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Abstract:  

Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent 

genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of 

artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of 

CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In 

this study, we proposed and employed a novel approach combining traditional statistics and a nexus of 

cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the 

complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized 

three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in 

transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, 

the Recursive Feature Elimination (RFE) classifier assigned rankings to transcriptomic features based on 

their relation to the case-control variable. The top ten percent of commonly observed significant 

biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, 

Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, 

the ensembled models, which were implemented using a soft voting classifier, accurately differentiated 

between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are 

highly significant in the CVD population that were used to predict disease with up to 96% accuracy. 

Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The 

identified biomarkers served as potential indicators for early detection of CVDs. With its successful 

implementation, our newly developed predictive engine provides a valuable framework for identifying 

patients with CVDs based on their biomarker profiles. 
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Introduction 

Artificial intelligence (AI) and machine learning (ML) encompasses a plethora of supervised and 

unsupervised methodologies for scrutinizing genomics data, culminating in the formation of multivariate 

statistical instruments [1]. The proficient implementation of AI/ML techniques holds the promise of 

fostering an augmented comprehension of diseases at the systemic level, unveiling the intricacies of 

genomic regulatory networks. By leveraging AI/ML approaches, clinical and genomics data can undergo 

statistical analysis and classification, enabling the prediction of high-risk patients. AI/ML can be deployed 

to capture genetic sequences associated with chronic diseases, categorize phenotypes based on 

knowledge about human diseases and establish population dimensions for rare diseases [1, 2]. Genetic 

studies have facilitated disease prognosis [3, 4], the identification of genetic regions and variants that 

influence disorders, and the functional assessment of these regions [5, 6, 7]. While holding great 

prospects, the formidable task at hand lies in analyzing the immense magnitude of recognized (and 

unrecognized) genetic variations and leveraging this knowledge to facilitate diagnosis, ascertain risk, and 

forecast treatment responses among heterogenous human populations [8]. This challenge is being 

addressed through precision medicine which encompasses the integration of clinical and genomics data 

to enable predictive treatment within a diverse cardiovascular disease (CVD) population [9]. The primary 

objective of personalized medicine is to analyze a patient’s genetic makeup to identify crucial biomarkers 

and enhance comprehension of the underlying pathophysiology of intricate disorders such as CVD [10].  

The American Heart Association states that approximately 82.6 million individuals in the U.S. presently 

suffer from one or more types of CVDs, establishing it as a primary factor behind mortality in both males 

and females [11]. Common types of CVDs include stroke, congestive heart failure, coronary heart disease, 

and hypertension [12, 13]. Considering the intricate nature, risk factors, inherent genetic composition, and 

trajectory of CVD, personalized treatment is considered indispensable [14]. Moreover, progress in 

genomics has significantly contributed to comprehending the molecular pathways linked to the prevalence 

of CVDs [3]. These advancements were propelled by next-generation sequencing (NGS), which enabled 

the discovery of novel genetic correlations and the capacity to assess genetic diversity among patients 

[15]. Recent developments in the field of genomics and bioinformatics have greatly aided in better 

understanding the complex nature of CVD etiology. However, the development of an AI/ML predictive 

engine that utilizes genetic biomarkers to assess the risk of CVD in patients is still in its early stages [16, 

17, 18]. Recent studies have explored the potential of employing AI/ML algorithms on whole genome and 

whole exome sequencing (WES/WGS) data for statistical and prognostic analyses for a wide variety of 
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diseases including but not limited to Crohn’s disease [19], inflammatory bowel disease [20], breast cancer 

[21], colon cancer [22] and Alzheimer's disease [23].  

Previously, we have created AI/ML models to investigate and identify genes associated with heart failure 

(HF), atrial fibrillation (AF), and other CVDs and successfully predict these diseases with high accuracy [24]. 

However, one of the major limitations of our and most of the other published disease specific research 

using AI/ML and bioinformatics approaches is the focus on genes known to be associated with disease [2, 

24, 25]. In this study, we propose a new AI/ML model that adapts an innovative nexus of algorithms to 

predict CVDs using critical transcriptomic biomarkers determined using our comprehensive statistical 

analysis (Figure 1). Our model is trained on an AI/ML ready dataset of whole transcriptome-based gene 

expression and clinical data of consented individuals. We observed novel as well as known biomarkers that 

were associated with CVDs, relative to our previous model [24]. We demonstrate that our current model 

can produce accurate predictions regarding CVD diagnosis. By identifying specific biomarkers, we have 

unveiled a crucial set of potential indicators for the early detection of CVDs. These biomarkers provide 

essential clues in identifying at-risk patients before symptoms manifest, allowing for timely intervention 

and improved patient outcomes. With the successful implementation of our newly developed predictive 

engine, healthcare professionals now have access to a valuable framework that utilizes biomarker profiles 

to accurately identify patients at risk of CVDs.  

Results 

Building Suitable Cohorts  

Substantiating our approach towards discovering disease-relevant biomarkers effectively to predict 

patients’ diagnostic status necessitated creating a comprehensive dataset to represent our patient cohort. 

The cohort consisted of 61 CVD patients, including 40 males and 21 females, aged 45 to 92. The 

participants self-identified their race as follows: 42 were white, 7 were black or African American, 1 was 

Asian, and 11 were of unknown race. These individuals were clinically diagnosed with CVDs, specifically 

Heart Failure (HF), and Atrial Fibrillation (AF). In addition, we constructed a control group comprising 10 

healthy individuals, evenly split between males and females. Among them, 9 identified as white, and 1 did 

not disclose their race. The age range of this group was 28 to 78 years. All procedures involving human 

participants were in accordance with the ethical standards of the institution and with the 1964 Helsinki 

Declaration and its later amendments or comparable ethical standards. All human samples were used in 

accordance with relevant guidelines and regulations, and all experimental protocols were approved by the 

Institutional Review Board (IRB) of Rutgers. Utilizing our proposed Clinically Integrated Genomic and 
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Transcriptomic (CIGT) format, we integrated transcriptomics, clinical, and demographics data of each 

patient. Data pre-processing increased our cohort's strength through the elimination of non-ubiquitous 

patient attributes; features present in 80% of the cohort were included and the less occurring were 

eliminated from the CIGT dataset to avoid extrapolation from ML classifiers downstream. Resulting from 

this filtration, 751 transcriptomic and clinical biomarkers remained suitable. The CIGT dataset was subset 

into training and testing sets, with a testing size of 30%. 

Discovering Supported Biomarkers 

Statistical algorithms were applied on the training dataset to retrieve highly significant biomarkers. To 

assess the differences in expression levels and clinical characteristics across CVD patients and healthy 

individuals, we employed a convergence of four statistical algorithms: I) Recursive Feature Elimination 

(RFE), II) Pearson Correlation, III) Chi-Square, and IV) Analysis of Variance (ANOVA) (Figure 2).  To ascertain 

the statistical significance of each algorithm, we conducted a p-value significance test and recorded the 

obtained p-values in a list together with the raw scores generated by each algorithm. We exercised the 

scientific standard of 0.05 as a threshold for our statistical significance test and utilized the logarithmic 

function, with a base of 10, for easier interpretation.  

RFE systematically eliminated the least informative features, which enabled the identification of the 

strongest correlations between biomarkers and CVD. The RFE algorithm assigned scores to each feature, 

reflecting their relative importance, with higher scores indicating lesser significance. These scores were 

then utilized to rank the features based on their relevance to CVD diagnosis (Figure 2A). Next, the Pearson 

correlation test was applied to quantitively assess the magnitude of linear association between biomarkers 

and CVD. In our study, we observed the correlation coefficient, which ranges from –1 to 1, with larger 

absolute values indicating a more pronounced association. However, to assess the statistical significance 

of the findings, we also examined the negative logarithm of the p-value for both transcriptomic and clinical 

features (Figure 2B). Notably, higher bars in the graph indicate greater significance to CVD diagnosis. 

We applied the chi-square test to investigate the independence among categorical factors on CVD 

detection and discern any significant relationships that may exist. We calculated the chi-square statistic to 

quantify this independence. We utilized the ANOVA test to discern the difference in the distribution of 

gene expression patterns between healthy individuals and those afflicted with CVD. We computed the F-

statistic to measure this variability. We found 313 biomarkers to be supported across three of our 

algorithms (Pearson correlation, chi-square test, and ANOVA). The presence of high outliers, such as genes 

HBA1 and HBA2, which are beneficial in traditional selection methods but detrimental to predictive model 
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training, diminishes importance within our RFE classifications. To counterbalance precursory approaches 

to subset our biomarkers, we implemented RFE. Biomarkers classified within the top 10% were endorsed 

for further predictive analysis (Table 1).  

Predicting Cardiovascular Disease  

Transcriptomic attributes serve as our predictive engine’s training dataset. This engine consists of five 

unique classifiers to forecast case/control predictions for our testing dataset: Random Forest (RF), Support 

Vector Machine (SVM), Xtreme Gradient Boost (XGBoost), k-Nearest Neighbor (k-NN), and Soft Voting 

Classifier (SVC). Metrics, including weighted-average F1 scores and receiver operating characteristic curves 

(ROC), were calculated for each classifier. Weighted-average F1 scores evaluate models in circumstances 

where categorical predictors are not balanced. ROC-AUC provides an additional approach to ML 

performance evaluation, showing a probability of a binary classifier to make true predictions rather than 

false positives. Values approaching 1.0 in each measure suggest high performance. 

RF has demonstrated practical usage within transcriptomics [25]. Optimizing RF with GridSearchCV (Figure 

4A), using dataset-standard parameters, the decision tree classifier made the most accurate predictions. 

RF selected case/control correctly in 95% of testing patients. Important features involved in RF prediction 

include RN7SL593P, LILRA2, and HLA-B (Figure 4A). ROC-AUC for our RF classifier was 0.95. The weighted-

average F1 score was 0.96. SVM, a classifier suited for single-diagnosis case/control predictions, performed 

satisfactorily. Optimized using GridSearchCV using dataset-standard parameters (Figure 4B), the SVM 

classifier succeeded with 91% of predictions. MTRNR2L1, GPX1, and AP003419.11 are the SVM classifier's 

most essential features. This model’s ROC-AUC was the highest, 0.99. The SVM classifier's weighted-

average F1 score was 0.91.  XGBoost, another decision tree-based approach, provides an accessible 

approach to classification. The performance of XGBoost rivals our SVM classifier, scoring 91% on 

predictions. XGBoost was optimized with GridSearchCV using dataset-standard parameters (Figure 4C). 

XGBoost’s best tree functioned using MTRNR2L1 as its sole feature. XGBoost’s ROC-AUC was 0.94. The 

XGBoost classifier’s weighted-average F1 score is 0.91. k-NN’s performance was feeble compared to RF, 

SVM, and XGBoost. Tuned with GridSearchCV using dataset-standard parameters (Figure 4D), the k-NN 

classifier hit 91% of predictions. This pairs with 0.85 ROC-AUC and 0.91 weighted-average F1 score.  k-NN 

is a resource-intensive algorithm, producing worse performance at extended runtimes compared to our 

previous classifiers. k-NN used MTRNR2L1, BRK1, and ARPC4 most when forming predictions. 

RF and XGBoost classifiers proved most applicable to transcriptomic datasets. SVM performance is 

sufficient for case/control classifications, but diverse problems engaging multiple diseases and disorders 
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will lead to substantial performance declines [5]. k-NN is the least appropriate for such datasets. 

MTRNR2L1 was the best transcriptomic marker for CVD predictions, with top-three importance for our 

SVM, XGBoost, and k-NN classifiers.  

Examining Transcriptomic Predictors 

Validating the detected biomarkers' relevance to our cohort’s diagnoses necessitated an in-depth 

inspection of their function in prediction and prominence in previous literature. Alongside a thorough 

review of previous scientific findings, biomarkers correlations are reported and tied to their roles in disease 

classification. The literature review revealed 14 transcriptomic biomarkers linked with CVDs and a variety 

of other diseases and disorders within our cohort. HLA-DMB and HLA-B are associated with 

cardiomyopathy. RN7SL2 and GPX1 are associated with stroke. ARPC4 and LILRA2 are associated with 

atherosclerosis. Transcriptomic markers found within the supported list are also associated with various 

types of chronic diseases) and disorders (cancers, rheumatoid arthritis, and diabetes. Visualizations 

displaying clustered profiles of transcriptomic expression (Figure 3B) and their associations with 

biomarker’s intercorrelation (Figure 3C) indicate the mechanisms of disease classification. This correlation 

metric was supported using literature as well. Genes TWF2 and ARPC4 scored perfect correlations.  

Pseudogene MTRNR2L1 was the observed feature in all three classifiers:  SVM, XGBoost, and k-NN. 

MTRNR2L1 presented fluctuating expression across patients and failed to surpass a correlation above 0.5 

with other transcriptomic biomarkers. GPX1, AP003419.11, and CTA-363E6.6 were the three most 

important features of the SVM classifier beside the previously mentioned MTRNR2L1. MTRNR2L1 and 

GPX1 have been linked to CVDs, while AP003419.11 and CTA-363E6.6 have not been previously reported. 

These three transcriptomic markers are the least correlated with each other, the most independent 

function biomarkers within our list. The SVM classifier, more than others, is reliant upon independent-

acting transcriptomic factors whose expression is not tied to that of another biomarker within the selected 

list. A cluster of highly correlated biomarkers identified, RPS28P7, SNHG6, and TSTD1, did not perform well 

with SVM classifier. The k-NN classifier did not display similar patterns regarding the correlation of 

transcriptomic biomarkers.  

The XGboost classifier was reliant solely on MTRNR2L1, indicating the strongest association to CVDs of any 

transcriptomic biomarker. This algorithm ties the under expression of the lncRNA with CVD status. The RF 

classifier relied most prominently on the RN7SL593P biomarker, classifying patients below the threshold 

of 825.66 TPM as CVD cases. The overexpression of RN7SL593P has been linked to normal platelet 

function, a non-direct implication with CVDs. The RF classifier also placed heavy importance on LILRA2, 
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HLA-B, and GPX1 with direct links to CVDs. The decision tree algorithms contained only elements 

previously associated with CVDs within their optimized tree using our hyperparameter tuning metrics.  

MTRNR2L1, RN7SL593P, LILRA2, and HLA-B showed the most distinct variety in their importance 

throughout the different classifiers. MTRNR2L1, scored the most important across three classifiers, but 

was not found in RF’s decision tree. LILRA2 and HLA-B scored a correlation of 0.9, near perfect. HLA-B 

ranked as the fifth most important feature in our k-NN classifier and the second least important in the SVM 

classifier. LILRA2 placed as the sixth most important feature in our SVM classifier and last in our k-NN 

classifier. RN7SL593P, the workhorse of random forest, served average throughout the remaining 

classifiers. These incongruencies are algorithmically dependent but may offer some understanding of 

underlying biological interactions between these biomarkers and CVD.  

Discussion 

A persistent challenge in genomic data analysis lies in the handling and integration of large volumes of 

sequencing data [26]. With the implementation of our novel CIGT AI/ML ready dataset, we have begun to 

make significant progress to standardize heterogenous data types (genomic and clinical) for more accurate 

and reliable data analysis and interpretation [27]. Our novel AI/ML methodology uncovered eighteen 

transcriptomic biomarkers to be linked to CVDs, three of which were novel (RN7SL593P, AP003419.11, and 

CTA-363E6.6) and will require further analysis to understand the correlation between them and disease 

etiology. To further investigate gene-disease relationships for these significant biomarkers, we performed 

a literature review correlating these genes to CVDs (Figure 5).  

Genes such as HLA-DMB [28], HLA-B [29], and GPX1 [30] were found to be profoundly expressed in 

cardiomyopathy. While other biomarkers such as RN7SL2 [31], LILRA2 [32], GAS5 [33], TWF2 [34], EGLN2 

[35], SNHG6 [36, 37, 38], and BRK1 [39] have all been previously associated with phenotypic variations 

linked to CVD, there is limited literature associating protein-coding genes such as RPS28P7 and CTA-

363E6.6 to other known CVDs. No direct links were recorded between RN7SL593P and AP003419.11 and 

known CVDs as well as other non-CVD-related diseases. Additional validation of these biomarkers was 

conducted utilizing the patients’ clinical records to elaborate on the associations between secondary 

diseases and their possible effect on CVD prognosis.  

A significant number of biomarkers were associated to other diseases diagnosed reported for CVD 

patients' clinical records. We created a network of overlapping diseases linked to the eighteen biomarkers 

in the highly diagnosed conditions from EHRs (Electronic Health Records) as well as those reported earlier 

in our comparative review (Figure 5). We observed that most genes were interconnected through a CVD 
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including but not limited to cardiomyopathy, stroke, and atherosclerosis. The most common non-CVD 

diagnosis within our patient cohort was breast cancer, and we found GAS5 [40], TSTD1 [41], EGLN2 [42], 

SNHG6 [43], BRK1 [44], and MTRNR2L1 [45] to be indicative biomarkers. As stated earlier, cardiomyopathy 

was the next prevalent disease in our network corroborating our claims that our innovative AI/ML model 

can accurately predict CVDs. Other diseases that were shared between the genes included coronary artery 

disease, myocardial infarctions, lung cancer, and type 1 diabetes among others (Figure 5).  

We believe that synergistic use of multiple AI algorithms provides more accurate results, draws insightful 

conclusions, and precise predictions about real-world problems compared to single AI algorithm on its 

own. This approach combines the best aspects of multiple machine learning algorithms into a single 

model. A limitation of our current study is that experimental validation is needed to support the outcomes 

of our AI/ML model. We addressed this constraint by utilizing clinical records and comparative literature 

to support our findings. In the future, our AI/ML model can be implemented in the clinical setting to aid 

in early disease diagnosis and improve prognosis. Our model has the potential to be generalized to 

investigate non-CVDs with intricate characteristics such as breast cancer, diabetes, and Alzheimer’s disease 

among many others. To foster these downstream applications, we have made source code openly available 

and freely accessible. This cutting-edge technology enhances the precision of diagnoses and empowers 

clinicians to tailor personalized treatment plans, ultimately leading to more effective and targeted 

healthcare interventions. Our findings validate the effectiveness and reliability of the model in the medical 

domain, offering promising prospects for improved healthcare outcomes. 

Material and Methods 

Our study is divided into two major steps: I) exploratory data analysis and identification of significant 

biomarkers, and II) implementation of nexus AI/ML models for predictive analysis. 

Exploratory Data Analysis and Identification of Significant Biomarkers  

Exploratory data analysis was performed to show the difference in gender distribution based on the age 

of the subject. The box plot was presented to show a quick statistical summary (i.e., mean, median, range, 

outliers) of each gene in the dataset [46] as well as to explore distributions, outliers, and anomalies [46]. 

We utilized a convergence of statistical algorithms to evaluate the variations in expression levels and 

clinical characteristics between individuals with CVDs and those that are healthy. The proposed feature 

selection model uses four distinct algorithms: I) Recursive Feature Elimination (RFE) [47], II) Pearson 

Correlation [48], III) Chi-Square Test [49], and IV) Analysis of Variance (ANOVA) [50]. A combination of 
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these tests allows the model to adapt to different matrix sizes, distributions, and attributes. All these 

algorithms used our CIGT dataset to compute the statistical significance of supported biomarkers by means 

of a p-value significance test.  

To eliminate biomarkers that do not have high significance to CVD and reduce the computational load for 

the analysis downstream, we applied the RFE algorithm [51].  In our study, we chose the scoring metric to 

be based on decision trees with top 10% number of features to be from the original list of biomarkers. The 

correlation coefficient plays a crucial role in ranking: the higher the coefficient, the higher the rank 

assigned to the gene, implying a stronger association between the gene and CVD. It is important to note 

that a higher rank corresponds to a lower integer value. To determine each biomarker’s linear relationship 

to disease, we applied the Pearson correlation test where each biomarker was assigned a correlation 

coefficient. Subsequently, to examine the dependence between the test variable and the significant 

biomarkers, we employed the chi-square test. The chi-squared test has been applied widely in genomics 

for feature selection due to its application in multi-disease classification for genome-wide association 

studies (GWAS) [52].  This function requires two parameters: a scoring metric (in this case, chi-square) and 

‘k’, which we set as ten. Next, we implement the ANOVA procedure, which uses a five-step approach to 

compute a f-statistic that determines the significance of a biomarker.  

There are documented limitations associated with each testing algorithm utilized in our study. To address 

these challenges, we have merged these algorithms to satisfy different requirements. RFE cannot quantify 

the correlation between biomarkers and lacks the ability to compute multivariate significance. 

Furthermore, due to its iterative nature, RFE has a high time complexity [48]. One of the main limitations 

of the Pearson correlation test is the sensitivity to range differences between the biomarkers and their 

relation to disease. However, we have accounted for this by increasing the volume of data to reduce range 

differences between biomarkers. The main challenge associated with the chi-square test is the number of 

Type I and II errors in small sample sizes. However, the rationale for implementing this algorithm was to 

make our overall system predict better in larger matrix sizes. One more challenge that arises with ANOVA 

testing is the fact that if two groups of samples are of different sizes, then there is a direct issue with the 

strength and validity of the test. Due to the inclusion of all the other algorithms that can handle imbalances 

in sample size, this limitation is not of concern to this study. In our merged function, we select the 

statistically significant biomarkers for the ANOVA, chi-square, and Pearson correlation test and show up in 

the top 10% of significant biomarkers in RFE.  

Implementation of a nexus AI/ML models for predictive analysis  
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The biomarkers selected were predictive for patient diagnosis and classification. We selected four 

algorithms for this task: Random Forest (RF) [53], Support Vector Machine (SVM) [54], K-nearest neighbors 

(k-NN) [55], and Extreme Gradient Boosting Decision Trees (XGBoost) [56]. We applied hyperparameter 

tuning to all algorithms, which were then ensembled using a Soft Voting Classifier to curate a powerful 

predictive engine that can perform accurate classification specific to user-specified matrices.  

We started with RF, which is a meta-classifier that combines the output of multiple decision trees to 

categorize individuals based on their disease state. The algorithm computes a decision tree to classify 

patients based on their biomarker profile. The best decision tree from the forest was considered which 

highlights the decision boundary (i.e., polynomial) that the algorithm uses to sort patients. To classify 

patients based on their biomarker profile, we implemented SVM that computes support vectors. The most 

important classification feature highlights the relative significance of each biomarker. To further classify 

patients based on their biomarker profile and address limitations associated with SVM, we used the 

XGBoost algorithm. This algorithm computes a decision tree to highlight biomarkers that were of 

significance in the classification process. Finally, we applied the k-NN algorithm to determine the 

classification of a datapoint by majority voting amongst its ‘k’ nearest neighbors. The k-value was chosen 

based on iterating through all possible values of k and selecting the model with the highest accuracy.  

Employing this nexus of ML algorithms helped us in navigating shortcomings that might arise from 

individual algorithms. The main limitation of SVMs is their inability to perform well when the data set is 

large [54]. However, through a combination of algorithms, SVMs can be an integral part of an ML system 

when the input set is small. Another limitation arises in the implementation of XGBoost where the 

performance is greatly diminished on sparse and unstructured data [56]. However, due to our robust data 

pre-processing function, we have been able to address this issue. The main limitation of k-NN is the 

sensitivity to feature scaling [55]. KNN calculates distances between instances to determine their similarity. 

If features have different scales, those with larger values can dominate the distance calculation, leading to 

biased results. It is essential to normalize or scale the features appropriately before applying KNN. 

However, KNN can adapt to changes in the training data without requiring complete retraining of the 

model, which is why it was selected for our analysis.  

All four algorithms were ensembled using the Soft Voting Classifier, the class with the highest average 

probability of success was chosen as the final prediction. By combining each algorithm in this manner, the 

positives are accentuated while neutralizing the downsides for each algorithm.  
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1 

0.0009066
31 

ENSG00000231
389 

46 0.4157495
05 

0.0002813
56 

2762.6493
64 

0 12.508201
18 

0.0009097
47 

ENSG00000239
998 

35 0.4374661
27 

0.0001217
37 

467.71526
11 

1.01E-
103 

11.287610
72 

0.0015364
51 

ENSG00000234
741 

42 0.3810930
7 

0.0009577
04 

250.75416
9 

1.78E-
56 

10.144119
03 

0.0025436
71 

ENSG00000247
596 

20 0.3781123
12 

0.0010576
6 

169.36034
2 

1.02E-
38 

10.131464
67 

0.0025580
96 

ENSG00000215
845 

66 0.3184117
48 

0.0064133
23 

324.04184
77 

1.91E-
72 

9.4192254
69 

0.0035266
25 

ENSG00000269
858 

5 0.3933151
71 

0.0006311
98 

199.90368
54 

2.19E-
45 

9.3316822
75 

0.0036700
18 
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ENSG00000233
276 

43 -
0.3813055
1 

0.0009509
18 

286.05153
5 

3.61E-
64 

6.8235352
03 

0.0119739
83 

ENSG00000245
910 

21 0.2901245
17 

0.0134312
39 

146.30232
38 

1.11E-
33 

6.4409248
63 

0.0144529
2 

ENSG00000227
097 

53 0.2563101
09 

0.0297619
01 

3696.9999
79 

0 5.5905522
65 

0.0221501
13 

ENSG00000254
999 

14 0.2715716
84 

0.0210223
04 

105.50149
56 

9.48E-
25 

5.2080928
13 

0.0269554
23 

ENSG00000260
592 

11 0.3140782
32 

0.0072150
15 

45.016686
98 

1.95E-
11 

4.4912440
41 

0.0392682
84 

 

Table 1. Statistical analysis of most significant biomarkers. Table 1 includes rankings based on Recursive 

Feature Elimination scores, Pearson correlation, chi-square, and Analysis of Variance test. All raw scores 

for are included (correlation co-efficient, chi-square statistic, and f-statistic) as well as p-values that were 

utilized in the visualization and artificial intelligence/machine learning (AI/ML) analysis of the data.  
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Figure Legends 

Figure 1. Methodology and study design, workflow, and bioinformatics. Artificial intelligence (AI) and 

machine learning (ML) for statistical and predictive analysis. Training dataset is used to identify significant 

biomarkers that are then utilized by a nexus of AI/ML algorithms to predict cardiovascular disease (CVD). 

Figure 2. Feature Selection of Biomarkers. Statistical significance test to determine the importance of each 

gene according to the algorithm used. The y-axis represents the p-values as a logarithmic expression while 

the x-axis displays distinct biomarkers. Features are displayed from A) Recursive Feature Elimination; B) 

Pearson Correlation; C) Chi-Squared test; and D) Analysis of Variance.  

Figure 3. Significant biomarkers supported by four statistical tests. Results of the artificial intelligence (AI) 

and machine learning (ML) statistical analysis using clinically integrated genomics and transcriptomic data 

(CIGT) of patients with CVDs. Results include A) Biomarker expression; B) Biomarker correlations; and C) 

Biomarker pairwise relationships. 

Figure 4. Predictive ability of our model supported by a nexus of four algorithms. Results of artificial 

intelligence (AI) and machine learning (ML) based predictive analysis using supported biomarkers of high-

risk patients with cardiovascular diseases (CVDs). Results include A) Random Forest decision tree; B) 

Support vector machine feature importance; C) XGBoost decision tree; D) k-Nearest neighbors; and E) soft 

voting classifier predictions confusing matrix. 4 distinct biomarkers that were found to be significant within 

all algorithms are highlighted in the figure.  

Figure 5. Gene-Disease network based on comparative literature review and patient diagnosis. Data 

validation from our cohort’s clinical records and literature review linking the supported transcriptomic 

biomarkers to different cardiovascular diseases (CVD) and non-CVDs. ICD-9 and 10 codes were also linked 

to the diagnosis list and was utilized in the network.  Green corresponds to gene names; blue represents 

non-CVDs while red signifies CVDs.  
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