the supplementary files.

720

721 Data Availability
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The GSM models and other supporting files can be found in this GitHub repository:

https://github.com/sshio/Alveolar-Macrophage. The codes for calculation and determination of

Sl-Keat are available in this GitHub directory:

https://github.com/ChowdhuryRatul/kcat 1iZMA6517.
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1017  Figure Legends

1018  Figure 1: Schematic of the workflow for the generation of healthy and activated Alveolar

1019  macrophages and the steps involved in analysis of the metabolic shift during polarization.

1020  Figure 2: The distribution of active reactions in the context-specific generated models via IMAT

1021  and E-flux. The figure highlights the inclusive properties of the applied approaches.

1022  Figure 3: Part A and B showcase the maximum Gibbs free energy of a reaction in the major
1023  pathway such as Glycolysis and TCA cycle. The final figure C shows the change for the

1024  reactions in Leukotriene metabolism.

1025  Figure 4: Alveolar Macrophage acquires unique metabolic characteristics depending upon the
1026  phenotype. In the M1 phase, the reactions of glycolysis are enhanced which are highlighted by
1027  the green arrows and the PPP reactions which is a major contributor for NAPH production is also
1028  enhanced. Similarly, the pathways highlighted by yellow arrows in M2 phase are found to be
1029  enhanced. Each pie chart represents metabolic reprogramming of AM in the specific pathway in
1030  either M1 phase or M2 phase. Each component of the pie chart represents one of the four
1031  categories as color coded in the figure. The associated percentage in the pie chart represents the

1032  percentage of overall reactions of a specific pathway falling into each of the categories.

1033  Figure 5: Important AM pathways. Glycolysis, TCA cycle, and OXPHQOS play major roles in
1034  energy production with the help of pathways such as the carnitine shuttle (mitochondria), which
1035  shows enhanced activity during the anti-inflammatory phase. On the contrary, Bile Acid

1036  Synthesis, and Arachidonic Acid Metabolism are heightened to induce acidic conditions to
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1037  minimize pathogen survival. Pyruvate Metabolism play key roles in the immune response of the

1038  cell.

1039  Figure 6: Pyruvate Metabolism activity in activate phase M2 when compared to M1 phase. The

1040  reactions indicated by green arrow are enhanced in the M2 phase.

1041  Figure 7: t-SNE plot visualizing the M1 phenotype, M2 phenotype, and the modified M2
1042  phenotype represented by blue, red, and green, respectively. A distinct shift in the M2 phenotype
1043  can be observed when compared to modified M2. Modified M2 is the representation of resulting
1044  fluxes after the addition of constraints in the M2 GSM model that now resembles the M1

1045  phenotype more closely than normal M2.

1046  Figure 8: Schematic representation of SI Kcat prediction methodology. The protocol starts with
1047  data scraping for Kcat values belonging to the same EC number as the target enzyme, followed
1048 by structure prediction for the target sequence using RGN2. The predicted structure is compared
1049  with experimental structures for structural similarity weightage (Sw). Si Kcat is calculated

1050  following equation 2.

1051

1052  Supporting Information

1053  S1 file: List of reactions, metabolites and gene associations in the generated GSM models of

1054  healthy alveolar macrophage, M1 phase, and M2 phase in excel format.

1055  S2 file: SBML file for healthy alveolar macrophage GSM model.
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1056  S3 file: SBML file for M1 phase GSM model.

1057  S4 file: SBML file for M2 phase GSM model.

1058 S5 file: SBML file for modified M2GSM model.

1059  S6 file: Excel file including the details on thermodynamic parameters calculations such as

1060  relationship between Kcar and E.

1061 S7 file: Excel file containing details regarding the constraints on the reactions that allow the

1062  switch of M2 to M1 phenotype.
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