

1 **Linking genomic prediction for muscle fat content in**
2 **Atlantic salmon to underlying changes in lipid metabolism**
3 **regulation**

4 Thomas N. Harvey^{1*}, Hanne Dvergedal¹, Lars Grønvold¹, Yang Jin¹, Jørgen Ødegård^{1,2}, Sven
5 Arild Korsvoll², Tim Knutsen², Torgeir R. Hvidsten³, Simen R. Sandve¹

6

7 ¹Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian
8 University of Life Sciences, P. O. Box 5003, NO-1433 Ås, Norway

9 ²AquaGen AS, P. O. Box 1240, NO-7462 Trondheim, Norway

10 ³Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life
11 Sciences, NO-1432 Ås, Norway

12

13 *Corresponding author

14

15 E-mail addresses:

16 TH: thomas.n.harvey@nmbu.no

17

18 Abstract

19 Muscle fat content is an important production trait in Atlantic salmon (*Salmo salar*) because it
20 influences the flavor, texture, and nutritional properties of the fillet. Genomic selection can be
21 applied to alter muscle fat content, however how such selection changes the underlying
22 molecular physiology of these animals is unknown. Here, we examine the link between
23 genomic prediction and underlying molecular physiology by correlating genomic breeding
24 values for fat content to liver gene expression in 184 fish. We found that Salmon with higher
25 genomic breeding values had higher expression of genes in lipid metabolism pathways. This
26 included key lipid metabolism genes *hmgcrab*, *fasn-b*, *fads2d5*, and *fads2d6*, and lipid
27 transporters *fatp2f*, *fabp7b*, and *apobc*. We also found several regulators of lipid metabolism
28 with negative correlation to genomic breeding values, including *pparg-b*, *fxr-a*, and *fxr-b*. A
29 quantitative trait loci analysis for variation in gene expression levels (eQTLs) for 167 trait
30 associated genes found that 71 genes had at least one eQTL, and that most were trans eQTLs.
31 Closer examination revealed distinct eQTL clustering on chromosomes 3 and 6, indicating the
32 presence of putative common regulator in these regions. Taken together, these results suggest
33 that increased fat content in high genomic breeding value salmon is associated with elevated
34 lipid synthesis, elevated lipid transport, and reduced glycerolipid breakdown; and that this is at
35 least partly achieved by selection on genetic variants that impact the function of top-level
36 transcription factors involved in liver metabolism. Our study sheds light on how genomic
37 selection alters lipid content in Atlantic salmon, and the results could be used to prioritize SNPs
38 to improve the efficiency of genomic selection in the future.

39 **Keywords:** Atlantic salmon, genomic selection, lipid metabolism, fat content, gene expression,
40 eQTL

41 1 Background

42 Intramuscular fat content is an important quality parameter in most production animals because
43 it influences the texture, flavor, and nutritional properties of the meat. The latter is especially
44 important in Atlantic salmon as it is considered an excellent source of healthy omega-3 fatty
45 acids in human diets and higher fat equates to higher levels of omega-3s reaching the end
46 consumer (Tocher, 2015). Lipid content is a highly polygenic trait, with many genes explaining
47 a small fraction of the total genetic variation (Pena et al., 2016). In Atlantic salmon, lipid
48 content has been reported to have a heritability of 0.18 (Tsai et al., 2015), so breeding for fat
49 content in Atlantic salmon is possible.

50 Breeding for complex traits such as growth rate, disease resistance, and fillet properties has
51 been accelerated in recent years with the widespread adoption of genomic selection. This
52 breeding strategy takes advantage of genome wide single nucleotide polymorphism (SNP) data
53 to calculate genomic breeding values (GBV) for each individual based on the genotype and
54 phenotype of their parents, enabling rational selection of breeding pairs (Meuwissen et al.,
55 2001). Genomic selection in salmon has already been successfully applied; with breeding
56 programs improving lice resistance and fillet color faster and more reliably than traditional
57 breeding programs (Ødegård et al., 2014). Genomic selection for fat content has been
58 successfully applied to rainbow trout (Hu et al., 2020), however such methods have yet to be
59 applied to fillet fat in Atlantic salmon.

60 Application of genomic selection to production traits traditionally does not consider the biology
61 of the target trait, and rather weighs all SNPs equally to predict genomic effects (Meuwissen
62 et al., 2001). However, biological knowledge about the trait of interest can be used to improve
63 the power and accuracy of genomic predictions (de las Heras-Saldana et al., 2020; MacLeod et
64 al., 2016). For this reason, it is useful to understand the underlying changes in molecular

65 physiology occurring during genomic selection to prioritize SNPs for future rounds of genomic
66 selection. In Atlantic salmon, lipid homeostasis is achieved by balancing dietary intake from
67 the gut, *de-novo* synthesis in the body, and excretion through gut or biliary systems, which
68 involves the coordinated action of thousands of genes. Liver plays a central role in lipid
69 metabolism, controlling the flow of dietary lipids between different parts of the body through
70 absorption and secretion of different lipoproteins to the circulatory system (Vance and Vance,
71 2008). Liver is therefore a logical place to analyze the effect of genomic selection for fat
72 content on the molecular physiology of the fish.

73 In this study, we calculate GBVs for filet fat content in 184 fish based on genotype and
74 phenotype data from a training set of 2487 fish. We sequenced the liver transcriptomes of all
75 184 fish and associate gene expression with GBV. Finally, we took the most significant GBV
76 associated genes ($\text{padj} < 10^{-4}$) together with a manually curated subset of known lipid related
77 GBV associated genes and identify eQTLs for each (Figure 1a). Our aim is to improve our
78 understanding of the genetic basis for differences in fat content by interrogating the link
79 between GBVs and gene regulation in the liver.

80 2 Methods

81 2.1 Fish and housing

82 A family experiment with Atlantic salmon was carried out at the fish laboratory, Norwegian
83 University of Life Sciences (NMBU), Aas, Norway. The family experiment is explained in
84 detail by Dvergedal *et al.* (2019). Broodstock from AquaGen's breeding population (22 males
85 and 23 females) were used to generate 23 families.

86 From the eyed egg stage until the start of the experiment, all families were communally reared
87 in a single tank until the start of the experiment. When the fish reached 5-10 g, they were pit-

88 tagged with a 2 x 12 mm unique glass tag (RFID Solutions, Hafrsfjord, Norway), and a fin-clip
89 was collected for DNA-extraction and genotyping of a total of 2,300 fish. Fin clips (20 mg)
90 were incubated in lysis buffer and treated with proteinase K (20 µg/ml) at 56 °C overnight. The
91 following day, DNA was isolated from the lysate using the sbeadex livestock kit (LGC
92 Genomics) according to the manufacturer's protocol (Thermo Fisher Scientific) at Biobank AS
93 (Hamar, Norway). The DNA concentration was measured using a Nanodrop 8000 (Thermo
94 Fisher Scientific). All fish were genotyped using AquaGen's custom Axiom®SNP (single-
95 nucleotide polymorphism) genotyping array from Thermo Fisher Scientific (former Affymetrix)
96 (San Diego, CA, USA). This SNP-chip contains 56,177 SNPs which were originally identified
97 based on Illumina HiSeq reads (10-15x coverage) from 29 individuals from AquaGen's
98 breeding population. Genotyping was done at CIGENE (Aas, Norway). Genotypes were called
99 from the raw data using the Axiom Power Tools software from Affymetrix. Individuals having
100 a Dish-QC score below 0.82, and/or a call-rate below 0.97 were deleted from further analyses.
101 *A priori* to the 12-day test, the parentage of each fish was established using genomic
102 relationship likelihood for parentage assignment (Grashei et al., 2018), and families were
103 allocated to tanks, 50 fish per tank, and 2 tanks per family. Except for nine tanks in which the
104 number of fish varied between 42 and 54, due to some mortality before the start of the
105 experiment or an increased number due to a counting mistake. The total number of fish was
106 2,281 and families were fed a fishmeal-based diet, as described in Dvergedal *et al.* (2019). The
107 phenotypic data were registered individually for relative growth, as described by Dvergedal *et*
108 *al.* (2019).

109 2.2 Estimating genomic breeding values (GBV) for fat content

110 Estimated genomic breeding values (GBV) for fillet fat content were predicted using a training
111 data set consisting of 2487 genotyped (50-70k SNP chip) and phenotyped (fillet fat content)
112 fish from two slaughter tests performed on the parental year-class 2014 (766 fish of the parental

113 generation of the fish in the current study) and 2017 (1721 fish of the same generation as in the
114 current study). Phenotypes for fat content were obtained using Norwegian quality cuts (NQC)
115 from each fish that were subsequently frozen. The cut was thawed, skin and central bone
116 removed, and homogenized for fat measurement on a NIR XDS machine. Fat content was
117 predicted using a proprietary NQC model owned by Cargill. Average fat (standard deviation)
118 was 12.96% (1.22%) and 17.41% (2.84%) for, respectively, year-classes 2014 and 2017.
119 Additionally, 59 samples were analyzed by an independent lab (Eurofins) for validation. A
120 linear genomic animal model (GBLUP) was used to obtain EBV:

121
$$\mathbf{y}_{\text{fat}} = \mathbf{X}\boldsymbol{\mu} + \mathbf{Z}\mathbf{g} + \mathbf{e}$$

122 Where \mathbf{y}_{fat} is a vector of fat content phenotypes (standardized within each year-class), $\boldsymbol{\mu}$ is a
123 vector of the two year-class intercepts, $\mathbf{g} \sim N(\mathbf{0}, \mathbf{G}\sigma_g^2)$ is a vector of polygenic effects (including
124 both 2014 and 2017 year-class fish in the current study), \mathbf{e} is a vector of random residuals, σ_g^2
125 is the additive genetic variance, $\mathbf{G} = \rho\mathbf{M}\mathbf{M}'$ is the genomic relationship matrix, \mathbf{M} is a centered
126 genotype matrix (one row per individual and one column per locus), $\rho = \frac{1}{2\sum p_i(1-p_i)}$ and p_i is
127 the allele frequency at locus i . The estimated genomic heritability (across the two year-classes)
128 for fillet fat content was rather moderate (0.23 ± 0.03). SNP marker effects estimates were
129 obtained as: $\hat{\mathbf{m}} = \rho^{-1}\mathbf{M}'\mathbf{G}^{-1}\hat{\mathbf{g}}$ (Legarra et al., 2018). Using the estimated marker effects GBVs
130 for the fish in the current study were predicted as:

131
$$\hat{\mathbf{g}}_{\text{sample}} = \mathbf{M}_{\text{sample}}\hat{\mathbf{m}}$$

132 Where $\hat{\mathbf{g}}_{\text{sample}}$ is a vector of GBVs (on the standardized scale) for fat content of fish in the
133 current study and $\mathbf{M}_{\text{sample}}$ is a (centered) genotype matrix of the same fish.

134 2.3 RNA extraction and transcriptomic sequencing

135 Four individual fish from each family were used for RNA isolation. RNA was extracted from
136 liver of each individual fish using RNeasy Plus Universal Kit (Qiagen, Hilden, Germany),
137 according to the manufacturer's instructions. The concentration of RNA was determined by a
138 Nanodrop 8000 (Thermo Fisher Scientific, Waltham, USA), and RNA integrity was examined
139 by using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). All RNA samples had
140 RNA integrity (RIN) values higher than 8. Sequencing libraries were generated using TruSeq
141 Stranded mRNA Library Prep Kit (Illumina, San Diego, USA) according to the manufacturer's
142 protocol. Libraries were delivered to Norwegian Sequencing Centre (Oslo, Norway) where all
143 184 samples were merged into one flow cell and sequenced using 100bp single-end mRNA
144 sequencing (RNA-seq) on Illumina Hiseq 2500 (Illumina, San Diego, CA, USA).

145 Raw fastq file of reads sequences are publicly available on ArrayExpress under accession
146 number E-MTAB-8305. Gene expression was quantified using the Salmon quasi-mapper
147 version 0.13.1 (Patro et al., 2017) against the Atlantic salmon transcriptome (ICSASG_v2).

148 2.4 Trait association analysis

149 Trait associated genes (TAGs) were detected by correlating gene expression to GBV using
150 edgeR (Robinson et al., 2009). Genes with low read counts, i.e. less than 0.5 count per million
151 (CPM) in 50% of the samples, were removed and GBV was scaled (mean = 0 and standard
152 deviation =1) prior to analysis. The linear regression model was:

153
$$Y = \beta_0 + \beta_1 x + \epsilon$$

154 where Y is gene expression and x is scaled GBV value. Genes were classified as TAGs if the
155 slope (β_1) was significant, i.e. $\beta_1 \neq 0$ with false discover rate adjusted p value < 0.05 . We also
156 ran the analysis with family as a fixed effect factor in the model, however this only slightly

157 changed the number of TAGs and did not influence the conclusion, so we use the simpler model
158 in the analysis. KEGG enrichment analysis of the TAGs with positive and negative slope was
159 performed with the kegga function in the limma R package (Ritchie et al., 2015). Translations
160 between human readable gene names and NCBI RefSeq annotation gene ID's can be found in
161 File S1.

162 2.5 Genome-wide association analysis

163 To associate variation in TAGs with host genetics, a genome-wide association study was done
164 using TAGs with an adjusted p-value <0.0001 ($n = 121$) and genes known to be associated with
165 fat metabolism in the liver ($n = 46$) as response variables. The analysis was carried out by a
166 linear mixed-model algorithm implemented in a genome-wide complex trait analysis (GCTA)
167 (Yang et al., 2011). The leave one chromosome out option (--mlm-loco) was used, meaning
168 that the chromosome harboring the SNP tested for was left out when building the genetic
169 relationship matrix (GRM). The linear mixed model can be written as:

170
$$Y_i = a + bx + g_i^- + \varepsilon_i,$$

171 where Y_i is one of the TAGs of individual i , a is the intercept, b is the fixed regression of the
172 candidate SNP to be tested for association, x is the SNP genotype indicator variable coded as
173 0, 1, or 2, g_i^- is the random polygenic effect for individual $i \sim N(0, G\sigma_g^2)$ where \mathbf{G} is

174 the GRM and σ_g^2 is the variance component for the polygenic effect, and ε_i is the random
175 residual. In this algorithm, σ_g^2 is re-estimated each time a chromosome is left out from the
176 calculation of the GRM. The dataset was filtered, and individuals with $< 10\%$ missing
177 genotypes were kept ($n = 2279$). Further, it was required that SNPs should have minor allele
178 frequency (MAF) $\geq 1\%$ and a call rate $> 90\%$. After filtering, 54,200 SNPs could be included
179 in the analysis. The level of significance for SNP was evaluated with a built-in likelihood-ratio

180 test, and the threshold value for genome-wide significance was calculated using the Bonferroni
181 correction ($0.05/ 54200 = 9.23 \times 10^{-7}$), corresponding to a $-\log_{10} p$ -value of 6.03.

182 2.6 Allele distribution of top SNPs for TAGs associated with lipid metabolism in liver
183 For TAGs with a significant genome-wide eQTL association to lipid metabolism in liver, the
184 allele distribution for the top SNP (the SNP with the highest $-\log_{10} p$ -value) was examined
185 with PLINK 2.00 (Chang et al., 2015) using the --recode option, which creates a new file after
186 applying sample/variant filters and the --extract option to create a file with the top SNP of
187 interest.

188 2.7 Co-expression network analysis

189 We assembled an independent RNA-seq expression data set comprising 112 liver samples
190 spanning different diets and life stages in fresh water (Gillard et al., 2018). Raw RNA-Seq data
191 can be found in the European Nucleotide Archive (ENA) under project accession no.
192 PRJEB24480. Read counts for Atlantic salmon genes (NCBI:
193 GCF_000233375.1_ICSASG_v2) were estimated using Salmon (Patro et al., 2017). Code and
194 data available at <https://gitlab.com/garethgillard/megaLiverRNA>. 27,786 genes with at least 10
195 mapped reads in more than 10 samples were retained for further analysis. Read counts were
196 normalized using the varianceStabilizingTransformation-function from the R package DESeq2
197 (Love et al., 2014).

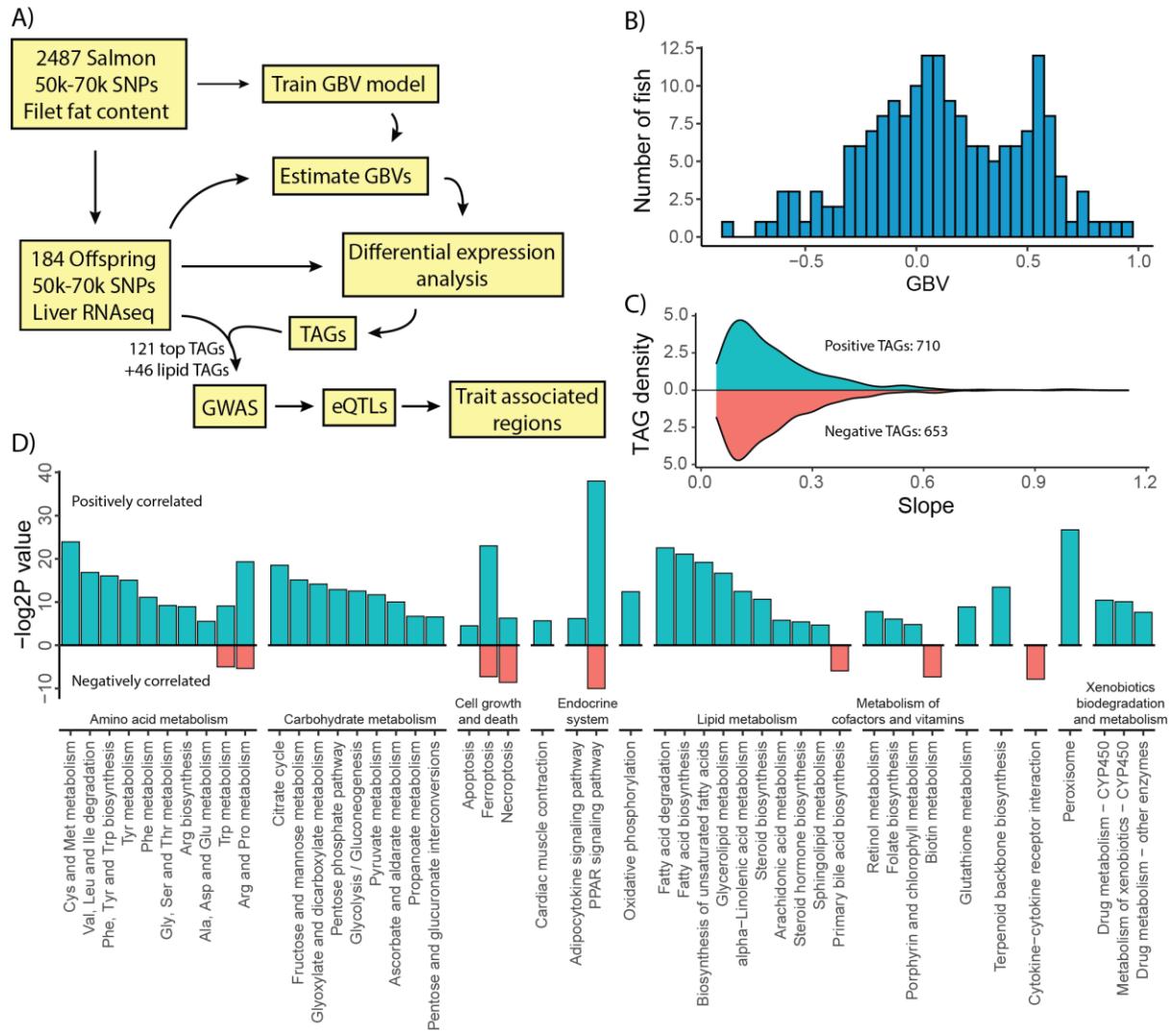
198 For co-expression network inference, we used the Weighted Gene Co-expression Network
199 Analysis (WGCNA) R package (Langfelder and Horvath, 2008) and the function
200 blockwiseModules with the bicor correlation measure and parameters *power* = 3 (*scale free*
201 *topology fit with an R2 of 0.8*), *maxBlockSize* = 30000, *networkType* = “signed”, *TOMType* =
202 “signed”, *corType* = “bicor”, *maxPOutliers* = 0.05, *replaceMissingAdjacencies* = TRUE,

203 *pamStage = F, deepSplit = 1, minModuleSize = 5, minKMEtoStay = 0.2, minCoreKME = 0.2,*
204 *minCoreKMESize = 2, reassignThreshold = 0 and mergeCutHeight = 0.2.* A hard correlation
205 threshold of 0.5 was used to visualize the network in Cytoscape (<https://cytoscape.org>).

206 3 Results

207 3.1 Correlations between liver gene expression levels and GBV

208 We first calculated GBV for the 184 fish used in this study based on a training set of 2487 fish
209 (Figure 1a and b). RNA sequencing and trait association analysis revealed a total of 710 TAGs
210 ($p_{adj} < 0.05$) positively correlated to GBV and 653 TAGs negatively correlated to GBV (Figure
211 1c, File S2). By comparing the number of TAGs to total genes within each KEGG pathway,
212 we found that the positive TAGs were enriched ($p < 0.05$) in 45 KEGG pathways (Figure 1d,
213 File S3). Many of the most significantly enriched KEGG pathways were related to lipid
214 metabolism including “*PPAR signaling*”, “*fatty acid degradation*”, “*fatty acid biosynthesis*”,
215 “*biosynthesis of unsaturated fatty acids*” and “*glycerolipid metabolism*” (Figure 1d). In
216 addition, pathways related to amino acid metabolism and energy metabolism were enriched for
217 positively correlated TAGs (Figure 1d). Only eight pathways were found enriched ($p < 0.05$)
218 for the negatively correlated TAGs. This included the lipid metabolism pathway “*primary bile*
219 *acid synthesis*” which produces bile acids from cholesterol that aid in lipid solubilization in the
220 intestine.



221

222 **Figure 1: Correlation of GBV to gene expression.** A) Flow chart of our analysis. B)
 223 Distribution of GBVs in the 184 salmon used for RNAseq analysis. C) Slope distribution
 224 among positively and negatively correlated TAGs. D) KEGG enrichment analysis of positively
 225 and negatively correlated TAGs. Only significantly enriched pathways ($p < 0.05$) are shown.

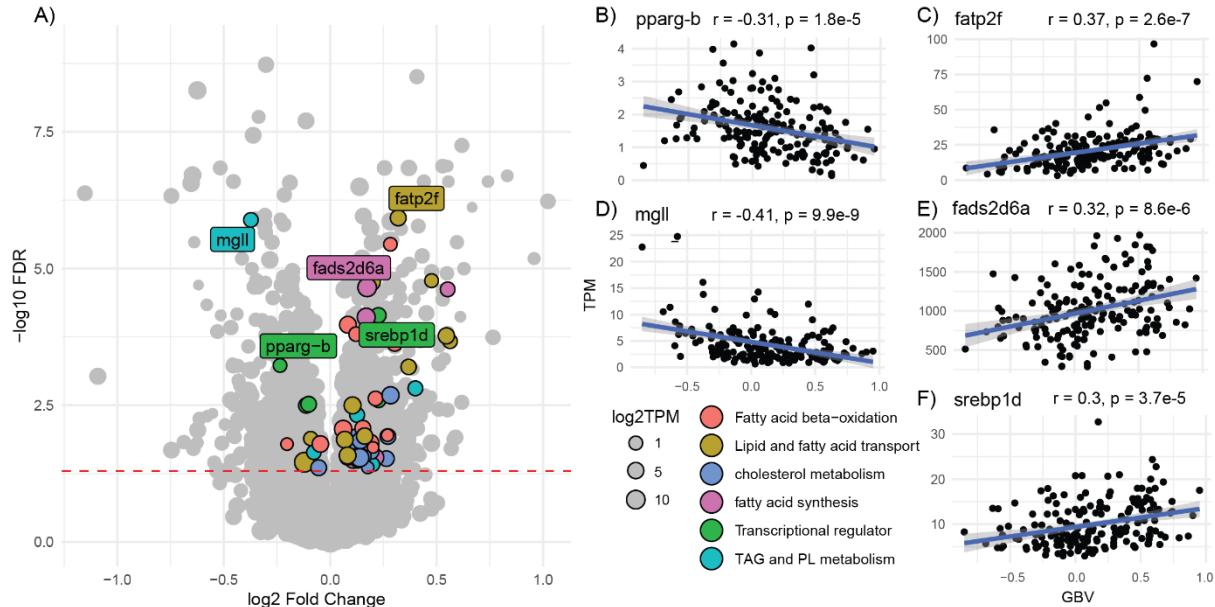
226 3.2 Regulation of lipid metabolism genes

227 To further dissect the link between lipid metabolism and GBV for fat content, we performed
 228 an in-depth analyses of a manually annotated set of genes involved in lipid metabolism in
 229 salmon (Gillard et al., 2018). We found that the TAG list was clearly enriched for lipid genes
 230 (fisher's p-value 2.2e-16, odds ratio 4.92) with 45 (6.3%) lipid genes found in the 710 TAGs

231 positively correlated to GBV, and 10 lipid genes (1.5%) found in the 653 TAGs negatively
232 correlated with GBV (Figure 2a). Intriguingly, the GBV-associated lipid genes covered genes
233 involved in many enzymatic steps in the cholesterol biosynthesis pathway including the
234 enzyme controlling the rate limiting step of cholesterol biosynthesis, *hmgcrab*. Other lipid
235 metabolism enzyme-encoding genes associated to fat content GBV included fatty acid synthase
236 (*fasn-b*), all three polyunsaturated fatty acid desaturases (*fads2d5 fads2d6a, and fads2d6b*)
237 (figure 2e), and several lipid and fatty acid transporters (*fatp2f, fabp7b, ldlrab-a, and apobc*)
238 (Figure 2c).

239 We also found several lipid regulatory genes positively correlated with GBV (Figure 2),
240 including all three isoforms of SREPB1 (*srebp1b, srebp1c, srebp1d*) (Figure 2f), known
241 regulators of lipid biosynthesis (Shimano and Sato, 2017). Lipid metabolism genes negatively
242 correlated to GBV included the important lipid oxidation regulator *pparg-b* (figure 2b) as well
243 as both copies of farnesoid x receptor (*fxr-a* and *fxr-b*), which plays a key role in hepatic
244 triglyceride homeostasis and is involved in suppression of lipogenesis (Jiao et al., 2015). The
245 lipid gene that was most negatively associated with GBV was monoacylglycerol lipase (*mgll*)
246 which is involved glycerolipid breakdown.

247

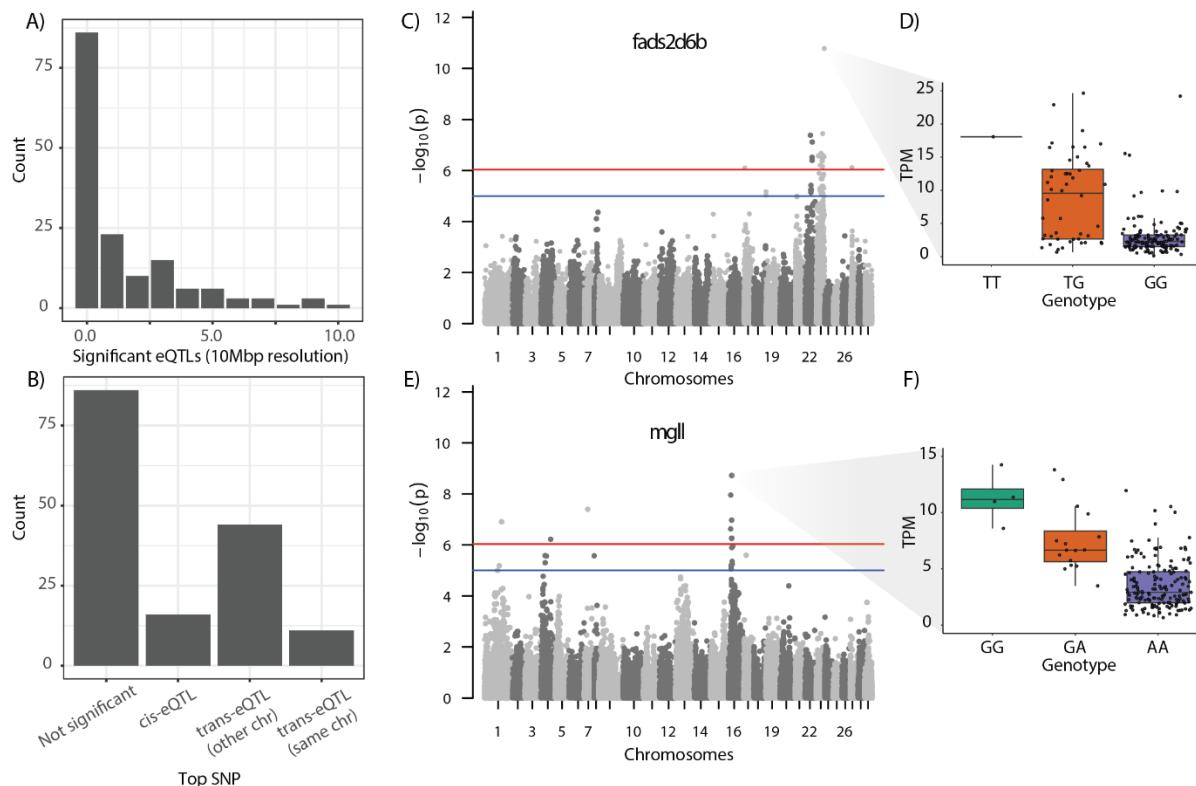


248

249 **Figure 2: Correlation between GBV and lipid metabolism gene expression.** A) Volcano
250 plot of the regression results between gene expression and GBV. Genes involved in lipid
251 metabolism are coloured and important lipid metabolism genes are labelled. Size corresponds
252 to mean log₂TPM values. The dashed red line indicates the padj < 0.05 cutoff. Correlation of
253 GBV and gene expression are shown on the right for *pparg-b* (B), *fatp2f* (C), and *mgll* (D),
254 *fads2d6a* (E), and *srebp1d* (F).

255 3.3 eQTL analyses highlights several trans-acting loci impacting many genes
256 To explore the genetic architecture of gene expression differences between fish with high and
257 low GBV, we used linear regressions to identify genetic variants associated gene expression
258 levels (File S4). In total 167 genes associated with GBV fat were examined, which included
259 the top 121 significant TAGs (padj < 0.0001), as well as 46 significant TAGs from lipid
260 pathways (padj < 0.05) (Figure 2a). Genes that were not annotated on a chromosome (i.e
261 belonged to a smaller unplaced scaffold) were discarded from this analysis.
262 In total, 71 genes had at least one significant eQTL (genome wide significance level, p < 10⁻⁶),
263 with a mean number of 1.4 eQTLs per gene (Figure 3a). Dissecting the positions of eQTL

264 signals relative to these genes showed that 21 genes had a significant association in cis (no
265 more than 10 Mbp from the gene). Considering only “top associations” for each gene reveals
266 a clear tendency for eQTL-associations to variants on other chromosomes (i.e. trans
267 associations) (Figure 3b). Seven of the genes with significant eQTL’s were known lipid
268 metabolism genes; two of which are monoglyceride lipase (*mgll*) and fatty acid desaturase 2-
269 like (*fads2d6b*) (Figure 3c-f).

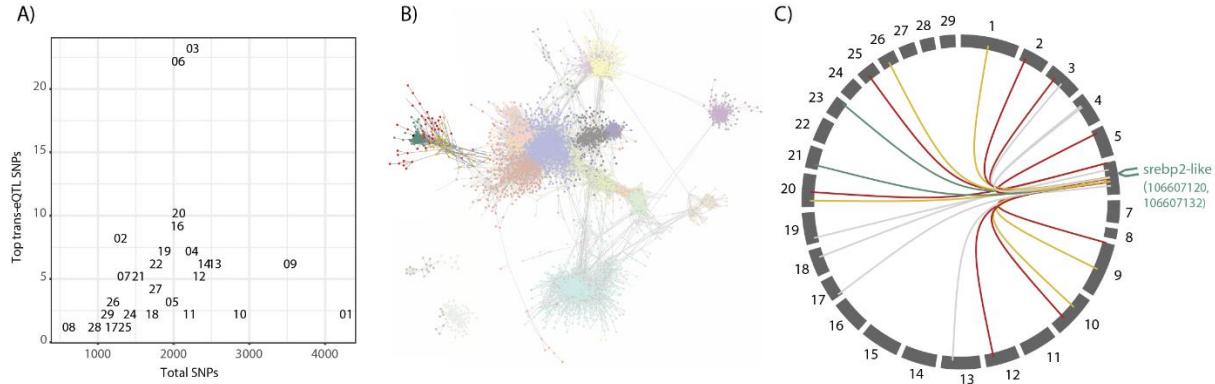


270
271 **Figure 3: GWAS of top GBV TAGs and selected lipid metabolism genes.** A) Number of
272 significant ($p < 10^{-6}$) eQTLs per gene. B) Number of genes with the top eQTL in cis (< 10 MB
273 from gene), trans (different chromosome), or trans (same chromosome). C) Manhattan plot of
274 SNPs associated with *fads2d6b* gene expression. Significance cutoffs are indicated by red
275 (strict) and blue (relaxed) lines. D) Genotype distribution of the top SNP for *fads2d6b*. E and
276 F) Same as C and D for the gene *mgll*.

277 Since the genes tested for eQTLs were associated with differences in one quite specific
278 molecular trait (i.e. lipid metabolism), it is plausible that a few top regulators of key lipid-
279 metabolism pathways could impact the expression of many of the genes in our study. The high
280 numbers of trans eQTL signals (Figure 3b) supports this idea. Hence, to test if any
281 chromosomal regions showed sign of harboring such major regulators, we analyzed the
282 distribution of top trans-eQTL associations across chromosomes. Using a relaxed p-value
283 cutoff for significant associations ($p < 10^{-4}$), two chromosomes (3 and 6) were clearly enriched
284 for top trans-eQTLs relative to the total number of SNPs on each chromosome (Figure 4a). It
285 is worth noting, that the enrichment signal on chromosome 6 dropped rapidly as we increased
286 p-value cutoff stringency and was diminished at $p < 10^{-6}$.

287 Next, we performed an in-depth analysis of the eQTL signals on chromosome 3 and 6, with
288 specific focus on lipid-metabolism genes. We hypothesized that if regulators of lipid-
289 metabolism pathways were located on these chromosomes we would find clusters of trans-
290 eQTLs for genes that are co-regulated in liver. We therefore first used a large gene expression
291 dataset of 112 liver samples to estimate co-expression modules (i.e. genes whereby their
292 expression correlates across different samples) (Figure 4b). Genes within these co-expression
293 modules are predicted to share transcriptional regulators. We then associated genes with trans-
294 eQTLs on chromosomes 6 and 3 to specific co-expression modules. Even though the trans-eQTL
295 enrichment on chromosome 3 contained many more highly significant associations compared
296 to chromosome 6 (Figure S1), there was no obvious clustering of trans-eQTL signals among
297 co-expressed genes on this chromosome. However, the central region (35-50 Mbp) of
298 chromosome 6 displayed a clear clustering of trans-eQTL signals to co-expressed genes.
299 Although these genes belonged to three different co-expression modules, these three modules
300 were virtually identical in the co-expression network (Figure 4b). Interestingly, this genomic

301 region harbors two copies of srebp-2-like genes, known to regulate various aspects of lipid-
302 metabolism in vertebrates, which also belong to one of these three co-expression modules.



303

304 **Figure 4: Trans eQTL and gene co-expression.** A) Relationship between total number of
305 SNPs for each chromosome and the number of genes having top trans-eQTL signals on each
306 chromosome. B) Co-expression network from liver RNAseq data highlighting three co-
307 expression modules which contain genes with top trans eQTL signals ($p < 10^{-4}$) on chromosome
308 6. C) Circos plot showing the top trans-eQTL links between trait associated genes and
309 chromosome 6. Colors reflect the co-expression module that the trait associated genes belong
310 to. We have indicated the position of a major lipid metabolism transcription factor (srebp2) on
311 chromosome 6.

312 4 Discussion

313 Our results clearly demonstrate that genomic selection for high muscle fat content in salmon
314 drives changes in expression of genes involved in lipid metabolism in the liver. Variation in
315 muscle lipid content among fish could be due to differences in 1) uptake of lipids from the diet,
316 2) *de-novo* lipogenesis in the body, 3) lipid transport and deposition between different part of
317 the body, 4) lipid degradation by beta-oxidation and efflux through bile synthesis, or 5) a
318 combination. Our results have shown that GBV was positively associated with gene expression
319 in lipid transport (*fatp2f*, *fabp7b*), *de novo* lipogenesis (*fas*), fatty acid desaturation (*fads2d5*,

320 *fads2d6a*, *fads2d6b*, and *fads2d6c*), cholesterol biosynthesis (*hmgcrab*), and negatively
321 associated with genes in glycerolipid breakdown (*mgll*), beta-oxidation (*pparg-b*) and bile acid
322 synthesis (*fxr*) in liver. This suggests that higher deposition of lipids in high GBV salmon was
323 most likely due to a combination of reduced glycerolipid breakdown, elevated lipid synthesis,
324 and elevated lipid transport. Both endogenous and exogenous lipids in liver are packaged into
325 very-low-density lipoproteins (VLDL) which are secreted into the vasculature. Lipids in VLDL
326 are taken up by the peripheral tissues such as muscle, and the leftover lipoproteins (low-density
327 lipoproteins, LDL) are taken back by liver through the LDL receptor (LDLR) (Wang, 2007).
328 Most of the lipoproteins including VLDL and LDL contain a copy of apolipoprotein B (APOB),
329 an essential component for its structure (Elovson et al., 1988). Our study has found GBV to be
330 positively correlated to *ldlrab-a*, and *apobc*. This could suggest high GBV was associated with
331 increased amount and turnover of lipoproteins in the bloodstream. Additionally, we have also
332 identified two *fxr* genes which were negatively correlated to GBV. Since *fxr* is a key regulator
333 and positively correlated to bile salt synthesis in fish (Wen et al., 2021), this suggests that high
334 GBV fish has decreased lipid excretion through bile salt production pathway. Under this
335 scenario, a higher proportion of newly synthesized saturated and monounsaturated fatty acid,
336 and diet derived polyunsaturated fatty acid containing triacylglycerol are exported as
337 lipoproteins from the liver and deposited in peripheral tissues including muscle where the fat
338 phenotype was measured.

339 We find expression of key genes in lipid biosynthesis pathways, including *fas*, *fads2d5*,
340 *fads2d6a*, *fads2d6b*, and *fads2d6c* were positively correlated to GBV. This is likely due to
341 higher expression of sterol regulatory element-binding protein 1 (SREBP1), which is the key
342 positive regulator of fatty acid *de-novo* synthesis and LC-PUFA synthesis in salmon (Carmona-
343 Antoñanzas et al., 2014; Minghetti et al., 2011). Other genes of LC-PUFA synthesis, the *elovl2*
344 and *elovl5* genes, were not correlated to GBV. This could be because these genes are not

345 controlled by SREBP1 transcription factor in salmon (Datsomor et al., 2019). A similar study
346 using high and low muscle fat lines of rainbow trout also found higher expression of lipogenic
347 genes in high fat lines and hypothesized that this was due to a more active target of rapamycin
348 (TOR) signalling pathway (Skiba-Cassy et al., 2009). Fat and lean rainbow trout lines displayed
349 a similar ratio of phosphorylated and native TOR, however fat lines had significantly higher
350 levels of TOR protein. We did not find TOR mRNA to be associated with GBV of muscle lipid
351 levels in Atlantic salmon, however TOR protein abundance could be regulated at the
352 posttranslational level. In addition, we found that ATP-citrate lyase (*acyl*, geneID:106589258)
353 gene expression was positively associated to GBV, which agrees with the study in rainbow
354 trout (Skiba-Cassy et al., 2009). ACYL acts as a metabolic switch linking glucose and lipid
355 metabolism that diverts citrate from the TCA cycle into lipogenesis by converting it to acetyl-
356 CoA and oxaloacetate in the cytosol. This enables elevated lipogenesis by increasing the
357 available pool of acetyl-CoA to be converted to fatty acids by FAS.

358 Our eQTL analysis revealed an unexpectedly high number of trans-eQTLs on chromosome 6
359 associated to co-regulated genes that were TAGs in our analysis. Moreover, these chromosome
360 trans-eQTL associations were mostly originating from a smaller region around 50 Mbp,
361 pointing to a potential common transcription factor. Two of the genes in this region are paralogs
362 of SREBP2-like, a known regulator of lipid metabolism. *Srebp2* is a key transcriptional
363 regulator controlling cholesterol metabolism in fish and mammals (Carmona-Antoñanzas et al.,
364 2014; Madison, 2016), and our study has found many positively correlated TAGs involved in
365 *de-novo* cholesterol synthesis including *hmgcrab*. Additionally, positively correlated *acyl*
366 suggests an increased acetyl-CoA pool. Although we did not find *srebp2* to be associated with
367 GBV in our analysis, SREBP is known to be highly regulated post-transcriptionally through
368 interactions with SREBP cleavage-activating protein (SCAP). SCAP forms a complex with
369 SREBP and facilitates the cleavage of SREBPs by site-1 protease, thereby releasing active

370 NH2-terminal fragments from the ER membrane to nucleus, activating gene expression
371 (Nohturfft et al., 1998). Therefore, this lack of association could be explained by variation in
372 *srebp2* protein structure resulting in increasing SCAP or Site-1 protease binding activity
373 without influencing *srebp2* expression itself. Alternatively, it may be that the trans-eQTL
374 signal cluster on chromosome 6 is driven by another, so far unknown regulator of lipid
375 metabolism on chromosome 6.

376 Although lipid synthesis and transport in the liver contributes to lipid content in the muscle,
377 our results only tell part of the story. Since there is considerable variation in fat deposition and
378 turnover in salmon (Dvergedal et al., 2020; Dvergedal et al., 2019) variation in the regulation
379 of lipid metabolism in the muscle must also be a large contributor to the high fat phenotype.
380 High muscle fat has previously been associated with downregulation of genes related to lipid
381 catabolism and upregulation of genes associated to glycogenolysis (Horn et al., 2019), which
382 may signal a transition in how fish utilize energy stores. Additionally, differences in hormonal
383 signalling between the brain, adipose, and muscle tissues could contribute to the high fat
384 phenotype. To further improve our understanding of what makes a salmon fat, future studies
385 need to address these aspects of the salmon molecular physiology.

386 5 Conclusion

387 We demonstrate that genomic selection using estimated breeding values for fat content drives
388 changes in lipid metabolism in Atlantic salmon. Fish with high GBV for muscle fat content
389 had overall higher gene expression in lipid biosynthesis and transport pathways and lower
390 expression of genes involved in glycerolipid breakdown. This is important validation for
391 genomic selection as a strategy to improve lipid content and the results could be used to
392 prioritize SNPs in future estimates of breeding values.

393 **Ethics approval and consent to participate**

394 The experiment used phenotypic data, which were collected from a family experiment with
395 Atlantic salmon carried out at the fish laboratory, Norwegian University of Life Sciences
396 (NMBU), Aas, Norway, following the laws and regulations for experiments on live animals in
397 EU (Directive 2010/637EU) and Norway (FOR-2015-06-18-761). The experiment was
398 approved by the Norwegian Food Safety Authority (FOTS ID 11676).

399 **Data availability**

400 The genotypic data are owned by AquaGen AS, used under license for this study, and not
401 publicly available. Phenotypic data can be made available on request. All RNAseq data is
402 publicly available on ArrayExpress under accession number E-MTAB-8305.

403 **Declaration of competing interests**

404 The authors declare that they have no known competing financial interests or personal
405 relationships that could have appeared to influence the work reported in this paper.

406 **Funding**

407 This study was supported by The Norwegian University of Life Sciences, AquaGen AS, Foods
408 of Norway (a Centre for Research-based Innovation in the Research Council of Norway; grant
409 no. 237841/O30), and GenoSysFat (the Research Council of Norway Havbruk; grant no.
410 244164/E40).

411 **Acknowledgements**

412 We thank Bjørn Reidar Hansen, Harald Støkken and Bjørn Frode Eriksen for help and
413 assistance at the fish laboratory, and Ricardo Tavares Benicio, Ragnhild Ånestad, Milena
414 Bjelanovic, Jon Øvrum Hansen, Mathabela Nelson, Shomorin Oluwaseun George and Ingrid

415 Marie Håkenåsen for their help during feed production, experiment, and sampling. A thank
416 goes to all that contributed during sampling of experimental material.

417 **References**

418 Carmona-Antoñanzas, G., Tocher, D.R., Martinez-Rubio, L., Leaver, M.J., 2014. Conservation
419 of lipid metabolic gene transcriptional regulatory networks in fish and mammals. *Gene* 534(1),
420 1-9. [https://doi.org/https://doi.org/10.1016/j.gene.2013.10.040](https://doi.org/10.1016/j.gene.2013.10.040)

421 Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-
422 generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* 4(1).
423 <https://doi.org/10.1186/s13742-015-0047-8>

424 Datsomor, A.K., Zic, N., Li, K., Olsen, R.E., Jin, Y., Vik, J.O., Edvardsen, R.B., Grammes, F.,
425 Wargelius, A., Winge, P., 2019. CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon
426 (*Salmo salar* L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and
427 target genes. *Scientific Reports* 9(1). <https://doi.org/10.1038/s41598-019-43862-8>

428 de las Heras-Saldana, S., Lopez, B.I., Moghaddar, N., Park, W., Park, J.-e., Chung, K.Y., Lim,
429 D., Lee, S.H., Shin, D., van der Werf, J.H.J., 2020. Use of gene expression and whole-genome
430 sequence information to improve the accuracy of genomic prediction for carcass traits in
431 Hanwoo cattle. *Genet. Sel. Evol.* 52(1), 54. <https://doi.org/10.1186/s12711-020-00574-2>

432 Dvergedal, H., Harvey, T.N., Jin, Y., Ødegård, J., Grønvold, L., Sandve, S.R., Våge, D.I., Moen,
433 T., Klemetsdal, G., 2020. Genomic regions and signaling pathways associated with indicator
434 traits for feed efficiency in juvenile Atlantic salmon (*Salmo salar*). *Genet. Sel. Evol.* 52(1), 66.
435 <https://doi.org/10.1186/s12711-020-00587-x>

436 Dvergedal, H., Ødegård, J., Øverland, M., Mydland, L.T., Klemetsdal, G., 2019. Selection for
437 feed efficiency in Atlantic salmon using individual indicator traits based on stable isotope
438 profiling. *Genet. Sel. Evol.* 51(1), 13. <https://doi.org/10.1186/s12711-019-0455-9>

439 Elovson, J., Chatterton, J.E., Bell, G.T., Schumaker, V.N., Reuben, M.A., Puppione, D.L.,
440 Reeve, J.R., Young, N.L., 1988. Plasma very low density lipoproteins contain a single molecule
441 of apolipoprotein B. *J. Lipid Res.* 29(11), 1461-1473.
442 [https://doi.org/https://doi.org/10.1016/S0022-2275\(20\)38425-X](https://doi.org/https://doi.org/10.1016/S0022-2275(20)38425-X)

443 Gillard, G., Harvey, T.N., Gjuvsland, A., Jin, Y., Thomassen, M., Lien, S., Leaver, M.,
444 Torgersen, J.S., Hvidsten, T.R., Vik, J.O., Sandve, S.R., 2018. Life-stage-associated
445 remodelling of lipid metabolism regulation in Atlantic salmon. *Mol. Ecol.* 27(5), 1200-1213.
446 <https://doi.org/10.1111/mec.14533>

447 Grashei, K.E., Ødegård, J., Meuwissen, T.H.E., 2018. Using genomic relationship likelihood
448 for parentage assignment. *Genet. Sel. Evol.* 50(1), 26. <https://doi.org/10.1186/s12711-018-0397-7>

450 Horn, S.S., Sonesson, A.K., Krasnov, A., Moghadam, H., Hillestad, B., Meuwissen, T.H.E.,
451 Ruyter, B., 2019. Individual differences in EPA and DHA content of Atlantic salmon are
452 associated with gene expression of key metabolic processes. *Scientific Reports* 9(1), 3889.

453 <https://doi.org/10.1038/s41598-019-40391-2>

454 Hu, G., Gu, W., Cheng, L., Wang, B., 2020. Genomic prediction and variance component
455 estimation for carcass fat content in rainbow trout using SNP markers. *J. World Aquacult. Soc.*
456 51(2), 501-511. [https://doi.org/https://doi.org/10.1111/jwas.12677](https://doi.org/10.1111/jwas.12677)

457 Jiao, Y., Lu, Y., Li, X.-y., 2015. Farnesoid X receptor: a master regulator of hepatic triglyceride
458 and glucose homeostasis. *Acta Pharmacologica Sinica* 36(1), 44-50.
459 <https://doi.org/10.1038/aps.2014.116>

460 Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network
461 analysis. *BMC Bioinformatics* 9(1), 559. <https://doi.org/10.1186/1471-2105-9-559>

462 Legarra, A., Ricard, A., Varona, L., 2018. GWAS by GBLUP: Single and Multimarker
463 EMMAX and Bayes Factors, with an Example in Detection of a Major Gene for Horse Gait.
464 *G3 Genes|Genomes|Genetics* 8(7), 2301-2308. <https://doi.org/10.1534/g3.118.200336>

465 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion
466 for RNA-seq data with DESeq2. *Genome Biology* 15(12), 550. <https://doi.org/10.1186/s13059-014-0550-8>

468 MacLeod, I.M., Bowman, P.J., Vander Jagt, C.J., Haile-Mariam, M., Kemper, K.E.,
469 Chamberlain, A.J., Schrooten, C., Hayes, B.J., Goddard, M.E., 2016. Exploiting biological
470 priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
471 *BMC Genomics* 17(1), 144. <https://doi.org/10.1186/s12864-016-2443-6>

472 Madison, B.B., 2016. Srebp2: A master regulator of sterol and fatty acid synthesis1. *J. Lipid
473 Res.* 57(3), 333-335. <https://doi.org/https://doi.org/10.1194/jlr.C066712>

474 Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of Total Genetic Value Using
475 Genome-Wide Dense Marker Maps. *Genetics* 157(4), 1819-1829.
476 <https://doi.org/10.1093/genetics/157.4.1819>

477 Minghetti, M., Leaver, M.J., Tocher, D.R., 2011. Transcriptional control mechanisms of genes
478 of lipid and fatty acid metabolism in the Atlantic salmon (*Salmo salar* L.) established cell line,
479 SHK-1. *Biochim. Biophys. Acta* 1811(3), 194-202.
480 <https://doi.org/https://doi.org/10.1016/j.bbapap.2010.12.008>

481 Nohturfft, A., Brown, M.S., Goldstein, J.L., 1998. Sterols regulate processing of carbohydrate
482 chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant
483 mutants Y298C or D443N. *Proceedings of the National Academy of Sciences* 95(22), 12848-
484 12853. <https://doi.org/10.1073/pnas.95.22.12848>

485 Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast and
486 bias-aware quantification of transcript expression. *Nat. Methods* 14(4), 417-419.
487 <https://doi.org/10.1038/nmeth.4197>

488 Pena, R.N., Ros-Freixedes, R., Tor, M., Estany, J., 2016. Genetic Marker Discovery in Complex
489 Traits: A Field Example on Fat Content and Composition in Pigs. *Int J Mol Sci* 17(12).
490 <https://doi.org/10.3390/ijms17122100>

491 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., 2015. limma

492 powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic
493 Acids Res. 43(7), e47-e47. <https://doi.org/10.1093/nar/gkv007>

494 Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2009. edgeR: a Bioconductor package for
495 differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139-140.
496 <https://doi.org/10.1093/bioinformatics/btp616>

497 Shimano, H., Sato, R., 2017. SREBP-regulated lipid metabolism: convergent physiology —
498 divergent pathophysiology. Nature Reviews Endocrinology 13(12), 710-730.
499 <https://doi.org/10.1038/nrendo.2017.91>

500 Skiba-Cassy, S., Lansard, M., Panserat, S., Médale, F., 2009. Rainbow trout genetically
501 selected for greater muscle fat content display increased activation of liver TOR signaling and
502 lipogenic gene expression. American Journal of Physiology-Regulatory, Integrative and
503 Comparative Physiology 297(5), R1421-R1429. <https://doi.org/10.1152/ajpregu.00312.2009>

504 Tocher, D.R., 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in
505 perspective. Aquaculture 449, 94-107. <https://doi.org/10.1016/j.aquaculture.2015.01.010>

506 Tsai, H.Y., Hamilton, A., Guy, D.R., Tinch, A.E., Bishop, S.C., Houston, R.D., 2015. The
507 genetic architecture of growth and fillet traits in farmed Atlantic salmon (*Salmo salar*). BMC
508 Genet. 16, 51. <https://doi.org/10.1186/s12863-015-0215-y>

509 Vance, D.E., Vance, J.E., 2008. CHAPTER 8 - Phospholipid biosynthesis in eukaryotes, in:
510 Vance, D.E., Vance, J.E. (Eds.), Biochemistry of Lipids, Lipoproteins and Membranes (Fifth
511 Edition). Elsevier, San Diego, pp. 213-244.

512 Wang, D.Q.H., 2007. Regulation of Intestinal Cholesterol Absorption. Annu. Rev. Physiol.
513 69(1), 221-248. <https://doi.org/10.1146/annurev.physiol.69.031905.160725>

514 Wen, J., Mercado, G.P., Volland, A., Doden, H.L., Lickwar, C.R., Crooks, T., Kakiyama, G.,
515 Kelly, C., Cocchiaro, J.L., Ridlon, J.M., Rawls, J.F., 2021. Fxr signaling and microbial
516 metabolism of bile salts in the zebrafish intestine. Science Advances 7(30), eabg1371.
517 <https://doi.org/10.1126/sciadv.abg1371>

518 Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M., 2011. GCTA: A Tool for Genome-wide
519 Complex Trait Analysis. The American Journal of Human Genetics 88(1), 76-82.
520 <https://doi.org/https://doi.org/10.1016/j.ajhg.2010.11.011>

521 Ødegård, J., Moen, T., Santi, N., Korsvoll, S.A., Kjøglum, S., Meuwissen, T.H.E., 2014.
522 Genomic prediction in an admixed population of Atlantic salmon (*Salmo salar*). Frontiers in
523 Genetics 5. <https://doi.org/10.3389/fgene.2014.00402>

524

525 **Supplementary data**

526 **Figure S1: Trans eQTL links on chromosome 3.** Circos plot showing the top trans-eQTL
527 links between trait associated genes and chromosome 3. Colors reflect the co-expression
528 module that the trait associated genes belong to from Figure 4b.

529 **File S1: Human readable gene name to NCBI id translations.** List of human readable gene
530 names of lipid genes used in our analysis and their associated NCBI refseq identifiers. Column
531 1 - NCBI gene ID, column 2 – human readable gene name, column 3 – gene description.

532 **File S2: Trait associated genes for fat content in Atlantic salmon.** List of all salmon genes
533 significantly associated to GBV. Column 1 – Gene ID, column 2 – log2 fold change, column 3
534 – adjusted p-value, column 4 – gene name, column 5 – gene product.

535 **File S3: Enriched KEGG pathways for GBV associated genes.** List of all significantly ($p <$
536 0.05) enriched KEGG pathways among GBV associated genes. Column 1 – pathway name,
537 column 2 – pathway ID, column 3 – type of GBV correlation for genes in pathway, column 4
538 – number genes in pathway, column 5 – number of TAGs in pathway, column 6 – enrichment
539 p-value.

540 **File S4: eQTL results of selected TAGs.** List of SNPs significantly associated to TAG
541 expression ($p < 10^{-6}$). Column 1 – NCBI gene ID of TAG, column 2 – Chromosome containing
542 SNP, column 3 – SNP identifier, column 4 – Physical position of SNP, column 5 – Reference
543 allele, column 6 – Second allele, column 7 – Frequency of the reference allele, column 8 – SNP
544 effect, column 9 – Standard error, column 10 – p-value.