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Abstract

Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded
as inefficient leading many to question whether the enzyme can adapt to become a better catalyst.
Through a phylogenetic investigation of the molecular and kinetic evolution of Form | rubisco we
demonstrate that rubisco is not stagnant. Instead, we demonstrate rbcL is among the 1% of slowest
evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 million
years and one amino acid mutation every 7.2 million years. Despite this, we demonstrate that rubisco
catalysis is continuing to evolve toward improved CO./O, specificity, carboxylase turnover, and
carboxylation efficiency. Consistent with this kinetic adaptation, we reveal that increased rubisco
evolution leads to a concomitant improvement in leaf-level CO, assimilation. Thus, rubisco is

continually evolving toward improved catalytic efficiency and CO; assimilation in plants.
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Introduction

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) converts atmospheric CO; into sugars
that fuel the majority of life on Earth. The enzyme evolved ~3 billion years ago when the atmosphere
contained high levels of CO; (210,000% present atmospheric levels) and comparatively little O-
(£0.1% present atmospheric levels) (Figure 1)*~’. Since emergence, the enzyme has helped guide
the atmosphere on a trajectory of increasing O, and declining CO. (Figure 1)*® such that current
concentrations of CO2 (0.04%) and O (20.95%) are inverted compared to when the enzyme first

evolved (Figure 1).

Although all extant rubisco are descended from a single ancestral rubisco-like protein®?!, the
enzyme is found in a variety of compositional forms across the tree of life (Figure 1)213, The simplest
manifestations are the Form Il and Form Il variants found in protists, archaea, and some bacteria
which are composed of a dimer, or dimers, of the ~50 kDa rubisco large (RbcL) subunit'®6, In
contrast, Form | rubisco is a hexadecamer comprised of four RbcL dimers organised in an antiparallel
core capped at either end by the ~15 kDa rubisco small subunit (RbcS)**. Of these three Forms,
only Form | and Il have been recruited for oxygenic photosynthesis'®, with Form | being responsible

for the vast majority of global CO, assimilation®18,

Within Form | rubisco the active site is located in RbcL'>1°20, As a result, interspecific differences in
Form | kinetics are primarily attributable to sequence variation in RbcL?'-32, Despite not playing a
direct role in catalysis RbcS influences the function of rubisco®, and its incorporation in the
holoenzyme enables its higher kinetic efficiency3*. Specifically, RbcS enhances the stability and
assembly of the holoenzyme complex?***° improves the efficiency CO; binding*, and is thought
to act as a reservoir for CO, accumulation??. Accordingly, rubisco function is altered when RbcS is
mutated**~*®, or when chimeric holoenzymes are created in vivo*®-° and in vitro®-%6, Moreover, there
is increasing recognition of the importance of both environment®” and organ-specific®®*° differences
in plant RbcS isoform expression on holoenzyme catalysis. However, even though RbcS influences
holoenzyme function, sequence variation in RbcL remains the primary determinant of variation in

kinetics?'-32.
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Although there is kinetic variability between rubisco orthologs, the enzyme is considered to be an
inefficient catalyst. For example, the maximum substrate-saturated turnover rate of Form | rubisco
(<12 s1)® is slower than average®!. In addition, rubisco catalyses a reaction with O2%2-%* that is
competitive with CO, and results in the loss of fixed carbon via photorespiration®>%’. As a
consequence, rubisco appears poorly suited to the current O,-rich/CO.-poor atmosphere (Figure 1).
Moreover, it appears that instead of improving enzyme function, multiple lineages have evolved
alternative strategies to overcome rubisco’s shortcomings. For example, higher rates of CO-
assimilation are often achieved either by synthesising large quantities of rubisco (~50% of soluble
protein in plants® and some microbes®® "), or by operating COz-concentrating mechanisms’7"3, As
a result, many have questioned whether the enzyme is already perfectly adapted, and whether
further kinetic improvements are possible!®¢367.74-78  Qbtaining answers to these questions would
shed light on the “rubisco paradox” — helping to explain why this enzyme of such paramount

importance appears poorly adapted for its role.

The initial hypothesis that attempted to explain the above rubisco paradox proposed that rubisco is
constrained by catalytic trade-offs that limit the enzyme’s adaptation. This theory was pioneered by
two studies’®8 which found antagonistic correlations between rubisco kinetic traits and proposed
that these trade-offs were caused by constraints on its catalytic mechanism. However, recent
evidence has guestioned this hypothesis as the sole mechanism to explain the rubisco paradox.
Specifically, analysis of larger species sets have revealed that kinetic trait correlations are not
strong®-83, In addition, phylogenetic signal in rubisco kinetics causes kinetic trait correlations to be
overestimated unless phylogenetic comparative methods are employed?:?2, Thus, when larger
datasets are analysed with phylogenetic methods, the strength of catalytic trade-offs are
substantially reduced?*?2, Instead, phylogenetic constraints have had a larger impact on limiting
enzyme adaptation compared to catalytic trade-offs??2, These recent findings motivate a revaluation
of the rubisco paradox, and an interrogation of whether rubisco is evolving for improved catalysis

and CO; assimilation in plants.

Here, we address these issues through a phylogenetic interrogation of the molecular and kinetic

evolution of the Form I holoenzyme. We reveal that RbcL has evolved at a slower rate than >98% of

3
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all other gene/protein sequences across the tree of life. Through simultaneous evaluation of
molecular and kinetic evolution of rubisco during the radiation of Cs; angiosperms, we reveal that the
enzyme has been continually evolving toward improved CO./O, specificity, carboxylase turnover
rate, and carboxylation efficiency. Furthermore, we demonstrate that enhanced rubisco evolution is
associated with enhanced rates of CO; assimilation and higher photosynthetic nitrogen-use
efficiencies. Thus, rubisco is not perfectly adapted, but is slowly evolving towards improved catalytic

efficiency and CO. assimilation.
Results

RbcL has evolved slower than RbcS and has experienced stronger purifying selection
Sequences encoding Form | rubisco were obtained from the National Center for Biotechnology

Information (https://www.ncbi.nlm.nih.gov/). This dataset was filtered to retain sequences for a given

species only if a full-length sequence for both rbcL and rbcS were present. Although rbcL exists as
a single copy gene in all species, many species harbour multiple rbcS genes in their genomes. Thus,
for each species a single rbcL sequence and all available rbcS sequences were taken forward. In
total, this resulted in a set of 488 rbcL/RbcL and 1140 rbcS/RbcS sequences across 488 species

(Supplemental File 1, Figure S1 and table S1).

In order to compare the rate at which the two rubisco subunits have evolved, species were partitioned
into distinct taxonomic groups comprising the red algae (Rhodophyta; n = 201), the SAR supergroup
(Stramenopiles, Alveolates, and Rhizaria; n = 129), the bacteria (Bacteria; n = 78), land plants
(Streptophyta; n = 68) and green algae (Chlorophyta; n = 12) (Supplemental File 1, Figure S1 and
table S1). Hereinafter, the total amount of molecular evolution of the nucleotide sequences (rbcL and
rbcS) and the total amount of molecular evolution of the protein sequences (RbcL and RbcS) in a
taxonomic group is referred to as “the extent of nucleotide evolution” and “the extent of protein

evolution”, respectively. The term “the extent of molecular evolution” jointly refers to both.

Comparison of the two rubisco subunits revealed that the extent of molecular evolution in rbcL/RbcL
is lower than that experienced by rbcS/RbcS (Figure 2A). This was not an artefact of the higher gene

copy number of rbcS, as a 1,000 bootstrapped stratified sampling recovered the same result when
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only a single rbcS/RbcS sequence was randomly sampled per species (see Methods; Figure 2B).
Therefore, rbcL/RbcL has explored less nucleotide and protein sequence space than rbcS/RbcS in
the same sets of species over the same period of time (Figure 2C). Furthermore, rbcL also
experienced fewer amino acid changes per change in nucleotide sequence compared to rbcS
(Figure 2D), indicating a higher degree of purifying selection. Thus, rbcL/RbcL has evolved more
slowly and has been subject to a higher degree of functional constraint on the encoded protein

sequence than rbcS/RbcS.

RbcL is one of the slowest evolving genes in the tree of life

To evaluate the rate of molecular evolution in context of all other genes in the species under
consideration, the percentile rank of rbcL/RbcL and rbcs/Rbcs was evaluated for all genes in all
species (see Methods). This revealed that 99.3% of all gene nucleotide sequences and 98.1% of all
gene protein sequences evolved faster than rbcL/RbcL in the same sets of species over the same
period of time (Figure 3A; Supplemental File 1, table S2). This held true even if rbcL/RbcL was only
compared only to the subset of genes that encode enzymes, with 99.2% of enzyme nucleotide
sequences and 98.3% of enzyme protein sequences evolving faster than rbcL/RbcL (Figure 3B;
Supplemental File 1, table S3). Furthermore, in land plants rbcL/RbcL was also the slowest evolving
component of the Calvin-Benson-Bassham cycle (Figure 3C; Supplemental File 1, table S4 and S5).
This slow pace of evolution is not simply an artefact of being encoded in the plastid genome, as
rbcL/RbcL was also one of the slowest evolving genes/proteins in bacteria which encode all of their
genes in a single cytoplasmic genome. Thus, rbcL/RbcL is one of the slowest evolving
genes/enzymes in all species in which it is found, irrespective of the taxonomic group or genome in

which it is encoded.

In contrast to rbcL/RbcL, considerable variability in the extent of molecular evolution in the small
subunit was observed both within and between taxonomic groups (Figure 3A; Supplemental File 1,
table S2). Analogous results in each taxonomic group were recovered when this analysis was
restricted to the subset of genes that encode enzymes (Figure 3B; Supplemental File 1, table S3).
Moreover, in land plants rbcS/RbcS was the fastest evolving component of the Calvin-Benson-

Bassham cycle (Figure 3C; Supplemental File 1, table S4 and S5). Thus, while the pace of molecular

5
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evolution in rbcL/RbcL is ubiquitously slow, the extent of molecular evolution of rbcS/RbcS is highly
variable explaining the disparity in the rate of both subunits across the tree of life (Figure 2C;
Supplemental File 1, table S6). A similar variable rate was also observed for rubisco’s ancillary
chaperones (Supplemental File 1). Thus, the rate of molecular evolution of rbcL/RbcL is ubiquitously

low, and lower than rbcS/RbcS or any associated chaperone.

Rubisco is evolving for improved kinetic efficiency in plants

Although rbcL is among the slowest evolving genes on Earth, the analysis above demonstrates that
it is not stagnant. This raises the question as to whether the sequence evolution is adaptive and is
improving the catalysis of the enzyme. We hypothesised that if rubisco was undergoing directional
selection for improved catalysis, then orthologs that have experienced the largest extent of molecular
evolution would be the most efficient catalysts. To test this hypothesis, a dataset of kinetic
measurements from Cs; angiosperms?:228! was evaluated in the context of the molecular evolution
of RbcL (Figure 4A,B). This analysis focused on RbcL as it is the primary determinant of kinetics?-
32 and because sufficient sequence data for RbcS are unavailable. This revealed that the more RbcL
has evolved from the most recent common ancestral sequence, the better its CO,/O; specificity (Scio;
10.1% variance explained), CO: turnover rate (kKcac; 4.6% variance explained) and carboxylation
efficiency (Keac/Kc; 3.8% variance explained) (Figure 4B). This result is not an artefact caused by
potential systematic methodological biases associated with species sampling or potential
uncertainties or errors in the underlying phylogenetic tree (See Methods, Supplemental File 1). Thus,
rubisco has been adaptively evolving for improved Scio, Kearc, and Keaic/Kc during the radiation of the

angiosperms.

Given that the origin of the angiosperms is estimated to have occurred 160 million years ago®
(Figure 4A), it is possible to put the above kinetic change in context of both molecular sequence
changes and evolutionary time (table 1). As the large subunit acquired one nucleotide substitution
every 0.9 million years and one amino acid substitution every 7.2 million years (Supplemental File
1, figure S2), each amino acid substitution resulted in an average increase in Sco by 2.7x10%
mol.mol?, in kearc by 3.6x1072 s, and in Keac/Kc by 1.8x1072 st uM™. This is equivalent to a relative
improvement of 0.3% (Scio), 1.4% (Kcac), and 1.1% (Kcarc/Kc) per amino acid substitution, and a

6
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relative improvement of 0.05% (Scio), 0.2% (Kcarc), and 0.2% (Kcarc/Kc) per million years. Thus, there
has been continual improvement in rubisco kinetics during the radiation of the angiosperms at a rate

that is dependent on the extent of its molecular sequence change.

Rubisco is evolving for improved leaf-level CO2 assimilation

Given that rubisco is evolving to become a better catalyst, we hypothesised that this adaptation
would also drive adaptation in the rate of leaf-level CO, assimilation. To test this hypothesis we
analysed a large dataset of photosynthetic measurements from Cz angiosperms® in the context of
the extent of their RbcL evolution (Figure 5A-C). This revealed that the rate of leaf-level CO
assimilation was also dependent on the extent of molecular sequence change in rubisco such that
that Cs; angiosperms with more evolved rubisco also higher rates of CO; assimilation (Amass; 19.2%
variance explained, Figure 5B). This is not a consequence of increased nitrogen investment in the
leaf, as the association between rubisco evolution and increased CO. assimilation is strengthened
when measurements are controlled for leaf nitrogen content (PNUEmass, 22.1% variance explained,
Figure 5B). Analogous results were obtained when measurements of CO;, assimilation were
evaluated on a leaf area basis (Figure 5C). This result is most parsimoniously explained by
directional selection towards enhanced leaf-level CO; assimilation driven by the kinetic adaptation
described above. Thus, the adaptive evolution of rubisco during the radiation of the angiosperms

has resulted in the improvement in leaf-level CO, assimilation.

Discussion

Rubisco is the primary entry point for carbon into the biosphere, responsible for fixing 250 billion tons
of CO, annually*®. Despite this immense throughput, the enzyme is a surprisingly inefficient catalyst
with a modest carboxylase turnover rate of <12 s 82 and a competing oxygenase activity that results
in the loss of fixed carbon® 486 This discord presents an evolutionary paradox that has attracted
significant attention1>21:22:63.67.74-78 "ith the prevailing assumption being that rubisco is evolutionarily
stagnant. Here we demonstrate that the enzyme is not stagnant, but that it is encoded by one of the
slowest evolving genes on Earth. Despite this, we demonstrate that rubisco has been evolving for
higher CO./O, specificity (Scio), faster carboxylase turnover rates (kcac), and improved carboxylation

efficiencies (kcacc/Kc) in angiosperms. Moreover, we demonstrate that plants with more evolved
7
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rubisco exhibit higher leaf-level CO. assimilation and enhanced photosynthetic nitrogen-use
efficiencies. Thus, rubisco has been continually evolving towards improved catalytic efficiency and

CO; assimilation during the radiation of the angiosperms.

A slow rate of molecular evolution in rbcL has long been assumed and has underpinned the use of
this gene for systematics and phylogenetics® . However, to our knowledge there has been no
contextualised measurement of the rate of rbcL evolution across the tree of life. The analysis
presented here addresses this gap by revealing that across the tree of life, rbcL/RbcL has
experienced a lower extent of molecular evolution than 99% of all gene nucleotide sequences and
98% of all gene protein sequences. It is interesting to note here that this is not due to the presence
of rbcL in the chloroplast genome, as rbcL is also one of the slowest evolving sequences in bacteria
which lack organellar genomes. Thus, RbcL is universally one of the slowest evolving sequences on

Earth, irrespective of the taxon or genome in which it resides.

Although dissecting the factors which constrain the rate of rbcL evolution is beyond the scope of the
current study, the slow pace of rbcL molecular evolution is most likely a consequence of several
synergistic factors® including constraints imposed by expression®-%, selection to preserve protein
function®6-1%° and the requirements for protein-protein interactions in vivo!°-1%4, These factors would
be particularly pertinent for rubisco given that it is the most abundant protein in organisms in which
it is found®®7°, it is subject to catalytic trade-offs21228081 and molecular activity-stability trade-offs15-
108 "and given that it relies on multiple interacting partners and chaperones for folding, assembly and
metabolic regulation®®1%. Thus, a perfect storm of features exist which could limit the molecular
evolution of rbcL and thereby cause it to be one of the slowest evolving genes on Earth. Further
work to elucidate the exact contribution of each of these biological determinants on rubisco’s rate of

molecular evolution is warranted, building upon the work here and previous investigations?*:2211°,

Our integrated analysis of rubisco evolution revealed a continual improvement in Scio, Keac and
kearc/Ke during the radiation of C3 angiosperms. Thus, although rubisco is slowly-evolving, sequence
changes have enhanced the catalytic properties of the enzyme. In the context of the Cs leaf, such
directional selection towards improved Scio is consistent with adaptation to maintain adequate
carbon assimilation in response to declining CO, and increasing O, (Figure 1). This evolutionary

8
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strategy has been proposed previously®’, and is suggested to apply broadly across photoautotrophs
lacking a CO: concentrating mechanism®1l, |n addition to adaptation for higher Scio, we also
discover simultaneous improvement in kKeaic and Kearc/Ke without antagonism in any other kinetic trait.
These results are also consistent with the inferior Scio and kcac/Kc reported for extinct rubisco
resurrected at the dawn of the Form IB® and Form 13 lineages. It is noteworthy that on first
appearances, all of these studies seem to contradict an analysis within the Solanaceae in which
resurrected ancestral rubisco variants exhibited superior keaic and keac/Ke values. However, in this
instance the kinetic differences were proposed to be driven by sequence changes in RbcS!'?, and
therefore do not contradict the analysis of RbcL presented here or in other studies®3*. Thus,
sequence change in RbcL during the radiation of angiosperms has driven the continual improvement

of the enzyme in the presence of a declining atmospheric CO,:0, concentration.

The ‘FVCB model' of photosynthesis!!®, as well as a suite of other experimental''41? and
computational*?>'?® studies all demonstrate that rubisco is a major rate-limiting factor for CO.
assimilation under ambient steady-state conditions. The findings presented here link these
mechanistic studies with evolutionary biology, and reveal that rubisco has experienced directional
selection to improve Kinetic efficiency and CO. assimilation. Ultimately, this changes our
understanding of the rubisco paradox. Rubisco is not locked in evolutionary stasis, but is instead
slowly evolving towards improved CO; assimilation. This discovery has significant implications for
our understanding of the past, present, and future potential of rubisco in natural and engineered

contexts.

Materials and Methods

Rubisco sequence data

All publicly available coding sequences of the rubisco large (rbcL) and small (rbcS) subunit genes in

the National Center for Biotechnology Information (NCBI) database (https://www.nchi.nlm.nih.gov/)

as of July 2020 were downloaded. Manual inspection of nucleotide and translated protein sequences
was performed to remove any partial, chimeric, or erroneously annotated sequences. In addition,
this dataset was further restricted to include only those species which possess a Form | rubisco and

for which both a full-length rbcL and rbcS gene sequence could be obtained. Given that rbcL exists
9
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as a single copy gene in all species, only one rbcL sequence per species was retained for
downstream analysis. In contrast, all possible full-length rbcS sequences were taken forward to

account for the fact that rbcS is multicopy in some genomes.

Translated rbcL and rbcS protein sequences were aligned using the MAFFT L-INS-i algorithm?4,
The corresponding codon alignments of the nucleotide sequences were generated by threading the
nucleotide sequences through the aligned protein sequences that they encode using PAL2NAL
software!?®, Multiple sequence alignments were trimmed to remove non-aligned codon or residue
positions such that only ungapped columns remained. During this process, the putative transit
peptide of the rbcS/RbcS sequences in taxa in which this gene is encoded by the nuclear genome
was computationally cleaved. Following these data processing steps, alignments were partitioned
depending on species membership to either the bacteria (Bacteria; n = 78), land plants
(Streptophyta; n = 68), green algae (Chlorophyta; n = 12), red algae (Rhodophyta; n = 201) or the
SAR supergroup (Stramenopiles, Alveolates, and Rhizaria; n = 129) by use of the NCBI taxonomy

browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Taxldentifier/tax_identifier.cgi). Any sequences

belonging to species in either the Haptophyta, Cryptophyta, Glaucocystophyta or Excavata
taxonomic groups were excluded from the dataset at this point due to insufficient data availability. In
total, this resulted in a combined set of 488 rbcL/RbcL and 1140 rbcS/RbcS gene and protein
sequences across 488 species spanning 5 taxonomic groups (Supplemental File 1, Figure S1 and
table S1). The complete set of raw rbcL/RbcL and rbcS/RbcS sequences, as well as the complete
set of aligned and trimmed rbcL/RbcL and rbcS/RbcS sequences can be found in Supplemental File

2.

Rubisco phylogenetic tree inference

Maximume-likelihood rbcL/RbcL and rbcS/RbcS phylogenetic gene trees were inferred across all
sequences within a taxonomic group by IQ-TREE!?® using the ultrafast bootstrapping method with
1,000 replicates and the Shimodaira—Hasegawa approximate—likelihood ratio branch test. The best
fitting models of nucleotide (SYM+R8) and amino acid (LG+R5) sequence evolution were
respectively determined as those which exhibit the lowest combined Bayesian information criterion
rank score across the complete sets of both rubisco large and small subunit sequences!?®. Across

10
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all taxonomic groups, the models of nucleotide and amino acid sequence evolution were held
constant between the gene trees for rbcL and rbcS, and RbcL and RbcS, respectively, such that
branch lengths are comparable across both subunits. The complete set of these rbcL/RbcL and
rbcS/RbcS phylogenetic gene trees used as the basis of the analysis herein can be found in

Supplemental File 3.

Stratified sampling of rbcS sequences and phylogenetic tree inference

To account for potential biases in our analysis caused by some species exhibiting multiple copies of
rbcS, random stratified sampling of the non-gapped rbcS/RbcS sequence alignments was conducted
by species using 1,000 replicates with replacement. This process resulted in the generation of 1,000
unique rbcS/RbcS alignments for each taxonomic group, whereby each of these respective
alignments contain only a single randomly selected copy of the rbcS/RbcS per species. In turn, each
of these alignments were subject to data processing and phylogenetic tree inference using 1Q-

TREE??® following the method described above.

Quantification of the total extent of nucleotide and protein molecular evolution in
rbcL/RbcL and rbcS/RbcS

The extent of molecular evolution in both rubisco subunits was assessed across all species in a
given taxonomic group as the total length (sequence substitutions per aligned sequence site) of the
phylogenetic tree describing the evolutionary history of each respective gene. For this purpose, tree
length was calculated as the combined sum of branch lengths leading from the root at the last
common ancestor of the tree to the set of sequences at the terminal nodes. In this way, using the
trees inferred across the complete cohort of rbcL/RbcL and rbcS/RbcS sequences in each taxonomic
group, it was possible to capture all nucleotide and amino acid evolution which has arisen in each
subunit since the most recent common ancestor of all sampled species in the group. An identical
analysis was also performed for each rbcS/RbcS tree generated by stratified sampling, with mean
and standard errors of estimates being calculated in this case across the 1,000 unique bootstrap

replicate trees.
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Genomes and gene models

Complete sets of representative gene models for as many species in the rubisco sequence dataset

as possible were acquired from either NCBI (https://www.ncbi.nlm.nih.gov/) or Phytozome V13'#7,

Where more than one such gene model resource was available for a given species, the most recent
assembly version was chosen. In this way, complete sets of representative gene models were
acquired for a total of 32 of the bacteria species, 27 of the land plant species, 8 of the SAR species,
6 of the red algae species and 4 of the green algae species analysed in the present study,

respectively (Supplemental File 1, table S1 and S7).

Predicted gene model sets were filtered to remove sequences with internal in-frame stop codons.
Gene model sets were also filtered to keep only the longest gene model variant per gene. Moreover,
owing to a lack of data availability of publicly available chloroplast or mitochondrial genomes for the
eukaryatic species in the present analysis, and as organellar genomes contain fewer than 1% of
genes encoded in the corresponding nuclear genome, only gene sequences encoded by the nuclear
genomes of species in the land plant, green algae, red algae and SAR taxonomic groups were taken
forward for analysis. Finally, after the above quality control checks were completed, a corresponding
proteome was generated from each species gene model set by in silico translation of the respective

coding sequences.

Orthogroup classification and phylogenetic tree inference

The complete set of translated proteomes for species in each respective taxonomic group were
subject to orthogroup inference using OrthoFinder V2.5.2128129 software run with default settings and
with the DIAMOND ultra-sensitive mode®*°. Protein sequences within each orthogroup were aligned
using the MAFFT L-INS-I algorithm with 1,000 cycles of iterative refinement'?4. The corresponding
codon alignments of the nucleotide sequences were generated by threading the nucleotide
sequences through the aligned protein sequences that they encode using PAL2NAL software!?®,
Alignments were trimmed to remove positions which contain gap characters. Sequences that were
<50% of the median length of the cohort of all other sequences in the given orthogroup were
excluded to avoid analysis of partial or truncated genes that could influence downstream analysis.

All nucleotide and protein multiple sequence alignments which satisfied the above criteria and which
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possessed >50 ubiquitously aligned codon or amino acid positions were subject to bootstrapped
maximum likelihood phylogenetic tree inference using IQ-TREE? following the exact method and
evolutionary substitution models described above. In total, this resulted in a combined set of 16,631
orthogroup phylogenies comprising 5,126,017 ortholog pairwise comparisons across 351 species
pairwise comparisons for the land plant clade, 6,953 orthogroup phylogenies comprising 153,288
ortholog pairwise comparisons across 28 species pairwise comparisons for the SAR clade, 5,422
orthogroup phylogenies comprising 642,057 ortholog pairwise comparisons across 496 species
pairwise comparisons for the bacteria clade, 4,269 orthogroup phylogenies comprising 31,133
ortholog pairwise comparisons across 6 species pairwise comparisons for the green algae clade and
3,966 orthogroup phylogenies comprising 54,091 ortholog pairwise comparisons across 15 species
pairwise comparisons for the red algae clade, from which to base the analyses herein. A further

breakdown of these metrics for each species comparison can be found in Supplemental File 4.

Characterization of the set of enzymatic gene and protein sequences within
orthogroups

The set of all genes within each species proteome that encode enzymes was determined using the
DeepEC®! deep learning-based classifier algorithm. For this purpose, enzymes were defined as
those protein sequences that could be assigned at least a partial enzyme commission (EC) number
(i.e., at minimum, a single digit EC top-level code). On average 42.2% of all genes in the analysis
encoded enzymes. A detailed breakdown of the metrics of enzyme ortholog pairwise comparisons

for each species comparison can be found in Supplemental File 4.

Quantification of percentiles of the rate of molecular evolution

To evaluate the extent of molecular evolution in rubisco in the context of all other genes, only species
in the rubisco sequence dataset possessing a publicly available whole-genome gene assembly were
considered. Across each pairwise combination of species in a given taxonomic group which satisfied
this criteria, the extent of rbcL/RbcL and rbcS/RbcS molecular evolution since the time point of
species divergence was measured by computing the sum of branch lengths (sequence substitutions
per aligned sequence site) separating these respective sequences in the rubisco phylogenetic trees

previously inferred. Following this, the extent of molecular evolution separating all other pairs of
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orthologous (but not paralogous) gene and protein sequences for that given species pair was
measured across all inferred orthogroup phylogenies, and the percentile rank rate of rubisco
nucleotide or protein evolution was computed relative to the cohort of these measurements. To
assess the extent of rubisco molecular evolution in context all other enzymes, the exact same steps
were followed but only the subset of genes and proteins predicted to encode enzymes were included.
In both of these analyses, a minimum threshold of 100 measurements for orthologous genes and
protein sequences was ensured per species pair. In cases where multiple percentiles are calculated
for a rubisco subunit in a given species pair (due to gene duplications in the rbcS of some species,
or due to a single species gene assembly matching multiple sub-species in the rubisco sequence
dataset) the mean percentile was taken. The full set of data generated from these analyses
guantifying the relative percentile extent of rubisco molecular evolution to all other genes and
proteins, and to all other enzyme-encoding genes and proteins can be found in raw and processed
forms in Supplemental File 5.

Identification and classification Calvin-Benson-Bassham cycle enzyme isoforms in
land plants

The set of genes which encode Calvin-Benson-Bassham cycle enzymes was first resolved in the
model plant species Arabidopsis thaliana. To achieve this, the complete gene families to which each
Calvin-Benson-Bassham cycle enzyme in A. thaliana belongs was determined based on available
data in The Arabidopsis Information Resource (TAIR) database (http://arabidopsis.org)32133,
Following this, the photosynthetic isoforms in these gene families which are active in the Calvin-
Benson-Bassham cycle in the chloroplast stroma were then identified based on several lines of
evidence. 1) A high protein abundance based on whole-organism integrated protein abundance data
obtained from the Protein Abundance Database (https://pax-db.org/) dataset 3702/323. 2) Leaf
MRNA expression based on tissue-specific RNA sequencing data obtained from both the
Arabidopsis eFP Browser V2.0

(http://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis eFPBrowser2.html) and the EMBL-EBI

(https://lwww.ebi.ac.uk/) dataset E-GEOD-53197. 3) Chloroplast-targeted protein subcellular

localisation as predicted using both TargetP V2.01*413% and Predotar V1.04'%. 4) Gene orthology as

14


http://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html
https://www.ebi.ac.uk/
https://doi.org/10.1101/2022.07.06.498985
http://creativecommons.org/licenses/by/4.0/

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.06.498985; this version posted September 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

inferred from trees generated for each Calvin-Benson-Bassham cycle gene family using IQ-TREE*?®.
The resulting set of photosynthetic isoforms encoding each Calvin-Benson-Bassham cycle enzyme
in A. thaliana inferred from this multi-faceted analytical pipeline can be found in Supplemental File

1, table S8.

The set of genes which encode the photosynthetic isoforms of Calvin Bensen Bassham cycle
enzymes in all other 26 land plant species (apart from A. thaliana) for which genome sequence data
was available in this study were then determined by orthology using data from the orthogroup
inference analysis performed above. Each group of orthologous protein sequences determined to
encode a given Calvin-Benson-Bassham cycle enzyme across all species were aligned using the
MAFFT L-INS-i algorithm'?4, and corresponding nucleotide coding sequence alignments were
generated using PAL2NAL?%, Multiple sequence alignments were subject to the same data filtering
and quality control criteria previously described to remove partial or incomplete sequences and
subsequently delete any column positions which contain gaps. Finally, bootstrapped maximum
likelihood phylogenetic trees were inferred by 1Q-TREE? following the method outlined above. A
similar analysis of Calvin-Bensen-Bassham cycle enzymes in other taxonomic groups was not able
to be performed owing to a lack of the required data described here to determine the photosynthetic
gene isoforms in these species.

Quantification of the relative extent of rbcL/RbcL and rbcS/RbcS molecular evolution
relative to all Calvin-Benson-Bassham cycle enzymes in land plants

To determine the extent of molecular evolution between orthologous Calvin-Benson-Bassham cycle
isoforms compared to Form I rubisco, the extent of molecular evolution measured between all other
Calvin-Benson-Bassham cycle gene and protein orthologous sequences for each species pair were
expressed as a percentage ratio of that measured in the corresponding rbcL/RbcL sequence. In
cases where multiple percentage ratios are calculated for a given Calvin-Bensen-Bassham
component in a given species pair (due to gene duplications, or due to a single species gene
assembly matching multiple sub-species in the rubisco sequence dataset) the mean value was
taken. The full set of data generated from this analysis can be found in raw and processed forms in

Supplemental File 5.
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Quantification of the percentile extent of rubisco chaperone molecular evolution
within each taxonomic group

To evaluate the percentile rate of molecular evolution in the known chaperones of Form | rubisco in
the context of all other genes in each taxonomic group, the exact same method was followed as
above for rbcL/RbcL and rbcS/RbcS though the subject of the analysis was respectively altered.
Here, for this investigation, the putative set of genes which encode each Form | ancillary chaperone
involved in holoenzyme metabolic regulation (RUBISCO ACTIVASE (Rca)) and in holoenzyme
folding and assembly (BUNDLE SHEATH DEFECTIVE 2 (BSD2), CHAPERONIN 10 (Cpnl0),
CHAPERONIN 20 (Cpn20), CHAPERONIN-60 (Cpn60), RBCX (RbcX), RUBISCO
ACCUMULATION FACTOR 1 (Rafl), RUBISCO ASSEMBLY FACTOR 2 (Raf2)) were first resolved
in the model plant species A. thaliana. This was achieved using a previously published dataset®’

supplemented by information available in the TAIR database (http://arabidopsis.org)!®?1*, The

resulting set of Arabidopsis chaperone genes thus identified can be found in Supplemental File 1,
table S9. Following this step, the corresponding set of genes encoding rubisco chaperones in all
other species for which a complete gene assembly could be obtained were inferred using data from
a separate OrthoFinder run performed with identical settings as previously described, but based on

the translated proteomes of all organisms across all taxonomic groups.

After the cohort of Form | rubisco chaperone genes were identified in all species, the percentile rates
of nucleotide and protein evolution in these genes were calculated between each pairwise
combination of species relative to all other pairs of orthologous sequences using the identical
measurements previously generated from the analysis of rbcL/RbcL and rbcS/RbcS above. In this
way, analysis of some chaperones were omitted in certain taxonomic groups owing to the data
guality and filtering steps that were previously performed as described above. In cases where
multiple percentiles are calculated for a chaperone in a given species pair (due to gene duplications,
or due to a single species gene assembly matching multiple sub-species in the rubisco sequence
dataset) the mean percentile was taken as above. The full set of data generated from this analysis

can be found in raw and processed forms in Supplemental File 5. A combined dataset including the
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relative percentile extent of evolution in both rubisco subunits and all rubisco chaperones for each

unique pairwise species comparison can be found in Supplemental File 6.

Integrated analysis of rubisco molecular and kinetic evolution

To interrogate the relationship between the molecular and kinetic evolution of extant Form | rubisco,
a dataset of rubisco kinetic traits was downloaded from?'22, as modified from that originally compiled
by Flamholz and colleagues®. For the purpose of this study, only species in this dataset with a
complete set of experimentally determined measurements of rubisco specificity (Scio) for CO-
relative to O (i.e., the overall carboxylation/oxygenation ratio of rubisco under defined
concentrations of CO, and O; gases), maximum carboxylase turnover rate per active site (Kcac), and
the respective Michaelis constant (i.e., the substrate concentration at half-saturated catalysed rate)
for both CO; (Kc) and O3 (Ko) substrates were selected. For each of the 137 species which satisfied
this criteria (all of which were angiosperm land plants), an estimate of the Michaelis constant for CO»
in 20.95% O air (Kcar) Was also available?!22, In addition, the ratio of the Michaelis constant for CO»
relative to O, (Kc/Ko), as well as carboxylation efficiency, defined as the ratio of the maximum
carboxylase turnover to the Michaelis constant for CO- (kcaic/Kc), were also inferred. Measurements
of the Michaelis constant for RuBP (Kruer) Were not considered owing to a limited sample size (n =
19). All Limonium species in the dataset were also ignored on the basis that trait values obtained
across different studies have been deemed to not be consistent?*138, In total, this left a dataset of
rubisco kinetic trait measurements for 123 angiosperms. Of these, only the subset of 93 species
which perform C; photosynthesis were considered for the purpose of the integrated molecular and
kinetic evolution analysis herein. This is because of both a limited sample size of Cs-C4 (n = 6), Cas-
like species (n = 3) and C4 species (n = 21) in the kinetic dataset, and given that transition toward
C4 photosynthesis is associated with a change in rubisco kinetic evolution?*2? that would confound

the directional selection analysis being conducted.

Coding sequences of the rbcL gene were obtained from?2 for each species in the kinetic dataset. In
order to facilitate more accurate downstream phylogenetic tree inference across these sequences
and to minimize the impact of long-branch effects'*®, the complete set of publicly available rbcL

coding sequences in land plants were also acquired in parallel from NCBI
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(https://www.ncbi.nlm.nih.gov/)  using the query term  “rbcL[Gene Name] AND

“plants”[porgn:_txid3193]". These sequences thus obtained were subject to the exact same data
processing steps to remove ambiguous, partial or chimeric sequences as performed previously for
the rbcL sequences of species in the rubisco kinetic dataset?2. In total, this step resulted in an
additional set of 29,218 full-length rbcL coding sequences to aid downstream phylogenetic inference.
Protein sequences were inferred from each rbcL coding sequences via in silico translation. Next, the
complete set of translated RbcL sequences (including the set of sequences from angiosperms in the
rubisco kinetic dataset, as well as the set of all publicly available sequences for land plants) were
respectively aligned using MAFFT L-INS-1*?4, and a corresponding rbcL coding sequence alignment
was generated using PAL2NAL software!?®. The resulting multiple sequence alignments were
trimmed to remove non-aligned residue positions and bootstrapped phylogenetic trees were inferred
using IQ-TREE!?® following the exact method described above and using the best-fit models of
nucleotide and protein sequence evolution previously inferred. To facilitate downstream analysis,
the rbcL and RbcL gene trees were subsequently modified to keep only internal and terminal
branches leading to the set of species in the rubisco kinetic dataset, with pruned trees manually

rooted in Dendroscope’.

To compute the relative extent of protein evolution which has occurred in each angiosperm in the
kinetic dataset, the summed branch length (sequence substitutions per aligned sequence site)
leading from the last common ancestor at the root of this clade to each respective terminal node in
the RbcL phylogeny generated above were measured. The kinetic trait values and extent of
molecular evolution for all Cs angiosperm rubisco can be found in Supplemental File 7. The predicted
kinetic trait values at the last common ancestor at the base of the angiosperm clade were inferred
from the estimated y intercept values from these regression models and can be found in table 1. The
rbcL/RbcL phylogenetic gene trees used as the basis of this analysis, including the trees inferred
across the full set of sequences, as well as the pruned versions of these trees containing only the

subset of Cz species in the kinetic dataset, can be found in Supplemental File 8.

To assess the robustness of the above integrated molecular and kinetic investigation of rubisco

evolution, the same analysis was repeated but including only the minimal subset of species in the
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kinetic dataset which captured the majority of phylogenetic diversity across all sampled species (see
below), so as to control for biases associated with species sampling and overrepresentation of
certain groups (see Supplemental File 1). An identical analysis was also performed using the
complete set of species in the kinetic dataset but based on analogous trees generated following the
exact same method as above but based on alternate best-fitting models of sequence evolution
inferred for the specific alignment, so as to control for potential artefacts associated with errors or
uncertainties in phylogenetic tree inference (Supplemental File 1). As the results of these
supplementary analyses were identical to that generated from our original analysis, our conclusions
were demonstrated to be valid and robust and not an artefact caused by either systematic biases in

species sampling or by errors in phylogenetic reconstruction.

Accounting for potential species sampling error

To identify a minimal subset of species which capture all of the phylogenetic diversity (PD)
contributed to by the complete set of 93 C; species in the rubisco kinetic dataset, the Phylogenetic
Diversity Analyzer V1.0.3 software!*? was employed using the ‘greedy’ algorithm. Specifically, the
unrooted RbcL phylogenetic tree of the 93 C; species was subject to systematic interrogation to
identify the optimal combination of species at each iterative tree size (n = 2 — 93 species) which
maximizes the PD score. For the purpose of this method, PD is defined as the total tree length (i.e.,
the combined sum of all internal and terminal branch lengths) of the pruned phylogeny comprising
the selected subset of sampled species. Based on the results of this analysis, it was observed that
phylogenetic diversity saturated at a threshold of 50 species (accounting for 54.8% of the total 93 Cs
species in the kinetic dataset) (Supplemental File 1). The optimal composition of species at this
respective threshold included 31 dicotyledonous individuals and 19 monaocotyledonous individuals,
and are listed in Supplemental File 1, table S10. This set of 50 species were used to assess the
robustness of the molecular and kinetic analysis of rubisco to potential artefacts associated with

biases in species sampling.

Integrated analysis of rubisco molecular evolution and CO2 assimilation

To investigate the relationship between rubisco molecular evolution and whole-plant photosynthetic

performance, a comprehensive meta-dataset of photosynthetic measurements from species
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spanning the whole land plant phylogeny was provided by Gago and colleagues®. This dataset
contained measurements of light-saturated net photosynthetic rates expressed both per unit leaf
mass (Amass) and per unit leaf area (Aaea), as well as measurements of total nitrogen content
expressed both per unit leaf mass (Nmass) and per unit leaf area (Narea). In addition, for each unique
species observation in this dataset with a corresponding measurement for both Amass and Nmass OF
for both Aaea and Narea, the mass-based and area-based photosynthetic nitrogen-use efficiencies
were also derived using the calculations Amass/Nmass (PNUEmass) and Aarea/Narea (PNUEarea),
respectively. In cases where duplicate entries for a parameter were present across species, the
mean value was taken so as to collapse the dataset to contain only a single row per species. Finally,
although photosynthetic measurements were available from individuals belonging to all major land
plant lineages (including the mosses, liverworts, fern allies, ferns, gymnosperms, and angiosperms),
only the subset of angiosperms in the dataset for which a publicly available rbcL sequence could be
obtained were taken forward. This is because various diffusional and biochemical factors other than
rubisco are known to cause reduced photosynthetic capacities in non-angiosperm plants® that would
bias the results of the current study. For the same reasons, only the subset of C3; angiosperms in
this dataset were taken forward in the present analysis to avoid picking up photosynthetic effects
which result from CO, concentrating mechanisms that act upstream of rubisco. In total, this left a
photosynthetic dataset of 366 Cz angiosperms from which to base the analyses herein. Combined,
this resulting dataset included 272 unique species measurements for Nmass, 137 unique species
measurements for Amass and 118 unique species measurements for PNUEmass, as well as 270 unique
species measurements for Naea, 151 unique species measurements for Aaea, and 120 unique

species measurements for PNUEarea, respectively.

To compute the relative extents of RbcL molecular evolution which has occurred in each angiosperm
in the photosynthetic dataset, the exact same method was followed as described above. First, the
full RbcL phylogenetic gene tree in Supplemental File 8 that was previously inferred from the
complete set of publicly available RbcL sequences in NCBI was pruned so as to contain only terminal
and internal branches corresponding to angiosperms in the photosynthetic dataset. Here, in

situations where duplicate sequences in the alignment resulted in multiple terminal nodes for a given
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species, only a single node was retained based on the sequence which is first in the alphabetical
order of the gene accession numbers. As above, this reduced RbcL tree was then manually rooted
in Dendroscopel??, and the relative extent of RbcL protein evolution in each angiosperm was
computed as the summed branch length (sequence substitutions per aligned sequence site) leading
from the last common ancestor at the root of this clade to each respective terminal node. Finally,
linear regression models were employed to assess the pairwise relationships between the variation
in rubisco molecular evolution and each respective photosynthetic parameter. The resulting full
integrated dataset containing photosynthetic measurements and comparable extents of RbcL
molecular evolution for all 366 Cz angiosperms can be found in Supplemental File 9. The RbcL
phylogenetic gene tree which has been pruned from that in Supplemental File 8 to contain the subset
of C3 angiosperms in the photosynthetic dataset used for the basis of this analysis can be found in

Supplemental File 10.
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Figure 1. The evolutionary history of rubisco in the context of atmospheric CO, (%) and O (%)
following divergence from the ancestral rubisco-like protein (RLP). For ease of visualisation, branch
points in the phylogeny are indicated by grey vertical bars. The First and Second Great Oxidation
events are also indicated by grey vertical bars and have been labelled. Graphics of atmospheric CO-

and O levels were adapted from the TimeTree resource (http://www.timetree.org; 4).
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Figure 2. The extent of molecular evolution in rubisco during the radiation of each taxonomic group.
A) Bar plot depicting the total amount of molecular evolution (substitutions per sequence site) in the
nucleotide and protein sequences of the rubisco large (rbcL/RbcL) and small (rbcS/RbcS) subunit
across taxonomic groups. The genome in which rbcL and rbcS genes reside within each group is
indicated above the plot (bacterial, plastid, nuclear). B) As in (A) but using 1,000 bootstrapped
stratified sampling of rbcS/RbcS per species to account for the higher copy number of this gene as
compared to rbcL/RbcL in the dataset used for analysis (see Methods). Error bars represent+ 1 S.E
of the mean. C) Bar plot depicting the percentage ratio (%) of nucleotide and amino acid evolution
between rubisco subunits (rbcL to rbcS and RbcL to RbcS, respectively) in each taxonomic group.
The colour of each bar is determined by the genome in which the rbcL and rbcS gene resides,
following the colour scale in (A) and (B). D) Bar plot depicting the percentage ratio (%) of nucleotide
to amino acid evolution in each rubisco subunit (rbcL to RbcL and rbcS to RbcS, respectively) in

each taxonomic group. The colour of each bar is the same as described in (C).
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Figure 3. The extent of molecular evolution in rubisco in context other genes. A) Boxplot of the
extent of molecular evolution (substitutions per sequence site) in the nucleotide and protein
sequences of the rubisco large (rbcL/RbcL) and small (rbcS/RbcS) subunit expressed as a percentile
(%) of that measured across all other genes and proteins, respectively. See also Supplemental File
1, table S2. B) As in (A) but calculating the percentile (%) extent of rubisco molecular evolution
(substitutions per sequence site) relative to only the subset of genes and proteins in each species
which encode enzymes. See also Supplemental File 1, table S3. C) Boxplot of the total amount of
molecular evolution (substitutions per sequence site) in the nucleotide and protein sequences of
each Calvin-Bensen-Bassham cycle enzyme expressed as a percentage (%) of that measured in
rbcL/RbcL (100%; red horizontal line) across land plants. Phosphoglycerate kinase: PGK.
Glyceraldehyde-3-phosphate dehydrogenase A/B subunit: GAPDH-A/GAPDH-B. Triose phosphate
isomerase: TPIl. Fructose-bisphosphate aldolase: FBA. Fructose-1,6-bisphosphatase: FBP.
Transketolase: TKL. Sedoheptulose-bisphosphatase: SBP. Ribose 5-phosphate isomerase: RPI.
Ribulose-p-3-epimerase: RPE. Phosphoribulokinase: PRK. See also Supplemental File 1, table S4

and table S5. The raw data for this figure can be found in Supplemental File 5.
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Figure 4. The relationship between rubisco molecular and kinetic evolution in C3 angiosperms. A)
The relationship between RbcL evolution and its corresponding kinetic trait values. AA Ev.: The
extent of RbcL amino acid evolution that has occurred since the last common ancestor at the root of
the angiosperm phylogeny. Scio: specificity. Keac: carboxylase turnover per site. Keac/Kc:
carboxylation efficiency. Kc: the Michaelis constant for CO,. Kc3": the inferred Michaelis constant for
CO; in 20.95% O,. Ko: the Michaelis constant for O,. Kc/Ko: the ratio of the Michaelis constant for
CO; compared to O,. B) The relationship between the extent of RbcL protein evolution (substitutions
per sequence site) and each rubisco kinetic trait in (A) as assessed using least squares regression

models. The raw data can be found in Supplemental File 7.
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Figure 5. The relationship between rubisco molecular evolution and CO, assimilation in Cs
angiosperms. A) The relationship between the extent of RbcL evolution and leaf level CO;
assimilation. AA Ev.: The extent of RbcL amino acid evolution that has occurred since the most
recent common ancestor at the root of the angiosperm phylogeny. Amass: Photosynthetic rate per unit
leaf mass. PNUEnass: Photosynthetic nitrogen use efficiency rate per unit leaf mass per unit leaf
nitrogen content (Nmass; % N). Aarea: Photosynthetic rate per unit leaf area. PNUEarea: Photosynthetic
nitrogen use efficiency rate per unit leaf area expressed per unit leaf area nitrogen content (Narea; g
m2 N). B) The relationship between the extent of RbcL protein evolution (substitutions per sequence
site) and each photosynthetic trait in (A) evaluated on a mass-basis (Amass, PNUEmass) as assessed
using least squares regression models. C) As in (B) but for each photosynthetic trait evaluated on

an area-basis (Aarea, PNUEarea). The raw data can be found in Supplemental File 9.
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Tables

Table 1

Table 1. Rubisco kinetics in extinct and extant angiosperms. Kinetic trait values for the last common

ancestor of the angiosperms were computed based on the estimated y intercept (mean = 1 S.E.) of

the linear regression analysis performed between the extent of RbcL protein evolution and each

rubisco kinetic trait in Figure 4B. Mean values of rubisco kinetic traits and associated variation (+ 1

S.E.) in extant Cs; species are shown for comparison. The raw data set used can be found

in Supplemental File 7.

Rubisco Scio kcatC kcatC/KC Kc Kcair Ko Kc/Ko
(mol (s (stuM?) | (uM) (LM) (LM) (MM pMr
mol?) h
Last Common
Angiosperm 81.1+ 26+ 0.16 + 16.3 248+ 4841+ 0.034+
Ancestor 1.9 0.3 0.02 +2.1 2.8 56.4 0.004
Extant 87.1+ 3.4+ 0.20 17.6 26.4 + 517.2 + 0.035 +
Angiosperms 0.5 0.1 + 0.01 +0.5 0.7 14.7 0.001
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