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Abstract 

High-throughput drug screens are a powerful tool for cancer drug development. However, the 
results of such screens are often made available only as raw data, which is intractable for 
researchers without informatic skills, or as highly processed summary statistics, which can lack 
essential information for translating screening results into clinically meaningful discoveries. To 
improve the usability of these datasets, we developed Simplicity, a robust and user-friendly web 
interface for visualizing, exploring, and summarizing raw and processed data from high-
throughput drug screens. Importantly, Simplicity allows for easy recalculation of summary 
statistics at user-defined drug concentrations. This allows Simplicity’s outputs to be used with 
methods that rely on statistics being calculated at clinically relevant doses. Simplicity can be 
freely accessed at https://oncotherapyinformatics.org/simplicity/. 

1 Introduction 

In the past decade, multiple institutions have generated publicly available datasets for 
hundreds of compounds screened in hundreds of cancer cell lines (CCLs) (Ling et al., 2018). 
Substantial efforts have been made to harmonize and distribute data from these datasets both via 
programmatic (Smirnov et al., 2016) and web-based (Tsherniak et al., 2017; Smirnov et al., 
2018) interfaces. However, programmatic access is challenging for researchers who lack coding 
or bioinformatic experience, and web-based interfaces for these datasets do not currently provide 
users with the means to summarize drug efficacy at specific drug concentrations or concentration 
ranges. 

 Given recent evidence that CCL screening data should be analyzed at clinically 
achievable drug concentrations to generate clinically relevant findings (Ling and Huang, 2020) 
and the recent deployment of a web-based interface for utilizing CCL screening data to predict 
drug combination efficacy in a dose-dependent fashion (Yunong Xia et al., 2023), we developed 
the Simplicity (Simplified Interface to Manipulate PrecLinical Information for Cancer In vitro 
TherapY) web-interface to enable researchers without programming experience to easily perform 
dose-dependent calculations with CCL screening data. 
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2 Methods and software implementation 

Raw screening data was obtained from four large CCL screening datasets: 

1. The Cancer Therapeutics Response Portal v2 (CTRPv2) (Basu et al., 2013; Seashore-
Ludlow et al., 2015; Rees et al., 2016) 

2&3. Genomics of Drug Sensitivity in Cancer 1 & 2 (GDSC1 and GDSC2) (Iorio et al., 2016; 
Yang et al., 2013; Garnett et al., 2012) 

4. PRISM Repurposing (Corsello et al., 2020) 

CTRPv2 was generated at the Broad Institute between 2012 and 2013 and contains data for 
544 compounds screened in 887 cell lines. GDSC1 was generated by Massachusetts General 
Hospital and the Wellcome Sanger Institute between 2010 and 2015 and contains data for 343 
compounds screened in 987 cell lines, with a follow up screen (GDSC2) being performed by 
Sanger between 2015 and 2017 for 192 compounds in 809 cell lines. PRISM Repurposing was 
published by the Broad Institute in 2020 and contains screening data for 1446 compounds in 481 
cell lines. Further details for these screens can be found in the “Data Explorer/Explore Datasets” 
tab of Simplicity or in their respective publications. 

Full details of how these datasets were harmonized and quality controlled are included in the 
Supplemental Methods. However, a very brief description of this process is as follows. 

Initial cell line and compound harmonization tables were taken from our prior 
harmonization efforts (Ling et al., 2018; Ling and Huang, 2020), which included harmonized 
cell line and compound IDs for CTRPv2 and GDSC1. Data was further harmonized and 
annotated using a mix of manual curation as well as data from https://www.cellosaurus.org/, the 
BROAD Drug Repurposing Hub (https://www.broadinstitute.org/drug-repurposing-hub), and 
https://webchem.org/. Raw data from each dataset was then quality controlled, and dose-response 
curves were fit to the harmonized and quality controlled data. A user interface for exploring and 
manipulating this data was created using the shiny package (Winston Chang et al., 2020) in R (R 
Core Team, 2020). This interface, Simplicity, was then deployed on scalable cloud-based 
infrastructure. 

3 Validation of data quality 

To validate the quality of Simplicity’s refitted dose-response curves, cross-dataset agreement 
was measured for shared compounds and cell lines under the hypothesis that compound/cell-line 
pairs which were screened in multiple screens should result in similar AUC values across the 
same dose-range in both screens. As such, high correlation in drug sensitivities measured 
between two screens should indicate that dose-response curves have been appropriately fit, while 
lower correlations may indicate inferior curve-fitting approaches. 

We took data from three sources of harmonized data for the drug screens included in 
Simplicity and sought to ensure that the cross-dataset agreement in Simplicity was not inferior to 
other available sources. These three sources were: 

1. Simplicity 
2. Corsello et al., 2020 
3. PharmacoGx (Smirnov et al., 2016) 
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 Cross-dataset correlations were similar between all datasets when using any of the three 
data sources, with larger variations between sources noted when comparing drug sensitivities 
measured in PRISM-Repurposing to other screens (Figures S1-S3). Despite similar performance 
between data sources, a few compounds were much more or less correlated between screens with 
Simplicity than with other datasets. 

To understand these situations, we plotted PRISM-Repurposing vs. CTRPv2 AUC values 
for the top eight compounds in which PharmacoGx had higher cross-dataset correlations than 
Simplicity (Figure S4) and the top eight compounds in which Simplicity had higher cross-
dataset correlations than PharmacoGx (Figure S5). This data suggests that the majority of 
compounds that see large differences in Spearman’s rho values between data sources are 
compounds that have low efficacies in most tested cell lines, resulting in relatively little variation 
in measured drug sensitivities. While it does appear that the curve fitting approach used by 
Simplicity may perform worse or better for specific compounds than the approaches used by 
other data sources, average performance across all tested compounds is very similar. 

This gives us confidence that the new functionalities provided by Simplicity to non-
computational users of these datasets do not come at a cost of reduced data quality. These 
functionalities are described in the following sections. 

4 Visualizing screening data with Simplicity 

 Simplicity allows users to generate customized plots to easily visualize information such 
as: 

1. Ancestry (Figure 1A), age, gender, and cancer types across specific CCL populations 
(not shown). This can facilitate rapid intuition around how well a set of CCLs represents 
a researcher’s patient cohort of interest. 

2. Summary statistics of drug sensitivity across many CCLs for a single drug or across 
many drugs for a single CCL (Figure 1B). This enables users to quickly identify which 
cell lines are most or least sensitive to a given drug or to identify which drugs a given 
cell line shows exceptional sensitivity/resistance to. 

3. Raw data for a given drug/CCL pair’s dose-response curve (Figure 1C). This allows 
users to directly visualize the quality of a given dose-response curve, as well as to 
determine the level of reproducibility for a given drug/CCL pair across different datasets 
and replicates. 

4. Relevant background information to the results being plotted, such as information about 
variations in assay conditions between different CCLs screens and different experimental 
runs within a given screen (Figure 1D). This can allow users to easily visualize how 
factors such as cell seeding density, plate format, assay reagent, and treatment duration 
influence dose-response curves. 

Customization of these plots is achieved via use of searchable drop-down menus and slider 
bars which allow filtering based on such characteristics as CCL disease type, age, gender, and 
ancestry makeup or compound molecular target, mechanism of action, or clinical phase. 

5 Calculating custom summary statistics with Simplicity 

To enable researchers to easily generate dose-specific metrics of drug efficacy from these 
screens, Simplicity provides the “Calculate Custom Statistics/AUC Values” and “Calculate 
Custom Statistics/Viability Values” tabs to calculate AUC and Viability values at custom 
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concentrations/concentration ranges using a simple graphical user interface (Figure 1E). The 

A B 

C D 

E 

Effect of tozasertib on 

GBM cell lines 

Effect of FDA approved 

compounds tested in NKM-1 

Figure 1. Example functionality of Simplicity. Plots, tables, and interfaces from Simplicity. (A) Ancestry plot for 
glioblastoma (GBM) cell lines tested with 5-Fluorouracil in GDSC1 as provided by the “Data Explorer/Explore 
Compounds” tab. (B) Examples of drug and cell-line level summaries produced by Simplicity. Left panel: Plot showing 
measured sensitivities (IC50s) of Tozasertib in GBM cell lines in the PRISM-Repurposing dataset as provided by the 
“Data Explorer/Explore Compounds” tab. Cell lines names and exact IC50 values can be obtained by hovering over each 
data point. Right panel: Plot showing relative sensitivity of NKM-1 cell line to FDA approved (Launched) compounds 
tested in GDSC2 as measured by IC50 percentile relative to all other cell lines tested with each compound in GDSC2 as 
provided by the “Data Explorer/Explore Cell Lines” tab. Higher percentiles indicate NKM-1 was more sensitive to a 
given compound relative to other tested lines. Direct IC50 values can be obtained by hovering over each data point or by 
downloading the summary statistics tables provided in the “Download Bulk Data” tab of Simplicity. Note that infinite 
IC50 values occur when fitted dose-response curves have a lower asymptote above 50% viability. This can occur when 
the data directly implies an asymptote above 50% viability or when the tested compound shows no efficacy at any tested 
dose such that the fitted dose response curve is simply a flat line at 100% viability. (C) Calculated dose-response curves 
for cisplatin in the NKM-1 cell line in both GDSC1 and GDSC2 along with the experiment IDs used to calculate the 
curves as provided by the “Data Explorer/Plot Dose-Response Curves” tab. (D) Table of experimental conditions used in 
the experiments shown in panel C as provided by the “Data Explorer/Plot Dose-Response Curves” tab. (E) User interface 
for calculating viability values at specified concentrations. The interface allows users to easily select compounds, cell 
lines, and concentrations of interest using a graphical user interface. A similar interface is also available for calculating 
area under the curve (AUC) values at custom concentration ranges. 
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interface provides the same searchable drop-down menus and slider bars present throughout the 
rest of the app to allow easy selection of compounds and CCLs of interest. The results of these 
calculations are provided as downloadable tables, with an option to automatically format the 
output for direct use with the IDACombo web application, which uses dose-specific estimates of 
monotherapy drug efficacy to predict drug combination efficacy across different doses of 
combined drugs (Yunong Xia et al., 2023). 

6 Accessing bulk data through Simplicity 

Simplicity also provides bulk data download for researchers who wish to use Simplicity’s 
harmonized data with their own informatic tools. These can be accessed via the “Download Bulk 
Data” tab. Available data includes: 

1. Harmonized CCL and compound names between the included datasets. 
2. Clinically relevant concentrations for 143 clinically tested compounds that are included 

in Simplicity. 
3. AUC and IC50 values for the CCL-compound pairs tested in each screen. 
4. Raw viability values from each screen following compound and CCL name 

harmonization. 

7 Summary 

 Simplicity provides a graphical user web interface which allows users to easily visualize 
and manipulate data from high-throughput CCL drug screens. Notably, Simplicity provides the 
ability to query viability and AUC values at custom doses/dose ranges, enabling analyses to be 
conducted with clinically relevant concentrations without the need for coding or informatic 
experience. It is our hope that this will remove a significant barrier for non-computational 
scientists who wish to use these datasets to conduct such dose-dependent studies. A video 
tutorial on the use of Simplicity is available at 
https://www.youtube.com/watch?v=oNuwRDs_5DQ. 
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