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 2 

Abstract: 22 

 23 

The highly plastic nature of Alveolar Macrophage (AM) plays a crucial role in the defense 24 

against inhaled particulates and pathogens in the lungs. Depending upon the signal, AM acquires 25 

either classically activated M1 phenotype or alternatively activated M2 phenotype. These 26 

phenotypes have specific functions and unique metabolic traits such as upregulated glycolysis 27 

and pentose phosphate pathway in M1 phase and enhanced oxidative phosphorylation and 28 

tricarboxylic acid cycle during M2 phase that help maintain the sterility of the lungs. In this 29 

study, we investigate the metabolic shift in the activated phases of AM (M1 and M2 phase) and 30 

highlight the roles of pathways other than the typical players of central carbon metabolism. 31 

Pathogenesis is a complex and elongated process where the heightened requirement for energy is 32 

matched by metabolic shifts that supplement immune response and maintain homeostasis. The 33 

first step of pathogenesis is fever; however, analyzing the role of physical parameters such as 34 

temperature is challenging. Here, we observe the effect of an increase in temperature on 35 

pathways such as glycolysis, pentose phosphate pathway, oxidative phosphorylation, 36 

tricarboxylic acid cycle, amino acid metabolism, and leukotriene metabolism. We report the role 37 

of temperature as a catalyst to the immune response of the cell. The activity of pathways such as 38 

pyruvate metabolism, arachidonic acid metabolism, chondroitin/heparan sulfate biosynthesis, 39 

and heparan sulfate degradation are found to be important driving forces in the M1/M2 40 

phenotype. We have also identified a list of 34 reactions such as nitric oxide production from 41 

arginine and the conversion of glycogenin to UDP which play major roles in the metabolic 42 

models and prompt the shift of the M2 phenotype to M1 and vice versa. In future, these reactions 43 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.08.556783doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556783
http://creativecommons.org/licenses/by/4.0/


 3 

could further be probed as major contributors in designing effective therapeutic targets against 44 

severe respiratory diseases. 45 

 46 

Author Summary  47 

 48 

Alveolar macrophage (AM) is highly plastic in nature and has a wide range of functions 49 

including invasion/killing of bacteria to maintaining the homeostasis in the lungs. The regulatory 50 

mechanism involved in the alveolar macrophage polarization is essential to fight against severe 51 

respiratory conditions (pathogens and particulates). Over the years, experiments on mouse/rat 52 

models have been used to draw insightful inferences. However, recent advances have highlighted 53 

the lack of transmission from non-human models to successful in vivo human experiments. 54 

Hence using genome-scale metabolic (GSM) models to understand the unique metabolic traits of 55 

human alveolar macrophages and comprehend the complex metabolic underpinnings that govern 56 

the polarization can lead to novel therapeutic strategies. The GSM models of AMs thus far, has 57 

not incorporated the activated phases of AM. Here, we aim to exhaustively dissect the metabolic 58 

landscape and capabilities of AM in its healthy and activated stages. We carefully explore the 59 

changes in reaction fluxes under each of the conditions to understand the role and function of all 60 

the pathways with special attention to pathways away from central carbon metabolism. 61 

Understanding the characteristics of each phase of AM has applications that could help improve 62 

the therapeutic approaches against respiratory conditions. 63 

 64 

Introduction 65 
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 66 

Alveolar Macrophages (AM) are the first line of defense against respiratory pathogens and are 67 

highly plastic in nature(1). Depending upon the interactions with pathogens, AMs can be 68 

polarized into several subsets(1). The two main subsets known are: classically activated or pro-69 

inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) 70 

macrophages(2,3). M1 macrophages respond to microbial factors like Lipopolysaccharide (LPS) 71 

and Th1 pro-inflammatory cytokines that play a significant role in bacterial killing and 72 

recruitment of other immune cells(4–7). M2 macrophages, on the other hand, can be induced by 73 

interleukin 4(IL-4) that promotes anti-inflammatory activities such as resolution to inflammation 74 

and repairing of the damaged cells(8). Both the phenotypes are marked by their unique metabolic 75 

niches - such as enhanced Glycolysis and Pentose Phosphate Pathway (PPP) in the M1 phase and 76 

Oxidative Phosphorylation (OXPHOS), Tricarboxylic Acid Cycle (TCA), and Fatty Acid 77 

Oxidation (FAO) in M2 phase(9). The reprogramming of AMs towards M1 or M2 phenotype is 78 

contingent upon specific signaling molecules including IFN-γ (type II interferon), LPS, IL-4, and 79 

immune complexes (Ic)(10). The resultant phenotype is influenced by the prevailing 80 

physiological demands, such as pathogenic bacterial killing or tissue restoration, that determine 81 

the sequential progression of the phenotype development(8,11,12). In infected lung tissue, AMs 82 

are first polarized to the M1 phenotype and later to M2 phenotype for a healthy immune 83 

response(13). However, alterations in the interaction could be catastrophic to the cell(1).  The 84 

shift in phenotypes of AM plays an important role in regulating the body’s immune response and 85 

metabolism(14,15). Yet, the regulatory mechanisms governing the polarization are not 86 

completely understood and little attention has been dedicated to the role of physical parameters 87 

such as temperature (1–3).   88 
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  89 

The thermal component of fever and its effect on inflammation is one of the most poorly 90 

understood aspects of pathogenesis (16,17). Fever is the first immune response against 91 

respiratory pathogens such as tuberculosis, influenza, and SARS-CoV2. The increase in core 92 

temperature enables the formation of pro-inflammatory M1 cells to combat the invading 93 

bacteria(18). However, it has also been reported that fever enables the M2 phenotypic behavior 94 

to maintain homeostasis in the lungs(16). Hence, understanding the relationship between fever 95 

and macrophage polarization is crucial to understand the regulation of macrophage function 15. 96 

Experimental analysis on a mouse model by increasing core temperature to 39.5 OC, was found 97 

to have significant positive effect on the modulation of macrophage function (19). However, 98 

several documented examples provide evidence on the disparity between the experimental 99 

conclusions in rodent studies and humans(20). Due to the challenges associated with human 100 

experimental studies, systems biology approaches can be utilized for reconstructing context-101 

specific (i.e., M1 or M2 phase or elevated temperature) Genome-Scale Metabolic (GSM) models. 102 

Systems biology has been proven to be very useful for pragmatic modelling and theoretical 103 

exploration of complex biological systems(21). By the integration of high-throughput omics data 104 

(metabolomics, proteomics, or transcriptomics), the reconstruction of human GSM models of 105 

pancreatic cancer(22), tuberculosis(23), obesity and diabetes’s(24), neurodegenerative 106 

diseases(25) has led to discovery of novel therapeutic targets and better understanding of the 107 

metabolic shifts.  108 

 109 

GSM models are computational context specific (species, cells, tissue, etc.) knowledgebases 110 

capable of dissecting systemic metabolic phenomena(26). A GSM model contains all annotated 111 
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metabolic reactions and pathways within a biological system26. Using Flux Balance Analysis 112 

(FBA) and Flux Variability Analysis (FVA) the fluxes of the reactions can be predicted for a 113 

given condition/timepoint. The study by Gelbach et al, on M1 and M2 subtypes of human 114 

colorectal cancer cells via generation of GSM models marks a significant step towards 115 

understanding and manipulating the polarization mechanism of macrophages(27). However, it is 116 

also important to explore the metabolic network and capabilities of M1 and M2 phenotypes in 117 

tissue-specific macrophages (e.g., AM) where they show unique behaviors and patterns. The 118 

early GSM of AM was curated by Bordbar et al, from the global human model, Recon1(28), in 119 

2010 and was further used to model tuberculosis infected AM(23). However, the model did not 120 

consider other potential states (e.g., M1 and M2 phase of AM) which is why it is highly critical 121 

to dissect the metabolic interactions in AM in its activated state with pathogens to fully 122 

understand the progression of the disease. However, thus far not much attention has been 123 

devoted to the contextualization of the AM model to represent M1 and M2 state and the effects 124 

of physical parameters such as temperature(4,17,29).  125 

 126 

In this study, three context specific GSM models were generated by integrating transcriptomics 127 

data of healthy AM, and its activated phases: M1 and M2. Figure 1 shows the overview of steps 128 

involved in generation, curation, and analysis of the three GSM models. Integration techniques 129 

such as iMAT (30) and E-flux(31) were used for GSM model reconstruction from Human1(32). 130 

The metabolic models were further curated by using a tool called OptExpand (inhouse tool, 131 

currently unpublished) that can be used to identify and resolve Thermodynamically Infeasible 132 

Cycles (TICs). These models were used to investigate the altered metabolism of activated AM 133 

(M1 and M2 phase) compared to that of healthy AM and compare M1 and M2 phases with each 134 
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other as well. The healthy AM model was validated by reproducing experimentally reported rate 135 

of ATP production and Nitric Oxide production(33,34). The comparison of the flux ranges 136 

showed enhancement in Glycolysis, Pentose Phosphate Pathway (PPP), and shift in 137 

Tricarboxylic Acid Cycle (TCA) to accumulate succinate and itaconate in M1 phase. M2 phase 138 

reaction fluxes show upregulation of Oxidative Phosphorylation (OXPHOS), uninterrupted TCA 139 

cycle, and upregulated Fatty Acid Synthesis (FAS). These observed metabolic shifts in M1 and 140 

M2 phases are in accordance with the previously reported evidence from literature(34). In 141 

addition, the metabolic pathway was found to be more active as the temperature increases from 142 

38oC to 41oC. Some unique characteristics of pathways such as Pyruvate Metabolism, 143 

Glycolysis, Carnitine Shuttle (mitochondria) pathway, and Bile Acid Synthesis (BAS) were 144 

further explored to understand specific nature of each activated state, highlighting the role of 145 

Chondroitin/Heparan Biosynthesis and Heparan Sulphate degradation as a potential point of 146 

manipulation in M1/M2 balance. Going forward, the context specific activated AM GSM models 147 

will be used to study interaction with respiratory pathogens. In addition, models of a system of 148 

immune cells such as AM, Neutrophils, and Mast cells, could be developed to analyze the 149 

intercellular interactions during pathogenesis. 150 

 151 

Results and Discussion 152 

   153 

Metabolic Model Reconstruction of Alveolar Macrophage (AM) Metabolism  154 

 155 

Genome scale metabolic (GSM) models provide an improved understanding on the metabolic 156 

basis of different biological processes and have been widely used for biomedical 157 
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applications(26). These sophisticated cellular systems of metabolic reactions in conjunction with 158 

their corresponding genes and enzymes provide novel insight into the initiation and progression 159 

of diseases(35). The interconnection between the genes, metabolites, and reactions are converted 160 

into mathematical representation and fluxes are predicted by performing computational flux 161 

analysis such as flux balance analysis (FBA) and flux variability analysis (FVA)(36,37). The 162 

latest global human metabolic reconstruction, Human1(32) is an extensively curated 163 

representation of human metabolism that combines two parallel lineages, namely 164 

Recon(28,38,39) and Human metabolic Reaction (HMR)(40). With 20% higher total reactions, 165 

33% higher metabolites, and higher mass balance than those of any available human 166 

reconstructions, Humn1 has successfully been used to reconstruct cell-specific GSMs for liver, 167 

liver cancer, blood, blood cancer etc.(32). Hence, this standardized model allows the convenient 168 

integration of omics data to reconstruct AM specific metabolic model. 169 

 170 

In this work, metabolic reconstruction of healthy AM, M1 phase, and M2 phase was obtained by 171 

integrating gene expression values of metabolic genes(9,41,42) onto the Human1 model. These 172 

transcriptomic profiles were acquired from GEO databases (GSE8823, GSE40885, and 173 

GSE41649 for AM, M1 phase and M2 phase, respectively). Among various methods available to 174 

integrate omics data, iMAT(30), a switch approach, indicates the presence/absence of a specific 175 

reaction depending on the relevant gene(s) having higher expression levels at a specific 176 

condition. On the other hand, a valve approach such as E-flux(31), uses gene expression levels to 177 

control the flux of the corresponding reactions. The healthy AM model obtained upon the 178 

implementation of iMAT consists of 4,554 reactions (governed by 2,173 metabolic genes ) and 179 

3,967 metabolites (2,003 unique) distributed across eight intracellular compartments 180 
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(Extracellular, Peroxisome, Mitochondria, Cytosol, Lysosome, Endoplasmic reticulum, Golgi 181 

apparatus, Inner mitochondria, and Nucleus); while the model generated by E-flux consists of 182 

8,073 reactions and 5,380 metabolites (2,823 unique)  across these eight compartments with the 183 

same number of metabolic genes. Since both these approaches employ different fundamental 184 

assumptions (as mentioned above) and are usually more successful in different applications(43). 185 

The sensitivity of iMAT approach to user defined threshold typically leads to higher number of 186 

reactions to be omitted or sometimes leads to exclusion of important reactions from the pruned 187 

model. In our case, this resulted in a version of the pruned model capable of producing biomass, 188 

but it failed to include important pathways such as NO production, glycerolipid metabolism, 189 

heme synthesis, and porphyrin metabolism. The E-flux-generated model, on the other hand, 190 

consists of comparatively higher number of reactions, metabolites, and included all the important 191 

pathways mentioned earlier. Figure 2 shows the distribution of active reactions in the important 192 

AM pathways. Additional information on each model can be found in supplementary files. 193 

Similar observations were obtained while implementing iMAT and E-flux with the expression 194 

values of 2,951 and 2,390 metabolic genes to reconstruct GSM models for M1 and M2 phases 195 

respectively (additional information on the gene expression values, distribution of pathways, 196 

reactions, and metabolites for all the models are available in supplementary files). The GSM 197 

model developed upon the E-flux method for M1 phase consists of 7,986 reactions, and 5,602 198 

(2,821 unique) metabolites and the similar model of M2 phase model consists of 7,884 reactions 199 

and 5,936 (2,969 unique) metabolites. On the other hand, the pruned models obtained from 200 

iMAT implementation were significantly smaller with important biological pathways missing. 201 

Hence, for the purpose of our study, E-flux was able to incorporate all the important AM 202 
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pathways, active reactions, and metabolites (with a higher number of unique metabolites). This 203 

allowed us to exhaustively investigate the metabolic shift occurring during polarization.  204 

  205 

The models were next validated to ensure their ability to simulate biologically significant 206 

processes by reproducing important metabolite production rates and characteristic behavior as 207 

reported in literature. FBA is used to optimize the production rates of important healthy AM 208 

metabolites while maintaining the maximal level of biomass (i.e., 0.03 h-1). AM are tissue 209 

resident macrophages that populate the lung environment during birth and last for the lifespan of 210 

the individuals typically(23). Since AMs do not readily multiply, the biomass function comprises 211 

of mainly cellular maintenance requirements such as proteins, lipids, DNA repair, ATP 212 

maintenance and RNA turnover(23). The model was optimized for ATP production and NO 213 

production that yielded the flux of 0.6 mm/h/g cell DW and 0.03 mm/h/g cell DW respectively. 214 

These in-silico values were very close to the values of 0.71 mmol/h/g cell DW and 0.037 215 

mmol/h/g cell DW, respectively, as obtained from in vitro experiment(33,34). Hence, the healthy 216 

AM model obtained via E-flux algorithm is capable of reproducing important experimentally 217 

reported production rates.  218 

 219 

Similar to healthy AM model, the activated phase models should also be able to recapitulate the 220 

relevant metabolic reprogramming. To this end, with the help of the GSM of healthy AM as the 221 

base, the  M1/M2 phase reaction fluxes were compared that generated four possible scenarios: 222 

overlap of flux with increase, complete overlap with decrease, partial overlap with increase, and 223 

no overlap with increase in forward direction. As reported in literature for M1 phase, we 224 

observed increased activity (complete overlap and partial overlap) for glycolysis pathway(9). 225 
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Pentose Phosphate Pathway (PPP) shows 48% of the reactions have increased fluxes which 226 

include important reactions such as formation of Ribulose 5-phosphate and its conversion to 227 

Ribose 5-phosphate with production of NADPH. This is a crucial step in energy production 228 

during M1 phase(9). We also found the increased production of succinate and itaconate in the 229 

TCA cycle which limits the formation of precursors that aid oxidative phosphorylation 230 

(OXPHOS) and electron transport chain (ETC)(9,44). Similarly, the comparison of the reaction 231 

fluxes between M2 phase and healthy AM showed increased activities in OXPHOS, fatty acid 232 

oxidation (FAO), and TCA cycle without extra accumulation of succinate and itaconate 233 

metabolites. FAO impairs the anti-inflammatory responses and helps OXPHOS increase the 234 

production of ATP through TCA cycle. These metabolic traits are well supported by 235 

literature(9,45) and thus establish the credibility of our context-specific GSM models of the 236 

activated phases. 237 

  238 

A Response to Fever: Increase in Temperature 239 

 240 

Fever is the highly evolved systematic inflammatory response that is not limited to the site of 241 

infection but affects the whole body(16). The heat of fever is reported to supplement the 242 

performance of immune cells by increasing stress on pathogens and infected cells(17). However, 243 

the advantages of fever in different conditions are still not clear. For instance, lowering of 244 

temperature could be more beneficial than its increase in cases of extreme inflammation(18). The 245 

study of effects of physical parameters such as temperature in human physiology is very 246 

important but is extremely challenging to investigate due to numerous limitations such as higher 247 

cost to conduct in vivo or in vitro studies to gather human cell data(46,47). Here, we study the 248 
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fluctuation in the thermodynamic feasibility of reactions and pathways in response to change in 249 

temperature by calculating change in Gibbs free energy (∆G) of reactions and Max/Min Driving 250 

Force (MDF) of the pathways(48). Starting from the core temperature of human body (37oC), the 251 

analysis is completed till 40oC, beyond which fever is considered fatal(49).  252 

 253 

Equilibrator was used to calculate the standard Gibbs free energy of formation (∆fG
o) for the 254 

reactions of interest(50). Equilibrator so far is equipped to calculate the standard Gibbs free 255 

energy of reactions with KEGG(51) and BIGG IDs(52), hence limiting the number of full 256 

pathways we could analyze. In addition, due to the lack of available AM and temperature 257 

specific metabolomics, the metabolite concentration ranges were set to be 1 nM to 10 mM which 258 

is the typical metabolite range for a biological system capable of capturing adequate cellular 259 

physiology(48). The response of pathways such as glycolysis, OXPHOS, PPP, TCA cycle, 260 

amino sugar and nucleotide sugar metabolism, leukotriene metabolism and some amino acid 261 

biosynthesis pathways (proline/alanine, and arginine biosynthesis) were investigated by 262 

calculating MDF. The change in Gibbs free energy at different temperatures gave us insight into 263 

the thermodynamic feasibility of each reaction and pathway during the progression of fever 264 

(increase in temperature). A steady increase in MDF for all the pathways was observed 265 

indicating that the increase in temperature as positive catalyst for metabolism. The study detailed 266 

and specific response of each reaction/pathway to temperature will be possible with further 267 

advancement in human metabolomics experimental data generation. The calculated MDF for all 268 

of the above pathways was above 10KJ/mol, indicating the thermodynamic favorability of the 269 

pathways as the temperature increases. With the low driving force (less than 3 KJ/mol) the 270 

reactions are found to be heavily dependent on kinetic parameters such as enzyme concentration 271 
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and turnover rate (i.e., kcat)(53). However, the dependence of the reaction rate on the kinetics 272 

decreases with the increase in driving force. It is reported that with a driving force of 10KJ/mol 273 

or higher. the reactions occur in forward direction with negligible flux in reverse direction(48).  274 

In Figure 3a, the reaction with the maximum ∆G in glycolysis pathway is highlighted with 275 

orange. Similarly, the reactions from TCA cycle (Figure 3b) with maximum Gibbs free energy 276 

are also highlighted. Both the reactions in the pathways are key steps for ATP production which 277 

are found to be more feasible with the increase in temperature. The change occurring in 278 

leukotriene metabolism in comparison to ∆fG
o is also shown in Figure 3c, which indicates the 279 

increasing thermodynamic feasibility of reactions in Leukotriene metabolism with the increase in 280 

temperature. Full details on all the other pathways mentioned above are present in the 281 

supplementary files. Assuming the set metabolite concentration is favorable and the ∆fG
o values 282 

are accurate, as the temperature increases the thermodynamic feasibility of the pathways also 283 

increases, the reactions occur in the forward direction spontaneously with less enzymatic effort. 284 

This phenomenon ultimately supports the biological need for enhanced metabolic activities to 285 

illicit immune response in the cell. We observed small but noticeable changes in MDF values 286 

and ∆G values for all the reactions and pathways. With further advances on availability of 287 

experimental data, in future we can further explore the extent of effect of temperature. 288 

 289 

The enzymes govern the direction and rate of reactions at a molecular level. The change in Gibbs 290 

free energy for a reaction is directly associated with the enzyme turnover rate also known as kcat. 291 

To study the change in the enzyme turnover rate during the macrophage polarization, four 292 

enzymes catalyzing reactions from the pathways mentioned above were selected. To determine 293 

suitable values of kcat, deep learning pipeline DLkcat(54) trained on SABIO-RK(55) database 294 
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were first used. Non-trivial differences in these predicted values prompted us to put together a 295 

new enzyme structure-aware method of calculation for kcat. Due to paucity of exhaustive 296 

experimental kcat measurements, we shortlisted four enzymes that were part of our prior analysis 297 

and had literature evidence towards inflammatory or anti-inflammatory responses(56–60). The 298 

proteins, GRPHR (glyoxylate and hydroxypyruvate reductase). OCD1 (ornithine decarboxylase 299 

1), GLS (glutaminase), and GNE (glucosamine (UDP-N-acetyl)-2-epimerase/N-300 

acetylmannosamine kinase) catalyze the reactions, glyoxalate to glycolate in mitochondria, 301 

conversion of ornithine to putrescine and carbon dioxide in extracellular matrix, conversion of 302 

glutamine to glutamate and ammonia, and N-acetyl-D-mannosamine to N-acetylmannosamine-6-303 

phosphate in cytoplasm respectively. Next, enzyme turnover rate (kcat) and saturation (K) were 304 

used to explain the change in concentration of these enzymes (E) at different values of maximum 305 

velocity (Vmax). Vmax represents the maximum possible flux for the reactions in each of the 306 

activated phases obtained from FVA. All the calculations for determining E can be found in 307 

supplemental files. We found that enzyme concentration and the enzyme saturation relation 308 

differ for each gene with the change in Vmax, indicating the difference in their role during 309 

inflammation/anti-inflammation responses. The enzyme concentration was higher at all 310 

saturation points in M1 phase for GRHPR and ODC1 gene, while the GLS concentration was 311 

high for M2 phase and GNE enzyme concentration was found similar for both the phases. The 312 

activity of each of these enzymes provides insight into the metabolic reprogramming occurring 313 

in AM while acquiring the desired phenotype. For example, the presence of glyoxalate at various 314 

concentrations has been associated with inflammation and diseases which are governed by 315 

GRHPR(56). Similarly, the conversion of ornithine to putrescine which occurs in presence of 316 

OCD1 is a key in vivo biomarker for higher parasite survivals(57,58). In order to further explore 317 
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and understand the metabolic shift at pathways and reactions levels, we next investigated the 318 

individual reactions fluxes of activated AM GSM models with Healthy AM. 319 

 320 

De novo Metabolic Reprogramming in AM Polarization Mechanism  321 

 322 

AM in the lungs act as the first line of defense against respiratory pathogens since these 323 

phagocytize pollutants and pathogens that act as a trigger to activate an innate immune 324 

response(14). M1 and M2 macrophages acquire distinct phenotypes which are usually driven by 325 

different stimuli. M1 macrophages are stimulated by LPS and IFN-γ which enable the production 326 

of pro-inflammatory cytokines such as IL-1, IL-12, IL-23, ROS(59). On the other hand, M2 327 

phase is stimulated by IL-4 or IL-13 which promotes anti-inflammatory cytokines releasing IL-328 

10(60–63). Expanding our attention beyond the typical players of central carbon metabolism, we 329 

see the activity of pathways such as pyruvate metabolism, arachidonic acid metabolism, 330 

chondroitin/heparan sulphate biosynthesis, and heparan sulphate (HS) degradation to be major 331 

contributors to inflammatory or anti-inflammatory responses. Despite the increasing interest in 332 

AM polarization and their unique contribution to the progression and suppression of diseases, not 333 

much attention has been given to these pathways (pyruvate metabolism, arachidonic acid 334 

metabolism, chondroitin/heparan sulphate biosynthesis, and Heparan Sulphate (HS) degradation) 335 

in lung pathogenesis. Figure 4 shows the flux distribution in seven different pathways that play 336 

important role during AM polarization. 337 

 338 

As pathogens invade the lung microenvironment, the polarization shifts firstly toward M1 339 

phenotype development(61). M2 phase is usually described as the anti-inflammatory stage where 340 

the cell mainly focuses on remodeling and tissue repair(62). For a long time, it was believed that 341 
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M1 and M2 phases were drastically different both phenotypically and functionally(62). 342 

However, recent interest in the ambiguous nature of M2 phase has led to the discovery that M2 343 

phase cells can be further divided into M2a, M2b, M2c, and M2d subtypes and each of these 344 

subtypes has its unique functions ranging from tissue repair to phagocytosis and some level of 345 

pathogen defense as well(64,65). To understand the metabolic shift in AM when it acquires 346 

M1/M2 phenotypes, the flux range of a specific reaction in the activated phase was compared 347 

with the flux range in healthy AM.  348 

 349 

To fight the invading microorganism, cells increase toxicity to reduce the chances of survival. 350 

The M1 model exhibited higher activity in bile acid synthesis and arachidonic acid metabolism. 351 

These pathways increase the toxicity in the cell hence limiting the growth of pathogens(66–68) . 352 

The reactions, 5,6-Ep-15S-HETE and 5,15-DiHETE from arachidonic acid metabolism had 353 

increased flux space in comparison to healthy state. These reactions are involved in the 354 

formation of oxygenated polyunsaturated fatty acids called oxylipins. Oxylipins play a very 355 

important role in the regulation of inflammation and the formation of other important leukotriene 356 

metabolites such as LTA4(69–71). Additionally, the activity of glycolysis was not found to be 357 

completely inhibited in M2 phase despite OXPHOS and TCA cycle showing distinctly enhanced 358 

fluxes. The nature of glycolysis activity has been a point of debate in AM polarization and with 359 

recent findings(65) that indicate M2d subtype delineates proinflammatory responses, we propose 360 

all M2 subtype population may not exhibit inhibited glycolysis activity based on our in-silico 361 

predictions. However, most of the energy does come from OXPHOS in M2 subtypes. Our M2 362 

model, as stated before, was able to capture the enhanced fluxes in OXPHOS and TCA cycle and 363 

predicts over 90% of reactions to be enhanced in carnitine shuttle (mitochondria) pathway. With 364 
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the help of carnitine shuttle (mitochondria) pathway, long-chain fatty acids that are impermeable 365 

to mitochondrial membranes are migrated into the matrix for β-oxidation and energy 366 

production(72). Hence, upregulated activity of carnitine shuttle pathway is unique to M2 phase 367 

as we did not observe similar activity in M1 phase. In fact, the flux analysis of M1 phase with 368 

healthy state showed us over 80% of the reactions to have inhibited fluxes. Figure 5 portrays the 369 

complex regulatory pathways in AM polarization. 370 

 371 

Upon exploring further, the activity of Chondroitin/heparan sulfate biosynthesis and HS 372 

degradation were found to be specific to each phase as well. These pathways either contribute to 373 

the formation or degradation of an important metabolite called Heparan sulphate. The formation 374 

of heparan sulfate is a crucial step for the recruitment, adhesion, crawling, and transmigration of 375 

leukocytes from the circulation to the site of inflammation(73).  And the mechanism related to 376 

the initiation of the inflammatory response is Chondroitin/heparan sulfate biosynthesis(74,75). 377 

The role of formation and degradation of HS has been a topic of interest during lung injury and 378 

inflammation; however, it has not been highly studied(75). We found all the active reactions 379 

were enhanced in M1 phase from Chondroitin/heparan sulphate biosynthesis while the Heparan 380 

Sulphate (HS) degradation was found to be enhanced during M2 phase when compared to 381 

healthy AM. Hence, the in-silico activity of Chondroitin/heparan biosynthesis suggests enhanced 382 

inflammatory response while HS degradation is related to the versatile function in M2 phase or 383 

slightly inhibited inflammatory response. We further explored the activity of these pathways 384 

between M1 and M2 phase and expanded on it in the next section. 385 

 386 
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Furthermore, the activity of pathways such as pyruvate metabolism was expected to be enhanced 387 

as pyruvate is a key mediator in cellular metabolism. In addition to the typical glycolysis to TCA 388 

cycle pathway, pyruvate can also be derived from lactate and from amino acids such as arginine 389 

(76). Despite being such a key modulator, the pyruvate metabolism, as a whole, was found to be 390 

inhibited in M1 as well as M2 phase from our models with respect to the flux activity in healthy 391 

AM. We found that the reactions contributing to the direct formation of pyruvate were mostly 392 

inhibited in both the activated macrophages. A study by Abusalamah(77) suggests that 393 

incorporating pyruvate as sodium pyruvate in growth media for macrophages inhibited immune 394 

response of the cell and also had positive impact on the bacterial growth(77). We found the 395 

overall activity of pyruvate metabolism was inhibited in the sense that excess pyruvate 396 

production is inhibited. The key reaction such as PEP to pyruvate at the end of glycolysis and 397 

pyruvate to OAA at the beginning of TCA maintained high fluxes but other reactions that 398 

contribute to pyruvate through different mechanisms were inhibited. This indicates that not only 399 

pyruvate metabolite but the whole metabolism plays a crucial role during polarization.  400 

 401 

          402 

Delicate Balance between M1 and M2 Cells    403 

Pathogenesis in the lungs is usually marked by an influx of M1 cells which later turn into M2 404 

cells(78). However, interaction with certain pathogens inhibits or promotes the development of 405 

certain phenotypes to ensure the survival of the virus. For example, the interaction between 406 

tuberculosis and AM is sometimes reported to promote M2 cells in comparison to M1, and 407 

reports on progression of cancer cells also mention the positive role of the M2 phenotype(79–408 
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81). The imbalance in the M1/M2 cells can be deleterious to the lungs that can cause prolonged 409 

and unwanted inflammation in the absence of the process that shut it down. In addition, without 410 

the necessary inflammation, AMs cannot effectively activate other immune cells to fight 411 

invading organisms(82). Hence it is very important for AM to shift towards the phenotype which 412 

is best suited to fight the invading pathogens.  The unique metabolic shift in M1 and M2 413 

phenotypes with respect to healthy AM is crucial to understand the diseased state, however, it is 414 

equally important to understand the rebuttal mechanism of theAM(83). One way to study how 415 

AM maintains defense against pathogens could be by understanding the balance between M1 and 416 

M2 phenotypes and the possible reaction activities that can promote the shift from one phenotype 417 

to another. With increased interest in the role of AM as the first line of defense against 418 

respiratory pathogens, a lot of attention has been given to the signaling pathways(84–86). 419 

Manipulating signals to the cell has yielded promising results in obtaining M2 cells from M1 and 420 

vice versa, especially in rodents and in vitro studies(87,88). However, not much attention has 421 

been given to reactions and pathways in human cells(23). Identifying the specific pathways 422 

(reactions and metabolites) through GSM models could be a huge step forward to obtain highly 423 

effective therapeutic targets and shift the development of cells toward the desired phenotype(89). 424 

We compared the fluxes obtained from FVA with the M1 phase as the base condition. The 425 

activity of M2 phase fluxes was categorized into five different conditions (namely, complete 426 

overlap: widened flux space, complete overlap: shrunk flux space, partial overlap: increase, no 427 

overlap: definite increase in forward direction, and no overlap: definite increase in reverse 428 

direction).   429 

 430 
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Earlier, we noted that despite being a key intermediatory metabolite, the metabolic shift in AM 431 

resulted in limited pyruvate production in both M1 and M2 phases with respect to healthy AM. 432 

By comparing the M1 fluxes with M2 phase fluxes, we observed all the reactions contributing to 433 

pyruvate production in the cytoplasm were inhibited (complete overlap, shrunk flux space) 434 

whereas the mitochondrial reactions are enhanced (complete overlap, widened flux space). In 435 

Figure 6, it is shown that in the cytoplasm only one reaction (malate to pyruvate) has enhanced 436 

fluxes with higher fluxes toward the production of D-Lactate. On the contrary, enhanced fluxes 437 

were observed in multiple reactions that lead to pyruvate with more L-lactate production. The 438 

pyruvate produced in mitochondria is directly used up for OAA which promotes OXPHOS and 439 

TCA cycle. And lactate plays an important role in the maintenance of acid-base balance in the 440 

cell and plays a crucial role in the maintenance and resolution of inflammation(90,91). Hence, 441 

the in-silico flux activity suggests pyruvate metabolism is a key player to ensure proper 442 

inflammatory response and anti-inflammatory responses. Further experimental studies in human 443 

alveolar macrophage could establish not only pyruvate metabolite as an important factor but also 444 

recognize the regulation of pyruvate metabolism as a key step in pathogenesis. In addition to the 445 

metabolites from pyruvate metabolism, glycogen was also found to play an important role in 446 

regulating the inflammatory/anti-inflammatory responses of each phenotype. We observed the 447 

category with "definite increase in forward and reverse direction" consisted of mainly reactions 448 

related to glycogen. 449 

Glycogen is one of the major sources of nutrients in AM and it has been linked to important roles 450 

in inflammation as well as maintaining surfactant production ensuring the correct lung expansion 451 

during breathing(92,93). The upregulated activity of this category of reactions starts from the 452 

production of glycogenin G8 from glycogenin in cytoplasm and finally results in the production 453 
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of glycogenin G4G4. Although the importance of glycogenin as an enzyme for the regulation of 454 

glycogen is talked about but it’s true potential is not fully explored(92). The in-silico activity of 455 

these reactions highlights the role of glycogen as a potential target to manipulate the shift of the 456 

phenotypes. To further examine the role of these reactions, FBA and FVA were used to constrain 457 

the model by turning off the reactions completely or by limiting the flux of each reaction. We 458 

found that by turning off the reaction, UTP: alpha-D-galactose-1-phosphate uridylyltransferase, 459 

the solution becomes infeasible. This reaction is responsible for the conversion of UTP and 460 

alpha-D-galactose-1-phosphate to UDP-galactose in the cytoplasm. UDP-galactose is an 461 

essential metabolite for building galactose-containing proteins and fats that play crucial roles 462 

related to chemical signaling, building chemical structures, transporting molecules, and 463 

producing energy(94).  464 

To be able to force M2 cells behave like M1 and vice versa, we added multiple constraints on the 465 

GSM models. Human AM consists of complex and large regulatory networks and the generated 466 

GSM models closely resemble the three states of the cell. We know certain metabolites and 467 

reaction activities are very distinct to each phenotype such as higher ATP production in the M2 468 

phase, and the phenomena of NO production via inducible nitric oxide synthetase (iNOS) in the 469 

M1 phase or via arginase in the M2 phase. Additional constraints in the flux range of reactions 470 

that are distinctly higher in the M2 phase in comparison to the M1 phase were also incorporated. 471 

Understanding the complex nature of biological systems that consists of numerous alternative 472 

pathways, we were able to shortlist 34 reactions which when constrained in the M2 phase gives 473 

us a modified flux range that is closer to the M1 phase. The list of reactions and the flux 474 

constraint information are available in supplementary files. The shift in certain reactions is very 475 

distinct and closely resembles the M1 phase, for example, the conversion of glucose-1-phosphate 476 
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to glucose-6-phosphate (initial step of glycolysis) shifted from -10 to 18 mm/h/g cell DW to -5.9 477 

to 18.6 mm/h/g cell DW. Also, an important step of PPP in the M1 phase, that is the conversion 478 

of ribose-1-phosphate to ribose-5-phosphate, which is also a major contributor to the production 479 

of NADPH is shifted. The high-level activity of pathways such as chondroitin/heparan sulfate 480 

biosynthesis and bile acid synthesis were also observed. Constraining the exchange of ATP, 481 

production of NO from arginine, conversion of glycogenin to UDP allowed the shift to M2 from 482 

M1. The details on the flux constraints added are available on the supplemental files. 483 

We calculated the distance between M1 and M2 GSM model and M1 and Modified M2 GSM 484 

model by applying approaches as described in Methods and Materials. The obtained Jaccard 485 

similarity index for M1 vs M2 and M1 vs modified M2 is 0.0108 and 0.0305, and the average 486 

Jaccard distance calculated was found to be 0.73 and 0.71 respectively. Jaccard distance is the 487 

measure of dissimilarity between two sets and has been used to analyze the heterogeneity of 488 

bacteria and Human cells GSM models(95). However, there have been concerns regarding the 489 

correct representation of flux modulations via Jaccard distance. The calculated values for Jaccard 490 

similarity index and the average Jaccard distances do not show a vast difference between the two 491 

conditions. Hence, we further explored Hausdorff distance, a highly versatile and robust 492 

approach in flux modulation analysis. It gives a comprehensive measure of the dissimilarity or 493 

similarity between different conditions(96). The average Hausdorff distance between M1 and M2 494 

phase is 53.9806 while the average between the M1 phase and modified M2 was found to be 495 

37.9455. Additionally, the sum of the distances for both cases was found to be 4.4329 × 105 and 496 

3.1161×105 respectively. The Hausdorff distance is a unitless measure elucidating the overall 497 

dissimilarity between two sets of data and hence the values obtained clearly indicate the decrease 498 

in distance when modifications are introduced to the M2 GSM model. Moreover, the t-SNE (t-499 
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distributed Stochastic Neighbor Embedding) plot was used to visualize the structure of each data 500 

set representing the M1 phase, M2 phase, and Modified M2 to observe the overall shift from M2 501 

to M1 phenotype as shown in Figure 7. 502 

Conclusion  503 

 The role of AM in health and disease has been a point of debate for a long time and through 504 

continuous effort from the scientific community, it has been possible to establish the versatile 505 

nature this cell exhibits(83). From the inflammatory responses to activation of other immune 506 

cells to maintaining lung homeostasis, the interest in the role of AM has opened doors to many 507 

interesting possibilities(2). Most experimental studies are limited to rodents and murine species 508 

but understanding the behavior of these cells in humans is crucial(97). Hence, Genome-Scale 509 

Metabolic models are a great initiative to understand and predict the behavior of cells under 510 

stress (pathogen invasion, nutrient deficiency, high/low temperature, etc.) conditions(21). Here, 511 

we successfully reconstructed three GSM models of healthy AM and its activated phases (M1 512 

and M2) by integrating transcriptomics into the Human1 model. These models are capable of 513 

reproducing key biological phenomena of each state of AM cell. Here, we highlight the role of 514 

fever in the very early stages of pathogenesis as generally a positive reinforcement to the cell. 515 

Due to lack of temperature-specific transcriptomics and metabolite concentration ranges, we 516 

used a biologically feasible range (1 µM to 10 mM) of a cell and observed a steady increase in 517 

MDF of pathways. The exhaustive analysis of metabolic shifts in the activated phases with 518 

respect to healthy AM and flux comparison of M2 phase vs M1 phase was conducted. Hence, the 519 

reactions responsible for the production of oxylipins, that are directly responsible for eliciting 520 

inflammatory responses and chondroitin/heparan sulfate biosynthesis to be enhanced in the M1 521 
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phase whereas the M2 phase showed upregulated carnitine shuttle (mitochondria), and Heparan 522 

Sulphate degradation. Pyruvate Metabolism showed similar downregulated behavior in both 523 

phases when compared to healthy AM but when compared among themselves, pyruvate 524 

metabolism seemed to favor the production of OAA in the M2 phase which helps the high 525 

activity of OXPHOS, TCA cycle, and ETC in mitochondria. By understanding the key metabolic 526 

shifts, we were able to identify 34 reactions that include ATP production, NO production, 527 

glycogenin regulation, and galactose regulation reactions (such as conversion of alpha-D-528 

galactose-1-phosphate to UDP-galactose in cytosol) which when relaxed or constrained, shift M1 529 

phenotype to M2 and vice versa in some capacity. We can further refine and make this shift more 530 

prominent with the incorporation of metabolomics and or proteomics data. In the absence of such 531 

information, manipulating the reaction fluxes resulted in new flux ranges in M2 that have high 532 

correlations with the M1 phase and vice versa. In future, experimental validation could lead to 533 

pathways such as Heparan Sulphate degradation, Pyruvate Metabolism, and reactions involving 534 

glycogenin and galactose regulation as key players in pathogenesis. By using these GSM models, 535 

the interaction of pathogens with the AM in healthy state and activated state can be exhaustively 536 

explored. With further incorporation of human specific metabolomics/proteomics datasets when 537 

available, the temperature associated behavior of the cells could also be further studied. 538 

Methods and Materials  539 

 540 

Transcriptomics Data Processing  541 

 542 

An exhaustive literature search was conducted to identify the appropriate set of transcriptomics 543 

data which included the transcriptomic profiles of healthy non-smokers(41), AM induced by 544 
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Lipopolysaccharides (LPS) and interleukin-4 resembling M1 phase(42) and M2 phase(98), 545 

respectively. The data obtained were used as input for Gene Set Enrichment Analysis (GSEA) 546 

tool(99). GSEA is a tool that is used for pathway analysis based on the transcriptomic state of the 547 

cells and was used to compare the pathway activity of healthy AM with the M1 phase, healthy 548 

AM with the M2 phase, and M1 phase vs. M2 phase. In this process, genes are ranked based on 549 

the correlation between their expression and the class distinction using any suitable metric. 550 

GSEA calculates the enrichment score (ES) and its significance level using p-values(99). The 551 

output from the GSEA run generated lists of enriched pathways for the M1 and M2 phase. An 552 

exhaustive literature search was conducted to identify the appropriate set of transcriptomics data 553 

which included the transcriptomic profiles of healthy non-smokers’(41) AM induced by 554 

Lipopolysaccharides (LPS) and interleukin-4 resembling M1 phase(42) and M2 phase(98), 555 

respectively. The data obtained were used as input for Gene Set Enrichment Analysis (GSEA) 556 

tool(99). GSEA is a tool that is used for pathway analysis based on the transcriptomic state of the 557 

cells and was used to compare the pathway activity of healthy AM with the M1 phase, healthy 558 

AM with the M2 phase, and M1 phase vs. M2 phase. In this process, genes are ranked based on 559 

the correlation between their expression and the class distinction using any suitable metric. 560 

GSEA calculates the enrichment score (ES) and its significance level using p-values(99). The 561 

output from the GSEA run generated lists of enriched pathways for the M1 and M2 phase that 562 

mainly focused on signaling pathways. 563 

 564 

Using the raw data set, we deduced a list of genes that were also present in the Human1 565 

metabolic model. The list of genes for healthy AM, M1 phase, and M2 phase were 2,173, 2,951, 566 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.08.556783doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556783
http://creativecommons.org/licenses/by/4.0/


 26 

and 2,390 respectively. The expression values of these genes were integrated into Human1 567 

model to reconstruct models of healthy AM and its activated phases. 568 

 569 

GSM Model Reconstruction  570 

 571 

The transcriptomics data obtained for each of the phenotypes of AM was integrated into 572 

Human1, a global human metabolic reconstruction consisting of 13,417 reactions, 10,138 573 

metabolites (4,164 unique), and 3625 genes(32). Three context-specific AM metabolic 574 

reconstructions were obtained by implementing both switch and valve approaches of omics 575 

integration. Among various methods available in both the categories of switch and valve 576 

approach, iMAT and E-flux were used in our study. iMAT (integrative metabolic analysis tool) 577 

is an optimization-based program that can be used to integrate the available omics data with 578 

GSM network models for the prediction of metabolic fluxes(30). The modified version of iMAT 579 

was used where instead of classifying the overall reactions into three categories (highly 580 

expressed, lowly expressed, and moderately expressed), the reactions were divided as either 581 

highly expressed or lowly expressed with the biomass precursors always included in the highly 582 

expressed set. The formulation was constructed in such a way that all the reactions from the 583 

highly expressed set were always made active and the minimum number from the lowly 584 

expressed reaction set was added to obtain the specified objective. This resulted in a pruned 585 

mode significantly smaller than the original human model with reactions, and metabolites 586 

specific to AM and its activated stages. On the other hand, E-flux only requires the change of the 587 

upper bound and lower bound on each reaction depending on the gene expression level(31). The 588 

bounds are normalized to range between -1000 to 1000. The forward reactions consisted of a 589 
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lower bound of 0 and a unique upper bound according to the gene expression levels. The 590 

backward reactions ranged from a unique lower limit to 0 as an upper bound. And the reversible 591 

reactions ranged from -M to M where M is the unique value obtained for each reaction. Hence, 592 

GSM models for healthy AM, M1, and M2 phases were obtained by implication of both 593 

approaches. We compared iMAT and E-flux algorithms and the details are discussed in the 594 

Results and Discussion section. To ensure the biological relevance of these GSM models, we 595 

used techniques such as Flux Balance Analysis (FBA)(36) and Flux Variability Analysis 596 

(FVA)(37) to analyze and improve model connectivity. 597 

 598 

Flux Balance and Flux Variability Analysis  599 

 600 

Flux Balance Analysis (FBA) is used in this study to analyze the flow of metabolites in different 601 

conditions. FBA is a widely used approach to study biochemical networks, namely, genome-602 

scale metabolic models that contain the known metabolic reactions in a biological system and the 603 

genes that encode each enzyme(36). The GSM model is represented by a stoichiometric matrix 604 

which contains metabolites as columns and the rows are represented by reactions. The upper and 605 

lower bounds act as a constraint on each of the reactions based on nutrient availability and other 606 

microenvironment conditions. FBA generates a flux value for each reaction. Flux Variability 607 

Analysis (FVA) is an extension of FBA which calculates the maximum and minimum possible 608 

flux for all the reactions in the model at a specific condition(37).  609 

 610 

Model Curation  611 

 612 
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The three metabolic models were curated by using the classic design-build-test-refine cycle to be 613 

able to ensure proper network connectivity and accurate reflection of the metabolic capabilities 614 

of the alveolar macrophage cell. Despite the generated models being capable of producing 615 

biomass, key metabolite productions such as NO, succinate, and itaconate were found to be 616 

different than what was expected in this cell. This could be due to the presence of 617 

thermodynamically infeasible cycles (TICs). TICs are cycles created by reactions that carry 618 

fluxes even in the absence of nutrients essential for cellular growth and functionality. The TICs 619 

can cause the metabolic model to produce metabolites higher/lower than expected, by activating 620 

reactions that would be off in a biological scenario. However, if essential reactions are 621 

eliminated or the directionality of these reactions are changed without proper review, the 622 

behavior of the metabolic model might shift away from the known biological phenomena of the 623 

cell. Hence, it is extremely important to refine metabolic models by using efficient and effective 624 

methods. 625 

 626 

We used OptExpand (inhouse tool, currently unpublished), that has been developed as an 627 

expansion upon OptFill, a tool previously developed by our group with different 628 

functionalities(100). The initial function of OptExpand was to refine GSMs by removing TICs; 629 

however, the process of removing TICs from GSMs was found to be much more difficult than 630 

the process of incorporating reactions without creating TICs, and thus the method was upgraded 631 

to be able to expand a minimal model i.e., minimum number of biochemical reactions required to 632 

satisfy the objective, in our models the number was found to be 143) by adding reactions from a 633 

database (the database consisted of all but these 143 reactions from Human1). OptExpand 634 

generated three possible solutions to avoid formation of any TICs and ensure optimal 635 
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connectivity. These solutions consisted of either blocking a reaction completely or changing the 636 

direction of the reaction. Before incorporating any changes, an exhaustive literature search was 637 

conducted to ensure that none of the biologically relevant pathways were omitted fully or 638 

partially affected due to these changes. Special attention was given to novel AM pathways such 639 

as production of NO from arginine in healthy AM, production of succinate, itaconate and citrate 640 

in TCA cycle during M1 phase and citrulline and urea production in NO cycle during M2 phase. 641 

FBA and FVA techniques are used to check the fluxes of the metabolic models ensuring proper 642 

network connectivity. All the fluxes from FBA and FVA in the absence of nutrients were found 643 

to be zero as expected in healthy and activated AM GSM models and in other conditions the 644 

fluxes were found to be in accordance with the biological nature of AM.  645 

 646 

 647 

Thermodynamic Analysis  648 

 649 

Standard Gibbs Free Energy was calculated for reactions using the equilibrator tool(50). 650 

Equilibrator is a tool that uses the composition contribution method to calculate the Gibbs free 651 

energy of formation at standard conditions. After acquiring the list of standard Gibbs Free 652 

Energy, MAX/MIN driving force (MDF) for the pathways of interest was calculated by using the 653 

concentration of metabolites ranging from 1 nM to 10 Mm(50). The range was selected due to a 654 

lack of specific experimental metabolomics data and literature evidences suggesting that in the 655 

context of metabolic reactions occurring in living cells, the metabolite concentration usually 656 

ranges from 1 nM to 10 Mm(50). The MDF analysis was performed with the specified metabolic 657 

concentration range to obtain change in Gibbs free energy (∆G) at different temperatures. The 658 
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value of Gibbs free energy was further used to calculate the enzyme turnover rate and enzyme 659 

saturation (K). 660 

 661 

The maximum possible flux obtained from FVA was used to calculate the enzyme turnover rates 662 

for the reactions of interest. We compared the Kcat values obtained from DLKcat(101) and 663 

SABIO-RK(55) and found modest agreement at best. To this end, we put together elements of a 664 

new method (to be deployed in larger scale soon) which is capable of reliable Kcat prediction by 665 

explicit molecular modeling of respective enzyme structures, and phylogenetic closeness 666 

quantification with other enzymes (with the same EC number) but with reported experimental 667 

Kcat measurements from SABIO-RK. Each of these enzyme structures for this study was 668 

predicted using geometric deep learning variant structure predictor. These structures were 669 

pairwise-similarity matched (using TM-Align) against all other enzymes of the similary family 670 

that have reported Kcat in SABIO-RK. These similarity scores were used as a weighting term to 671 

ascertain the degree of kinship on the Kcat value of the target enzyme at hand. The inclusion of 672 

these bio-aware parameters has allowed us to have high confidence in the Kcat value obtained, 673 

which would be missing if we just used a sequence-based Kcat predictor instead. The steps and 674 

details regarding the whole protocol for Kcat calculation can be found in supplementary files. The 675 

relationship between the Kcat, and K was determined for four different enzymes with two Vmax 676 

values obtained from FVA (M1 and M2 phase). The equation(102) used is mentioned below: 677 

                    𝐸 =
𝑣𝑚𝑎𝑥

𝑘𝑐𝑎𝑡 . (1 − 𝑒
∆𝐺
𝑅𝑇)

×
1

𝛫
          (1) 678 

 679 

 680 
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 681 

Structure Informed Kcat Prediction (SI Kcat) 682 

 683 

The sequential protocol followed for kcat prediction (illustrated in Figure 8) was demonstrated in 684 

one of our most recent works (103) which starts with the data retrieval from SABIO-RK 685 

database (43) using specific identifiers such as E.C Number, KEGG Reaction ID, and KEGG 686 

Compound IDs. The 3D structures of enzymes are predicted from protein sequences using the 687 

RGN2 algorithm, while simultaneously collecting experimentally resolved structures from RCSB 688 

PDB (45). Structural comparisons are then made between predicted and experimental structures 689 

to assess their similarities (46,47). Utilizing a weighted approach, Kcat values are predicted by 690 

considering both structural similarity (Sw) and Kcat data from SABIO-RK. To gauge the 691 

uncertainty in predicted Kcat values, pairwise protein sequence alignment is employed.  692 

 693 

Measure of Similarity/Dissimilarity between GSM models 694 

The list of reactions that could in any capacity insinuate the metabolic shift from one phenotype 695 

to another was deduced by targeting the reactions that displayed distinct flux ranges in both the 696 

phenotypes. For example, we started with the list of reactions which had no overlap and definite 697 

increase/decrease in forward or backward direction and added some major known metabolic 698 

traits. Constraining some reaction fluxes in combination of relaxing certain others could allow 699 

the shift of the metabolic fluxes from M2 from M1.  700 
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To measure the overall impact and the level of shift upon the inclusion of the constraints added 701 

in the GSM models, we explored methods such as Hausdorff distance, Jaccard distance, and 702 

Jaccard index. Jaccard index calculates the value based on the intersection and union of a single 703 

point data that can be obtained via Eflux2(104). FBA is used to obtain an allowable metabolic 704 

flux distribution in a steady-state system in a GSM model, but the obtained fluxes are not unique 705 

solutions. We know the GSM models are in general underdetermined, context-specific, and 706 

physiologically meaningful flux solutions that can be narrowed down to a unique solution by 707 

introducing additional constraints(105). Eflux2 is an extension of FBA that infers a metabolic 708 

flux distribution from transcriptomics data and overcomes the shortcoming of E-flux by 709 

providing a unique solution. By using this unique solution, the Jaccard similarity index was 710 

calculated. Jaccard similarity index is a measure of similarity between two sets of data ranging 711 

from 0% to 100%, where the higher percentage indicates higher similarity(106). However, the 712 

unique solution of E-flux2 changes with the change in the set value of the objective function. For 713 

example, the solution set obtained with the maximum biomass obtained from FBA is different 714 

from the solution with the biomass set as the maximum flux from FVA. Since there is no definite 715 

growth rate for alveolar macrophage reported to the extent of our knowledge. Hence, the flux 716 

ranges from FVA were used for the calculation of Jaccard distance and Hausdorff distance. The 717 

additional information including formulation and calculation of Jaccard index, Jaccard distance 718 

and Hausdorff distance is available in the supplementary files. 719 

 720 

Data Availability 721 
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The GSM models and other supporting files can be found in this GitHub repository: 722 

https://github.com/ssbio/Alveolar-Macrophage. The codes for calculation and determination of 723 

SI-kcat are available in this GitHub directory: 724 

https://github.com/ChowdhuryRatul/kcat_iZMA6517. 725 
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Figure Legends 1017 

Figure 1: Schematic of the workflow for the generation of healthy and activated Alveolar 1018 

macrophages and the steps involved in analysis of the metabolic shift during polarization. 1019 

Figure 2: The distribution of active reactions in the context-specific generated models via iMAT 1020 

and E-flux. The figure highlights the inclusive properties of the applied approaches. 1021 

Figure 3: Part A and B showcase the maximum Gibbs free energy of a reaction in the major 1022 

pathway such as Glycolysis and TCA cycle. The final figure C shows the change for the 1023 

reactions in Leukotriene metabolism. 1024 

Figure 4: Alveolar Macrophage acquires unique metabolic characteristics depending upon the 1025 

phenotype. In the M1 phase, the reactions of glycolysis are enhanced which are highlighted by 1026 

the green arrows and the PPP reactions which is a major contributor for NAPH production is also 1027 

enhanced. Similarly, the pathways highlighted by yellow arrows in M2 phase are found to be 1028 

enhanced. Each pie chart represents metabolic reprogramming of AM in the specific pathway in 1029 

either M1 phase or M2 phase. Each component of the pie chart represents one of the four 1030 

categories as color coded in the figure. The associated percentage in the pie chart represents the 1031 

percentage of overall reactions of a specific pathway falling into each of the categories. 1032 

Figure 5: Important AM pathways. Glycolysis, TCA cycle, and OXPHOS play major roles in 1033 

energy production with the help of pathways such as the carnitine shuttle (mitochondria), which 1034 

shows enhanced activity during the anti-inflammatory phase. On the contrary, Bile Acid 1035 

Synthesis, and Arachidonic Acid Metabolism are heightened to induce acidic conditions to 1036 
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minimize pathogen survival. Pyruvate Metabolism play key roles in the immune response of the 1037 

cell. 1038 

Figure 6: Pyruvate Metabolism activity in activate phase M2 when compared to M1 phase. The 1039 

reactions indicated by green arrow are enhanced in the M2 phase. 1040 

Figure 7: t-SNE plot visualizing the M1 phenotype, M2 phenotype, and the modified M2 1041 

phenotype represented by blue, red, and green, respectively. A distinct shift in the M2 phenotype 1042 

can be observed when compared to modified M2. Modified M2 is the representation of resulting 1043 

fluxes after the addition of constraints in the M2 GSM model that now resembles the M1 1044 

phenotype more closely than normal M2. 1045 

Figure 8: Schematic representation of SI Kcat prediction methodology. The protocol starts with 1046 

data scraping for Kcat values belonging to the same EC number as the target enzyme, followed 1047 

by structure prediction for the target sequence using RGN2. The predicted structure is compared 1048 

with experimental structures for structural similarity weightage (Sw). Si Kcat is calculated 1049 

following equation 2.   1050 

 1051 

Supporting Information 1052 

S1 file: List of reactions, metabolites and gene associations in the generated GSM models of 1053 

healthy alveolar macrophage, M1 phase, and M2 phase in excel format. 1054 

S2 file: SBML file for healthy alveolar macrophage GSM model. 1055 
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S3 file: SBML file for M1 phase GSM model. 1056 

S4 file: SBML file for M2 phase GSM model. 1057 

S5 file: SBML file for modified M2GSM model. 1058 

S6 file: Excel file including the details on thermodynamic parameters calculations such as 1059 

relationship between Kcar and E. 1060 

S7 file: Excel file containing details regarding the constraints on the reactions that allow the 1061 

switch of M2 to M1 phenotype. 1062 
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