bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.553995; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Title

Discovering biomarkers associated and predicting cardiovascular disease with high

accuracy using a novel nexus of machine learning techniques for precision medicine
Running Head
Discovering biomarkers and predicting CVD using Al/ML

Authors

William DeGroat!, Habiba Abdelhalim?, Kush Patel!, Dinesh Mendhe!, Saman Zeeshan?, and Zeeshan

Ahmed® 3"
Affiliations

1. Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112

Paterson St, New Brunswick, NJ, USA.
2. Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New
Brunswick, NJ, USA.

3. Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson
Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ,

USA.

*Corresponding author: Zeeshan Ahmed, Rutgers Institute for Health, Health Care Policy and Aging
Research, Rutgers University, 112 Paterson Street, New Brunswick, 08901, NJ, USA.
(zahmed@ifh.rutgers.edu).


mailto:zahmed@ifh.rutgers.edu
https://doi.org/10.1101/2023.09.08.553995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.553995; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract:

Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent
genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of
artificial intelligence (Al) and machine learning (ML) methodologies can yield novel understandings of
CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In
this study, we proposed and employed a novel approach combining traditional statistics and a nexus of
cutting-edge Al/ML techniques to identify significant biomarkers for our predictive engine by analyzing the
complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized
three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in
transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next,
the Recursive Feature Elimination (RFE) classifier assigned rankings to transcriptomic features based on
their relation to the case-control variable. The top ten percent of commonly observed significant
biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine,
Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters,
the ensembled models, which were implemented using a soft voting classifier, accurately differentiated
between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are
highly significant in the CVD population that were used to predict disease with up to 96% accuracy.
Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The
identified biomarkers served as potential indicators for early detection of CVDs. With its successful
implementation, our newly developed predictive engine provides a valuable framework for identifying

patients with CVDs based on their biomarker profiles.
Keywords

Artificial Intelligence, Cardiovascular Diseases, Gene Expression, Whole Transcriptome, Machine Learning,

Predictive Analysis


https://doi.org/10.1101/2023.09.08.553995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.08.553995; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Artificial intelligence (Al) and machine learning (ML) encompasses a plethora of supervised and
unsupervised methodologies for scrutinizing genomics data, culminating in the formation of multivariate
statistical instruments [1]. The proficient implementation of Al/ML techniques holds the promise of
fostering an augmented comprehension of diseases at the systemic level, unveiling the intricacies of
genomic regulatory networks. By leveraging Al/ML approaches, clinical and genomics data can undergo
statistical analysis and classification, enabling the prediction of high-risk patients. Al/ML can be deployed
to capture genetic sequences associated with chronic diseases, categorize phenotypes based on
knowledge about human diseases and establish population dimensions for rare diseases [1, 2]. Genetic
studies have facilitated disease prognosis [3, 4], the identification of genetic regions and variants that
influence disorders, and the functional assessment of these regions [5, 6, 7]. While holding great
prospects, the formidable task at hand lies in analyzing the immense magnitude of recognized (and
unrecognized) genetic variations and leveraging this knowledge to facilitate diagnosis, ascertain risk, and
forecast treatment responses among heterogenous human populations [8]. This challenge is being
addressed through precision medicine which encompasses the integration of clinical and genomics data
to enable predictive treatment within a diverse cardiovascular disease (CVD) population [9]. The primary
objective of personalized medicine is to analyze a patient’s genetic makeup to identify crucial biomarkers
and enhance comprehension of the underlying pathophysiology of intricate disorders such as CVD [10].

The American Heart Association states that approximately 82.6 million individuals in the U.S. presently
suffer from one or more types of CVDs, establishing it as a primary factor behind mortality in both males
and females [11]. Common types of CVDs include stroke, congestive heart failure, coronary heart disease,
and hypertension [12, 13]. Considering the intricate nature, risk factors, inherent genetic composition, and
trajectory of CVD, personalized treatment is considered indispensable [14]. Moreover, progress in
genomics has significantly contributed to comprehending the molecular pathways linked to the prevalence
of CVDs [3]. These advancements were propelled by next-generation sequencing (NGS), which enabled
the discovery of novel genetic correlations and the capacity to assess genetic diversity among patients
[15]. Recent developments in the field of genomics and bioinformatics have greatly aided in better
understanding the complex nature of CVD etiology. However, the development of an Al/ML predictive
engine that utilizes genetic biomarkers to assess the risk of CVD in patients is still in its early stages [16,
17, 18]. Recent studies have explored the potential of employing Al/ML algorithms on whole genome and

whole exome sequencing (WES/WGS) data for statistical and prognostic analyses for a wide variety of
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diseases including but not limited to Crohn’s disease [19], inflammatory bowel disease [20], breast cancer
[21], colon cancer [22] and Alzheimer's disease [23].

Previously, we have created Al/ML models to investigate and identify genes associated with heart failure
(HF), atrial fibrillation (AF), and other CVDs and successfully predict these diseases with high accuracy [24].
However, one of the major limitations of our and most of the other published disease specific research
using Al/ML and bioinformatics approaches is the focus on genes known to be associated with disease [2,
24, 25]. In this study, we propose a new Al/ML model that adapts an innovative nexus of algorithms to
predict CVDs using critical transcriptomic biomarkers determined using our comprehensive statistical
analysis (Figure 1). Our model is trained on an Al/ML ready dataset of whole transcriptome-based gene
expression and clinical data of consented individuals. We observed novel as well as known biomarkers that
were associated with CVDs, relative to our previous model [24]. We demonstrate that our current model
can produce accurate predictions regarding CVD diagnosis. By identifying specific biomarkers, we have
unveiled a crucial set of potential indicators for the early detection of CVDs. These biomarkers provide
essential clues in identifying at-risk patients before symptoms manifest, allowing for timely intervention
and improved patient outcomes. With the successful implementation of our newly developed predictive
engine, healthcare professionals now have access to a valuable framework that utilizes biomarker profiles

to accurately identify patients at risk of CVDs.
Results
Building Suitable Cohorts

Substantiating our approach towards discovering disease-relevant biomarkers effectively to predict
patients’ diagnostic status necessitated creating a comprehensive dataset to represent our patient cohort.
The cohort consisted of 61 CVD patients, including 40 males and 21 females, aged 45 to 92. The
participants self-identified their race as follows: 42 were white, 7 were black or African American, 1 was
Asian, and 11 were of unknown race. These individuals were clinically diagnosed with CVDs, specifically
Heart Failure (HF), and Atrial Fibrillation (AF). In addition, we constructed a control group comprising 10
healthy individuals, evenly split between males and females. Among them, 9 identified as white, and 1 did
not disclose their race. The age range of this group was 28 to 78 years. All procedures involving human
participants were in accordance with the ethical standards of the institution and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards. All human samples were used in
accordance with relevant guidelines and regulations, and all experimental protocols were approved by the

Institutional Review Board (IRB) of Rutgers. Utilizing our proposed Clinically Integrated Genomic and
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Transcriptomic (CIGT) format, we integrated transcriptomics, clinical, and demographics data of each
patient. Data pre-processing increased our cohort's strength through the elimination of non-ubiquitous
patient attributes; features present in 80% of the cohort were included and the less occurring were
eliminated from the CIGT dataset to avoid extrapolation from ML classifiers downstream. Resulting from
this filtration, 751 transcriptomic and clinical biomarkers remained suitable. The CIGT dataset was subset

into training and testing sets, with a testing size of 30%.
Discovering Supported Biomarkers

Statistical algorithms were applied on the training dataset to retrieve highly significant biomarkers. To
assess the differences in expression levels and clinical characteristics across CVD patients and healthy
individuals, we employed a convergence of four statistical algorithms: I) Recursive Feature Elimination
(RFE), Il) Pearson Correlation, lll) Chi-Square, and IV) Analysis of Variance (ANOVA) (Figure 2). To ascertain
the statistical significance of each algorithm, we conducted a p-value significance test and recorded the
obtained p-values in a list together with the raw scores generated by each algorithm. We exercised the
scientific standard of 0.05 as a threshold for our statistical significance test and utilized the logarithmic

function, with a base of 10, for easier interpretation.

RFE systematically eliminated the least informative features, which enabled the identification of the
strongest correlations between biomarkers and CVD. The RFE algorithm assigned scores to each feature,
reflecting their relative importance, with higher scores indicating lesser significance. These scores were
then utilized to rank the features based on their relevance to CVD diagnosis (Figure 2A). Next, the Pearson
correlation test was applied to quantitively assess the magnitude of linear association between biomarkers
and CVD. In our study, we observed the correlation coefficient, which ranges from —1 to 1, with larger
absolute values indicating a more pronounced association. However, to assess the statistical significance
of the findings, we also examined the negative logarithm of the p-value for both transcriptomic and clinical

features (Figure 2B). Notably, higher bars in the graph indicate greater significance to CVD diagnosis.

We applied the chi-square test to investigate the independence among categorical factors on CVD
detection and discern any significant relationships that may exist. We calculated the chi-square statistic to
qguantify this independence. We utilized the ANOVA test to discern the difference in the distribution of
gene expression patterns between healthy individuals and those afflicted with CVD. We computed the F-
statistic to measure this variability. We found 313 biomarkers to be supported across three of our
algorithms (Pearson correlation, chi-square test, and ANOVA). The presence of high outliers, such as genes

HBA1 and HBA2, which are beneficial in traditional selection methods but detrimental to predictive model
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training, diminishes importance within our RFE classifications. To counterbalance precursory approaches
to subset our biomarkers, we implemented RFE. Biomarkers classified within the top 10% were endorsed

for further predictive analysis (Table 1).
Predicting Cardiovascular Disease

Transcriptomic attributes serve as our predictive engine’s training dataset. This engine consists of five
unique classifiers to forecast case/control predictions for our testing dataset: Random Forest (RF), Support
Vector Machine (SVM), Xtreme Gradient Boost (XGBoost), k-Nearest Neighbor (k-NN), and Soft Voting
Classifier (SVC). Metrics, including weighted-average F1 scores and receiver operating characteristic curves
(ROC), were calculated for each classifier. Weighted-average F1 scores evaluate models in circumstances
where categorical predictors are not balanced. ROC-AUC provides an additional approach to ML
performance evaluation, showing a probability of a binary classifier to make true predictions rather than

false positives. Values approaching 1.0 in each measure suggest high performance.

RF has demonstrated practical usage within transcriptomics [25]. Optimizing RF with GridSearchCV (Figure
4A), using dataset-standard parameters, the decision tree classifier made the most accurate predictions.
RF selected case/control correctly in 95% of testing patients. Important features involved in RF prediction
include RN7SL593P, LILRA2, and HLA-B (Figure 4A). ROC-AUC for our RF classifier was 0.95. The weighted-
average F1 score was 0.96. SVM, a classifier suited for single-diagnosis case/control predictions, performed
satisfactorily. Optimized using GridSearchCV using dataset-standard parameters (Figure 4B), the SVM
classifier succeeded with 91% of predictions. MTRNR2L1, GPX1, and AP003419.11 are the SVM classifier's
most essential features. This model’s ROC-AUC was the highest, 0.99. The SVM classifier's weighted-
average F1 score was 0.91. XGBoost, another decision tree-based approach, provides an accessible
approach to classification. The performance of XGBoost rivals our SVM classifier, scoring 91% on
predictions. XGBoost was optimized with GridSearchCV using dataset-standard parameters (Figure 4C).
XGBoost’s best tree functioned using MTRNR2L1 as its sole feature. XGBoost’s ROC-AUC was 0.94. The
XGBoost classifier’s weighted-average F1 score is 0.91. k-NN’s performance was feeble compared to RF,
SVM, and XGBoost. Tuned with GridSearchCV using dataset-standard parameters (Figure 4D), the k-NN
classifier hit 91% of predictions. This pairs with 0.85 ROC-AUC and 0.91 weighted-average F1 score. k-NN
is a resource-intensive algorithm, producing worse performance at extended runtimes compared to our

previous classifiers. k-NN used MTRNR2L1, BRK1, and ARPC4 most when forming predictions.

RF and XGBoost classifiers proved most applicable to transcriptomic datasets. SVM performance is

sufficient for case/control classifications, but diverse problems engaging multiple diseases and disorders
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will lead to substantial performance declines [5]. k-NN is the least appropriate for such datasets.
MTRNR2L1 was the best transcriptomic marker for CVD predictions, with top-three importance for our

SVM, XGBoost, and k-NN classifiers.
Examining Transcriptomic Predictors

Validating the detected biomarkers' relevance to our cohort’s diagnoses necessitated an in-depth
inspection of their function in prediction and prominence in previous literature. Alongside a thorough
review of previous scientific findings, biomarkers correlations are reported and tied to their roles in disease
classification. The literature review revealed 14 transcriptomic biomarkers linked with CVDs and a variety
of other diseases and disorders within our cohort. HLA-DMB and HLA-B are associated with
cardiomyopathy. RN7S5L2 and GPX1 are associated with stroke. ARPC4 and LILRA2 are associated with
atherosclerosis. Transcriptomic markers found within the supported list are also associated with various
types of chronic diseases) and disorders (cancers, rheumatoid arthritis, and diabetes. Visualizations
displaying clustered profiles of transcriptomic expression (Figure 3B) and their associations with
biomarker’s intercorrelation (Figure 3C) indicate the mechanisms of disease classification. This correlation

metric was supported using literature as well. Genes TWF2 and ARPC4 scored perfect correlations.

Pseudogene MTRNR2L1 was the observed feature in all three classifiers: SVM, XGBoost, and k-NN.
MTRNR2L1 presented fluctuating expression across patients and failed to surpass a correlation above 0.5
with other transcriptomic biomarkers. GPX1, AP003419.11, and CTA-363E6.6 were the three most
important features of the SVM classifier beside the previously mentioned MTRNR2L1. MTRNR2L1 and
GPX1 have been linked to CVDs, while AP003419.11 and CTA-363E6.6 have not been previously reported.
These three transcriptomic markers are the least correlated with each other, the most independent
function biomarkers within our list. The SVM classifier, more than others, is reliant upon independent-
acting transcriptomic factors whose expression is not tied to that of another biomarker within the selected
list. A cluster of highly correlated biomarkers identified, RPS28P7, SNHG6, and TSTD1, did not perform well
with SVM classifier. The k-NN classifier did not display similar patterns regarding the correlation of

transcriptomic biomarkers.

The XGboost classifier was reliant solely on MTRNR2L1, indicating the strongest association to CVDs of any
transcriptomic biomarker. This algorithm ties the under expression of the IncRNA with CVD status. The RF
classifier relied most prominently on the RN7SL593P biomarker, classifying patients below the threshold
of 825.66 TPM as CVD cases. The overexpression of RN7SL593P has been linked to normal platelet

function, a non-direct implication with CVDs. The RF classifier also placed heavy importance on LILRA2,
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HLA-B, and GPX1 with direct links to CVDs. The decision tree algorithms contained only elements

previously associated with CVDs within their optimized tree using our hyperparameter tuning metrics.

MTRNR2L1, RN7S5L593P, LILRA2, and HLA-B showed the most distinct variety in their importance
throughout the different classifiers. MTRNR2L1, scored the most important across three classifiers, but
was not found in RF’s decision tree. LILRA2 and HLA-B scored a correlation of 0.9, near perfect. HLA-B
ranked as the fifth most important feature in our k-NN classifier and the second least important in the SVM
classifier. LILRA2 placed as the sixth most important feature in our SVM classifier and last in our k-NN
classifier. RN7SL593P, the workhorse of random forest, served average throughout the remaining
classifiers. These incongruencies are algorithmically dependent but may offer some understanding of

underlying biological interactions between these biomarkers and CVD.
Discussion

A persistent challenge in genomic data analysis lies in the handling and integration of large volumes of
sequencing data [26]. With the implementation of our novel CIGT Al/ML ready dataset, we have begun to
make significant progress to standardize heterogenous data types (genomic and clinical) for more accurate
and reliable data analysis and interpretation [27]. Our novel Al/ML methodology uncovered eighteen
transcriptomic biomarkers to be linked to CVDs, three of which were novel (RN7SL593P, AP003419.11, and
CTA-363E6.6) and will require further analysis to understand the correlation between them and disease
etiology. To further investigate gene-disease relationships for these significant biomarkers, we performed
a literature review correlating these genes to CVDs (Figure 5).

Genes such as HLA-DMB [28], HLA-B [29], and GPX1 [30] were found to be profoundly expressed in
cardiomyopathy. While other biomarkers such as RN7SL2 [31], LILRA2 [32], GAS5 [33], TWF2 [34], EGLN2
[35], SNHG6 [36, 37, 38], and BRK1 [39] have all been previously associated with phenotypic variations
linked to CVD, there is limited literature associating protein-coding genes such as RPS28P7 and CTA-
363E6.6 to other known CVDs. No direct links were recorded between RN7S5L593P and AP003419.11 and
known CVDs as well as other non-CVD-related diseases. Additional validation of these biomarkers was
conducted utilizing the patients’ clinical records to elaborate on the associations between secondary
diseases and their possible effect on CVD prognosis.

A significant number of biomarkers were associated to other diseases diagnosed reported for CVD
patients' clinical records. We created a network of overlapping diseases linked to the eighteen biomarkers
in the highly diagnosed conditions from EHRs (Electronic Health Records) as well as those reported earlier

in our comparative review (Figure 5). We observed that most genes were interconnected through a CVD
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including but not limited to cardiomyopathy, stroke, and atherosclerosis. The most common non-CVD
diagnosis within our patient cohort was breast cancer, and we found GAS5 [40], TSTD1 [41], EGLN2 [42],
SNHG6 [43], BRK1 [44], and MTRNR2L1 [45] to be indicative biomarkers. As stated earlier, cardiomyopathy
was the next prevalent disease in our network corroborating our claims that our innovative Al/ML model
can accurately predict CVDs. Other diseases that were shared between the genes included coronary artery

disease, myocardial infarctions, lung cancer, and type 1 diabetes among others (Figure 5).

We believe that synergistic use of multiple Al algorithms provides more accurate results, draws insightful
conclusions, and precise predictions about real-world problems compared to single Al algorithm on its
own. This approach combines the best aspects of multiple machine learning algorithms into a single
model. A limitation of our current study is that experimental validation is needed to support the outcomes
of our Al/ML model. We addressed this constraint by utilizing clinical records and comparative literature
to support our findings. In the future, our Al/ML model can be implemented in the clinical setting to aid
in early disease diagnosis and improve prognosis. Our model has the potential to be generalized to
investigate non-CVDs with intricate characteristics such as breast cancer, diabetes, and Alzheimer’s disease
among many others. To foster these downstream applications, we have made source code openly available
and freely accessible. This cutting-edge technology enhances the precision of diagnoses and empowers
clinicians to tailor personalized treatment plans, ultimately leading to more effective and targeted
healthcare interventions. Our findings validate the effectiveness and reliability of the model in the medical

domain, offering promising prospects for improved healthcare outcomes.

Material and Methods

Our study is divided into two major steps: |) exploratory data analysis and identification of significant

biomarkers, and Il) implementation of nexus Al/ML models for predictive analysis.
Exploratory Data Analysis and Identification of Significant Biomarkers

Exploratory data analysis was performed to show the difference in gender distribution based on the age
of the subject. The box plot was presented to show a quick statistical summary (i.e., mean, median, range,
outliers) of each gene in the dataset [46] as well as to explore distributions, outliers, and anomalies [46].
We utilized a convergence of statistical algorithms to evaluate the variations in expression levels and
clinical characteristics between individuals with CVDs and those that are healthy. The proposed feature
selection model uses four distinct algorithms: 1) Recursive Feature Elimination (RFE) [47], IlI) Pearson

Correlation [48], lll) Chi-Square Test [49], and IV) Analysis of Variance (ANOVA) [50]. A combination of
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these tests allows the model to adapt to different matrix sizes, distributions, and attributes. All these
algorithms used our CIGT dataset to compute the statistical significance of supported biomarkers by means

of a p-value significance test.

To eliminate biomarkers that do not have high significance to CVD and reduce the computational load for
the analysis downstream, we applied the RFE algorithm [51]. In our study, we chose the scoring metric to
be based on decision trees with top 10% number of features to be from the original list of biomarkers. The
correlation coefficient plays a crucial role in ranking: the higher the coefficient, the higher the rank
assigned to the gene, implying a stronger association between the gene and CVD. It is important to note
that a higher rank corresponds to a lower integer value. To determine each biomarker’s linear relationship
to disease, we applied the Pearson correlation test where each biomarker was assigned a correlation
coefficient. Subsequently, to examine the dependence between the test variable and the significant
biomarkers, we employed the chi-square test. The chi-squared test has been applied widely in genomics
for feature selection due to its application in multi-disease classification for genome-wide association
studies (GWAS) [52]. This function requires two parameters: a scoring metric (in this case, chi-square) and
‘k’, which we set as ten. Next, we implement the ANOVA procedure, which uses a five-step approach to

compute a f-statistic that determines the significance of a biomarker.

There are documented limitations associated with each testing algorithm utilized in our study. To address
these challenges, we have merged these algorithms to satisfy different requirements. RFE cannot quantify
the correlation between biomarkers and lacks the ability to compute multivariate significance.
Furthermore, due to its iterative nature, RFE has a high time complexity [48]. One of the main limitations
of the Pearson correlation test is the sensitivity to range differences between the biomarkers and their
relation to disease. However, we have accounted for this by increasing the volume of data to reduce range
differences between biomarkers. The main challenge associated with the chi-square test is the number of
Type | and Il errors in small sample sizes. However, the rationale for implementing this algorithm was to
make our overall system predict better in larger matrix sizes. One more challenge that arises with ANOVA
testing is the fact that if two groups of samples are of different sizes, then there is a direct issue with the
strength and validity of the test. Due to the inclusion of all the other algorithms that can handle imbalances
in sample size, this limitation is not of concern to this study. In our merged function, we select the
statistically significant biomarkers for the ANOVA, chi-square, and Pearson correlation test and show up in

the top 10% of significant biomarkers in RFE.

Implementation of a nexus Al/ML models for predictive analysis
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The biomarkers selected were predictive for patient diagnosis and classification. We selected four
algorithms for this task: Random Forest (RF) [53], Support Vector Machine (SVM) [54], K-nearest neighbors
(k-NN) [55], and Extreme Gradient Boosting Decision Trees (XGBoost) [56]. We applied hyperparameter
tuning to all algorithms, which were then ensembled using a Soft Voting Classifier to curate a powerful

predictive engine that can perform accurate classification specific to user-specified matrices.

We started with RF, which is a meta-classifier that combines the output of multiple decision trees to
categorize individuals based on their disease state. The algorithm computes a decision tree to classify
patients based on their biomarker profile. The best decision tree from the forest was considered which
highlights the decision boundary (i.e., polynomial) that the algorithm uses to sort patients. To classify
patients based on their biomarker profile, we implemented SVM that computes support vectors. The most
important classification feature highlights the relative significance of each biomarker. To further classify
patients based on their biomarker profile and address limitations associated with SVM, we used the
XGBoost algorithm. This algorithm computes a decision tree to highlight biomarkers that were of
significance in the classification process. Finally, we applied the k-NN algorithm to determine the
classification of a datapoint by majority voting amongst its ‘k’ nearest neighbors. The k-value was chosen

based on iterating through all possible values of k and selecting the model with the highest accuracy.

Employing this nexus of ML algorithms helped us in navigating shortcomings that might arise from
individual algorithms. The main limitation of SVMs is their inability to perform well when the data set is
large [54]. However, through a combination of algorithms, SVMs can be an integral part of an ML system
when the input set is small. Another limitation arises in the implementation of XGBoost where the
performance is greatly diminished on sparse and unstructured data [56]. However, due to our robust data
pre-processing function, we have been able to address this issue. The main limitation of k-NN is the
sensitivity to feature scaling [55]. KNN calculates distances between instances to determine their similarity.
If features have different scales, those with larger values can dominate the distance calculation, leading to
biased results. It is essential to normalize or scale the features appropriately before applying KNN.
However, KNN can adapt to changes in the training data without requiring complete retraining of the

model, which is why it was selected for our analysis.

All four algorithms were ensembled using the Soft Voting Classifier, the class with the highest average
probability of success was chosen as the final prediction. By combining each algorithm in this manner, the

positives are accentuated while neutralizing the downsides for each algorithm.
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Table

Ensembl ID Recursive | Correlatio | Pearson Chi- Chi- F-Statistic | Analysis of

Feature n Correlatio | Square Square Variance

Eliminati | Coefficient | n (p-value) | Statistic Test (p- (p-value)

on Score value)
ENSG00000266 | 8 0.5732048 | 1.42E-07 6099.0391 | 0 18.461680 | 8.41E-05
422 61 46 9
ENSG00000242 | 27 0.4686629 | 3.30E-05 1182.1984 | 4.51E- | 17.331400 | 0.0001295
574 16 79 259 61 94
ENSG00000256 | 1 - 8.30E-06 425.05704 | 1.94E- | 15.446228 | 0.0002716
618 0.4985778 28 94 46 97

43
ENSG00000265 | 10 0.5017487 | 7.12E-06 5570.1932 | O 14.623181 | 0.0003784
150 48 07 8 83
ENSG00000234 | 41 0.4443081 | 9.24E-05 21800.548 | 0 13.250337 | 0.0006658
745 3 16 49 93
ENSG00000241 | 29 0.4375261 | 0.0001214 | 967.24115 | 2.37E- 12.825211 | 0.0007957
553 55 46 1 212 09 51
ENSG00000256 | 13 - 0.0002194 | 97.158556 | 6.40E- | 12.516301 | 0.0009066
514 0.4223507 | 05 08 23 1 31
63

ENSG00000231 | 46 0.4157495 | 0.0002813 | 2762.6493 | O 12.508201 | 0.0009097
389 05 56 64 18 47
ENSG00000239 | 35 0.4374661 | 0.0001217 | 467.71526 | 1.01E- 11.287610 | 0.0015364
998 27 37 11 103 72 51
ENSG00000234 | 42 0.3810930 | 0.0009577 | 250.75416 | 1.78E- 10.144119 | 0.0025436
741 7 04 9 56 03 71
ENSG00000247 | 20 0.3781123 | 0.0010576 | 169.36034 | 1.02E- 10.131464 | 0.0025580
596 12 6 2 38 67 96
ENSG00000215 | 66 0.3184117 | 0.0064133 | 324.04184 | 1.91E- 9.4192254 | 0.0035266
845 48 23 77 72 69 25
ENSG00000269 | 5 0.3933151 | 0.0006311 | 199.90368 | 2.19E- 9.3316822 | 0.0036700
858 71 98 54 45 75 18
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ENSG00000233 | 43 - 0.0009509 | 286.05153 | 3.61E- | 6.8235352 | 0.0119739
276 0.3813055 | 18 5 64 03 83
1

ENSG00000245 | 21 0.2901245 | 0.0134312 | 146.30232 | 1.11E- | 6.4409248 | 0.0144529
910 17 39 38 33 63 2
ENSG00000227 | 53 0.2563101 | 0.0297619 | 3696.9999 | O 5.5905522 | 0.0221501
097 09 01 79 65 13
ENSG00000254 | 14 0.2715716 | 0.0210223 | 105.50149 | 9.48E- | 5.2080928 | 0.0269554
999 84 04 56 25 13 23
ENSG00000260 | 11 0.3140782 | 0.0072150 | 45.016686 | 1.95E- | 4.4912440 | 0.0392682
592 32 15 98 11 41 84

Table 1. Statistical analysis of most significant biomarkers. Table 1 includes rankings based on Recursive
Feature Elimination scores, Pearson correlation, chi-square, and Analysis of Variance test. All raw scores
for are included (correlation co-efficient, chi-square statistic, and f-statistic) as well as p-values that were

utilized in the visualization and artificial intelligence/machine learning (Al/ML) analysis of the data.
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Figure Legends

Figure 1. Methodology and study design, workflow, and bioinformatics. Artificial intelligence (Al) and
machine learning (ML) for statistical and predictive analysis. Training dataset is used to identify significant

biomarkers that are then utilized by a nexus of Al/ML algorithms to predict cardiovascular disease (CVD).

Figure 2. Feature Selection of Biomarkers. Statistical significance test to determine the importance of each
gene according to the algorithm used. The y-axis represents the p-values as a logarithmic expression while
the x-axis displays distinct biomarkers. Features are displayed from A) Recursive Feature Elimination; B)

Pearson Correlation; C) Chi-Squared test; and D) Analysis of Variance.

Figure 3. Significant biomarkers supported by four statistical tests. Results of the artificial intelligence (Al)
and machine learning (ML) statistical analysis using clinically integrated genomics and transcriptomic data
(CIGT) of patients with CVDs. Results include A) Biomarker expression; B) Biomarker correlations; and C)

Biomarker pairwise relationships.

Figure 4. Predictive ability of our model supported by a nexus of four algorithms. Results of artificial
intelligence (Al) and machine learning (ML) based predictive analysis using supported biomarkers of high-
risk patients with cardiovascular diseases (CVDs). Results include A) Random Forest decision tree; B)
Support vector machine feature importance; C) XGBoost decision tree; D) k-Nearest neighbors; and E) soft
voting classifier predictions confusing matrix. 4 distinct biomarkers that were found to be significant within

all algorithms are highlighted in the figure.

Figure 5. Gene-Disease network based on comparative literature review and patient diagnosis. Data
validation from our cohort’s clinical records and literature review linking the supported transcriptomic
biomarkers to different cardiovascular diseases (CVD) and non-CVDs. ICD-9 and 10 codes were also linked
to the diagnosis list and was utilized in the network. Green corresponds to gene names; blue represents

non-CVDs while red signifies CVDs.
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A). Gene-Disease Network
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Diagnosis ICD9 ICD10 Gene
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785.72
C50.411
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HLA-DMB
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ype 2 or unspecified diabetes mellitus with peripheral circulatory disorder [Type 2 Diabetes]
[Osteoarthritis [Osteoarthritis]
History of non-Hodgkins lymphoma [Diffuse Large B-cell Lymphoma]**
Malignant neoplasm of upper-outer quadrant of right female breast. unspecified estrogen receptor status (CMS/HCC) [Breast Cancer]
Seronegative arthritis [Rheumatoid Arthritis]**
[Mass of upper inner quadrant of right breast [Breast Cancer]
[Coronary artery disease involving native heart with angina pectoris. unspecified vessel or lesion type (CMS/HCC) [Corona
Disease]
Special screening for malignant neoplasms. colon [Colorectal Cancer]
[Seronegative rheumatoid arthritis (CMS/HCC) [Rheumatoid Arthritis]
Family history of ovarian cancer [Ovarian Carcinoma]
Malignant neoplasm of upper lobe. right bronchus or lung (CMS/HCC) [Lung Cancer]
Other malignant lymphoma of extranodal or solid organ sites [Diffuse Large B-cell Lymphoma]**
Other diabetic neurological complication associated with other specified diabetes mellitus (CMS/HCC) [Type 1 Diabetes]
INSTEMI (non-ST elevated myocardial infarction) (CMS/HCC) [Myocardial Infarction]
[Obscure cardiomyopathy of Africa (CMS/HCC) [Cardiomyopathy]
[Other atherosclerosis of native artery of extremity [Atherosclerosis]
Family history of ischemic heart disease [Coronary Artery Disease]
[Wegeners granulomatosis (CMS/HCC) [Granulomatosis with Polyangiitis]
Mantle cell lymphoma (CMS/HCC) [Diffuse Large B-cell Lymphoma]**
iral hepatitis [Chronic Hepatitis B Virus]**
Hereditary and idiopathic peripheral neuropathy [Neurodevelopmental Disorders]**
Malignant neoplasm of posterior wall of bladder (CMS/HCC) [Bladder Cancer]
[Carcinoma in situ of breast [Breast Cancer]
Need for prophylactic vaccination and inoculation against viral hepatitis [Chronic Hepatitis B Virus]**
Polycystic ovaries [Polycystic Ovary Syndrome]
Malignant neoplasm of colon (CMS/HCC) [Colorectal Cancer]
elangiectasia [Hereditary Haemorrhagic Telangiectasia]**
Malignant neoplasm of prostate (CMS/HCC) [Prostate Cancer]
Interstitial lung disease (CMS/HCC) [Connective Tissue Disease-Associated Interstitial Lung Disease]**
[Chronic periodontitis [Periodontitis]
ISecondary malignant neoplasm of lung (CMS/HCC) [Lung Cancer]
[Squamous cell cancer of epiglottis (CMS/HCC) [Oral Squamous Cell Carcinoma]
IChronic obstructive pulmonary disease. unspecified COPD type (CMS/HCC) [Chronic Obstructive Pulmonary Disease]
[Chronic myeloid leukemia (CMS/HCC) [Acute Myeloid Leukemia]**
Ectopic pregnancy without intrauterine pregnancy [Development of Ectopic Pregnancy]
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