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Abstract

High-throughput drug screens are a powerful tool for cancer drug devel opment. However, the
results of such screens are often made available only as raw data, which isintractable for
researchers without informatic skills, or as highly processed summary statistics, which can lack
essential information for trandating screening results into clinically meaningful discoveries. To
improve the usability of these datasets, we developed Simplicity, arobust and user-friendly web
interface for visualizing, exploring, and summarizing raw and processed data from high-
throughput drug screens. Importantly, Simplicity allows for easy recalculation of summary
statistics at user-defined drug concentrations. This allows Simplicity’s outputs to be used with
methods that rely on statistics being calculated at clinically relevant doses. Simplicity can be
freely accessed at https://oncotherapyinformatics.org/simplicity/.

1 Introduction

In the past decade, multiple institutions have generated publicly available datasets for
hundreds of compounds screened in hundreds of cancer cell lines (CCLSs) (Ling et al., 2018).
Substantial efforts have been made to harmonize and distribute data from these datasets both via
programmatic (Smirnov et al., 2016) and web-based (Tsherniak et al., 2017; Smirnov et al.,
2018) interfaces. However, programmatic access is challenging for researchers who lack coding
or bioinformatic experience, and web-based interfaces for these datasets do not currently provide
users with the means to summarize drug efficacy at specific drug concentrations or concentration
ranges.

Given recent evidence that CCL screening data should be analyzed at clinically
achievable drug concentrations to generate clinically relevant findings (Ling and Huang, 2020)
and the recent deployment of a web-based interface for utilizing CCL screening data to predict
drug combination efficacy in a dose-dependent fashion (Y unong Xiaet al., 2023), we developed
the Simplicity (Simplified Interface to Manipulate PrecLinical Information for Cancer In vitro
TherapY) web-interface to enable researchers without programming experience to easily perform
dose-dependent calculations with CCL screening data.
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2 Methods and softwar e implementation
Raw screening data was obtained from four large CCL screening datasets:

1. The Cancer Therapeutics Response Portal v2 (CTRPv2) (Basu et al., 2013; Seashore-
Ludlow et al., 2015; Rees et al., 2016)

2& 3. Genomics of Drug Sensitivity in Cancer 1 & 2 (GDSC1 and GDSC?2) (lorio et al., 2016;
Yang et al., 2013; Garnett et al., 2012)

4. PRISM Repurposing (Corsdllo et al., 2020)

CTRPv2 was generated at the Broad Institute between 2012 and 2013 and contains data for
544 compounds screened in 887 cdll lines. GDSC1 was generated by M assachusetts General
Hospital and the Wellcome Sanger Institute between 2010 and 2015 and contains data for 343
compounds screened in 987 cell lines, with a follow up screen (GDSC2) being performed by
Sanger between 2015 and 2017 for 192 compounds in 809 cell lines. PRISM Repurposing was
published by the Broad Institute in 2020 and contains screening data for 1446 compounds in 481
cell lines. Further details for these screens can be found in the “ Data Explorer/Explore Datasets”
tab of Smplicity or in their respective publications.

Full details of how these datasets were harmonized and quality controlled are included in the
Supplemental M ethods. However, avery brief description of this processis asfollows.

Initial cell line and compound harmonization tables were taken from our prior
harmoni zation efforts (Ling et al., 2018; Ling and Huang, 2020), which included harmonized
cell line and compound IDs for CTRPv2 and GDSC1. Data was further harmonized and
annotated using a mix of manual curation as well as data from https://www.cell osaurus.org/, the
BROAD Drug Repurposing Hub (https://www.broadinstitute.org/drug-repurposing-hub), and
https://webchem.org/. Raw data from each dataset was then quality controlled, and dose-response
curves were fit to the harmonized and quality controlled data. A user interface for exploring and
mani pulating this data was created using the shiny package (Winston Chang et al., 2020) inR (R
Core Team, 2020). Thisinterface, Smplicity, was then deployed on scal able cloud-based
infrastructure.

3 Validation of data quality

To validate the quality of Simplicity’s refitted dose-response curves, cross-dataset agreement
was measured for shared compounds and cell lines under the hypothesis that compound/cell-line
pairs which were screened in multiple screens should result in ssimilar AUC values across the
same dose-range in both screens. As such, high correlation in drug sensitivities measured
between two screens should indicate that dose-response curves have been appropriately fit, while
lower correlations may indicate inferior curve-fitting approaches.

We took data from three sources of harmonized data for the drug screens included in
Simplicity and sought to ensure that the cross-dataset agreement in Simplicity was not inferior to
other available sources. These three sources were:

1. Smplicity
2. Corsdloetal., 2020
3. PharmacoGx (Smirnov et al., 2016)
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Cross-dataset correlations were similar between all datasets when using any of the three
data sources, with larger variations between sources noted when comparing drug sensitivities
measured in PRISM-Repurposing to other screens (Figur es S1-S3). Despite similar performance
between data sources, a few compounds were much more or less correlated between screens with
Simplicity than with other datasets.

To understand these situations, we plotted PRISM-Repurposing vs. CTRPv2 AUC values
for the top eight compounds in which PharmacoGx had higher cross-dataset correlations than
Simplicity (Figure $4) and the top eight compounds in which Simplicity had higher cross-
dataset correlations than PharmacoGx (Figure S5). This data suggests that the majority of
compounds that see large differences in Spearman’ s rho values between data sources are
compounds that have low efficaciesin most tested cell lines, resulting in relatively little variation
in measured drug sensitivities. While it does appear that the curve fitting approach used by
Simplicity may perform worse or better for specific compounds than the approaches used by
other data sources, average performance across all tested compoundsis very similar.

This gives us confidence that the new functionalities provided by Simplicity to non-
computational users of these datasets do not come at a cost of reduced data quality. These
functionalities are described in the following sections.

4 Visualizing screening data with Simplicity

Simplicity allows users to generate customized plotsto easily visualize information such
as.

1. Ancestry (Figure 1A), age, gender, and cancer types across specific CCL populations
(not shown). This can facilitate rapid intuition around how well a set of CCLSs represents
aresearcher’ s patient cohort of interest.

2. Summary statistics of drug sensitivity across many CCLs for a single drug or across
many drugs for asingle CCL (Figure 1B). This enables users to quickly identify which
cell lines are most or least sensitive to a given drug or to identify which drugs a given
cell line shows exceptional sensitivity/resistance to.

3. Raw datafor agiven drug/CCL pair’s dose-response curve (Figure 1C). Thisallows
usersto directly visualize the quality of a given dose-response curve, as well asto
determine the level of reproducibility for a given drug/CCL pair across different datasets
and replicates.

4. Relevant background information to the results being plotted, such as information about
variationsin assay conditions between different CCLs screens and different experimental
runs within a given screen (Figure 1D). This can allow usersto easily visualize how
factors such as cell seeding density, plate format, assay reagent, and treatment duration
influence dose-response curves.

Customization of these plotsis achieved via use of searchable drop-down menus and slider
bars which allow filtering based on such characteristics as CCL disease type, age, gender, and
ancestry makeup or compound molecular target, mechanism of action, or clinical phase.

5 Calculating custom summary statistics with Simplicity

To enable researchers to easily generate dose-specific metrics of drug efficacy from these
screens, Simplicity provides the “Calculate Custom StatisticyAUC Values’ and “Calculate
Custom Statistics/Viability Values’ tabsto calculate AUC and Viability values at custom
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Figure 1. Examplefunctionality of Simplicity. Plots, tables, and interfaces from Simplicity. (A) Ancestry plot for
glioblastoma (GBM) cell lines tested with 5-Fluorouracil in GDSCL as provided by the “ Data Explorer/Explore
Compounds’ tab. (B) Examples of drug and cell-line level summaries produced by Simplicity. Left panel: Plot showing
measured sensitivities (1C50s) of Tozasertib in GBM cell lines in the PRI SM-Repurposing dataset as provided by the
“Data Explorer/Explore Compounds’ tab. Cell lines names and exact | C50 values can be obtained by hovering over each
data point. Right panel: Plot showing relative sensitivity of NKM-1 cell line to FDA approved (Launched) compounds
tested in GDSC2 as measured by |C50 percentile relative to all other cell lines tested with each compound in GDSC2 as
provided by the “ Data Explorer/Explore Cell Lines’ tab. Higher percentiles indicate NKM-1 was more sensitive to a
given compound relative to other tested lines. Direct 1C50 values can be obtained by hovering over each data point or by
downloading the summary statistics tables provided in the “ Download Bulk Data” tab of Simplicity. Note that infinite

I Cs values occur when fitted dose-response curves have alower asymptote above 50% viability. This can occur when
the data directly implies an asymptote above 50% viability or when the tested compound shows no efficacy at any tested
dose such that the fitted dose response curve is simply aflat line at 100% viability. (C) Calculated dose-response curves
for cisplatin in the NKM-1 cell line in both GDSC1 and GDSC2 a ong with the experiment 1Ds used to calculate the
curves as provided by the “ Data Explorer/Plot Dose-Response Curves’ tab. (D) Table of experimental conditionsused in
the experiments shown in panel C as provided by the “ Data Explorer/Plot Dose-Response Curves’ tab. (E) User interface
for calculating viability values at specified concentrations. The interface allows usersto easily select compounds, cell
lines, and concentrations of interest using a graphical user interface. A similar interface is aso available for calculating
area under the curve (AUC) values at custom concentration ranges.

concentrations/concentration ranges using a smple graphical user interface (Figure 1E). The
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interface provides the same searchable drop-down menus and slider bars present throughout the
rest of the app to allow easy selection of compounds and CCLs of interest. The results of these
calculations are provided as downloadable tables, with an option to automatically format the
output for direct use with the IDACombo web application, which uses dose-specific estimates of
monotherapy drug efficacy to predict drug combination efficacy across different doses of
combined drugs (Yunong Xiaet al., 2023).

6 Accessing bulk data through Simplicity

Simplicity also provides bulk data download for researchers who wish to use Simplicity’s
harmonized data with their own informatic tools. These can be accessed viathe “Download Bulk
Data’ tab. Available data includes;

1. Harmonized CCL and compound names between the included datasets.

2. Clinically relevant concentrations for 143 clinically tested compounds that are included
in Simplicity.

3. AUC and ICs values for the CCL-compound pairs tested in each screen.

4. Raw viability values from each screen following compound and CCL name
harmoni zation.

7 Summary

Simplicity provides a graphical user web interface which allows usersto easily visualize
and manipulate data from high-throughput CCL drug screens. Notably, Simplicity provides the
ability to query viability and AUC values at custom doses/dose ranges, enabling analyses to be
conducted with clinically relevant concentrations without the need for coding or informatic
experience. It is our hope that this will remove a significant barrier for non-computational
scientists who wish to use these datasets to conduct such dose-dependent studies. A video
tutorial on the use of Simplicity isavailable at
https.//www.youtube.com/watch?v=o0NuwRDs 5DQ.
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