

1 **Title**

2 Rubisco is evolving for improved catalytic efficiency and CO₂ assimilation in plants

3 **Authors**

4 Jacques W. Bouvier¹, David M. Emms¹, Steven Kelly¹

5 **Affiliations**

6 ¹ Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom

7 **Corresponding Author**

8 Name: Steven Kelly

9 Email: steven.kelly@biology.ox.ac.uk

10 Address: Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK

11 **Keywords**

12 Rubisco; Evolution; Adaptation; Kinetics; Phylogenetics; Photosynthesis; CO₂ assimilation

13 **Abstract**

14 Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded
15 as inefficient leading many to question whether the enzyme can adapt to become a better catalyst.
16 Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we
17 demonstrate that rubisco is not stagnant. Instead, we demonstrate *rbcL* is among the 1% of slowest
18 evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 million
19 years and one amino acid mutation every 7.2 million years. Despite this, we demonstrate that rubisco
20 catalysis is continuing to evolve toward improved CO₂/O₂ specificity, carboxylase turnover, and
21 carboxylation efficiency. Consistent with this kinetic adaptation, we reveal that increased rubisco
22 evolution leads to a concomitant improvement in leaf-level CO₂ assimilation. Thus, rubisco is
23 continually evolving toward improved catalytic efficiency and CO₂ assimilation in plants.

24 **Introduction**

25 Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) converts atmospheric CO₂ into sugars
26 that fuel the majority of life on Earth. The enzyme evolved ~3 billion years ago when the atmosphere
27 contained high levels of CO₂ ($\geq 10,000\%$ present atmospheric levels) and comparatively little O₂
28 ($\leq 0.1\%$ present atmospheric levels) (Figure 1)^{1–7}. Since emergence, the enzyme has helped guide
29 the atmosphere on a trajectory of increasing O₂ and declining CO₂ (Figure 1)^{1,8} such that current
30 concentrations of CO₂ (0.04%) and O₂ (20.95%) are inverted compared to when the enzyme first
31 evolved (Figure 1).

32 Although all extant rubisco are descended from a single ancestral rubisco-like protein^{9–11}, the
33 enzyme is found in a variety of compositional forms across the tree of life (Figure 1)^{12,13}. The simplest
34 manifestations are the Form II and Form III variants found in protists, archaea, and some bacteria
35 which are composed of a dimer, or dimers, of the ~50 kDa rubisco large (RbcL) subunit^{13–16}. In
36 contrast, Form I rubisco is a hexadecamer comprised of four RbcL dimers organised in an antiparallel
37 core capped at either end by the ~15 kDa rubisco small subunit (RbcS)^{13,17}. Of these three Forms,
38 only Form I and II have been recruited for oxygenic photosynthesis¹⁶, with Form I being responsible
39 for the vast majority of global CO₂ assimilation^{16,18}.

40 Within Form I rubisco the active site is located in RbcL^{15,19,20}. As a result, interspecific differences in
41 Form I kinetics are primarily attributable to sequence variation in RbcL^{21–32}. Despite not playing a
42 direct role in catalysis RbcS influences the function of rubisco³³, and its incorporation in the
43 holoenzyme enables its higher kinetic efficiency³⁴. Specifically, RbcS enhances the stability and
44 assembly of the holoenzyme complex^{20,35–40}, improves the efficiency CO₂ binding⁴¹, and is thought
45 to act as a reservoir for CO₂ accumulation⁴². Accordingly, rubisco function is altered when RbcS is
46 mutated^{43–45}, or when chimeric holoenzymes are created *in vivo*^{46–50} and *in vitro*^{51–56}. Moreover, there
47 is increasing recognition of the importance of both environment⁵⁷ and organ-specific^{58,59} differences
48 in plant RbcS isoform expression on holoenzyme catalysis. However, even though RbcS influences
49 holoenzyme function, sequence variation in RbcL remains the primary determinant of variation in
50 kinetics^{21–32}.

51 Although there is kinetic variability between rubisco orthologs, the enzyme is considered to be an
52 inefficient catalyst. For example, the maximum substrate-saturated turnover rate of Form I rubisco
53 ($<12\text{ s}^{-1}$)⁶⁰ is slower than average⁶¹. In addition, rubisco catalyses a reaction with O_2 ⁶²⁻⁶⁴ that is
54 competitive with CO_2 and results in the loss of fixed carbon via photorespiration⁶⁵⁻⁶⁷. As a
55 consequence, rubisco appears poorly suited to the current O_2 -rich/ CO_2 -poor atmosphere (Figure 1).
56 Moreover, it appears that instead of improving enzyme function, multiple lineages have evolved
57 alternative strategies to overcome rubisco's shortcomings. For example, higher rates of CO_2
58 assimilation are often achieved either by synthesising large quantities of rubisco (~50% of soluble
59 protein in plants⁶⁸ and some microbes^{69,70}), or by operating CO_2 -concentrating mechanisms⁷¹⁻⁷³. As
60 a result, many have questioned whether the enzyme is already perfectly adapted, and whether
61 further kinetic improvements are possible^{15,63,67,74-78}. Obtaining answers to these questions would
62 shed light on the "rubisco paradox" – helping to explain why this enzyme of such paramount
63 importance appears poorly adapted for its role.

64 The initial hypothesis that attempted to explain the above rubisco paradox proposed that rubisco is
65 constrained by catalytic trade-offs that limit the enzyme's adaptation. This theory was pioneered by
66 two studies^{79,80} which found antagonistic correlations between rubisco kinetic traits and proposed
67 that these trade-offs were caused by constraints on its catalytic mechanism. However, recent
68 evidence has questioned this hypothesis as the sole mechanism to explain the rubisco paradox.
69 Specifically, analysis of larger species sets have revealed that kinetic trait correlations are not
70 strong⁸¹⁻⁸³. In addition, phylogenetic signal in rubisco kinetics causes kinetic trait correlations to be
71 overestimated unless phylogenetic comparative methods are employed^{21,22}. Thus, when larger
72 datasets are analysed with phylogenetic methods, the strength of catalytic trade-offs are
73 substantially reduced^{21,22}. Instead, phylogenetic constraints have had a larger impact on limiting
74 enzyme adaptation compared to catalytic trade-offs^{21,22}. These recent findings motivate a revaluation
75 of the rubisco paradox, and an interrogation of whether rubisco is evolving for improved catalysis
76 and CO_2 assimilation in plants.

77 Here, we address these issues through a phylogenetic interrogation of the molecular and kinetic
78 evolution of the Form I holoenzyme. We reveal that RbcL has evolved at a slower rate than >98% of

79 all other gene/protein sequences across the tree of life. Through simultaneous evaluation of
80 molecular and kinetic evolution of rubisco during the radiation of C₃ angiosperms, we reveal that the
81 enzyme has been continually evolving toward improved CO₂/O₂ specificity, carboxylase turnover
82 rate, and carboxylation efficiency. Furthermore, we demonstrate that enhanced rubisco evolution is
83 associated with enhanced rates of CO₂ assimilation and higher photosynthetic nitrogen-use
84 efficiencies. Thus, rubisco is not perfectly adapted, but is slowly evolving towards improved catalytic
85 efficiency and CO₂ assimilation.

86 **Results**

87 ***RbcL has evolved slower than RbcS and has experienced stronger purifying selection***

88 Sequences encoding Form I rubisco were obtained from the National Center for Biotechnology
89 Information (<https://www.ncbi.nlm.nih.gov/>). This dataset was filtered to retain sequences for a given
90 species only if a full-length sequence for both *rbcL* and *rbcS* were present. Although *rbcL* exists as
91 a single copy gene in all species, many species harbour multiple *rbcS* genes in their genomes. Thus,
92 for each species a single *rbcL* sequence and all available *rbcS* sequences were taken forward. In
93 total, this resulted in a set of 488 *rbcL*/RbcL and 1140 *rbcS*/RbcS sequences across 488 species
94 (Supplemental File 1, Figure S1 and table S1).

95 In order to compare the rate at which the two rubisco subunits have evolved, species were partitioned
96 into distinct taxonomic groups comprising the red algae (*Rhodophyta*; *n* = 201), the SAR supergroup
97 (*Stramenopiles*, *Alveolates*, and *Rhizaria*; *n* = 129), the bacteria (*Bacteria*; *n* = 78), land plants
98 (*Streptophyta*; *n* = 68) and green algae (*Chlorophyta*; *n* = 12) (Supplemental File 1, Figure S1 and
99 table S1). Hereinafter, the total amount of molecular evolution of the nucleotide sequences (*rbcL* and
100 *rbcS*) and the total amount of molecular evolution of the protein sequences (RbcL and RbcS) in a
101 taxonomic group is referred to as “the extent of nucleotide evolution” and “the extent of protein
102 evolution”, respectively. The term “the extent of molecular evolution” jointly refers to both.

103 Comparison of the two rubisco subunits revealed that the extent of molecular evolution in *rbcL*/RbcL
104 is lower than that experienced by *rbcS*/RbcS (Figure 2A). This was not an artefact of the higher gene
105 copy number of *rbcS*, as a 1,000 bootstrapped stratified sampling recovered the same result when

106 only a single *rbcS/RbcS* sequence was randomly sampled per species (see Methods; Figure 2B).
107 Therefore, *rbcL/RbcL* has explored less nucleotide and protein sequence space than *rbcS/RbcS* in
108 the same sets of species over the same period of time (Figure 2C). Furthermore, *rbcL* also
109 experienced fewer amino acid changes per change in nucleotide sequence compared to *rbcS*
110 (Figure 2D), indicating a higher degree of purifying selection. Thus, *rbcL/RbcL* has evolved more
111 slowly and has been subject to a higher degree of functional constraint on the encoded protein
112 sequence than *rbcS/RbcS*.

113 ***RbcL is one of the slowest evolving genes in the tree of life***

114 To evaluate the rate of molecular evolution in context of all other genes in the species under
115 consideration, the percentile rank of *rbcL/RbcL* and *rbcS/RbcS* was evaluated for all genes in all
116 species (see Methods). This revealed that 99.3% of all gene nucleotide sequences and 98.1% of all
117 gene protein sequences evolved faster than *rbcL/RbcL* in the same sets of species over the same
118 period of time (Figure 3A; Supplemental File 1, table S2). This held true even if *rbcL/RbcL* was only
119 compared only to the subset of genes that encode enzymes, with 99.2% of enzyme nucleotide
120 sequences and 98.3% of enzyme protein sequences evolving faster than *rbcL/RbcL* (Figure 3B;
121 Supplemental File 1, table S3). Furthermore, in land plants *rbcL/RbcL* was also the slowest evolving
122 component of the Calvin-Benson-Bassham cycle (Figure 3C; Supplemental File 1, table S4 and S5).
123 This slow pace of evolution is not simply an artefact of being encoded in the plastid genome, as
124 *rbcL/RbcL* was also one of the slowest evolving genes/proteins in bacteria which encode all of their
125 genes in a single cytoplasmic genome. Thus, *rbcL/RbcL* is one of the slowest evolving
126 genes/enzymes in all species in which it is found, irrespective of the taxonomic group or genome in
127 which it is encoded.

128 In contrast to *rbcL/RbcL*, considerable variability in the extent of molecular evolution in the small
129 subunit was observed both within and between taxonomic groups (Figure 3A; Supplemental File 1,
130 table S2). Analogous results in each taxonomic group were recovered when this analysis was
131 restricted to the subset of genes that encode enzymes (Figure 3B; Supplemental File 1, table S3).
132 Moreover, in land plants *rbcS/RbcS* was the fastest evolving component of the Calvin-Benson-
133 Bassham cycle (Figure 3C; Supplemental File 1, table S4 and S5). Thus, while the pace of molecular

134 evolution in *rbcL*/RbcL is ubiquitously slow, the extent of molecular evolution of *rbcS*/RbcS is highly
135 variable explaining the disparity in the rate of both subunits across the tree of life (Figure 2C;
136 Supplemental File 1, table S6). A similar variable rate was also observed for rubisco's ancillary
137 chaperones (Supplemental File 1). Thus, the rate of molecular evolution of *rbcL*/RbcL is ubiquitously
138 low, and lower than *rbcS*/RbcS or any associated chaperone.

139 ***Rubisco is evolving for improved kinetic efficiency in plants***

140 Although *rbcL* is among the slowest evolving genes on Earth, the analysis above demonstrates that
141 it is not stagnant. This raises the question as to whether the sequence evolution is adaptive and is
142 improving the catalysis of the enzyme. We hypothesised that if rubisco was undergoing directional
143 selection for improved catalysis, then orthologs that have experienced the largest extent of molecular
144 evolution would be the most efficient catalysts. To test this hypothesis, a dataset of kinetic
145 measurements from C₃ angiosperms^{21,22,81} was evaluated in the context of the molecular evolution
146 of RbcL (Figure 4A,B). This analysis focused on RbcL as it is the primary determinant of kinetics^{21–}
147 ³², and because sufficient sequence data for RbcS are unavailable. This revealed that the more RbcL
148 has evolved from the most recent common ancestral sequence, the better its CO₂/O₂ specificity (S_{C/O};
149 10.1% variance explained), CO₂ turnover rate (*k*_{catC}; 4.6% variance explained) and carboxylation
150 efficiency (*k*_{catC}/*K*_C; 3.8% variance explained) (Figure 4B). This result is not an artefact caused by
151 potential systematic methodological biases associated with species sampling or potential
152 uncertainties or errors in the underlying phylogenetic tree (See Methods, Supplemental File 1). Thus,
153 rubisco has been adaptively evolving for improved S_{C/O}, *k*_{catC}, and *k*_{catC}/*K*_C during the radiation of the
154 angiosperms.

155 Given that the origin of the angiosperms is estimated to have occurred 160 million years ago⁸⁴
156 (Figure 4A), it is possible to put the above kinetic change in context of both molecular sequence
157 changes and evolutionary time (table 1). As the large subunit acquired one nucleotide substitution
158 every 0.9 million years and one amino acid substitution every 7.2 million years (Supplemental File
159 1, figure S2), each amino acid substitution resulted in an average increase in S_{C/O} by 2.7×10⁻¹
160 mol.mol⁻¹, in *k*_{catC} by 3.6×10⁻² s⁻¹, and in *k*_{catC}/*K*_C by 1.8×10⁻³ s⁻¹ μM⁻¹. This is equivalent to a relative
161 improvement of 0.3% (S_{C/O}), 1.4% (*k*_{catC}), and 1.1% (*k*_{catC}/*K*_C) per amino acid substitution, and a

162 relative improvement of 0.05% ($S_{C/O}$), 0.2% (k_{catC}), and 0.2% (k_{catC}/K_C) per million years. Thus, there
163 has been continual improvement in rubisco kinetics during the radiation of the angiosperms at a rate
164 that is dependent on the extent of its molecular sequence change.

165 ***Rubisco is evolving for improved leaf-level CO₂ assimilation***

166 Given that rubisco is evolving to become a better catalyst, we hypothesised that this adaptation
167 would also drive adaptation in the rate of leaf-level CO₂ assimilation. To test this hypothesis we
168 analysed a large dataset of photosynthetic measurements from C₃ angiosperms⁸⁵ in the context of
169 the extent of their RbcL evolution (Figure 5A-C). This revealed that the rate of leaf-level CO₂
170 assimilation was also dependent on the extent of molecular sequence change in rubisco such that
171 that C₃ angiosperms with more evolved rubisco also higher rates of CO₂ assimilation (A_{mass} ; 19.2%
172 variance explained, Figure 5B). This is not a consequence of increased nitrogen investment in the
173 leaf, as the association between rubisco evolution and increased CO₂ assimilation is strengthened
174 when measurements are controlled for leaf nitrogen content ($PNUE_{mass}$, 22.1% variance explained,
175 Figure 5B). Analogous results were obtained when measurements of CO₂ assimilation were
176 evaluated on a leaf area basis (Figure 5C). This result is most parsimoniously explained by
177 directional selection towards enhanced leaf-level CO₂ assimilation driven by the kinetic adaptation
178 described above. Thus, the adaptive evolution of rubisco during the radiation of the angiosperms
179 has resulted in the improvement in leaf-level CO₂ assimilation.

180 ***Discussion***

181 Rubisco is the primary entry point for carbon into the biosphere, responsible for fixing 250 billion tons
182 of CO₂ annually¹⁸. Despite this immense throughput, the enzyme is a surprisingly inefficient catalyst
183 with a modest carboxylase turnover rate of <12 s⁻¹⁶⁰ and a competing oxygenase activity that results
184 in the loss of fixed carbon^{63,64,86}. This discord presents an evolutionary paradox that has attracted
185 significant attention^{15,21,22,63,67,74-78}, with the prevailing assumption being that rubisco is evolutionarily
186 stagnant. Here we demonstrate that the enzyme is not stagnant, but that it is encoded by one of the
187 slowest evolving genes on Earth. Despite this, we demonstrate that rubisco has been evolving for
188 higher CO₂/O₂ specificity ($S_{C/O}$), faster carboxylase turnover rates (k_{catC}), and improved carboxylation
189 efficiencies (k_{catC}/K_C) in angiosperms. Moreover, we demonstrate that plants with more evolved

190 rubisco exhibit higher leaf-level CO₂ assimilation and enhanced photosynthetic nitrogen-use
191 efficiencies. Thus, rubisco has been continually evolving towards improved catalytic efficiency and
192 CO₂ assimilation during the radiation of the angiosperms.

193 A slow rate of molecular evolution in *rbcL* has long been assumed and has underpinned the use of
194 this gene for systematics and phylogenetics^{87–89}. However, to our knowledge there has been no
195 contextualised measurement of the rate of *rbcL* evolution across the tree of life. The analysis
196 presented here addresses this gap by revealing that across the tree of life, *rbcL*/RbcL has
197 experienced a lower extent of molecular evolution than 99% of all gene nucleotide sequences and
198 98% of all gene protein sequences. It is interesting to note here that this is not due to the presence
199 of *rbcL* in the chloroplast genome, as *rbcL* is also one of the slowest evolving sequences in bacteria
200 which lack organellar genomes. Thus, RbcL is universally one of the slowest evolving sequences on
201 Earth, irrespective of the taxon or genome in which it resides.

202 Although dissecting the factors which constrain the rate of *rbcL* evolution is beyond the scope of the
203 current study, the slow pace of *rbcL* molecular evolution is most likely a consequence of several
204 synergistic factors⁹⁰ including constraints imposed by expression^{91–95}, selection to preserve protein
205 function^{96–100}, and the requirements for protein-protein interactions *in vivo*^{101–104}. These factors would
206 be particularly pertinent for rubisco given that it is the most abundant protein in organisms in which
207 it is found^{68,70}, it is subject to catalytic trade-offs^{21,22,80,81} and molecular activity-stability trade-offs^{105–}
208¹⁰⁸, and given that it relies on multiple interacting partners and chaperones for folding, assembly and
209 metabolic regulation^{68,109}. Thus, a perfect storm of features exist which could limit the molecular
210 evolution of *rbcL* and thereby cause it to be one of the slowest evolving genes on Earth. Further
211 work to elucidate the exact contribution of each of these biological determinants on rubisco's rate of
212 molecular evolution is warranted, building upon the work here and previous investigations^{21,22,110}.

213 Our integrated analysis of rubisco evolution revealed a continual improvement in S_{C/O}, *k*_{catC} and
214 *k*_{catC}/*K*_C during the radiation of C₃ angiosperms. Thus, although rubisco is slowly-evolving, sequence
215 changes have enhanced the catalytic properties of the enzyme. In the context of the C₃ leaf, such
216 directional selection towards improved S_{C/O} is consistent with adaptation to maintain adequate
217 carbon assimilation in response to declining CO₂ and increasing O₂ (Figure 1). This evolutionary

218 strategy has been proposed previously⁸⁰, and is suggested to apply broadly across photoautotrophs
219 lacking a CO₂ concentrating mechanism^{82,111}. In addition to adaptation for higher S_{C/O}, we also
220 discover simultaneous improvement in k_{catC} and k_{catC}/K_C without antagonism in any other kinetic trait.
221 These results are also consistent with the inferior S_{C/O} and k_{catC}/K_C reported for extinct rubisco
222 resurrected at the dawn of the Form IB⁶ and Form 1³⁴ lineages. It is noteworthy that on first
223 appearances, all of these studies seem to contradict an analysis within the Solanaceae in which
224 resurrected ancestral rubisco variants exhibited superior k_{catC} and k_{catC}/K_C values. However, in this
225 instance the kinetic differences were proposed to be driven by sequence changes in RbcS¹¹², and
226 therefore do not contradict the analysis of RbcL presented here or in other studies^{6,34}. Thus,
227 sequence change in RbcL during the radiation of angiosperms has driven the continual improvement
228 of the enzyme in the presence of a declining atmospheric CO₂:O₂ concentration.
229 The 'FvCB model' of photosynthesis¹¹³, as well as a suite of other experimental^{114–121} and
230 computational^{122,123} studies all demonstrate that rubisco is a major rate-limiting factor for CO₂
231 assimilation under ambient steady-state conditions. The findings presented here link these
232 mechanistic studies with evolutionary biology, and reveal that rubisco has experienced directional
233 selection to improve kinetic efficiency and CO₂ assimilation. Ultimately, this changes our
234 understanding of the rubisco paradox. Rubisco is not locked in evolutionary stasis, but is instead
235 slowly evolving towards improved CO₂ assimilation. This discovery has significant implications for
236 our understanding of the past, present, and future potential of rubisco in natural and engineered
237 contexts.

238 **Materials and Methods**

239 **Rubisco sequence data**

240 All publicly available coding sequences of the rubisco large (*rbcL*) and small (*rbcS*) subunit genes in
241 the National Center for Biotechnology Information (NCBI) database (<https://www.ncbi.nlm.nih.gov/>)
242 as of July 2020 were downloaded. Manual inspection of nucleotide and translated protein sequences
243 was performed to remove any partial, chimeric, or erroneously annotated sequences. In addition,
244 this dataset was further restricted to include only those species which possess a Form I rubisco and
245 for which both a full-length *rbcL* and *rbcS* gene sequence could be obtained. Given that *rbcL* exists

246 as a single copy gene in all species, only one *rbcL* sequence per species was retained for
247 downstream analysis. In contrast, all possible full-length *rbcS* sequences were taken forward to
248 account for the fact that *rbcS* is multicopy in some genomes.

249 Translated *rbcL* and *rbcS* protein sequences were aligned using the MAFFT L-INS-i algorithm¹²⁴.
250 The corresponding codon alignments of the nucleotide sequences were generated by threading the
251 nucleotide sequences through the aligned protein sequences that they encode using PAL2NAL
252 software¹²⁵. Multiple sequence alignments were trimmed to remove non-aligned codon or residue
253 positions such that only ungapped columns remained. During this process, the putative transit
254 peptide of the *rbcS*/RbcS sequences in taxa in which this gene is encoded by the nuclear genome
255 was computationally cleaved. Following these data processing steps, alignments were partitioned
256 depending on species membership to either the bacteria (*Bacteria*; $n = 78$), land plants
257 (*Streptophyta*; $n = 68$), green algae (*Chlorophyta*; $n = 12$), red algae (*Rhodophyta*; $n = 201$) or the
258 SAR supergroup (*Stramenopiles*, *Alveolates*, and *Rhizaria*; $n = 129$) by use of the NCBI taxonomy
259 browser (https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi). Any sequences
260 belonging to species in either the *Haptophyta*, *Cryptophyta*, *Glaucocystophyta* or *Excavata*
261 taxonomic groups were excluded from the dataset at this point due to insufficient data availability. In
262 total, this resulted in a combined set of 488 *rbcL*/RbcL and 1140 *rbcS*/RbcS gene and protein
263 sequences across 488 species spanning 5 taxonomic groups (Supplemental File 1, Figure S1 and
264 table S1). The complete set of raw *rbcL*/RbcL and *rbcS*/RbcS sequences, as well as the complete
265 set of aligned and trimmed *rbcL*/RbcL and *rbcS*/RbcS sequences can be found in Supplemental File
266 2.

267 ***Rubisco phylogenetic tree inference***

268 Maximum-likelihood *rbcL*/RbcL and *rbcS*/RbcS phylogenetic gene trees were inferred across all
269 sequences within a taxonomic group by IQ-TREE¹²⁶ using the ultrafast bootstrapping method with
270 1,000 replicates and the Shimodaira–Hasegawa approximate–likelihood ratio branch test. The best
271 fitting models of nucleotide (SYM+R8) and amino acid (LG+R5) sequence evolution were
272 respectively determined as those which exhibit the lowest combined Bayesian information criterion
273 rank score across the complete sets of both rubisco large and small subunit sequences¹²⁶. Across

274 all taxonomic groups, the models of nucleotide and amino acid sequence evolution were held
275 constant between the gene trees for *rbcL* and *rbcS*, and RbcL and RbcS, respectively, such that
276 branch lengths are comparable across both subunits. The complete set of these *rbcL*/RbcL and
277 *rbcS*/RbcS phylogenetic gene trees used as the basis of the analysis herein can be found in
278 Supplemental File 3.

279 ***Stratified sampling of rbcS sequences and phylogenetic tree inference***

280 To account for potential biases in our analysis caused by some species exhibiting multiple copies of
281 *rbcS*, random stratified sampling of the non-gapped *rbcS*/RbcS sequence alignments was conducted
282 by species using 1,000 replicates with replacement. This process resulted in the generation of 1,000
283 unique *rbcS*/RbcS alignments for each taxonomic group, whereby each of these respective
284 alignments contain only a single randomly selected copy of the *rbcS*/RbcS per species. In turn, each
285 of these alignments were subject to data processing and phylogenetic tree inference using IQ-
286 TREE¹²⁶ following the method described above.

287 ***Quantification of the total extent of nucleotide and protein molecular evolution in***
288 ***rbcL/RbcL and rbcS/RbcS***

289 The extent of molecular evolution in both rubisco subunits was assessed across all species in a
290 given taxonomic group as the total length (sequence substitutions per aligned sequence site) of the
291 phylogenetic tree describing the evolutionary history of each respective gene. For this purpose, tree
292 length was calculated as the combined sum of branch lengths leading from the root at the last
293 common ancestor of the tree to the set of sequences at the terminal nodes. In this way, using the
294 trees inferred across the complete cohort of *rbcL*/RbcL and *rbcS*/RbcS sequences in each taxonomic
295 group, it was possible to capture all nucleotide and amino acid evolution which has arisen in each
296 subunit since the most recent common ancestor of all sampled species in the group. An identical
297 analysis was also performed for each *rbcS*/RbcS tree generated by stratified sampling, with mean
298 and standard errors of estimates being calculated in this case across the 1,000 unique bootstrap
299 replicate trees.

300 **Genomes and gene models**

301 Complete sets of representative gene models for as many species in the rubisco sequence dataset
302 as possible were acquired from either NCBI (<https://www.ncbi.nlm.nih.gov/>) or Phytozome V13¹²⁷.
303 Where more than one such gene model resource was available for a given species, the most recent
304 assembly version was chosen. In this way, complete sets of representative gene models were
305 acquired for a total of 32 of the bacteria species, 27 of the land plant species, 8 of the SAR species,
306 6 of the red algae species and 4 of the green algae species analysed in the present study,
307 respectively (Supplemental File 1, table S1 and S7).

308 Predicted gene model sets were filtered to remove sequences with internal in-frame stop codons.
309 Gene model sets were also filtered to keep only the longest gene model variant per gene. Moreover,
310 owing to a lack of data availability of publicly available chloroplast or mitochondrial genomes for the
311 eukaryotic species in the present analysis, and as organellar genomes contain fewer than 1% of
312 genes encoded in the corresponding nuclear genome, only gene sequences encoded by the nuclear
313 genomes of species in the land plant, green algae, red algae and SAR taxonomic groups were taken
314 forward for analysis. Finally, after the above quality control checks were completed, a corresponding
315 proteome was generated from each species gene model set by *in silico* translation of the respective
316 coding sequences.

317 **Orthogroup classification and phylogenetic tree inference**

318 The complete set of translated proteomes for species in each respective taxonomic group were
319 subject to orthogroup inference using OrthoFinder V2.5.2^{128,129} software run with default settings and
320 with the DIAMOND ultra-sensitive mode¹³⁰. Protein sequences within each orthogroup were aligned
321 using the MAFFT L-INS-I algorithm with 1,000 cycles of iterative refinement¹²⁴. The corresponding
322 codon alignments of the nucleotide sequences were generated by threading the nucleotide
323 sequences through the aligned protein sequences that they encode using PAL2NAL software¹²⁵.
324 Alignments were trimmed to remove positions which contain gap characters. Sequences that were
325 <50% of the median length of the cohort of all other sequences in the given orthogroup were
326 excluded to avoid analysis of partial or truncated genes that could influence downstream analysis.
327 All nucleotide and protein multiple sequence alignments which satisfied the above criteria and which

328 possessed >50 ubiquitously aligned codon or amino acid positions were subject to bootstrapped
329 maximum likelihood phylogenetic tree inference using IQ-TREE¹²⁶ following the exact method and
330 evolutionary substitution models described above. In total, this resulted in a combined set of 16,631
331 orthogroup phylogenies comprising 5,126,017 ortholog pairwise comparisons across 351 species
332 pairwise comparisons for the land plant clade, 6,953 orthogroup phylogenies comprising 153,288
333 ortholog pairwise comparisons across 28 species pairwise comparisons for the SAR clade, 5,422
334 orthogroup phylogenies comprising 642,057 ortholog pairwise comparisons across 496 species
335 pairwise comparisons for the bacteria clade, 4,269 orthogroup phylogenies comprising 31,133
336 ortholog pairwise comparisons across 6 species pairwise comparisons for the green algae clade and
337 3,966 orthogroup phylogenies comprising 54,091 ortholog pairwise comparisons across 15 species
338 pairwise comparisons for the red algae clade, from which to base the analyses herein. A further
339 breakdown of these metrics for each species comparison can be found in Supplemental File 4.

340 ***Characterization of the set of enzymatic gene and protein sequences within***
341 ***orthogroups***

342 The set of all genes within each species proteome that encode enzymes was determined using the
343 DeepEC¹³¹ deep learning-based classifier algorithm. For this purpose, enzymes were defined as
344 those protein sequences that could be assigned at least a partial enzyme commission (EC) number
345 (i.e., at minimum, a single digit EC top-level code). On average 42.2% of all genes in the analysis
346 encoded enzymes. A detailed breakdown of the metrics of enzyme ortholog pairwise comparisons
347 for each species comparison can be found in Supplemental File 4.

348 ***Quantification of percentiles of the rate of molecular evolution***

349 To evaluate the extent of molecular evolution in rubisco in the context of all other genes, only species
350 in the rubisco sequence dataset possessing a publicly available whole-genome gene assembly were
351 considered. Across each pairwise combination of species in a given taxonomic group which satisfied
352 this criteria, the extent of *rbcL*/*RbcL* and *rbcS*/*RbcS* molecular evolution since the time point of
353 species divergence was measured by computing the sum of branch lengths (sequence substitutions
354 per aligned sequence site) separating these respective sequences in the rubisco phylogenetic trees
355 previously inferred. Following this, the extent of molecular evolution separating all other pairs of

356 orthologous (but not paralogous) gene and protein sequences for that given species pair was
357 measured across all inferred orthogroup phylogenies, and the percentile rank rate of rubisco
358 nucleotide or protein evolution was computed relative to the cohort of these measurements. To
359 assess the extent of rubisco molecular evolution in context all other enzymes, the exact same steps
360 were followed but only the subset of genes and proteins predicted to encode enzymes were included.
361 In both of these analyses, a minimum threshold of 100 measurements for orthologous genes and
362 protein sequences was ensured per species pair. In cases where multiple percentiles are calculated
363 for a rubisco subunit in a given species pair (due to gene duplications in the *rbcS* of some species,
364 or due to a single species gene assembly matching multiple sub-species in the rubisco sequence
365 dataset) the mean percentile was taken. The full set of data generated from these analyses
366 quantifying the relative percentile extent of rubisco molecular evolution to all other genes and
367 proteins, and to all other enzyme-encoding genes and proteins can be found in raw and processed
368 forms in Supplemental File 5.

369 ***Identification and classification Calvin-Benson-Bassham cycle enzyme isoforms in***
370 ***land plants***

371 The set of genes which encode Calvin-Benson-Bassham cycle enzymes was first resolved in the
372 model plant species *Arabidopsis thaliana*. To achieve this, the complete gene families to which each
373 Calvin-Benson-Bassham cycle enzyme in *A. thaliana* belongs was determined based on available
374 data in The Arabidopsis Information Resource (TAIR) database (<http://arabidopsis.org>)^{132,133}.
375 Following this, the photosynthetic isoforms in these gene families which are active in the Calvin-
376 Benson-Bassham cycle in the chloroplast stroma were then identified based on several lines of
377 evidence. 1) A high protein abundance based on whole-organism integrated protein abundance data
378 obtained from the Protein Abundance Database (<https://pax-db.org/>) dataset 3702/323. 2) Leaf
379 mRNA expression based on tissue-specific RNA sequencing data obtained from both the

380 Arabidopsis eFP Browser V2.0
381 (http://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html) and the EMBL-EBI
382 (<https://www.ebi.ac.uk/>) dataset E-GEO-53197. 3) Chloroplast-targeted protein subcellular
383 localisation as predicted using both TargetP V2.0^{134,135} and Predotar V1.04¹³⁶. 4) Gene orthology as

384 inferred from trees generated for each Calvin-Benson-Bassham cycle gene family using IQ-TREE¹²⁶.
385 The resulting set of photosynthetic isoforms encoding each Calvin-Benson-Bassham cycle enzyme
386 in *A. thaliana* inferred from this multi-faceted analytical pipeline can be found in Supplemental File
387 1, table S8.
388 The set of genes which encode the photosynthetic isoforms of Calvin Bensen Bassham cycle
389 enzymes in all other 26 land plant species (apart from *A. thaliana*) for which genome sequence data
390 was available in this study were then determined by orthology using data from the orthogroup
391 inference analysis performed above. Each group of orthologous protein sequences determined to
392 encode a given Calvin-Benson-Bassham cycle enzyme across all species were aligned using the
393 MAFFT L-INS-i algorithm¹²⁴, and corresponding nucleotide coding sequence alignments were
394 generated using PAL2NAL¹²⁵. Multiple sequence alignments were subject to the same data filtering
395 and quality control criteria previously described to remove partial or incomplete sequences and
396 subsequently delete any column positions which contain gaps. Finally, bootstrapped maximum
397 likelihood phylogenetic trees were inferred by IQ-TREE¹²⁶ following the method outlined above. A
398 similar analysis of Calvin-Bensen-Bassham cycle enzymes in other taxonomic groups was not able
399 to be performed owing to a lack of the required data described here to determine the photosynthetic
400 gene isoforms in these species.

401 ***Quantification of the relative extent of rbcL/RbcL and rbcS/RbcS molecular evolution***
402 ***relative to all Calvin-Benson-Bassham cycle enzymes in land plants***

403 To determine the extent of molecular evolution between orthologous Calvin-Benson-Bassham cycle
404 isoforms compared to Form I rubisco, the extent of molecular evolution measured between all other
405 Calvin-Benson-Bassham cycle gene and protein orthologous sequences for each species pair were
406 expressed as a percentage ratio of that measured in the corresponding *rbcL/RbcL* sequence. In
407 cases where multiple percentage ratios are calculated for a given Calvin-Bensen-Bassham
408 component in a given species pair (due to gene duplications, or due to a single species gene
409 assembly matching multiple sub-species in the rubisco sequence dataset) the mean value was
410 taken. The full set of data generated from this analysis can be found in raw and processed forms in
411 Supplemental File 5.

412 **Quantification of the percentile extent of rubisco chaperone molecular evolution**
413 **within each taxonomic group**

414 To evaluate the percentile rate of molecular evolution in the known chaperones of Form I rubisco in
415 the context of all other genes in each taxonomic group, the exact same method was followed as
416 above for *rbcL*/RbcL and *rbcS*/RbcS though the subject of the analysis was respectively altered.
417 Here, for this investigation, the putative set of genes which encode each Form I ancillary chaperone
418 involved in holoenzyme metabolic regulation (RUBISCO ACTIVASE (Rca)) and in holoenzyme
419 folding and assembly (BUNDLE SHEATH DEFECTIVE 2 (BSD2), CHAPERONIN 10 (Cpn10),
420 CHAPERONIN 20 (Cpn20), CHAPERONIN-60 (Cpn60), RBCX (RbcX), RUBISCO
421 ACCUMULATION FACTOR 1 (Raf1), RUBISCO ASSEMBLY FACTOR 2 (Raf2)) were first resolved
422 in the model plant species *A. thaliana*. This was achieved using a previously published dataset¹³⁷
423 supplemented by information available in the TAIR database (<http://arabidopsis.org>)^{132,133}. The
424 resulting set of *Arabidopsis* chaperone genes thus identified can be found in Supplemental File 1,
425 table S9. Following this step, the corresponding set of genes encoding rubisco chaperones in all
426 other species for which a complete gene assembly could be obtained were inferred using data from
427 a separate OrthoFinder run performed with identical settings as previously described, but based on
428 the translated proteomes of all organisms across all taxonomic groups.

429 After the cohort of Form I rubisco chaperone genes were identified in all species, the percentile rates
430 of nucleotide and protein evolution in these genes were calculated between each pairwise
431 combination of species relative to all other pairs of orthologous sequences using the identical
432 measurements previously generated from the analysis of *rbcL*/RbcL and *rbcS*/RbcS above. In this
433 way, analysis of some chaperones were omitted in certain taxonomic groups owing to the data
434 quality and filtering steps that were previously performed as described above. In cases where
435 multiple percentiles are calculated for a chaperone in a given species pair (due to gene duplications,
436 or due to a single species gene assembly matching multiple sub-species in the rubisco sequence
437 dataset) the mean percentile was taken as above. The full set of data generated from this analysis
438 can be found in raw and processed forms in Supplemental File 5. A combined dataset including the

439 relative percentile extent of evolution in both rubisco subunits and all rubisco chaperones for each
440 unique pairwise species comparison can be found in Supplemental File 6.

441 ***Integrated analysis of rubisco molecular and kinetic evolution***

442 To interrogate the relationship between the molecular and kinetic evolution of extant Form I rubisco,
443 a dataset of rubisco kinetic traits was downloaded from^{21,22}, as modified from that originally compiled
444 by Flamholz and colleagues⁸¹. For the purpose of this study, only species in this dataset with a
445 complete set of experimentally determined measurements of rubisco specificity (S_{CO_2}) for CO_2
446 relative to O_2 (i.e., the overall carboxylation/oxygenation ratio of rubisco under defined
447 concentrations of CO_2 and O_2 gases), maximum carboxylase turnover rate per active site (k_{catC}), and
448 the respective Michaelis constant (i.e., the substrate concentration at half-saturated catalysed rate)
449 for both CO_2 (K_C) and O_2 (K_O) substrates were selected. For each of the 137 species which satisfied
450 this criteria (all of which were angiosperm land plants), an estimate of the Michaelis constant for CO_2
451 in 20.95% O_2 air (K_{Cair}) was also available^{21,22}. In addition, the ratio of the Michaelis constant for CO_2
452 relative to O_2 (K_C/K_O), as well as carboxylation efficiency, defined as the ratio of the maximum
453 carboxylase turnover to the Michaelis constant for CO_2 (k_{catC}/K_C), were also inferred. Measurements
454 of the Michaelis constant for RuBP (K_{RuBP}) were not considered owing to a limited sample size ($n =$
455 19). All *Limonium* species in the dataset were also ignored on the basis that trait values obtained
456 across different studies have been deemed to not be consistent^{24,138}. In total, this left a dataset of
457 rubisco kinetic trait measurements for 123 angiosperms. Of these, only the subset of 93 species
458 which perform C_3 photosynthesis were considered for the purpose of the integrated molecular and
459 kinetic evolution analysis herein. This is because of both a limited sample size of C_3 - C_4 ($n = 6$), C_4 -
460 like species ($n = 3$) and C_4 species ($n = 21$) in the kinetic dataset, and given that transition toward
461 C_4 photosynthesis is associated with a change in rubisco kinetic evolution^{21,22} that would confound
462 the directional selection analysis being conducted.

463 Coding sequences of the *rbcL* gene were obtained from²² for each species in the kinetic dataset. In
464 order to facilitate more accurate downstream phylogenetic tree inference across these sequences
465 and to minimize the impact of long-branch effects¹³⁹, the complete set of publicly available *rbcL*
466 coding sequences in land plants were also acquired in parallel from NCBI

467 (<https://www.ncbi.nlm.nih.gov/>) using the query term “*rbcL*[Gene Name] AND
468 “plants”[orgn:_txid3193]”. These sequences thus obtained were subject to the exact same data
469 processing steps to remove ambiguous, partial or chimeric sequences as performed previously for
470 the *rbcL* sequences of species in the rubisco kinetic dataset²². In total, this step resulted in an
471 additional set of 29,218 full-length *rbcL* coding sequences to aid downstream phylogenetic inference.
472 Protein sequences were inferred from each *rbcL* coding sequences via *in silico* translation. Next, the
473 complete set of translated RbcL sequences (including the set of sequences from angiosperms in the
474 rubisco kinetic dataset, as well as the set of all publicly available sequences for land plants) were
475 respectively aligned using MAFFT L-INS-I²⁴, and a corresponding *rbcL* coding sequence alignment
476 was generated using PAL2NAL software¹²⁵. The resulting multiple sequence alignments were
477 trimmed to remove non-aligned residue positions and bootstrapped phylogenetic trees were inferred
478 using IQ-TREE¹²⁶ following the exact method described above and using the best-fit models of
479 nucleotide and protein sequence evolution previously inferred. To facilitate downstream analysis,
480 the *rbcL* and RbcL gene trees were subsequently modified to keep only internal and terminal
481 branches leading to the set of species in the rubisco kinetic dataset, with pruned trees manually
482 rooted in Dendroscope¹⁴⁰.

483 To compute the relative extent of protein evolution which has occurred in each angiosperm in the
484 kinetic dataset, the summed branch length (sequence substitutions per aligned sequence site)
485 leading from the last common ancestor at the root of this clade to each respective terminal node in
486 the RbcL phylogeny generated above were measured. The kinetic trait values and extent of
487 molecular evolution for all C₃ angiosperm rubisco can be found in Supplemental File 7. The predicted
488 kinetic trait values at the last common ancestor at the base of the angiosperm clade were inferred
489 from the estimated y intercept values from these regression models and can be found in table 1. The
490 *rbcL*/RbcL phylogenetic gene trees used as the basis of this analysis, including the trees inferred
491 across the full set of sequences, as well as the pruned versions of these trees containing only the
492 subset of C₃ species in the kinetic dataset, can be found in Supplemental File 8.

493 To assess the robustness of the above integrated molecular and kinetic investigation of rubisco
494 evolution, the same analysis was repeated but including only the minimal subset of species in the

495 kinetic dataset which captured the majority of phylogenetic diversity across all sampled species (see
496 below), so as to control for biases associated with species sampling and overrepresentation of
497 certain groups (see Supplemental File 1). An identical analysis was also performed using the
498 complete set of species in the kinetic dataset but based on analogous trees generated following the
499 exact same method as above but based on alternate best-fitting models of sequence evolution
500 inferred for the specific alignment, so as to control for potential artefacts associated with errors or
501 uncertainties in phylogenetic tree inference (Supplemental File 1). As the results of these
502 supplementary analyses were identical to that generated from our original analysis, our conclusions
503 were demonstrated to be valid and robust and not an artefact caused by either systematic biases in
504 species sampling or by errors in phylogenetic reconstruction.

505 ***Accounting for potential species sampling error***

506 To identify a minimal subset of species which capture all of the phylogenetic diversity (PD)
507 contributed to by the complete set of 93 C₃ species in the rubisco kinetic dataset, the Phylogenetic
508 Diversity Analyzer V1.0.3 software¹⁴² was employed using the 'greedy' algorithm. Specifically, the
509 unrooted RbcL phylogenetic tree of the 93 C₃ species was subject to systematic interrogation to
510 identify the optimal combination of species at each iterative tree size ($n = 2 - 93$ species) which
511 maximizes the PD score. For the purpose of this method, PD is defined as the total tree length (i.e.,
512 the combined sum of all internal and terminal branch lengths) of the pruned phylogeny comprising
513 the selected subset of sampled species. Based on the results of this analysis, it was observed that
514 phylogenetic diversity saturated at a threshold of 50 species (accounting for 54.8% of the total 93 C₃
515 species in the kinetic dataset) (Supplemental File 1). The optimal composition of species at this
516 respective threshold included 31 dicotyledonous individuals and 19 monocotyledonous individuals,
517 and are listed in Supplemental File 1, table S10. This set of 50 species were used to assess the
518 robustness of the molecular and kinetic analysis of rubisco to potential artefacts associated with
519 biases in species sampling.

520 ***Integrated analysis of rubisco molecular evolution and CO₂ assimilation***

521 To investigate the relationship between rubisco molecular evolution and whole-plant photosynthetic
522 performance, a comprehensive meta-dataset of photosynthetic measurements from species

523 spanning the whole land plant phylogeny was provided by Gago and colleagues⁸⁵. This dataset
524 contained measurements of light-saturated net photosynthetic rates expressed both per unit leaf
525 mass (A_{mass}) and per unit leaf area (A_{area}), as well as measurements of total nitrogen content
526 expressed both per unit leaf mass (N_{mass}) and per unit leaf area (N_{area}). In addition, for each unique
527 species observation in this dataset with a corresponding measurement for both A_{mass} and N_{mass} or
528 for both A_{area} and N_{area} , the mass-based and area-based photosynthetic nitrogen-use efficiencies
529 were also derived using the calculations $A_{\text{mass}}/N_{\text{mass}}$ ($PNUE_{\text{mass}}$) and $A_{\text{area}}/N_{\text{area}}$ ($PNUE_{\text{area}}$),
530 respectively. In cases where duplicate entries for a parameter were present across species, the
531 mean value was taken so as to collapse the dataset to contain only a single row per species. Finally,
532 although photosynthetic measurements were available from individuals belonging to all major land
533 plant lineages (including the mosses, liverworts, fern allies, ferns, gymnosperms, and angiosperms),
534 only the subset of angiosperms in the dataset for which a publicly available *rbcL* sequence could be
535 obtained were taken forward. This is because various diffusional and biochemical factors other than
536 rubisco are known to cause reduced photosynthetic capacities in non-angiosperm plants⁸⁵ that would
537 bias the results of the current study. For the same reasons, only the subset of C₃ angiosperms in
538 this dataset were taken forward in the present analysis to avoid picking up photosynthetic effects
539 which result from CO₂ concentrating mechanisms that act upstream of rubisco. In total, this left a
540 photosynthetic dataset of 366 C₃ angiosperms from which to base the analyses herein. Combined,
541 this resulting dataset included 272 unique species measurements for N_{mass} , 137 unique species
542 measurements for A_{mass} and 118 unique species measurements for $PNUE_{\text{mass}}$, as well as 270 unique
543 species measurements for N_{area} , 151 unique species measurements for A_{area} , and 120 unique
544 species measurements for $PNUE_{\text{area}}$, respectively.

545 To compute the relative extents of RbcL molecular evolution which has occurred in each angiosperm
546 in the photosynthetic dataset, the exact same method was followed as described above. First, the
547 full RbcL phylogenetic gene tree in Supplemental File 8 that was previously inferred from the
548 complete set of publicly available RbcL sequences in NCBI was pruned so as to contain only terminal
549 and internal branches corresponding to angiosperms in the photosynthetic dataset. Here, in
550 situations where duplicate sequences in the alignment resulted in multiple terminal nodes for a given

551 species, only a single node was retained based on the sequence which is first in the alphabetical
552 order of the gene accession numbers. As above, this reduced RbcL tree was then manually rooted
553 in Dendroscope¹⁴⁰, and the relative extent of RbcL protein evolution in each angiosperm was
554 computed as the summed branch length (sequence substitutions per aligned sequence site) leading
555 from the last common ancestor at the root of this clade to each respective terminal node. Finally,
556 linear regression models were employed to assess the pairwise relationships between the variation
557 in rubisco molecular evolution and each respective photosynthetic parameter. The resulting full
558 integrated dataset containing photosynthetic measurements and comparable extents of RbcL
559 molecular evolution for all 366 C₃ angiosperms can be found in Supplemental File 9. The RbcL
560 phylogenetic gene tree which has been pruned from that in Supplemental File 8 to contain the subset
561 of C₃ angiosperms in the photosynthetic dataset used for the basis of this analysis can be found in
562 Supplemental File 10.

563 **References**

564 1. Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. *Annu. Rev. Earth Planet. Sci.* **33**, 1–36 (2005).

565 2. Kasting, J. F. Earth's early atmosphere. *Science (80-)*. **259**, 920–926 (1993).

566 3. Kaufman, A. J. *et al.* Late archean biospheric oxygenation and atmospheric evolution. *Science (80-)*. **317**, 1900–1903 (2007).

567 4. Nisbet, E. G. *et al.* The age of Rubisco: The evolution of oxygenic photosynthesis. *Geobiology* **5**, 311–335 (2007).

568 5. Nisbet, E. G. & Nisbet, R. E. R. Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time. *Philos. Trans. R. Soc. B Biol. Sci.* **363**, 2745–2754 (2008).

569 6. Shih, P. M. *et al.* Biochemical characterization of predicted Precambrian RuBisCO. *Nat. Commun.* **7**, (2016).

570 7. Ślesak, I., Ślesak, H. & Kruk, J. RubisCO Early Oxygenase Activity: A Kinetic and Evolutionary Perspective. *BioEssays* **39**, (2017).

571 8. Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. *Geochim. Cosmochim. Acta* **66**, 3811–3826 (2002).

572 9. Ashida, H. *et al.* RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: Functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO. *J. Exp. Bot.* **59**, 1543–1554 (2008).

573 10. Ashida, H., Danchin, A. & Yokota, A. Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? *Res. Microbiol.* **156**, 611–618 (2005).

574 11. Erb, T. J. & Zarzycki, J. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO₂ fixing enzyme. *Current Opinion in Biotechnology* vol. 49 100–107
<https://reader.elsevier.com/reader/sd/pii/S095816691730099X?token=3ECF17E8852AFD765C4445B954C57E5AB9ED5265BF433EACA574481D29827EF2C02377F044E4135B5CB4>

589 B897D3E0478A (2018).

590 12. Banda, D. M. *et al.* Novel bacterial clade reveals origin of form I Rubisco. *Nat. Plants* **6**, 1158–
591 1166 (2020).

592 13. Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III,
593 and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution
594 and structure/function relationships. *J. Exp. Bot.* **59**, 1515–1524 (2008).

595 14. Andersson, I. & Backlund, A. Structure and function of Rubisco. *Plant Physiol. Biochem.* **46**,
596 275–291 (2008).

597 15. Whitney, S. M., Houtz, R. L. & Alonso, H. Advancing our understanding and capacity to
598 engineer nature's CO₂-sequestering enzyme, Rubisco. *Plant Physiol.* **155**, 27–35 (2011).

599 16. Tabita, F. R., Hanson, T. E., Satagopan, S., Witte, B. H. & Kreel, N. E. Phylogenetic and
600 evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional
601 lessons provided by diverse molecular forms. *Philos. Trans. R. Soc. B Biol. Sci.* **363**, 2629–
602 2640 (2008).

603 17. Schneider, G., Lindqvist, Y. & Brändén, C. I. RUBISCO: Structure and mechanism. *Annual
604 Review of Biophysics and Biomolecular Structure* vol. 21 119–143 at
605 <https://doi.org/10.1146/annurev.bb.21.060192.001003> (1992).

606 18. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the
607 biosphere: Integrating terrestrial and oceanic components. *Science (80-)* **281**, 237–240
608 (1998).

609 19. Lee, B. & Tabita, F. R. Purification of Recombinant Ribulose-1,5-bisphosphate
610 Carboxylase/Oxygenase Large Subunits Suitable for Reconstitution and Assembly of Active
611 L8S8 Enzyme. *Biochemistry* **29**, 9352–9357 (1990).

612 20. Andrews, T. J. Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits
613 in the complete absence of small subunits. *J. Biol. Chem.* **263**, 12213–12219 (1988).

614 21. Bouvier, J. W. & Kelly, S. Response to Tcherkez and Farquhar: Rubisco adaptation is more

615 limited by phylogenetic constraint than by catalytic trade-off. *J. Plant Physiol.* **287**, 154021
616 (2023).

617 22. Bouvier, J. W. *et al.* Rubisco Adaptation Is More Limited by Phylogenetic Constraint Than by
618 Catalytic Trade-off. *Mol. Biol. Evol.* **38**, 2880–2896 (2021).

619 23. Galmés, J. *et al.* Expanding knowledge of the Rubisco kinetics variability in plant species:
620 Environmental and evolutionary trends. *Plant, Cell Environ.* **37**, 1989–2001 (2014).

621 24. Galmés, J. *et al.* Environmentally driven evolution of Rubisco and improved photosynthesis
622 and growth within the C3 genus Limonium (Plumbaginaceae). *New Phytol.* **203**, 989–999
623 (2014).

624 25. Chatterjee, A. & Anindya, B. Rubisco: Limitations and Re-engineering for a Better Enzyme.
625 *Int. Res. J. Plant Sci.* **2**, 022–024 (2011).

626 26. Christin, P. A. *et al.* Evolutionary switch and genetic convergence on *rbcL* following the
627 evolution of C4 photosynthesis. *Mol. Biol. Evol.* **25**, 2361–2368 (2008).

628 27. Kapralov, M. V., Kubien, D. S., Andersson, I. & Filatov, D. A. Changes in Rubisco kinetics
629 during the evolution of C4 Photosynthesis in Flaveria (Asteraceae) are associated with
630 positive selection on genes encoding the enzyme. *Mol. Biol. Evol.* **28**, 1491–1503 (2011).

631 28. Parry, M. A. J., Andralojc, P. J., Mitchell, R. A. C., Madgwick, P. J. & Keys, A. J. Manipulation
632 of Rubisco: The amount, activity, function and regulation. *J. Exp. Bot.* **54**, 1321–1333 (2003).

633 29. Whitney, S. M. *et al.* Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-
634 bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in flaveria. *Proc. Natl.
635 Acad. Sci. U. S. A.* **108**, 14688–14693 (2011).

636 30. Zhou, Y., Gunn, L. H., Birch, R., Andersson, I. & Whitney, S. M. Grafting Rhodobacter
637 *sphaerooides* with red algae Rubisco to accelerate catalysis and plant growth. *Nat. Plants* **9**,
638 978–986 (2023).

639 31. Kapralov, M. V. & Filatov, D. A. Widespread positive selection in the photosynthetic Rubisco
640 enzyme. *BMC Evol. Biol.* **7**, (2007).

641 32. Lin, M. T. *et al.* A procedure to introduce point mutations into the Rubisco large subunit gene
642 in wild-type plants. *Plant J.* **106**, 876–887 (2021).

643 33. Spreitzer, R. J. Role of the small subunit in ribulose-1,5-bisphosphate
644 carboxylase/oxygenase. *Arch. Biochem. Biophys.* **414**, 141–149 (2003).

645 34. Schulz, L. *et al.* Evolution of increased complexity and specificity at the dawn of form I
646 Rubiscos. *Science (80-.)* **378**, (2022).

647 35. Fitchen, J. H., Knight, S., Andersson, I., Branden, C. I. & McIntosh, L. Residues in three
648 conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase
649 are required for quaternary structure. *Proc. Natl. Acad. Sci. U. S. A.* **87**, 5768–5772 (1990).

650 36. Genkov, T. & Spreitzer, R. J. Highly conserved small subunit residues influence Rubisco large
651 subunit catalysis. *J. Biol. Chem.* **284**, 30105–30112 (2009).

652 37. Grabsztunowicz, M., Górska, Z., Luciński, R. & Jackowski, G. A reversible decrease in ribulose
653 1,5-bisphosphate carboxylase/oxygenase carboxylation activity caused by the aggregation of
654 the enzyme's large subunit is triggered in response to the exposure of moderate irradiance-
655 grown plants to low irradiance. *Physiol. Plant.* **154**, 591–608 (2015).

656 38. Joshi, J., Mueller-Cajar, O., Tsai, Y. C. C., Hartl, F. U. & Hayer-Hartl, M. Role of small subunit
657 in mediating assembly of red-type Form I Rubisco. *J. Biol. Chem.* **290**, 1066–1074 (2015).

658 39. Lee, B., Berka, R. M. & Tabita, F. R. Mutations in the small subunit of cyanobacterial ribulose-
659 bisphosphate carboxylase/oxygenase that modulate interactions with large subunits. *J. Biol.*
660 *Chem.* **266**, 7417–7422 (1991).

661 40. McFadden, B. A. & Small, C. L. Cloning, expression and directed mutagenesis of the genes
662 for ribulose bisphosphate carboxylase/oxygenase. *Photosynth. Res.* **18**, 245–260 (1988).

663 41. Schneider, G. *et al.* Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a
664 functional role for the small subunit. *EMBO J.* **9**, 2045–2050 (1990).

665 42. Van Lun, M., Hub, J. S., Van Der Spoel, D. & Andersson, I. CO₂ and O₂ distribution in rubisco
666 suggests the small subunit functions as a CO₂ reservoir. *J. Am. Chem. Soc.* **136**, 3165–3171

667 (2014).

668 43. Kostov, R. V., Small, C. L. & McFadden, B. A. Mutations in a sequence near the N-terminus
669 of the small subunit alter the CO₂/O₂ specificity factor for ribulose bisphosphate
670 carboxylase/oxygenase. *Photosynth. Res.* **54**, 127–134 (1997).

671 44. Voordouw, G., De Vries, P. A., Van Den Berg, W. A. M. & De Clerck, E. P. J. Site-directed
672 mutagenesis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from
673 *Anacystis nidulans*. *Eur. J. Biochem.* **163**, 591–598 (1987).

674 45. Read, B. A. & Tabita, F. R. Amino Acid Substitutions in the Small Subunit of Ribulose-1, 5-
675 bisphosphate Carboxylase/Oxygenase That Influence Catalytic Activity of the Holoenzyme.
676 *Biochemistry* **31**, 519–525 (1992).

677 46. Getzoff, T. P., Zhu, G., Bohnert, H. J. & Jensen, R. G. Chimeric *Arabidopsis thaliana* Ribulose-
678 1,5-Bisphosphate Carboxylase/Oxygenase Containing a Pea Small Subunit Protein Is
679 Compromised in Carbamylation. *Plant Physiol.* **116**, 695–702 (1998).

680 47. Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C. & Fukayama, H. Functional incorporation of
681 sorghum small subunit increases the catalytic turnover rate of rubisco in transgenic rice. *Plant*
682 *Physiol.* **156**, 1603–1611 (2011).

683 48. Kanevski, I., Maliga, P., Rhoades, D. F. & Gutteridge, S. Plastome engineering of ribulose-
684 1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and
685 tobacco small subunit hybrid. *Plant Physiol.* **119**, 133–141 (1999).

686 49. Matsumura, H. *et al.* Hybrid Rubisco with Complete Replacement of Rice Rubisco Small
687 Subunits by Sorghum Counterparts Confers C4 Plant-like High Catalytic Activity. *Mol. Plant*
688 **13**, 1570–1581 (2020).

689 50. Sakoda, K. *et al.* Effects of introduction of sorghum RbcS with rice RbcS knockdown by RNAi
690 on photosynthetic activity and dry weight in rice. *Plant Prod. Sci.* **24**, 346–353 (2021).

691 51. Andrews, T. J. & Lorimer, G. H. Catalytic properties of a hybrid between cyanobacterial large
692 subunits and higher plant small subunits of ribulosebisphosphate carboxylase-oxygenase. *J.*

693 693 *Biol. Chem.* **260**, 4632–4636 (1985).

694 694 52. Horken, K. M. & Tabita, F. R. The ‘green’ form I ribulose 1,5-bisphosphate
695 carboxylase/oxygenase from the nonsulfur purple bacterium *Rhodobacter capsulatus*. *J.*
696 *Bacteriol.* **181**, 3935–3941 (1999).

697 697 53. Lee, B., Read, B. A. & Tabita, F. R. Catalytic properties of recombinant octameric,
698 hexadecameric, and heterologous cyanobacterial/ bacterial ribulose-1,5-bisphosphate
699 carboxylase/oxygenase. *Arch. Biochem. Biophys.* **291**, 263–269 (1991).

700 700 54. van der Vies, S. M., Bradley, D. & Gatenby, A. A. Assembly of cyanobacterial and higher
701 plant ribulose bisphosphate carboxylase subunits into functional homologous and
702 heterologous enzyme molecules in *Escherichia coli*. *EMBO J.* **5**, 2439–2444 (1986).

703 703 55. Wang, Y. L., Zhou, J. H., Wang, Y. F., Bao, J. S. & Chen, H. B. Properties of hybrid enzymes
704 between *Synechococcus* large subunits and higher plant small subunits of ribulose-1,5-
705 bisphosphate carboxylase/oxygenase in *Escherichia coli*. *Arch. Biochem. Biophys.* **396**, 35–
706 42 (2001).

707 707 56. Read, B. A. & Tabita, F. R. A Hybrid Ribulosebisphosphate Carboxylase/Oxygenase Enzyme
708 Exhibiting a Substantial Increase in Substrate Specificity Factor. *Biochemistry* **31**, 5553–5560
709 (1992).

710 710 57. Cavanagh, A. P., Slattery, R. & Kubien, D. S. Temperature-induced changes in *Arabidopsis*
711 Rubisco activity and isoform expression. *J. Exp. Bot.* (2022) doi:10.1093/jxb/erac379.

712 712 58. Martin-Avila, E. *et al.* Modifying plant photosynthesis and growth via simultaneous chloroplast
713 transformation of rubisco large and small subunits. *Plant Cell* **32**, 2898–2916 (2020).

714 714 59. Morita, K., Hatanaka, T., Misoo, S. & Fukayama, H. Unusual small subunit that is not
715 expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. *Plant*
716 *Physiol.* **164**, 69–79 (2014).

717 717 60. Badger, M. R. *et al.* The diversity and coevolution of Rubisco, plastids, pyrenoids, and
718 chloroplast-based CO₂-concentrating mechanisms in algae. *Can. J. Bot.* **76**, 1052–1071
719 (1998).

720 61. Bar-Even, A. *et al.* The moderately efficient enzyme: Evolutionary and physicochemical trends
721 shaping enzyme parameters. *Biochemistry* **50**, 4402–4410 (2011).

722 62. Chollet, R. *The biochemistry of photorespiration. Trends in Biochemical Sciences* vol. 2
723 (1977).

724 63. Sharkey, T. D. Emerging research in plant photosynthesis. *Emerg. Top. Life Sci.* **4**, 137–150
725 (2020).

726 64. Bowes, G., Ogren, W. L. & Hageman, R. H. *Phosphoglycolate production catalyzed by*
727 *ribulose diphosphate carboxylase. Biochemical and Biophysical Research Communications*
728 vol. 45 (1971).

729 65. Busch, F. A. Photorespiration in the context of Rubisco biochemistry, CO₂ diffusion and
730 metabolism. *Plant J.* **101**, 919–939 (2020).

731 66. Eckardt, N. A. Photorespiration revisited. *Plant Cell* vol. 17 2139–2141 Article at
732 <https://doi.org/10.1105/tpc.105.035873> (2005).

733 67. Sharwood, R. E. Engineering chloroplasts to improve Rubisco catalysis: prospects for
734 translating improvements into food and fiber crops. *New Phytologist* vol. 213 494–510 at
735 <https://doi.org/10.1111/nph.14351> (2017).

736 68. Carmo-Silva, E., Scales, J. C., Madgwick, P. J. & Parry, M. A. J. Optimizing Rubisco and its
737 regulation for greater resource use efficiency. *Plant, Cell and Environment* vol. 38 1817–1832
738 at <https://doi.org/10.1111/pce.12425> (2015).

739 69. Sarles, L. S. & Tabita, F. R. Derepression of the synthesis of D-ribulose 1,5-bisphosphate
740 carboxylase/oxygenase from *Rhodospirillum rubrum*. *J. Bacteriol.* **153**, 458–464 (1983).

741 70. Tabita, F. R. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different
742 perspective. *Photosynth. Res.* **60**, 1–28 (1999).

743 71. Flamholz, A. & Shih, P. M. Cell biology of photosynthesis over geologic time. *Curr. Biol.* **30**,
744 R490–R494 (2020).

745 72. Meyer, M. & Griffiths, H. Origins and diversity of eukaryotic CO₂-concentrating mechanisms:

746 Lessons for the future. *Journal of Experimental Botany* vol. 64 769–786 Article at
747 <https://doi.org/10.1093/jxb/ers390> (2013).

748 73. Schlüter, U. *et al.* Brassicaceae display variation in efficiency of photorespiratory carbon
749 recapturing mechanisms. *J. Exp. Bot.* (2023) doi:10.1093/jxb/erad250.

750 74. Ogren, W. L. Photorespiration: Pathways, Regulation, and Modification. *Annu. Rev. Plant*
751 *Physiol.* **35**, 415–442 (1984).

752 75. Orr, D. J. *et al.* Engineering photosynthesis: Progress and perspectives. *F1000Research* vol.
753 6 at <https://doi.org/10.12688/f1000research.12181.1> (2017).

754 76. Parry, M. A. J. *et al.* Rubisco activity and regulation as targets for crop improvement. *J. Exp.*
755 *Bot.* **64**, 717–730 (2013).

756 77. Parry, M. A. J., Madgwick, P. J., Carvalho, J. F. C. & Andralojc, P. J. Prospects for increasing
757 photosynthesis by overcoming the limitations of Rubisco. in *Journal of Agricultural Science*
758 vol. 145 31–43 (2007).

759 78. Sharwood, R. E., Ghannoum, O. & Whitney, S. M. Prospects for improving CO₂ fixation in
760 C₃-crops through understanding C₄-Rubisco biogenesis and catalytic diversity. *Current*
761 *Opinion in Plant Biology* vol. 31 135–142 at <https://doi.org/10.1016/j.pbi.2016.04.002> (2016).

762 79. Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces adaptation of Rubisco
763 toward optimality in a low-dimensional landscape. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 3475–
764 3480 (2010).

765 80. Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused
766 substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly
767 optimized. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 7246–7251 (2006).

768 81. Flamholz, A. I. *et al.* Revisiting Trade-offs between Rubisco Kinetic Parameters. *Biochemistry*
769 vol. 58 3365–3376 Article at <https://doi.org/10.1021/acs.biochem.9b00237> (2019).

770 82. Iñiguez, C. *et al.* Evolutionary trends in RuBisCO kinetics and their co-evolution with CO₂
771 concentrating mechanisms. *Plant J.* **101**, 897–918 (2020).

772 83. Cummins, P. L. The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating
773 Mechanisms in Higher Plants. *Front. Plant Sci.* **12**, (2021).

774 84. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines,
775 Timetrees, and Divergence Times. *Mol. Biol. Evol.* **34**, 1812–1819 (2017).

776 85. Gago, J. *et al.* Photosynthesis Optimized across Land Plant Phylogeny. *Trends in Plant*
777 *Science* vol. 24 947–958 at <https://doi.org/10.1016/j.tplants.2019.07.002> (2019).

778 86. Ogren, W. L. & Bowes, G. Ribulose diphosphate carboxylase regulates soybean
779 photorespiration. *Nat. New Biol.* **230**, 159–160 (1971).

780 87. APG. An Ordinal Classification for the Families of Flowering Plants. *Annals of the Missouri*
781 *Botanical Garden* vol. 85 531–553
782 https://www.researchgate.net/publication/279592674_An_ordinal_classification_for_the_families_of_flowering_plants?enrichId=rgreq-264f96f50187de487ddbc0180b68f4ac-XXX&enrichSource=Y292ZXJQYWdOzl3OTU5MjY3NDtBUzo0MTYwNDQ5Nzl4MjI1MjhAMTQ3NjlwNDI1OTUxNg%3D%3D (1998).

786 88. APG. An update of the Angiosperm Phylogeny Group classification for the orders and families
787 of flowering plants: APG IV. *Bot. J. Linn. Soc.* **181**, 1–20 (2016).

788 89. Gielly, L. & Taberlet, P. *The use of chloroplast DNA to resolve plant phylogenies: Noncoding*
789 *versus rbcL sequences. Molecular Biology and Evolution* vol. 11
790 <https://academic.oup.com/mbe/article-abstract/11/5/769/1008715> (1994).

791 90. Pál, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. *Nat. Rev. Genet.* **7**,
792 337–348 (2006).

793 91. Robbins, E. H. J. & Kelly, S. The Evolutionary Constraints on Angiosperm Chloroplast
794 Adaptation. *Genome Biol. Evol.* **15**, (2023).

795 92. Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed
796 proteins evolve slowly. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 14338–14343 (2005).

797 93. Gout, J. F., Kahn, D. & Duret, L. The relationship among gene expression, the evolution of

798 gene dosage, and the rate of protein evolution. *PLoS Genet.* **6**, 20 (2010).

799 94. Seward, E. A. & Kelly, S. Selection-driven cost-efficiency optimization of transcripts modulates
800 gene evolutionary rate in bacteria. *Genome Biol.* **19**, (2018).

801 95. Wall, D. P. *et al.* Functional genomic analysis of the rates of protein evolution. *Proc. Natl.*
802 *Acad. Sci. U. S. A.* **102**, 5483–5488 (2005).

803 96. Bloom, J. D., Drummond, D. A., Arnold, F. H. & Wilke, C. O. Structural determinants of the
804 rate of protein evolution in yeast. *Mol. Biol. Evol.* **23**, 1751–1761 (2006).

805 97. Echave, J. Beyond Stability Constraints: A Biophysical Model of Enzyme Evolution with
806 Selection on Stability and Activity. *Mol. Biol. Evol.* **36**, 613–620 (2019).

807 98. Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Universal distribution of protein evolution rates
808 as a consequence of protein folding physics. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 2983–2988
809 (2010).

810 99. Soskine, M. & Tawfik, D. S. Mutational effects and the evolution of new protein functions. *Nat.*
811 *Rev. Genet.* **11**, 572–582 (2010).

812 100. Tourasse, N. J. & Li, W. H. Selective constraints, amino acid composition, and the rate of
813 protein evolution. *Mol. Biol. Evol.* **17**, 656–664 (2000).

814 101. Fraser, H. B., Wall, D. P. & Hirsh, A. E. A simple dependence between protein evolution rate
815 and the number of protein-protein interactions. *BMC Evol. Biol.* **3**, 1–6 (2003).

816 102. Fraser, H. B. & Hirsh, A. E. Evolutionary rate depends on number of protein-protein
817 interactions independently of gene expression level. *BMC Evol. Biol.* **4**, 1–5 (2004).

818 103. Saeed, R. & Deane, C. M. Protein protein interactions, evolutionary rate, abundance and age.
819 *BMC Bioinformatics* **7**, (2006).

820 104. Tóth-Petróczy, Á. & Tawfik, D. S. Slow protein evolutionary rates are dictated by surface -
821 core association. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 11151–11156 (2011).

822 105. Cummins, P. L., Kannappan, B. & Gready, J. E. Directions for optimization of photosynthetic
823 carbon fixation: Rubisco's efficiency may not be so constrained after all. *Front. Plant Sci.* **9**,

824 (2018).

825 106. Duraõ, P. *et al.* Opposing effects of folding and assembly chaperones on evolvability of
826 Rubisco. *Nat. Chem. Biol.* **11**, 148–155 (2015).

827 107. Studer, R. A., Christin, P. A., Williams, M. A. & Orengo, C. A. Stability-activity tradeoffs
828 constrain the adaptive evolution of RubisCO. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 2223–2228
829 (2014).

830 108. Cummins, P. L., Kannappan, B. & Gready, J. E. Response: Commentary: Directions for
831 Optimization of Photosynthetic Carbon Fixation: RuBisCO's Efficiency May Not Be So
832 Constrained After All. *Front. Plant Sci.* **10**, 1426 (2019).

833 109. Aigner, H. *et al.* Plant RuBisCo assembly in *E. coli* with five chloroplast chaperones including
834 BSD2. *Science (80-.)* **358**, 1272–1278 (2017).

835 110. Whitney, S. M., Birch, R., Kelso, C., Beck, J. L. & Kapralov, M. V. Improving recombinant
836 Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1
837 chaperone. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 3564–3569 (2015).

838 111. Rickaby, R. E. M. & Eason Hubbard, M. R. Upper ocean oxygenation, evolution of RuBisCO
839 and the Phanerozoic succession of phytoplankton. *Free Radic. Biol. Med.* **140**, 295–304
840 (2019).

841 112. Lin, M. T., Salihovic, H., Clark, F. K. & Hanson, M. R. Improving the efficiency of Rubisco by
842 resurrecting its ancestors in the family Solanaceae. *Sci. Adv.* **8**, (2022).

843 113. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic
844 CO₂ assimilation in leaves of C3 species. *Planta* **149**, 78–90 (1980).

845 114. Bassham, J. A. & Krause, G. H. Free energy changes and metabolic regulation in steady-
846 state photosynthetic carbon reduction. *BBA - Bioenerg.* **189**, 207–221 (1969).

847 115. Dietz, K. J. & Heber, U. Rate-limiting factors in leaf photosynthesis. I. Carbon fluxes in the
848 calvin cycle. *BBA - Bioenerg.* **767**, 432–443 (1984).

849 116. Fichtner, K. *et al.* Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic

850 tobacco transformed with 'antisense' rbcS - V. Relationship between photosynthetic rate,
851 storage strategy, biomass allocation and vegetative plant growth at three different nitrogen s.
852 *Planta* **190**, 1–9 (1993).

853 117. Furbank, R. T., Chitty, J. A., Von Caemmerer, S. & Jenkins, C. L. D. Antisense RNA Inhibition
854 of RbcS Gene Expression Reduces Rubisco Level and Photosynthesis in the C4 Plant
855 Flaveria bidentis. *Plant Physiol.* **111**, 725–734 (1996).

856 118. Hudson, G. S., Evans, J. R., Von Caemmerer, S., Arvidsson, Y. B. C. & Andrews, T. J.
857 Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA
858 reduces photosynthesis in transgenic tobacco plants. *Plant Physiol.* **98**, 294–302 (1992).

859 119. Maheshwari, C. *et al.* Targeted knockdown of ribulose-1, 5-bisphosphate carboxylase-
860 oxygenase in rice mesophyll cells. *J. Plant Physiol.* **260**, (2021).

861 120. Quick, W. P. *et al.* Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in
862 transgenic tobacco transformed with 'antisense' rbcS - I. Impact on photosynthesis in ambient
863 growth conditions. *Planta* **183**, 542–554 (1991).

864 121. Stitt, M. *et al.* Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic
865 tobacco transformed with 'antisense' rbcS - II. Flux-control coefficients for photosynthesis in
866 varying light, CO₂, and air humidity. *Planta* **183**, 555–566 (1991).

867 122. Poolman, M. G., Fell, D. A. & Thomas, S. Modelling photosynthesis and its control. *J. Exp.*
868 *Bot.* **51**, 319–328 (2000).

869 123. Zhu, X. G., De Sturler, E. & Long, S. P. Optimizing the distribution of resources between
870 enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical
871 simulation using an evolutionary algorithm. *Plant Physiol.* **145**, 513–526 (2007).

872 124. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
873 Improvements in performance and usability. *Molecular Biology and Evolution* vol. 30 772–780
874 Article at <https://doi.org/10.1093/molbev/mst010> (2013).

875 125. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: Robust conversion of protein sequence
876 alignments into the corresponding codon alignments. *Nucleic Acids Res.* **34**, W609 (2006).

877 126. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective
878 stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and*
879 *Evolution* vol. 32 268–274 Article at <https://doi.org/10.1093/molbev/msu300> (2015).

880 127. Goodstein, D. M. *et al.* Phytozome: A comparative platform for green plant genomics. *Nucleic*
881 *Acids Res.* **40**, (2012).

882 128. Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative
883 genomics. *Genome Biol.* **20**, 1–14 (2019).

884 129. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome
885 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* **16**, 1–14
886 (2015).

887 130. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND.
888 *Nat. Methods* **12**, 59–60 (2014).

889 131. Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning enables high-quality and high-throughput
890 prediction of enzyme commission numbers. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 13996–14001
891 (2019).

892 132. Swarbreck, D. *et al.* The Arabidopsis Information Resource (TAIR): Gene structure and
893 function annotation. *Nucleic Acids Res.* **36**, 1009–1014 (2008).

894 133. Lamesch, P. *et al.* The Arabidopsis Information Resource (TAIR): Improved gene annotation
895 and new tools. *Nucleic Acids Res.* **40**, D1202–D1210 (2012).

896 134. Armenteros, J. J. A. *et al.* Detecting sequence signals in targeting peptides using deep
897 learning. *Life Sci. Alliance* **2**, (2019).

898 135. Emanuelsson, O., Nielsen, H., Brunak, S. & Von Heijne, G. Predicting subcellular localization
899 of proteins based on their N-terminal amino acid sequence. *J. Mol. Biol.* **300**, 1005–1016
900 (2000).

901 136. Small, I., Peeters, N., Legeai, F. & Lurin, C. Predotar: A tool for rapidly screening proteomes
902 for N-terminal targeting sequences. *Proteomics* **4**, 1581–1590 (2004).

903 137. Gruber, A. V. & Feiz, L. Rubisco assembly in the chloroplast. *Front. Mol. Biosci.* **5**, (2018).

904 138. Galmés, J. *et al.* Rubisco specificity factor tends to be larger in plant species from drier
905 habitats and in species with persistent leaves. *Plant, Cell Environ.* **28**, 571–579 (2005).

906 139. Su, Z. & Townsend, J. P. Utility of characters evolving at diverse rates of evolution to resolve
907 quartet trees with unequal branch lengths: Analytical predictions of long-branch effects. *BMC*
908 *Evolutionary Biology* vol. 15 86 Article at <https://doi.org/10.1186/s12862-015-0364-7> (2015).

909 140. Huson, D. H. & Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic
910 trees and networks. *Systematic Biology* vol. 61 1061–1067 Article at
911 <https://doi.org/10.1093/sysbio/sys062> (2012).

912 141. Orr, D. J. *et al.* Surveying rubisco diversity and temperature response to improve crop
913 photosynthetic efficiency. *Plant Physiol.* **172**, 707–717 (2016).

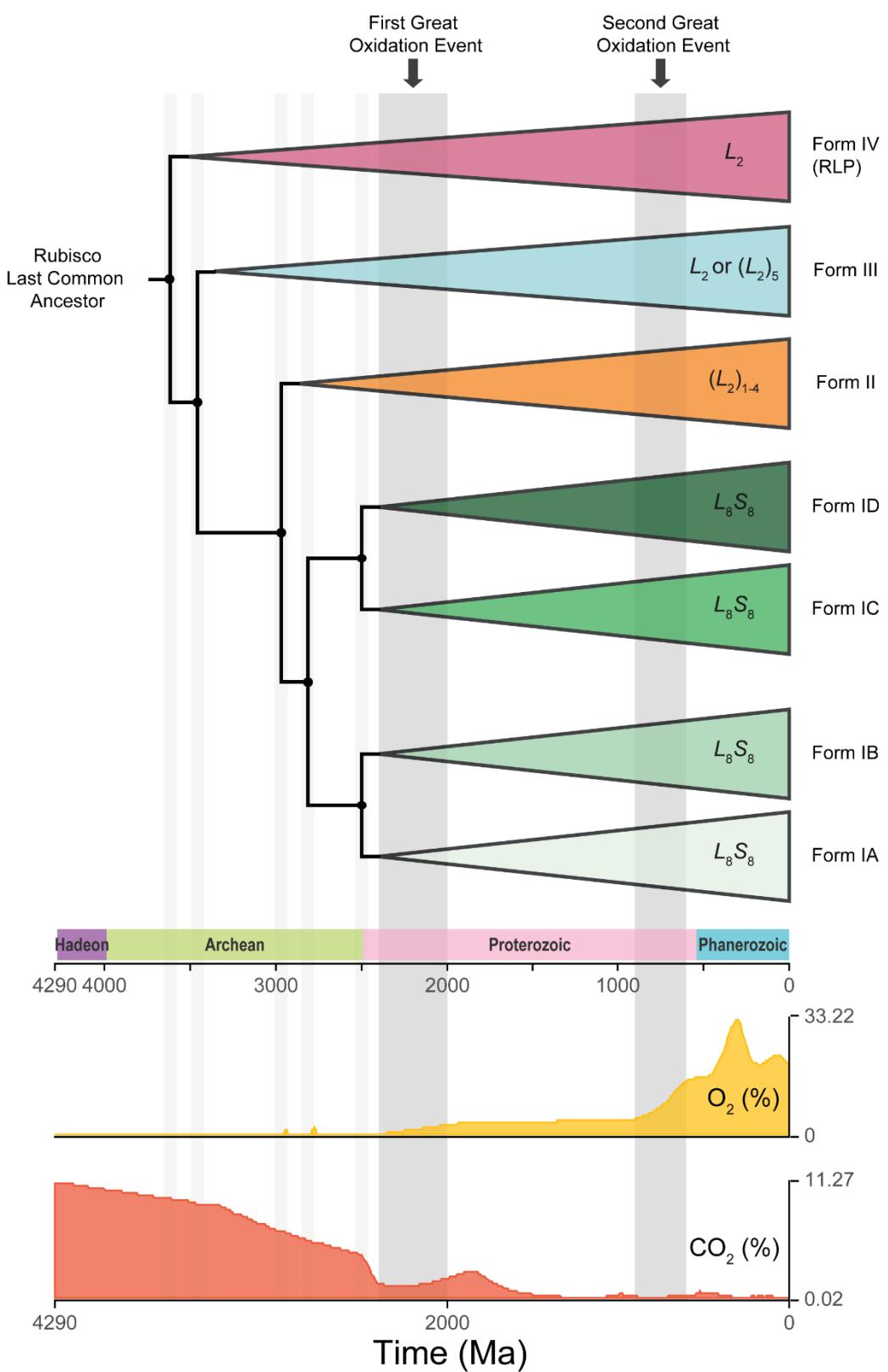
914 142. Chernomor, O. *et al.* Split diversity in constrained conservation prioritization using integer
915 linear programming. *Methods Ecol. Evol.* **6**, 83–91 (2015).

916 **Funding**

917 This work was funded by the Royal Society and the European Union's Horizon 2020 research and
918 innovation program under grant agreement number 637765. JWB was funded by the BBSRC
919 through BB/J014427/1. This research was funded in whole, or in part, by the BBSRC number
920 BB/J014427/1. For the purpose of open access, the author has applied a CC BY public copyright
921 license to any Author Accepted Manuscript version arising from this submission.

922 **Data Availability**

923 All data used in this study is provided in the supplemental material.

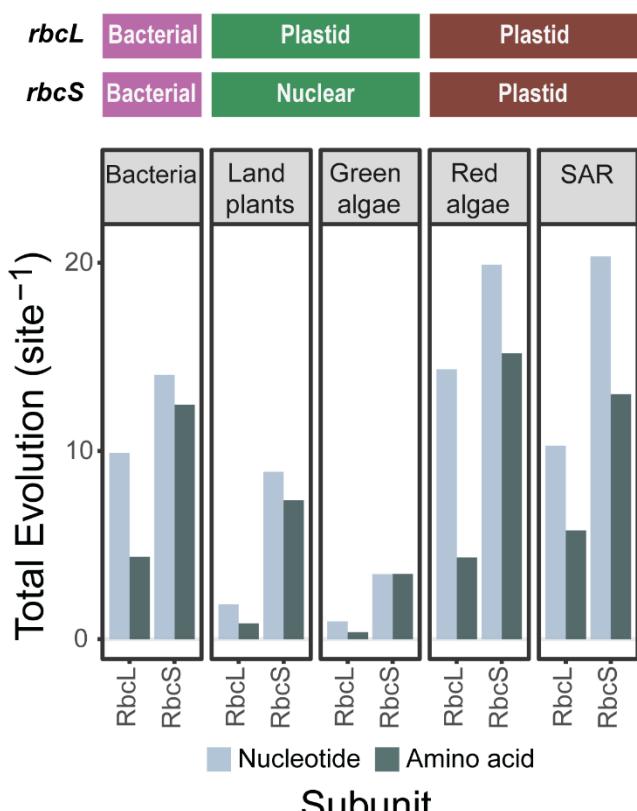

924 **Author Contributions**

925 JWB and SK conceived the study and wrote and edited the manuscript. JWB conducted the analysis.
926 DME provided advice on design and implementation of the study.

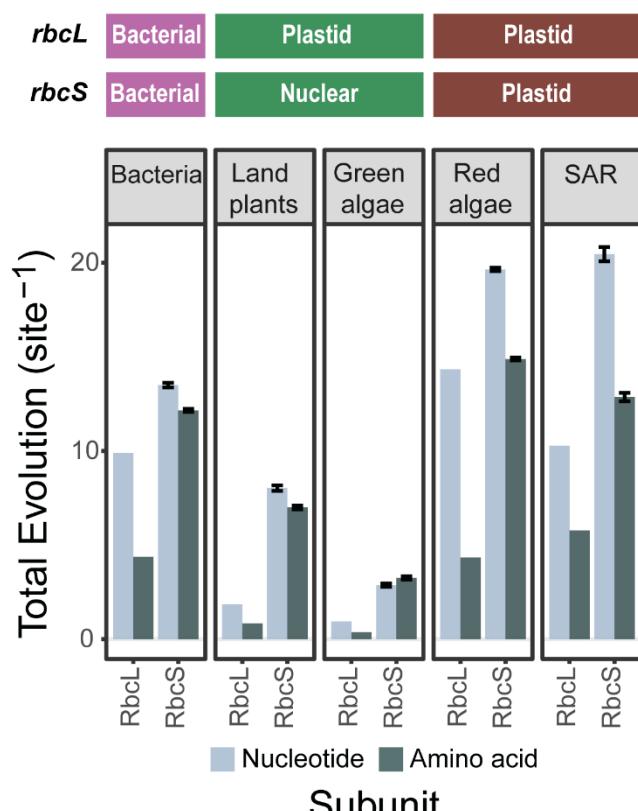
927 **Figures**

928 **Figure 1**

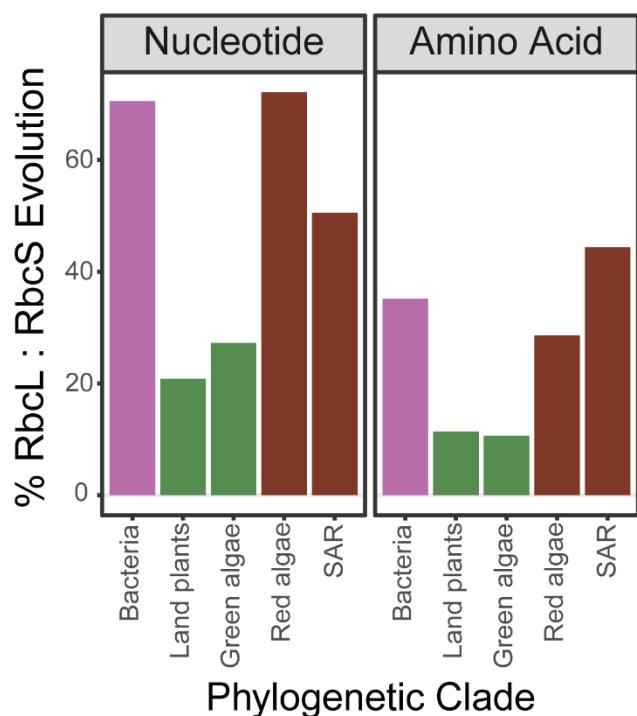
929

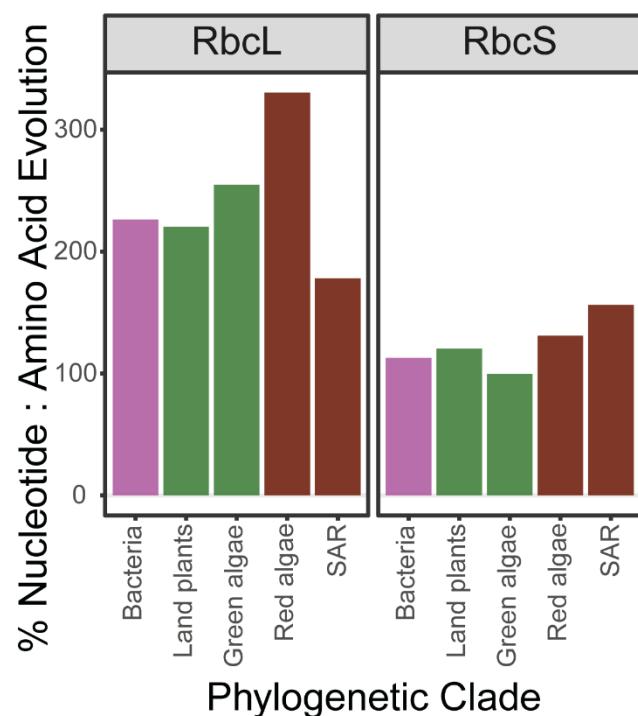


930


931 **Figure 1.** The evolutionary history of rubisco in the context of atmospheric CO₂ (%) and O₂ (%)
932 following divergence from the ancestral rubisco-like protein (RLP). For ease of visualisation, branch
933 points in the phylogeny are indicated by grey vertical bars. The First and Second Great Oxidation
934 events are also indicated by grey vertical bars and have been labelled. Graphics of atmospheric CO₂
935 and O₂ levels were adapted from the *TimeTree* resource (<http://www.timetree.org>; ⁸⁴).

936 **Figure 2**


A


B

C

D

938 **Figure 2.** The extent of molecular evolution in rubisco during the radiation of each taxonomic group.

939 **A)** Bar plot depicting the total amount of molecular evolution (substitutions per sequence site) in the

940 nucleotide and protein sequences of the rubisco large (*rbcL*/RbcL) and small (*rbcS*/RbcS) subunit

941 across taxonomic groups. The genome in which *rbcL* and *rbcS* genes reside within each group is

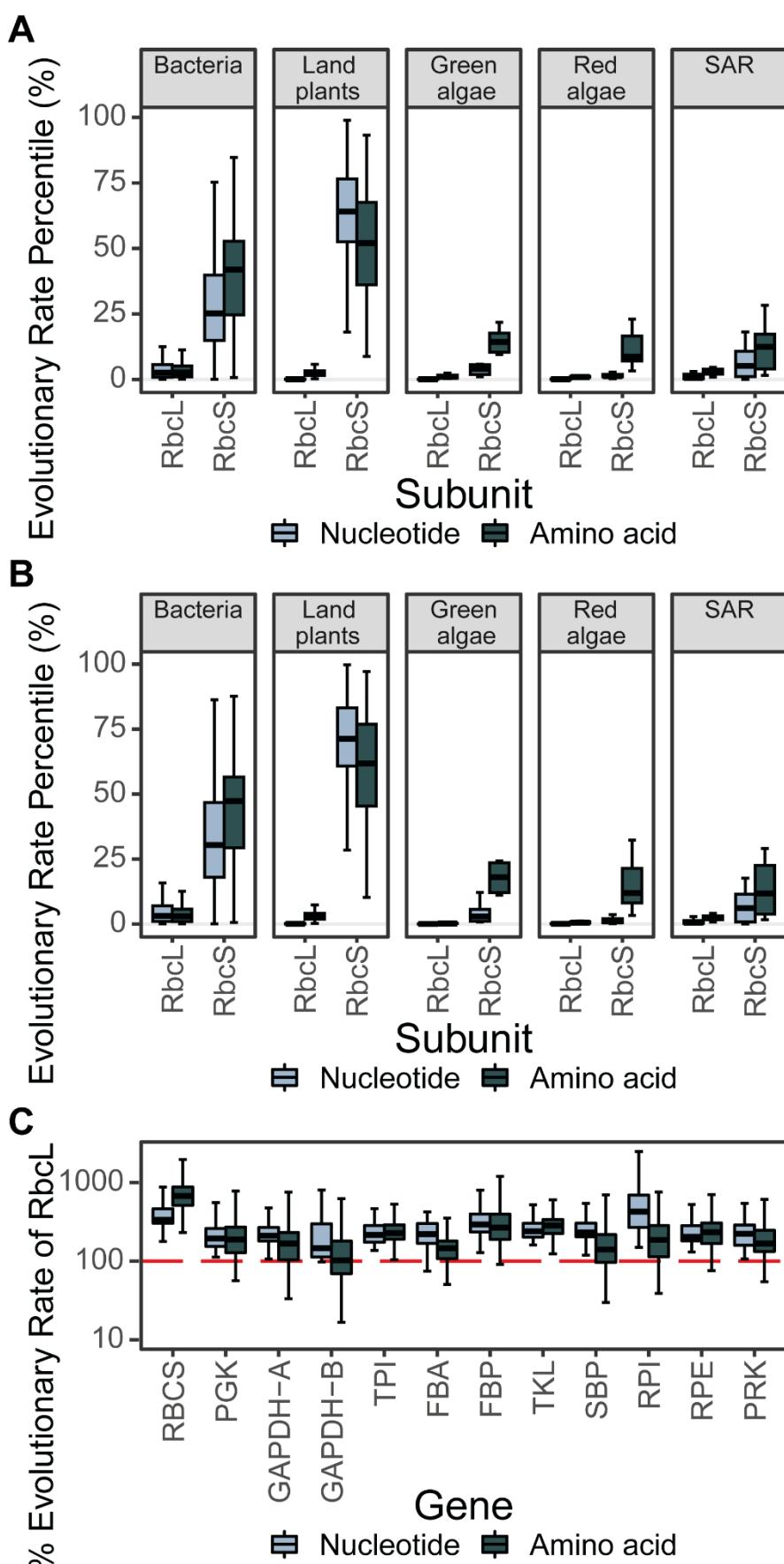
942 indicated above the plot (bacterial, plastid, nuclear). **B)** As in (A) but using 1,000 bootstrapped

943 stratified sampling of *rbcS*/RbcS per species to account for the higher copy number of this gene as

944 compared to *rbcL*/RbcL in the dataset used for analysis (see Methods). Error bars represent ± 1 S.E

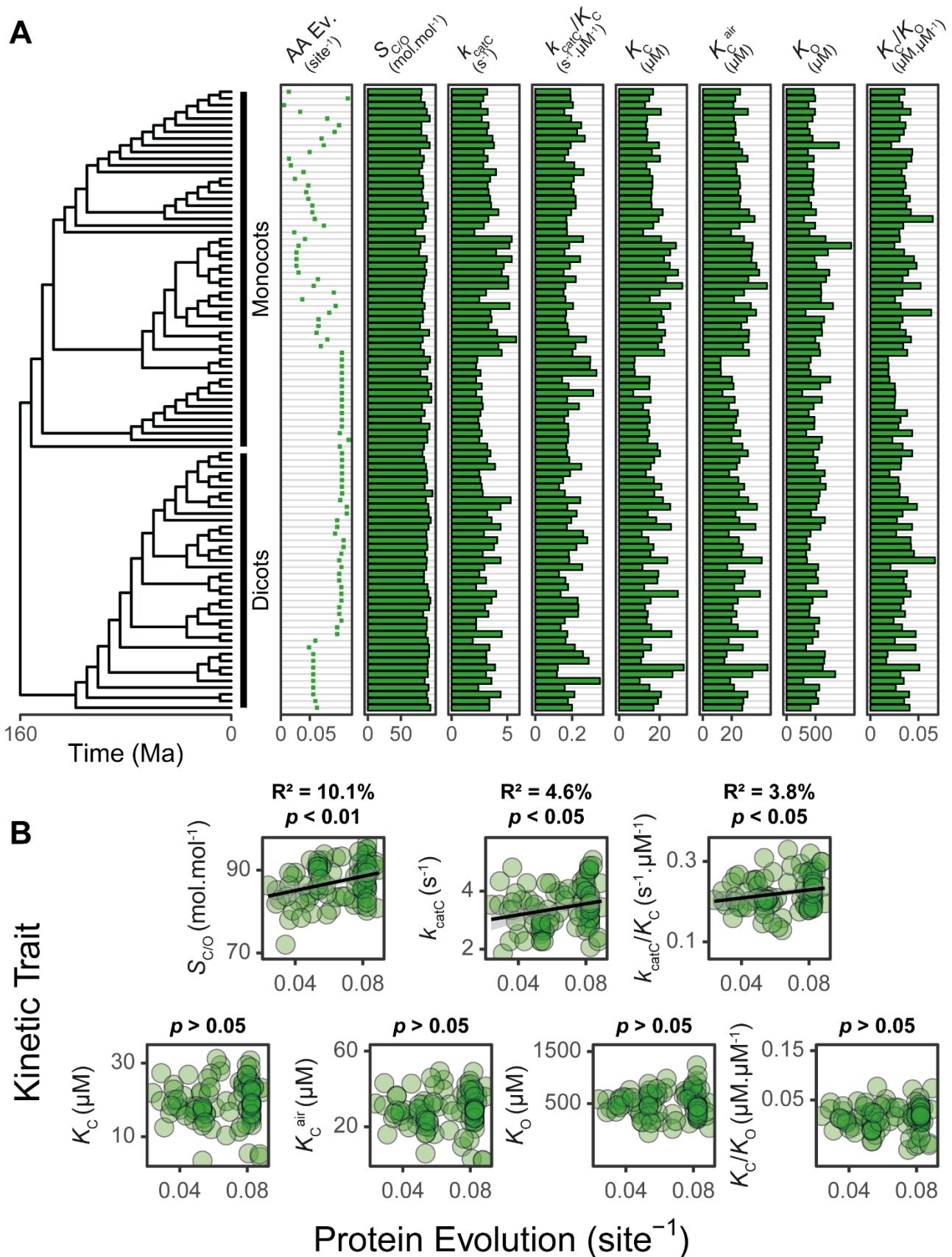
945 of the mean. **C)** Bar plot depicting the percentage ratio (%) of nucleotide and amino acid evolution

946 between rubisco subunits (*rbcL* to *rbcS* and RbcL to RbcS, respectively) in each taxonomic group.


947 The colour of each bar is determined by the genome in which the *rbcL* and *rbcS* gene resides,

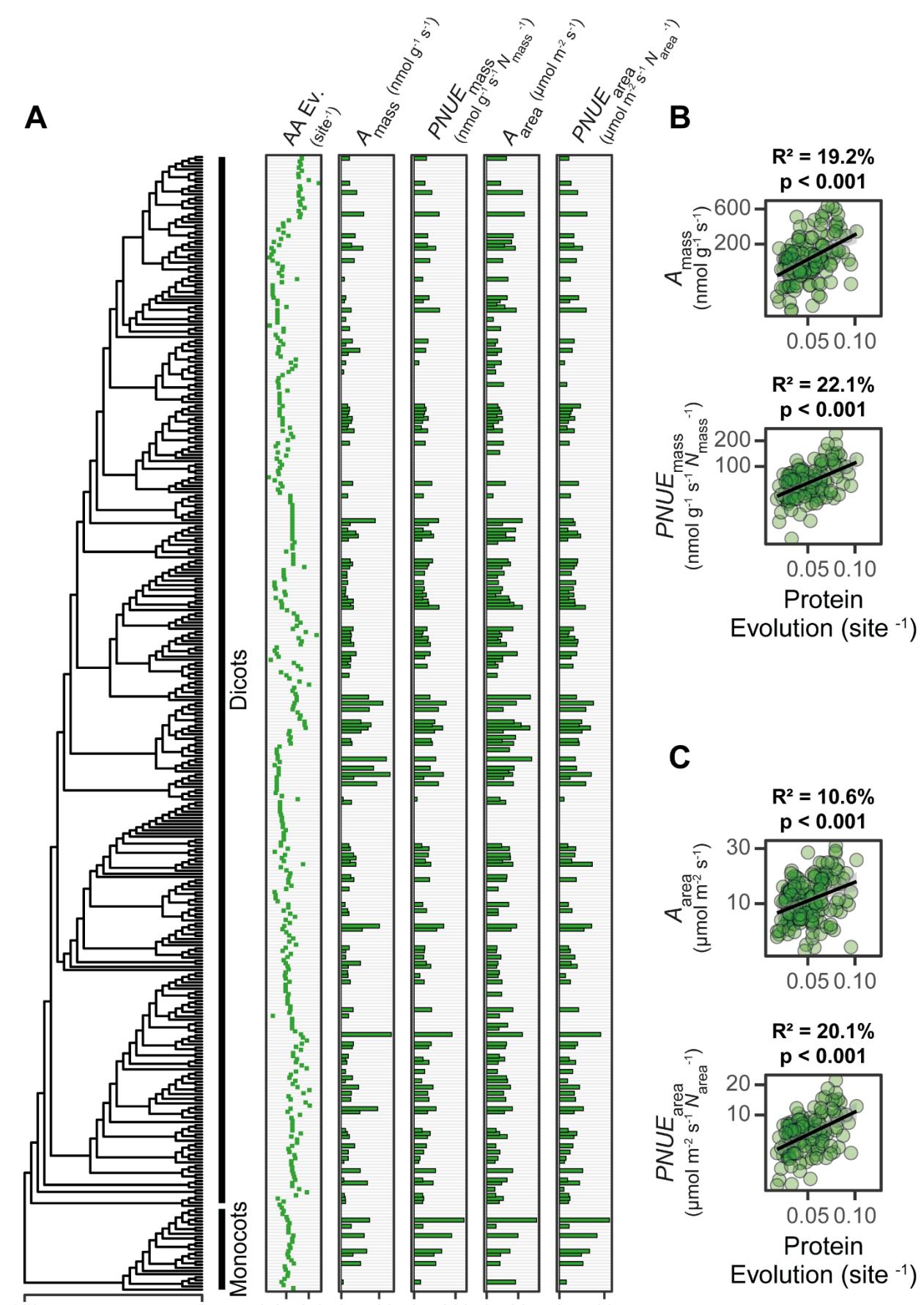
948 following the colour scale in (A) and (B). **D)** Bar plot depicting the percentage ratio (%) of nucleotide

949 to amino acid evolution in each rubisco subunit (*rbcL* to RbcL and *rbcS* to RbcS, respectively) in


950 each taxonomic group. The colour of each bar is the same as described in (C).

951 **Figure 3**

954 **Figure 3.** The extent of molecular evolution in rubisco in context other genes. **A)** Boxplot of the
955 extent of molecular evolution (substitutions per sequence site) in the nucleotide and protein
956 sequences of the rubisco large (*rbcL*/RbcL) and small (*rbcS*/RbcS) subunit expressed as a percentile
957 (%) of that measured across all other genes and proteins, respectively. See also Supplemental File
958 1, table S2. **B)** As in (A) but calculating the percentile (%) extent of rubisco molecular evolution
959 (substitutions per sequence site) relative to only the subset of genes and proteins in each species
960 which encode enzymes. See also Supplemental File 1, table S3. **C)** Boxplot of the total amount of
961 molecular evolution (substitutions per sequence site) in the nucleotide and protein sequences of
962 each Calvin-Bensen-Bassham cycle enzyme expressed as a percentage (%) of that measured in
963 *rbcL*/RbcL (100%; red horizontal line) across land plants. Phosphoglycerate kinase: PGK.
964 Glyceraldehyde-3-phosphate dehydrogenase A/B subunit: GAPDH-A/GAPDH-B. Triose phosphate
965 isomerase: TPI. Fructose-bisphosphate aldolase: FBA. Fructose-1,6-bisphosphatase: FBP.
966 Transketolase: TKL. Sedoheptulose-bisphosphatase: SBP. Ribose 5-phosphate isomerase: RPI.
967 Ribulose-p-3-epimerase: RPE. Phosphoribulokinase: PRK. See also Supplemental File 1, table S4
968 and table S5. The raw data for this figure can be found in Supplemental File 5.


969 **Figure 4**

970

971 **Figure 4.** The relationship between rubisco molecular and kinetic evolution in C₃ angiosperms. **A)**
972 The relationship between RbcL evolution and its corresponding kinetic trait values. AA Ev.: The
973 extent of RbcL amino acid evolution that has occurred since the last common ancestor at the root of
974 the angiosperm phylogeny. S_{C/O}: specificity. k_{catC} : carboxylase turnover per site. k_{catC}/K_C :
975 carboxylation efficiency. K_C : the Michaelis constant for CO₂. K_C^{air} : the inferred Michaelis constant for
976 CO₂ in 20.95% O₂. K_O : the Michaelis constant for O₂. K_C/K_O : the ratio of the Michaelis constant for
977 CO₂ compared to O₂. **B)** The relationship between the extent of RbcL protein evolution (substitutions
978 per sequence site) and each rubisco kinetic trait in (A) as assessed using least squares regression
979 models. The raw data can be found in Supplemental File 7.

980 **Figure 5**

982 **Figure 5.** The relationship between rubisco molecular evolution and CO₂ assimilation in C₃
983 angiosperms. **A)** The relationship between the extent of RbcL evolution and leaf level CO₂
984 assimilation. AA Ev.: The extent of RbcL amino acid evolution that has occurred since the most
985 recent common ancestor at the root of the angiosperm phylogeny. A_{mass} : Photosynthetic rate per unit
986 leaf mass. $PNUE_{\text{mass}}$: Photosynthetic nitrogen use efficiency rate per unit leaf mass per unit leaf
987 nitrogen content (N_{mass} ; % N). A_{area} : Photosynthetic rate per unit leaf area. $PNUE_{\text{area}}$: Photosynthetic
988 nitrogen use efficiency rate per unit leaf area expressed per unit leaf area nitrogen content (N_{area} ; g
989 m⁻² N). **B)** The relationship between the extent of RbcL protein evolution (substitutions per sequence
990 site) and each photosynthetic trait in (A) evaluated on a mass-basis (A_{mass} , $PNUE_{\text{mass}}$) as assessed
991 using least squares regression models. **C)** As in (B) but for each photosynthetic trait evaluated on
992 an area-basis (A_{area} , $PNUE_{\text{area}}$). The raw data can be found in Supplemental File 9.

993 **Tables**

994 **Table 1**

995 **Table 1.** Rubisco kinetics in extinct and extant angiosperms. Kinetic trait values for the last common
996 ancestor of the angiosperms were computed based on the estimated y intercept (mean \pm 1 S.E.) of
997 the linear regression analysis performed between the extent of RbcL protein evolution and each
998 rubisco kinetic trait in Figure 4B. Mean values of rubisco kinetic traits and associated variation (\pm 1
999 S.E.) in extant C₃ species are shown for comparison. The raw data set used can be found
1000 in Supplemental File 7.

Rubisco	$S_{C/O}$ (mol mol ⁻¹)	k_{catC} (s ⁻¹)	k_{catC}/K_C (s ⁻¹ μM ⁻¹)	K_C (μM)	K_C^{air} (μM)	K_O (μM)	K_C/K_O (μM μM ⁻¹)
Last Common Angiosperm Ancestor	81.1 \pm 1.9	2.6 \pm 0.3	0.16 \pm 0.02	16.3 \pm 2.1	24.8 \pm 2.8	484.1 \pm 56.4	0.034 \pm 0.004
Extant Angiosperms	87.1 \pm 0.5	3.4 \pm 0.1	0.20 \pm 0.01	17.6 \pm 0.5	26.4 \pm 0.7	517.2 \pm 14.7	0.035 \pm 0.001

1001