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Abstract  25 

Antibodies and helper T cells play important roles in SARS-CoV-2 infection and vaccination. We 26 

sequenced B- and T-cell receptor repertoires (BCR/TCR) from the blood of 251 infectees, 27 

vaccinees, and controls to investigate whether features of these repertoires could predict 28 

subjects’ SARS-CoV-2 neutralizing antibody titer (NAbs), as measured by enzyme-linked 29 

immunosorbent assay (ELISA). We sequenced recombined immunoglobulin heavy-chain (IGH), 30 

TCRβ (TRB), and TCRδ (TRD) genes in parallel from all subjects, including select B- and T-cell 31 

subsets in most cases, with a focus on their hypervariable CDR3 regions, and correlated this 32 

AIRRseq data with demographics and clinical findings from subjects’ electronic health records. 33 

We found that age affected NAb levels in vaccinees but not infectees. Intriguingly, we found 34 

that vaccination, but not infection, has a substantial effect on non-productively recombined 35 

IGHs, suggesting a vaccine effect that precedes clonal selection. We found that repertoires’ 36 

binding capacity to known SARS-CoV-2-specific CD4+ TRBs performs as well as the best hand-37 

tuned fuzzy matching at predicting a protective level of NAbs, while also being more robust to 38 

repertoire sample size and not requiring hand-tuning. The overall conclusion from this large, 39 

unbiased, clinically well annotated dataset is that B- and T-cell adaptive responses to SARS-CoV-40 

2 infection and vaccination are surprising, subtle, and diffuse. We discuss methodological and 41 

statistical challenges faced in attempting to define and quantify such strong-but-diffuse 42 

repertoire signatures and present tools and strategies for addressing these challenges.  43 

Introduction 44 

Since the emergence of COVID-19 there has been great interest in identifying antibody (BCR) 45 

and T-cell receptor (TCR) gene sequences that are specific to SARS-CoV-2. The pandemic 46 

presented perhaps the highest-profile opportunity to test the extent to which TCRs and BCRs 47 

against respiratory viruses would be public, i.e. with sequences appearing across many different 48 

individuals, or private, present in only one or a few individuals. New SARS-CoV-2-specific BCRs 49 

could form the basis for new treatments. Understanding how to identify and characterize 50 
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commonalities in such an important real-world setting could help evaluate the viability of new 51 

diagnostics based on adaptive immune-receptor repertoire sequencing (AIRRseq).1  52 

A number of studies have succeeded in identifying public immunoglobulin heavy-chain (IGH) 53 

and TCRβ (TRB) sequences. However, in part due to exigencies and constraints imposed by the 54 

pandemic, and in part because it was impossible to know a priori what study size would be 55 

adequate to identify public sequences comprehensively in COVID-19, many of these studies 56 

involved relatively small numbers of individuals. Small sample sizes have known limitations for 57 

AIRRseq studies. Because small samples may not be representative of larger populations, 58 

results on small samples may not generalize. Small studies may be insufficiently powered to 59 

detect subtle patterns. And the smaller the sample size, the more likely it is that random 60 

fluctuations in the data—literally, the luck of the draw—will produce results that appear to be 61 

statistically significant but do not reflect underlying relationships. Moreover, most studies 62 

investigated only BCRs or only TCRs, but not both in the same cohort, despite the importance of 63 

both antibody and T-cell responses in SARS-CoV-2 infection.2,3 To our knowledge only two 64 

previous COVID-19 studies4,5 have sequenced TCR from Lδ T cells, a little-studied subset that 65 

may be important in mucosal antimicrobial immunity.6,7 How SARS-CoV-2 virus or vaccine 66 

exposure affects different B- and T-cell subsets (IgM+ vs. non-IgM+ B-cells, CD4+ vs. CD8+ T 67 

cells) has also been insufficiently explored.2,3 68 

With these caveats in mind, to our knowledge previous studies have identified 20 IGH V genes 69 

to be enriched in sequences produced during various immune responses to SARS-CoV-2.8–16  70 

Given that human genomes encode 54 IGH V genes,17 collectively these studies implicate 37% 71 

of V genes in the response to this single viral exposure, indicating that the SARS-CoV-2 response 72 

is either quite broad within individuals, quite heterogeneous among individuals, or both. There 73 

is no obvious reason to think each V gene would contribute to only a single SARS-CoV-2-specific 74 

recombined IGH sequence, much less a single IGH:immunoglobulin light chain (IGL) pair; 75 

therefore, collectively these studies also suggest that the IGH response to SARS-CoV-2 might 76 

account for a significant fraction of a given repertoire, a possibility that requires more 77 
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comprehensive sequence-level investigation such as AIRRseq can provide. Note that studies 78 

that compare only a single non-control cohort to a control cohort cannot distinguish between 79 

features (clones, motifs, genes, CDR3 lengths, etc.) that signify a disease-specific vs. a general 80 

immune response.  81 

Regarding TCRs, one study18 searched repertoires of 140 COVID-19 patients and another 140 82 

pre-pandemic (and therefore unexposed) controls for the presence of each of 1,267 TRB 83 

sequences that had independently been shown to recognize epitopes of the SARS-CoV-2 spike 84 

protein. These authors showed that while the presence of some of the TRB sequences in almost 85 

all of the repertoires suggested a public response to SARS-CoV-2 infection, the fraction of the 86 

repertoire that matched the query sequences was similar between infectees and controls. 87 

These authors also looked for SARS-CoV-2 specific TRBs in the brain tissue of COVID-19 patients, 88 

since T-cell infiltration of the brain, an organ otherwise seldom infiltrated by T cells, is known to 89 

occur during COVID-19 infection.19–21 The 68 TRBs they identified were found in 40% of COVID-90 

19 repertoires vs. 17% of pre-pandemic controls. This suggests significant enrichment even as 91 

the majority of individuals with COVID-19 lacked these sequences and a significant minority of 92 

controls (1 in 6) had them despite these control samples having been collected before the 93 

pandemic (which has been observed in other contexts,22 perhaps indicating cross-reactivity 94 

with previously circulating coronaviruses, which are very common in human populations3). 95 

In addition, one study23 identified a large database of SARS-CoV-2-specific TRB sequences as 96 

being shared among infectees and unenriched among healthy controls. Subsequently, another 97 

study24 sequenced repertoires of individuals 0 and 4 weeks after vaccination with the Oxford-98 

AstraZenica COVID-19 vaccine AZD1222 or the meningococcus vaccine MenACWY and matched 99 

the database sequences to these repertoires. An increase of database sequences among 100 

AZD1222-vaccinee repertoires but not MenACWY-vaccinee controls was seen between the two 101 

timepoints.  102 
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Heterogeneity in clinical settings across studies complicates the interpretation of private vs. 103 

public responses, for several reasons. First, there are important antigenic differences between 104 

exposure and vaccination. This is especially true for the mRNA vaccines, which immunize      105 

subjects with only spike protein, in contrast to the full complement of SARS-CoV-2 proteins to 106 

which infectees are exposed. Second, demographics may play a role.  107 

For example, it has long been recognized that individuals respond differently to vaccines by age, 108 

with older individuals generally mounting less-robust and shorter-lasting responses as 109 

measured by ELISA.25–27 Other clinical features are also known to affect the adaptive immune 110 

response to infection and vaccination, including immunosuppressive conditions such as organ 111 

transplant or cancer therapy as well as metabolic disease.28 Third, studies from different 112 

periods of the pandemic likely measured responses to different strains. Fourth, the signal or 113 

signature detected may differ depending on whether the controls were healthy, which might 114 

result in detecting generalized responsiveness (e.g. bystander activation), or were instead 115 

presenting with a non-COVID illness, making any signal/signature more likely to be specific for 116 

COVID-19. Fifth, exposure, whether to replicating virus or to an inactivated or subcomponent 117 

vaccine, may not be as clinically relevant as whether a substantial NAb response was mounted. 118 

This is because NAbs are a marker of protection in SARS-CoV-2.29–31 (T-cell-mediated immunity 119 

may also play an important role32). And sixth, accessing clinical annotations from electronic 120 

medical records can be challenging.33 As a result, the effect of clinical heterogeneity in AIRRseq 121 

studies in the setting of COVID-19 has been under-explored to date.  122 

In all, the work above supports the view that there are commonalities in IGH and TRB at the 123 

gene and sequence level in response to SARS-CoV-2 infection; however the nature of the 124 

signature is not well understood. One open question is to what extent infection affects 125 

antibody and TCR repertoires as a whole vs. enriching specific clones within it. One can refer to 126 

these ends of the continuum of possible effects as “diffuse” vs. “precise.” From previous work 127 

on repertoires, “diffuse” features include CDR3 length, the frequency of usage of specific V or J 128 

genes, and repertoire diversity as measured any of several ways (richness, Shannon entropy, 129 
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Simpson’s index, or their Hill-number equivalents).34 At the other extreme, the most “precise” 130 

features are the frequency of clones      with specific sequences. Between these extremes is a 131 

set of features that includes fuzzy matching of sequences35 and other clustering methods.36,37 132 

This middle ground has been less explored. Recently the concept of binding capacity has been 133 

developed to measure the fraction of a repertoire that is “like” a given query sequence in terms 134 

of target specificity (weighting the repertoire by the predicted dissociation constants of its 135 

constituent antibodies or TCRs and by their sequence frequencies). Whether or how binding 136 

capacity might be affected by SARS-CoV-2 infection and/or vaccination is unknown.  137 

Given this background, we sought to investigate the effects of SARS-CoV-2 infection and 138 

vaccination on both antibody and TCR repertoires in a large clinical cohort, with attention to 139 

major B- and T-cell subsets where possible, using NAbs via ELISA as a functional readout, with a 140 

special focus on diffuse repertoire features and how they compare to both more traditional 141 

features and to clinical correlates.  142 

Results 143 

NAbs vary with exposure, age, and immune status  144 

Using immunoPETE (Roche; research use only),5 we deep-sequenced IGH, TRB, and TRD from 145 

the blood of 251 individuals: 36 vaccinees, 145 infectees, 53 healthy controls, and 20 with 146 

unknown SARS-CoV-2 exposure status. Three individuals belonged to both the vaccinee and 147 

infectee groups. Forty-seven subjects were considered immunosuppressed and the remaining 148 

204 immunocompetent. Blood samples for 129/145 (89%) infectees were within 6 months of 149 

the most recent positive PCR test on record and 121/145 (83%) were ≥7 days from the 150 

presumed most recent infection date (assuming a mean of 4 days from exposure to testing). 151 

Fig. S1 presents a summary of the timeline and sequencing yield. Tables S1 and S2 present 152 

demographics and relevant comorbidities for the different cohorts. We measured plasma NAbs 153 

against SARS-CoV-2 spike for 237/251 subjects. Fig. 1 presents a summary of the measured 154 

NAbs concentrations by cohort, immunosuppression status, and age. 155 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.08.556703doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/


7 

 

NAbs were undetectable in some infectees and one vaccinee (Fig. 1). The odds of producing 156 

NAbs were significantly higher in immunocompetent subjects compared to immunosuppressed 157 

subjects (OR=3.9, pc=0.008—note, all p-values in this work have been corrected for multiple-158 

hypothesis testing; we write pc to indicate this). Odds were also significantly higher in the 159 

infectees (OR=5.8, pc<0.001) and vaccinees (OR=4.7, pc=0.034) compared to controls. Age was 160 

not significantly associated with NAbs titer (pc=0.801) and therefore age was excluded from 161 

consideration in subsequent models (below).  162 

Among the subjects who did produce detectable NAbs, NAb concentration was notably higher 163 

in the vaccinated and infected groups compared to the control group (Fig. 1a). The relationship 164 

between concentration and age was more complex and depended on the cohort (significant 165 

age × cohort interaction). Age affected titer only in vaccinees, with NAbs being lower in older 166 

individuals: above age 65, individuals had higher NAbs with infection than vaccination (Fig. 1a). 167 

Meanwhile, age did not affect NAbs in the control or infected groups. We found no significant 168 

effect of immunocompetence on NAbs in subjects who had non-zero NAbs.  169 

Vaccination is associated with shorter IGH CDR3s in productive joins  170 

The characteristic (e.g. mean or median) length of CDR3s is known to vary during development 171 

and in response to various exposures, at least in productively recombined IGH genes, a.k.a. 172 

“productive joins.”38 Because only productively recombined IGH genes can be expressed as 173 

(BCR) proteins, such differences are generally considered evidence that the B cells that express 174 

them are selected for having e.g. longer CDR3s. We found that vaccinees had shorter IGH 175 

CDR3s than controls (pc=0.024; Fig. 2a) or infectees (pc=0.0046; Fig. 2b), indicating a repertoire-176 

wide difference in the B-cell response to vaccination vs. infection (Table S3, Figs. S2-S4).  177 

The length of IGH CDR3s depends on the lengths of the constituent IGHV, IGD, and IGHJ genes, 178 

as well as the number of N and P nucleotides inserted at the junctions between them.39 179 

Annotating IGD and distinguishing mutated/truncated IGD sequence from N and P sequences is 180 

challenging due to insertions, chewbacks, and somatic hypermutation. However, IGHV and IGHJ 181 
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can be annotated reliably, and so we tested whether the overall differences in CDR3 length 182 

were attributable to differences in the use of longer vs. shorter IGHV and IGHJ genes. 183 

We grouped IGHV genes by the number of amino acids that their germline contributes to 184 

CDR3s, and similarly for IGHJ genes. The 54 IGV genes hard-coded as part of the human 185 

germline contribute either 3 or 4 amino acids to the CDR3, depending on the gene. We found 186 

that vaccinees generally used more of the IGHV genes that contribute 3 residues (pc=0.021 vs. 187 

controls and pc=0.0028 vs. infectees) and fewer of the IGHV genes that contribute 4 residues 188 

(again pc=0.021 vs. controls and pc=0.0028 vs. infectees; Fig. 2c and Table S4). Meanwhile, the 189 

six IGHJ germline genes contribute 5 (IGH J4), 6 (IGH J3 and J5), 7 (IGH J1 and J2), or 10 (IGH J6) 190 

amino acids to the CDR3 (Fig. 2d). We found that vaccinees used more J4 (pc=9.4e-5 vs. controls 191 

and pc=1.9e-6 vs. infectees) and fewer J3 & J5 (pc=0.0002 vs. controls and pc=0.0021 vs. 192 

infectees; Table S4). Thus, the preference of shorter IGH CDR3s after vaccination can at least 193 

partially be explained by selection for V and J genes that contribute fewer residues to the CDR3.  194 

No such differences were observed in TCR CDR3s, which have a far narrower length 195 

distribution.  196 

Vaccination is associated with longer IGH CDR3s in non-productive joins  197 

Next we sought to estimate the strength of selection for IGH CDR3s of different lengths in 198 

vaccinees, infectees, and controls. This can be done by comparing the length distribution of 199 

productive joins to the distribution in non-productive joins, i.e. those in which VDJ 200 

recombination occurs out of frame or produces stop codons. Because non-productive joins do 201 

not produce functional antibodies, the B cells that contain them cannot be selected for or 202 

against based on them. Nevertheless, the lengths of the CDR3 regions in non-productive joins 203 

can be measured. Thus, any differences in length between non-productive joins and productive 204 

joins reflect selection on (some aspect of) the productive joins, for example by exposure to 205 

SARS-CoV-2 in (infectees) or vaccine contents (vaccinees).  206 
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Our null hypothesis was that the lengths of non-productive joins would be similar for vaccinees, 207 

infectees, and controls. Surprisingly, we found that CDR3s in non-productive joins differed 208 

across these three cohorts. In fact, we observed reverse relationships from the ones we saw in 209 

productive joins: CDR3s in non-productive joins were longer in vaccinees and infectees than in 210 

controls (pc=0.039 and 0.0021, respectively). Vaccinees’ non-productive CDR3s used the 211 

shortest J gene, J4, less often and the longest J, J6, more often than controls’ (pc=0.00011 and 212 

0.022, respectively). Thus, selection for shorter CDR3s in vaccinees is even stronger than 213 

indicated from the comparison of productive joins in the previous section, because in 214 

vaccinees, recombination, which precedes selection, is biased toward longer CDR3s. Again, no 215 

such differences were observed in TCR CDR3s.  216 

Vaccination affects at least one-sixth of the pre-selection IGH repertoire  217 

We next sought to better characterize this apparent effect of vaccine exposure on IGH 218 

recombination. The results in the previous section were regarding differences in subjects’ entire 219 

IGH CDR3 repertoires. However, vaccine exposure is generally thought to affect only a portion 220 

of the repertoire. The rest of the repertoire, the unaffected portion, should be the same as a 221 

control’s. Therefore conceptually, each vaccinee’s repertoire can be thought of as a weighted 222 

sum of two parts: a vaccine-responsive part and a control part. We asked what the minimum 223 

size of the vaccine-responsive part would have to be, in order to explain the difference in the 224 

length distribution of non-productive joins between vaccinees and controls.  225 

To do this, we analyzed the differences between the mean IGH CDR3 length-distribution curves 226 

of vaccinees and controls. By calculating differences at each length, we generated the length 227 

distribution that the putative vaccine-responsive part would have to have, in order for the 228 

vaccinee curve to be a weighted sum of the control curve and the vaccine-responsive part, for a 229 

given size of the vaccine-responsive part (Fig. 2e). Inevitably, there will an inverse relationship 230 

between how different the length distribution of the vaccine-responsive part is, and its size. 231 

This fact sets a floor on the size of the vaccine-responsive part: any smaller, and the vaccine-232 
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responsive part would have to be so different that at least one of its lengths would have a 233 

negative frequency.  234 

For example, 20-amino-acid-long CDR3s constituted an average of 9% of non-productive joins in 235 

controls but 8% in vaccinees. Considering just this length for the moment, if length-20 CDR3s 236 

constituted 7% in the vaccine-responsive part, then the vaccine-responsive part would have to 237 

be 50% of the repertoire, since 50%×9% + 50%×7% = 8%. If instead length-20 CDR3s constituted 238 

3.5%, the vaccine-responsive part would only have to be 18%, since (100-18)%×9% + 18%×3.5% 239 

= 8%. In this example, the vaccine-responsive part could never be as small as 1%, since in that 240 

case length-20 CDR3s would have to have a negative frequency. By this approach, we found 241 

that the size of the vaccine-responsive part could be no smaller than 16%, or one-sixth, of the 242 

vaccinees’ non-productive joins.  243 

Vaccinees and infectees with more SARS-CoV-2-specific TRBs have higher NAbs  244 

Next, we tested whether TRB and IGH CDR3s that had been previously found to be associated 245 

with SARS-CoV-2 exposure, including by structural studies, were enriched among our vaccinee 246 

and infectee cohorts (see Methods). We obtained SARS-CoV-2-specific TCRs from CD4 and CD8 247 

T cells from Nolan et al.23 and obtained non-CD-restricted SARS-CoV-2- and non-SARS-CoV-2-248 

specific TRBs and IGHs from CoV-AbDab, PDB, and VDJDb.40–42 These comprised totals of 249 

184,100 unique SARS-CoV-2-specific TRBs and 1,630 unique SARS-CoV-2-specific IGHs (Table 250 

S5). 251 

We found a much higher proportion of SARS-CoV-2-specific TRB sequences than IGH sequences 252 

had exact matches in our samples: ≥ 12% vs. 0.1%, respectively, with the 0.1% representing just 253 

a single sequence (Table S5). The fraction of each repertoire that matched SARS-CoV-2-specific 254 

TRBs correlated positively with NAbs, as measured by ELISA titer, in infectees and vaccinees 255 

(Fig. 3a-b, Table S6, and Fig. S9). In infectees, for whom we had separate CD4 and CD8 TRB 256 

repertoires, the positive correlation was confined to CD4 repertoires. In contrast, no correlation 257 

was seen for controls. Likewise, no correlation was seen for TRBs that were not specific for 258 
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SARS-CoV-2 in infectees, supporting the interpretation that this correlation is causal. 259 

Nevertheless, this correlation alone performed poorly as a classifier of who had high enough 260 

NAbs to be considered positive (per the ELISA test manufacturer), with an area under the 261 

receiver-operator characteristic curve (AUROC) of 0.55 (95%CI, 0.46-0.63). Notably, there was 262 

also a positive relationship between non-specific TRBs and NAbs in vaccinees, although the 95% 263 

CI on the regression slope only narrowly missed including zero (Table S6).  264 

Binding capacity outperforms fuzzy matching for measuring similarity 265 

That subjects had almost no exact matches to SARS-CoV-2-specific IGH sequences did not 266 

exclude the possibility that they have sequences that are functionally similar to these reference 267 

sequences. The same possibility exists for TRBs. A standard method for finding similar 268 

sequences is using the Levenshtein (edit) distance. Sequences with a distance of less than or 269 

equal to a tolerance t are considered similar (for example, sequences that differ by no more 270 

than t=1 amino acid). This is known as “fuzzy matching” with tolerance t. (Note that exact 271 

matches are just fuzzy matches with tolerance 0.) Unfortunately, there is no consensus on what 272 

t should be chosen. Also, the fraction of a repertoire that fuzzy-matches a set of references 273 

could depend on repertoire size because of the nature of sampling, potentially complicating the 274 

use of fuzzy matching.  275 

To test this possibility, we subsampled 30 subjects’ repertoires (10 controls, 10 infectees, and 276 

10 vaccinees) and measured the fraction of the repertoire that fuzzy-matched SARS-CoV-2-277 

specific CD4 TRBs at tolerances of 0, 2, 4, 6, 8, and 10 amino acids. We fit a linear mixed model 278 

grouped by subject for all repertoires with at least 1,000 sequences. We found the fraction of 279 

fuzzy matches depended strongly on repertoire size for all repertoire sizes measured (up to 1 280 

million sequences), falling steeply and continuously throughout (Fig. 3c). Thus, fuzzy matching 281 

was shown to not be a robust measure of repertoire content in this study.  282 

We therefore tested a recently proposed alternative method for finding similar sequences: 283 

measuring repertoires’ binding capacity for the targets of reference sequences.43 Binding 284 
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capacity is the average similarity of a repertoire to one or more reference sequences, with 285 

similarity estimated according to a general model of the likelihood of a given sequence in the 286 

repertoire to bind the same antigen as a reference sequence. In contrast to fuzzy matching, we 287 

found the binding capacity remained robust for sample sizes above 1,000 sequences, with only 288 

minimal dependence on repertoire size (Fig. 3d). Binding capacity was more robust to 289 

repertoire size than fuzzy matching at all tolerances tested (Fig. 3e; note that binding capacity 290 

does not require a choice of tolerance; it is independent of and therefore robust to tolerance; 291 

technically it is a nonlinear weighted mean across all tolerances). Thus, binding capacity 292 

provides a robust way to measure the fraction of these TRB repertoires that is similar to 293 

reference SARS-CoV-2-specific TRB sequences.  294 

Repertoire features predict levels of NAbs consistent with exposure comparably to clinical 295 

data  296 

Finally, we compared how well above feature sets predicted exposure-level NAbs titers. To do 297 

so, we trained machine-learning models that used each of these feature sets. Because there 298 

were many reference SARS-CoV-2-specific TCR sequences to consider, each of which produces 299 

one exact-matching fraction, several fuzzy-matching fractions (one for each chosen tolerance), 300 

and one binding capacity measurement, there was a risk of overfitting (true whenever the 301 

number of features exceeds the number of datapoints). Therefore we first filtered out 302 

uninformative features.  303 

To do this, we calculated exact/fuzzy matches and binding capacities for SARS-CoV-2 specific 304 

and non-specific sequences (from VDJDB) and measured their correlations to NAb titer. (Based 305 

on the results above, we only used repertoires with at least ≥ 1, 000 sequences.) We used non-306 

specific sequences as a null model and kept only SARS-CoV-2-specific sequences with 307 

correlations outside the middle 95% of the null model: specific sequences on the high end 308 

correlated more with NAb titer than was expected by chance, while specific sequences on the 309 

low end were correlated inversely with NAb titer to a larger degree than expected by chance 310 

(Fig. 4a). Of 7,804 SARS-CoV-specific features with non-zero fractions or binding capacities, this 311 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.08.556703doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/


13 

 

process filtered out all but 323. To reduce redundancy and further reduce the number of 312 

features, we performed PCA on the results (the number of PCs to keep was tunable and fit by 313 

each model). We did the same to reduce the number of V-gene features. To avoid data leakage, 314 

we performed this dimensionality reduction procedure on training data only.  315 

We performed 700 replicate logistic-regression fits on each of the above feature sets and 316 

measured performance by AUROC (Fig. 4b). As a comparator, we also fit 700 replicates on 317 

subjects’ infection and vaccination status, which we reasoned would approximate the 318 

maximum possible performance that should be achievable on this dataset. As expected, this 319 

comparator resulted in the highest median AUROC of all the feature sets tested, at 0.72 (inter-320 

quartile range across the replicates, 0.66-0.79; Fig. 4b). Strong performance was also seen 321 

when training on fuzzy matches with tolerance 2 on all TRB sequences (AUROC 0.71; IQR, 0.64-322 

77) and on TRJ frequencies for CDR4 TRB sequences (0.70; 0.62-0.77). Binding capacities on all 323 

TRB sequences showed similar performance to these two (0.68; 0.61-0.74), while exact matches 324 

on the same sequences showed poor performance (0.59; 051-0.66).  325 

In sum, being infected and/or vaccinated—the gold-standard clinical model—lacked high 326 

predictive power for Nab titer, although binding capacities, fuzzy matches with a tolerance of 2, 327 

and TRJ frequencies on CD4 TRB sequences performed nearly as well and much better than 328 

exact matches.  329 

To better understand the characteristics of different feature sets, we also calculated sensitivity, 330 

specificity, and precision for all replicates (see Fig. 4c). The clinical feature set’s performance 331 

metrics are relatively well balanced. In contrast, for most binding-capacity and fuzzy-matching 332 

feature sets, sensitivity and precision were low, making them less desirable for screening. 333 

Interestingly, features based on IgG diversity had the highest sensitivities while IgM diversities 334 

had the lowest sensitivities. The reverse was true for specificities, with IgM diversities having 335 

among the highest specificities and IgG diversities among the lowest. While it should be noted 336 

that repertoire diversity is not disease specific, these observations suggest that trends in 337 
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diversity measurements taken for different repertoire subsets might give insights about 338 

exposure status in very different ways. 339 

Discussion 340 

Detecting and defining signatures in repertoire sequence is challenging in part due to the large 341 

number of features that can contribute to a signature. These include high-level features such as 342 

CDR3 length and repertoire diversity, mid-level features such as frequencies of V and J gene 343 

usage and VJ combinations (D genes are harder to assign), and low-level features such as the 344 

frequencies of specific reference sequences. Repertoire diversity itself is actually a set of 345 

features, some of which incorporate sequence similarity, which furthermore can be defined in 346 

multiple ways38,43. Ideally the features above should be measured in both antibody and TCR 347 

repertoires, since they act cooperatively44, and in cell subsets defined by isotype (for B cells) or 348 

CD4 vs. CD8 expression (for T cells). Thus, overall, the total number of features that can be used 349 

to detect and define signatures reaches into the hundreds of thousands.  350 

As a result, statistical confidence requires large study sizes, which are challenging to obtain; 351 

methods that can avoid spurious associations, which are common in high-dimensional systems; 352 

appropriate controls, so that signatures are specific and not related to e.g. general immune 353 

activation; and detailed clinical annotation, which we obtained from our electronic medical 354 

record (as detailed in Materials and Methods). Even with these design safeguards in place, the 355 

signature of exposure to a specific immunogen, such as SARS-CoV-2, may be broad or diffuse, 356 

with different individuals’ repertoires reacting in different ways. And factors and features 357 

outside of repertoires may be important for determining exposure. 358 

Given these considerations, our study was fairly large, with over 250 subjects, and involved 359 

sequencing IGH and TRD as well as TRB, to a median depth of over 105 cells/subject, made 360 

possible by ImmunoPETE’s integrated library preparation.5 To focus analysis on SARS-CoV-2-361 

specific signatures and patterns, controls in our study were not typical “healthy controls” but 362 

rather patients presenting for care who had sufficient concern for SARS-CoV-2 infection, and 363 
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who were therefore tested, and were negative. At the time, hospital policy involved widespread 364 

testing with very sensitive tests (limit of detection, 100 copies of viral mRNA/mL), so we 365 

consider the probability of false negatives to be low. In addition, for infectees and controls, we 366 

separately analyzed IGM- and non-IGM (predominantly IGG)-isotype antibodies and CD4 and 367 

CD8 T cells. (Scheduling issues related to vaccine rollout prevented separate subset analysis for 368 

vaccinees, a limitation of the study.) We also limited dimensionality, thereby increasing 369 

statistical confidence, by filtering for features that correlate with the outcome measure of NAb 370 

titer. And instead of simply combining all features into a single model, we compared models 371 

with different feature sets to tease apart where signals might lie. Finally, we compared these to 372 

the simplest model we could think of, made up of readily available clinical information: whether 373 

or not a person was infected and/or vaccinated, to test how repertoire data compares (and 374 

what, if anything, it could add). To our knowledge this is the largest such study, and possibly the 375 

first. It led to several previously unreported patterns across multiple feature sets, for both IGH 376 

and TRB, as well as in multiple subtypes of B and T cells, that merit discussion. 377 

First, the pattern in IGH CDR3 lengths in vaccinees was curious for several reasons. First, it 378 

involved a change in non-productive joins (which in our reading of the literature are usually 379 

treated as a baseline and not compared between cohorts, as we did). This was unexpected 380 

because B cells are selected for survival based on expressed B-cell receptors, and non-381 

productive joins are not expressed. Our finding seems to indicate selection independent of 382 

expression (non-productive joins are not expressed). Second, this is a much larger effect than 383 

would be expected from an antigen-specific adaptive immune response. Immunogen-specific B 384 

cells rarely exceed low-single-digit percentages of the repertoire. Yet the effect we found 385 

appears to involve at least one-sixth (~17%) of the repertoire. Third, the direction of the length 386 

change in non-productive joins is opposite that of productive joins: CDR3s in non-productive 387 

joins are longer than controls and infectees, but productive joins are shorter. And fourth, while 388 

other patterns we found were fairly similar between vaccinees and infectees, this CDR3 length 389 

effect appears confined to vaccinees.  390 
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We conclude that vaccination may have some undescribed effect on the V-D-J recombination 391 

machinery, biasing recombination toward use of IGHJ genes (and secondarily IGHV genes) that 392 

result in longer CDR3s. This effect would have to be due to some difference between the 393 

vaccine and natural infection, or else it would have been seen in infectees. If our interpretation 394 

is correct, it would mean the effect of selection for shorter CDR3s in productive joins is quite 395 

strong, because there are fewer short joins from which to select. In any event, both vaccination 396 

(in nonproductive and productive joins) and infection (in productive joins) affect a larger 397 

proportion of IGH repertoires than is typically considered “specific.” 398 

Second, binding capacity was shown to have essentially the same predictive power as the best-399 

performing version of fuzzy matching. Recall that both fuzzy matching and binding capacity 400 

measure the size of groups of similar antibodies or TCRs. Here they were applied by taking a 401 

reference sequence, for example a sequence previously reported in the literature to be 402 

associated with SARS-CoV-2 (a “SARS-CoV-2-specific sequence”) and ask what fraction of a 403 

given subject’s repertoire was similar to that index sequence. The methods differ in how they 404 

view similarity. Fuzzy matching requires choice of tolerance: above a set number of amino-acid 405 

mismatches, a query sequence is considered different to the index sequence. If the tolerance is 406 

2, a query with 3 mismatches is considered just as different from the index sequence as a query 407 

with 20 mismatches.  408 

Binding capacity has neither problem. It is based on the measured relationship between 409 

number of mismatches and change in dissociation constant (Kd), i.e. binding similarity (cite 410 

Arora Arnaout 2023). This empirical data essentially substitutes for having to choose a 411 

tolerance. In addition, binding capacity is continuous: a query with 3 mismatches is more similar 412 

to the index than a query with 20 mismatches. Consequently, binding capacity can detect the 413 

potential presence of a large group of sequences with low similarity, which collectively might 414 

play as important a role as a small group of high-similarity sequences (or in the limit, the 415 

presence of the index sequence as a high-frequency clone). The magnitude of the CDR3 length 416 

effect supports the importance of being able to detect such diffuse/weak signals. We showed 417 
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that different tolerances had different ability to predict NAb titer. To us there is no obvious 418 

reason that tolerance of 2 should outperform, e.g., a tolerance of 10. Possibly which tolerance 419 

is best may differ by exposure. That binding capacity performs comparably to the best-420 

performing tolerance supports its utility for immune-repertoire analysis. 421 

This study has several limitations. First, we were unable to sort vaccinee samples to obtain 422 

separate IGM vs. IGG and CD4 vs. CD8 repertoires due to exigencies at the height of the 423 

pandemic. Different subtypes may follow different (even opposite) trends, as did the 424 

sensitivities and specificities of classifiers trained on IGG and IGM diversities. Any such patterns 425 

in vaccinees were beyond our ability to measure. Second, we used concentrations of SARS-CoV-426 

2 anti-spike NAbs as our proxy of protection. Signals may be present that do not correlate with 427 

antibodies binding this particular immunogen. For example, a signal might be seen in T cells or 428 

antibodies that bind other SARS-CoV-2 proteins, which we are unable to evaluate given NAbs as 429 

a readout. Third, although the sequence data in this study was quantitative, it contained only 430 

single-chain, not paired-chain data. Fourth, the ability to define signatures is limited by 431 

uncertainty about the specificity of reference sequences. Much effort is being put into methods 432 

that predict receptor-antigen binding, but a unified, accepted, and feasible approach to 433 

identifying all sequences that bind a given immunogen has yet to be established. Fifth, the 434 

quality of binding capacity measurements is limited by the current measure of binding similarity 435 

being based on mean behavior43; this is expected to improve with additional data and advances 436 

in protein structure prediction.  437 

It will be valuable to see the methodology presented here, with its many steps taken to 438 

maximize robustness and avoid statistical artifacts, applied to additional datasets. This will give 439 

additional evidence of how well these results and this approach generalize for SARS-CoV-2 in 440 

general, for immune responses to variants of the virus, and for other pathogens and 441 

immunogens. A careful statistical approach applied to multiple, functional features, measured 442 

on unbiased repertoire sequence from TCR and BCR subsets from large cohorts, is, in our 443 

opinion, the best way to decipher the rich information that the adaptive immunome encodes. 444 
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Materials and Methods 448 

Study subjects  449 

The subjects in this study were patients seeking clinical care at the Beth Israel Deaconess 450 

Medical Center (BIDMC), a 743-bed tertiary care medical center in Boston, MA, USA. BIDMC 451 

serves a large and diverse population in and around eastern Massachusetts, USA, centered on 452 

the Boston metropolitan area. 453 

Institutional review board approval  454 

All work was carried out in accordance with BIDMC’s Institutional Review Board protocols 455 

2020P000634, 2021P000109 and 2020P000361.  456 

Cohort assignment 457 

All subjects from whom samples were obtained received RT-qPCR tests performed on two 458 

Abbott Molecular platforms: m2000 and Alinity m (Abbott Molecular, Des Plaines, IL, U.S.A.). 459 

These detect identical SARS-CoV-2 N and RdRp gene targets and are extremely sensitive for 460 

SARS-CoV-2 infection, with limit of detection of 100 copies/mL.45–47 Infectees had a positive 461 

result at the time of sample acquisition. Controls were tested, but negative. COVID-19 test and 462 

vaccination information were obtained using SQL queries from BIDMC’s clinical data repository 463 

and via a dedicated REDCap database set up to facilitate research involving vaccinees.48  464 

Using these records, subjects were considered infectees if there was a record of a positive 465 

COVID-19 test result dated before or on the sample collection date and non-infected otherwise. 466 

If no medical record number was available for a subject, their infection status was considered 467 

unknown. Subjects were considered vaccinees if vaccination prior to or on the day of sample 468 
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collection was indicated as the appropriate procedure code in the clinical data repository, 469 

recorded in REDCap, or identified from Massachusetts’ state Immunization Information System. 470 

Subjects were considered non-vaccinated if the sample collection date preceded 12/15/2020 471 

(the date of the first administered COVID-19 vaccine); if there was record of vaccination after 472 

sample collection that was annotated as the first dose; if there were two vaccinations after 473 

sample collection where the second was annotated as the second dose; or if there were two 474 

vaccinations after sample collection within 42 days of each other (consistent with being the 475 

primary series). Subjects that did not satisfy vaccinee or non-vaccinated criteria were 476 

considered to have unknown vaccination status. Subjects were annotated as unexposed 477 

controls if they were non-infected and non-vaccinated. Subjects whose vaccination status was 478 

unknown or whose infection status was unknown and were neither vaccinees nor infectees 479 

were considered to have an “unknown” SARS-CoV-2 exposure status.  480 

Clinical annotations  481 

Immunosuppression  482 

Subjects were labelled either “immunosuppressed” or “immunocompetent.” Subjects were 483 

designated immunosuppressed if at least one of the following criteria was met: 484 

L the most recent CD4+ cell count was less than 100 cells/μl; 485 

L there was a diagnosis of lymphoma or leukemia associated with a healthcare encounter 486 

(visit, admission, or phone call) either before or within 60 days after sample collection; 487 

or 488 

L the subject was prescribed any of the following medications on an ongoing basis prior to 489 

sample collection and with enough refills to include up to 30 days after: abatacept, 490 

adalimumab, anakinra, azathioprine, basiliximab, budesonide, certolizumab, 491 

cyclosporine, daclizumab, dexamethasone, everolimus, etanercept, golimumab, 492 

infliximab, ixekizumab, leflunomide, lenalidomide, methotrexate, mycophenolate, 493 

natalizumab, pomalidomide, prednisone, rituximab, secukinumab, sirolimus, tacrolimus, 494 

tocilizumab, tofacitinib, ustekinumab, and vedolizumab. 495 
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If none of these criteria were met, subjects were considered immunocompetent. 496 

Demographics  497 

If a subject had a COVID test, the sex and date of birth were read from the corresponding 498 

record. Otherwise we read sex and date of birth from other records of lab specimens, the 499 

electronic health record (EHR), or the project’s REDCap database (always in structured fields, 500 

not using natural-language processing). Self-reported race was read from the EHR. 501 

Risk factors 502 

A semi-automated review of EHRs for ICD-10 diagnosis codes and related entries was used to 503 

identify subjects having any of the medical conditions highlighted by the CDC as increasing risk 504 

of severe illness from COVID-19.49 Where feasible, the list of ICD-10 codes indicative of each 505 

comorbidity was taken from the Elixhauser Comorbidity Software Refined for ICD-10-CM,50 506 

version v2022.1, developed for the Healthcare Cost and Utilization Project (HCUP), which is 507 

based on the work of Elixhauser et al.51 In addition to these, another widely used set of 508 

comorbidity measures is the Charlson Comorbidity Index.52 For comorbidities not defined in the 509 

HCUP software, the lists of ICD-10 codes defined by this study53 were used where possible. 510 

Comorbidities that were not codified in either resource were identified, where possible, using 511 

ICD-10 codes or other automated chart queries, detailed as follows: 512 

L Cancer: identified using ICD-10 codes in the HCUP software for “Leukemia,” 513 

“Lymphoma,” “Metastatic cancer,” or “Solid tumor without metastasis, malignant.”  514 

L Chronic Kidney Disease: identified using ICD-10 codes in the HCUP software for “Renal 515 

failure, moderate,” and “Renal failure, severe.” 516 

L Chronic Liver Disease: identified using ICD-10 codes in the HCUP software for “Liver 517 

disease, mild,” and “Liver disease, moderate to severe.”  518 

L Chronic Lung Disease: The CDC website stipulates that asthma is of concern “if it’s 519 

moderate to severe,” implying mild asthma is not of concern. The HCUP software 520 

includes codes for all degrees of severity of asthma in the definition of “Chronic 521 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.08.556703doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/


21 

 

pulmonary disease.” Thus, chronic lunch disease was identified using ICD-10 codes in 522 

the HCUP software for “Chronic pulmonary disease,” excluding any ICD-10 codes 523 

beginning with J452 or J453 (mild intermittent or mild persistent asthma, respectively). 524 

L Cystic Fibrosis: Identified by any ICD-10 code beginning with E84.  525 

L Dementia or other neurological condition: identified using ICD-10 codes in the HCUP 526 

software for “Dementia,” “Neurological disorders affecting movement,” “Seizures and 527 

epilepsy,” and “Other neurological disorders.” 528 

L Diabetes: identified using ICD-10 codes in the HCUP software for “Diabetes with chronic 529 

complications” and “Diabetes without chronic complications.”  530 

L Disabilities: identified using ICD-10 codes in the HCUP software for “Paralysis” plus any 531 

ICD-10 code beginning with Q (birth defects and chromosomal abnormalities). Note that 532 

this omits many, possibly most, forms of disabilities, including non-congenital blindness 533 

and deafness, cognitive impairments not due to chromosomal abnormalities, autism 534 

spectrum disorders of unknown etiology, etc., but these are of dubious connection to 535 

COVID-19. 536 

L Heart conditions: identified using ICD-10 codes in the HCUP software for “Heart failure,” 537 

the ICD-10 codes listed in the referenced study50 for “Myocardial Infarction,” and/or any 538 

ICD-10 code starting with any of these prefixes: A1884, A3282, A3681, A381, A395, 539 

A5203, B2682, B332, B376, B5881, C452, D8685, G130, G712, G713, G720, G721, G722, 540 

G7249, G7281, G7289, G729, G737, I01, I02, I05, I06, I07, I08, I09, I11, I13, I20, I23, I24, 541 

I25, I3, I4, I5, I70, I9713, J1082, J1182, O101, OO2912, O903, Q2, R570, S26, T82, and 542 

Z95.  543 

L HIV: identified using ICD-10 codes in the HCUP software for “Acquired immune 544 

deficiency syndrome.” 545 

L Mental health conditions: identified using ICD-10 codes in the HCUP software for 546 

“Depression” and “Psychoses.” Note that this may omit many other forms of mental 547 

illness, such as obsessive-compulsive disorder, post-traumatic stress syndrome, 548 

borderline personality disorder, etc. Note that there is overlap between conditions 549 

considered mental health conditions and those considered disabilities (such as autism 550 
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spectrum disorders) as well as between mental health conditions and other medical 551 

conditions (such as substance abuse disorders).  552 

L Overweight or obese: Subjects were considered to be overweight or obese if their BMI 553 

was ≥25. If multiple BMI or height-and-weight values were recorded in the database 554 

over time for a given subject, the value(s) used were those closest in time to the date of 555 

sample collection. 556 

L Pregnancy or recent pregnancy: Electronic medical records of all female subjects under 557 

the age of 69 were searched for: ICD-10 codes starting with Z3A and records of hospital 558 

admissions which include a baby delivery time. The timespans of the pregnancy and 559 

puerperium periods were estimated from either type of record. In the case of ICD-10 560 

codes starting with Z3A, the final digits of the ICD-10 code encode weeks of gestation at 561 

the time of the encounter, from which a start and end date of the pregnancy can be 562 

estimated. If only a delivery date is known, the pregnancy is estimated to have begun 40 563 

weeks earlier, unless “PRETERM” is found in the free-text diagnosis. Subjects were 564 

marked as “pregnancy or recent pregnancy” only if their COVID-19 test date fell 565 

between the estimated start date of the pregnancy and 42 days after the estimated end 566 

date (to allow for post-term pregnancy). Where there was no COVID test date, the date 567 

of the blood sample collection was used.  568 

L Sickle cell or Thalassemia: Identified by any ICD-10 code beginning with D56 or D57.  569 

L Smoking, current or former: Electronic medical records were searched for any non-zero 570 

“Tobacco pack years,” and for a free-text description of their tobacco usage including 571 

the text “current smoker,” “former,” “every day,” “some days,” “light,” “heavy,” “less 572 

than 10,” “10+,” “yes,” or “counseling provided.” 573 

L Solid organ or blood stem cell transplant: Identified by any ICD-10 code beginning with 574 

Z94.  575 

L Stroke or cerebrovascular disease: identified using ICD-10 codes in the HCUP software 576 

for “Cerebrovascular disease,” which includes ICD-10 codes for both CBVD POA and 577 

CBVD SQLA. 578 
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L Substance abuse: identified using ICD-10 codes in the HCUP software for “Drug abuse” 579 

and for “Alcohol abuse.” 580 

L Tuberculosis: Identified by any ICD-10 code beginning with A15. 581 

Sample collection, cell separation, and DNA extraction  582 

2mL aliquots were taken from EDTA-anticoagulated venous blood collected in the course of 583 

standard clinical care (via “purple-top” tubes; BD). Tubes were stored at 4°C between collection 584 

and processing, never more than 12 hours. Each aliquot was mixed 1:1 dilution in phosphate-585 

buffered saline (PBS) and centrifuged over Ficoll-Paque-plus (Cytiva, Marlborough) to obtain 586 

peripheral blood mononuclear cells (PBMCs). Plasma was collected and stored at 80°C. PBMCs 587 

were washed with PBS and resuspended in a sorting buffer of PBS, 1% bovine serum albumin 588 

(BSA), and 0.01% sodium azide.  589 

Magnetically-labeled anti-CD4 and anti-IgM microbeads (Miltenyi, Bergisch Gladbach) were 590 

used to label and column-separate for infectee and control samples; vaccinee samples cells 591 

were not separated. This process divided the samples into CD4+ T cells and IgM+ B cells in one 592 

fraction and CD8+ T cells and non-IgM+ B cells (principally IgG+) in another fraction. DNA was 593 

isolated for each fraction using EZ1&2 DNA Blood 350µL kits (Qiagen, Hilden) and the EZ1 594 

Advanced XL automated system (Qiagen, Hilden). DNA concentration was assessed via 595 

Nanodrop (Thermo Fisher, Waltham). 596 

Sequencing library preparation  597 

AIRRseq libraries were generated using the immunoPETE method as described.5 ImmunoPETE is 598 

a two-step primer extension based targeted gene enrichment assay designed to specifically 599 

target and quantitatively amplify recombined human TRB, TRD, and IGH from genomic DNA 600 

simultaneously. Briefly, V gene-based primers containing unique molecular identifiers (UMI) as 601 

well as universal PCR amplification handles were annealed to the chromosomal VDJ rearranged 602 

loci. The first primer extension products, spanning the VDJ rearrangement, were purified from 603 

any remaining oligos by a combination of beads (KAPA HyperPure, Roche) and enzymatic 604 
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treatment with Thermolabile Exonuclease I (New England Biolabs). A second primer extension 605 

and amplification master mix containing a pool of J-gene oligos and an Illumina i7 primer 606 

generated VDJ amplicons after 10 cycles of target amplification. Illumina sequencing library 607 

amplification was performed using the i7/i5 primer pairs with dual sample indexes. All primer 608 

extensions and amplifications were performed using the KAPA Long Range HotStart Ready Mix 609 

(Roche). The resulting libraries underwent purification using KAPA HyperPure beads (Roche), 610 

followed by quantification with the Qubit dsDNA HS Assay kit (Thermo Fisher) and fragment 611 

analysis (Agilent TapeStation). Individual sample libraries were pooled in equal mass. A final 612 

round of quantification and fragment analysis was then performed. Finally, libraries were 613 

sequenced using the Illumina NextSeq 500/550 High Output Kit v2.5 (300 cycles).  614 

Sequencing and bioinformatics  615 

ImmunoPETE sequencing libraries were analyzed using the Roche in-house bioinformatics 616 

pipeline, Daedalus (https://github.com/bioinform/Daedalus). After quality filtering of reads and 617 

trimming off primers, the pipeline identified V and J genes using a Smith-Waterman alignment 618 

approach (https://github.com/pgngp/swift) against an in-house curated V and J gene database. 619 

Original V and J gene data and sequences were sourced from HGNC 620 

(https://www.genenames.org/) and ENSEMBL (https://ensemblgenomes.org/). CDR3 621 

sequences were identified for all V-J pairs, capturing both functional (functional V/J gene AND 622 

coding CDR3) and non-functional (annotated non-functional or pseudogene V/J gene in the 623 

database OR stop codon/frameshift in CDR3) rearrangements. Sequences are deduplicated by 624 

clustering UMI and CDR3 sequences to identify UMI families. Consensus sequences were 625 

derived for the CDR3 and UMI segments of each UMI family, suppressing sequencing and PCR 626 

errors, and identifying CDR3 rearrangements at single molecule resolution. High quality CDR3 627 

rearrangements were further analyzed for cell counting, clonal diversity, and other calculations. 628 

Terms used are listed alphabetically and defined as follows: 629 

L Cell count: the total number of functional IGH, TRD, and TRB rearrangements in a 630 

sample 631 
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L Cell type percentages: the total number of functional rearrangements from each heavy 632 

chain divided by the total cell count × 100 633 

L CDR3 clone: BCR or TCR sequences from the same individual with matching V gene, 634 

CDR3 amino acid sequence (CDR3-AA), and J gene assignment arising from two or more 635 

UMI families  636 

L CDR3 clonal type: BCR or TCR sequences from multiple UMI families from multiple 637 

individuals with matching V gene, CDR3-AA, and J gene assignment  638 

L Clone count: total number of UMI families from the same individual with the same V 639 

gene, CDR3-AA, and J gene 640 

L UMI family: a set of reads that have been clustered together based on the similarities of 641 

the 9-nt UMI sequence and the CDR3-nt region 642 

Both UMI and CDR3 sequences are clustered based on a Levenshtein edit distance of 1, 643 

capturing likely PCR and sequencing errors. A UMI family represents a single captured DNA 644 

molecular fragment from the immunoPETE reaction.  645 

NAbs ELISA titers 646 

The SARS-CoV-2 Surrogate Virus Neutralization Test Kit (GenScript, L00847-A) was used 647 

according to the manufacturer’s instructions as follows. A standard curve was generated using a 648 

serial dilution of the standard (GenScript, A02087-20) with a dilution factor of 1:2. Each 649 

subject’s serum sample was mixed with sample dilution buffer (1:10) and horseradish 650 

peroxidase-conjugated recombinant SARS-CoV-2 receptor-binding domain (HRP-RBD). The 651 

mixture was incubated at 37°C for 30 minutes to allow the circulating NAbs to bind to HRP-RBD. 652 

The mixture was then added to an ACE2 protein-coated plate and incubated for an additional 653 

15 minutes at 37°C. Unbound HRP-RBD and HRP-RBD bound to non-neutralizing antibodies 654 

were bound to the plate while circulating neutralization antibody HRP-RBD complexes 655 

remained in the supernatant for subsequent wash steps. After washing, tetramethylbenzidine 656 

solution was added, followed by a stop solution to quench the reaction, turning wells yellow. 657 

The plate was read immediately at 450nm in a microtiter plate reader. Statistical analysis was 658 
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performed with GraphPad Prism using a 4PL model for linear regression. Results were reported 659 

by interpolating the OD450 values to the standard curve values. 660 

pymmunomics  661 

Code used for the analyses was written up as a python package and made publicly available on 662 

github (https://www.github.com/JasperBraun/pymmunomics). Reference is made in the 663 

following sections wherever that is the case.  664 

Dependence of antibody concentrations on age, immunocompetence, and SARS-CoV-2 665 

exposure  666 

Univariate and bivariate exploratory plots suggested zero antibody concentration to be a 667 

special category. Therefore, we first modeled the ability to produce zero vs. non-zero amounts 668 

of antibody using logistic regression. We then performed linear regression to model the log10-669 

transformed concentration of the nonzero values on our set of covariates. In both cases, we 670 

started with a full model incorporating age, immunocompetence status, cohort, and all of their 671 

two-way and three-way interactions. Starting with the interaction terms and then proceeding 672 

to the main effects, we sequentially eliminated covariates that were not significant at α=0.05. 673 

This did not change the regression coefficients of any of the significant terms by >20% (i.e. were 674 

not confounders). Finally, we confirmed that the best model had lower AIC (logistic regression) 675 

or higher adjusted R2 (linear regression) compared with the alternative models.  676 

CDR3 length analysis  677 

CDR3 length frequencies for each available functional and non-functional pooled IGH, TRB, TRD, 678 

and subtyped IGG, IGM, CD4 TRB/D, CD8 TCB/D repertoire of immunocompetent subjects were 679 

calculated using the pymmunomics python package (above). Since vaccinee samples were not 680 

sorted into subtypes, pooled repertoire CDR3 length frequency distributions were used to 681 

compare vaccinees to controls and infectees. CD4/IGM and CD8/IGG repertoire CDR3 length 682 

frequency distributions were compared independently between controls to infectees.  683 
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To compare CDR3 length distributions between cohorts without simplifying them down to their 684 

mean or median distribution, which ignores variance within groups, we chose a threshold CDR3 685 

length ℓ and compared the cumulative frequencies of sequences on each side of that length 686 

using a two-tailed Mann-Whitney-U test. The threshold length was determined by estimating 687 

the difference of length frequencies between cohorts for each CDR3 length. These estimates 688 

were calculated by taking the median difference in frequency between members of one cohort 689 

and members of the other. The dividing line is then placed between the lengths ℓ and ℓ+1, 690 

where ℓ is the CDR3 length that maximizes the magnitudes of the total areas under the curve of 691 

estimated frequency differences to the left and right of the line, i.e. the best dividing line 692 

between patterns:  693 

�� �ℓ�

ℓ��ℓ

� � �� �ℓ�

ℓ��ℓ

� 

Here dℓ� denotes the estimated difference of frequencies of CDR3s of length ℓL between the 694 

two cohorts. Note that the absolute values are taken after summing group differences on one 695 

side of the dividing line (making positive and negative differences cancel each other out before 696 

taking the absolute value), favoring a dividing line that splits the median differences into large 697 

same-signed runs. P-values were corrected for multiple hypotheses via the Holm-Bonferroni 698 

method (Table S3).  699 

To identify trends among lengths of V and J genes, V and J genes (from IMGT) of the relevant 700 

cell types (IGH for the functional pooled IGH comparisons and pooled IGH, IGG, and IGM for the 701 

non-functional comparisons) which had a corrected p-value below 0.05 were grouped into the 702 

number of residues that fall into the CDR3 region. Usage frequencies of V- and J-gene groups 703 

were compared between cohorts using two-tailed Mann-Whitney-U and a second correction 704 

round was conducted to correct all original p-values of the CDR3 length comparisons at the 705 

same time as the p-values obtained from the follow-up tests.  706 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.08.556703doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/


28 

 

Sets of known SARS-CoV-2 binders and binders to other pathogens  707 

MIRA-identified SARS-CoV-2 specific T-cell receptor sequences23 were downloaded from 708 

https://clients.adaptivebiotech.com/pub/covid-2020 on April 19, 2021.  709 

Query B-cell and T-cell receptor sequences (CDR3) of cells known to bind to SARS-CoV-2 were 710 

downloaded from CoVAbDab, PDB, and VDJDB. The CovAbDab sequences were downloaded on 711 

April 20, 2022 and consists of all SARS-CoV-2-WT-neutralizing human antibodies with CDRH3 712 

sequence listed in the database at the time and added since May 04, 2020. PDB sequences 713 

were download on May 03, 2022 searching for all structures of source organism Homo sapiens, 714 

containing in the title one of “antibody” or “Fab,” and one of “CMV,” “cytomegalovirus,” 715 

“DENV” (i.e. dengue), “dengue,” “EBV,” “Epstein-Barr,” “hepatitis,” “HIV,” “human 716 

immunodeficiency virus,” “influenza,” “SARS-CoV-2,” or “tetanus.” The resulting entries were 717 

filtered for sequences in which a CDRH3 sequence of length at least 6 and at most 40 could be 718 

detected using in-house Python code. For each sequence, the name of the binding target was 719 

extracted from the structure title. VDJDB sequences were also downloaded on April 20, 2022 to 720 

obtain human TRB sequences with CDR3 and J-gene specified that bind to their listed target 721 

with a non-zero score.  722 

To conform with the gene database used for V- and J-gene assignment of repertoire sequences 723 

(see Sequencing and bioinformatics), the same gene sequences were aligned (blastp and blastp-724 

short for V genes and J genes, respectively; BLAST+ v2.12.0) to the sequences from PDB and 725 

CoVAbDab, setting the max target seqs parameter to 10,000—a number much larger than the 726 

total number of genes in the query to avoid missing the best matching genes.54 V-gene matches 727 

with query coverage less than 30% or percent identity less than 40% and J-gene matches with 728 

query coverage less than 50% or percent identity less than 40% were filtered out. From the 729 

remainder, the best V- and J-gene matches according to percent identity and gene sequence 730 

coverage (lexicographically) were assigned to each query sequence. Data downloaded from 731 

VDJDB contained sequence only for the CDR3 region, so the V, and J-gene annotation provided 732 

by the database was used (as opposed to using e.g. BLAST). 733 
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To calculate the fractions of query sequences sets matching subject repertoire sequences and 734 

the fractions of subject TRB repertoires matching query TRB sequences sets, a pair of sequences 735 

is considered to match if their V gene, J gene, and CDR3 sequence are identical.  736 

Binding-capacity measurements 737 

Binding capacities to the MIRA-identified HLA class II T-cell sequences were measured for all 738 

subject pooled (CD4+CD8), and CD4 TRB repertoires, wherever possible. The binding capacity of 739 

a repertoire R to a clone c is defined as:  740 

���; 
� � � 
���� � ���, ���
����

 

where 
���� denotes the frequency of clone c′ in repertoire R and s is the binding similarity 741 

between sequences. Here, s as previously described,43 which accounted only for the 742 

relationship between Levenshtein distance of CDR3s and the predicted difference in strength of 743 

their binding to the same target(s) (in terms of relative Kd), was constrained as follows to 744 

require matching V and/or J genes: 745 

���, ��� �{ 
0.3�	
��,��
 if V and J genes match 

0                  otherwise 

Here, �����, ��� is the Levenshtein distance between the CDR3 amino acid sequences of 746 

sequences � and ��. The pymmunolib Python package was used to calculate similarity matrices 747 

and binding capacities.  748 

Fuzzy query sequence matching 749 

Fuzzy sequence matching measurements for each pooled CD4+CD8 and each CD4-only TRB 750 

subject repertoire to the MIRA-identified HLA class II query sequences were tabulated from the 751 

similarity matrices that are calculated as part of determining binding capacities. For each query 752 
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sequence and each subject repertoire, we measured the fraction of repertoire sequences for 753 

with the same V and J genes as the query sequence, and whose CDR3 sequence was within 754 

Levenshtein distances 0-10 of the query’s CDR3. Note that exact matching is equivalent to fuzzy 755 

matching with a Levenshtein distance of 0. 756 

Binding-capacity and fuzzy-matching robustness experiments 757 

To compare robustness to variations in repertoire size of binding capacity and fuzzy matching 758 

features, we conducted subsampling experiments. We randomly chose 10 subjects from each 759 

of the vaccinee, infectee, and control cohorts that had a pooled TRB repertoire size of at least 760 

80,000 cells, i.e. 80,000 distinct corrected UMIs. (This size was chosen in order to guarantee at 761 

least 10 subjects from the control cohort to choose from.) Each of these repertoires was 762 

sampled down to 20 different subsample sizes chosen to be equidistantly spaced between 10 763 

and 80,000 at log-scale. For each subsample, we calculated binding capacities as well as fraction 764 

of fuzzy matches for fuzzy-match tolerances 0, 2, 4, 6, 8, and 10 amino acids to CD4 TRB 765 

reference sequences from MIRA. The slopes and their surrounding 95% confidence intervals 766 

were obtained by fitting a linear mixed model that groups the data by subject.  767 

Feature selection  768 

Preferring the use of domain knowledge over generic feature selection mechanisms for 769 

selecting from the high-dimensional query sequence matching features (binding capacity and 770 

fuzzy matching), a custom feature selection method is developed and implemented in the 771 

python package pymmunomics. For this mechanism we use binding capacity and fuzzy 772 

matching measurements to sequence specific to pathogens other than SARS-CoV-2 (“SARS-CoV-773 

2 non-specific sequences”) as a null distribution to which to compare the measurements for 774 

MIRA-identified SARS-CoV-2-specific sequences. We calculated the (Stuart-)Kendall Tau-c 775 

correlation coefficient between each feature’s measurement and NAb titer. For each feature 776 

group (binding capacity, fuzzy matching with tolerances 0, 1, …, 10, etc.), the correlation 777 

coefficients of measurements for non-SARS-CoV-2 specific sequences form the null distribution 778 
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and correlation coefficients of SARS-CoV-2 specific features below the 2.5th and above the 779 

97.5th percentile are selected (cumulatively, the most correlated and anti-correlated 5%). 780 

Following the same idea, V-gene frequencies were also selected from among the 54 total 781 

possibilities (one for each V gene). Here, V-gene frequencies in non-functional repertoires were 782 

taken as the null distribution against which to compare functional repertoires’ V-gene 783 

frequencies, since non-functional sequences do not undergo SARS-CoV-2 specific clonal 784 

expansion. Since the functional and non-functional frequencies can be viewed as paired 785 

measurements, the distribution of differences between their correlation coefficients was 786 

calculated, and the most correlated and anti-correlated 5% (as defined above) were selected as 787 

features. 788 

Machine learning to classify subjects with a protective NAb titer 789 

Machine learning classifiers of high or low neutralizing antibody concentration were fit to 790 

various feature groups and for various cell types. For the CD4 and pooled TRB receptor 791 

repertoires, binding capacities as well as fuzzy matching features with tolerances 0, 1, …, 10 to 792 

the MIRA-identified CD4 clones from Nolan et al.23 were used. Another set of models was 793 

derived from these by adding a mechanism at the end of feature selection that aggregates the 794 

selected features into their sums. For the pooled IGH, TRB, and TRD as well as the IGM, non-795 

IGM (predominately IGG), CD4 TRB and CD8 TRB repertoires models are fit on the following 796 

feature sets: 797 

L CDR3 length frequencies, summarized by 3 features: mean, variance and skewness; 798 

L diversity, with Recon55 (https://github.com/ArnaoutLab/Recon) being used to correct 799 

Hill Dq numbers for q=0, 1, …, ∞ to correct for missing species; 800 

L J-gene frequencies (with only 6 J genes, no further feature selection was required); 801 

L V-gene frequencies for select V genes as described above; 802 

L Baseline/clinical features: age, sex, days since infection (runs of positive COVID-19 PCR 803 

tests successively within 28 days of each other and not interrupted by negative tests are 804 
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considered infected periods; to account for incubation of the virus prior to taking the 805 

test, the start date of an infection is predicted as 4 days before the first positive test in 806 

the corresponding run of tests; when a negative test was performed within those 4 807 

days, that test’s date is considered the infection start date; for the model, the predicted 808 

start date of the most recent infection before sample collection was used, or 0 if the 809 

subject was not infected), and days since vaccination (the number of days between 810 

sample collection and most recent vaccination on record). 811 

The machine learning framework was set up as follows. For each feature group, 700 replicate 812 

performances were measured via repetition of 7-fold cross-validation 100 times, each time 813 

choosing a different split of the data into 7 folds at random. For each replicate, 10-fold cross-814 

validation was used to tune hyperparameters via Bayesian optimization. For each model fit, the 815 

training data was standardized, then underwent principal component analysis, and finally was 816 

used to train an L2-regularized regression. There were two tuned hyperparameters: 817 

regularization strength (with a log-uniform search space distribution between 10−8 and 10−2) 818 

and the amount of variance to be explained by chosen principal components (with uniform 819 

search space distribution between 0.50 and 0.99; e.g. if the value was 0.75 and the first four 820 

PCs account for 75% of variance, these four PCs would be chosen). For feature sets relating to 821 

similarity—binding capacities, fuzzy-matching features at various tolerances, and their 822 

aggregated versions—and for V-gene features, feature selection was performed on the training 823 

data before standardization for each model fit. To facilitate avoidance of train-test leakage, the 824 

mechanisms are implemented in the pymmunomics python package to fit into the popular 825 

scikit-lean API framework. 826 

  827 
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Figure Legends 828 

Figure 1: Anti-SARS-CoV-2 ELISA trends and distributions by age for immunocompetent and 829 

immunosuppressed vaccinees, infectees, and controls. NAbs are to SARS-CoV-2 spike protein. 830 

(a) ELISA titers for each subject. Solid lines indicate regression fits; shaded areas indicate 95% 831 

confidence intervals. Dotted black line at ~103 indicates manufacturer’s cutoff for positive vs. 832 

negative. Note strong negative trend with age in vaccinees (blue) but not infectees (salmon). 833 

Note mild positive trend with age in controls (olive), even as titers in this cohort remain below 834 

the cutoff for almost all individuals. (b) Distribution of titers in the three cohorts, split by 835 

immune status. (c) Distribution of ages in these cohorts, again split by immune status, with 836 

numbers of subjects in each sub-cohort. 837 

Figure 2: IGH CDR3 length distributions. (a) CDR3 length comparison plots for productive IGH 838 

repertoires of vaccinees vs. controls. Left inset: the median differences of frequencies at each 839 

length, showing that CDR3s of length 16 or shorter are more frequent in vaccinees, whereas 840 

CDR3s of length 17 or longer are less frequent. The pattern reverses at the dividing line 841 

between 16 and 17 amino acids (vertical dotted line). Right inset: total fraction of the 842 

repertoire up to the dividing line. The p-value is obtained by applying Mann-Whitney U to the 843 

cumulatives followed by Holm-Bonferroni multiple-hypothesis correction. (b) The same for 844 

vaccinees vs. infectees, showing the same pattern but with a dividing line between 18 and 19 845 

amino acids. (c)-(d) Frequencies of V and J genes grouped by the number of residues each gene 846 

contributes to the CDR3 according to germline. Note the only J gene that contributes 5 residues 847 

is IGHJ4. (e) Assuming the nonproductive IGH vaccinee repertoire (blue) is made up of a part 848 

that is unaffected by vaccination and therefore looks like the control repertoire (green) and a 849 

part that is affected by vaccination (salmon), this plot shows what the distribution of the 850 

affected part would have to look like so the two parts add up correctly, for different fractions 851 

affected (dark to light salmon lines). Estimated means for vaccinee and control distributions are 852 

shown. The smaller the affected portion, the more extreme the effect must be. The minimum 853 

possible effect size is that for which a CDR3 length for the affected portion is zero; any smaller, 854 
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and a negative frequency at that CDR3 length would be required (negative frequencies are not 855 

possible). 856 

Figure 3: SARS-CoV-2-specific TRBs vs. NAb titers. (a)-(b) Fraction of TRB repertoires matching 857 

the SARS-CoV-2-specific CD4 TRB sequences obtained from Nolan et al.23 against SARS-CoV-2 858 

NAb titer. Panel (a) shows repertoires from CD4+ T cells, which were available for infectees and 859 

controls but not vaccinees, while panel (b) shows repertoires from all T cells, which were 860 

available for all three cohorts. Theil-Sen regression fits (solid lines) show positive relationships 861 

for infectees and vaccinees but not controls. (c) The fraction of a repertoire that matches 862 

reference TRBs within a chosen tolerance (here, 2 amino-acid differences) depends strongly on 863 

the number of cells in the repertoire (i.e., repertoire size). (d) In contrast, binding capacity is 864 

much more robust. The slope of the dependency on size for repertoires above 1,000 cells are 865 

shown as black lines. (e) Slope as a function of fuzzy-binding tolerance, demonstrating binding 866 

capacity is more robust regardless of tolerance. 867 

Figure 4: Predicting positive NAbs. (a) Feature selection mechanism used for binding capacity 868 

and fuzzy matching features on the binding capacity measurements of all TCR repertoires of 869 

size at least 1,000 using the SARS-CoV-2-specific CD4 TCR sequences and non-SARS-CoV-2-870 

specific TCR sequences obtained from VDJDB. Of the 7,804 SARS-CoV-2-specific features’ 871 

correlations, 323 fall outside the selection boundaries set by the 95% boundaries of the 872 

correlations of non-SARS-CoV-2-specific features with NAb titer. (b)-(c) Machine learning 873 

performance results for a selected group of feature sets and cell types across all 700 replicates 874 

(100 repeats of 7-fold cross-validation). a shows areas under receiver operating curves and b 875 

breaks down the performances into sensitivity, precision, and specificity. The same plots for all 876 

feature sets and cell types can be found in Fig. S11 and S12. Median values and interquartile 877 

ranges for all metrics are reported in Table S8.  878 
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