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Abstract

Muscle fat content is an important production trait in Atlantic salmon (Salmo salar) because it
influences the flavor, texture, and nutritional properties of the fillet. Genomic selection can be
applied to alter muscle fat content, however how such selection changes the underlying
molecular physiology of these animals is unknown. Here, we examine the link between
genomic prediction and underlying molecular physiology by correlating genomic breeding
values for fat content to liver gene expression in 184 fish. We found that Salmon with higher
genomic breeding values had higher expression of genes in lipid metabolism pathways. This
included key lipid metabolism genes hmgcrab, fasn-b, fads2d5, and fads2d6, and lipid
transporters fatp2f, fabp7b, and apobc. We also found several regulators of lipid metabolism
with negative correlation to genomic breeding vales, including pparg-b, fxr-a, and fxr-b. A
quantitative trait loci analysis for variation in gene expression levels (eQTLs) for 167 trait
associated genes found that 71 genes had at least one eQTL, and that most were trans eQTLSs.
Closer examination revealed distinct eQTL clustering on chromosomes 3 and 6, indicating the
presence of putative common regulator in these regions. Taken together, these results suggest
that increased fat content in high genomic breeding value salmon is associated with elevated
lipid synthesis, elevated lipid transport, and reduced glycerolipid breakdown; and that this is at
least partly achieved by selection on genetic variants that impact the function of top-level
transcription factors involved in liver metabolism. Our study sheds light on how genomic
selection alters lipid content in Atlantic salmon, and the results could be used to prioritize SNPs

to improve the efficiency of genomic selection in the future.

Keywords: Atlantic salmon, genomic selection, lipid metabolism, fat content, gene expression,

eQTL
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1 Background

Intramuscular fat content is an important quality parameter in most production animals because
it influences the texture, flavor, and nutritional properties of the meat. The latter is especially
important in Atlantic salmon as it is considered an excellent source of healthy omega-3 fatty
acids in human diets and higher fat equates to higher levels of omega-3s reaching the end
consumer (Tocher, 2015). Lipid content is a highly polygenic trait, with many genes explaining
a small fraction of the total genetic variation (Pena et al., 2016). In Atlantic salmon, lipid
content has been reported to have a heritability of 0.18 (Tsai et al., 2015), so breeding for fat

content in Atlantic salmon is possible.

Breeding for complex traits such as growth rate, disease resistance, and filet properties has
been accelerated in recent years with the widespread adoption of genomic selection. This
breeding strategy takes advantage of genome wide single nucleotide polymorphism (SNP) data
to calculate genomic breeding values (GBV) for each individual based on the genotype and
phenotype of their parents, enabling rational selection of breeding pairs (Meuwissen et al.,
2001). Genomic selection in salmon has already been successfully applied; with breeding
programs improving lice resistance and filet color faster and more reliably than traditional
breeding programs (@degard et al., 2014). Genomic selection for fat content has been
successfully applied to rainbow trout (Hu et al., 2020), however such methods have yet to be

applied to fillet fat in Atlantic salmon.

Application of genomic selection to production traits traditionally does not consider the biology
of the target trait, and rather weighs all SNPs equally to predict genomic effects (Meuwissen
et al., 2001). However, biological knowledge about the trait of interest can be used to improve
the power and accuracy of genomic predictions (de las Heras-Saldana et al., 2020; MacLeod et

al., 2016). For this reason, it is useful to understand the underlying changes in molecular
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physiology occurring during genomic selection to prioritize SNPs for future rounds of genomic
selection. In Atlantic salmon, lipid homeostasis is achieved by balancing dietary intake from
the gut, de-novo synthesis in the body, and excretion through gut or biliary systems, which
involves the coordinated action of thousands of genes. Liver plays a central role in lipid
metabolism, controlling the flow of dietary lipids between different parts of the body through
absorption and secretion of different lipoproteins to the circulatory system (Vance and Vance,
2008). Liver is therefore a logical place to analyze the effect of genomic selection for fat

content on the molecular physiology of the fish.

In this study, we calculate GBVs for filet fat content in 184 fish based on genotype and
phenotype data from a training set of 2487 fish. We sequenced the liver transcriptomes of all
184 fish and associate gene expression with GBV. Finally, we took the most significant GBV
associated genes (padj < 10#) together with a manually curated subset of known lipid related
GBYV associated genes and identify eQTLs for each (Figure 1a). Our aim is to improve our
understanding of the genetic basis for differences in fat content by interrogating the link

between GBVs and gene regulation in the liver.

2 Methods

2.1 Fish and housing

A family experiment with Atlantic salmon was carried out at the fish laboratory, Norwegian
University of Life Sciences (NMBU), Aas, Norway. The family experiment is explained in
detail by Dvergedal et al. (2019). Broodstock from AquaGen’s breeding population (22 males

and 23 females) were used to generate 23 families.

From the eyed egg stage until the start of the experiment, all families were communally reared

in a single tank until the start of the experiment. When the fish reached 5-10 g, they were pit-
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88  tagged with a2 x 12 mm unique glass tag (RFID Solutions, Hafrsfjord, Norway), and a fin-clip
89  was collected for DNA-extraction and genotyping of a total of 2,300 fish. Fin clips (20 mg)
90  were incubated in lysis buffer and treated with proteinase K (20 pg/ml) at 56 °C overnight. The
91 following day, DNA was isolated from the lysate using the sbeadex livestock kit (LGC
92  Genomics) according to the manufacturer’s protocol (Thermo Fisher Scientific) at Biobank AS
93 (Hamar, Norway). The DNA concentration was measured using a Nanodrop 8000 (Thermo
94  Fisher Scientific). All fish were genotyped using AquaGen’s custom Axiom®SNP (single-
95 nucleotide polymorphism) genotyping array from Thermo Fisher Scientific (former Affymetrix)
96 (San Diego, CA, USA). This SNP-chip contains 56,177 SNPs which were originally identified
97 based on Illumina HiSeq reads (10-15x coverage) from 29 individuals from AquaGen’s
98  breeding population. Genotyping was done at CIGENE (Aas, Norway). Genotypes were called
99  from the raw data using the Axiom Power Tools software from Affymetrix. Individuals having
100  a Dish-QC score below 0.82, and/or a call-rate below 0.97 were deleted from further analyses.
101 A priori to the 12-day test, the parentage of each fish was established using genomic
102  relationship likelihood for parentage assignment (Grashei et al., 2018), and families were
103 allocated to tanks, 50 fish per tank, and 2 tanks per family. Except for nine tanks in which the
104  number of fish varied between 42 and 54, due to some mortality before the start of the
105 experiment or an increased number due to a counting mistake. The total number of fish was
106 2,281 and families were fed a fishmeal-based diet, as described in Dvergedal et al. (2019). The
107  phenotypic data were registered individually for relative growth, as described by Dvergedal et

108 al. (2019).

109 2.2 Estimating genomic breeding values (GBV) for fat content

110  Estimated genomic breeding values (GBV) for fillet fat content were predicted using a training
111  data set consisting of 2487 genotyped (50-70k SNP chip) and phenotyped (fillet fat content)

112 fish from two slaughter tests performed on the parental year-class 2014 (766 fish of the parental
5
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113 generation of the fish in the current study) and 2017 (1721 fish of the same generation as in the
114  current study). Phenotypes for fat content were obtained using Norwegian quality cuts (NQC)
115  from each fish that were subsequently frozen. The cut was thawed, skin and central bone
116  removed, and homogenized for fat measurement on a NIR XDS machine. Fat content was
117  predicted using a proprietary NQC model owned by Cargill. Average fat (standard deviation)
118 was 12.96% (1.22%) and 17.41% (2.84%) for, respectively, year-classes 2014 and 2017.
119  Additionally, 59 samples were analyzed by an independent lab (Eurofins) for validation. A

120  linear genomic animal model (GBLUP) was used to obtain EBV:
121 Viat = Xp+ Zg+ e

122 Where yg,, is a vector of fat content phenotypes (standardized within each year-class), nis a
123 vector of the two year-class intercepts, g~N (0, Go;) is a vector of polygenic effects (including
124 both 2014 and 2017 year-class fish in the current study), e is a vector of random residuals, o/

125 s the additive genetic variance, G = pMM'’ is the genomic relationship matrix, M is a centered

126  genotype matrix (one row per individual and one column per locus), p = and p; is

__r
2Ypi(1-py)
127  the allele frequency at locus i. The estimated genomic heritability (across the two year-classes)
128  for fillet fat content was rather moderate (0.23 = 0.03). SNP marker effects estimates were

129  obtained as: m = p~'M’'G™1g (Legarraetal., 2018). Using the estimated marker effects GBVs

130  for the fish in the current study were predicted as:
131 gsample = Msamplel/ﬁ

132 Where gampie Is @ vector of GBVs (on the standardized scale) for fat content of fish in the

133 current study and M sqmpie is a (centered) genotype matrix of the same fish.
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134 2.3 RNA extraction and transcriptomic sequencing

135  Four individual fish from each family were used for RNA isolation. RNA was extracted from
136 liver of each individual fish using RNeasy Plus Universal Kit (Qiagen, Hilden, Germany),
137  according to the manufacturer’s instructions. The concentration of RNA was determined by a
138  Nanodrop 8000 (Thermo Fisher Scientific, Waltham, USA), and RNA integrity was examined
139 by using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). All RNA samples had
140  RNA integrity (RIN) values higher than 8. Sequencing libraries were generated using TruSeq
141 Stranded mRNA Library Prep Kit (Illumina, San Diego, USA) according to the manufacturer’s
142  protocol. Libraries were delivered to Norwegian Sequencing Centre (Oslo, Norway) where all
143 184 samples were merged into one flow cell and sequenced using 100bp single-end mMRNA

144 sequencing (RNA-seq) on Illumina Hiseq 2500 (Illumina, San Diego, CA, USA).

145 Raw fastq file of reads sequences are publicly available on ArrayExpress under accession
146 number E-MTAB-8305. Gene expression was quantified using the Salmon quasi-mapper

147  version 0.13.1 (Patro et al., 2017) against the Atlantic salmon transcriptome (ICSASG_v2).

148 2.4 Trait association analysis

149  Trait associated genes (TAGs) were detected by correlating gene expression to GBV using
150 edgeR (Robinson et al., 2009). Genes with low read counts, i.e. less than 0.5 count per million
151  (CPM) in 50% of the samples, were removed and GBV was scaled (mean = 0 and standard

152  deviation =1) prior to analysis. The linear regression model was:
153 Y=ﬁ0+ﬁ1x+€

154  where Y is gene expression and x is scaled GBV value. Genes were classified as TAGs if the
155  slope (B,) was significant, i.e. §; # 0 with false discover rate adjusted p value < 0.05. We also

156  ran the analysis with family as a fixed effect factor in the model, however this only slightly
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157  changed the number of TAGs and did not influence the conclusion, so we use the simpler model
158 in the analysis. KEGG enrichment analysis of the TAGs with positive and negative slope was
159  performed with the kegga function in the limma R package (Ritchie et al., 2015). Translations
160  between human readable gene names and NCBI RefSeq annotation gene ID’s can be found in

161  File S1.

162 2.5 Genome-wide association analysis

163  To associate variation in TAGs with host genetics, a genome-wide association study was done
164  using TAGs with an adjusted p-value <0.0001 (n = 121) and genes known to be associated with
165  fat metabolism in the liver (n = 46) as response variables. The analysis was carried out by a
166  linear mixed-model algorithm implemented in a genome-wide complex trait analysis (GCTA)
167  (Yang et al., 2011). The leave one chromosome out option (--mIm-loco) was used, meaning
168  that the chromosome harboring the SNP tested for was left out when building the genetic

169 relationship matrix (GRM). The linear mixed model can be written as:
170 Yi=a+bx+ g; + ¢,

171  whereY; is one of the TAGs of individual i, a is the intercept, b is the fixed regression of the
172  candidate SNP to be tested for association, x is the SNP genotype indicator variable coded as

173 0,1, 0r 2, g; iis the random polygenic effect for individual i ~ N (0, Gg7) where G is

174 the GRM and ¢ is the variance component for the polygenic effect, and ¢; is the random
175  residual. In this algorithm, o7 is re-estimated each time a chromosome is left out from the

176  calculation of the GRM. The dataset was filtered, and individuals with < 10% missing
177  genotypes were kept (n = 2279). Further, it was required that SNPs should have minor allele
178  frequency (MAF) > 1% and a call rate > 90%. After filtering, 54,200 SNPs could be included

179  inthe analysis. The level of significance for SNP was evaluated with a built-in likelihood-ratio
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180 test, and the threshold value for genome-wide significance was calculated using the Bonferroni

181  correction (0.05/ 54200 = 9.23 x 10™7), corresponding to a -log10 p-value of 6.03.

182 2.6 Allele distribution of top SNPs for TAGs associated with lipid metabolism in liver

183  For TAGs with a significant genome-wide eQTL association to lipid metabolism in liver, the
184  allele distribution for the top SNP (the SNP with the highest -log10 p-value) was examined
185  with PLINK 2.00 (Chang et al., 2015) using the --recode option, which creates a new file after
186  applying sample/variant filters and the --extract option to create a file with the top SNP of

187 interest.

188 2.7 Co-expression network analysis

189  We assembled an independent RNA-seq expression data set comprising 112 liver samples
190  spanning different diets and life stages in fresh water (Gillard et al., 2018). Raw RNA-Seq data
191 can be found in the European Nucleotide Archive (ENA) under project accession no.
192 PRJEB24480. Read counts for Atlantic salmon genes (NCBI:
193  GCF_000233375.1 ICSASG_v2) were estimated using Salmon (Patro et al., 2017). Code and

194  dataavailable at https://gitlab.com/garethgillard/megaLiverRNA. 27,786 genes with at least 10

195  mapped reads in more than 10 samples were retained for further analysis. Read counts were
196  normalized using the varianceStabilizingTransformation-function from the R package DESeq?2

197  (Loveetal., 2014).

198  For co-expression network inference, we used the Weighted Gene Co-expression Network
199  Analysis (WGCNA) R package (Langfelder and Horvath, 2008) and the function
200  blockwiseModules with the bicor correlation measure and parameters power = 3 (scale free
201 topology fit with an R2 of 0.8), maxBlockSize = 30000, networkType = “signed”, TOMType =

202  “signed”, corType = “bicor”, maxPOutliers = 0.05, replaceMissingAdjacencies = TRUE,
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203  pamStage = F, deepSplit = 1, minModuleSize = 5, minKMEtoStay = 0.2, minCoreKME = 0.2,
204  minCoreKMESize = 2, reassignThreshold = 0 and mergeCutHeight = 0.2. A hard correlation

205  threshold of 0.5 was used to visualize the network in Cytoscape (https://cytoscape.org).

206 3 Results

207 3.1 Correlations between liver gene expression levels and GBV

208  We first calculated GBV for the 184 fish used in this study based on a training set of 2487 fish
209  (Figure la and b). RNA sequencing and trait association analysis revealed a total of 710 TAGs
210  (padj <0.05) positively correlated to GBV and 653 TAGs negatively correlated to GBV (Figure
211  1c, File S2). By comparing the number of TAGs to total genes within each KEGG pathway,
212  we found that the positive TAGs were enriched (p < 0.05) in 45 KEGG pathways (Figure 1d,
213  File S3). Many of the most significantly enriched KEGG pathways were related to lipid
214 metabolism including “PPAR signaling”, “fatty acid degradation”, “fatty acid biosynthesis”,
215  “biosynthesis of unsaturated fatty acids” and “glycerolipid metabolism” (Figure 1d). In
216  addition, pathways related to amino acid metabolism and energy metabolism were enriched for
217  positively correlated TAGs (Figure 1d). Only eight pathways were found enriched (p < 0.05)
218  for the negatively correlated TAGs. This included the lipid metabolism pathway “primary bile
219  acid synthesis” which produces bile acids from cholesterol that aid in lipid solubilization in the

220 intestine.

10
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222  Figure 1: Correlation of GBV to gene expression. A) Flow chart of our analysis. B)
223  Distribution of GBVs in the 184 salmon used for RNAseq analysis. C) Slope distribution
224 among positively and negatively correlated TAGs. D) KEGG enrichment analysis of positively

225  and negatively correlated TAGs. Only significantly enriched pathways (p < 0.05) are shown.

226 3.2 Regulation of lipid metabolism genes

227  To further dissect the link between lipid metabolism and GBV for fat content, we performed
228 an in-depth analyses of a manually annotated set of genes involved in lipid metabolism in
229  salmon (Gillard et al., 2018). We found that the TAG list was clearly enriched for lipid genes

230  (fisher’s p-value 2.2e-16, odds ratio 4.92) with 45 (6.3%) lipid genes found in the 710 TAGs

11
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231  positively correlated to GBV, and 10 lipid genes (1.5%) found in the 653 TAGs negatively
232  correlated with GBV (Figure 2a). Intriguingly, the GBV-associated lipid genes covered genes
233 involved in many enzymatic steps in the cholesterol biosynthesis pathway including the
234 enzyme controlling the rate limiting step of cholesterol biosynthesis, hmgcrab. Other lipid
235  metabolism enzyme-encoding genes associated to fat content GBV included fatty acid synthase
236  (fasn-b), all three polyunsaturated fatty acid desaturases (fads2d5 fads2d6a, and fads2d6b)
237  (figure 2e), and several lipid and fatty acid transporters (fatp2f, fabp7b, ldlrab-a, and apobc)

238  (Figure 2c).

239  We also found several lipid regulatory genes positively correlated with GBV (Figure 2),
240 including all three isoforms of SREPB1 (srebplb, srebplc, srebpld) (Figure 2f), known
241  regulators of lipid biosynthesis (Shimano and Sato, 2017). Lipid metabolism genes negatively
242  correlated to GBV included the important lipid oxidation regulator pparg-b (figure 2b) as well
243  as both copies of farnesoid x receptor (fxr-a and fxr-b), which plays a key role in hepatic
244 triglyceride homeostasis and is involved in suppression of lipogenesis (Jiao et al., 2015). The
245  lipid gene that was most negatively associated with GBV was monoacylglycerol lipase (mgll)

246  which is involved glycerolipid breakdown.

247

12
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249  Figure 2: Correlation between GBV and lipid metabolism gene expression. A) Volcano
250 plot of the regression results between gene expression and GBV. Genes involved in lipid
251  metabolism are coloured and important lipid metabolism genes are labelled. Size corresponds
252  to mean log2TPM values. The dashed red line indicates the padj < 0.05 cutoff. Correlation of
253  GBV and gene expression are shown on the right for pparg-b (B), fatp2f (C), and mgll (D),

254  fads2d6a (E), and srebpld (F).

255 3.3 eQTL analyses highlights several trans-acting loci impacting many genes

256  To explore the genetic architecture of gene expression differences between fish with high and
257 low GBV, we used linear regressions to identify genetic variants associated gene expression
258 levels (File S4). In total 167 genes associated with GBV fat were examined, which included
259  the top 121 significant TAGs (padj < 0.0001), as well as 46 significant TAGs from lipid
260  pathways (padj < 0.05) (Figure 2a). Genes that were not annotated on a chromosome (i.e

261  belonged to a smaller unplaced scaffold) were discarded from this analysis.

262 Intotal, 71 genes had at least one significant eQTL (genome wide significance level, p < 10°),

263  with a mean number of 1.4 eQTLs per gene (Figure 3a). Dissecting the positions of eQTL
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signals relative to these genes showed that 21 genes had a significant association in cis (no
more than 10 Mbp from the gene). Considering only “top associations” for each gene reveals
a clear tendency for eQTL-associations to variants on other chromosomes (i.e. trans
associations) (Figure 3b). Seven of the genes with significant eQTL’s were known lipid
metabolism genes; two of which are monoglyceride lipase (mgll) and fatty acid desaturase 2-

like (fads2d6b) (Figure 3c-f).
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Figure 3: GWAS of top GBV TAGs and selected lipid metabolism genes. A) Number of
significant (p < 10%) eQTLs per gene. B) Number of genes with the top eQTL in cis (< 10 MB
from gene), trans (different chromosome), or trans (same chromosome). C) Manhattan plot of
SNPs associated with fads2d6b gene expression. Significance cutoffs are indicated by red
(strict) and blue (relaxed) lines. D) Genotype distribution of the top SNP for fads2d6b. E and

F) Same as C and D for the gene mgll.

14


https://doi.org/10.1101/2023.08.29.555338
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.29.555338; this version posted August 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

277  Since the genes tested for eQTLs were associated with differences in one quite specific
278  molecular trait (i.e. lipid metabolism), it is plausible that a few top regulators of key lipid-
279  metabolism pathways could impact the expression of many of the genes in our study. The high
280 numbers of trans eQTL signals (Figure 3b) supports this idea. Hence, to test if any
281  chromosomal regions showed sign of harboring such major regulators, we analyzed the
282  distribution of top trans-eQTL associations across chromosomes. Using a relaxed p-value
283 cutoff for significant associations (p < 10#), two chromosomes (3 and 6) were clearly enriched
284  for top trans-eQTLs relative to the total number of SNPs on each chromosome (Figure 4a). It
285 is worth noting, that the enrichment signal on chromosome 6 dropped rapidly as we increased

286  p-value cutoff stringency and was diminished at p < 10°®.

287  Next, we performed an in-depth analysis of the eQTL signals on chromosome 3 and 6, with
288  specific focus on lipid-metabolism genes. We hypothesized that if regulators of lipid-
289  metabolism pathways were located on these chromosomes we would find clusters of trans-
290 eQTLs for genes that are co-regulated in liver. We therefore first used a large gene expression
291  dataset of 112 liver samples to estimate co-expression modules (i.e. genes whereby their
292  expression correlates across different samples) (Figure 4b). Genes within these co-expression
293  modules are predicted to share transcriptional regulators. We then associated genes with trans-
294  eQTLson chromsomes 6 and 3 to specific co-expression modules. Even though the trans-eQTL
295  enrichment on chromosome 3 contained many more highly significant associations compared
296  to chromosome 6 (Figure S1), there was no obvious clustering of trans-eQTL signals among
297  co-expressed genes on this chromosome. However, the central region (35-50 Mbp) of
298 chromosome 6 displayed a clear clustering of trans-eQTL signals to co-expressed genes.
299  Although these genes belonged to three different co-expression modules, these three modules

300 were virtually identical in the co-expression network (Figure 4b). Interestingly, this genomic
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301 region harbors two copies of srebp-2-like genes, known to regulate various aspects of lipid-

302  metabolism in vertebrates, which also belong to one of these three co-expression modules.
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304  Figure 4: Trans eQTL and gene co-expression. A) Relationship between total number of
305  SNPs for each chromosome and the number of genes having top trans-eQTL signals on each
306  chromosome. B) Co-expression network from liver RNAseq data highlighting three co-
307  expression modules which contain genes with top trans eQTL signals (p < 10#) on chromosome
308 6. C) Circos plot showing the top trans-eQTL links between trait associated genes and
309  chromosome 6. Colors reflect the co-expression module that the trait associated genes belong
310  to. We have indicated the position of a major lipid metabolism transcription factor (srebp2) on

311  chromosome 6.

312 4 Discussion

313  OQur results clearly demonstrate that genomic selection for high muscle fat content in salmon
314  drives changes in expression of genes involved in lipid metabolism in the liver. Variation in
315  muscle lipid content among fish could be due to differences in 1) uptake of lipids from the diet,
316  2) de-novo lipogenesis in the body, 3) lipid transport and deposition between different part of
317  the body, 4) lipid degradation by beta-oxidation and efflux through bile synthesis, or 5) a
318  combination. Our results have shown that GBV was positively associated with gene expression

319 in lipid transport (fatp2f, fabp7b), de novo lipogenesis (fas), fatty acid desaturation (fads2d5,
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320 fads2d6a, fads2d6b, and fads2d6c), cholesterol biosynthesis (hmgcrab), and negatively
321  associated with genes in glycerolipid breakdown (mgll), beta-oxidation (pparg-b) and bile acid
322  synthesis (fxr) in liver. This suggests that higher deposition of lipids in high GBV salmon was
323  most likely due to a combination of reduced glycerolipid breakdown, elevated lipid synthesis,
324  and elevated lipid transport. Both endogenous and exogeneous lipids in liver are packaged into
325  very-low-density lipoproteins (VLDL) which are secreted into the vasculature. Lipids in VLDL
326  are taken up by the peripheral tissues such as muscle, and the leftover lipoproteins (low-density
327  lipoproteins, LDL) are taken back by liver through the LDL receptor (LDLR) (Wang, 2007).
328  Most of the lipoproteins including VLDL and LDL contain a copy of apolipoprotein B (APOB),
329  an essential component for its structure (Elovson et al., 1988). Our study has found GBV to be
330  positively correlated to Idirab-a, and apobc. This could suggest high GBV was associated with
331 increased amount and turnover of lipoproteins in the bloodstream. Additionally, we have also
332 identified two fxr genes which were negatively correelated to GBV. Since fxr is a key regulator
333  and positively correlated to bile salt synthesis in fish (Wen et al., 2021), this suggests that high
334  GBV fish has decreased lipid excretion through bile salt production pathway. Under this
335  scenario, a higher proportion of newly synthesized saturated and monounsaturated fatty acid,
336 and diet derived polyunsaturated fatty acid containing triacylglycerol are exported as
337  lipoproteins from the liver and deposited in peripheral tissues including muscle where the fat

338  phenotype was measured.

339  We find expression of key genes in lipid biosynthesis pathways, including fas, fads2d5,
340 fads2d6a, fads2d6b, and fads2d6c were positively correlated to GBV. This is likely due to
341  higher expression of sterol regulatory element-binding protein 1 (SREBP1), which is the key
342  positive regulator of fatty acid de-novo synthesis and LC-PUFA synthesis in salmon (Carmona-
343  Antofnanzas et al., 2014; Minghetti et al., 2011). Other genes of LC-PUFA synthesis, the elovI2

344  and elovl5 genes, were not correlated to GBV. This could be because these genes are not
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345  controlled by SREBP1 transcription factor in salmon (Datsomor et al., 2019). A similar study
346  using high and low muscle fat lines of rainbow trout also found higher expression of lipogenic
347  genes in high fat lines and hypothesized that this was due to a more active target of rapamycin
348  (TOR) signalling pathway (Skiba-Cassy et al., 2009). Fat and lean rainbow trout lines displayed
349  asimilar ratio of phosphorylated and native TOR, however fat lines had significantly higher
350 levels of TOR protein. We did not find TOR mRNA to be associated with GBV of muscle lipid
351 levels in Atlantic salmon, however TOR protein abundance could be regulated at the
352  posttranslational level. In addition, we found that ATP-citrate lyase (acyl, genelD:106589258)
353  gene expression was positively associated to GBV, which agrees with the study in rainbow
354  trout (Skiba-Cassy et al., 2009). ACYL acts as a metabolic switch linking glucose and lipid
355  metabolism that diverts citrate from the TCA cycle into lipogenesis by converting it to acetyl-
356 CoA and oxaloacetate in the cytosol. This enables elevated lipogenesis by increasing the

357 available pool of acetyl-CoA to be converted to fatty acids by FAS.

358  Our eQTL analysis revealed an unexpectedly high number of trans-eQTLs on chromosome 6
359  associated to co-regulated genes that were TAGs in our analysis. Moreover, these chromosome
360 trans-eQTL associations were mostly originating from a smaller region around 50 Mbp,
361  pointing to a potential common transcription factor. Two of the genes in this region are paralogs
362 of SREBP2-like, a known regulator of lipid metabolism. Srebp2 is a key transcriptional
363  regulator controlling cholesterol metabolism in fish and mammals (Carmona-Antofianzas et al.,
364  2014; Madison, 2016), and our study has found many positively correlated TAGs involved in
365 de-novo cholesterol synthesis including hmgcrab. Additionally, positively correlated acyl
366  suggests an increased acetyl-CoA pool. Although we did not find srebp2 to be associated with
367 GBV in our analysis, SREBP is known to be highly regulated post-transcriptionally through
368 interactions with SREBP cleavage-activating protein (SCAP). SCAP forms a complex with

369 SREBP and facilitates the cleavage of SREBPs by site-1 protease, thereby releasing active
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370  NH2-terminal fragments from the ER membrane to nucleus, activating gene expression
371  (Nohturfft et al., 1998). Therefore, this lack of association could be explained by variation in
372  srebp2 protein structure resulting in increasing SCAP or Site-1 protease binding activity
373  without influencing srebp2 expression itself. Alternatively, it may be that the trans-eQTL
374  signal cluster on chromosome 6 is driven by another, so far unknown regulator of lipid

375  metabolism on chromosome 6.

376  Although lipid synthesis and transport in the liver contributes to lipid content in the muscle,
377  ourresults only tell part of the story. Since there is considerable variation in fat deposition and
378  turnover in salmon (Dvergedal et al., 2020; Dvergedal et al., 2019) variation in the regulation
379  of lipid metabolism in the muscle must also be a large contributor to the high fat phenotype.
380  High muscle fat has previously been associated with downregulation of genes related to lipid
381  catabolism and upregulation of genes associated to glycogenolysis (Horn et al., 2019), which
382  may signal a transition in how fish utilize energy stores. Additionally, differences in hormonal
383  signalling between the brain, adipose, and muscle tissues could contribute to the high fat
384  phenotype. To further improve our understanding of what makes a salmon fat, future studies

385  need to address these aspects of the salmon molecular physiology.

386 5 Conclusion

387  We demonstrate that genomic selection using estimated breeding values for fat content drives
388  changes in lipid metabolism in Atlantic salmon. Fish with high GBV for muscle fat content
389  had overall higher gene expression in lipid biosynthesis and transport pathways and lower
390 expression of genes involved in glycerolipid breakdown. This is important validation for
391 genomic selection as a strategy to improve lipid content and the results could be used to

392  prioritize SNPs in future estimates of breeding values.
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525  Supplementary data

526  Figure S1: Trans eQTL links on chromosome 3. Circos plot showing the top trans-eQTL
527  links between trait associated genes and chromosome 3. Colors reflect the co-expression

528  module that the trait associated genes belong to from Figure 4b.

529  File S1: Human readable gene name to NCBI id translations. List of human readable gene
530 names of lipid genes used in our analysis and their associated NCBI refseq identifiers. Column

531 1-NCBI gene ID, column 2 — human readable gene name, column 3 — gene description.

532  File S2: Trait associated genes for fat content in Atlantic salmon. List of all salmon genes
533  significantly associated to GBV. Column 1 — Gene ID, column 2 — log2 fold change, column 3

534  —adjusted p-value, column 4 — gene name, column 5 — gene product.

535 File S3: Enriched KEGG pathways for GBV associated genes. List of all significantly (p <
536  0.05) enriched KEGG pathways among GBYV associated genes. Column 1 — pathway name,
537  column 2 — pathway ID, column 3 — type of GBV correlation for genes in pathway, column 4
538 - number genes in pathway, column 5 — number of TAGs in pathway, column 6 — enrichment

539  p-value.

540 File S4: eQTL results of selected TAGs. List of SNPs significantly associated to TAG
541  expression (p < 10°). Column 1 — NCBI gene ID of TAG, column 2 — Chromosome containing
542  SNP, column 3 — SNP identifier, column 4 — Physical position of SNP, column 5 — Reference
543 allele, column 6 — Second allele, column 7 — Frequency of the reference allele, column 8 — SNP

544  effect, column 9 — Standard error, column 10 — p-value.
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