

1 Neopolyploidy increases stress tolerance and reduces fitness plasticity
2 across multiple urban pollutants: support for the 'general purpose' genotype
3 hypothesis.

4

5 Martin M. Turcotte, Nancy Kaufmann, Katie L. Wagner, Taylor A. Zallek, and Tia-Lynn
6 Ashman

7 Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260

8 For correspondence: turcotte@pitt.edu ; tia1@pitt.edu

9

10 RUNNING TITLE: Neopolyplody alters fitness and tolerance to pollutants

11

12 KEYWORDS: adaptation, urban ecology, urban evolution, environmental pollutants,
13 Lemnaceae, stress tolerance, environmental trade-off, plasticity in fitness, genetic
14 correlation, autoploidy

15

16 ABSTRACT:

17 Whole genome duplication is a common macromutation with extensive impacts
18 from gene expression, to cellular function, and whole organism phenotype. As a result,
19 it has been proposed that polyploids have ‘general purpose’ genotypes that perform
20 better than their diploid progenitors under stressful conditions. Here we test this
21 hypothesis in the context of stresses presented by anthropogenic pollutants.
22 Specifically, we tested how multiple neotetraploid genetic lineages of the Greater
23 Duckweed (*Spirodela polyrhiza*) perform across a favorable control environment and
24 five urban pollutants (iron, salt, manganese, copper, and aluminum). By quantifying the
25 population growth rate of duckweed over multiple generations we found that across
26 most pollutants, but not all, polyploidy decreased the growth rate of actively growing
27 propagules but increased that of dormant ones. Yet, when considering total propagule
28 production, polyploidy increased tolerance to most pollutants and polyploids maintained
29 population-level fitness across pollutants better than diploids. Furthermore, broad-sense
30 genetic correlations in growth rate among pollutants were all positive in neopolyploids
31 but not so for diploids. Our results provide a rare test and support for the hypotheses
32 that polyploids are more tolerant of stressful conditions and can maintain fitness better
33 than diploids across heterogenous stresses. These results may help predict the
34 distribution of polyploids across stress gradients such as those caused by urbanization
35 and other human activities.

36

37

38 INTRODUCTION

39 Polyploidy (the possession of more than two sets of each chromosome resulting from
40 whole genome duplication) is a major macromutation that occurs throughout
41 eukaryotes, especially in plants where most have at least one genome duplication in
42 their past (e.g., Wood *et al.*, 2009). Polyploids often show increased genetic diversity,
43 genomic plasticity and phenotypic novelty relative to their diploid progenitors (Leitch &
44 Leitch, 2008; Soltis *et al.*, 2009; Van de Peer *et al.*, 2020) allowing them to rapidly adapt
45 and/or invade new habitats (e.g., te Beest *et al.*, 2012; Pyšek *et al.*, 2023). Interestingly,
46 polyploidy is often associated with historical periods of environmental change (Fawcett
47 *et al.*, 2009; Van de Peer *et al.*, 2017) as well as with harsh or stressful habitats globally
48 (Ehrendorfer, 1980; Rice *et al.*, 2019). Indeed, it has long been proposed that polyploids
49 might have ‘general purpose’ genotypes that are beneficial across a variety of
50 circumstances (Baker, 1965; Stebbins, 1971). Recently these ideas have been
51 combined to suggest that polyploids may perform better than diploids in the face of
52 contemporary anthropogenic stressors, such as those found in urban environments
53 (Van Drunen & Johnson, 2022).

54 Urban environments, with their vast infrastructure, impervious surfaces, and
55 human and industrial pollutants represent a confluence of anthropogenic forces. Plants
56 in urban habitats often experience increased abiotic stresses such as elevated
57 temperature, altered water and nitrogen availability, novel chemical pesticides and
58 industrial waste (Parris, 2016; Van Drunen & Johnson, 2022). Contaminants that can be

59 detrimental to plant growth such as alkaloids (e.g., aluminum), heavy metals (copper,
60 iron and manganese) and salts (NaCl), among many others, enter soils and waterways
61 through un- or partially treated effluent, atmospheric deposition, and stormwater runoff
62 from impervious surfaces (Hope *et al.*, 2004; Jacobson, 2011; Ruas *et al.*, 2022). While
63 some contaminants are micronutrients (e.g., Mn, Fe) that play essential roles in the
64 plant life cycle, excesses and unbalances can induce cytotoxic and genotoxic effects
65 and reduce plant fitness (Dutta *et al.*, 2018). Because polyploids can be more tolerant
66 than diploids to a wide range of abiotic stresses, e.g., thermal, drought, saline stress,
67 nutrient deficiencies and excesses (Van de Peer *et al.*, 2020; Tossi *et al.*, 2022) they
68 may have growth advantages in these contaminated environments. Surprisingly,
69 pollution and micronutrient excess are the least studied urban stresses to plants (Ruas
70 *et al.*, 2022) and also least studied from the perspective of ploidal tolerance differences
71 (Tossi *et al.*, 2022). Thus, an important step towards testing the hypothesis that
72 polyploids will have an advantage in urban habitats via increased stress tolerance (Van
73 Drunen & Johnson, 2022) will be to compare diploid and polyploid fitness under a suite
74 of common urban contaminants.

75 Stress tolerance is achieved via a variety of physiological, molecular and
76 morphological mechanisms (reviewed in Tossi *et al.*, 2022) which may impact whether
77 ploidy alters tolerance of different stressors in a specific or general manner. For
78 instance, multiple detoxifying and sequestration mechanisms exist in plants (Dutta *et al.*,
79 2018). And although polyploids were found to have greater tolerance in 90% of
80 reviewed studies (Tossi *et al.*, 2022), the effect of polyploidy can at times lead to lower

81 stress tolerance. For example, Mouhaya *et al.* (2010) found increased sensitivity to
82 saline stress in natural autotetraploid citrus species. Moreover, since few studies test
83 the independent effects of multiple stressors (but see Bafort *et al.*, 2023; Mattingly &
84 Hovick, 2023), the question of whether polyploidy provides general stress tolerance in
85 any given system is not yet been answered. In principle, however, because increased
86 gene copies, allelic diversity or network flexibility can allow polyploids to produce a
87 greater quantity or variety of gene product (Parisod *et al.*, 2010; De Smet & Van de
88 Peer, 2012) one would predict that polyploidy would generally increase tolerance to a
89 variety of stressors, especially where greater enzymatic activity increases detoxification
90 or increased transmembrane transport upregulates sequestration. Additionally, larger
91 cell or vacuole size of polyploids (Doyle & Coate, 2019) may allow for greater storage of
92 toxic substances as seen in hyperaccumulator species (Leitenmaier & Küpper, 2011).
93 Moreover, when mechanisms of tolerance are the same for two stressors (e.g., both
94 involving the same antioxidant pathway; Dutta *et al.*, 2018) polyploidy may have a
95 similar effect on tolerance to each. However, if there are tradeoffs between tolerance
96 mechanisms in diploids, for example if the mechanisms to cope with toxicity from two
97 stressors are alternate pathways, or rely on the same resource pool, we may find that
98 the greater genomic plasticity or genetic variation afforded by a polyploid genome
99 (Leitch & Leitch, 2008) buffers against these tradeoffs, leading to less negative or even
100 overall positive correlation among stress responses for polyploids. Alternatively, if the
101 underlying mechanisms (e.g., uptake limitation versus antioxidative to detoxify) or
102 genetic determinants (e.g., allelic diversity or gene interactions) vary among stressors

103 then we might find no universal pattern in the effect of polyploidy on stress tolerance.
104 Thus, it is still an open question as to whether polyploids have 'general purpose'
105 genotypes (Baker, 1965; Stebbins, 1971) that buffer them against a wide range of
106 stressors, including those commonly encountered in urban settings.

107 The ultimate expression of stress tolerance is maintaining fitness in the face of a
108 particular stressor (Simms, 2000). A polyploid possessing a general purpose genotype is
109 predicted to exhibit fitness homeostasis (e.g. lack of fitness plasticity) across multiple
110 environments (Madlung, 2013; Wei *et al.*, 2019; Mattingly & Hovick, 2023). However,
111 most studies comparing stress tolerance between diploids and polyploids compare
112 enzymatic metrics, physiological responses or fitness proxies of growth or development
113 (e.g., reviewed in Tossi *et al.*, 2022) to a single stressor and have not addressed fitness
114 homeostasis across a range of stressors (but see Wei *et al.*, 2019; Mattingly & Hovick,
115 2023). Because stress may impact different aspects of plant life-history these may not
116 fully be captured by measuring only physiological responses or biomass change in
117 individuals whereas as fitness integrates all impacts. The most appropriate fitness
118 comparison is to be made at the population level, where diploid and polyploid growth
119 both within generations and reproduction among generations contribute to population
120 fitness (e.g., Selmecki *et al.*, 2015; Anneberg *et al.*, 2023).

121 Recurrent formation of polyploids from genetically different diploids is a common
122 phenomenon in nature (Soltis & Soltis, 1999; Kolář *et al.*, 2017) and could lead to
123 variation in stress tolerance even when polyploidy involves one parental genome

124 (autopolyplody) rather than two genomes (allopolyploidy) (e.g., Wei *et al.*, 2019; Bafort
125 *et al.*, 2023; Mattingly & Hovick, 2023). This variation in stress tolerance may ultimately
126 determine the probability of polyploid establishment under novel or stressful conditions
127 (Soltis & Soltis, 1999; Van Drunen & Johnson, 2022). While use of multiple sources of
128 natural diploid and polyploids can address this to some degree (e.g., Wei *et al.*, 2019),
129 synthetic neopolyploids are recognized as a powerful tool because they avoid the
130 confounding effects of evolution after duplication that exist in wild polyploid–diploid
131 comparisons (Bomblies, 2020). Furthermore, including multiple genotypes of synthetic
132 autopolyploids allows for evaluating the potential for genetic diversity to contribute to
133 stress tolerance (co)variation in diploids and to test the effect of polyploidy on these
134 relations.

135 Here we used diploids and neopolyploids of the model plant the Giant Duckweed
136 (*Spirodela polyrhiza*; Lemnaceae). These floating aquatic angiosperms mostly
137 reproduce clonally and have a rapid generation time of 4-5 days (Acosta *et al.*, 2021)
138 making them a proven system for experimental population-level studies (Armitage &
139 Jones, 2019; Hart *et al.*, 2019; Hitsman & Simons, 2020; Subramanian & Turcotte,
140 2020; Huber *et al.*, 2021; Hess *et al.*, 2022) and several diploid duckweed species are
141 being studied for stress responses at the phenomenological and mechanistic levels and
142 used as potential phytoremediators (Dalu & Ndamba, 2003; Huber *et al.*, 2007; Ziegler
143 *et al.*, 2017; Chmilar & Laird, 2019; Ekperusi *et al.*, 2019; O'Brien *et al.*, 2022).

144 We grew six genetically distinct pairs of diploids and their immediate neotetraploid
145 descendants (Anneberg *et al.*, 2023) individually in water contaminated with one of five
146 urban pollutants (copper, iron, salt, aluminum, and manganese) and a control to answer
147 these specific questions concerning stress tolerance.

148

149 1. How does environmental pollution alter the relative fitness of diploids and their
150 derived neotetraploids? Does it depend on genetic lineage or pollutant?

151 2. Are neotetraploids more stress tolerant than diploids, or does it depend on
152 genetic lineage or pollutant?

153 3. Do neotetraploids maintain fitness (lower fitness plasticity) across pollutants
154 better than their progenitor diploids?

155 4. Are there genetic tradeoffs in fitness across pollutants and is this altered by
156 polyploidy?

157

158 METHODS

159 *Study System and the Creation of Neopolyploids*

160 *Spirodela polyrhiza* (L.) Schleid, is a globally distributed small floating aquatic plant in
161 the family Lemnaceae (Jacobs, 1947). They exist in fresh water ponds, streams, as well
162 as being common in urban parks, drainage ditches, and waste water collection sites
163 where they encounter numerous pollutants (Dalu & Ndamba, 2003; O'Brien *et al.*,
164 2022). When reproducing asexually through budding, they can produce actively growing

165 individuals (hereafter referred to as fronds) or under stress produce dormant propagules
166 termed turions (Jacobs, 1947; Appenroth *et al.*, 1996).

167 In 2017, *S. polyrhiza* was sampled from natural and urban ponds in Western
168 Pennsylvania and Eastern Ohio, U.S.A. (Table S1). Individuals were used to establish
169 six mono-clonal colonies and were confirmed to be unique genotypes using 10
170 microsatellite loci (Table S1; Xu *et al.*, 2018; Kerstetter *et al.*, 2023). These were
171 cultured in conditions that maintain asexual reproduction and formed the initial genetic
172 lineages. Synthetic neotetraploids were created from six genetically distinct diploids
173 using the mitotic inhibitor colchicine (Sigma Aldrich, CAS: 64-86-8). Details of the
174 methodology are found in Anneberg *et al.* (2023), and four of the lineages used here are
175 reported therein. Briefly, after exposing populations of a single diploid genotype to
176 colchicine we tested ploidy using flow cytometry following Wei *et al.* (2020). We retained
177 both converted neotetraploids and unconverted diploids from each genetic lineage.
178 These were maintained in quarter strength growth media described in Appenroth *et al.*
179 (1996). Before the experiment, each of the 12 sublineages (a diploid and polyploid of
180 each genetic lineage) were grown in common garden conditions for two weeks. This
181 consisted of growth in full strength media under fluorescent lights at room temperature.

182

183 *Experimental Design*

184 We selected five urban pollutants that duckweed populations may commonly encounter
185 (Bhat, 2012; Vo *et al.*, 2018; O'Brien *et al.*, 2022). The concentrations used during the
186 experiment were determined by pilot studies on other duckweed diploid genotypes

187 (Zallek and Turcotte unpublished). We selected concentrations that reduced population
188 growth but did not kill all the duckweed within a few weeks. Given that our focus is to
189 compare among ploidies rather than among pollutants per se we did not aim to equalize
190 the negative impacts of each pollutant. Each experimental unit consisted of 120 mL
191 glass jar (Fisher, U.S.A., # FB02911775) to which 90 mL of quarter strength autoclaved
192 media was added. Jars were set in plastic trays and a large plastic lid covered the tray.
193 Pollutant treatments varied in the addition of nothing (control), 0.04 mM of FeCl_3 (iron),
194 40 mM of NaCl (salt), 0.6 mM of MnCl_2 (manganese), 0.0025 mM of CuSO_4 (copper), or
195 0.015 mM of $\text{Al}_2(\text{SO}_4)_3$ (aluminum). The growth media also contains small quantities of
196 Fe (0.025 mM), Mn (0.013 mM), Na (0.0258 mM) and Cl (0.026 mM) as micronutrients.
197 During the week of January 23, 2023, four individual duckweed (fronds) were added to
198 each jar. On days 7, 14, and 21 jars were photographed and duckweed fronds were
199 manually counted from the photos using Fiji (Schindelin *et al.*, 2012). Turions were
200 counted on day 21. We counted fronds and turions separately because the relative
201 performance of diploids and neopolyploids can depend on which is quantified
202 (Anneberg *et al.*, 2023).

203 The experiment was conducted by 836 undergraduate students at the University
204 of Pittsburgh taking a research focus lab course. Students were divided into 42 course
205 sections of up to 20 students, taught by 13 instructors, across three laboratory
206 classrooms. Genetic lineages were tested across different rooms and instructors, but
207 each section tested only two lineages. Sublineages (diploid and polyploid) of a specific
208 genetic lineage were always tested together. Specifically, students worked in pairs,

209 setting up four jars of a single lineage (e.g., SP.05) in a factorial design of control or a
210 single pollutant crossed with the diploid or polyploid sublineage. This approach led to an
211 unbalanced design with five times as many control jars but was important to teach
212 students the importance of controls. Thus, each section set up 24 control jars and four
213 jars of each metal. After removing jars with missing data or major errors (e.g., adding
214 greater than 50% too many duckweed initially) a total of 1591 experimental units (jars)
215 were analyzed. Each sublineage by pollutant combination (excluding control) had on
216 average 13.25 (SD = 3.08) replicates.

217 *Statistical Analysis*

218 To address the relative performance of ploidies under varied pollutants we separately
219 quantified the production of fronds and turions. For fronds, we first compared the fit of
220 linear and exponential population growth models. In these models, the response
221 variable was the abundance of fronds and explanatory fixed factors included ploidy,
222 genetic lineage, and pollutant as well as their interactions. In all models the initial
223 abundance was set as the initial frond number added to each jar, (i.e., not estimated by
224 the model). Jar was a random effect that accounted for repeated measures. We tested
225 various models with different random effects (section number, instructor, or room) as
226 well as the presence or absence of a variance function that increased with time. The
227 best fitting model, as determined by model comparison using AIC, was a linear model
228 with jar nested within section number as random effects. Models were fit using the nlme
229 function in the package of the same name (Bates & R Core Team, 2023). In addition to
230 the general statistical analysis, which used type III sums of squares, we conducted

231 planned contrasts comparing the growth rates of diploids versus polyploids within each
232 pollutant using the emmeans package (Russell, 2023).

233 We tested for differences in turion production using a linear mixed-effect model
234 with turion as the response variable, with fixed factors of ploidy, genetic lineage, and
235 pollutant as well as their interactions, and section number as a random effect using the
236 lme function in the nlme package. We then conducted planned contrasts as above.

237 To evaluate ploidal differences in tolerance to pollutants and fitness plasticity
238 across pollutants we analyzed the total abundance of individuals (fronds and turions
239 combined) to provide an overall assessment of population growth. To evaluate
240 tolerance and fitness maintenance we first quantified the growth rate within each jar. We
241 fit a simple linear population growth model to each jar with initial abundance pre-
242 determined by the initial number of individuals added. Then we calculated tolerance as
243 the growth rate in a given pollutant divided by the control, where each pair of jars was
244 measured by a single student and represented one control and one single pollutant of
245 the same lineage and ploidy. We fit a linear mixed-effect model to these tolerance
246 values with ploidy, lineage, pollutant, and their interactions as fixed effects and section
247 number as a random effect. We also conducted planned contrasts comparing diploids to
248 polyploids across all pollutants as well as in each pollutant treatment.

249 To quantify fitness plasticity in the face of the five pollutants, excluding the
250 control, we also analyzed variation in growth rate at the jar level. We calculated the
251 Relative Distance Plasticity Index (RDPI, Valladares *et al.*, 2006) for each sublineage
252 (combination of lineage and ploidy). The relative differences in growth rate among two

253 jars is the absolute difference in growth rates divided by the sum of both growth rates.
254 This is calculated for all possible pairings of jars that have the same duckweed
255 sublineage but only between jars that have a different pollutant treatment (e.g., diploid
256 SP.05 iron and salt). Then the relative differences are summed and divided by the
257 number of pairings to give the RDPI value. This is then repeated for each sublineage.
258 Using these distances, we fit a linear model with lineage and ploidy and their interaction
259 as fixed effects, we then used planned contrasts to compare ploidy within each lineage.
260 We used scripts from Ameztegui (2017) to run our analyses.

261 We then calculated broad sense genetic correlations among pairs of pollutant.
262 First, we fit a mixed-effect model to the jar level growth rate data that had ploidy,
263 lineage, pollutant and their interactions as fixed effects and section number as a random
264 effect. Given that the duckweed reproduce clonally, we calculated genetic correlations
265 among each pair of pollutants using the estimated marginal means from the mixed-
266 effect model. We calculated Pearson correlation coefficients and their significance
267 among the six diploid lineages for each possible pair of pollutant and repeated this
268 procedure for the polyploids. We used the cor function in the base package of R as well
269 as the corrplot package (Wei & Simko, 2021). Finally, we used a paired t-test on the
270 correlation coefficients to test whether the correlations were differed among diploids and
271 polyploids.

272

273

274

275 RESULTS

276 *Environmental pollution alters the relative performance of diploids and their derived*
277 *neotetraploids in ways that depend on pollutant and genetic lineage.*

278 The effect of ploidy on performance quantified as both the growth rate in frond
279 abundance as well as the total number of turions produced (see Figure S1 for time
280 series) had pollutant- and genetic lineage-dependent effects. A linear mixed-effect
281 model revealed that ploidy, lineage, and pollutant and all interactions significantly
282 impacted the growth rate of fronds (all $P < 0.001$; Table S2; Fig. 1). Although
283 interpretation is complex given the interactions, planned contrasts (Fig. 1) revealed that
284 the relative performance of the diploids depended both quantitatively (effect size) and
285 qualitatively (direction of effect) on the pollutants. Neotetraploids performed significantly
286 worse in control than diploids (-37% in population growth rate, see Fig. 1 for P values),
287 in aluminum (-31%), iron (-30%), and in salt (-18%). Yet, in manganese performance did
288 not differ significantly (-8%) and in copper the polyploids performed significantly better
289 (+18%). While there was variation among genetic lineages, they generally followed
290 these overall trends (Fig. 1). In control, iron, salt, and aluminum diploid populations
291 grew faster than their derived polyploids for all lineages but the effect sizes varied. But
292 in copper and manganese polluted media, approximately half the genetic lineages show
293 polyploids performed better than diploids. Moreover, when we fit models to each
294 pollutant separately, there were significant ploidy by lineage interactions ($P < 0.001$) in
295 all stressors except for iron and aluminum ($P = 0.18$ and $P = 0.14$ respectively).

296 In contrast to fronds, turion production was higher in neopolyploids than diploids
297 but was also strongly impacted by genetic lineage and pollutant type (Fig. 2; Fig. S1).
298 Unlike frond growth rate, the control conditions lead to similar total turion production
299 even though there were generally more fronds in the control treatment. The mixed
300 model revealed strong effects of genetic lineage and its interactions with ploidy and
301 pollutant (all $P \leq 0.0001$; Table S3). Yet, averaging across lineages, planned contrasts
302 show that polyploids produce more turions in iron (+196%; Fig. 2), aluminum (+131%),
303 copper (+94%), and in control (+29%), whereas they do not differ significantly from
304 diploids in manganese and salt. Pollutant specific models revealed all treatments had
305 significant ploidy by lineage interactions (salt $P = 0.049$, all others $P < 0.0001$). Indeed,
306 salt almost completely prevented turion production for both diploids (estimated marginal
307 means of 0.012) and neopolyploids (0.139).

308

309 *Neotetraploids often are more tolerant to pollutant stress.*

310 When tolerance is estimated as population growth under pollutant stress divided by that
311 under control conditions, neopolyploidy generally increased tolerance although this was
312 also influenced by lineage (Fig. 3). Again, interactions between ploidy, lineage, and
313 pollutant type were significant (Table S4). A planned contrast averaging across all
314 pollutants and lineages found that polyploids are more tolerant (estimated marginal
315 mean 0.678) than diploids (0.520, $P < 0.0001$). This positive impact of neopolyploidy is
316 statistically supported for all pollutants (planned contrasts; +6% to +66%, Fig. 3) except
317 for iron. Yet, genetic lineage had a strong impact, with neopolyploids in three lineages

318 (SP.01, SP.05, and SP.11) having higher tolerance than their respective diploids under
319 all stressors, neopolyploids in two lineages (SP.41 and SP.43) had rank order changes
320 across pollutants, whereas neotetraploid SP.07 was uniformly less tolerant.

321

322 *Neotetraploids maintain fitness across pollutants better and showed fewer genetic*
323 *tradeoffs in fitness under varied pollutants than their progenitor diploids.*

324 Polyploids maintained population growth across various stressors better than diploids
325 as evidenced by both lower plasticity (measured as RDPI) and positive broad-sense
326 genetic correlations. Ploidy, lineage and their interactions significantly impacted fitness
327 plasticity across the five pollutants (Fig. 4; Table S5, all $P < 0.0001$). Overall, polyploids
328 had lower fitness plasticity than diploids (0.268 vs 0.290) but this varied among
329 lineages. In SP.01, SP.05, SP.11 and SP.41 neotetraploids maintained fitness better
330 than their diploid progenitors. But the opposite was observed with SP.43. Finally,
331 lineage SP.07 had the lowest and least variable fitness plasticity between ploidies
332 (diploid vs neotetraploid: 0.190 and 0.193, Fig. 4).

333 Broad-sense genetic correlations in growth rate between pairs of metal pollutants
334 were impacted by neopolyploidy. Correlations ranged from negative to positive in
335 diploids but were all positive in neotetraploids (Fig. 5) but given the small sample size,
336 only four individual correlations had P values between 0.001 and 0.07 (diploids: copper-
337 salt -0.81, $P = 0.05$; iron-salt -0.77, $P = 0.07$; neotetraploids: aluminum-copper 0.96, $P =$
338 0.003; iron-manganese 0.92, $P = 0.011$). Nevertheless, across all correlations, a paired

339 *t*-test revealed that diploids had significantly weaker and more negative correlations
340 than polyploids (difference of -0.53, $t = -3.09$, $df = 9$, $P = 0.013$).

341

342 DISCUSSION

343 Our exploration of the effects of neotetraploidy on duckweed population growth across
344 five common urban pollutants provided support for two hypothesized advantages of
345 polyploidy both in a general sense and with special regards to urban habitats. We found
346 that relative to their diploid progenitors, neopolyploid duckweeds 1) are better stress
347 tolerators and 2) show lower fitness plasticity across heterogenous pollutant
348 environments and thus appear to have general purpose genotypes. And while the
349 evidence for these generalizations is compelling, important complexities were also
350 revealed. Specifically, ploidal responses varied by genetic lineage as well as by
351 pollutant. Indeed, some stressful conditions reverse the ranking of ploidies. In the
352 following paragraphs we explore in more depth the implications of both genetic- and
353 environment-dependent advantages of neopolyploidy under urban pollution.

354 Our results demonstrated that stress conditions can upend fitness differences
355 between the ploidies. Under favorable (control) conditions neotetraploid populations
356 grew slower via fronds but produced more turions (Fig. 1 and 2). These results
357 corroborate previous studies with synthetic neopolyploid duckweeds (Anneberg *et al.*,
358 2023; Assour *et al.*, *in Review*). But when exposed to pollutant stress, population growth
359 rate of fronds in diploids was more similar to that of polyploids, however, the degree of
360 change depended on pollutant and genetic lineage. Similar, three-way interactions

361 dominated turion production. Interestingly, some pollutants suppressed a ploidal
362 difference, manganese for fronds, iron and salt for turions. One contaminant even
363 reversed the direction of diploid-neopolyplloid difference: in copper polyploids performed
364 significantly better than diploids in active propagule production. Similar, pollutant-
365 dependent outcomes have been seen at the organismal level where salt and low
366 nutrients and their combination lead to varying responses in two for *Arabidopsis*
367 neotetraploids (Mattingly & Hovick, 2023). Much like our results, Bafort et al. (2023),
368 using a different set of pairs of neotetraploid-diploid duckweed, found the advantage of
369 polyploidy to be environment and genetic lineage specific. Neopolyploids showed an
370 increase frond surface area at low concentration of salt. Yet their study did not measure
371 turions. As we observed turion production, which is typically higher in neopolyploid
372 duckweed, was suppressed by salt (Fig. 2), perhaps this gave rise to greater allocation
373 by neopolyploids to fronds production under these conditions, and lower ploidal
374 difference here as well (Fig. 1). Taken together these studies suggest that there are
375 stressful conditions associated with urban activities that may allow neopolyploids to
376 establish and persist locally. Whether neopolyploids are more common in urban
377 environments remain unknown (Van Drunen & Johnson, 2022). Indeed, because
378 neopolyploid duckweeds invest more heavily in allocation to future propagules in
379 duckweeds (turion production) across most pollutant conditions tested, neopolyploids
380 may be even more likely to persist in urban environments with severe winters
381 (Anneberg et al., 2023).

382 Consistent with these fitness results, we also found that neopolyploidy leads to
383 higher tolerance across most pollutants and genetic lineages. Relative to control
384 conditions, polyploids are better able to maintain their total population growth rate
385 (fronds and turions; Fig. 3). Although this result is influenced by the fact that diploids
386 have higher fitness in control conditions (Fig. 1), it may indicate that polyploids are
387 better able to handle stress but at a cost that is only apparent in ideal, uncontaminated
388 growth conditions, which are increasingly rare in the Anthropocene. Whether
389 neopolyploid's higher tolerance is due to higher capacity for storage, greater
390 detoxification, or other mechanisms remains to be determined with cellular
391 morphometric and enzymatic studies, such as those reviewed in Tossi *et al.* (2022).

392 We found that relative to diploids, neopolyploids had lower plasticity in population
393 growth rate across stress conditions indicating a maintenance of fitness across
394 heterogeneous pollutants. While on first glance this may seem counter to other
395 predictions and findings of increased phenotypic plasticity in polyploids (Parisod *et al.*,
396 2010; Spoelhof *et al.*, 2017; Van de Peer *et al.*, 2017; Wei *et al.*, 2019; Mattingly &
397 Hovick, 2023), it is important to note that these other studies focus on plasticity in
398 functional *traits* not *fitness* and indeed higher trait plasticity is expected to buffer fitness
399 and thus lead to lower fitness plasticity (see Wei *et al.*, 2019). Here we did not measure
400 specific traits so we do not know how or what phenotypic changes might contribute to
401 the fitness maintenance seen in polyploids. These could be changes in frond size,
402 thickness, or photosynthetic activity seen in Bafort *et al.* (2023) in response to salt and
403 cadmium pollution, or changes in the numerous other mechanism of detoxification of

404 pollutants observed in diploid duckweeds (Ekperusi *et al.*, 2019; Huber *et al.*, 2021).

405 Work to make these mechanism-function connections are a key next step.

406 Nevertheless, the shifts in broad-sense genetic correlations of fitness across
407 pollutants from negative to positive (Fig. 5) for neopolyploids gives rise to the intriguing
408 possibility that neopolyploidy leads to an instantaneous buffering from constraints. And
409 while we acknowledge the low power of this test, these seem not to be driven by similar
410 types of pollutants as the significant pairs were from different classes (alkaloids, heavy
411 metals, and salt) rather than within one. Such an outcome could reflect a global
412 advantage of larger cells (*gigas* effect; Doyle & Coate, 2019) and thus increased
413 storage of toxic substances by neopolyploids. They could however also reflect
414 upregulation or rewiring of shared antioxidant pathways (Lu *et al.*, 2020), so we
415 encourage greater exploration of this idea with increased number of genetic lineages,
416 classes and concentrations of pollutants while still employing rigorous fitness measures.
417 Integrated studies of stress tolerance across levels from cellular to organismal level will
418 be crucial for understanding the polyploidy-stress relationship across systems (Wei *et*
419 *al.*, 2020).

420 Across our study we found a strong impact of the interaction between genetic
421 lineage and ploidy within one or among different pollutants. The effect of ploidy on
422 performance, tolerance, and fitness plasticity were all influenced by genetic lineage
423 either quantitatively or sometimes qualitatively. Even though genomic studies suggest
424 that *S. polyrhiza* has low genetic diversity (Ho *et al.*, 2019; Xu *et al.*, 2019), both our
425 study with lineages of NE USA and that of Bafort *et al.* (2023) with lineages from

426 different continents demonstrated pronounced difference among lineages in the effects
427 of polyploidization. This disconnect suggests that functional differences within diploid *S.*
428 *polyrhiza* may derive from epigenetic variation that can be altered by
429 autopolyploidization along with genetic variation (Chen, 2007; Huber *et al.*, 2021) and
430 strongly influence stress tolerance and population growth. Regardless of the
431 mechanism, our results join that of several others demonstrating the importance of
432 genetic variation in diploid progenitors on neopolyploid morphology (Wei *et al.*, 2020),
433 population growth (Anneberg *et al.*, 2023) and response to abiotic (Wei *et al.*, 2020;
434 Bafort *et al.*, 2023) and biotic interactions (Forrester *et al.*, 2020; Anneberg *et al.*, *In*
435 *Press*; Assour *et al.*, *in Review*). And provide additional support for the idea that
436 repeated evolution of polyploids may be key to their success (Soltis & Soltis, 1999;
437 Kolář *et al.*, 2017; Wei *et al.*, 2020). Moreover, this type of variation is especially
438 important in the context of eco-evolutionary dynamics that could occur in urban
439 environments (Verrelli *et al.*, 2022), because not only does it suggest that the impact of
440 ploidy is modulated by the genetic background of the progenitor diploid but it also
441 indicates that there is ample opportunity for natural selection. Finally, because we have
442 shown here that the degree and direction of ploidal fitness difference varies among the
443 pollutants means there is the potential for heterogeneity in ploidal dominance within
444 urban environments depending on specific pollutants environment.

445 In conclusion, our study corroborates that of others suggesting that the
446 combination of environmental perturbations and independent polyploidization events
447 maybe crucial for the establishment of polyploids (Fawcett *et al.*, 2009; Wei *et al.*, 2020;

448 Anneberg *et al.*, 2023). This may be even more important in the 21st century as urban
449 stressors may elevate both polyploid production and stress levels (Van Drunen &
450 Johnson, 2022).

451

452

453 AUTHOR CONTRIBUTIONS: MMT, TZ, NK, and KW created and deployed the
454 curriculum, and helped collect/collate/clean the data. All authors contributed to the
455 design of the experiment. MMT and TLA analyzed and interpreted the data and wrote
456 the manuscript. All authors contributed to manuscript revisions.

457

458 ACKNOWLEDGEMENTS: We would like to thank the students of Duckweed Survivor
459 (BioSci 0057, Spring 2023 semester) and instructors (M. Amour, D. Bisi, S. Gess, N.
460 Kanmanii, N. Kaufmann, A. Martin, A Nigam, K. Parks, B. Reed, J. Robertson, S.
461 Stuckman, K. Wagner, and C. Wiesner) for conducting the experiment and K. Butela, K.
462 Wozniak, and L. Rzodkiewicz for input on the course development, S. Bhattacharya, J.
463 Robertson, and K. Kroeger for preparing duckweed populations for the course, E.
464 O'Neill, J. Kerstetter, T. Anneberg, and A. Burr for help creating and maintaining the
465 diploid-polyploid lineages. This work was supported by Dietrich School of Arts and
466 Sciences, Department of Biological Sciences, NSF grant DEB-1935410 to MMT and
467 DEB-2027604 to TLA, Mellon Fellowship to TZ.

468

469

470 REFERENCES:

471 Acosta, K., Appenroth, K.J., Borisjuk, L., Edelman, M., Heinig, U., Jansen, M.A.K., *et al.*
472 (2021) Return of the Lemnaceae: Duckweed as a model plant system in the genomics
473 and postgenomics era. *The Plant Cell*, **33**, 3207–3234.

474 Ameztegui, A. (2017) Plasticity: A package for computing plasticity indices. GitHub
475 repository, <https://github.com/ameztegui/Plasticity>.

476 Anneberg, T.J., O'Neill, E.M., Ashman, T.-L. & Turcotte, M.M. (2023) Polyploidy impacts
477 population growth and competition with diploids: multigenerational experiments reveal
478 key life history tradeoffs. *New Phytologist*, **238**, 1294–1304.

479 Anneberg, T.J., Turcotte, M.M. & Ashman, T.-L. (*In Press*) Plant neopolyploidy and
480 genetic background differentiates the microbiome of duckweed across a variety of
481 natural freshwater sources. *Molecular Ecology*.

482 Appenroth, K.J., Teller, S. & Horn, M. (1996) Photophysiology of turion formation and
483 germination in *Spirodela polyrhiza*. *Biologia Plantarum*, **38**, 95–106.

484 Armitage, D.W. & Jones, S.E. (2019) Negative frequency-dependent growth underlies
485 the stable coexistence of two cosmopolitan aquatic plants. *Ecology*, **100**, e02657.

486 Assour, H.A., Ashman, T.-L. & Turcotte, M.M. (*in Review*) Neopolyploidy-induced
487 changes in the giant duckweed (*Spirodela polyrhiza*) alter herbivore preference,
488 performance, and plant population performance.

489 Bafort, Q., Wu, T., Natran, A., De Clerck, O. & Van de Peer, Y. (2023) The immediate
490 effects of polyploidization of *Spirodela polyrhiza* change in a strain-specific way along
491 environmental gradients. *Evolution Letters*, **7**, 37–47.

492 Baker, H.G. (1965) Characteristics and modes of origin of weeds. In *Genetics of
493 Colonizing Species*. Academic Press, New York, USA, pp. 147–172.

494 Bates, J. & R Core Team. (2023) nlme: Linear and Nonlinear Mixed Effects Models. R
495 package version 3.1-163, <https://CRAN.R-project.org/package=nlme>.

496 Beest, M. te, Le Roux, J.J., Richardson, D.M., Brysting, A.K., Suda, J., Kubesová, M., *et
497 al.* (2012) The more the better? The role of polyploidy in facilitating plant invasions.
498 *Annals of Botany*, **109**, 19–45.

499 Bhat, Dr.M. (2012) Assessment of heavy metal pollution in urban pond ecosystems.
500 *Universal Journal of Environmental Research and Technology*.
501 Bomblies, K. (2020) When everything changes at once: finding a new normal after
502 genome duplication. *Proceedings Of The Royal Society B-Biological Sciences*, **287**,
503 20202154.
504 Chen, Z.J. (2007) Genetic and epigenetic mechanisms for gene expression and
505 phenotypic variation in plant polyploids. *Annual Review of Plant Biology*, **58**, 377–406.
506 Chmilar, S.L. & Laird, R.A. (2019) Demographic senescence in the aquatic plant *Lemna*
507 *gibba* L. (Araceae). *Aquatic Botany*, **153**, 29–32.
508 Dalu, J.M. & Ndamba, J. (2003) Duckweed based wastewater stabilization ponds for
509 wastewater treatment (a low cost technology for small urban areas in Zimbabwe).
510 *Physics and Chemistry of the Earth, Parts A/B/C*, **28**, 1147–1160.
511 De Smet, R. & Van de Peer, Y. (2012) Redundancy and rewiring of genetic networks
512 following genome-wide duplication events. *Current Opinion in Plant Biology*, Genome
513 studies molecular genetics, **15**, 168–176.
514 Doyle, J.J. & Coate, J.E. (2019) Polyploidy, the nucleotype, and novelty: the impact of
515 genome doubling on the biology of the cell. *International Journal of Plant*, **180**, 1–52.
516 Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U., et al. (2018) Oxidative
517 and genotoxic damages in plants in response to heavy metal stress and maintenance
518 of genome stability. *Plant Signaling & Behavior*, **13**, e1460048.
519 Ehrendorfer, F. (1980) Polyploidy and distribution. In *Polyploidy, biological relevance*.
520 Plenum Press, New York, NY, USA, pp. 45–60.
521 Ekperusi, A.O., Sikoki, F.D. & Nwachukwu, E.O. (2019) Application of common
522 duckweed (*Lemna minor*) in phytoremediation of chemicals in the environment: State
523 and future perspective. *Chemosphere*, **223**, 285–309.
524 Fawcett, J.A., Maere, S. & Van de Peer, Y. (2009) Plants with double genomes might
525 have had a better chance to survive the Cretaceous–Tertiary extinction event.
526 *Proceedings of the National Academy of Sciences*, **106**, 5737–5742.

527 Forrester, N.J., Rebolledo-Gómez, M., Sachs, J.L. & Ashman, T.-L. (2020) Polyploid
528 plants obtain greater fitness benefits from a nutrient acquisition mutualism. *New*
529 *Phytologist*, **227**, 944–954.

530 Hart, S.P., Turcotte, M.M. & Levine, J.M. (2019) Effects of rapid evolution on species
531 coexistence. *Proceedings of the National Academy of Sciences*, **116**, 2112–2117.

532 Hess, C., Levine, J.M., Turcotte, M.M. & Hart, S.P. (2022) Phenotypic plasticity
533 promotes species coexistence. *Nature Ecology & Evolution*, **6**, 1256–1261.

534 Hitsman, H.W. & Simons, A.M. (2020) Latitudinal variation in norms of reaction of
535 phenology in the greater duckweed *Spirodela polyrhiza*. *Journal of Evolutionary*
536 *Biology*, **33**, 1405–1416.

537 Ho, E.K.H., Bartkowska, M., Wright, S.I. & Agrawal, A.F. (2019) Population genomics of
538 the facultatively asexual duckweed *Spirodela polyrhiza*. *New Phytologist*, **224**, 1361–
539 1371.

540 Hope, D., Naegeli, M.W., Chan, A.H. & Grimm, N.B. (2004) Nutrients on asphalt parking
541 surfaces in an urban environment. In *Biogeochemical Investigations of Terrestrial,*
542 *Freshwater, and Wetland Ecosystems across the Globe* (ed. by Wieder, R.K., Novák,
543 M. & Vile, M.A.). Springer Netherlands, Dordrecht, pp. 371–390.

544 Huber, J.A., Mark Welch, D.B., Morrison, H.G., Huse, S.M., Neal, P.R., Butterfield, D.A.,
545 *et al.* (2007) Microbial Population Structures in the Deep Marine Biosphere. *Science*,
546 **318**, 97–100.

547 Huber, M., Gablenz, S. & Höfer, M. (2021) Transgenerational non-genetic inheritance
548 has fitness costs and benefits under recurring stress in the clonal duckweed *Spirodela*
549 *polyrhiza*. *Proceedings of the Royal Society B: Biological Sciences*, **288**, 20211269.

550 Jacobs, D.L. (1947) An ecological life-history of *Spirodela polyrhiza* (Greater Duckweed)
551 with emphasis on the turion phase. *Ecological Monographs*, **17**, 437–469.

552 Jacobson, C.R. (2011) Identification and quantification of the hydrological impacts of
553 imperviousness in urban catchments: A review. *Journal of Environmental*
554 *Management*, **92**, 1438–1448.

555 Kerstetter, J., Reid, A., Armstrong, J., Zallek, T., Hobble, T. & Turcotte, M. (2023)
556 Characterization of microsatellite markers for the duckweed *Spirodela polyrhiza* and

557 *Lemna minor* tested on samples from Europe and the United States of America.

558 *Genetic Resources*, **4**, 46–55.

559 Kolář, F., Čertner, M., Suda, J., Schönswitter, P. & Husband, B.C. (2017) Mixed-ploidy

560 species: Progress and opportunities in polyploid research. *Trends in Plant Science*,

561 **22**, 1041–1055.

562 Leitch, A.R. & Leitch, I.J. (2008) Genomic plasticity and the diversity of polyploid plants.

563 *Science*, **320**, 481–483.

564 Leitenmaier, B. & Küpper, H. (2011) Cadmium uptake and sequestration kinetics in

565 individual leaf cell protoplasts of the Cd/Zn hyperaccumulator *Thlaspi caerulescens*.

566 *Plant, Cell & Environment*, **34**, 208–219.

567 Lu, Q., Liu, J., Chen, L., Yang, D., Shen, J., Li, J., et al. (2020) ABA-regulated ploidy-

568 related genes and non-structural carbon accumulation may underlie cold tolerance in

569 tetraploid *Fragaria moupinensis*. *Environmental and Experimental Botany*, **179**,

570 104232.

571 Madlung, A. (2013) Polyploidy and its effect on evolutionary success: old questions

572 revisited with new tools. *Heredity*, **110**, 99–104.

573 Mattingly, K.Z. & Hovick, S.M. (2023) Autopolyploids of *Arabidopsis thaliana* are more

574 phenotypically plastic than their diploid progenitors. *Annals of Botany*, **131**, 45–58.

575 Mouhaya, W., Allario, T., Brumos, J., Andrés, F., Froelicher, Y., Luro, F., et al. (2010)

576 Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability

577 and correlates with expression of candidate genes. *Functional Plant Biology*, **37**, 674–

578 685.

579 O'Brien, A.M., Yu, Z.H., Pencer, C., Frederickson, M.E., LeFevre, G.H. & Passeport, E.

580 (2022) Harnessing plant-microbiome interactions for bioremediation across a

581 freshwater urbanization gradient. *Water Research*, **223**, 118926.

582 Parisod, C., Holderegger, R. & Brochmann, C. (2010) Evolutionary consequences of

583 autopolyploidy. *New Phytologist*, **186**, 5–17.

584 Parris, K.M. (2016) *Ecology of urban environments*. John Wiley & Sons Ltd, Chichester,

585 West Sussex.

586 Pyšek, P., Lučanová, M., Dawson, W., Essl, F., Kreft, H., Leitch, I.J., *et al.* (2023) Small
587 genome size and variation in ploidy levels support the naturalization of vascular plants
588 but constrain their invasive spread. *New Phytologist*, **239**, 2389–2403.

589 Rice, A., Šmarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., *et al.* (2019) The
590 global biogeography of polyploid plants. *Nature Ecology & Evolution*, **3**, 265–273.

591 Ruas, R. de B., Costa, L.M.S. & Bered, F. (2022) Urbanization driving changes in plant
592 species and communities – A global view. *Global Ecology and Conservation*, **38**,
593 e02243.

594 Russell, V.L. (2023) emmeans: estimated marginal means, aka least-squares means. R
595 package version 1.8.4-1. <https://CRAN.R-project.org/package=emmeans>.

596 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., *et*
597 *al.* (2012) Fiji: an open-source platform for biological-image analysis. *Nature Methods*,
598 **9**, 676–682.

599 Selmecki, A.M., Maruvka, Y.E., Richmond, P.A., Guillet, M., Shores, N., Sorenson,
600 A.L., *et al.* (2015) Polyploidy can drive rapid adaptation in yeast. *Nature*, **519**, 349–
601 352.

602 Simms, E.L. (2000) Defining tolerance as a norm of reaction. *Evolutionary Ecology*, **14**,
603 563–570.

604 Soltis, D.E., Albert, V.A., Leebens-Mack, J., Bell, C.D., Paterson, A.H., Zheng, C., *et al.*
605 (2009) Polyploidy and angiosperm diversification. *American Journal of Botany*, **96**,
606 336–348.

607 Soltis, D.E. & Soltis, P.S. (1999) Polyploidy: recurrent formation and genome evolution.
608 *Trends in Ecology & Evolution*, **14**, 348–352.

609 Spoelhof, J.P., Soltis, P.S. & Soltis, D.E. (2017) Pure polyploidy: Closing the gaps in
610 autoploid research. *Journal of Systematics and Evolution*, **55**, 340–352.

611 Stebbins, G.L. (1971) *Chromosomal evolution in higher plants*. Edward Arnold, London,
612 UK.

613 Subramanian, S.K. & Turcotte, M.M. (2020) Preference, performance, and impact of the
614 water-lily aphid on multiple species of duckweed. *Ecological Entomology*, **45**, 1466–
615 1475.

616 Tossi, V.E., Martínez Tosar, L.J., Laino, L.E., Iannicelli, J., Regalado, J.J., Escandón,
617 A.S., *et al.* (2022) Impact of polyploidy on plant tolerance to abiotic and biotic stresses.
618 *Frontiers in Plant Science*, **13**, 869423.

619 Valladares, F., Sanchez-Gomez, D. & Zavala, M.A. (2006) Quantitative estimation of
620 phenotypic plasticity: bridging the gap between the evolutionary concept and its
621 ecological applications. *Journal of Ecology*, **94**, 1103–1116.

622 Van de Peer, Y., Ashman, T.-L., Soltis, P.S. & Soltis, D.E. (2020) Polyploidy: an
623 evolutionary and ecological force in stressful times. *The Plant Cell*, **33**, 11–26.

624 Van de Peer, Y., Mizrachi, E. & Marchal, K. (2017) The evolutionary significance of
625 polyploidy. *Nature Reviews Genetics*, **18**, 411–424.

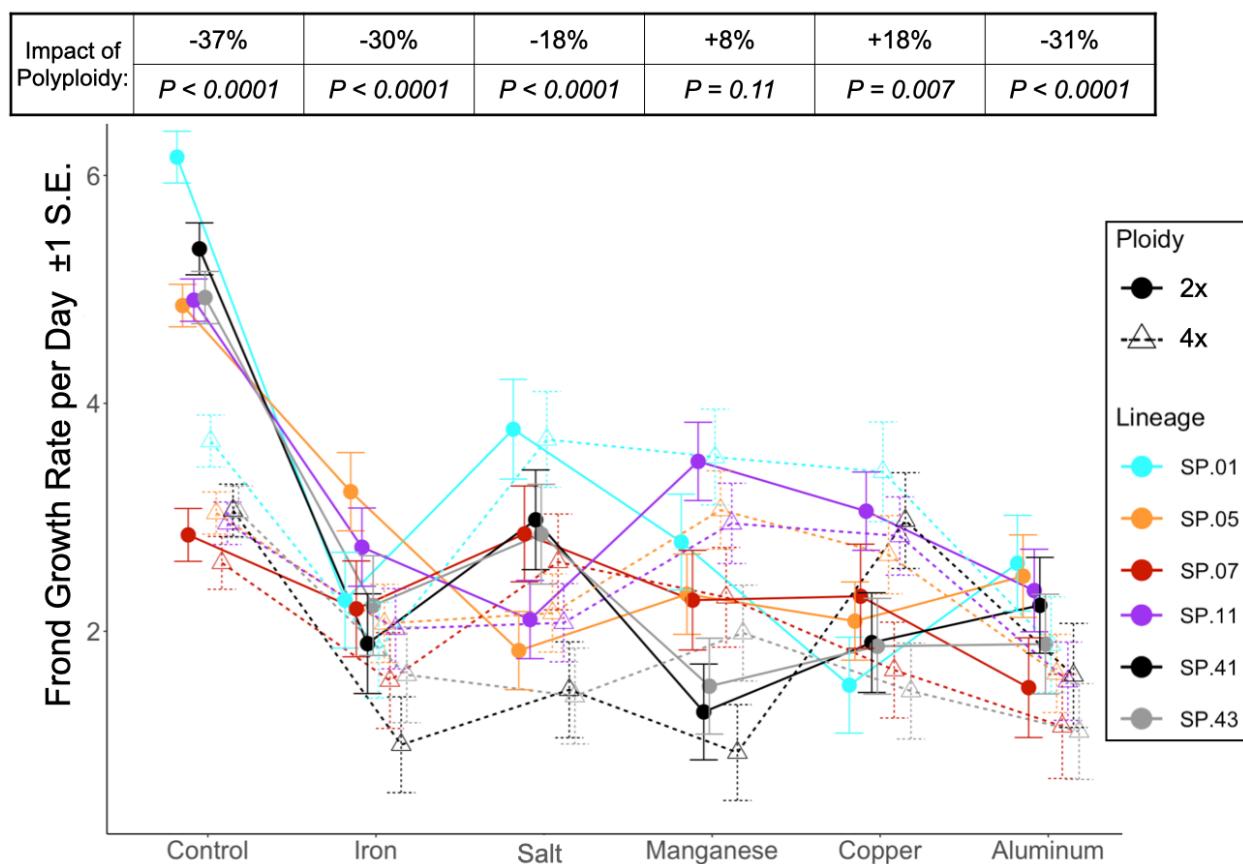
626 Van Drunen, W.E. & Johnson, M.T.J. (2022) Polyploidy in urban environments. *Trends*
627 *in Ecology & Evolution*, **37**, 507–516.

628 Verrelli, B.C., Alberti, M., Roches, S.D., Harris, N.C., Hendry, A.P., Johnson, M.T.J., *et*
629 *al.* (2022) A global horizon scan for urban evolutionary ecology. *Trends in Ecology &*
630 *Evolution*, **37**, 1006–1019.

631 Vo, T.M.C., Dao, M.P. & Dao, T.S. (2018) Growth of duckweed upon exposure to
632 aluminum and atrazine in the laboratory conditions. *Journal of Vietnamese*
633 *Environment*, **9**, 106–111.

634 Wei, N., Cronn, R., Liston, A. & Ashman, T. (2019) Functional trait divergence and trait
635 plasticity confer polyploid advantage in heterogeneous environments. *New*
636 *Phytologist*, **221**, 2286–2297.

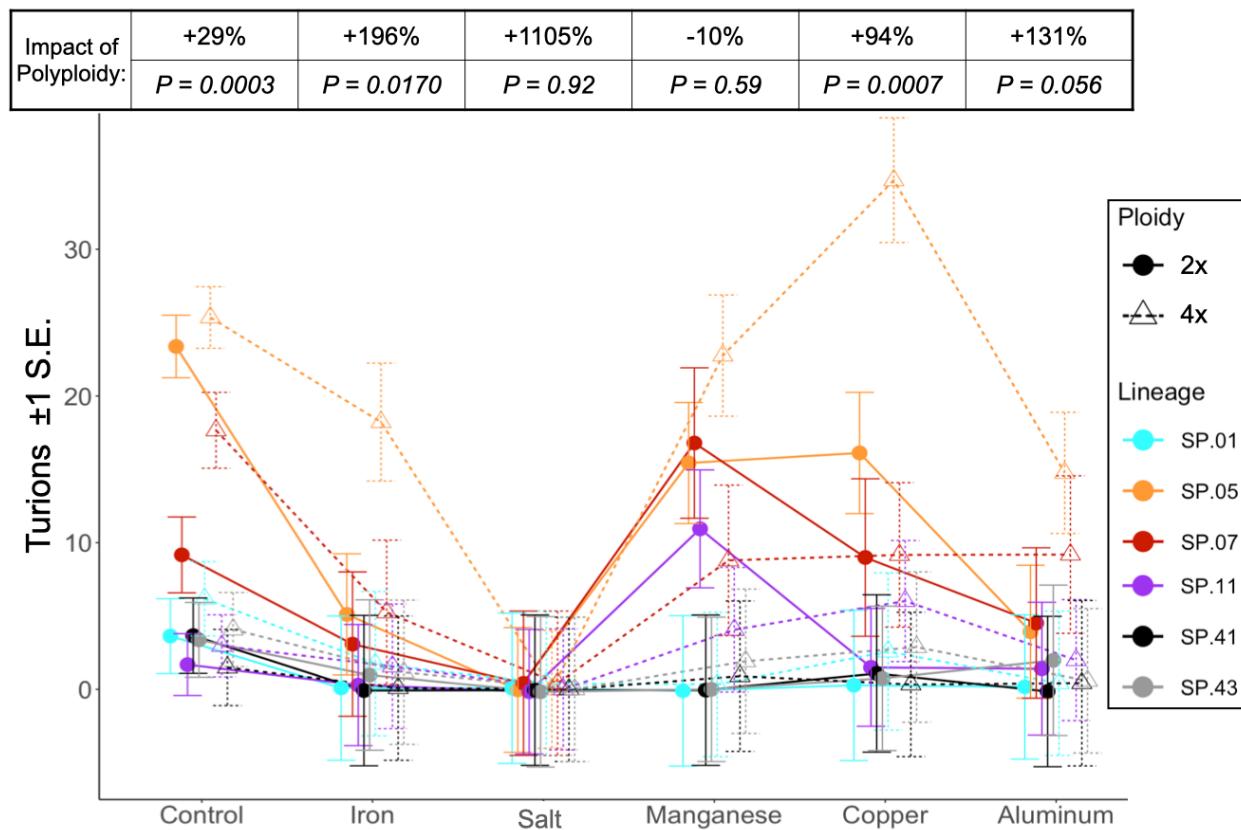
637 Wei, N., Du, Z., Liston, A. & Ashman, T.-L. (2020) Genome duplication effects on
638 functional traits and fitness are genetic context and species dependent: studies of
639 synthetic polyploid *Fragaria*. *American Journal of Botany*, **107**, 262–272.


640 Wei, T. & Simko, V. (2021) R package “corrplot”: Visualization of a correlation matrix
641 (Version 0.92). Available from <https://github.com/taiyun/corrplot>.

642 Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B. & Rieseberg,
643 L.H. (2009) The frequency of polyploid speciation in vascular plants. *Proceedings of*
644 *the National Academy of Sciences*, **106**, 13875–13879.

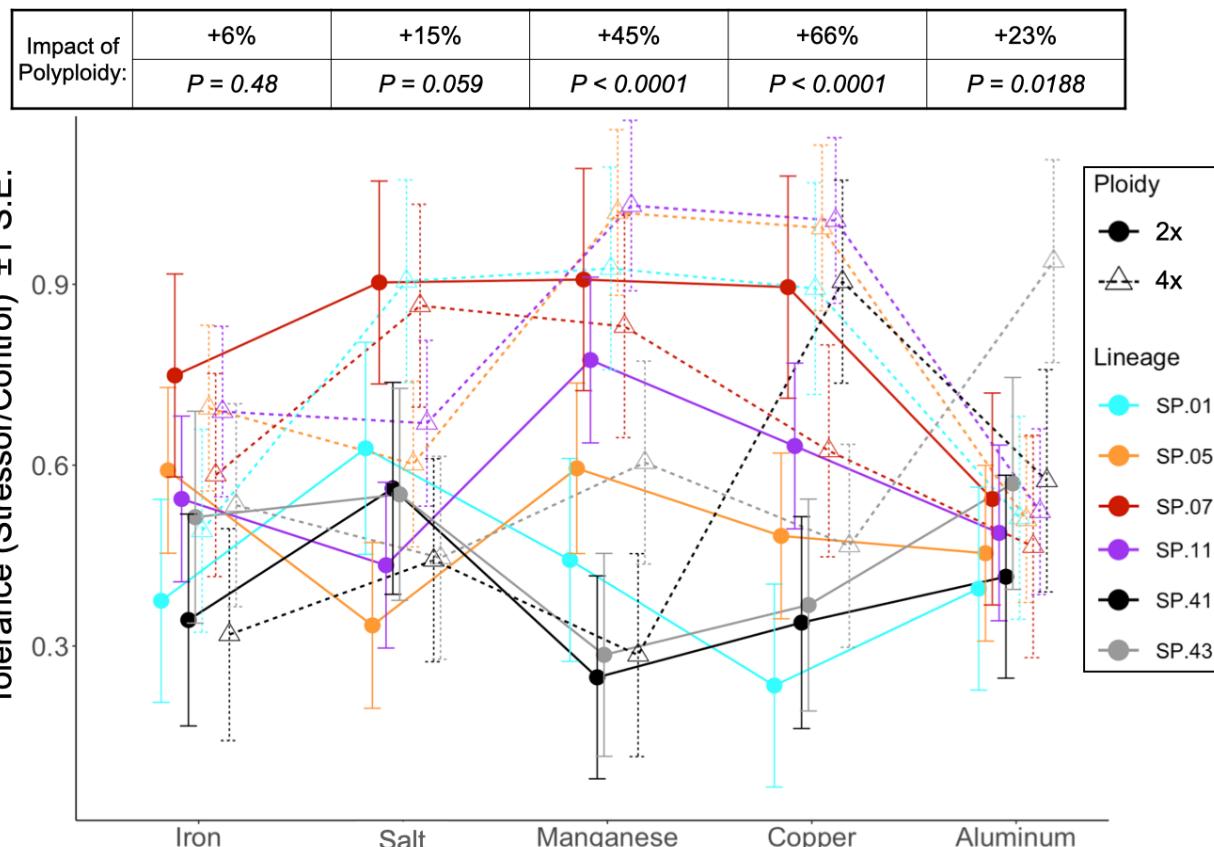
645 Xu, N., Hu, F., Wu, J., Zhang, W., Wang, M., Zhu, M., *et al.* (2018) Characterization of
646 19 polymorphic SSR markers in *Spirodela polyrhiza* (Lemnaceae) and cross-
647 amplification in *Lemna perpusilla*. *Applications in Plant Sciences*, **6**.
648 Xu, S., Stapley, J., Gablenz, S., Boyer, J., Appenroth, K.J., Sree, K.S., *et al.* (2019) Low
649 genetic variation is associated with low mutation rate in the giant duckweed. *Nature
650 Communications*, **10**, 1243.
651 Ziegler, P., Sree, K.S. & Appenroth, K.J. (2017) The uses of duckweed in relation to
652 water remediation. *Desalination and Water Treatment*, **63**, 327–342.
653

654 FIGURES


655 **Figure 1:** Daily frond population growth rates (estimated marginal means \pm 1 S.E.)
656 separated by ploidy and genetic lineage across the six pollutant treatments (including
657 the control). The table above shows the % difference of neopolyploid (4x) relative to
658 diploid (2x) and P values from the six planned contrasts between diploids and
659 neotetraploids for each pollutant treatment. Point positions were dodged for clarity.

660

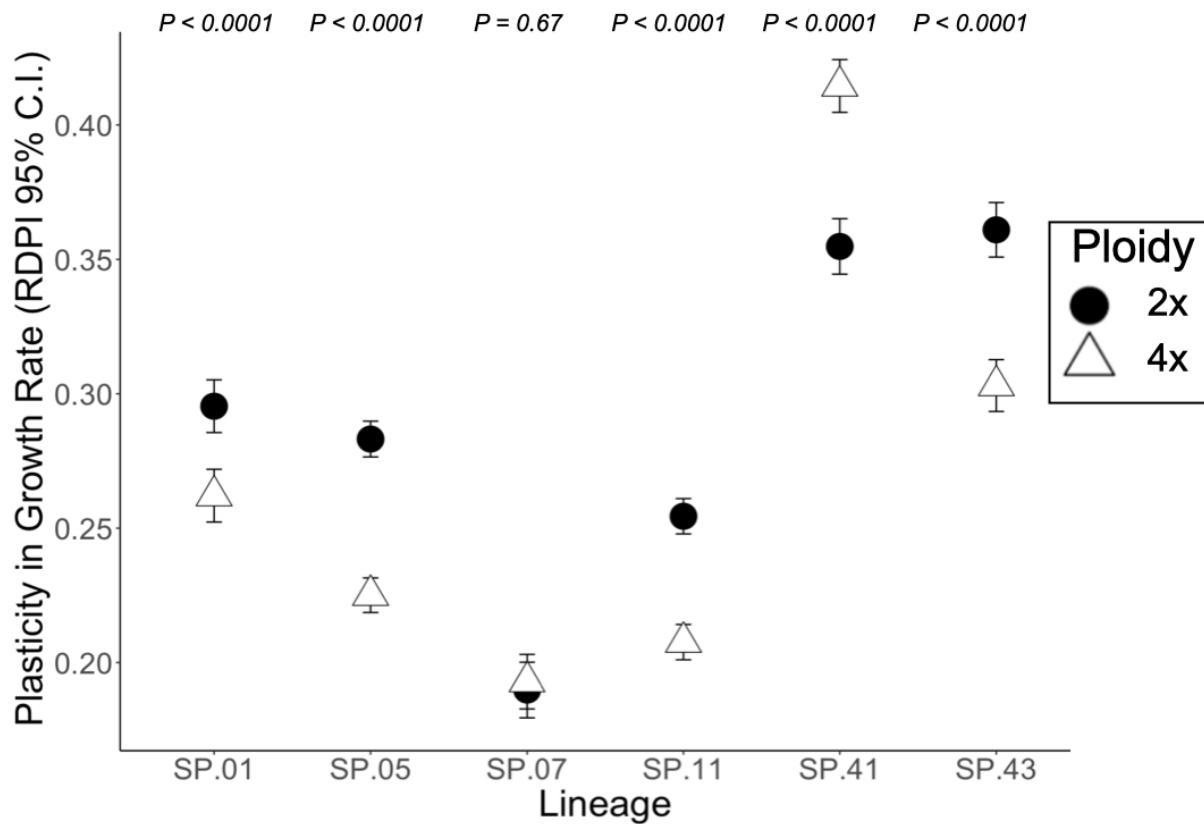
661


662 **Figure 2:** Total turion production (estimated marginal means \pm 1 S.E.) separated by
663 ploidy and genetic lineage across the six pollutant treatments (including the control).
664 The table above shows the % difference of neopolyploid (4x) relative to diploid (2x) and
665 P values from the six planned contrasts between diploids and neotetraploids for each
666 pollutant treatment. Point positions were dodged for clarity.

667

668

669 **Figure 3:** Tolerance of each pollutant (stressor/control, estimated marginal means ± 1
 670 S.E.) combining frond and turion growth across ploidy and genetic lineage. Tolerance
 671 values of 1 imply no impact of stressor on fitness. The table above shows the %
 672 difference of neopolyploid (4x) relative to diploid (2x) and P values from the five planned
 673 contrasts between diploids and neotetraploids for each pollutant. Point positions were
 674 dodged for clarity.

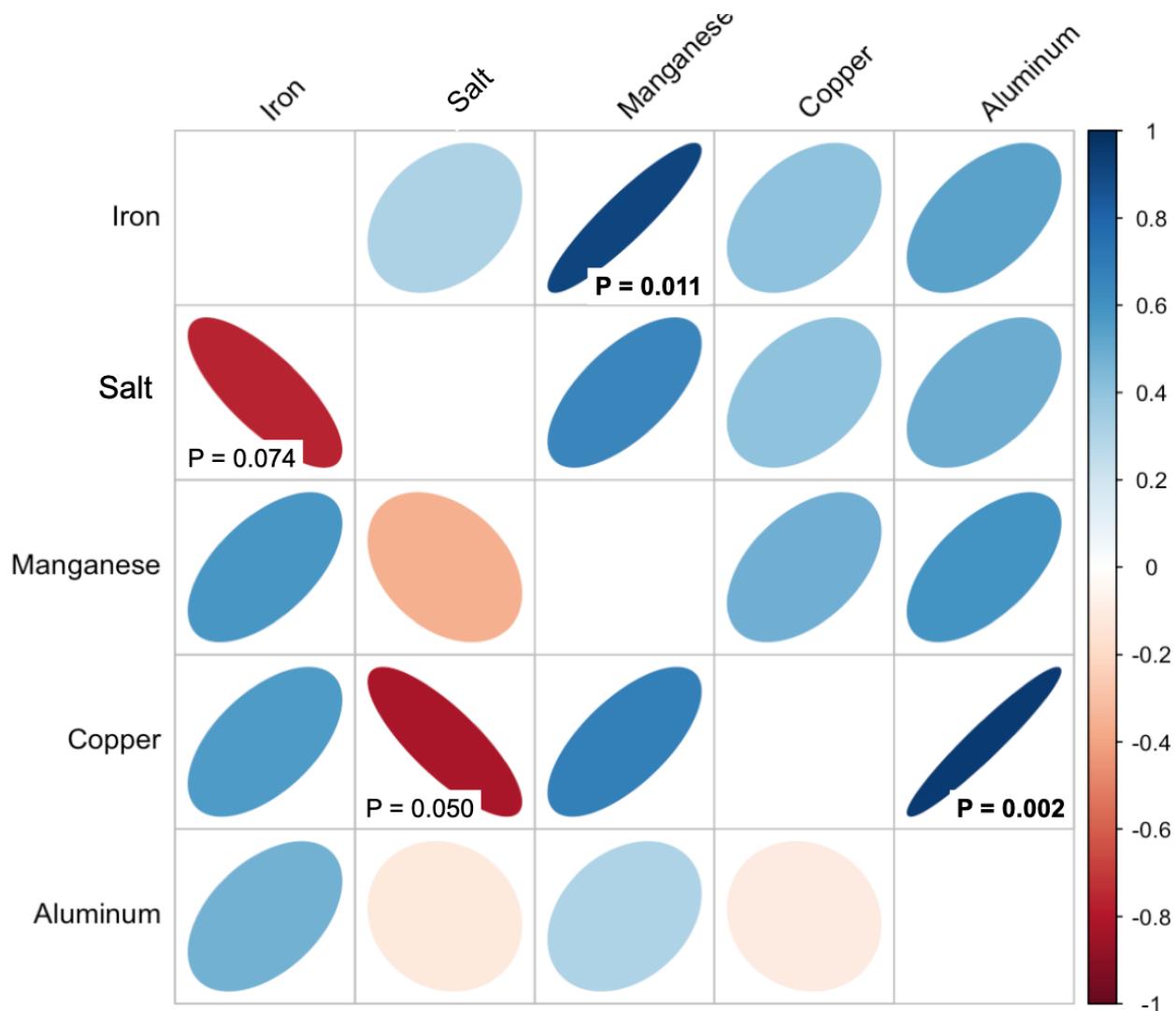


675

676

677

678 **Figure 4:** Plasticity in fitness across all pollutants (excluding the control) for each
679 lineage and ploidy. Plasticity, quantified as the Relative Distance Plasticity Index (RDPI)
680 of growth rates, combining fronds and turions, among the five pollutants. Values of 0
681 imply complete fitness maintenance (no plasticity) and 1 maximum plasticity. Post-hoc
682 Tukey HSD test results are shown above each lineage pair.


683

684

685

686

687 **Figure 5:** Broad-sense genetic correlations of population growth rate between pairs of
688 pollutant environments (excluding the control). The lower triangle of the matrix includes
689 Pearson's correlations for diploids and the upper for tetraploids. P-values less than
690 0.075 are shown. Positive (negative) correlations are in blue (red) with darker shade
691 reflecting strength of the correlation.

693 SUPPLEMENTAL MATERIALS

694

695 **Table S1:** Collection location of the six lineages as well as their microsatellite alleles values using loci from Xu *et al.*
 696 (2018) and Kerstetter *et al.* (2023). Complete or partial allele values of these lineages were previously published in
 697 Kerstetter *et al.* (2023) and or Anneberg *et al.* (2023).

698

Lineage	Sampling location	GPS coordinates (Decimal Degrees)	Sp10	Sp12	Sp25	Sp42	Sp47	Sp51	Sp53	SP.7286	SP.7814	SP.Pso31
SP.01	Beaver County, PA, USA	40.7298, -80.3602	198/212	274/292	201/215	197/211	248/252	272/286	262/262	386/390	222/222	240/240
SP.05	Allegheny County, PA, USA	40.6210, -79.8268	182/182	270/270	209/223	185/189	256/290	278/278	264/268	390/390	222/226	246/255
SP.07	Allegheny County, PA, USA	40.6208, -79.8281	182/182	268/274	209/213	181/189	256/288	268/280	266/268	390/390	220/220	246/255
SP.11	Allegheny County, PA, USA	40.6206, -79.8271	182/182	266/290	171/235	177/185	284/288	280/306	268/280	390/390	224/224	246/255
SP.41	Butler County, PA, USA	40.9716, -80.0186	208/212	290/290	201/219	197/209	252/252	270/290	262/268	388/392	222/222	243/243
SP.43	Andover Township, Ohio, USA	41.6064, -80.5401	208/214	290/298	199/199	187/195	266/266	270/284	262/262	390/390	222/222	240/240

699

700 **Table S2:** Statistical results of best fitting model testing the impact of ploidy, lineage,
701 and pollutant treatment (including the control) on the population growth rate of fronds.

702

Factor	numDF	denDF	F-value	P-value
Intercept	1	3201	2796.5412	<0.0001
Ploidy	1	3201	371.6237	<0.0001
Lineage	5	3201	93.5696	<0.0001
Pollutant	5	3201	166.7282	<0.0001
Ploidy:Lineage	5	3201	36.3606	<0.0001
Ploidy:Pollutant	5	3201	55.5983	<0.0001
Lineage:Pollutant	25	3201	21.2083	<0.0001
Ploidy:Lineage:Pollutant	25	3201	8.9361	<0.0001

703

704

705

706 **Table S3:** Statistical results of best fitting model testing the impact of ploidy, lineage,
707 and pollutant treatment (including the control) on turion production.

708

Factor	numDF	denDF	F-value	P-value
Intercept	1	1467	8.26829	0.0041
Ploidy	1	1467	2.89271	0.089
Lineage	5	1467	71.93508	<0.0001
Pollutant	5	1467	1.09236	0.362
Ploidy:Lineage	5	1467	5.30969	0.0001
Ploidy:Pollutant	5	1467	0.16797	0.974
Lineage:Pollutant	25	1467	5.92899	<0.0001
Ploidy:Lineage:Pollutant	25	1467	2.60562	<0.0001

709

710

711 **Table S4:** Statistical results of testing the impact of ploidy, lineage, and pollutant on
712 tolerance across fronds and turions combined.

713

Factor	numDF	denDF	F-value	P-value
Intercept	1	710	20.23864 1	<0.0001
Ploidy	1	710	0.988795	0.320
Lineage	5	710	3.146823	0.0081
Pollutant	4	710	2.814514	0.0246
Ploidy:Lineage	5	710	1.082036	0.368
Ploidy:Pollutant	4	710	4.033439	0.0031
Lineage:Pollutant	20	710	3.122241	<0.0001
Ploidy:Lineage:Pollutant	20	710	2.135814	0.0028

714

715

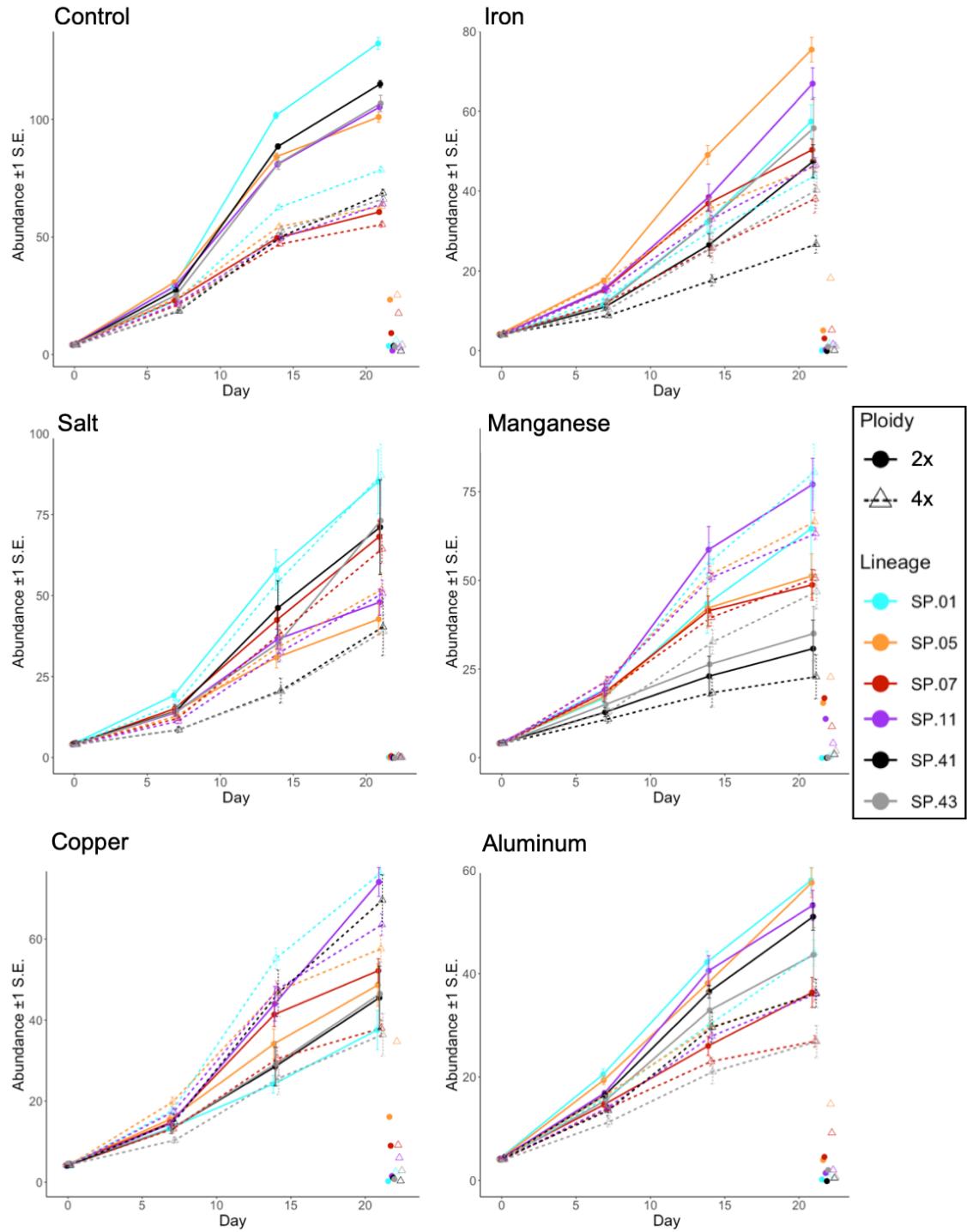
716

717

718 **Table S5:** Analyses of plasticity in growth rate (combining fronds and turions) across
719 the five pollutants (not the control) for each lineage calculated as an RDPI. First table
720 presents results from the linear model. The second table shows estimated marginal
721 means of RDPI values for each sublineage growing in the metal stressors. Values near
722 0 imply fitness equivalence (no plasticity) and 1 maximum plasticity.

723

Factor	DF	Mean Sq	F-value	P-value
Ploidy	1	152.775	152.775	<0.0001
Lineage	5	421.194	421.194	<0.0001
Ploidy:Lineage	5	47.022	47.022	<0.0001


724

725 *Post-Hoc test*

Lineage	Ploidy	Mean	S.D.	S.E.	Tukey post-hoc groups	
SP.01	2x	0.295	0.184	0.00493	cd	726
SP.01	4x	0.262	0.162	0.00434	e	727
SP.05	2x	0.283	0.204	0.00371	d	728
SP.05	4x	0.225	0.163	0.00287	f	729
SP.07	2x	0.19	0.127	0.0036	g	730
SP.07	4x	0.193	0.133	0.00369	g	731
SP.11	2x	0.254	0.209	0.00376	e	732
SP.11	4x	0.208	0.136	0.00245	g	733
SP.41	2x	0.355	0.236	0.00666	b	734
SP.41	4x	0.414	0.24	0.00644	a	735
SP.43	2x	0.361	0.227	0.0063	b	736
SP.43	4x	0.303	0.202	0.00532	c	737

744

745 **Figure S1:** Time series of the abundance of fronds over time (estimated marginal
746 means ± 1 S.E.) in each pollutant treatment separately. In addition, the total number of
747 turions are illustrated as a separate point without error bars for clarity.

748