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Abstract 18 

Muscle fat content is an important production trait in Atlantic salmon (Salmo salar) because it 19 

influences the flavor, texture, and nutritional properties of the fillet. Genomic selection can be 20 

applied to alter muscle fat content, however how such selection changes the underlying 21 

molecular physiology of these animals is unknown. Here, we examine the link between 22 

genomic prediction and underlying molecular physiology by correlating genomic breeding 23 

values for fat content to liver gene expression in 184 fish. We found that Salmon with higher 24 

genomic breeding values had higher expression of genes in lipid metabolism pathways. This 25 

included key lipid metabolism genes hmgcrab, fasn-b, fads2d5, and fads2d6, and lipid 26 

transporters fatp2f, fabp7b, and apobc. We also found several regulators of lipid metabolism 27 

with negative correlation to genomic breeding vales, including pparg-b, fxr-a, and fxr-b. A 28 

quantitative trait loci analysis for variation in gene expression levels (eQTLs) for 167 trait 29 

associated genes found that 71 genes had at least one eQTL, and that most were trans eQTLs. 30 

Closer examination revealed distinct eQTL clustering on chromosomes 3 and 6, indicating the 31 

presence of putative common regulator in these regions. Taken together, these results suggest 32 

that increased fat content in high genomic breeding value salmon is associated with elevated 33 

lipid synthesis, elevated lipid transport, and reduced glycerolipid breakdown; and that this is at 34 

least partly achieved by selection on genetic variants that impact the function of top-level 35 

transcription factors involved in liver metabolism. Our study sheds light on how genomic 36 

selection alters lipid content in Atlantic salmon, and the results could be used to prioritize SNPs 37 

to improve the efficiency of genomic selection in the future. 38 

Keywords: Atlantic salmon, genomic selection, lipid metabolism, fat content, gene expression, 39 

eQTL 40 
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1 Background 41 

Intramuscular fat content is an important quality parameter in most production animals because 42 

it influences the texture, flavor, and nutritional properties of the meat. The latter is especially 43 

important in Atlantic salmon as it is considered an excellent source of healthy omega-3 fatty 44 

acids in human diets and higher fat equates to higher levels of omega-3s reaching the end 45 

consumer (Tocher, 2015). Lipid content is a highly polygenic trait, with many genes explaining 46 

a small fraction of the total genetic variation (Pena et al., 2016). In Atlantic salmon, lipid 47 

content has been reported to have a heritability of 0.18 (Tsai et al., 2015), so breeding for fat 48 

content in Atlantic salmon is possible. 49 

Breeding for complex traits such as growth rate, disease resistance, and filet properties has 50 

been accelerated in recent years with the widespread adoption of genomic selection. This 51 

breeding strategy takes advantage of genome wide single nucleotide polymorphism (SNP) data 52 

to calculate genomic breeding values (GBV) for each individual based on the genotype and 53 

phenotype of their parents, enabling rational selection of breeding pairs (Meuwissen et al., 54 

2001). Genomic selection in salmon has already been successfully applied; with breeding 55 

programs improving lice resistance and filet color faster and more reliably than traditional 56 

breeding programs (Ødegård et al., 2014). Genomic selection for fat content has been 57 

successfully applied to rainbow trout (Hu et al., 2020), however such methods have yet to be 58 

applied to fillet fat in Atlantic salmon. 59 

Application of genomic selection to production traits traditionally does not consider the biology 60 

of the target trait, and rather weighs all SNPs equally to predict genomic effects (Meuwissen 61 

et al., 2001). However, biological knowledge about the trait of interest can be used to improve 62 

the power and accuracy of genomic predictions (de las Heras-Saldana et al., 2020; MacLeod et 63 

al., 2016). For this reason, it is useful to understand the underlying changes in molecular 64 
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physiology occurring during genomic selection to prioritize SNPs for future rounds of genomic 65 

selection. In Atlantic salmon, lipid homeostasis is achieved by balancing dietary intake from 66 

the gut, de-novo synthesis in the body, and excretion through gut or biliary systems, which 67 

involves the coordinated action of thousands of genes. Liver plays a central role in lipid 68 

metabolism, controlling the flow of dietary lipids between different parts of the body through 69 

absorption and secretion of different lipoproteins to the circulatory system (Vance and Vance, 70 

2008). Liver is therefore a logical place to analyze the effect of genomic selection for fat 71 

content on the molecular physiology of the fish. 72 

In this study, we calculate GBVs for filet fat content in 184 fish based on genotype and 73 

phenotype data from a training set of 2487 fish. We sequenced the liver transcriptomes of all 74 

184 fish and associate gene expression with GBV. Finally, we took the most significant GBV 75 

associated genes (padj < 10-4) together with a manually curated subset of known lipid related 76 

GBV associated genes and identify eQTLs for each (Figure 1a). Our aim is to improve our 77 

understanding of the genetic basis for differences in fat content by interrogating the link 78 

between GBVs and gene regulation in the liver. 79 

2 Methods 80 

2.1 Fish and housing 81 

A family experiment with Atlantic salmon was carried out at the fish laboratory, Norwegian 82 

University of Life Sciences (NMBU), Aas, Norway. The family experiment is explained in 83 

detail by Dvergedal et al. (2019). Broodstock from AquaGen’s breeding population (22 males 84 

and 23 females) were used to generate 23 families.  85 

From the eyed egg stage until the start of the experiment, all families were communally reared 86 

in a single tank until the start of the experiment. When the fish reached 5-10 g, they were pit-87 
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tagged with a 2 x 12 mm unique glass tag (RFID Solutions, Hafrsfjord, Norway), and a fin-clip 88 

was collected for DNA-extraction and genotyping of a total of 2,300 fish. Fin clips (20 mg) 89 

were incubated in lysis buffer and treated with proteinase K (20 µg/ml) at 56 ℃ overnight. The 90 

following day, DNA was isolated from the lysate using the sbeadex livestock kit (LGC 91 

Genomics) according to the manufacturer’s protocol (Thermo Fisher Scientific) at Biobank AS 92 

(Hamar, Norway). The DNA concentration was measured using a Nanodrop 8000 (Thermo 93 

Fisher Scientific). All fish were genotyped using AquaGen’s custom Axiom®SNP (single-94 

nucleotide polymorphism) genotyping array from Thermo Fisher Scientific (former Affymetrix) 95 

(San Diego, CA, USA). This SNP-chip contains 56,177 SNPs which were originally identified 96 

based on Illumina HiSeq reads (10-15x coverage) from 29 individuals from AquaGen’s 97 

breeding population. Genotyping was done at CIGENE (Aas, Norway). Genotypes were called 98 

from the raw data using the Axiom Power Tools software from Affymetrix. Individuals having 99 

a Dish-QC score below 0.82, and/or a call-rate below 0.97 were deleted from further analyses. 100 

A priori to the 12-day test, the parentage of each fish was established using genomic 101 

relationship likelihood for parentage assignment (Grashei et al., 2018), and families were 102 

allocated to tanks, 50 fish per tank, and 2 tanks per family. Except for nine tanks in which the 103 

number of fish varied between 42 and 54, due to some mortality before the start of the 104 

experiment or an increased number due to a counting mistake. The total number of fish was 105 

2,281 and families were fed a fishmeal-based diet, as described in Dvergedal et al. (2019). The 106 

phenotypic data were registered individually for relative growth, as described by Dvergedal et 107 

al. (2019). 108 

2.2 Estimating genomic breeding values (GBV) for fat content 109 

Estimated genomic breeding values (GBV) for fillet fat content were predicted using a training 110 

data set consisting of 2487 genotyped (50-70k SNP chip) and phenotyped (fillet fat content) 111 

fish from two slaughter tests performed on the parental year-class 2014 (766 fish of the parental 112 
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generation of the fish in the current study) and 2017 (1721 fish of the same generation as in the 113 

current study). Phenotypes for fat content were obtained using Norwegian quality cuts (NQC) 114 

from each fish that were subsequently frozen. The cut was thawed, skin and central bone 115 

removed, and homogenized for fat measurement on a NIR XDS machine. Fat content was 116 

predicted using a proprietary NQC model owned by Cargill. Average fat (standard deviation) 117 

was 12.96% (1.22%) and 17.41% (2.84%) for, respectively, year-classes 2014 and 2017. 118 

Additionally, 59 samples were analyzed by an independent lab (Eurofins) for validation. A 119 

linear genomic animal model (GBLUP) was used to obtain EBV: 120 

𝐲𝐟𝐚𝐭 =  𝐗𝛍 +  𝐙𝐠 + 𝐞 121 

Where 𝐲𝐟𝐚𝐭 is a vector of fat content phenotypes (standardized within each year-class), 𝛍 is a 122 

vector of the two year-class intercepts, 𝐠~𝑁(𝟎, 𝐆𝜎𝑔
2) is a vector of polygenic effects (including 123 

both 2014 and 2017 year-class fish in the current study), 𝐞 is a vector of random residuals, 𝜎𝑔
2 124 

is the additive genetic variance, 𝐆 = 𝜌𝐌𝐌′ is the genomic relationship matrix, 𝐌 is a centered 125 

genotype matrix (one row per individual and one column per locus), 𝜌 =
1

2 ∑ 𝑝𝑖(1−𝑝𝑖)
 and 𝑝𝑖 is 126 

the allele frequency at locus i. The estimated genomic heritability (across the two year-classes) 127 

for fillet fat content was rather moderate (0.23 ± 0.03). SNP marker effects estimates were 128 

obtained as: 𝐦̂ = 𝜌−1𝐌′𝐆−𝟏𝐠̂ (Legarra et al., 2018). Using the estimated marker effects GBVs 129 

for the fish in the current study were predicted as: 130 

𝐠̂𝒔𝒂𝒎𝒑𝒍𝒆 = 𝑴𝒔𝒂𝒎𝒑𝒍𝒆𝐦̂ 131 

Where 𝐠̂𝒔𝒂𝒎𝒑𝒍𝒆 is a vector of GBVs (on the standardized scale) for fat content of fish in the 132 

current study and 𝑴𝒔𝒂𝒎𝒑𝒍𝒆 is a (centered) genotype matrix of the same fish. 133 
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2.3 RNA extraction and transcriptomic sequencing 134 

Four individual fish from each family were used for RNA isolation. RNA was extracted from 135 

liver of each individual fish using RNeasy Plus Universal Kit (Qiagen, Hilden, Germany), 136 

according to the manufacturer’s instructions. The concentration of RNA was determined by a 137 

Nanodrop 8000 (Thermo Fisher Scientific, Waltham, USA), and RNA integrity was examined 138 

by using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). All RNA samples had 139 

RNA integrity (RIN) values higher than 8. Sequencing libraries were generated using TruSeq 140 

Stranded mRNA Library Prep Kit (Illumina, San Diego, USA) according to the manufacturer’s 141 

protocol. Libraries were delivered to Norwegian Sequencing Centre (Oslo, Norway) where all 142 

184 samples were merged into one flow cell and sequenced using 100bp single-end mRNA 143 

sequencing (RNA-seq) on Illumina Hiseq 2500 (Illumina, San Diego, CA, USA). 144 

Raw fastq file of reads sequences are publicly available on ArrayExpress under accession 145 

number E-MTAB-8305. Gene expression was quantified using the Salmon quasi-mapper 146 

version 0.13.1 (Patro et al., 2017) against the Atlantic salmon transcriptome (ICSASG_v2). 147 

2.4 Trait association analysis 148 

Trait associated genes (TAGs) were detected by correlating gene expression to GBV using 149 

edgeR (Robinson et al., 2009). Genes with low read counts, i.e. less than 0.5 count per million 150 

(CPM) in 50% of the samples, were removed and GBV was scaled (mean = 0 and standard 151 

deviation =1) prior to analysis. The linear regression model was: 152 

𝑌 =  𝛽0 +  𝛽1𝑥 + 𝜖 153 

where Y is gene expression and x is scaled GBV value. Genes were classified as TAGs if the 154 

slope (𝛽1) was significant, i.e. 𝛽1 ≠ 0 with false discover rate adjusted p value < 0.05. We also 155 

ran the analysis with family as a fixed effect factor in the model, however this only slightly 156 
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changed the number of TAGs and did not influence the conclusion, so we use the simpler model 157 

in the analysis. KEGG enrichment analysis of the TAGs with positive and negative slope was 158 

performed with the kegga function in the limma R package (Ritchie et al., 2015). Translations 159 

between human readable gene names and NCBI RefSeq annotation gene ID’s can be found in 160 

File S1. 161 

2.5 Genome-wide association analysis 162 

To associate variation in TAGs with host genetics, a genome-wide association study was done 163 

using TAGs with an adjusted p-value <0.0001 (n = 121) and genes known to be associated with 164 

fat metabolism in the liver (n = 46) as response variables. The analysis was carried out by a 165 

linear mixed-model algorithm implemented in a genome-wide complex trait analysis (GCTA) 166 

(Yang et al., 2011). The leave one chromosome out option (--mlm-loco) was used, meaning 167 

that the chromosome harboring the SNP tested for was left out when building the genetic 168 

relationship matrix (GRM). The linear mixed model can be written as: 169 

𝑌𝑖 = 𝑎 + 𝑏𝑥 +  𝑔𝑖
− + 𝜀𝑖, 170 

where 𝑌𝑖 is one of the TAGs of individual i, a is the intercept, b is the fixed regression of the 171 

candidate SNP to be tested for association, x is the SNP genotype indicator variable coded as 172 

0, 1, or 2, 𝑔𝑖
− i is the random polygenic effect for individual i ~ N (0, 𝐺𝜎𝑔

2) where G is 173 

the GRM and 𝜎𝑔
2 is the variance component for the polygenic effect, and 𝜀𝑖  is the random 174 

residual. In this algorithm, 𝜎𝑔
2 is re-estimated each time a chromosome is left out from the 175 

calculation of the GRM. The dataset was filtered, and individuals with < 10% missing 176 

genotypes were kept (n = 2279). Further, it was required that SNPs should have minor allele 177 

frequency (MAF) ≥ 1% and a call rate > 90%. After filtering, 54,200 SNPs could be included 178 

in the analysis. The level of significance for SNP was evaluated with a built-in likelihood-ratio 179 
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test, and the threshold value for genome-wide significance was calculated using the Bonferroni 180 

correction (0.05/ 54200 = 9.23 × 10−7), corresponding to a -log10 p-value of 6.03.  181 

2.6 Allele distribution of top SNPs for TAGs associated with lipid metabolism in liver 182 

For TAGs with a significant genome-wide eQTL association to lipid metabolism in liver, the 183 

allele distribution for the top SNP (the SNP with the highest -log10 p-value) was examined 184 

with PLINK 2.00 (Chang et al., 2015) using the --recode option, which creates a new file after 185 

applying sample/variant filters and the --extract option to create a file with the top SNP of 186 

interest. 187 

2.7 Co-expression network analysis 188 

We assembled an independent RNA-seq expression data set comprising 112 liver samples 189 

spanning different diets and life stages in fresh water (Gillard et al., 2018). Raw RNA-Seq data 190 

can be found in the European Nucleotide Archive (ENA) under project accession no. 191 

PRJEB24480. Read counts for Atlantic salmon genes (NCBI: 192 

GCF_000233375.1_ICSASG_v2) were estimated using Salmon (Patro et al., 2017). Code and 193 

data available at https://gitlab.com/garethgillard/megaLiverRNA. 27,786 genes with at least 10 194 

mapped reads in more than 10 samples were retained for further analysis. Read counts were 195 

normalized using the varianceStabilizingTransformation-function from the R package DESeq2 196 

(Love et al., 2014).  197 

For co-expression network inference, we used the Weighted Gene Co-expression Network 198 

Analysis (WGCNA) R package (Langfelder and Horvath, 2008) and the function 199 

blockwiseModules with the bicor correlation measure and parameters power = 3 (scale free 200 

topology fit with an R2 of 0.8), maxBlockSize = 30000, networkType = “signed”, TOMType = 201 

“signed”, corType = “bicor”, maxPOutliers = 0.05, replaceMissingAdjacencies = TRUE, 202 
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pamStage = F, deepSplit = 1, minModuleSize = 5, minKMEtoStay = 0.2, minCoreKME = 0.2, 203 

minCoreKMESize = 2, reassignThreshold = 0 and mergeCutHeight = 0.2. A hard correlation 204 

threshold of 0.5 was used to visualize the network in Cytoscape (https://cytoscape.org). 205 

3 Results 206 

3.1 Correlations between liver gene expression levels and GBV 207 

We first calculated GBV for the 184 fish used in this study based on a training set of 2487 fish 208 

(Figure 1a and b). RNA sequencing and trait association analysis revealed a total of 710 TAGs 209 

(padj < 0.05) positively correlated to GBV and 653 TAGs negatively correlated to GBV (Figure 210 

1c, File S2). By comparing the number of TAGs to total genes within each KEGG pathway, 211 

we found that the positive TAGs were enriched (p < 0.05) in 45 KEGG pathways (Figure 1d, 212 

File S3). Many of the most significantly enriched KEGG pathways were related to lipid 213 

metabolism including “PPAR signaling”, “fatty acid degradation”, “fatty acid biosynthesis”, 214 

“biosynthesis of unsaturated fatty acids” and “glycerolipid metabolism” (Figure 1d). In 215 

addition, pathways related to amino acid metabolism and energy metabolism were enriched for 216 

positively correlated TAGs (Figure 1d). Only eight pathways were found enriched (p < 0.05) 217 

for the negatively correlated TAGs. This included the lipid metabolism pathway “primary bile 218 

acid synthesis” which produces bile acids from cholesterol that aid in lipid solubilization in the 219 

intestine. 220 
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 221 

Figure 1: Correlation of GBV to gene expression. A) Flow chart of our analysis. B) 222 

Distribution of GBVs in the 184 salmon used for RNAseq analysis. C) Slope distribution 223 

among positively and negatively correlated TAGs. D) KEGG enrichment analysis of positively 224 

and negatively correlated TAGs. Only significantly enriched pathways (p < 0.05) are shown. 225 

3.2 Regulation of lipid metabolism genes 226 

To further dissect the link between lipid metabolism and GBV for fat content, we performed 227 

an in-depth analyses of a manually annotated set of genes involved in lipid metabolism in 228 

salmon (Gillard et al., 2018). We found that the TAG list was clearly enriched for lipid genes 229 

(fisher’s p-value 2.2e-16, odds ratio 4.92) with 45 (6.3%) lipid genes found in the 710 TAGs 230 
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positively correlated to GBV, and 10 lipid genes (1.5%) found in the 653 TAGs negatively 231 

correlated with GBV (Figure 2a). Intriguingly, the GBV-associated lipid genes covered genes 232 

involved in many enzymatic steps in the cholesterol biosynthesis pathway including the 233 

enzyme controlling the rate limiting step of cholesterol biosynthesis, hmgcrab. Other lipid 234 

metabolism enzyme-encoding genes associated to fat content GBV included fatty acid synthase 235 

(fasn-b), all three polyunsaturated fatty acid desaturases (fads2d5 fads2d6a, and fads2d6b) 236 

(figure 2e), and several lipid and fatty acid transporters (fatp2f, fabp7b, ldlrab-a, and apobc) 237 

(Figure 2c). 238 

We also found several lipid regulatory genes positively correlated with GBV (Figure 2), 239 

including all three isoforms of SREPB1 (srebp1b, srebp1c, srebp1d) (Figure 2f), known 240 

regulators of lipid biosynthesis (Shimano and Sato, 2017). Lipid metabolism genes negatively 241 

correlated to GBV included the important lipid oxidation regulator pparg-b (figure 2b) as well 242 

as both copies of farnesoid x receptor (fxr-a and fxr-b), which plays a key role in hepatic 243 

triglyceride homeostasis and is involved in suppression of lipogenesis (Jiao et al., 2015). The 244 

lipid gene that was most negatively associated with GBV was monoacylglycerol lipase (mgll) 245 

which is involved glycerolipid breakdown.  246 

 247 
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 248 

Figure 2: Correlation between GBV and lipid metabolism gene expression. A) Volcano 249 

plot of the regression results between gene expression and GBV. Genes involved in lipid 250 

metabolism are coloured and important lipid metabolism genes are labelled. Size corresponds 251 

to mean log2TPM values. The dashed red line indicates the padj < 0.05 cutoff. Correlation of 252 

GBV and gene expression are shown on the right for pparg-b (B), fatp2f (C), and mgll (D), 253 

fads2d6a (E), and srebp1d (F). 254 

3.3 eQTL analyses highlights several trans-acting loci impacting many genes 255 

To explore the genetic architecture of gene expression differences between fish with high and 256 

low GBV, we used linear regressions to identify genetic variants associated gene expression 257 

levels (File S4). In total 167 genes associated with GBV fat were examined, which included 258 

the top 121 significant TAGs (padj < 0.0001), as well as 46 significant TAGs from lipid 259 

pathways (padj < 0.05) (Figure 2a). Genes that were not annotated on a chromosome (i.e 260 

belonged to a smaller unplaced scaffold) were discarded from this analysis.  261 

In total, 71 genes had at least one significant eQTL (genome wide significance level, p < 10-6), 262 

with a mean number of 1.4 eQTLs per gene (Figure 3a). Dissecting the positions of eQTL 263 
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signals relative to these genes showed that 21 genes had a significant association in cis (no 264 

more than 10 Mbp from the gene). Considering only “top associations” for each gene reveals 265 

a clear tendency for eQTL-associations to variants on other chromosomes (i.e. trans 266 

associations) (Figure 3b). Seven of the genes with significant eQTL’s were known lipid 267 

metabolism genes; two of which are monoglyceride lipase (mgll) and fatty acid desaturase 2-268 

like (fads2d6b) (Figure 3c-f).  269 

 270 

Figure 3: GWAS of top GBV TAGs and selected lipid metabolism genes. A) Number of 271 

significant (p < 10-6) eQTLs per gene. B) Number of genes with the top eQTL in cis (< 10 MB 272 

from gene), trans (different chromosome), or trans (same chromosome). C) Manhattan plot of 273 

SNPs associated with fads2d6b gene expression. Significance cutoffs are indicated by red 274 

(strict) and blue (relaxed) lines. D) Genotype distribution of the top SNP for fads2d6b. E and 275 

F) Same as C and D for the gene mgll. 276 
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Since the genes tested for eQTLs were associated with differences in one quite specific 277 

molecular trait (i.e. lipid metabolism), it is plausible that a few top regulators of key lipid-278 

metabolism pathways could impact the expression of many of the genes in our study. The high 279 

numbers of trans eQTL signals (Figure 3b) supports this idea. Hence, to test if any 280 

chromosomal regions showed sign of harboring such major regulators, we analyzed the 281 

distribution of top trans-eQTL associations across chromosomes. Using a relaxed p-value 282 

cutoff for significant associations (p < 10-4), two chromosomes (3 and 6) were clearly enriched 283 

for top trans-eQTLs relative to the total number of SNPs on each chromosome (Figure 4a). It 284 

is worth noting, that the enrichment signal on chromosome 6 dropped rapidly as we increased 285 

p-value cutoff stringency and was diminished at p < 10-6.  286 

Next, we performed an in-depth analysis of the eQTL signals on chromosome 3 and 6, with 287 

specific focus on lipid-metabolism genes. We hypothesized that if regulators of lipid-288 

metabolism pathways were located on these chromosomes we would find clusters of trans-289 

eQTLs for genes that are co-regulated in liver. We therefore first used a large gene expression 290 

dataset of 112 liver samples to estimate co-expression modules (i.e. genes whereby their 291 

expression correlates across different samples) (Figure 4b). Genes within these co-expression 292 

modules are predicted to share transcriptional regulators. We then associated genes with trans-293 

eQTLs on chromsomes 6 and 3 to specific co-expression modules. Even though the trans-eQTL 294 

enrichment on chromosome 3 contained many more highly significant associations compared 295 

to chromosome 6 (Figure S1), there was no obvious clustering of trans-eQTL signals among 296 

co-expressed genes on this chromosome. However, the central region (35-50 Mbp) of 297 

chromosome 6 displayed a clear clustering of trans-eQTL signals to co-expressed genes. 298 

Although these genes belonged to three different co-expression modules, these three modules 299 

were virtually identical in the co-expression network (Figure 4b). Interestingly, this genomic 300 
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region harbors two copies of srebp-2-like genes, known to regulate various aspects of lipid-301 

metabolism in vertebrates, which also belong to one of these three co-expression modules. 302 

 303 

Figure 4: Trans eQTL and gene co-expression. A) Relationship between total number of 304 

SNPs for each chromosome and the number of genes having top trans-eQTL signals on each 305 

chromosome. B) Co-expression network from liver RNAseq data highlighting three co-306 

expression modules which contain genes with top trans eQTL signals (p < 10-4) on chromosome 307 

6. C) Circos plot showing the top trans-eQTL links between trait associated genes and 308 

chromosome 6. Colors reflect the co-expression module that the trait associated genes belong 309 

to. We have indicated the position of a major lipid metabolism transcription factor (srebp2) on 310 

chromosome 6.  311 

4 Discussion 312 

Our results clearly demonstrate that genomic selection for high muscle fat content in salmon 313 

drives changes in expression of genes involved in lipid metabolism in the liver. Variation in 314 

muscle lipid content among fish could be due to differences in 1) uptake of lipids from the diet, 315 

2) de-novo lipogenesis in the body, 3) lipid transport and deposition between different part of 316 

the body, 4) lipid degradation by beta-oxidation and efflux through bile synthesis, or 5) a 317 

combination. Our results have shown that GBV was positively associated with  gene expression 318 

in lipid transport (fatp2f, fabp7b), de novo lipogenesis (fas), fatty acid desaturation (fads2d5, 319 
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fads2d6a, fads2d6b, and fads2d6c), cholesterol biosynthesis (hmgcrab), and negatively 320 

associated with genes in glycerolipid breakdown (mgll), beta-oxidation (pparg-b) and bile acid 321 

synthesis (fxr) in liver. This suggests that higher deposition of lipids in high GBV salmon was 322 

most likely due to a combination of reduced glycerolipid breakdown, elevated lipid synthesis, 323 

and elevated lipid transport. Both endogenous and exogeneous lipids in liver are packaged into 324 

very-low-density lipoproteins (VLDL) which are secreted into the vasculature. Lipids in VLDL 325 

are taken up by the peripheral tissues such as muscle, and the leftover lipoproteins (low-density 326 

lipoproteins, LDL) are taken back by liver through the LDL receptor (LDLR) (Wang, 2007). 327 

Most of the lipoproteins including VLDL and LDL contain a copy of apolipoprotein B (APOB), 328 

an essential component for its structure (Elovson et al., 1988). Our study has found GBV to be 329 

positively correlated to ldlrab-a, and apobc. This could suggest high GBV was associated with 330 

increased amount and turnover of lipoproteins in the bloodstream. Additionally, we have also 331 

identified two fxr genes which were negatively correelated to GBV. Since fxr is a key regulator 332 

and positively correlated to bile salt synthesis in fish (Wen et al., 2021), this suggests that high 333 

GBV fish has decreased lipid excretion through bile salt production pathway. Under this 334 

scenario, a higher proportion of newly synthesized saturated and monounsaturated fatty acid, 335 

and diet derived polyunsaturated fatty acid containing triacylglycerol are exported as 336 

lipoproteins from the liver and deposited in peripheral tissues including muscle where the fat 337 

phenotype was measured. 338 

We find expression of key genes in lipid biosynthesis pathways, including fas, fads2d5, 339 

fads2d6a, fads2d6b, and fads2d6c were positively correlated to GBV. This is likely due to 340 

higher expression of sterol regulatory element-binding protein 1 (SREBP1), which is the key 341 

positive regulator of fatty acid de-novo synthesis and LC-PUFA synthesis in salmon (Carmona-342 

Antoñanzas et al., 2014; Minghetti et al., 2011). Other genes of LC-PUFA synthesis, the elovl2 343 

and elovl5 genes, were not correlated to GBV. This could be because these genes are not 344 
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controlled by SREBP1 transcription factor in salmon (Datsomor et al., 2019). A similar study 345 

using high and low muscle fat lines of rainbow trout also found higher expression of lipogenic 346 

genes in high fat lines and hypothesized that this was due to a more active target of rapamycin 347 

(TOR) signalling pathway (Skiba-Cassy et al., 2009). Fat and lean rainbow trout lines displayed 348 

a similar ratio of phosphorylated and native TOR, however fat lines had significantly higher 349 

levels of TOR protein. We did not find TOR mRNA to be associated with GBV of muscle lipid 350 

levels in Atlantic salmon, however TOR protein abundance could be regulated at the 351 

posttranslational level. In addition, we found that ATP-citrate lyase (acyl, geneID:106589258) 352 

gene expression was positively associated to GBV, which agrees with the study in rainbow 353 

trout (Skiba-Cassy et al., 2009). ACYL acts as a metabolic switch linking glucose and lipid 354 

metabolism that diverts citrate from the TCA cycle into lipogenesis by converting it to acetyl-355 

CoA and oxaloacetate in the cytosol. This enables elevated lipogenesis by increasing the 356 

available pool of acetyl-CoA to be converted to fatty acids by FAS. 357 

Our eQTL analysis revealed an unexpectedly high number of trans-eQTLs on chromosome 6 358 

associated to co-regulated genes that were TAGs in our analysis. Moreover, these chromosome 359 

trans-eQTL associations were mostly originating from a smaller region around 50 Mbp, 360 

pointing to a potential common transcription factor. Two of the genes in this region are paralogs 361 

of SREBP2-like, a known regulator of lipid metabolism. Srebp2 is a key transcriptional 362 

regulator controlling cholesterol metabolism in fish and mammals (Carmona-Antoñanzas et al., 363 

2014; Madison, 2016), and our study has found many positively correlated TAGs involved in 364 

de-novo cholesterol synthesis including hmgcrab. Additionally, positively correlated acyl 365 

suggests an increased acetyl-CoA pool. Although we did not find srebp2 to be associated with 366 

GBV in our analysis, SREBP is known to be highly regulated post-transcriptionally through 367 

interactions with SREBP cleavage-activating protein (SCAP). SCAP forms a complex with 368 

SREBP and facilitates the cleavage of SREBPs by site-1 protease, thereby releasing active 369 
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NH2-terminal fragments from the ER membrane to nucleus, activating gene expression 370 

(Nohturfft et al., 1998). Therefore, this lack of association could be explained by variation in 371 

srebp2 protein structure resulting in increasing SCAP or Site-1 protease binding activity 372 

without influencing srebp2 expression itself. Alternatively, it may be that the trans-eQTL 373 

signal cluster on chromosome 6 is driven by another, so far unknown regulator of lipid 374 

metabolism on chromosome 6. 375 

Although lipid synthesis and transport in the liver contributes to lipid content in the muscle, 376 

our results only tell part of the story. Since there is considerable variation in fat deposition and 377 

turnover in salmon (Dvergedal et al., 2020; Dvergedal et al., 2019) variation in the regulation 378 

of lipid metabolism in the muscle must also be a large contributor to the high fat phenotype. 379 

High muscle fat has previously been associated with downregulation of genes related to lipid 380 

catabolism and upregulation of genes associated to glycogenolysis (Horn et al., 2019), which 381 

may signal a transition in how fish utilize energy stores. Additionally, differences in hormonal 382 

signalling between the brain, adipose, and muscle tissues could contribute to the high fat 383 

phenotype. To further improve our understanding of what makes a salmon fat, future studies 384 

need to address these aspects of the salmon molecular physiology. 385 

5 Conclusion 386 

We demonstrate that genomic selection using estimated breeding values for fat content drives 387 

changes in lipid metabolism in Atlantic salmon. Fish with high GBV for muscle fat content 388 

had overall higher gene expression in lipid biosynthesis and transport pathways and lower 389 

expression of genes involved in glycerolipid breakdown. This is important validation for 390 

genomic selection as a strategy to improve lipid content and the results could be used to 391 

prioritize SNPs in future estimates of breeding values.  392 
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Supplementary data 525 

Figure S1: Trans eQTL links on chromosome 3. Circos plot showing the top trans-eQTL 526 

links between trait associated genes and chromosome 3. Colors reflect the co-expression 527 

module that the trait associated genes belong to from Figure 4b. 528 

File S1: Human readable gene name to NCBI id translations. List of human readable gene 529 

names of lipid genes used in our analysis and their associated NCBI refseq identifiers. Column 530 

1 - NCBI gene ID, column 2 – human readable gene name, column 3 – gene description. 531 

File S2: Trait associated genes for fat content in Atlantic salmon. List of all salmon genes 532 

significantly associated to GBV. Column 1 – Gene ID, column 2 – log2 fold change, column 3 533 

– adjusted p-value, column 4 – gene name, column 5 – gene product. 534 

File S3: Enriched KEGG pathways for GBV associated genes. List of all significantly (p < 535 

0.05) enriched KEGG pathways among GBV associated genes. Column 1 – pathway name, 536 

column 2 – pathway ID, column 3 – type of GBV correlation for genes in pathway, column 4 537 

– number genes in pathway, column 5 – number of TAGs in pathway, column 6 – enrichment 538 

p-value. 539 

File S4: eQTL results of selected TAGs. List of SNPs significantly associated to TAG 540 

expression (p < 10-6). Column 1 – NCBI gene ID of TAG, column 2 – Chromosome containing 541 

SNP, column 3 – SNP identifier, column 4 – Physical position of SNP, column 5 – Reference 542 

allele, column 6 – Second allele, column 7 – Frequency of the reference allele, column 8 – SNP 543 

effect, column 9 – Standard error, column 10 – p-value. 544 
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