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Abstract

Antibodies and helper T cells play important roles in SARS-CoV-2 infection and vaccination. We
sequenced B- and T-cell receptor repertoires (BCR/TCR) from the blood of 251 infectees,
vaccinees, and controls to investigate whether features of these repertoires could predict
subjects’ SARS-CoV-2 neutralizing antibody titer (NAbs), as measured by enzyme-linked
immunosorbent assay (ELISA). We sequenced recombined immunoglobulin heavy-chain (IGH),
TCRB (TRB), and TCRS (TRD) genes in parallel from all subjects, including select B- and T-cell
subsets in most cases, with a focus on their hypervariable CDR3 regions, and correlated this
AlIRRseq data with demographics and clinical findings from subjects’ electronic health records.
We found that age affected NAb levels in vaccinees but not infectees. Intriguingly, we found
that vaccination, but not infection, has a substantial effect on non-productively recombined
IGHs, suggesting a vaccine effect that precedes clonal selection. We found that repertoires’
binding capacity to known SARS-CoV-2-specific CD4+ TRBs performs as well as the best hand-
tuned fuzzy matching at predicting a protective level of NAbs, while also being more robust to
repertoire sample size and not requiring hand-tuning. The overall conclusion from this large,
unbiased, clinically well annotated dataset is that B- and T-cell adaptive responses to SARS-CoV-
2 infection and vaccination are surprising, subtle, and diffuse. We discuss methodological and
statistical challenges faced in attempting to define and quantify such strong-but-diffuse

repertoire signatures and present tools and strategies for addressing these challenges.

Introduction

Since the emergence of COVID-19 there has been great interest in identifying antibody (BCR)
and T-cell receptor (TCR) gene sequences that are specific to SARS-CoV-2. The pandemic
presented perhaps the highest-profile opportunity to test the extent to which TCRs and BCRs
against respiratory viruses would be public, i.e. with sequences appearing across many different
individuals, or private, present in only one or a few individuals. New SARS-CoV-2-specific BCRs

could form the basis for new treatments. Understanding how to identify and characterize
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commonalities in such an important real-world setting could help evaluate the viability of new

diagnostics based on adaptive immune-receptor repertoire sequencing (AIRRseq).1

A number of studies have succeeded in identifying public immunoglobulin heavy-chain (IGH)
and TCRPB (TRB) sequences. However, in part due to exigencies and constraints imposed by the
pandemic, and in part because it was impossible to know a priori what study size would be
adequate to identify public sequences comprehensively in COVID-19, many of these studies
involved relatively small numbers of individuals. Small sample sizes have known limitations for
AIRRseq studies. Because small samples may not be representative of larger populations,
results on small samples may not generalize. Small studies may be insufficiently powered to
detect subtle patterns. And the smaller the sample size, the more likely it is that random
fluctuations in the data—literally, the luck of the draw—will produce results that appear to be
statistically significant but do not reflect underlying relationships. Moreover, most studies
investigated only BCRs or only TCRs, but not both in the same cohort, despite the importance of
both antibody and T-cell responses in SARS-CoV-2 infection.”? To our knowledge only two
previous COVID-19 studies™ have sequenced TCR from B8 T cells, a little-studied subset that
may be important in mucosal antimicrobial immunity.s'7 How SARS-CoV-2 virus or vaccine
exposure affects different B- and T-cell subsets (IgM+ vs. non-IlgM+ B-cells, CD4+ vs. CD8+ T

cells) has also been insufficiently explored.”?

With these caveats in mind, to our knowledge previous studies have identified 20 IGH V genes
to be enriched in sequences produced during various immune responses to SARS-Cov-2.57%
Given that human genomes encode 54 IGH V genes,’ collectively these studies implicate 37%
of V genes in the response to this single viral exposure, indicating that the SARS-CoV-2 response
is either quite broad within individuals, quite heterogeneous among individuals, or both. There
is no obvious reason to think each V gene would contribute to only a single SARS-CoV-2-specific
recombined IGH sequence, much less a single IGH:immunoglobulin light chain (IGL) pair;

therefore, collectively these studies also suggest that the IGH response to SARS-CoV-2 might

account for a significant fraction of a given repertoire, a possibility that requires more
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comprehensive sequence-level investigation such as AIRRseq can provide. Note that studies
that compare only a single non-control cohort to a control cohort cannot distinguish between
features (clones, motifs, genes, CDR3 lengths, etc.) that signify a disease-specific vs. a general

immune response.

Regarding TCRs, one study™® searched repertoires of 140 COVID-19 patients and another 140
pre-pandemic (and therefore unexposed) controls for the presence of each of 1,267 TRB
sequences that had independently been shown to recognize epitopes of the SARS-CoV-2 spike
protein. These authors showed that while the presence of some of the TRB sequences in almost
all of the repertoires suggested a public response to SARS-CoV-2 infection, the fraction of the
repertoire that matched the query sequences was similar between infectees and controls.
These authors also looked for SARS-CoV-2 specific TRBs in the brain tissue of COVID-19 patients,
since T-cell infiltration of the brain, an organ otherwise seldom infiltrated by T cells, is known to
occur during COVID-19 infection.’*™! The 68 TRBs they identified were found in 40% of COVID-
19 repertoires vs. 17% of pre-pandemic controls. This suggests significant enrichment even as
the majority of individuals with COVID-19 lacked these sequences and a significant minority of
controls (1 in 6) had them despite these control samples having been collected before the
pandemic (which has been observed in other contexts,?” perhaps indicating cross-reactivity

with previously circulating coronaviruses, which are very common in human populationss).

In addition, one study? identified a large database of SARS-CoV-2-specific TRB sequences as
being shared among infectees and unenriched among healthy controls. Subsequently, another
study®* sequenced repertoires of individuals 0 and 4 weeks after vaccination with the Oxford-
AstraZenica COVID-19 vaccine AZD1222 or the meningococcus vaccine MenACWY and matched
the database sequences to these repertoires. An increase of database sequences among
AZD1222-vaccinee repertoires but not MenACWY-vaccinee controls was seen between the two

timepoints.
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Heterogeneity in clinical settings across studies complicates the interpretation of private vs.
public responses, for several reasons. First, there are important antigenic differences between
exposure and vaccination. This is especially true for the mRNA vaccines, which immunize
subjects with only spike protein, in contrast to the full complement of SARS-CoV-2 proteins to

which infectees are exposed. Second, demographics may play a role.

For example, it has long been recognized that individuals respond differently to vaccines by age,
with older individuals generally mounting less-robust and shorter-lasting responses as
measured by ELISA.”™*” Other clinical features are also known to affect the adaptive immune
response to infection and vaccination, including immunosuppressive conditions such as organ
transplant or cancer therapy as well as metabolic disease.” Third, studies from different
periods of the pandemic likely measured responses to different strains. Fourth, the signal or
signature detected may differ depending on whether the controls were healthy, which might
result in detecting generalized responsiveness (e.g. bystander activation), or were instead
presenting with a non-COVID illness, making any signal/signature more likely to be specific for
COVID-19. Fifth, exposure, whether to replicating virus or to an inactivated or subcomponent
vaccine, may not be as clinically relevant as whether a substantial NAb response was mounted.

2931 (T_cell-mediated immunity

This is because NAbs are a marker of protection in SARS-CoV-2.
may also play an important role®?). And sixth, accessing clinical annotations from electronic
medical records can be challenging.®® As a result, the effect of clinical heterogeneity in AIRRseq

studies in the setting of COVID-19 has been under-explored to date.

In all, the work above supports the view that there are commonalities in IGH and TRB at the
gene and sequence level in response to SARS-CoV-2 infection; however the nature of the
signature is not well understood. One open question is to what extent infection affects
antibody and TCR repertoires as a whole vs. enriching specific clones within it. One can refer to
these ends of the continuum of possible effects as “diffuse” vs. “precise.” From previous work
on repertoires, “diffuse” features include CDR3 length, the frequency of usage of specific V orJ

genes, and repertoire diversity as measured any of several ways (richness, Shannon entropy,

5


https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.556703; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

130  Simpson’s index, or their Hill-number equivalents).>* At the other extreme, the most “precise”
131 features are the frequency of clones  with specific sequences. Between these extremes is a
132 set of features that includes fuzzy matching of sequences’ and other clustering methods.>**’
133  This middle ground has been less explored. Recently the concept of binding capacity has been
134  developed to measure the fraction of a repertoire that is “like” a given query sequence in terms
135  of target specificity (weighting the repertoire by the predicted dissociation constants of its

136  constituent antibodies or TCRs and by their sequence frequencies). Whether or how binding

137  capacity might be affected by SARS-CoV-2 infection and/or vaccination is unknown.

138  Given this background, we sought to investigate the effects of SARS-CoV-2 infection and

139  vaccination on both antibody and TCR repertoires in a large clinical cohort, with attention to
140 major B- and T-cell subsets where possible, using NAbs via ELISA as a functional readout, with a
141  special focus on diffuse repertoire features and how they compare to both more traditional

142  features and to clinical correlates.

143  Results

144  NAbs vary with exposure, age, and immune status

145  Using immunoPETE (Roche; research use onIy),5 we deep-sequenced IGH, TRB, and TRD from
146  the blood of 251 individuals: 36 vaccinees, 145 infectees, 53 healthy controls, and 20 with

147  unknown SARS-CoV-2 exposure status. Three individuals belonged to both the vaccinee and
148 infectee groups. Forty-seven subjects were considered immunosuppressed and the remaining
149 204 immunocompetent. Blood samples for 129/145 (89%) infectees were within 6 months of
150 the most recent positive PCR test on record and 121/145 (83%) were 27 days from the

151  presumed most recent infection date (assuming a mean of 4 days from exposure to testing).
152  Fig. S1 presents a summary of the timeline and sequencing yield. Tables S1 and S2 present

153  demographics and relevant comorbidities for the different cohorts. We measured plasma NAbs
154  against SARS-CoV-2 spike for 237/251 subjects. Fig. 1 presents a summary of the measured

155  NAbs concentrations by cohort, immunosuppression status, and age.
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NAbs were undetectable in some infectees and one vaccinee (Fig. 1). The odds of producing
NAbs were significantly higher in immunocompetent subjects compared to immunosuppressed
subjects (OR=3.9, pc=0.008—note, all p-values in this work have been corrected for multiple-
hypothesis testing; we write p. to indicate this). Odds were also significantly higher in the
infectees (OR=5.8, p.<0.001) and vaccinees (OR=4.7, p.=0.034) compared to controls. Age was
not significantly associated with NAbs titer (p.=0.801) and therefore age was excluded from

consideration in subsequent models (below).

Among the subjects who did produce detectable NAbs, NAb concentration was notably higher
in the vaccinated and infected groups compared to the control group (Fig. 1a). The relationship
between concentration and age was more complex and depended on the cohort (significant
age x cohort interaction). Age affected titer only in vaccinees, with NAbs being lower in older
individuals: above age 65, individuals had higher NAbs with infection than vaccination (Fig. 1a).
Meanwhile, age did not affect NAbs in the control or infected groups. We found no significant

effect of immunocompetence on NAbs in subjects who had non-zero NAbs.

Vaccination is associated with shorter IGH CDR3s in productive joins

The characteristic (e.g. mean or median) length of CDR3s is known to vary during development
and in response to various exposures, at least in productively recombined IGH genes, a.k.a.

“productive joins.”>®

Because only productively recombined IGH genes can be expressed as
(BCR) proteins, such differences are generally considered evidence that the B cells that express
them are selected for having e.g. longer CDR3s. We found that vaccinees had shorter IGH
CDR3s than controls (p.=0.024; Fig. 2a) or infectees (p.=0.0046; Fig. 2b), indicating a repertoire-

wide difference in the B-cell response to vaccination vs. infection (Table S3, Figs. S2-54).

The length of IGH CDR3s depends on the lengths of the constituent IGHV, IGD, and IGHJ genes,
as well as the number of N and P nucleotides inserted at the junctions between them.*”
Annotating IGD and distinguishing mutated/truncated IGD sequence from N and P sequences is
challenging due to insertions, chewbacks, and somatic hypermutation. However, IGHV and IGHJ

7
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can be annotated reliably, and so we tested whether the overall differences in CDR3 length

were attributable to differences in the use of longer vs. shorter IGHV and IGHJ genes.

We grouped IGHV genes by the number of amino acids that their germline contributes to
CDR3s, and similarly for IGHJ genes. The 54 IGV genes hard-coded as part of the human
germline contribute either 3 or 4 amino acids to the CDR3, depending on the gene. We found
that vaccinees generally used more of the IGHV genes that contribute 3 residues (p.=0.021 vs.
controls and p.=0.0028 vs. infectees) and fewer of the IGHV genes that contribute 4 residues
(again p.=0.021 vs. controls and p.=0.0028 vs. infectees; Fig. 2c and Table S4). Meanwhile, the
six IGHJ germline genes contribute 5 (IGH J4), 6 (IGH J3 and J5), 7 (IGH J1 and J2), or 10 (IGH J6)
amino acids to the CDR3 (Fig. 2d). We found that vaccinees used more J4 (p=9.4e-5 vs. controls
and p=1.9e-6 vs. infectees) and fewer J3 & J5 (p=0.0002 vs. controls and p.=0.0021 vs.
infectees; Table S4). Thus, the preference of shorter IGH CDR3s after vaccination can at least

partially be explained by selection for V and J genes that contribute fewer residues to the CDR3.

No such differences were observed in TCR CDR3s, which have a far narrower length

distribution.

Vaccination is associated with longer IGH CDR3s in non-productive joins

Next we sought to estimate the strength of selection for IGH CDR3s of different lengths in
vaccinees, infectees, and controls. This can be done by comparing the length distribution of
productive joins to the distribution in non-productive joins, i.e. those in which VD)
recombination occurs out of frame or produces stop codons. Because non-productive joins do
not produce functional antibodies, the B cells that contain them cannot be selected for or
against based on them. Nevertheless, the lengths of the CDR3 regions in non-productive joins
can be measured. Thus, any differences in length between non-productive joins and productive
joins reflect selection on (some aspect of) the productive joins, for example by exposure to

SARS-CoV-2 in (infectees) or vaccine contents (vaccinees).
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Our null hypothesis was that the lengths of non-productive joins would be similar for vaccinees,
infectees, and controls. Surprisingly, we found that CDR3s in non-productive joins differed
across these three cohorts. In fact, we observed reverse relationships from the ones we saw in
productive joins: CDR3s in non-productive joins were longer in vaccinees and infectees than in
controls (p.=0.039 and 0.0021, respectively). Vaccinees’ non-productive CDR3s used the
shortest J gene, J4, less often and the longest J, J6, more often than controls’ (p.=0.00011 and
0.022, respectively). Thus, selection for shorter CDR3s in vaccinees is even stronger than
indicated from the comparison of productive joins in the previous section, because in
vaccinees, recombination, which precedes selection, is biased toward longer CDR3s. Again, no

such differences were observed in TCR CDR3s.

Vaccination affects at least one-sixth of the pre-selection IGH repertoire

We next sought to better characterize this apparent effect of vaccine exposure on IGH
recombination. The results in the previous section were regarding differences in subjects’ entire
IGH CDR3 repertoires. However, vaccine exposure is generally thought to affect only a portion
of the repertoire. The rest of the repertoire, the unaffected portion, should be the same as a
control’s. Therefore conceptually, each vaccinee’s repertoire can be thought of as a weighted
sum of two parts: a vaccine-responsive part and a control part. We asked what the minimum
size of the vaccine-responsive part would have to be, in order to explain the difference in the

length distribution of non-productive joins between vaccinees and controls.

To do this, we analyzed the differences between the mean IGH CDR3 length-distribution curves
of vaccinees and controls. By calculating differences at each length, we generated the length
distribution that the putative vaccine-responsive part would have to have, in order for the
vaccinee curve to be a weighted sum of the control curve and the vaccine-responsive part, for a
given size of the vaccine-responsive part (Fig. 2e). Inevitably, there will an inverse relationship
between how different the length distribution of the vaccine-responsive part is, and its size.

This fact sets a floor on the size of the vaccine-responsive part: any smaller, and the vaccine-
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233 responsive part would have to be so different that at least one of its lengths would have a

234 negative frequency.

235  For example, 20-amino-acid-long CDR3s constituted an average of 9% of non-productive joins in
236  controls but 8% in vaccinees. Considering just this length for the moment, if length-20 CDR3s
237  constituted 7% in the vaccine-responsive part, then the vaccine-responsive part would have to
238  be 50% of the repertoire, since 50%x9% + 50%x7% = 8%. If instead length-20 CDR3s constituted
239  3.5%, the vaccine-responsive part would only have to be 18%, since (100-18)%x9% + 18%x3.5%
240 =8%. In this example, the vaccine-responsive part could never be as small as 1%, since in that
241  case length-20 CDR3s would have to have a negative frequency. By this approach, we found
242  that the size of the vaccine-responsive part could be no smaller than 16%, or one-sixth, of the

243 vaccinees’ non-productive joins.

244  Vaccinees and infectees with more SARS-CoV-2-specific TRBs have higher NAbs

245  Next, we tested whether TRB and IGH CDR3s that had been previously found to be associated
246  with SARS-CoV-2 exposure, including by structural studies, were enriched among our vaccinee
247  and infectee cohorts (see Methods). We obtained SARS-CoV-2-specific TCRs from CD4 and CD8
248 T cells from Nolan et al.”> and obtained non-CD-restricted SARS-CoV-2- and non-SARS-CoV-2-
249  specific TRBs and IGHs from CoV-AbDab, PDB, and VDJDb.**™* These comprised totals of

250 184,100 unique SARS-CoV-2-specific TRBs and 1,630 unique SARS-CoV-2-specific IGHs (Table
251  S5).

252  We found a much higher proportion of SARS-CoV-2-specific TRB sequences than IGH sequences
253  had exact matches in our samples: 2 12% vs. 0.1%, respectively, with the 0.1% representing just
254  asingle sequence (Table S5). The fraction of each repertoire that matched SARS-CoV-2-specific
255  TRBs correlated positively with NAbs, as measured by ELISA titer, in infectees and vaccinees
256  (Fig. 3a-b, Table S6, and Fig. S9). In infectees, for whom we had separate CD4 and CD8 TRB

257  repertoires, the positive correlation was confined to CD4 repertoires. In contrast, no correlation

258  was seen for controls. Likewise, no correlation was seen for TRBs that were not specific for

10
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SARS-CoV-2 in infectees, supporting the interpretation that this correlation is causal.
Nevertheless, this correlation alone performed poorly as a classifier of who had high enough
NAbs to be considered positive (per the ELISA test manufacturer), with an area under the
receiver-operator characteristic curve (AUROC) of 0.55 (95%Cl, 0.46-0.63). Notably, there was
also a positive relationship between non-specific TRBs and NAbs in vaccinees, although the 95%

Cl on the regression slope only narrowly missed including zero (Table S6).

Binding capacity outperforms fuzzy matching for measuring similarity

That subjects had almost no exact matches to SARS-CoV-2-specific IGH sequences did not
exclude the possibility that they have sequences that are functionally similar to these reference
sequences. The same possibility exists for TRBs. A standard method for finding similar
sequences is using the Levenshtein (edit) distance. Sequences with a distance of less than or
equal to a tolerance t are considered similar (for example, sequences that differ by no more
than t=1 amino acid). This is known as “fuzzy matching” with tolerance t. (Note that exact
matches are just fuzzy matches with tolerance 0.) Unfortunately, there is no consensus on what
t should be chosen. Also, the fraction of a repertoire that fuzzy-matches a set of references
could depend on repertoire size because of the nature of sampling, potentially complicating the

use of fuzzy matching.

To test this possibility, we subsampled 30 subjects’ repertoires (10 controls, 10 infectees, and
10 vaccinees) and measured the fraction of the repertoire that fuzzy-matched SARS-CoV-2-
specific CD4 TRBs at tolerances of 0, 2, 4, 6, 8, and 10 amino acids. We fit a linear mixed model
grouped by subject for all repertoires with at least 1,000 sequences. We found the fraction of
fuzzy matches depended strongly on repertoire size for all repertoire sizes measured (up to 1
million sequences), falling steeply and continuously throughout (Fig. 3c). Thus, fuzzy matching

was shown to not be a robust measure of repertoire content in this study.

We therefore tested a recently proposed alternative method for finding similar sequences:
measuring repertoires’ binding capacity for the targets of reference sequences.” Binding

11
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capacity is the average similarity of a repertoire to one or more reference sequences, with
similarity estimated according to a general model of the likelihood of a given sequence in the
repertoire to bind the same antigen as a reference sequence. In contrast to fuzzy matching, we
found the binding capacity remained robust for sample sizes above 1,000 sequences, with only
minimal dependence on repertoire size (Fig. 3d). Binding capacity was more robust to
repertoire size than fuzzy matching at all tolerances tested (Fig. 3e; note that binding capacity
does not require a choice of tolerance; it is independent of and therefore robust to tolerance;
technically it is a nonlinear weighted mean across all tolerances). Thus, binding capacity
provides a robust way to measure the fraction of these TRB repertoires that is similar to

reference SARS-CoV-2-specific TRB sequences.

Repertoire features predict levels of NAbs consistent with exposure comparably to clinical

data

Finally, we compared how well above feature sets predicted exposure-level NAbs titers. To do
so, we trained machine-learning models that used each of these feature sets. Because there
were many reference SARS-CoV-2-specific TCR sequences to consider, each of which produces
one exact-matching fraction, several fuzzy-matching fractions (one for each chosen tolerance),
and one binding capacity measurement, there was a risk of overfitting (true whenever the
number of features exceeds the number of datapoints). Therefore we first filtered out

uninformative features.

To do this, we calculated exact/fuzzy matches and binding capacities for SARS-CoV-2 specific
and non-specific sequences (from VDJDB) and measured their correlations to NAb titer. (Based
on the results above, we only used repertoires with at least > 1, 000 sequences.) We used non-
specific sequences as a null model and kept only SARS-CoV-2-specific sequences with
correlations outside the middle 95% of the null model: specific sequences on the high end
correlated more with NAb titer than was expected by chance, while specific sequences on the
low end were correlated inversely with NADb titer to a larger degree than expected by chance

(Fig. 4a). Of 7,804 SARS-CoV-specific features with non-zero fractions or binding capacities, this
12
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process filtered out all but 323. To reduce redundancy and further reduce the number of
features, we performed PCA on the results (the number of PCs to keep was tunable and fit by
each model). We did the same to reduce the number of V-gene features. To avoid data leakage,

we performed this dimensionality reduction procedure on training data only.

We performed 700 replicate logistic-regression fits on each of the above feature sets and
measured performance by AUROC (Fig. 4b). As a comparator, we also fit 700 replicates on
subjects’ infection and vaccination status, which we reasoned would approximate the
maximum possible performance that should be achievable on this dataset. As expected, this
comparator resulted in the highest median AUROC of all the feature sets tested, at 0.72 (inter-
quartile range across the replicates, 0.66-0.79; Fig. 4b). Strong performance was also seen
when training on fuzzy matches with tolerance 2 on all TRB sequences (AUROC 0.71; IQR, 0.64-
77) and on TRIJ frequencies for CDR4 TRB sequences (0.70; 0.62-0.77). Binding capacities on all
TRB sequences showed similar performance to these two (0.68; 0.61-0.74), while exact matches

on the same sequences showed poor performance (0.59; 051-0.66).

In sum, being infected and/or vaccinated—the gold-standard clinical model—lacked high
predictive power for Nab titer, although binding capacities, fuzzy matches with a tolerance of 2,
and TRJ frequencies on CD4 TRB sequences performed nearly as well and much better than

exact matches.

To better understand the characteristics of different feature sets, we also calculated sensitivity,
specificity, and precision for all replicates (see Fig. 4c). The clinical feature set’s performance
metrics are relatively well balanced. In contrast, for most binding-capacity and fuzzy-matching
feature sets, sensitivity and precision were low, making them less desirable for screening.
Interestingly, features based on IgG diversity had the highest sensitivities while IgM diversities
had the lowest sensitivities. The reverse was true for specificities, with IgM diversities having
among the highest specificities and 1gG diversities among the lowest. While it should be noted

that repertoire diversity is not disease specific, these observations suggest that trends in
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diversity measurements taken for different repertoire subsets might give insights about

exposure status in very different ways.

Discussion

Detecting and defining signatures in repertoire sequence is challenging in part due to the large
number of features that can contribute to a signature. These include high-level features such as
CDR3 length and repertoire diversity, mid-level features such as frequencies of V and J gene
usage and VJ combinations (D genes are harder to assign), and low-level features such as the
frequencies of specific reference sequences. Repertoire diversity itself is actually a set of
features, some of which incorporate sequence similarity, which furthermore can be defined in

multiple ways>®**

. Ideally the features above should be measured in both antibody and TCR
repertoires, since they act cooperatively44, and in cell subsets defined by isotype (for B cells) or
CD4 vs. CD8 expression (for T cells). Thus, overall, the total number of features that can be used

to detect and define signatures reaches into the hundreds of thousands.

As a result, statistical confidence requires large study sizes, which are challenging to obtain;
methods that can avoid spurious associations, which are common in high-dimensional systems;
appropriate controls, so that signatures are specific and not related to e.g. general immune
activation; and detailed clinical annotation, which we obtained from our electronic medical
record (as detailed in Materials and Methods). Even with these design safeguards in place, the
signature of exposure to a specificimmunogen, such as SARS-CoV-2, may be broad or diffuse,
with different individuals’ repertoires reacting in different ways. And factors and features

outside of repertoires may be important for determining exposure.

Given these considerations, our study was fairly large, with over 250 subjects, and involved
sequencing IGH and TRD as well as TRB, to a median depth of over 10° cells/subject, made
possible by ImmunoPETE’s integrated library preparation.’ To focus analysis on SARS-CoV-2-
specific signatures and patterns, controls in our study were not typical “healthy controls” but

rather patients presenting for care who had sufficient concern for SARS-CoV-2 infection, and
14
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who were therefore tested, and were negative. At the time, hospital policy involved widespread
testing with very sensitive tests (limit of detection, 100 copies of viral mMRNA/mL), so we
consider the probability of false negatives to be low. In addition, for infectees and controls, we
separately analyzed IGM- and non-IGM (predominantly IGG)-isotype antibodies and CD4 and
CD8 T cells. (Scheduling issues related to vaccine rollout prevented separate subset analysis for
vaccinees, a limitation of the study.) We also limited dimensionality, thereby increasing
statistical confidence, by filtering for features that correlate with the outcome measure of NAb
titer. And instead of simply combining all features into a single model, we compared models
with different feature sets to tease apart where signals might lie. Finally, we compared these to
the simplest model we could think of, made up of readily available clinical information: whether
or not a person was infected and/or vaccinated, to test how repertoire data compares (and
what, if anything, it could add). To our knowledge this is the largest such study, and possibly the
first. It led to several previously unreported patterns across multiple feature sets, for both IGH

and TRB, as well as in multiple subtypes of B and T cells, that merit discussion.

First, the pattern in IGH CDR3 lengths in vaccinees was curious for several reasons. First, it
involved a change in non-productive joins (which in our reading of the literature are usually
treated as a baseline and not compared between cohorts, as we did). This was unexpected
because B cells are selected for survival based on expressed B-cell receptors, and non-
productive joins are not expressed. Our finding seems to indicate selection independent of
expression (non-productive joins are not expressed). Second, this is a much larger effect than
would be expected from an antigen-specific adaptive immune response. Immunogen-specific B
cells rarely exceed low-single-digit percentages of the repertoire. Yet the effect we found
appears to involve at least one-sixth (~17%) of the repertoire. Third, the direction of the length
change in non-productive joins is opposite that of productive joins: CDR3s in non-productive
joins are longer than controls and infectees, but productive joins are shorter. And fourth, while
other patterns we found were fairly similar between vaccinees and infectees, this CDR3 length

effect appears confined to vaccinees.
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We conclude that vaccination may have some undescribed effect on the V-D-J recombination
machinery, biasing recombination toward use of IGHJ genes (and secondarily IGHV genes) that
result in longer CDR3s. This effect would have to be due to some difference between the
vaccine and natural infection, or else it would have been seen in infectees. If our interpretation
is correct, it would mean the effect of selection for shorter CDR3s in productive joins is quite
strong, because there are fewer short joins from which to select. In any event, both vaccination
(in nonproductive and productive joins) and infection (in productive joins) affect a larger

proportion of IGH repertoires than is typically considered “specific.”

Second, binding capacity was shown to have essentially the same predictive power as the best-
performing version of fuzzy matching. Recall that both fuzzy matching and binding capacity
measure the size of groups of similar antibodies or TCRs. Here they were applied by taking a
reference sequence, for example a sequence previously reported in the literature to be
associated with SARS-CoV-2 (a “SARS-CoV-2-specific sequence”) and ask what fraction of a
given subject’s repertoire was similar to that index sequence. The methods differ in how they
view similarity. Fuzzy matching requires choice of tolerance: above a set number of amino-acid
mismatches, a query sequence is considered different to the index sequence. If the tolerance is
2, a query with 3 mismatches is considered just as different from the index sequence as a query

with 20 mismatches.

Binding capacity has neither problem. It is based on the measured relationship between
number of mismatches and change in dissociation constant (Ky), i.e. binding similarity (cite
Arora Arnaout 2023). This empirical data essentially substitutes for having to choose a
tolerance. In addition, binding capacity is continuous: a query with 3 mismatches is more similar
to the index than a query with 20 mismatches. Consequently, binding capacity can detect the
potential presence of a large group of sequences with low similarity, which collectively might
play as important a role as a small group of high-similarity sequences (or in the limit, the
presence of the index sequence as a high-frequency clone). The magnitude of the CDR3 length

effect supports the importance of being able to detect such diffuse/weak signals. We showed
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that different tolerances had different ability to predict NAb titer. To us there is no obvious
reason that tolerance of 2 should outperform, e.g., a tolerance of 10. Possibly which tolerance
is best may differ by exposure. That binding capacity performs comparably to the best-

performing tolerance supports its utility for immune-repertoire analysis.

This study has several limitations. First, we were unable to sort vaccinee samples to obtain
separate IGM vs. IGG and CD4 vs. CD8 repertoires due to exigencies at the height of the
pandemic. Different subtypes may follow different (even opposite) trends, as did the
sensitivities and specificities of classifiers trained on IGG and IGM diversities. Any such patterns
in vaccinees were beyond our ability to measure. Second, we used concentrations of SARS-CoV-
2 anti-spike NAbs as our proxy of protection. Signals may be present that do not correlate with
antibodies binding this particular immunogen. For example, a signal might be seen in T cells or
antibodies that bind other SARS-CoV-2 proteins, which we are unable to evaluate given NAbs as
a readout. Third, although the sequence data in this study was quantitative, it contained only
single-chain, not paired-chain data. Fourth, the ability to define signatures is limited by
uncertainty about the specificity of reference sequences. Much effort is being put into methods
that predict receptor-antigen binding, but a unified, accepted, and feasible approach to
identifying all sequences that bind a given immunogen has yet to be established. Fifth, the
quality of binding capacity measurements is limited by the current measure of binding similarity
being based on mean behavior®; this is expected to improve with additional data and advances

in protein structure prediction.

It will be valuable to see the methodology presented here, with its many steps taken to
maximize robustness and avoid statistical artifacts, applied to additional datasets. This will give
additional evidence of how well these results and this approach generalize for SARS-CoV-2 in
general, for immune responses to variants of the virus, and for other pathogens and
immunogens. A careful statistical approach applied to multiple, functional features, measured
on unbiased repertoire sequence from TCR and BCR subsets from large cohorts, is, in our

opinion, the best way to decipher the rich information that the adaptive immunome encodes.
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Materials and Methods

Study subjects

The subjects in this study were patients seeking clinical care at the Beth Israel Deaconess
Medical Center (BIDMC), a 743-bed tertiary care medical center in Boston, MA, USA. BIDMC
serves a large and diverse population in and around eastern Massachusetts, USA, centered on

the Boston metropolitan area.

Institutional review board approval

All work was carried out in accordance with BIDMC's Institutional Review Board protocols

2020P000634, 2021P000109 and 2020P000361.

Cohort assignment

All subjects from whom samples were obtained received RT-qPCR tests performed on two
Abbott Molecular platforms: m2000 and Alinity m (Abbott Molecular, Des Plaines, IL, U.S.A.).
These detect identical SARS-CoV-2 N and RdRp gene targets and are extremely sensitive for

SARS-CoV-2 infection, with limit of detection of 100 copies/mL.*™*

Infectees had a positive
result at the time of sample acquisition. Controls were tested, but negative. COVID-19 test and
vaccination information were obtained using SQL queries from BIDMC’s clinical data repository

and via a dedicated REDCap database set up to facilitate research involving vaccinees.”®

Using these records, subjects were considered infectees if there was a record of a positive
COVID-19 test result dated before or on the sample collection date and non-infected otherwise.
If no medical record number was available for a subject, their infection status was considered

unknown. Subjects were considered vaccinees if vaccination prior to or on the day of sample
18
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collection was indicated as the appropriate procedure code in the clinical data repository,
recorded in REDCap, or identified from Massachusetts’ state Immunization Information System.
Subjects were considered non-vaccinated if the sample collection date preceded 12/15/2020
(the date of the first administered COVID-19 vaccine); if there was record of vaccination after
sample collection that was annotated as the first dose; if there were two vaccinations after
sample collection where the second was annotated as the second dose; or if there were two
vaccinations after sample collection within 42 days of each other (consistent with being the
primary series). Subjects that did not satisfy vaccinee or non-vaccinated criteria were
considered to have unknown vaccination status. Subjects were annotated as unexposed
controls if they were non-infected and non-vaccinated. Subjects whose vaccination status was
unknown or whose infection status was unknown and were neither vaccinees nor infectees

were considered to have an “unknown” SARS-CoV-2 exposure status.

Clinical annotations
Immunosuppression

Subjects were labelled either “immunosuppressed” or “immunocompetent.” Subjects were

designated immunosuppressed if at least one of the following criteria was met:

the most recent CD4+ cell count was less than 100 cells/pl;

there was a diagnosis of lymphoma or leukemia associated with a healthcare encounter
(visit, admission, or phone call) either before or within 60 days after sample collection;
or

the subject was prescribed any of the following medications on an ongoing basis prior to
sample collection and with enough refills to include up to 30 days after: abatacept,
adalimumab, anakinra, azathioprine, basiliximab, budesonide, certolizumab,
cyclosporine, daclizumab, dexamethasone, everolimus, etanercept, golimumab,
infliximab, ixekizumab, leflunomide, lenalidomide, methotrexate, mycophenolate,
natalizumab, pomalidomide, prednisone, rituximab, secukinumab, sirolimus, tacrolimus,

tocilizumab, tofacitinib, ustekinumab, and vedolizumab.
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496 If none of these criteria were met, subjects were considered immunocompetent.

497  Demographics

498  If a subject had a COVID test, the sex and date of birth were read from the corresponding
499  record. Otherwise we read sex and date of birth from other records of lab specimens, the
500 electronic health record (EHR), or the project’s REDCap database (always in structured fields,

501 not using natural-language processing). Self-reported race was read from the EHR.

502  Risk factors

503 A semi-automated review of EHRs for ICD-10 diagnosis codes and related entries was used to
504 identify subjects having any of the medical conditions highlighted by the CDC as increasing risk
505 of severe illness from COVID-19.* Where feasible, the list of ICD-10 codes indicative of each
506 comorbidity was taken from the Elixhauser Comorbidity Software Refined for ICD-10-CM,*°

507 version v2022.1, developed for the Healthcare Cost and Utilization Project (HCUP), which is
508 based on the work of Elixhauser et al.>* In addition to these, another widely used set of

509 comorbidity measures is the Charlson Comorbidity Index.>> For comorbidities not defined in the
510 HCUP software, the lists of ICD-10 codes defined by this study>® were used where possible.

511 Comorbidities that were not codified in either resource were identified, where possible, using

512  ICD-10 codes or other automated chart queries, detailed as follows:

513 Cancer: identified using ICD-10 codes in the HCUP software for “Leukemia,”

514 “Lymphoma,” “Metastatic cancer,” or “Solid tumor without metastasis, malignant.”
515 Chronic Kidney Disease: identified using ICD-10 codes in the HCUP software for “Renal
516 failure, moderate,” and “Renal failure, severe.”

517 Chronic Liver Disease: identified using ICD-10 codes in the HCUP software for “Liver
518 disease, mild,” and “Liver disease, moderate to severe.”

519 Chronic Lung Disease: The CDC website stipulates that asthma is of concern “if it’s
520 moderate to severe,” implying mild asthma is not of concern. The HCUP software

521 includes codes for all degrees of severity of asthma in the definition of “Chronic
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pulmonary disease.” Thus, chronic lunch disease was identified using ICD-10 codes in
the HCUP software for “Chronic pulmonary disease,” excluding any ICD-10 codes
beginning with J452 or J453 (mild intermittent or mild persistent asthma, respectively).
Cystic Fibrosis: Identified by any ICD-10 code beginning with E84.

Dementia or other neurological condition: identified using ICD-10 codes in the HCUP
software for “Dementia,” “Neurological disorders affecting movement,” “Seizures and
epilepsy,” and “Other neurological disorders.”

Diabetes: identified using ICD-10 codes in the HCUP software for “Diabetes with chronic
complications” and “Diabetes without chronic complications.”

Disabilities: identified using ICD-10 codes in the HCUP software for “Paralysis” plus any
ICD-10 code beginning with Q (birth defects and chromosomal abnormalities). Note that
this omits many, possibly most, forms of disabilities, including non-congenital blindness
and deafness, cognitive impairments not due to chromosomal abnormalities, autism
spectrum disorders of unknown etiology, etc., but these are of dubious connection to
COVID-19.

Heart conditions: identified using ICD-10 codes in the HCUP software for “Heart failure,”
the ICD-10 codes listed in the referenced study® for “Myocardial Infarction,” and/or any
ICD-10 code starting with any of these prefixes: A1884, A3282, A3681, A381, A395,
A5203, B2682, B332, B376, B5881, C452, D8685, G130, G712, G713, G720, G721, G722,
G7249, G7281, G7289, G729, G737, 101, 102, 105, 106, 107, 108, 109, 111, 113, 120, 123, 124,
125, 13, 14, 15, 170, 19713, J1082, J1182, 0101, 002912, 0903, Q2, R570, S26, T82, and
Z95.

HIV: identified using ICD-10 codes in the HCUP software for “Acquired immune
deficiency syndrome.”

Mental health conditions: identified using ICD-10 codes in the HCUP software for
“Depression” and “Psychoses.” Note that this may omit many other forms of mental
illness, such as obsessive-compulsive disorder, post-traumatic stress syndrome,
borderline personality disorder, etc. Note that there is overlap between conditions

considered mental health conditions and those considered disabilities (such as autism
21
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551 spectrum disorders) as well as between mental health conditions and other medical
552 conditions (such as substance abuse disorders).

553 Overweight or obese: Subjects were considered to be overweight or obese if their BMI
554 was 225. If multiple BMI or height-and-weight values were recorded in the database
555 over time for a given subject, the value(s) used were those closest in time to the date of
556 sample collection.

557 Pregnancy or recent pregnancy: Electronic medical records of all female subjects under
558 the age of 69 were searched for: ICD-10 codes starting with Z3A and records of hospital
559 admissions which include a baby delivery time. The timespans of the pregnancy and
560 puerperium periods were estimated from either type of record. In the case of ICD-10
561 codes starting with Z3A, the final digits of the ICD-10 code encode weeks of gestation at
562 the time of the encounter, from which a start and end date of the pregnancy can be
563 estimated. If only a delivery date is known, the pregnancy is estimated to have begun 40
564 weeks earlier, unless “PRETERM” is found in the free-text diagnosis. Subjects were

565 marked as “pregnancy or recent pregnancy” only if their COVID-19 test date fell

566 between the estimated start date of the pregnancy and 42 days after the estimated end
567 date (to allow for post-term pregnancy). Where there was no COVID test date, the date
568 of the blood sample collection was used.

569 Sickle cell or Thalassemia: Identified by any ICD-10 code beginning with D56 or D57.
570 Smoking, current or former: Electronic medical records were searched for any non-zero
571 “Tobacco pack years,” and for a free-text description of their tobacco usage including
572 the text “current smoker,” “former,” “every day,” “some days,” “light,” “heavy,” “less
573 than 10,” “10+,” “yes,” or “counseling provided.”

574 Solid organ or blood stem cell transplant: Identified by any ICD-10 code beginning with
575 Z94.

576 Stroke or cerebrovascular disease: identified using ICD-10 codes in the HCUP software
577 for “Cerebrovascular disease,” which includes ICD-10 codes for both CBVD POA and

578 CBVD SQLA.
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Substance abuse: identified using ICD-10 codes in the HCUP software for “Drug abuse”
and for “Alcohol abuse.”

Tuberculosis: Identified by any ICD-10 code beginning with A15.

Sample collection, cell separation, and DNA extraction

2mL aliquots were taken from EDTA-anticoagulated venous blood collected in the course of
standard clinical care (via “purple-top” tubes; BD). Tubes were stored at 4°C between collection
and processing, never more than 12 hours. Each aliquot was mixed 1:1 dilution in phosphate-
buffered saline (PBS) and centrifuged over Ficoll-Paque-plus (Cytiva, Marlborough) to obtain
peripheral blood mononuclear cells (PBMCs). Plasma was collected and stored at 80°C. PBMCs
were washed with PBS and resuspended in a sorting buffer of PBS, 1% bovine serum albumin

(BSA), and 0.01% sodium azide.

Magnetically-labeled anti-CD4 and anti-lgM microbeads (Miltenyi, Bergisch Gladbach) were
used to label and column-separate for infectee and control samples; vaccinee samples cells
were not separated. This process divided the samples into CD4+ T cells and IgM+ B cells in one
fraction and CD8+ T cells and non-IgM+ B cells (principally IgG+) in another fraction. DNA was
isolated for each fraction using EZ1&2 DNA Blood 350pL kits (Qiagen, Hilden) and the EZ1
Advanced XL automated system (Qiagen, Hilden). DNA concentration was assessed via

Nanodrop (Thermo Fisher, Waltham).

Sequencing library preparation

AIRRseq libraries were generated using the immunoPETE method as described.” ImmunoPETE is
a two-step primer extension based targeted gene enrichment assay designed to specifically
target and quantitatively amplify recombined human TRB, TRD, and IGH from genomic DNA
simultaneously. Briefly, V gene-based primers containing unique molecular identifiers (UMI) as
well as universal PCR amplification handles were annealed to the chromosomal VDJ rearranged
loci. The first primer extension products, spanning the VDJ rearrangement, were purified from

any remaining oligos by a combination of beads (KAPA HyperPure, Roche) and enzymatic
23
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treatment with Thermolabile Exonuclease | (New England Biolabs). A second primer extension
and amplification master mix containing a pool of J-gene oligos and an lllumina i7 primer
generated VDJ amplicons after 10 cycles of target amplification. Illumina sequencing library
amplification was performed using the i7/i5 primer pairs with dual sample indexes. All primer
extensions and amplifications were performed using the KAPA Long Range HotStart Ready Mix
(Roche). The resulting libraries underwent purification using KAPA HyperPure beads (Roche),
followed by quantification with the Qubit dsDNA HS Assay kit (Thermo Fisher) and fragment
analysis (Agilent TapeStation). Individual sample libraries were pooled in equal mass. A final
round of quantification and fragment analysis was then performed. Finally, libraries were

sequenced using the lllumina NextSeq 500/550 High Output Kit v2.5 (300 cycles).

Sequencing and bioinformatics

ImmunoPETE sequencing libraries were analyzed using the Roche in-house bioinformatics
pipeline, Daedalus (https://github.com/bioinform/Daedalus). After quality filtering of reads and
trimming off primers, the pipeline identified V and J genes using a Smith-Waterman alignment
approach (https://github.com/pgngp/swift) against an in-house curated V and J gene database.
Original V and J gene data and sequences were sourced from HGNC
(https://www.genenames.org/) and ENSEMBL (https://ensemblgenomes.org/). CDR3
sequences were identified for all V-J pairs, capturing both functional (functional V/J gene AND
coding CDR3) and non-functional (annotated non-functional or pseudogene V/J gene in the
database OR stop codon/frameshift in CDR3) rearrangements. Sequences are deduplicated by
clustering UMI and CDR3 sequences to identify UMI families. Consensus sequences were
derived for the CDR3 and UMI segments of each UMI family, suppressing sequencing and PCR
errors, and identifying CDR3 rearrangements at single molecule resolution. High quality CDR3
rearrangements were further analyzed for cell counting, clonal diversity, and other calculations.

Terms used are listed alphabetically and defined as follows:

Cell count: the total number of functional IGH, TRD, and TRB rearrangements in a

sample
24
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Cell type percentages: the total number of functional rearrangements from each heavy
chain divided by the total cell count x 100

CDR3 clone: BCR or TCR sequences from the same individual with matching V gene,
CDR3 amino acid sequence (CDR3-AA), and J gene assignment arising from two or more
UMI families

CDR3 clonal type: BCR or TCR sequences from multiple UMI families from multiple
individuals with matching V gene, CDR3-AA, and J gene assignment

Clone count: total number of UMI families from the same individual with the same V
gene, CDR3-AA, and J gene

UMI family: a set of reads that have been clustered together based on the similarities of

the 9-nt UMI sequence and the CDR3-nt region

Both UMI and CDR3 sequences are clustered based on a Levenshtein edit distance of 1,
capturing likely PCR and sequencing errors. A UMI family represents a single captured DNA

molecular fragment from the immunoPETE reaction.

NAbs ELISA titers

The SARS-CoV-2 Surrogate Virus Neutralization Test Kit (GenScript, LO0847-A) was used
according to the manufacturer’s instructions as follows. A standard curve was generated using a
serial dilution of the standard (GenScript, A02087-20) with a dilution factor of 1:2. Each
subject’s serum sample was mixed with sample dilution buffer (1:10) and horseradish
peroxidase-conjugated recombinant SARS-CoV-2 receptor-binding domain (HRP-RBD). The
mixture was incubated at 37°C for 30 minutes to allow the circulating NAbs to bind to HRP-RBD.
The mixture was then added to an ACE2 protein-coated plate and incubated for an additional
15 minutes at 37°C. Unbound HRP-RBD and HRP-RBD bound to non-neutralizing antibodies
were bound to the plate while circulating neutralization antibody HRP-RBD complexes
remained in the supernatant for subsequent wash steps. After washing, tetramethylbenzidine
solution was added, followed by a stop solution to quench the reaction, turning wells yellow.

The plate was read immediately at 450nm in a microtiter plate reader. Statistical analysis was
25
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performed with GraphPad Prism using a 4PL model for linear regression. Results were reported

by interpolating the OD450 values to the standard curve values.

pymmunomics

Code used for the analyses was written up as a python package and made publicly available on
github (https://www.github.com/JasperBraun/pymmunomics). Reference is made in the

following sections wherever that is the case.

Dependence of antibody concentrations on age, immunocompetence, and SARS-CoV-2

exposure

Univariate and bivariate exploratory plots suggested zero antibody concentration to be a
special category. Therefore, we first modeled the ability to produce zero vs. non-zero amounts
of antibody using logistic regression. We then performed linear regression to model the logio-
transformed concentration of the nonzero values on our set of covariates. In both cases, we
started with a full model incorporating age, immunocompetence status, cohort, and all of their
two-way and three-way interactions. Starting with the interaction terms and then proceeding
to the main effects, we sequentially eliminated covariates that were not significant at a=0.05.
This did not change the regression coefficients of any of the significant terms by >20% (i.e. were
not confounders). Finally, we confirmed that the best model had lower AIC (logistic regression)

or higher adjusted R’ (linear regression) compared with the alternative models.

CDR3 length analysis

CDR3 length frequencies for each available functional and non-functional pooled IGH, TRB, TRD,
and subtyped IGG, IGM, CD4 TRB/D, CD8 TCB/D repertoire of immunocompetent subjects were
calculated using the pymmunomics python package (above). Since vaccinee samples were not
sorted into subtypes, pooled repertoire CDR3 length frequency distributions were used to
compare vaccinees to controls and infectees. CD4/IGM and CD8/IGG repertoire CDR3 length

frequency distributions were compared independently between controls to infectees.

26


https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.556703; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

684
685
686
687
688
689
690
691
692
693

694
695
696
697
698
699

700
701
702
703
704
705
706

available under aCC-BY-NC 4.0 International license.

To compare CDR3 length distributions between cohorts without simplifying them down to their
mean or median distribution, which ignores variance within groups, we chose a threshold CDR3
length £ and compared the cumulative frequencies of sequences on each side of that length
using a two-tailed Mann-Whitney-U test. The threshold length was determined by estimating
the difference of length frequencies between cohorts for each CDR3 length. These estimates
were calculated by taking the median difference in frequency between members of one cohort
and members of the other. The dividing line is then placed between the lengths £ and £+1,
where £ is the CDR3 length that maximizes the magnitudes of the total areas under the curve of
estimated frequency differences to the left and right of the line, i.e. the best dividing line

between patterns:

_I_

e

o<t

N

>t

Here deg denotes the estimated difference of frequencies of CDR3s of length £& between the
two cohorts. Note that the absolute values are taken after summing group differences on one
side of the dividing line (making positive and negative differences cancel each other out before
taking the absolute value), favoring a dividing line that splits the median differences into large
same-signed runs. P-values were corrected for multiple hypotheses via the Holm-Bonferroni

method (Table S3).

To identify trends among lengths of V and J genes, V and J genes (from IMGT) of the relevant
cell types (IGH for the functional pooled IGH comparisons and pooled IGH, IGG, and IGM for the
non-functional comparisons) which had a corrected p-value below 0.05 were grouped into the
number of residues that fall into the CDR3 region. Usage frequencies of V- and J-gene groups
were compared between cohorts using two-tailed Mann-Whitney-U and a second correction
round was conducted to correct all original p-values of the CDR3 length comparisons at the

same time as the p-values obtained from the follow-up tests.
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Sets of known SARS-CoV-2 binders and binders to other pathogens

MIRA-identified SARS-CoV-2 specific T-cell receptor sequences23 were downloaded from

https://clients.adaptivebiotech.com/pub/covid-2020 on April 19, 2021.

Query B-cell and T-cell receptor sequences (CDR3) of cells known to bind to SARS-CoV-2 were
downloaded from CoVAbDab, PDB, and VDJDB. The CovAbDab sequences were downloaded on
April 20, 2022 and consists of all SARS-CoV-2-WT-neutralizing human antibodies with CDRH3
sequence listed in the database at the time and added since May 04, 2020. PDB sequences
were download on May 03, 2022 searching for all structures of source organism Homo sapiens,
containing in the title one of “antibody” or “Fab,” and one of “CMV,” “cytomegalovirus,”
“DENV” (i.e. dengue), “dengue,” “EBV,” “Epstein-Barr,” “hepatitis,” “HIV,” “human
immunodeficiency virus,” “influenza,” “SARS-CoV-2,” or “tetanus.” The resulting entries were
filtered for sequences in which a CDRH3 sequence of length at least 6 and at most 40 could be
detected using in-house Python code. For each sequence, the name of the binding target was
extracted from the structure title. VDJDB sequences were also downloaded on April 20, 2022 to
obtain human TRB sequences with CDR3 and J-gene specified that bind to their listed target

with a non-zero score.

To conform with the gene database used for V- and J-gene assignment of repertoire sequences
(see Sequencing and bioinformatics), the same gene sequences were aligned (blastp and blastp-
short for V genes and J genes, respectively; BLAST+ v2.12.0) to the sequences from PDB and
CoVAbDab, setting the max target seqs parameter to 10,000—a number much larger than the
total number of genes in the query to avoid missing the best matching genes.54 V-gene matches
with query coverage less than 30% or percent identity less than 40% and J-gene matches with
query coverage less than 50% or percent identity less than 40% were filtered out. From the
remainder, the best V- and J-gene matches according to percent identity and gene sequence
coverage (lexicographically) were assigned to each query sequence. Data downloaded from
VDJDB contained sequence only for the CDR3 region, so the V, and J-gene annotation provided

by the database was used (as opposed to using e.g. BLAST).
28


https://doi.org/10.1101/2023.09.08.556703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.556703; this version posted September 11, 2023. The copyright holder for this preprint

734
735
736

737

738
739
740

741
742
743
744
745

746
747
748

749

750
751
752

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

To calculate the fractions of query sequences sets matching subject repertoire sequences and
the fractions of subject TRB repertoires matching query TRB sequences sets, a pair of sequences

is considered to match if their V gene, J gene, and CDR3 sequence are identical.

Binding-capacity measurements

Binding capacities to the MIRA-identified HLA class Il T-cell sequences were measured for all
subject pooled (CD4+CD8), and CD4 TRB repertoires, wherever possible. The binding capacity of

a repertoire Rto a clone cis defined as:

T(¢c;R) = z p(c) -s(c,c)

C’ER

where p(c") denotes the frequency of clone ¢’ in repertoire Rand sis the binding similarity
between sequences. Here, sas previously described,* which accounted only for the
relationship between Levenshtein distance of CDR3s and the predicted difference in strength of
their binding to the same target(s) (in terms of relative K;), was constrained as follows to

require matching V and/or J genes:

0.3Lev(e<") if v and J genes match

s(c,ch) ={

0 otherwise

Here, Lev(c, ¢) is the Levenshtein distance between the CDR3 amino acid sequences of
sequences ¢ and ¢’. The pymmunolib Python package was used to calculate similarity matrices

and binding capacities.

Fuzzy query sequence matching

Fuzzy sequence matching measurements for each pooled CD4+CD8 and each CD4-only TRB
subject repertoire to the MIRA-identified HLA class Il query sequences were tabulated from the

similarity matrices that are calculated as part of determining binding capacities. For each query
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sequence and each subject repertoire, we measured the fraction of repertoire sequences for
with the same V and J genes as the query sequence, and whose CDR3 sequence was within
Levenshtein distances 0-10 of the query’s CDR3. Note that exact matching is equivalent to fuzzy

matching with a Levenshtein distance of 0.

Binding-capacity and fuzzy-matching robustness experiments

To compare robustness to variations in repertoire size of binding capacity and fuzzy matching
features, we conducted subsampling experiments. We randomly chose 10 subjects from each
of the vaccinee, infectee, and control cohorts that had a pooled TRB repertoire size of at least
80,000 cells, i.e. 80,000 distinct corrected UMIs. (This size was chosen in order to guarantee at
least 10 subjects from the control cohort to choose from.) Each of these repertoires was
sampled down to 20 different subsample sizes chosen to be equidistantly spaced between 10
and 80,000 at log-scale. For each subsample, we calculated binding capacities as well as fraction
of fuzzy matches for fuzzy-match tolerances 0, 2, 4, 6, 8, and 10 amino acids to CD4 TRB
reference sequences from MIRA. The slopes and their surrounding 95% confidence intervals

were obtained by fitting a linear mixed model that groups the data by subject.

Feature selection

Preferring the use of domain knowledge over generic feature selection mechanisms for
selecting from the high-dimensional query sequence matching features (binding capacity and
fuzzy matching), a custom feature selection method is developed and implemented in the
python package pymmunomics. For this mechanism we use binding capacity and fuzzy
matching measurements to sequence specific to pathogens other than SARS-CoV-2 (“SARS-CoV-
2 non-specific sequences”) as a null distribution to which to compare the measurements for
MIRA-identified SARS-CoV-2-specific sequences. We calculated the (Stuart-)Kendall Tau-c
correlation coefficient between each feature’s measurement and NAb titer. For each feature
group (binding capacity, fuzzy matching with tolerances 0, 1, ..., 10, etc.), the correlation

coefficients of measurements for non-SARS-CoV-2 specific sequences form the null distribution
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and correlation coefficients of SARS-CoV-2 specific features below the 2.5" and above the

97.5™ percentile are selected (cumulatively, the most correlated and anti-correlated 5%).

Following the same idea, V-gene frequencies were also selected from among the 54 total
possibilities (one for each V gene). Here, V-gene frequencies in non-functional repertoires were
taken as the null distribution against which to compare functional repertoires’ V-gene
frequencies, since non-functional sequences do not undergo SARS-CoV-2 specific clonal
expansion. Since the functional and non-functional frequencies can be viewed as paired
measurements, the distribution of differences between their correlation coefficients was
calculated, and the most correlated and anti-correlated 5% (as defined above) were selected as

features.

Machine learning to classify subjects with a protective NAb titer

Machine learning classifiers of high or low neutralizing antibody concentration were fit to
various feature groups and for various cell types. For the CD4 and pooled TRB receptor
repertoires, binding capacities as well as fuzzy matching features with tolerances 0, 1, ..., 10 to
the MIRA-identified CD4 clones from Nolan et al.”> were used. Another set of models was
derived from these by adding a mechanism at the end of feature selection that aggregates the
selected features into their sums. For the pooled IGH, TRB, and TRD as well as the IGM, non-
IGM (predominately IGG), CD4 TRB and CD8 TRB repertoires models are fit on the following

feature sets:

CDR3 length frequencies, summarized by 3 features: mean, variance and skewness;

diversity, with Recon’” (https://github.com/ArnaoutLab/Recon) being used to correct
Hill Dq numbers for g=0, 1, ..., e to correct for missing species;

J-gene frequencies (with only 6 J genes, no further feature selection was required);

V-gene frequencies for select V genes as described above;

Baseline/clinical features: age, sex, days since infection (runs of positive COVID-19 PCR
tests successively within 28 days of each other and not interrupted by negative tests are
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805 considered infected periods; to account for incubation of the virus prior to taking the
806 test, the start date of an infection is predicted as 4 days before the first positive test in
807 the corresponding run of tests; when a negative test was performed within those 4

808 days, that test’s date is considered the infection start date; for the model, the predicted
809 start date of the most recent infection before sample collection was used, or 0 if the
810 subject was not infected), and days since vaccination (the number of days between

811 sample collection and most recent vaccination on record).

812 The machine learning framework was set up as follows. For each feature group, 700 replicate
813 performances were measured via repetition of 7-fold cross-validation 100 times, each time
814  choosing a different split of the data into 7 folds at random. For each replicate, 10-fold cross-
815 validation was used to tune hyperparameters via Bayesian optimization. For each model fit, the
816 training data was standardized, then underwent principal component analysis, and finally was
817  used to train an L2-regularized regression. There were two tuned hyperparameters:

818 regularization strength (with a log-uniform search space distribution between 10 % and 107
819  and the amount of variance to be explained by chosen principal components (with uniform
820  search space distribution between 0.50 and 0.99; e.g. if the value was 0.75 and the first four
821  PCs account for 75% of variance, these four PCs would be chosen). For feature sets relating to
822  similarity—binding capacities, fuzzy-matching features at various tolerances, and their

823  aggregated versions—and for V-gene features, feature selection was performed on the training
824  data before standardization for each model fit. To facilitate avoidance of train-test leakage, the
825 mechanisms are implemented in the pymmunomics python package to fit into the popular

826  scikit-lean API framework.

827
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Figure Legends

Figure 1: Anti-SARS-CoV-2 ELISA trends and distributions by age for immunocompetent and
immunosuppressed vaccinees, infectees, and controls. NAbs are to SARS-CoV-2 spike protein.
(a) ELISA titers for each subject. Solid lines indicate regression fits; shaded areas indicate 95%
confidence intervals. Dotted black line at ~10° indicates manufacturer’s cutoff for positive vs.
negative. Note strong negative trend with age in vaccinees (blue) but not infectees (salmon).
Note mild positive trend with age in controls (olive), even as titers in this cohort remain below
the cutoff for almost all individuals. (b) Distribution of titers in the three cohorts, split by
immune status. (c) Distribution of ages in these cohorts, again split by immune status, with

numbers of subjects in each sub-cohort.

Figure 2: IGH CDR3 length distributions. (a) CDR3 length comparison plots for productive IGH
repertoires of vaccinees vs. controls. Left inset: the median differences of frequencies at each
length, showing that CDR3s of length 16 or shorter are more frequent in vaccinees, whereas
CDR3s of length 17 or longer are less frequent. The pattern reverses at the dividing line
between 16 and 17 amino acids (vertical dotted line). Right inset: total fraction of the
repertoire up to the dividing line. The p-value is obtained by applying Mann-Whitney U to the
cumulatives followed by Holm-Bonferroni multiple-hypothesis correction. (b) The same for
vaccinees vs. infectees, showing the same pattern but with a dividing line between 18 and 19
amino acids. (c)-(d) Frequencies of V and J genes grouped by the number of residues each gene
contributes to the CDR3 according to germline. Note the only J gene that contributes 5 residues
is IGHJ4. (e) Assuming the nonproductive IGH vaccinee repertoire (blue) is made up of a part
that is unaffected by vaccination and therefore looks like the control repertoire (green) and a
part that is affected by vaccination (salmon), this plot shows what the distribution of the
affected part would have to look like so the two parts add up correctly, for different fractions
affected (dark to light salmon lines). Estimated means for vaccinee and control distributions are
shown. The smaller the affected portion, the more extreme the effect must be. The minimum

possible effect size is that for which a CDR3 length for the affected portion is zero; any smaller,
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and a negative frequency at that CDR3 length would be required (negative frequencies are not

possible).

Figure 3: SARS-CoV-2-specific TRBs vs. NADb titers. (a)-(b) Fraction of TRB repertoires matching
the SARS-CoV-2-specific CD4 TRB sequences obtained from Nolan et al.?? against SARS-CoV-2
NADb titer. Panel (a) shows repertoires from CD4+ T cells, which were available for infectees and
controls but not vaccinees, while panel (b) shows repertoires from all T cells, which were
available for all three cohorts. Theil-Sen regression fits (solid lines) show positive relationships
for infectees and vaccinees but not controls. (c) The fraction of a repertoire that matches
reference TRBs within a chosen tolerance (here, 2 amino-acid differences) depends strongly on
the number of cells in the repertoire (i.e., repertoire size). (d) In contrast, binding capacity is
much more robust. The slope of the dependency on size for repertoires above 1,000 cells are
shown as black lines. (e) Slope as a function of fuzzy-binding tolerance, demonstrating binding

capacity is more robust regardless of tolerance.

Figure 4: Predicting positive NAbs. (a) Feature selection mechanism used for binding capacity
and fuzzy matching features on the binding capacity measurements of all TCR repertoires of
size at least 1,000 using the SARS-CoV-2-specific CD4 TCR sequences and non-SARS-CoV-2-
specific TCR sequences obtained from VDJDB. Of the 7,804 SARS-CoV-2-specific features’
correlations, 323 fall outside the selection boundaries set by the 95% boundaries of the
correlations of non-SARS-CoV-2-specific features with NADb titer. (b)-(c) Machine learning
performance results for a selected group of feature sets and cell types across all 700 replicates
(100 repeats of 7-fold cross-validation). a shows areas under receiver operating curves and b
breaks down the performances into sensitivity, precision, and specificity. The same plots for all
feature sets and cell types can be found in Fig. S11 and S12. Median values and interquartile

ranges for all metrics are reported in Table S8.
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