

1 VLP-mediated delivery of structure-selected neoantigens demonstrates 2 immunogenicity and antitumoral activity in mice

3
4 Ana Barajas^{1 2 *}, Pep Amengual-Rigo^{3 *}, Anna Pons-Grífols^{1 4}, Raquel Ortiz^{1 4}, Oriol Gracia Carmona³, Victor Urrea¹, Nuria
5 de la Iglesia¹, Juan Blanco-Heredia¹, Carla Anjos-Souza¹, Ismael Varela¹, Benjamin Trinité¹, Ferran Tarrés-Freixas¹, Carla
6 Rovirosa¹, Rosalba Lepore³, Miguel Vázquez³, Leticia de Mattos-Arruda¹, Alfonso Valencia³, Bonaventura Clotet^{1 2 5},
7 Carmen Aguilar-Gurrieri^{1 6}, Victor Guallar^{3 6}, Jorge Carrillo^{1 7} and Julià Blanco^{1 2 7 8}

8
9 ¹ IrsiCaixa AIDS Research Institute, Badalona, Spain.

10 ² University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.

11 ³ Barcelona Supercomputing Center (BSC), Barcelona, Spain.

12 ⁴ Universitat Autònoma de Barcelona (UAB), Cerdanyola, Spain.

13 ⁵ Infectious Diseases Department, Germans Trias i Pujol Hospital, Badalona, Spain.

14 ⁶ Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.

15 ⁷ CIBER de Enfermedades Infecciosas

16 ⁸ Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.

17 * These authors contributed equally to this work.

18 ⁶ Corresponding author.

19

20 **Keywords:** neoantigen, cancer vaccine, virus-like particle, immunotherapy, T cell response

21

22 DECLARATIONS

23 **Ethics approval.** This study involves experimental procedures using mice. All experimental procedures were
24 performed by trained researchers and approved by the competent authorities (Generalitat de Catalunya,
25 Authorisation ID 9943). All experimental procedures were conducted in accordance with the Spanish laws and
26 the Institutional Animal Care and Ethics Committee of the Comparative Medicine and Bioimage Centre of
27 Catalonia (CMCIB), and following the 3Rs principles.

28

29 **Patient consent for publication.** Not applicable.

30

31 **Availability of data and material.** Data are available upon reasonable request. NOAH is available for download
32 at <https://github.com/BSC-CNS-EAPM/Neoantigens-NOAH>.

33

34 Competing interests

35 The authors declare that the research was conducted in the absence of any commercial or financial
36 relationships that could be construed as a potential conflict of interest. Outside this work BC, JB and JC are
37 founders and shareholders of AlbaJuna Therapeutics, S. L.

38

39 **Funding.** This work was supported by the CERCA Program (2017 SGR 252; Generalitat de Catalunya), PID2019-
40 106370RB-I00/AEI/10.13039/501100011033 (Spanish Ministry of Science and Innovation), Grifols S. A. (Spain)
41 and Sorigué (Spain). Funders had no role in the study design, data analysis, decision to publish, or manuscript
42 preparation. AP-G was funded by *Secretaria d'Universitats i Recerca of Generalitat de Catalunya* and the
43 European Social Fund through the fellowship 2022FI_B00698.

44

45 **Authors' contributions.** CA-G, AB, AP-G, RO, IV and CR collected the experimental data and performed the
46 analysis. BT and FT optimized the VLPs' purification protocol. PA-R, OG-C, JB-H, CA-S, RL and MV designed and
47 performed the NOAH pipeline. VU performed the statistical analysis. CA-G, AB, NI, VG, JC and JB conceived
48 and designed the analysis. CA-G and AB drafted and wrote the text and figures. CA-G, AB, NI, LM-A, AV, BC,

49 VG, JC and JB corrected the text and figures. All the authors contributed to the article and approved the
50 submitted version.

51
52 **Acknowledgements.** We would like to thank the staff from the Servei de Microscopia of Universitat Autònoma
53 de Barcelona. We are grateful to CMCiB staff for their excellent technical help with animal care. Finally, we
54 would like to extend our sincere thanks to Dr Francesc Cunyat for reviewing the manuscript and providing
55 valuable feedback.

56
57 **Corresponding author**

58 Carmen Aguilar-Gurrieri, PhD
59 IrsiCaixa AIDS Research Institute
60 Crta del Canyet s/n. 08916, Badalona, Spain
61 Phone: (+34) 93 465 63 74 Email: caguilar@irsicaixa.es

62
63 **ABSTRACT**
64 **Background:** Neoantigens are patient- and tumor-specific peptides that arise from somatic mutations. They
65 stand as promising targets for personalized therapeutic cancer vaccines. The identification process for
66 neoantigens has evolved with the use of next-generation sequencing technologies and bioinformatic tools in
67 tumor genomics. However, *in silico* strategies for selecting immunogenic neoantigens still have very low
68 accuracy rates, since they mainly focus on predicting peptide binding to Major Histocompatibility Complex
69 (MHC) molecules, which is key but not the sole determinant for immunogenicity.

70 **Methods:** We developed a novel neoantigen selection pipeline based on existing software combined with a
71 novel prediction method, the Neoantigen Optimization Algorithm (NOAH), which takes into account structural
72 features of the peptide/MHC-I interaction in its prediction strategy. Moreover, to maximize neoantigens'
73 therapeutic potential, neoantigen-based vaccines should be manufactured in an optimal delivery platform
74 that elicits robust *de novo* immune responses and bypasses central and peripheral tolerance.

75 **Results:** We generated a highly immunogenic vaccine platform based on engineered HIV-1 Gag-based Virus-
76 Like Particles (VLPs) expressing a high copy number of each *in silico* selected neoantigen. We tested different
77 neoantigen-loaded VLPs (neoVLPs) in a B16-F10 melanoma mouse model to evaluate their capability to
78 generate new immunogenic specificities. NeoVLPs were used in *in vivo* immunogenicity and tumor challenge
79 experiments.

80 **Conclusions:** NeoVLPs can promote the generation of *de novo* antitumor-specific immune responses, resulting
81 in a delay in tumor growth. Vaccination with the neoVLP platform is a robust alternative to current therapeutic
82 vaccine approaches and a promising candidate for future personalized immunotherapy.

83
84 **WHAT IS ALREADY KNOWN ON THIS TOPIC**
85 Identification of highly immunogenic neoantigens is still challenging, currently available pipelines base their
86 prediction on MHC-I binding affinity. Moreover, neoantigen-based vaccine delivery needs to be improved to
87 increase the potency of anti-tumor immune response.

88 **WHAT THIS STUDY ADDS**
89 NOAH is a novel pipeline for the identification and selection of neoantigens that combines binding affinity and
90 structural features of the peptide/MHC-I interaction. Preclinical studies show highly immunogenic vaccine
91 platform based on HIV-1 Gag based VLPs (neoVLPs) generates antitumor-specific immune responses, delaying
92 tumor growth.

93 **HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY**

94 The combination of NOAH and neoVLP platform represents an alternative to current therapeutic vaccine
95 approaches and a promising candidate for future personalized immunotherapy.

96

97 BACKGROUND

98 Anti-cancer immunotherapies aim to initiate, amplify and expand anti-tumor immune responses (1). Novel
99 therapies that generate *de novo* responses or expand pre-existing neoantigen-specific T cells, with potential
100 to target cancer cells, have proven clinical efficacy in a variety of malignant tumors (2–8). Neoantigens are
101 tumor-specific antigens (TSAs) that derive from single-nucleotide variants (SNVs), altered gene expression
102 (including alternative splicing) or insertions and deletions that lead to frameshifts (9–11). Personalized
103 neoantigen vaccines, which display a limited repertoire of neoepitopes, represent a promising new class of
104 cancer immunotherapy (11–13). Neoantigens are specific to each patient's tumor and are absent in normal
105 tissues, preventing "off-target" damage (14). Moreover, neoantigen-targeted immune responses bypass
106 central and peripheral tolerance (15).

107 The identification and selection of neoantigens are critical steps for antitumor vaccine development (15). The
108 field has made significant advancements with the development of next generation sequencing technologies
109 and bioinformatic tools that allow an in-depth analysis of the cancer genome (16). Although mutations play a
110 pivotal role in neoantigen generation, several additional factors are also involved: (i) mRNA expression and its
111 translation into protein, (ii) protein processing, (iii) peptide binding to the MHC and (iv) T-cell receptor (TCR)
112 recognition of the peptide-MHC complex (8,15). Despite each of these events being key, current neoantigen
113 identification strategies have mainly focused on predicting peptide binding to MHC molecules (17), using tools
114 such as NetMHC, NetMHCpan or MHCflurry (18–22). Therefore, further investigation to improve neoantigen
115 identification and selection algorithms is ongoing, including the Tumor Neoantigen Selection Alliance (TESLA)
116 (23) or the NEOantigen Feature toolbOX (NeoFox) (24).

117 Besides the accurate identification of neoantigens, the success of cancer vaccines also depends on how these
118 neoantigens are formulated and presented to the immune system. Several types of cancer vaccines have
119 reached clinical trials: (i) cell-based vaccines, often prepared as autologous dendritic cells (DCs) pulsed with
120 whole tumor cells, proteins or neoantigens (25–27); (ii) peptide-based vaccines, which induce a robust
121 immune response against the specific tumor antigen-derived peptides (9); (iii) viral vector-based vaccines,
122 such as adenoviruses (28,29); and (iv) nucleic acid-based vaccines, mainly DNA vaccines or the recently
123 developed mRNA technology (7). Remarkably, the combination of different vaccine platforms with immune
124 checkpoint inhibitors, has demonstrated promising results in a phase I clinical trial (30), suggesting that the
125 future of immunotherapies involves the integration of different approaches.

126 Human Immunodeficiency Virus (HIV-1) Gag-based VLPs constitute a highly suitable vaccine platform to
127 accommodate neoantigens with the aim of generating strong specific T-cell responses with potent antitumor
128 activity. VLPs are complex lipoprotein structures analogous to the corresponding native viruses, but lacking
129 infectivity due to the absence of the viral genome (31,32). HIV-1 Gag-based VLPs are nanoparticles wrapped
130 by a lipid bilayer, similar to retroviruses, that can be generated solely by the expression and subsequent
131 oligomerization of the structural Gag protein monomer (33,34). HIV-1 Gag-based VLPs elicit both humoral and
132 cellular immune responses, exhibit safety, are highly immunogenic and can be produced and purified by
133 standard techniques (34,35). Our research group enhanced the immunogenicity of these HIV-1 Gag-based
134 VLPs (35), which could be further adapted to incorporate specific tumor neoantigens. Therefore, HIV-1 Gag-
135 based VLPs represent an excellent vaccine platform adaptable to mRNA manufacture for the development of
136 personalized cancer vaccines.

137 Here, we have developed a novel personalized cancer vaccine strategy based on HIV-1 Gag-based VLPs. For
138 that, we used the B16-F10 murine melanoma model to evaluate its efficacy. HIV-1 Gag-based VLPs were

139 engineered to express a collection of neoepitopes that were identified using a novel pipeline including
140 consensus between our novel prediction tool NOAH and existing state of the art software. In contrast to other
141 bioinformatic pipelines, NOAH is not trained on affinity data, which is often associated with high uncertainty,
142 but based on structural features of known peptide/MHC-I interaction. Our results show that vaccinated mice
143 mounted potent neoantigen-specific cellular responses, which were capable of delaying tumor development
144 following inoculation with syngeneic B16-F10 tumour cells.
145

146 METHODS

147 **Whole exome and RNA sequencing.** DNA whole exome libraries of B16-F10 cell line and C57BL/6J^olaHsd
148 germline sample were prepared with Agilent Mouse All Exon kit (Agilent) following manufacturer's
149 instructions. For RNA sequencing, a total of 1 µg of RNA from the B16-F10 cell line (RIN > 7 and rRNA ratio >
150 1) was used. RNA library was prepared using the TruSeq Stranded Total RNA Library Prep Gold (Ribozero) kit
151 (Illumina) following manufacturer's instructions. DNA libraries' quality control was assessed with Bioanalyzer
152 2100 (Agilent), quantified by qPCR, normalized and multiplexed into a balanced pool. DNA- and RNA-derived
153 libraries were sequenced on an Illumina NovaSeq600 platform (2x150 paired-end chemistry). Sequencing
154 output of whole exome sequencing (WES) and RNA sequencing (RNAseq) per library yielded 18 Gb (>500X)
155 and 200M reads, respectively.

156 **In silico neoantigen selection.** A pipeline for neoantigen prediction was developed integrating several filters
157 (Figure 1). After an initial variant calling, peptides were ranked by the NOAH algorithm. Briefly (please refer to
158 the results section for more details), NOAH uses a peptide-MHC position specific propensity matrix to rank the
159 peptides, thus inspecting the complementarity between the peptide and the MHC receptor at each amino acid
160 position. Next, ranked peptides by NOAH were crossed with two additional widely used prediction methods,
161 NetMHCpan4 (20) and MHCflurry (22), aiming for consensus. Finally, additional filters were applied: i) having
162 an expression of more than 5 RNA reads, and ii) having a clonality value > 0.2. (variant allele frequency, thus
163 implying that 0.4 of the cells had the variant). NOAH is available for download at <https://github.com/BSC-CNS-EAPM/Neoantigens-NOAH>.

164 **Plasmids.** NeoVLP fusion protein monomers were generated by concatenating from N- to C-term the Flag TAG
165 and the selected neoantigens or frameshifts by an AAA spacer (36), followed by the transmembrane domain
166 of mouse CD44 and by the full sequence of HIV-1 subtype B GAG_{HXB2} (Figure 2A). In the naked-VLP, which acted
167 as a vehicle control, the Flag TAG was directly fused to the murine CD44 transmembrane domain and HIV-1
168 subtype B GAG_{HXB2} (Figure 2A). All coding sequences were codon optimized and synthetized by GeneArt
169 (Invitrogen), and cloned into pcDNA3.4 (Thermo Fisher). Endotoxin-free plasmids were purified using the
170 ZymoPURE II Plasmid Maxiprep Kit (Zymo).

171 **Vaccine production and purification.** NeoVLPs were produced by transient transfection using Expi293F cells
172 and the Expifectamine293 Transfection Kit following manufacturer's instructions (Thermo Fisher). Cell cultures
173 were harvested 48h post-transfection. Intracellular neoVLPs were extracted from cell pellets following a
174 previously described protocol (37). Extracted neoVLPs were recovered and loaded on a SepFastDUO5000Q
175 column (BioToolomics). Column flow through was recovered, concentrated by ultrafiltration, filtered at 0.45
176 µm, and stored at -80°C until use.

177 **Transmission electron microscopy (TEM).** VLP-producing cells were fixed with 2.5% glutaraldehyde in PBS for
178 2 hours at 4°C, post-fixed with 1% osmium tetroxide with 0.8% potassium ferrocyanide for 2 hours, and
179 dehydrated in increasing concentrations of ethanol. Then, cell pellets were embedded in EPON resin and
180 polymerized at 60°C for 48 hours. Sections of 70 nm in thickness were obtained with a Leica EM UC6
181 microtome (Wetzlar), and stained with 2% uranyl acetate and Reynold's solution (0.2% sodium citrate and
182 0.2% lead nitrate). Sections were analyzed using a JEM-1400 transmission electron microscope (JEOL) and
183 imaged with an Orius SC1000 CCD Camera (Gatan).

185 **Cryogenic electron microscopy (Cryo-EM).** VLP morphology was assessed by cryo-EM. Extracted VLPs were
186 deposited on a carbon-coated copper grid and prepared using an EM GP workstation (Leica). Vitrified VLPs
187 were prepared on a Lacey Carbon TEM grid (copper, 400 mesh) and immediately plunge into liquid ethane.
188 The grids were viewed on a JEOL 2011 transmission electron microscope operating at an accelerating voltage
189 of 200 kV. Electron micrographs (Gatan US4000 CCD camera) were recorded with the Digital Micrograph
190 software package (Gatan)

191 **Flow cytometry.** VLP-producing Expi293F cells were extracellularly and intracellularly stained with
192 Allophycocyanin (APC) anti-Flag (DYKDDDDK) tag antibody (1:500) (Biolegend) and intracellularly stained with
193 the Fluorescein isothiocyanate-labeled KC57 (anti-HIV-1 p24) antibody (1:200) (Beckman Coulter) or a mixture
194 of both antibodies. Cells were fixed and permeabilised using the FIX&PERM kit (Invitrogen). Cells were
195 acquired using a BD FACSCelesta Flow Cytometer and data analysis was performed using the Flow-Jo v10.6.2
196 software (Tree Star Inc.).

197 **Western blot.** Proteins in VLP containing samples were separated by SDS-PAGE using 4-12% Bis-Tris Nu-PAGE
198 gels (Invitrogen) and electro-transferred to a PVDF membrane using the Trans-Blot Turbo Transfer Pack
199 (BioRad). Membranes were blocked (1xPBS pH 7.4, 0.05% Tween20, 5% non-fat skim milk) and subsequently
200 incubated with a rabbit anti-HIV-1 p55+p24+p17 antibody (Abcam, 1:2000) overnight at 4°C. After washing,
201 the membranes were incubated with Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) antibody (Jackson
202 ImmunoResearch, 1:10000) for 1h at room temperature (RT), washed and developed using the SuperSignal
203 West Pico PLUS Chemiluminescence Substrate (Thermo Scientific), and images were obtained using a
204 Chemidoc™MP Imaging System (BioRad).

205 **VLP and total protein quantification.** Purified VLPs were quantified either by p24 ELISA (Innotest HIV antigen
206 mAb, Fujirebio) following manufacturer's instructions or by western blot. For western blot quantification,
207 recombinant Gag protein (35) was used as standard. The standard curve started at 125 ng with 1:2 dilutions
208 until 7.8 ng. Samples were treated as described above. Samples were denatured at 95°C for 5 mins, and
209 proteins were separated by SDS-PAGE. After blocking, membranes were incubated with primary antibody anti-
210 HIV-1 p24 antibody (Abcam, 1:2000) and secondary antibody Peroxidase AffiniPure Donkey anti-Mouse IgG
211 (H+L, Jackson ImmunoResearch, 1:10000).

212 The total protein content in the sample was assessed by Bicinchoninic Acid (BCA) Protein Assay (ThermoFisher
213 Scientific).

214 **In vivo experiments.** Five-week-old male and female C57BL/6, substrain C57BL/6JOlaHsd, mice were
215 purchased from Envigo. All experimental procedures were performed by trained researchers and approved by
216 the competent authorities (Generalitat de Catalunya, Authorisation ID 9943). All experimental procedures
217 were conducted in accordance with the Spanish laws and the Institutional Animal Care and Ethics Committee
218 of the Comparative Medicine and Bioimage Centre of Catalonia (CMCIB), and following the 3Rs principles.
219 Mice immunization was performed in groups of ten or eight animals. Males and females were equally
220 represented in each group. Mice were firstly immunized with plasmids coding for VLPs (intramuscular
221 electroporation with 20 µg of naked DNA) or with purified VLPs (at the hock, using 100 ng of p24-Gag). Three
222 weeks later, a second dose of vaccine was administered following the same procedure. Blood samples were
223 taken 24 hours before each immunization and tumor cells inoculation. Two weeks after the second
224 immunization, mice were euthanized and a sample of whole blood and the spleen were collected. After blood
225 coagulation (4 hours at RT), serum was collected by centrifugation (10 minutes at 4000xg). Spleens were
226 mechanically disrupted using a 70 µm cell strainer (DDBiolab), and the splenocytes were cryopreserved in FBS
227 containing 10% of dimethyl sulfoxide (Merck).

228 Two weeks after the second immunization, immunized and control mice were inoculated subcutaneously at
229 the right flank with 10⁵ B16F10 cells (ATCC; CRL-6475) in 100 µL of sterile 1xPBS with 2 mM EDTA. Tumor

230 growth was measured with a caliper every two days and tumor volume (V) was estimated using the formula:
231 $V = (length \times width^2) \times 0.5$, in which length represents the largest tumor diameter and width represents
232 the perpendicular tumor diameter. Humane endpoint was considered when tumor volume was 1 cm³ or over.
233 At endpoint, blood samples and spleens were collected and processed, as previously described, for *ex vivo*
234 immune responses analysis.

235 **Quantification of anti-HIV-1 Gag antibodies by ELISA.** The concentration of anti-HIV_{Gag} antibodies in sera of
236 vaccinated mice was determined by ELISA. Nunc MaxiSorp 96-well plates (ThermoFisher Scientific) were
237 coated with 50 ng of recombinant Gag/well (35) in 1xPBS (Gibco) and incubated overnight at 4°C. Coated plates
238 were blocked (1xPBS, 1% of bovine serum albumin (BSA, Miltenyi biotech) and 0,05% Tween20 (Sigma) for 2
239 hours at RT. Diluted sera (1:100 or 1:1000) from vaccinated mice were loaded onto the plates, incubated
240 overnight at 4°C, washed and incubated with Donkey anti-mouse IgG Fc antibody (Jackson ImmunoResearch,
241 1:10000) for one hour at RT. Plates were developed using O-phenylenediamine dihydrochloride (OPD, Sigma)
242 and analyzed at 492 nm with a noise correction at 620 nm. As standard reference, anti-HIV-1 p24 antibody
243 (Abcam) was used starting at 333 ng/mL and serially diluted 1:3 down to 0.46 ng/mL.

244 **Quantification of anti-host cell proteins by Flow cytometry.** The humoral response generated against human
245 Expi293F proteins was determined by flow cytometry. Expi293F cells were incubated with mouse serum
246 samples (1:1000) for 30 minutes at RT. After washing, cells were incubated with an AlexaFluor647 goat anti-
247 mouse IgG Fc at a 1:500 dilution (Jackson ImmunoResearch) for 15 minutes at RT. Cells were acquired using a
248 BD FACSCelesta Flow Cytometer and data analysis was performed using the Flow-Jo v10.6.2 software (Tree
249 Star Inc.).

250 **Quantification of T cell responses by IFN γ ELISpot.** Multiscreen ELISpot white plates (Millipore) were coated
251 overnight at 4°C with the anti-mouse IFN γ AN18 antibody (Biolegend) at 2 μ g/mL. The following day, plates
252 were washed with sterile PBS containing 1% FBS and blocked with 100 μ L of RPMI 1640 medium supplemented
253 with 10% FBS (R10) for 1h at 37°C. After blocking, synthetic peptides (individual neoantigens for Tier1, Tier2
254 and Tier3; and overlapping peptides for Tier4 (Figure 1) were added at a concentration of 14 μ g/mL per peptide,
255 either in individual preparations or in peptide pools. Finally, 4×10^5 splenocytes were added per well
256 and cells were cultured overnight at 37°C. The next day, plates were washed and the biotinylated anti-mouse
257 IFN γ monoclonal antibody R4-6A2 (Biolegend, 1:2000) was added and incubated for 1 hour at RT, followed by
258 an alkaline phosphatase conjugated streptavidin (Mabtech) incubation under the same conditions. IFN γ -
259 specific spots were developed by addition of AP Conjugate substrate Kit (BioRad) and the reaction was stopped
260 by aspiration and incubation for 10 min with 1xPBS (Gibson), 0.05% Tween-20 (Sigma). Concanavalin A
261 (Merck), at 7 μ g/mL, was used as a positive control and R10 alone as negative control. Spots were counted
262 using an ELISpot reader S6 Macro M2 (ImmunoSpot, CTL).

263 **Statistical analysis.** Specific CTL responses against individual neoantigen peptides in ELISpot assays were
264 analyzed using Mann-Whitney U test. Multiple comparisons were adjusted by FDR method. Time to sacrifice
265 in each condition were compared by Kaplan-Meier curves and log-rank test.

266 **Data availability statement.** The rest of the data generated in this study are available upon request from the
267 corresponding author, unless stated differently in Materials and Methods particular section.

268

269 RESULTS

270 *Identification of nonsynonymous mutations and frameshifts in B16-F10 mouse melanoma cell line*

271 To improve the currently available neoantigen selection tools, we set out a novel pipeline that takes into
272 account structural information of the peptide to predict MHC binding. NOAH works under the assumption that
273 binding strength relies on: (i) each position of the peptide; and (ii) the MHC residues that are in contact with
274 each amino acid in the peptide. Thus, NOAH factorizes the peptides into individual (local) positions and builds

275 a position-specific weight matrix (PSMW) mixing validated binding data, whether the peptide binds or not,
276 with structural data from all the reported crystal structures that showed a similar physicochemical space. The
277 final score produced by NOAH is the addition of all local contributions, one per each amino acid in the peptide.
278 Noticeably, this score is not a measure of the binding strength (IC_{50} or percentile rank compared to random
279 peptides), unlike other MHC-binding predictors, but it represents the likeliness of the peptide to properly fit
280 and bind to the MHC. This assumption allows the combination of binding data from different alleles, having
281 similar local environment, and confers a pan-allele status, allowing to also perform *de novo* predictions.
282 In this study, the B16-F10 melanoma cell line was chosen as a tumor model for the identification of
283 neoantigens. DNA and mRNA were prepared from B16-F10 cells and C57BL/6J^olaHsd healthy tissue and
284 sequenced by WES and RNAseq, followed by variant calling. The mutanome of B16-F10 cells, including SNVs,
285 InDels, and frameshifts, was used to feed NOAH, which gave an output of 51 neoantigen candidates in a ranked
286 manner (SupTable 1). From this candidate list, we selected up to 41 potential neoantigens of 9 amino acids in
287 length (short peptides) from SNVs and three peptides from frameshifts (long peptides), which were grouped
288 into four different tiers (Figure 1). Tier1 emphasized the selection of neoantigens with larger differences on
289 binding affinity between the wild-type and the mutated variant. Neoantigens included in this group presented
290 mutations in MHC anchor residues that are predicted to increase binding to MHC class I molecules. Tier2
291 grouped neoantigens with high MHC complementarity, as ranked by the consensus approach, bearing
292 mutations that involved a significant change in physicochemical properties (such as polar to aliphatic, negative
293 to positive charge, etc.) for those amino acids that are largely exposed to the solvent and, therefore, are
294 predicted to contact the TCR. Tier3 included peptides that fulfill both binding and expression criteria, but have
295 less drastic changes: with a similar predicted binding to that of the WT and less pronounced changes in a
296 solvent exposed amino acid. Finally, Tier4 included three frameshifts identified by the pipeline and selected
297 for further analysis. The immunogenicity of these selected neoantigens was tested in the context of a novel
298 HIV-1 Gag-based VLP vaccine platform (35) in a syngeneic mouse model.
299

300 *Development of HIV-1 Gag-based VLPs carrying neoantigens.*

301 Neoantigen-expressing HIV-1 Gag-based VLPs, hereafter called neoVLPs, were engineered to allow a high-
302 density of neoantigens on their surface. Such a high epitope density was obtained by fusing the concatenated
303 neoantigens to the HIV-1 structural protein Gag (35). Since it is estimated that there are around 2500 copies
304 of Gag in one VLP (38), neoVLPs are expected to express the same number of each neoantigen (Figure 2B).
305 NeoVLPs included a signal peptide and a Flag TAG at the N-terminus, followed by the concatenated neoantigen
306 peptides separated by a small spacer sequence (AAA (36) or SSS (39)). This N-terminal sequence was fused to
307 the murine CD44 transmembrane domain followed by the HIV-1 structural protein Gag (Figure 2A). This
308 construct was designed to give rise to a VLP with the N-terminal concatenated neoantigens facing the
309 extracellular space. In this study, three different designs were generated: (i) neoVLPs encoding concatenated
310 neoantigens classified in Tiers 1 to 3 (Tier1-GAG, Tier2-GAG, Tier3-GAG), (ii) a neoVLP encoding the three
311 selected frameshifts in Tier4 (FS-GAG) and (iii) a naked-VLP without neoantigens used as a vehicle control
312 (Figure 2A).

313 The different fusion constructs were transfected into mammalian Expi293F cells and the expression of the
314 fusion proteins was determined by flow cytometry. The Flag TAG epitope was hardly detected on the cell
315 surface, while both Flag TAG and p24-Gag were readily detected intracellularly (Figure 2C and D), indicating
316 that the fusion proteins were retained inside the cells.

317 Formation of properly assembled neoVLPs with the expected circular structure in Expi293F cells was
318 demonstrated by transmission electron microscopy (TEM) for each of the fusion proteins tested (Figure 2E).
319 TEM images suggested that the particles budded from the rough endoplasmic reticulum, where the fusion

320 protein was being synthetized and accumulated perinuclearly at the cytoplasm, consistent with a premature
321 association of Gag to intracellular membranes induced by the CD44 membrane spanning domain. No budding
322 events were observed at the plasma membrane, thereby explaining the absence of extracellular Flag TAG
323 staining by flow cytometry.

324 In order to extract and purify intracellular neoVLPs, transiently transfected Expi293F cells were mechanically
325 disrupted and neoVLPs were extracted by incubation with low detergent concentrations. After detergent
326 removal, neoVLP samples were further purified by multimodal chromatography (strong anion-exchange with
327 a size-exclusion effect) (Figure 2F). Samples from the VLP extracted fraction, prior to the chromatographic
328 step, were imaged by cryo-EM (Figure 2G), displaying the expected morphology for all neoVLPs. From the
329 images, both the lipid bilayer of the enveloped VLP and the electrodense Gag ring inside the generated
330 neoVLPs and naked-VLPs were clearly distinguishable (Figure 2G).

331 Integrity of the fusion proteins in the cellular lysate and in the final vaccine preparation was evaluated by
332 western blot (Figure 2H). These results confirmed that fusion proteins were produced at the expected
333 molecular weights, even though several bands could be detected, especially in Tier3-GAG lysates, probably
334 due to partial protein processing.

335

336 *NeoVLPs induce neoantigen-specific T-cell responses.*

337 Next, we tested whether the neoantigens identified *in silico* were immunogenic in the context of natural
338 immunity against B16-F10 tumor cells. To this end, four syngeneic C57BL/6 animals (two males and two
339 females) were inoculated with 10^5 B16-F10 cells subcutaneously at the right flank (Figure 3A). Mice were
340 euthanized when the tumor volume reached approximately 1 cm^3 , between day 15 and day 20 post-
341 inoculation (Figure 3B). Splenocytes were collected to evaluate neoantigen-specific T-cell responses using IFN γ
342 ELISpot assays. No T-cell responses against any of the selected neoantigens were detected, suggesting that
343 these specificities are not developed during the natural anti-B16-F10 immune responses or are not measurable
344 systemically (Figure 3C).

345 Then, we tested whether the selected neoantigens, formulated as neoVLPs, could elicit adaptive immune
346 responses by immunization. First, to define the optimal vaccination protocol, C57BL/6 mice were immunized
347 using three different regimens: (i) two doses of naked plasmid DNA coding for VLP protomers (DNA/DNA), (ii)
348 one dose of naked plasmid DNA plus one dose of purified VLPs (DNA/VLP) and, (iii) two doses of purified VLPs
349 (VLP/VLP) (SupFigure 1A). Analysis of the humoral response against HIV-1 Gag protein showed that the
350 DNA/DNA and the DNA/VLP regimes elicited a higher antibody titer, compared to the VLP/VLP regimen
351 (SupFigure 1B). Regarding the generation of cellular immune responses, IFN γ ELISpot analysis against six pools
352 of ten overlapping peptides, in total covering the entire length of the HIV-1 Gag protein, revealed a 10-fold
353 higher CTL response for the DNA/VLP regimen (SupFigure 1C). Therefore, the DNA prime/VLP boost regimen
354 was chosen for immunization in this study. Next, three neoVLPs coding for concatenated neoantigens (Tier1-
355 GAG, Tier2-GAG and Tier3-GAG) and one frameshift (FS-GAG), as well as the naked-VLP, were tested in *in vivo*
356 immunogenicity experiments (Figure 3D). T-cell responses were analyzed by IFN γ ELISpot against individual
357 neoantigen peptides in Tier1-GAG, Tier2-GAG and Tier3-GAG, or against pools of two overlapping peptides for
358 each frameshift in FS-GAG. One single pool of HIV-1 Gag overlapping peptides covering residues 314 to 412
359 was used in ELISpots as a vaccination positive control for all neoVLPs (Figure 3E-H). T-cell responses were
360 detected against one neoantigen from Tier1-GAG neoVLP, five neoantigens from Tier2-GAG neoVLP, and one
361 from Tier3-GAG neoVLP (Figure 3E-G). Finally, we detected T-cell responses against one out of the three
362 frameshifts tested (Figure 3H), suggesting that peptide length and context might be crucial to induce robust
363 T-cell responses. Therefore, neoantigens classified as Tier2 were the most immunogenic among the selected
364 neoantigens. In addition, immunologically relevant neoantigens were also assessed by IFN γ ELISpot against

365 splenocytes from animals inoculated with B16-F10 cells, which showed an absence of T-cell responses against
366 such neoantigens (SupFigure 2A). All experimental groups generated comparable antibody titers against Gag
367 two weeks after the last vaccination dose (SupFigure 2B), indicating that the differences observed in T-cell
368 responses were not due to variations in vaccine compositions. Accordingly, anti-Expi293F antibodies were also
369 detected in mice immunized with purified VLPs (SupFigure 2C).

370 Taken together, our data suggests that neoVLPs successfully generate *de novo* tumor-specific T-cell immune
371 responses against the selected neoantigens.
372

373 *Prophylactic vaccination with neoVLPs delays tumor growth.*

374 To determine whether immune responses elicited by neoVLPs were protective against B16-F10-derived
375 tumors, we performed a prophylactic vaccination using Tier2-GAG neoVLPs followed by a B16-F10 tumor
376 challenge assay in syngeneic C57BL/6 mice. Animals were immunized using a DNA/VLP regimen with Tier2-
377 GAG neoVLPs, with or without MPLA as adjuvant. MPLA is a TLR4 agonist inducing Th1 responses (40). A
378 control group immunised with naked-VLP plus MPLA was also included. Two weeks after the vaccine boost
379 (day 35), all mice were inoculated with 10^5 B16-F10 cells and tumor growth was followed until tumors reached
380 approximately 1 cm³ (Figure 4A).

381 Analysis of the humoral responses showed that all groups generated antibodies against both HIV-1 Gag and
382 Expi293F surface proteins (SupFig 2D and E), whose levels were slightly higher in animals vaccinated with
383 MPLA. In addition, T-cell responses against the previously identified five neoantigens of the Tier 2 group were
384 also detected (Figure 3F and 4B). No effect of MPLA in T-cell responses was observed (Figure 4B).

385 Mice immunized with Tier2 neoVLPs showed a delay in tumor growth compared with control group mice
386 vaccinated with naked-VLPs (Figure 4C-D). In addition, neoVLP-vaccinated animals showed an increased
387 survival rate than control animals (Figure 4E-F). Of note, three animals, one from Tier2-GAG and two from
388 Tier2-GAG+MPLA groups, did not develop any detectable B16-F10-derived tumor (Figure 4C-D). Therefore, our
389 results show that Tier2 neoVLPs promote *de novo* tumor-specific T-cell responses that are capable of
390 generating an anti-tumoral response.
391

392 DISCUSSION

393 Despite the advances in next generation sequencing techniques and the development of new bioinformatic
394 pipelines for the identification of neoantigens expressed by cancer cells, the identification of strongly
395 immunogenic neoantigens that can develop protective T-cell responses remains challenging due to the low
396 accuracy of the current available pipelines (13,41). Among the different antigen processing steps involved in
397 antigen presentation, the binding of peptides to MHC proteins is considered to be a major determinant. The
398 Immune Epitope Database (IEDB) (42) contains significant noise, i.e., annotations of the same peptide with
399 drastic differences in affinity, which could lead to serious inaccuracies in the training of a peptide binding
400 model against IC₅₀ values. In this context, we developed NOAH, a pan-allele method based on a PSWM
401 approach. PSWM methods offer several advantages over machine learning (ML) techniques, including that
402 PSWM: i) are linear and offer a biological explanation of their results, such as residue contribution; (ii) can be
403 trained on qualitative classifications diminishing the impact of experimental errors; (iii) have lower
404 computational requirements than ML methods, allowing a faster screening of peptidomes.

405 Neural network-based predictions trained on both MHC binding and MHC ligand elution data have achieved
406 the best performance so far in peptide immunogenicity predictions, examples of such pipelines are the well-
407 known NetMHCpan-4.0 or MHCflurry (43). Even though more than half of the positive predictions of these
408 algorithms or combination of them (MHCcombine) matched with actual binding to the corresponding MHC
409 (43,44), this does not necessarily correlate with a higher immunogenicity of the predicted peptide. In addition,
410 the precision of the predictors in identifying naturally processed MHC-binders is suboptimal compared to

411 predicting binding affinity (45). One reason is the lack of databases reporting the relationship between epitope
412 sequences and the associated T-cell immunogenicity. Alternatively, structure-based predictions can provide
413 high-resolution TCR-peptide-MHC structure (45), which allows a better assessment of the interaction with the
414 TCR and, therefore, the immunogenicity of the predicted epitope. Here, we have developed a novel
415 neoantigen selection pipeline which not only takes into account the binding affinity and the complementarity
416 between the peptide and the MHC, but also its interaction with the TCR, by focusing the selection on some
417 specific peptide positions and the physicochemical properties of the variation.
418 Furthermore, to overcome the low immunogenicity associated with peptide immunization, we have generated
419 a novel HIV-1 Gag-based VLP platform that can accommodate several neoantigens at high density within each
420 particle, with the aim of increasing its immunogenicity (35). The *in vivo* immunogenicity of NOAH-predicted
421 neoantigens was tested using this novel vaccine platform. We classified neoantigens identified *in silico* into
422 three Tiers based on the type of mutation and its location: whether it affects MHC binding or interaction with
423 the TCR, or depending on its similarity to the wild-type sequence. In addition, we included frameshift
424 mutations as a fourth-Tier category. Nonetheless, our results showed that neoantigens classified mainly in
425 Tier2, which contained drastic amino acid changes in a position that is likely to be in contact with the TCR,
426 were able to generate stronger T cell responses after immunization with neoVLPs. These data emphasize that
427 beyond the binding affinity to the MHC-I, the interaction of the MHC-I/neoantigen complex with the TCR is
428 key for neoantigen identification. Frameshift mutations generate a complete change in the amino acid
429 sequence of the affected protein compared to its wild-type counterpart. Consequently, frameshifts are
430 expected to be a reliable source of immunogenic neoantigens (46,47). In this study, we included three
431 frameshifts for *in vivo* experimental validation. Our results confirm frameshift mutations as a good source of
432 immunogenic neoantigens.
433 Remarkably, T-cell responses against the selected neoantigens were not detected in mice bearing the tumor,
434 suggesting either that they are not the main target of the natural anti-tumor immune response in these
435 animals or that B16-F10 tumor cells are poorly immunogenic. That is consistent with the high aggressiveness
436 displayed by B16-F10 cells in C57BL/6 mice and their limited response to checkpoint inhibitors (29).
437 Notably, Tier2-GAG vaccinated animals showed delayed tumor growth and increased survival. In fact, three
438 out of sixteen animals did not develop the tumor, indicating that Tier2-elicited T-cell responses may be
439 protective. Although the vaccination alone has demonstrated to be insufficient to protect all animals, the
440 generation of novel neoantigen-specific T-cell responses indicate that the protective effect observed with
441 Tier2-GAG VLPs may be enhanced by combining with immune checkpoint inhibitors, as it has been
442 demonstrated in a therapeutic setting (30). However, further work is needed to confirm the efficacy of
443 neoVLPs in combination with other currently available immunotherapies, such as immune checkpoint
444 inhibitors or inflammatory cytokines, such as IL-2.
445 In summary, our findings provide a promising strategy for the development of personalized cancer vaccines.
446 We have presented an innovative *in silico* neoantigen selection pipeline based on a novel peptide-MHC binding
447 predictor, NOAH, and a consensus approach. In addition, we have adapted our HIV-1 Gag-based VLP vaccine
448 platform for the generation of protective neoantigen-specific cellular immune responses in mice. Overall,
449 these results confirm that neoVLPs are promising candidates for future personalized immunotherapies against
450 cancer.
451

452 **REFERENCES**

453 1. Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. *Immunity*. 2013.
454 page 1–10.

455 2. Sharma P, Allison JP. The future of immune checkpoint therapy. *Science* [Internet]. Science;
456 2015 [cited 2022 Sep 29];348:56–61. Available from:
457 <https://pubmed.ncbi.nlm.nih.gov/25838373/>

458 3. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine
459 generates intratumoral T cell responses in phase Ib glioblastoma trial. *Nature* 2018 565:7738
460 [Internet]. Nature Publishing Group; 2018 [cited 2022 Oct 5];565:234–9. Available from:
461 <https://www.nature.com/articles/s41586-018-0792-9>

462 4. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively
463 personalized vaccination trial for newly diagnosed glioblastoma. *Nature* 2018 565:7738
464 [Internet]. Nature Publishing Group; 2018 [cited 2022 Oct 5];565:240–5. Available from:
465 <https://www.nature.com/articles/s41586-018-0810-y>

466 5. Ott PA, Hu-Lieskov S, Chmielowski B, Govindan R, Naing A, Bhardwaj N, et al. A Phase Ib Trial
467 of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-
468 small Cell Lung Cancer, or Bladder Cancer. *Cell*. Cell Press; 2020;183:347-362.e24.

469 6. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen
470 vaccine for patients with melanoma. *Nature*. Nature Publishing Group; 2017;547:217–21.

471 7. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA
472 mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. *Nature*. Nature
473 Publishing Group; 2017;547:222–6.

474 8. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. *Science* (1979).
475 2015;348:69–74.

476 9. Coulie PG, van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T
477 lymphocytes: At the core of cancer immunotherapy. *Nat Rev Cancer*. Nature Publishing Group;
478 2014;14:135–46.

479 10. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer.
480 *Nat Rev Immunol*. Nature Publishing Group; 2018. page 168–82.

481 11. Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens. *Annu Rev Immunol*.
482 2019;37:173–200.

483 12. Vasquez M, Tenesaca S, Berraondo P. New trends in antitumor vaccines in melanoma. *Ann
484 Transl Med*. 2017;5:1–6.

485 13. De Mattos-Arruda L, Blanco-Heredia J, Aguilar-Gurrieri C, Carrillo J, Blanco J. New emerging
486 targets in cancer immunotherapy: The role of neoantigens. *ESMO Open*. 2020;4:1–7.

487 14. Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic
488 cancer vaccines. *Nat Rev Clin Oncol* [Internet]. Springer US; 2021;18:215–29. Available from:
489 <http://dx.doi.org/10.1038/s41571-020-00460-2>

490 15. Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: An emerging tumor
491 immunotherapy. *Mol Cancer*. BioMed Central Ltd.; 2019.

492 16. Roudko V, Greenbaum B, Bhardwaj N. Computational Prediction and Validation of Tumor-
493 Associated Neoantigens. *Front Immunol*. Frontiers Media S.A.; 2020.

494 17. Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-
495 restricted T lymphocyte responses. *Annu Rev Immunol* [Internet]. Annu Rev Immunol; 1999
496 [cited 2022 Oct 3];17:51–88. Available from: <https://pubmed.ncbi.nlm.nih.gov/10358753/>

497 18. Nielsen M, Lundsgaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a
498 method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of
499 known sequence. *PLoS One*. 2007;2.

500 19. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks:
501 application to the MHC class I system. *Bioinformatics*. 2016;32:511–7.

502 20. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIpan-4.0:
503 improved predictions of MHC antigen presentation by concurrent motif deconvolution and
504 integration of MS MHC eluted ligand data. *Nucleic Acids Res*. 2020;48:W449–54.

505 21. Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J, Lund O, et al. Automated benchmarking of
506 peptide-MHC class I binding predictions. *Bioinformatics*. 2015;31:2174–81.

507 22. O'Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J. MHCflurry:
508 Open-Source Class I MHC Binding Affinity Prediction. *Cell Syst.* 2018;7:129–132.e4.

509 23. Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, et al. Key
510 Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach
511 Improve Neoantigen Prediction. *Cell*. 2020;183:818–834.e13.

512 24. Lang F, Riesgo-Ferreiro P, Löwer M, Sahin U, Schrörs B. NeoFox: annotating neoantigen
513 candidates with neoantigen features. *Bioinformatics*. 2021;1–2.

514 25. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Resear ch
515 | reports. *Science* (1979). 2015;348.

516 26. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine
517 effectively mobilizes antitumor T cell immunity in ovarian cancer. *Sci Transl Med.* 2018;10.

518 27. Shimizu K, Fields RC, Giedlin M, Mulé JJ. Systemic administration of interleukin 2 enhances the
519 therapeutic efficacy of dendritic cell-based tumor vaccines. *Proceedings of the National
520 Academy of Sciences.* 1999;96:2268–73.

521 28. Alise AMD, Leoni G, Cotugno G, Troise F, Langone F, Fichera I, et al. as strategy to eradicate large
522 tumors combined. *Nat Commun* [Internet]. Springer US; :1–12. Available from:
523 <http://dx.doi.org/10.1038/s41467-019-10594-2>

524 29. Vijayakumar G, McCroskery S, Palese P. Engineering Newcastle Disease Virus as an Oncolytic
525 Vector for Intratumoral Delivery of Immune Checkpoint Inhibitors and Immunocytokines. *J Virol.*
526 2020;94.

527 30. Palmer CD, Rappaport AR, Davis MJ, Hart MG, Scallan CD, Hong SJ, et al. Individualized,
528 heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for
529 advanced metastatic solid tumors: phase 1 trial interim results. *Nat Med.* Nature Research;
530 2022;28:1619–29.

531 31. Zeltins A. Construction and characterization of virus-like particles: A review. *Mol Biotechnol.*
532 2013.

533 32. Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-
534 like particles as vaccines. *Biotechnol Bioeng.* 2014.

535 33. Deml L, Speth C, Dierich MP, Wolf H, Wagner R. Recombinant HIV-1 Pr55 gag virus-like particles:
536 Potent stimulators of innate and acquired immune responses. *Mol Immunol.* 2005;42:259–77.

537 34. Cervera L, Gòdia F, Tarrés-Freixas F, Aguilar-Gurrieri C, Carrillo J, Blanco J, et al. Production of
538 HIV-1-based virus-like particles for vaccination: achievements and limits. *Appl Microbiol
539 Biotechnol. Applied Microbiology and Biotechnology;* 2019;

540 35. Tarrés-Freixas F, Aguilar-Gurrieri C, Rodríguez de la Concepción ML, Urrea V, Trinité B, Ortiz R,
541 et al. An engineered HIV-1 Gag-based VLP displaying high antigen density induces strong
542 antibody-dependent functional immune responses. *NPJ Vaccines* [Internet]. 2023;8:51.
543 Available from: <https://www.nature.com/articles/s41541-023-00648-4>

544 36. Aguilar-Gurrieri C, Barajas A, Rovirosa C, Ortiz R, Urrea V, Clotet B, et al. Alanine-based spacers
545 promote an efficient antigen processing and presentation in neoantigen polypeptide vaccines.
546 2022; Available from: <https://doi.org/10.21203/rs.3.rs-2175456/v1>

547 37. Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, et al. Exploring FeLV-
548 Gag-Based VLPs as a New Vaccine Platform-Analysis of Production and Immunogenicity. 2023;
549 Available from: <https://doi.org/10.3390/ijms24109025>

550 38. Lavado-García J, Jorge I, Boix-Besora A, Vázquez J, Gòdia F, Cervera L. Characterization of HIV-1
551 virus-like particles and determination of Gag stoichiometry for different production platforms.
552 *Biotechnol Bioeng* [Internet]. 2021;118:2660–75. Available from:
553 <https://doi.org/10.1002/bit.27786>

554 39. Amengual-Rigo P, Guallar V. NetCleave: an open-source algorithm for predicting C-terminal
555 antigen processing for MHC-I and MHC-II. *Sci Rep* [Internet]. Nature Publishing Group UK;
556 2021;11:1–8. Available from: <https://doi.org/10.1038/s41598-021-92632-y>

557 40. Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of
558 the Achievements and Shortcomings. *Mol Pharm*. American Chemical Society; 2018;15:4777–
559 800.

560 41. de Mattos-Arruda L, Vazquez M, Finotello F, Lepore R, Porta E, Hundal J, et al. Neoantigen
561 prediction and computational perspectives towards clinical benefit: recommendations from the
562 ESMO Precision Medicine Working Group. *Annals of Oncology*. Elsevier Ltd; 2020. page 978–90.

563 42. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The Immune Epitope
564 Database (IEDB): 2018 update. *Nucleic Acids Res*. 2019;47:D339–43.

565 43. Paul S, Croft NP, Purcell AW, Tscharke DC, Sette A, Nielsen M, et al. Benchmarking predictions
566 of MHC class I restricted T cell epitopes in a comprehensively studied model system. *PLoS*
567 *Comput Biol*. Public Library of Science; 2020;16.

568 44. Bonsack M, Hoppe S, Winter J, Tichy D, Zeller C, Kupper MD, et al. Performance evaluation of
569 MHC class-I binding prediction tools based on an experimentally validated MHC-peptide
570 binding data set. *Cancer Immunol Res*. American Association for Cancer Research Inc.;
571 2019;7:719–36.

572 45. Zhao W, Sher X. Systematically benchmarking peptide-MHC binding predictors: From synthetic
573 to naturally processed epitopes. *PLoS Comput Biol*. Public Library of Science; 2018;14.

574 46. Roudko V, Bozkus CC, Orfanelli T, McClain CB, Carr C, O'Donnell T, et al. Shared Immunogenic
575 Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. *Cell*. Cell Press;
576 2020;183:1634–1649.e17.

577 47. Schwitalla Y, Kloer M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, et al. Immune Response
578 Against Frameshift-Induced Neopeptides in HNPCC Patients and Healthy HNPCC Mutation
579 Carriers. *Gastroenterology*. W.B. Saunders; 2008;134:988–97.

580

581

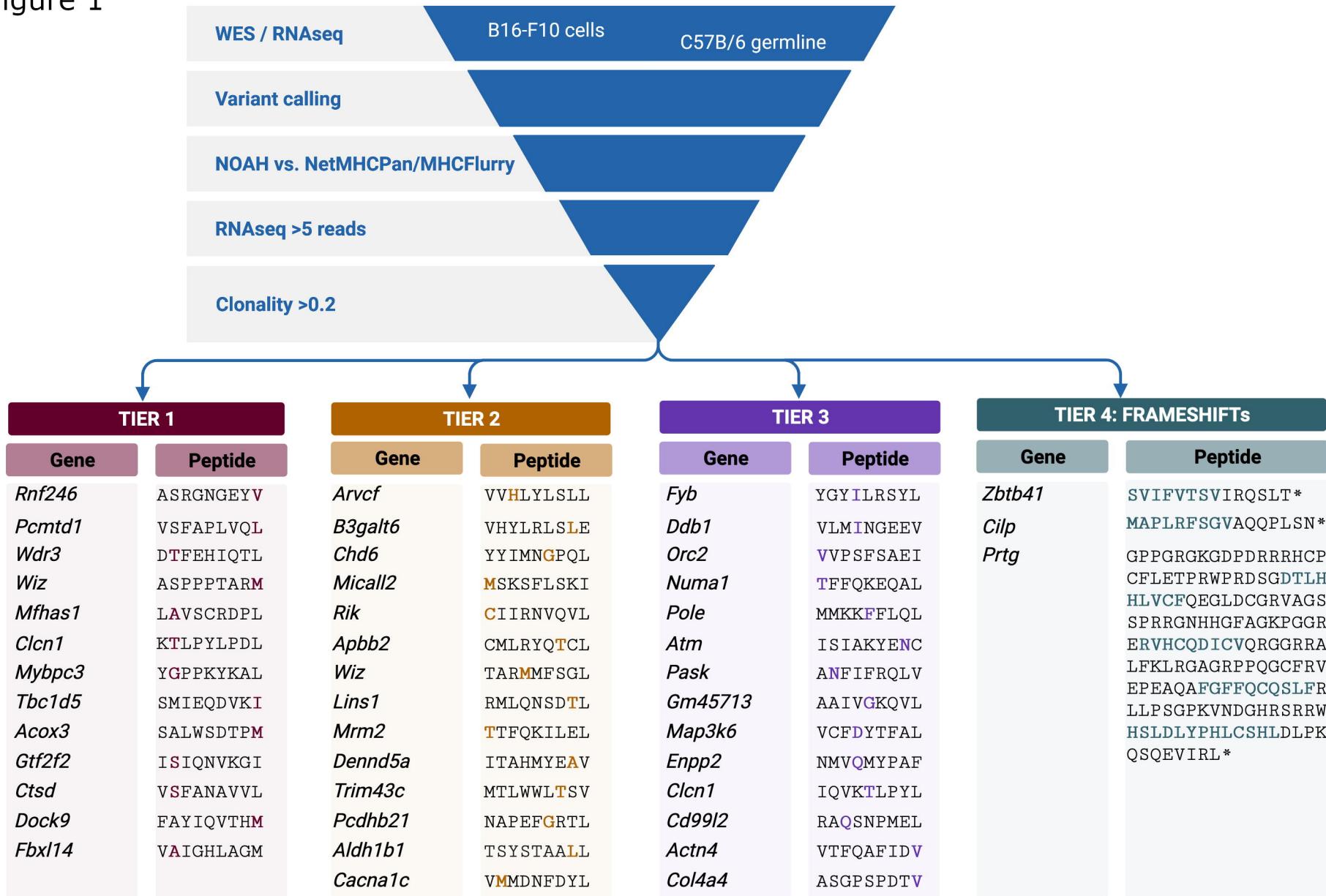
582 FIGURES

583 **Figure 1. Scheme of the neoantigen selection strategy.** Identified somatic mutations were filtered by
584 structural features (NOAH), RNA expression, clonality and matched with NetMHCpan or MHCflurry.
585 Neoantigens tiered according to structural features are shown with the mutation present in B16-F10 cells
586 highlighted in bold. Neoepitopes identified by NOAH in frameshifts are highlighted in bold.

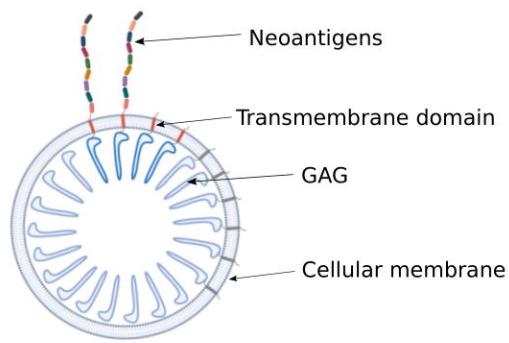
587 **Figure 2. Vaccine platform development based on HIV-1 Virus-Like Particles.** **(A)** Scheme of the linear
588 polyprotein that generates the neoVLP. Signal peptide (SP) in light grey, Flag TAG in orange, neoantigens in
589 blue, CD44 transmembrane domain © in yellow and HIV-1 Gag in green. **(B)** Drawing of a neoVLP displaying
590 its components. **(C)** Representative flow cytometry contour plots analyzing the expression of neoVLP fusion
591 proteins in transiently transfected Expi293F cells. Identification of Flag TAG at the surface of the cells and p24-
592 Gag. Mock-transfected Expi293F cells were overlaid in each panel, in blue, for comparison purposes. **(D)**
593 Representative flow cytometry contour plots analyzing the expression of neoVLP fusion proteins in transiently
594 transfected Expi293F cells. Identification of total Flag TAG and p24-Gag. Mock-transfected Expi293F cells were
595 overlaid in each panel, in blue, for comparison purposes. **(E)** TEM images of Expi293F cells producing neoVLP
596 particles. **(F)** Workflow of neoVLP purification. **(G)** Cryo-TEM images of extracted (XAD4) neoVLPs. **(H)** Western
597 blot image evaluating cell lysates (Pellet) and purified neoVLPs (VAX) from each type of VLP.

598 **Figure 3. Immunogenicity of selected neoantigens.** **(A)** Experimental design for testing natural tumor
599 immunogenicity against selected neoantigens. **(B)** Tumor growth in mice inoculated with 10^5 B16-F10 cells.

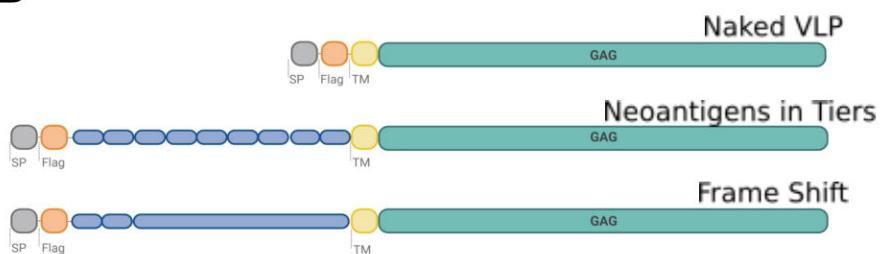
602 Each line represents one animal, two males (dark blue) and two females (light blue) are represented. **(C)**
603 Evaluation of the cellular response against selected neoantigens in mice inoculated with B16-F10 cells. **(D)**
604 Experimental design for testing neoVLP immunogenicity. Blood samples were taken before each vaccination
605 and at endpoint, and spleen was recovered at endpoint. Two vaccines were administered with a three-week
606 interval, and all animals were euthanised two weeks after the second immunization. **(E-H)** Evaluation of
607 cellular responses generated against the selected neoantigens. Tier1-GAG in dark red, Tier2-GAG in yellow,
608 Tier3-GAG in purple, Frameshift-GAG in light blue and naked-VLP in grey.
609

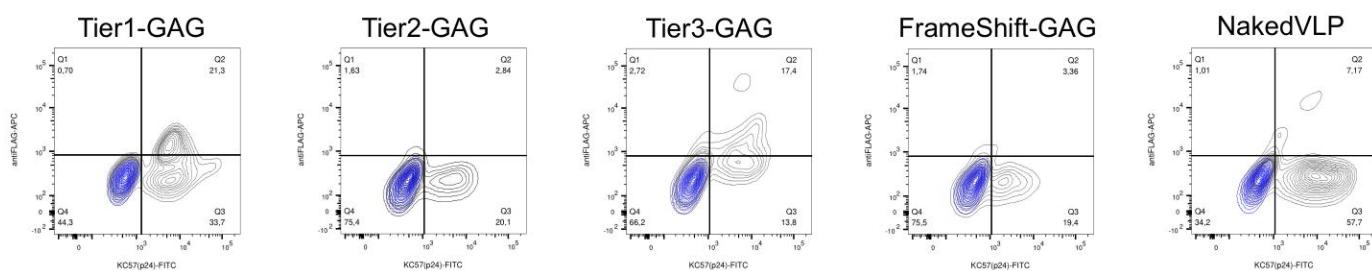

610 **Figure 4. Tumor growth delay and control by neoVLP vaccinated animals.** **(A)** Experimental design of a
611 preventive protocol for the evaluation of tumor control. **(B)** Evaluation of cellular responses generated against
612 the selected neoantigens and Gag peptides. **(C)** Tumor growth curves of each animal in the Tier2-GAG group
613 in yellow. Animals vaccinated with naked-VLP are represented by grey dotted lines. **(D)** Tumor growth curves
614 of each animal in the Tier2-GAG+MPLA group in brown. Animals vaccinated with naked-VLP are represented
615 by grey dotted lines. **(E)** Kaplan-Meier graph representing the time before mice reach a tumor volume equal
616 or over 500 mm³. Tier2-GAG in yellow, Tier2-GAG+MPLA in brown and naked-VLP in grey. **(F)** Kaplan-Meier
617 graph representing the time before mice reach a tumor volume equal or over 500mm³. Vaccinated with Tier2-
618 GAG in blue (with or without MPLA) and naked-VLP vaccinated mice in grey.
619

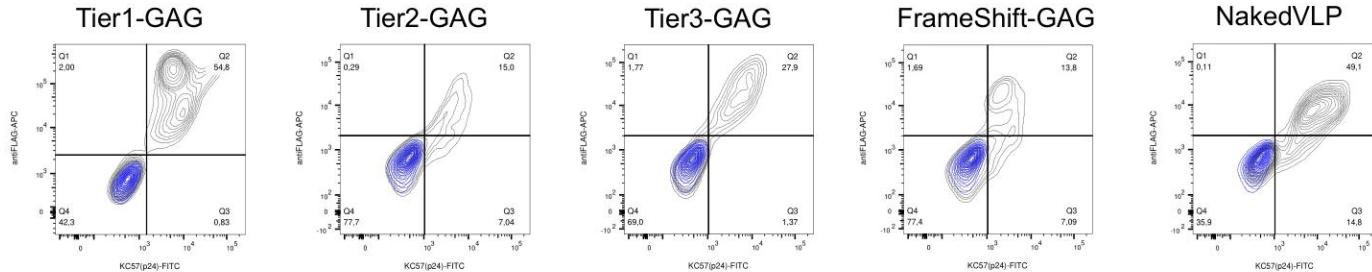
620 **Supplementary Figure 1. Selecting the vaccination regimen for the highest immune response.** **(A)**
621 Experimental design for testing neoVLP vaccine regimen. **(B)** Evaluation of the humoral response generated
622 against recombinant Gag at sacrifice. DNA/DNA regimen in purple, DNA/VLP regimen in blue and VLP/VLP
623 regimen in turquoise. **(C)** Evaluation of T cell response against pools of peptides covering the HIV-1 Gag
624 protein. DNA/DNA regimen in purple, DNA/VLP regimen in blue and VLP/VLP regimen in turquoise.
625

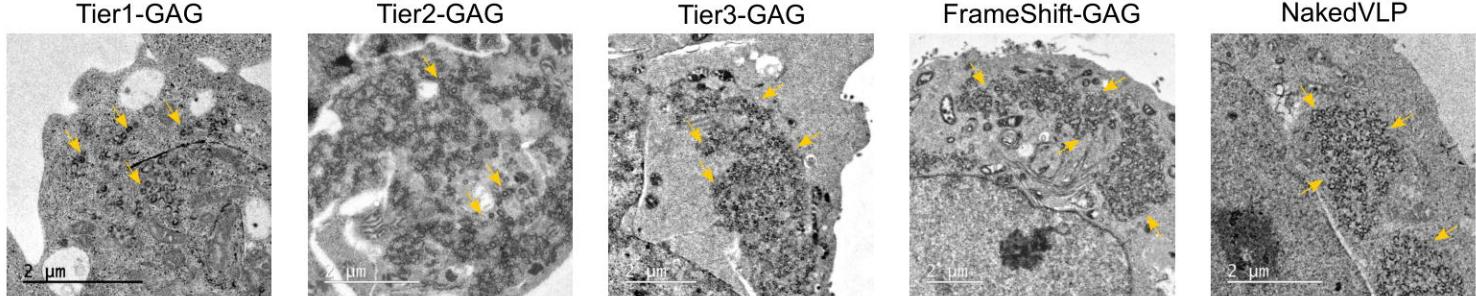

626 **Supplementary Figure 2. Natural tumor immunogenicity against neoantigens and humoral response against**
627 **Gag and host cell proteins.** **(A)** Cellular response generated by natural tumor immunogenicity against selected
628 neoantigens. **(B)** Evaluation of humoral response against HIV-1 Gag over time for all groups vaccinated with
629 neoVLPs. **(C)** Evaluation of the humoral response against Expi293F proteins at each endpoint for all groups
630 vaccinated with neoVLPs. Level of response in vaccinated animals is displayed as coloured dots according to
631 each group. Staining controls are shown as grey dots. **(D)** Evaluation of humoral response against HIV-1 Gag
632 for groups vaccinated with Tier2-GAG (in yellow), Tier2-GAG+MPLA (in brown) and naked-VLP+MPLA. **(E)**
633 Evaluation of the humoral response against host proteins at endpoint for groups vaccinated with Tier2-GAG
634 (in yellow), Tier2-GAG+MPLA (in brown) and naked-VLP+MPLA (in grey).
635

636 **Supplementary Table 1. B16-F10 cells mutanome.** Gene, neoantigen and wild-type peptides are indicated.
637 NOHA, MHCflurry and NetMHCpan4 scores are also shown for H2-Db and H2-Kb mouse MHC-I.

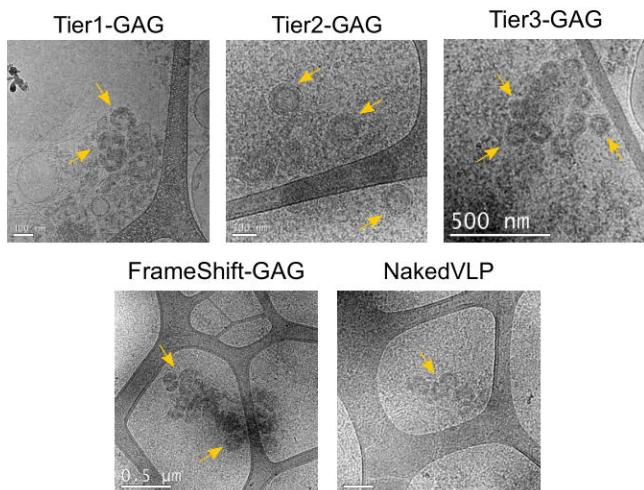

Figure 1

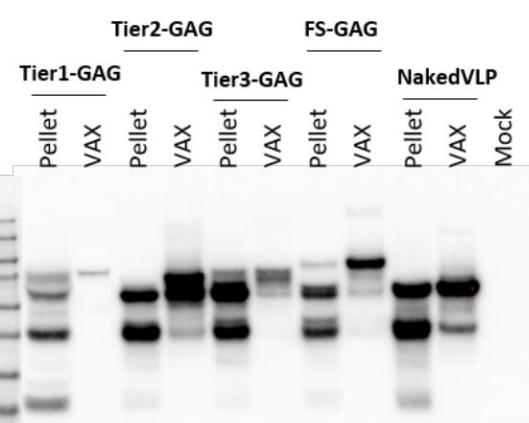

A

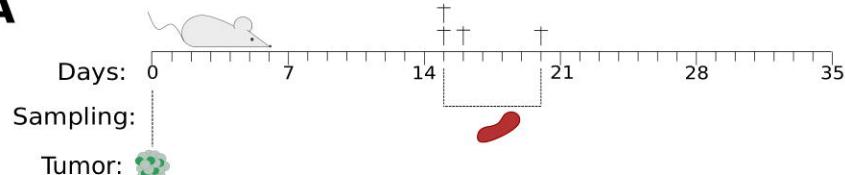

B

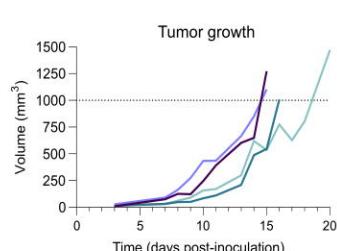

C

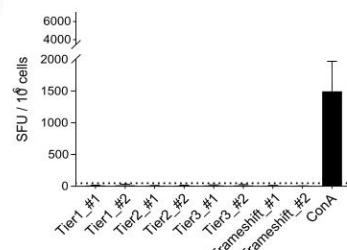
D

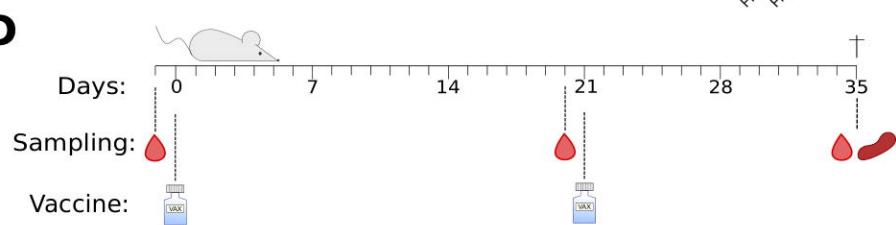

E

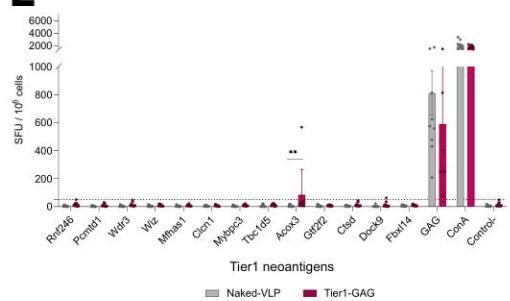

F

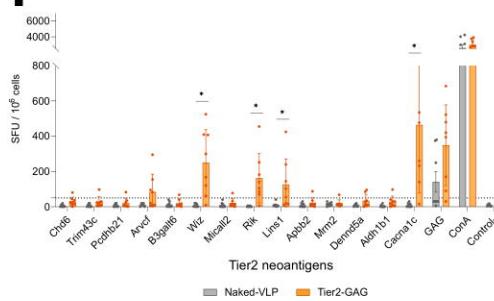

G

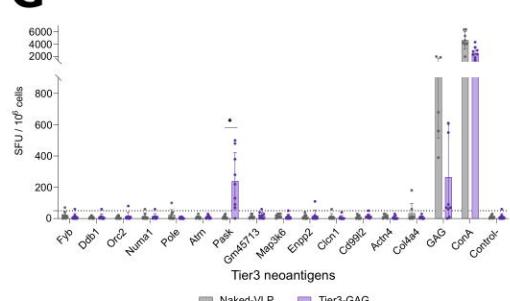

H

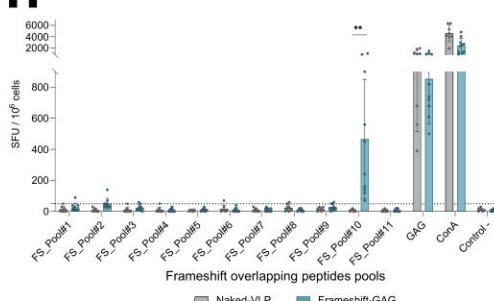

A


B

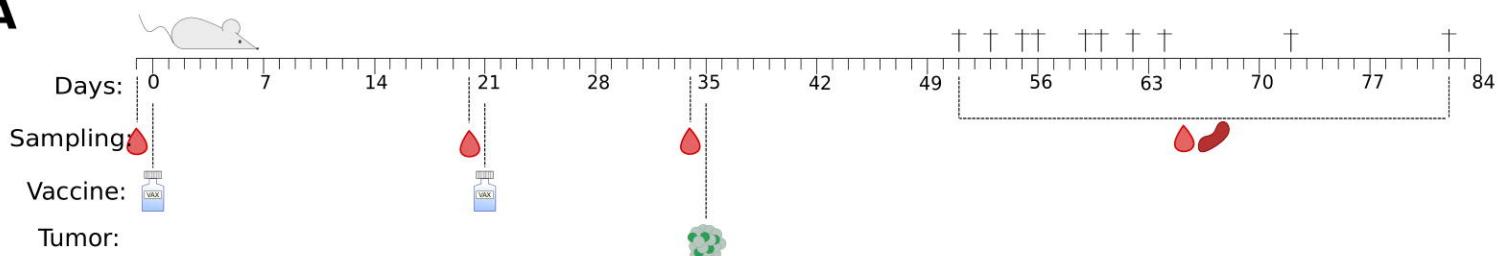

C


D


E


F

G



H

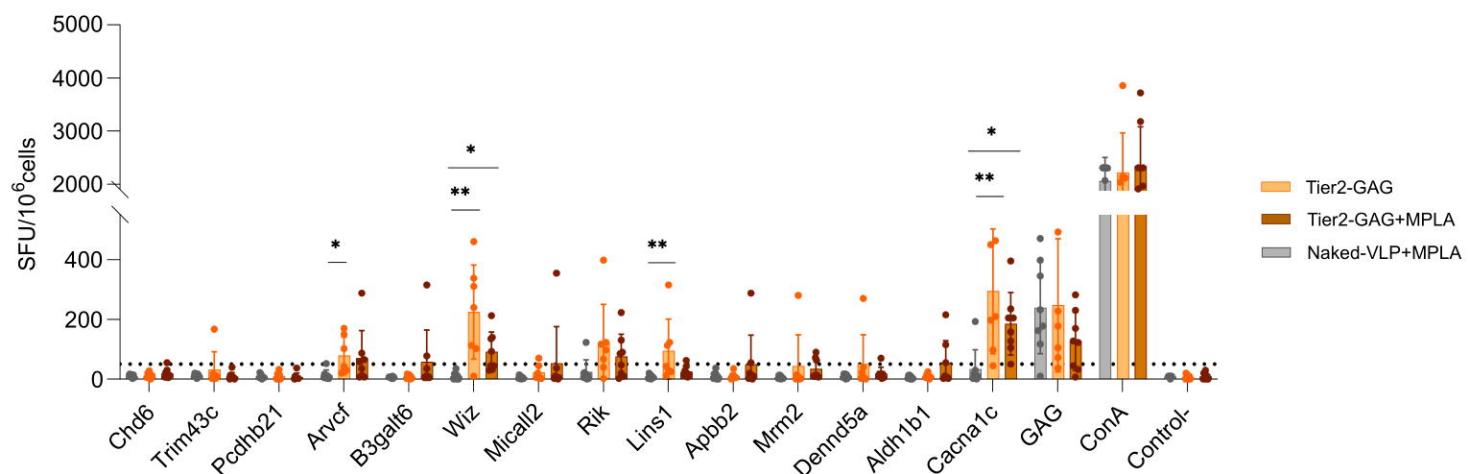
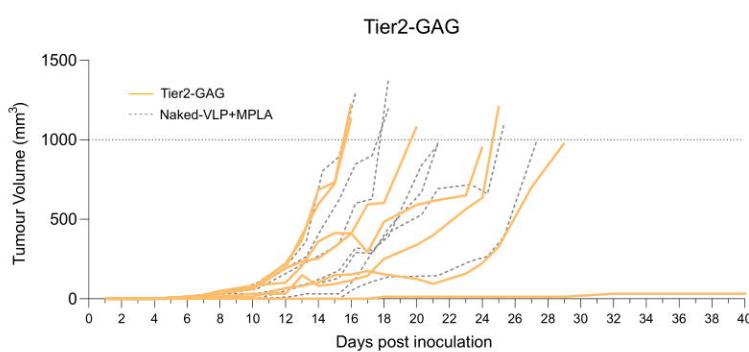
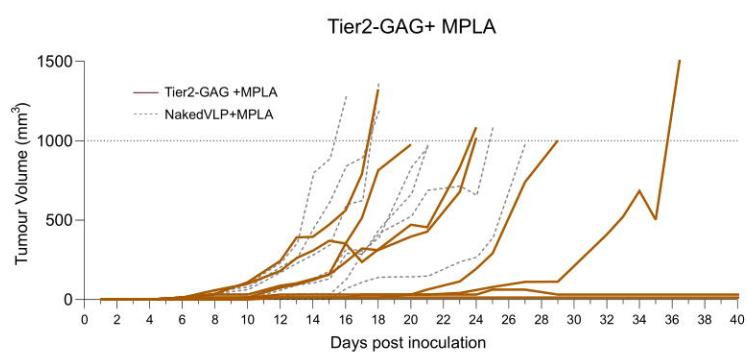
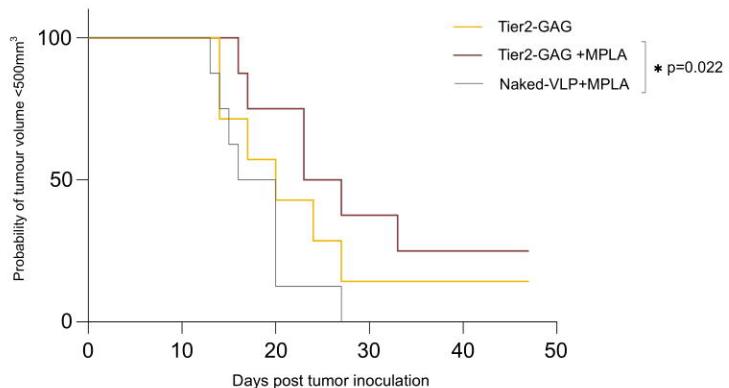
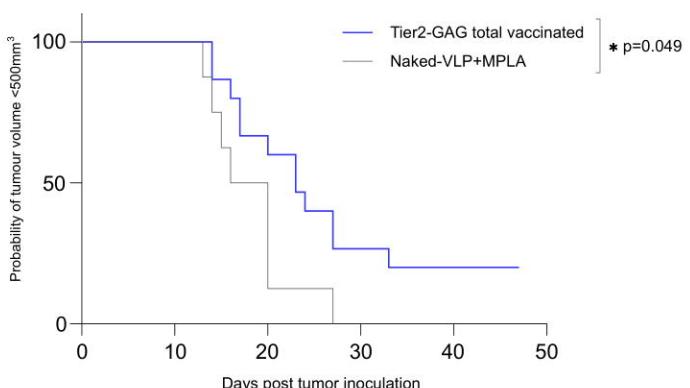


Figure 4


A


B


C


D

E

F

