

1 **Genome size is positively correlated with extinction risk in herbaceous angiosperms**

2

3 Marybel Soto Gomez^{1,*}, Matilda J.M. Brown¹, Samuel Pironon^{1,2}, Pavel Veselý³, Petr Bureš³,
4 Tammy L. Elliott³, František Zedek³, Jaume Pellicer^{1,4}, Félix Forest¹, Eimear Nic Lughadha¹, Ilia
5 J. Leitch¹

6

7 ¹ Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK

8 ² UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC),
9 Cambridge, UK

10 ³ Masaryk University, Faculty of Science, Department of Botany and Zoology, Brno, Czech
11 Republic

12 ⁴ Institut Botanic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), 08038, Barcelona, Spain
13

14 ***Corresponding authors:** Marybel Soto Gomez, Royal Botanic Gardens, Kew, Richmond, UK,
15 email: M.SotoGomez@kew.org

16

17 **ORCID details for the authors:**

18 Marybel Soto Gomez: <https://orcid.org/0000-0003-1812-7416>

19 Matilda J.M. Brown: <https://orcid.org/0000-0003-2536-8365>

20 Samuel Pironon: <https://orcid.org/0000-0002-8937-7626>

21 Petr Bureš: <https://orcid.org/0000-0002-0146-956X>

22 Tammy L. Elliott: <https://orcid.org/0000-0003-2162-8537>

23 František Zedek: <https://orcid.org/0000-0003-1593-1775>

24 Jaume Pellicer: <https://orcid.org/0000-0001-7632-9775>

25 Félix Forest: <https://orcid.org/0000-0002-2004-433X>

26 Eimear Nic Lughadha: <https://orcid.org/0000-0002-8806-4345>

27 Ilia J. Leitch: <https://orcid.org/0000-0002-3837-8186>

28

29

30

31

32 **Total word count (Introduction, Materials & Methods, Results, Discussion):**

33 **Summary:** 199

34 **Introduction:** 1,496

35 **Materials and Methods:** 1,849

36 **Results:** 1,217

37 **Discussion:** 1,953

38 **Acknowledgements:** 76

39 **No. of Figures:** 5 (all in colour)

40 **No. of Tables:** 3

41 **No. of Supporting Information files:** 32 (Supplementary Methods; Tables S1–S8, Figs. S1–
42 S24)

43

44 **Summary**

45 • Angiosperms with large genomes experience nuclear-, cellular- and organism-level
46 constraints that may limit their phenotypic plasticity and ecological niche. These
47 constraints have been documented to vary across lineages, life-history strategies,
48 ecogeographic patterns and environmental conditions. Therefore, we test the hypotheses
49 that extinction risk is higher in large-genomed compared to small-genomed species, and
50 that the effect of genome size varies across three selected covariates: life form,
51 endemism, and climatic zones.

52 • We collated genome size and extinction risk information for a representative sample of
53 angiosperms comprising 3,250 species, which we analyzed alongside life form,
54 endemism and climate variables using a phylogenetic framework.

55 • Angiosperm genome size is positively correlated with extinction risk, a pattern driven by
56 a signal in herbaceous but not woody species, regardless of climate and endemism. The
57 influence of genome size is stronger in endemic herbaceous species, but is relatively
58 homogenous across different climates. Beyond its indirect link via endemism and
59 climate, genome size also influences extinction risk directly and significantly.

60 • Genome size may serve as a proxy for difficult-to-measure parameters associated with
61 resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further
62 exploration as a useful biological attribute for understanding intrinsic extinction risk and
63 augmenting plant conservation efforts.

64

65

66 Key words: C-value; conservation status; endemic species; IUCN Red List; life form;
67 nucleotype; plant traits

68

69 **Introduction**

70 Angiosperm genome size (nuclear DNA amount) is a highly variable character with long
71 recognized implications for plant physiology, ecology and evolution (e.g., Sparrow & Miksche,
72 1961; Bennett, 1972; Novák *et al.*, 2020). The remarkable diversity in angiosperm genome size
73 spans ~2,400-fold across the species documented to date, the largest range for any comparable
74 group of eukaryotes (Pellicer *et al.*, 2018). Mounting evidence has shown that genome size is
75 involved in the scaling of organisms: from the subcellular level where it influences the duration
76 of mitosis and meiosis (Bennett, 1971; Šímová & Herben, 2012; Zhukovskaya & Ivanov, 2022),
77 to the cellular level where it determines minimum cell size and cell packing density (e.g., Roddy
78 *et al.*, 2020; Théroux-Rancourt *et al.*, 2021), and the organismal level where it affects life-history
79 strategies (e.g., Bennett, 1987; Vesely *et al.*, 2012; Carta *et al.*, 2022) and physiological
80 parameters such as growth rate (e.g., Knight *et al.*, 2005; Tenaillon *et al.*, 2016; White *et al.*,
81 2016) and photosynthetic efficiency (Beaulieu *et al.*, 2007; Roddy *et al.*, 2020). The cascading
82 effects of genome size can in turn play a role in influencing where, when, and how plants grow
83 and compete, thereby shaping community composition and distribution (Guignard *et al.*, 2016;
84 Bureš *et al.*, 2022; Zhang *et al.*, 2022). Taken together, these multiple lines of evidence raise the
85 possibility that genome size may be associated with extinction risk in angiosperms, as originally
86 argued by Vinogradov (2003).

87 Genome size diversity in angiosperms is largely driven by polyploidy followed by
88 genome downsizing, and by the accumulation and removal of repetitive DNA (e.g., Grover &
89 Wendel, 2010; Wendel, 2015). Despite the ubiquity of these two processes and the wide range of
90 genome sizes observed, most angiosperms have small genomes (mode = 0.588 Gb/1C; Pellicer *et*
91 *al.*, 2018), leading to the hypothesis that larger genomes incur biological costs that drive
92 selective pressure for genome downsizing (e.g., Leitch & Bennett, 2004; Knight *et al.*, 2005;
93 Wang *et al.*, 2021). This hypothesised directional selection is partly influenced by genome size
94 being positively correlated with cell size and inversely with cell division rate, so that species
95 with large genomes are restricted to having large, slowly dividing cells with a lower maximum
96 cell density (Francis *et al.*, 2008; Roddy *et al.*, 2020). Such cell-level effects can constrain
97 phenotypic plasticity in large-genomed species by reducing the effective trait space (Faizullah *et*
98 *al.*, 2021). In turn this may exert selective pressure favouring smaller genomes, which have a
99 lower minimum cell size (and hence potential for higher cell densities) that can either remain

100 small or expand through processes like endopolyploidy and vacuole enlargement. Indeed, the
101 wider phenotypic and ecological ranges of small-genomed species have been previously
102 documented (e.g., Simonin & Roddy, 2018), whereas larger genomes tend to persist in
103 conditions where selective pressures are relatively relaxed or compatible with the demands
104 imposed by higher DNA amounts (e.g., Veselý *et al.*, 2013; Bureš *et al.*, 2022). These demands
105 include meeting the biochemical costs of maintaining larger genomes, as nucleic acids are
106 amongst the most nitrogen- and phosphorous-demanding molecules of the cell, leading to poor
107 competitiveness of large-genomed taxa under nutrient-limiting conditions (Šmarda *et al.*, 2013;
108 Guignard *et al.*, 2016; Peng *et al.*, 2022). Overall, these observations point to several micro- and
109 macro-evolutionary processes that impose selective disadvantages for large genomes, with
110 potential downstream repercussions when confronted with the anthropogenic threats currently
111 driving extinction risk (IPBES, 2019). For example, restricted phenotypic and physiological
112 ranges may make large-genomed species less versatile in responding to protracted threats like
113 climate change, while limits in ecological space, which frequently correspond with smaller
114 geographic ranges (Slatyer *et al.*, 2013), may increase extinction risk from stochastic and local-
115 scale threats like land conversion.

116 A relationship between genome size and extinction risk across the tree of life was
117 recovered with mixed support in the few large-scale studies that have examined this link. For
118 example, no link was observed in amphibians (Pincheira-Donoso *et al.*, 2023), possibly
119 reflecting previous findings that the association between genome size and risk is complex and
120 lineage-dependent across vertebrates (Vinogradov, 2004). Nevertheless, in angiosperms, large
121 genomes were found to be maladaptive, and associated with extinction risk (Vinogradov, 2003)
122 and rarity (Pandit *et al.*, 2011). These broad patterns in plants were also reported at lower
123 taxonomic levels, as in the Crassulaceae genus *Aeonium* (Brilhante *et al.*, 2021). However, the
124 relationship between angiosperm genome size and extinction risk has not been explicitly tested
125 to date within a comprehensive evolutionary framework at a global scale, despite the
126 considerable phylogenetic clustering of genome size across the angiosperm evolutionary tree
127 (Carta *et al.*, 2022). Moreover, few studies have explored the extent to which threat may be
128 directly or indirectly associated with angiosperm genome size while considering its diverse
129 covarying factors, which include genome evolution (e.g., polyploidy, repeat-sequence turnover;
130 Wendel, 2015; Novák *et al.*, 2020), physiology (e.g., photosynthetic efficiency, nutritional

131 demands; Beaulieu *et al.*, 2007; Guignard *et al.*, 2016), life-history strategies (e.g., growth form;
132 Bennett, 1987; Veselý *et al.*, 2012; Carta *et al.*, 2022), environment and geography (e.g., climate,
133 range size; Bureš *et al.*, 2022). The feasibility of such studies remains limited to date because of
134 difficulties in obtaining consistently recorded information at broad taxonomic scales, hence the
135 utility of resources like the World Checklist of Vascular Plants (WCVP; Govaerts *et al.*, 2021)
136 that compile relatively coarse but near complete datasets for multiple angiosperm characteristics.
137 These include three genome size covariates –life form, climate zone, geographic distribution–
138 that are independently associated with threat. Specifically, the scaling effects of genome size on
139 organismal growth rate underlie the predominantly small genomes of annuals, as these species
140 must complete their life cycle within a growing season (Bennett, 1987; Veselý *et al.*, 2012). This
141 constraint may be further exacerbated in environments that require rapid growth, such as
142 temperate areas with short growing seasons, where annuals (therophytes) were found to be the
143 second most threatened life form after hemicryptophytes (Le Roux *et al.*, 2019). Environmental
144 factors are also involved in the geographic patterns recently uncovered for angiosperm genome
145 size, with narrower distributions found for larger-genomed than smaller-genomed taxa (Bureš *et*
146 *al.*, 2022), a noteworthy finding as range size is a well-documented correlate of past and
147 contemporary extinctions (Gaston, 2003; Payne & Finnegan, 2007; Tanentzap, 2017).

148 Plants underpin life on earth, but two in five species are predicted to be threatened with
149 extinction (Nic Lughadha *et al.*, 2020), making it critical to preserve these elements of
150 biodiversity alongside the ecosystem services they provide and unique evolutionary histories
151 they represent (Antonelli *et al.*, 2020). Effective species conservation requires information on
152 their extinction risk, such as that provided by the International Union for Conservation of Nature
153 (IUCN) Red List of Threatened Species (Red List; IUCN, 2022), the most authoritative source
154 on the global conservation status of species. Red List assessments employ five criteria that
155 incorporate current and temporal information on range size, and where available, population size
156 and demographic change (IUCN, 2013). Genetic data are not explicitly considered in the Red
157 List, but there is some evidence that criterion thresholds may reflect genetic diversity, and by
158 extension, evolutionary potential in plants (Rivers *et al.*, 2014; but see Schmidt *et al.*, 2023 for
159 vertebrates). Despite substantial progress in extending Red List coverage of plants (Bachman *et*
160 *al.*, 2018; 2019), only 18% of known species have been assessed to date (Bachman *et al.*, 2023).
161 Recent work to automate extinction risk assessment has achieved reasonable performance using

162 a range of predictors, including geographic, environmental and morphological data (Pelletier *et*
163 *al.*, 2018; Walker *et al.*, 2022). Nevertheless, there are outstanding knowledge gaps in
164 identifying at-risk species and the factors that threaten them over time (Nic Lughadha *et al.*,
165 2020). Therefore, if found to be associated with risk, genome size may be a useful genetic
166 variable for understanding intrinsic vulnerability in angiosperms, for helping to prioritize Red
167 List assessments and for enhancing the accuracy of predictive models.

168 Here we used a comprehensive evolutionary framework to test how genome size may
169 influence extinction risk in angiosperms, leveraging the largest global datasets available for plant
170 genome size, extinction risk, and newly released information on life form, climate zone and
171 geographic distribution from WCVP (Govaerts *et al.*, 2021). We included the latter three
172 variables as representatives of a suite of processes previously associated with both genome size
173 and extinction risk, and for which it was possible to obtain consistent angiosperm-wide data. In
174 contrast to previous studies aiming to understand the impact of genome size on plant
175 conservation through rarity patterns (Pandit *et al.*, 2011; 2014) or using taxonomy as a proxy for
176 evolutionary history (Vinogradov, 2003), we employed a phylogenetically-informed approach to
177 test two hypotheses at a global scale: (i) angiosperm genome size and extinction risk are
178 positively correlated, and (ii) the extent of risk in large-genomed species varies across life forms,
179 climatic zones and range sizes. Finally, we identify a subset of species currently lacking a threat
180 assessment but facing a potentially heightened extinction risk based on their genome size and
181 covariate combinations.

182

183 **Materials and Methods**

184 *Taxonomic reconciliation*

185 We used WCVP as the taxonomic basis for reconciling sample names and taxonomic ranks
186 across the various data sources employed here. Specifically, we collated (i) genome size data
187 from the Plant DNA C-values Database (Leitch *et al.*, 2019) and a newly published dataset
188 (Bureš *et al.*, 2022); (ii) global extinction risk data from the Red List (IUCN, 2022); (iii) life
189 form, climate zone, and distribution data from WCVP; and (iv) phylogenetic information from a
190 sampling of 100 angiosperm phylogenies (Forest, 2023).

191 We determined the taxonomic status of samples in the genome size dataset assembled
192 here (see below), confirming whether these had names accepted in WCVP or non-accepted

193 names requiring reconciliation. To do so, we used the R package rWCVP (Brown *et al.*, 2023),
194 using its “accepted plant name id” output to link species in the genome size dataset to available
195 data for that species in the remaining datasets employed here (details in Methods S1).

196

197 *Genome size data*

198 We constructed a genome size dataset comprising 15,158 species (Table S1). We maximized
199 taxon sampling by collating data for 8,581 species from Leitch *et al.* (2019) with an additional
200 6,577 species from Bureš *et al.* (2022), after taxonomic reconciliation of each dataset to WCVP.
201 We removed sample redundancy by selecting a single placeholder for species with multiple
202 accessions, preferentially retaining those with the smallest genome size estimate. We adopted
203 this conservative approach to minimize the potential of generating type I errors (i.e., false
204 positives regarding our hypothesized effects of large genomes on extinction risk), which may
205 arise from retaining the largest genome size estimate available for a species.

206

207 *Extinction risk, life form, climate zone, and endemism data*

208 Considering the 15,158 species in the genome size dataset, extinction risk information was
209 available for 3,394 of these, life form for 15,141; climate zone for 14,003; and distribution for
210 15,155. We focused most analytical effort on a subset of 3,250 species that were scored for all
211 five variables.

212 Six of seven Red List Categories describing extinction risk were represented in the 3,250-
213 species dataset (only the Extinct category was absent). Three of the categories in our sampling –
214 Vulnerable (VU; n = 243), Endangered (EN; n = 287), Critically Endangered (CR; n = 166) – are
215 collectively considered to be threatened in Red List criteria, and respectively face a high, very
216 high and extremely high extinction risk (Mace *et al.*, 2008). To qualify as such, species must
217 meet at least one of five criteria concerning population size, geographic range and extinction
218 probability, at a level corresponding to one of the three threatened categories (IUCN, 2013). A
219 fourth Red List Category in our sampling –Extinct in the Wild (EW; n = 7)– is also included in
220 Red List estimates of threatened species as EW taxa are mostly re-assessed as VU, EN or CR
221 following rediscovery (Humphreys *et al.*, 2019) or successful reintroduction (IUCN, 2019). The
222 remaining categories in our sampling –Least Concern (LC; n = 2,388), Near Threatened (NT; n =

223 159)– comprise non-threatened species that were evaluated against Red List criteria and did not
224 qualify at the level required to be considered threatened (IUCN, 2019).

225 To maintain viable sample sizes across data partitions in analyses that also included life
226 form, climate zone, and distribution variables (see below and Table S2), we treated extinction
227 risk as a binary response variable comprising threatened and non-threatened species across four
228 varying threat thresholds. These dichotomizations were designed to capture the Red List
229 definition of threatened as a point of reference, and to test the effects of shifting this threshold to
230 account for differences in threat levels across categories. Thus, for the point of reference
231 threshold, the non-threatened grouping comprised LC and NT species, and the threatened
232 grouping comprised VU, EN, CR and EW species. For the three comparison dichotomizations,
233 we lowered the threat threshold (by shifting NT species into the threatened grouping), increased
234 the threshold (by shifting VU species into the non-threatened grouping), or polarized the
235 threshold (by excluding NT species). The dichotomization of Red List Categories additionally
236 facilitates comparison of our findings with those from previous plant and animal studies that
237 used this approach, for example, when identifying Important Plant Areas (Darbyshire *et al.*,
238 2017), predicting the probability of threat in species not yet assessed by the Red List (Pelletier *et*
239 *al.*, 2018), and characterizing the influence of genome size on amphibian extinction risk
240 (Pincheira-Donoso *et al.*, 2023).

241 We obtained life form, climate zone, and distribution data from WCVP, additionally
242 collecting life form information from Bureš *et al.* (2022) when unavailable in WCVP. The life
243 form classifications in both datasets follow the Raunkiaer (1934) system, which we simplified
244 following Humphreys *et al.* (2019), with modifications to produce two broad categories of
245 biological significance to angiosperm genome size: herbaceous and woody (Beaulieu *et al.*,
246 2010; Methods S2). We aggregated nine WCVP climate zones into four groupings: tropical,
247 subtropical, temperate, and desert areas (Methods S2). We used WCVP geographical data to
248 score species as endemic if their native distribution is restricted to a single botanical country (i.e.,
249 Level 3 of the TDWG World Geographic Scheme for Recording Plant Distributions; Brummitt *et*
250 *al.*, 2001); the remaining species were scored as non-endemic. This binary coding was strongly
251 correlated with point-derived range size estimates, while overcoming the lack of point data for
252 500 species in our sampling (Methods S2, Fig. S1).

253

254 *Angiosperm phylogenies*

255 We adapted the species-level angiosperm phylogenies of Forest (2023) to use as input in
256 phylogenetically-informed statistical analyses. We used all 100 of these phylogenies to capture
257 the uncertain phylogenetic placement of 935 (28.8%) species in our dataset that lacked
258 phylogenetic data. The original phylogenies comprise all 329,798 angiosperm species recognized
259 in WCVP (assembly details in Methods **S3**). Here we prepared reduced versions comprising only
260 the 3,250 species in our dataset, with additional updates to fully bifurcate and rescale the
261 phylogenies to a total height of 1.0 for statistical analyses (Methods **S3**).
262

263 *Data representativeness*

264 We used four approaches to characterize the representativeness of the different data types
265 encompassed by our 3,250-species dataset relative to angiosperms with available information,
266 and to test for potential effects from imbalanced representation (Methods **S4**). First, we used the
267 *D* statistic (Fritz & Purvis, 2010) to test whether the 993 genera represented in our dataset were
268 phylogenetically clustered (i.e., concentrated in particular clades) or overdispersed (i.e., evenly
269 distributed) across the 13,503 genera recognized in WCVP. Second, we used the 202,743 species
270 in WCVP with available life form, climate zone and endemism information as a baseline for
271 estimating a factor of representation for the equivalent data partitions in our sampling. Third, we
272 assessed our coverage of known angiosperm genome sizes by comparing the distribution in our
273 sampling to that of 15,167 species with available information (also collated here; Table **S1**).
274 Finally, we tested for possible effects from imbalanced proportions of non-threatened and
275 threatened species by characterizing genome size differences between these two groups in our
276 sampling, compared to 999 randomly down-sampled subsets with equal threat status proportions.
277

278 *Relationship between genome size and extinction risk*

279 We performed an ANOVA followed by Tukey's range test to determine whether average
280 genome size differed significantly amongst individual Red List Categories. We also constructed
281 phylogenetic generalized linear models (PGLMs) to characterize the association between
282 genome size and extinction risk, and how it varies across life forms, climate zones and
283 endemism. We modelled extinction risk as a binary response variable (i.e., threatened or non-
284 threatened; see above) in 27 distinct logistic regressions that included genome size as the sole

285 predictor, or together with life form, climate zone and endemism (Table 1). We implemented all
286 27 models using the Red List definition of threatened as a point of reference for dichotomizing
287 risk, and three varying threat thresholds for comparison. To account for phylogenetic uncertainty
288 in our sampling, we ran 100 independent analyses for all models, each using a different input
289 phylogeny.

290 We conducted PGLMs using the phyloglm function in the R package phylolm (Ho &
291 Ané, 2014a,b) with genome sizes log10-transformed. We first characterized the effect of genome
292 size alone on extinction risk using a baseline model (model 26, Table 1) with default settings
293 across the four varying threat thresholds for dichotomizing the response variable. This model
294 produced bimodally distributed estimates for one threat threshold, which required additional
295 parameter optimization (Methods S5). We then modelled extinction risk across the remaining 26
296 model formulae (Table 1), which represent all the combinations possible when adding life form,
297 climate zone and endemism (as additive or interacting explanatory variables) to the baseline
298 model. Non-continuous variables analyzed in phyloglm require a reference category: we selected
299 herbaceous (for life form), desert (for climate zone), and endemic (for endemism). We adjusted
300 the “btol” parameter in cases when the linear predictor was reached during optimization
301 procedures, but otherwise used default settings. We performed model selection using AICc
302 (Akaike Information Criterion corrected for small sample sizes; Burnham & Anderson, 2002);
303 full details in Fig. S2, Methods S6. For the final model set, we again used phyloglm to run 2,000
304 bootstrap replicates (Ives & Garland, 2010), obtaining 95% confidence intervals for model
305 variables.

306 We used the findings from PGLMs to (i) estimate the difference in probability of threat
307 between thresholds set for very small and large genomes (Fig. S3), and (ii) conduct a post-hoc
308 identification of species in the genome size dataset that lack a Red List assessment but face a
309 potentially heightened extinction risk based on their genome size and covariate combinations.
310 Following the criteria of Leitch *et al.* (1998) for categorizing angiosperm genome size, we
311 considered very small genomes to be ≤ 1.18 Gb/1C, which is ≤ 2 times the modal 1C-value
312 documented for angiosperms (0.588 Gb; Pellicer *et al.*, 2018), and large genomes to be ≥ 11.76
313 Gb/1C, which is ≥ 20 times the mode. Whereas selecting a biologically relevant threshold for
314 very small genomes is difficult because of the relatively low physiological costs they impose
315 (Simonin & Roddy, 2018), our large genome threshold is comparable to 10 Gb/1C –where

316 fundamental shifts in genome evolutionary dynamics start occurring (Novák *et al.*, 2020)– and to
317 8 Gb/1C –where the diversity of guard cell length and vein density start decreasing (Simonin &
318 Roddy, 2018)–.

319

320 *Direct and indirect effects of genome size on extinction risk*

321 We used confirmatory phylogenetic path analyses (PPA; von Hardenberg & Gonzalez-Voyer,
322 2013) to test whether angiosperm extinction risk is directly or indirectly associated with genome
323 size, life form and endemism across climate zones. We constructed and tested four “causal
324 models” (i.e., directed acyclic graphs; Fig. S4) using the R package phylopath (van der Bijl,
325 2018) with the method “logistic_MPML” (details in Methods S7). We used the Red List threat
326 threshold to obtain non-threatened (i.e., LC, NT) and threatened (i.e., VU, EN, CR, EW)
327 groupings, and performed separate analyses using 100 different phylogenies as input to account
328 for phylogenetic uncertainty. We used ΔCICc (C-statistic information criterion corrected for
329 small sample sizes) to rank and discard causal models with $\Delta\text{CICc} > 2$ (van der Bijl, 2018). We
330 then bootstrapped the best causal models using 500 replicates to obtain 95% confidence
331 intervals. Coefficients were considered to be significant if their confidence intervals excluded
332 zero (e.g. Guo *et al.*, 2019).

333

334 **Results**

335 *Species representativeness in the genome size dataset*

336 The representativeness of the 3,250-species dataset differed across sampled variables when
337 compared to angiosperm diversity, but small and large genomes were sampled in sufficient
338 numbers across all threat-lifeform-climate-endemism combinations to permit confident estimates
339 of genome size effects and interactions with these covariates (Table S3). Our sampling contained
340 an overrepresentation of non-endemic species, particularly for temperate herbaceous and woody
341 species (by factors of 1.94 and 4, respectively; Table S4). Endemic species were
342 underrepresented across climate zones by factors of 0.28–0.62 for herbs and 0.41–0.91 for
343 woody species (Table S4).

344 The 993 genera represented in our dataset were not strongly clustered across the 13,503
345 angiosperm genera recognized in WCVP ($D = 0.665$, range = 0.652–0.679, $p < 0.001$ for $0 < D$
346 < 1 across 100 variant phylogenies), indicating that our sampling was not strongly biased

347 taxonomically (Fig. S5). Though slightly underrepresented for large genomes, our sampling
348 (Gb/1C range = 0.08–73.01, mean = 3.54, median = 1.08; Table S3) covered most of the genome
349 size diversity documented for angiosperms (Gb/1C range = 0.064–149.0, mean = 3.94, median =
350 1.37; Table S1, Fig. S6). Finally, using the point of reference threshold to dichotomize extinction
351 risk, we found that the difference in mean genome size between threatened (n = 703) and non-
352 threatened (n = 2,547) species in our dataset was nearly identical to the mean difference across
353 999 randomly down-sampled subsets that equalized the proportions of the two threat groupings
354 (Fig. S7). This indicates that our analyses were likely unaffected by the relatively imbalanced
355 sampling of non-threatened and threatened species.

356

357 *Probability of threat as a function of genome size*

358 Average genome size differed significantly amongst Red List Categories (ANOVA: $F = 13.1$, df
359 = 5, 3244, $p < 0.001$; Fig. 1a). Tukey's range test showed that LC species were significantly
360 different from EN and CR species; NT species also grouped with EN and CR, while VU species
361 were intermediate (Fig. 1a; note that we omitted EW species from this test due to a small sample
362 size of seven). A baseline phylogenetic logistic regression model showed that genome size and
363 extinction risk were significantly and positively correlated using the Red List threat threshold for
364 dichotomizing extinction risk (Fig. 1b). This relationship was consistent with the three
365 comparison risk dichotomizations: only the intercept term (and not the slope) differed
366 substantially across models, as expected when varying the threat threshold (Table 2). Using the
367 point of reference threshold, the probability of extinction risk increased by 0.28 from small-
368 genomed to large-genomed species (Fig. 1b).

369

370 **Table 1.** Description, selection, and phylogenetic signal of the 27 models tested in phylogenetic
371 logistic regressions using the Red List definition of threat as a point of reference for
372 dichotomizing the response variable into groups comprising non-threatened (i.e., Least Concern,
373 Near Threatened) and threatened (i.e., Vulnerable, Endangered, Critically Endangered, Extinct in
374 the Wild) species (three comparison threat thresholds are summarized in Table S5). Models
375 represent all combinations possible when adding life form, climate zone and endemism as
376 explanatory variables to a baseline model with genome size as the sole predictor. Models are
377 arranged in decreasing order of best fit based on median ΔAIC_c values, obtained by first ranking

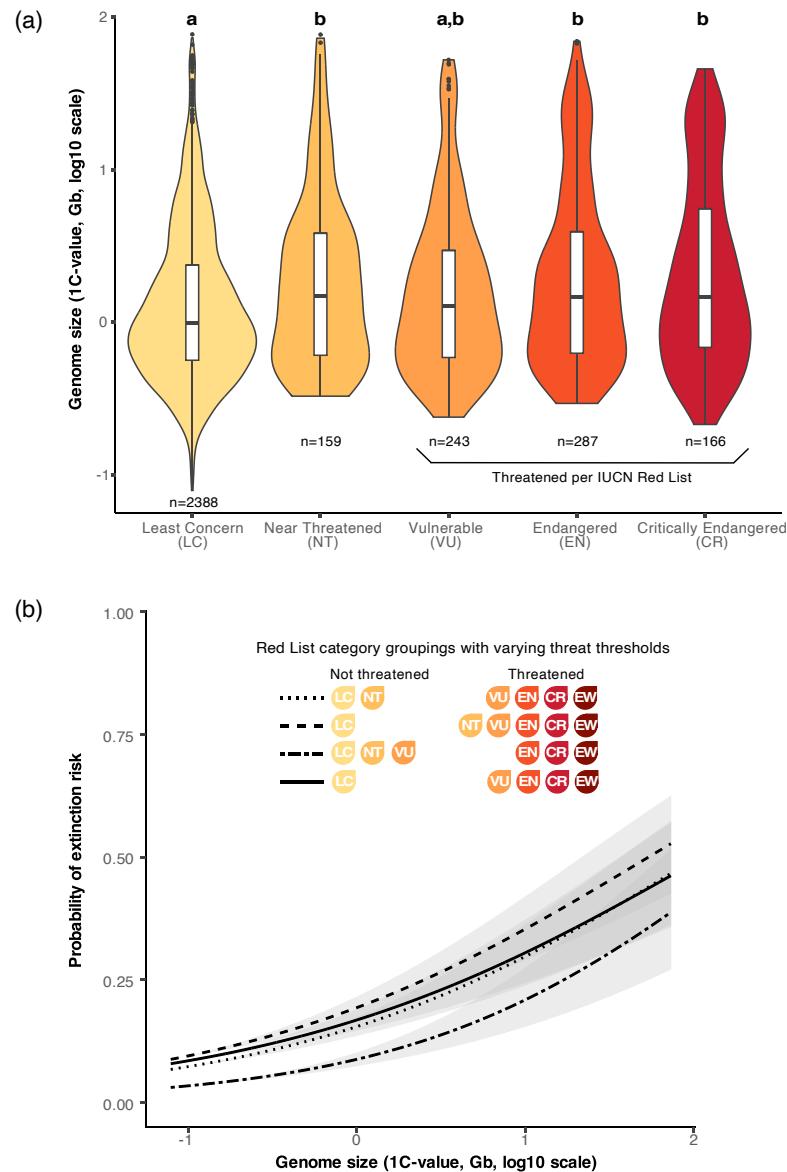
models within each of the 100 variant phylogenies used as input in analyses, and then summarized by model across all trees (see Fig. S2). The first seven models (depicted in Fig. 2) were found to be the best (i.e., $\Delta\text{AIC}_c = 0$) in at least one phylogeny. Mean phylogenetic signal (α) was obtained by summarizing across the 100 separate analyses conducted for each model and then used to calculate $-\log(\alpha)$. Abbreviations: ER = extinction risk, GS = genome size, CLIM = climate zone, LF = life form, ENDEM = endemism (proxy for range size).

384

	Mode	ΔAICc				Mean α	Mean $-\log(\alpha)$
		Min.	Max.	Median			
385							
386							
387							
388							
389							
390	1. ER ~ GS + CLIM + GS:CLIM + LF + GS:LF + ENDEM + GS:ENDEM	0	92.891	1.156	7.915	-2.06	
391							
392	2. ER ~ GS + CLIM + GS:CLIM + LF + GS:LF + ENDEM	0	39.444	2.175	8.277	-2.113	
393	3. ER ~ GS + CLIM + LF + GS:LF + ENDEM	0	57.017	9.695	10.071	-2.310	
394	4. ER ~ GS + CLIM + LF + GS:LF + ENDEM + GS:ENDEM	0	79.820	13.515	9.232	-2.223	
395	5. ER ~ GS + CLIM + GS:CLIM + LF + ENDEM	0	173.469	16.672	10.425	-2.344	
396	6. ER ~ GS + CLIM + GS:CLIM + LF + ENDEM + GS:ENDEM	0	57.372	19.150	10.465	-2.348	
397							
398	7. ER ~ GS + CLIM + GS:CLIM + ENDEM	0	169.822	20.211	10.073	-2.310	
399	8. ER ~ GS + CLIM + GS:CLIM + ENDEM + GS:ENDEM	2.845	63.553	21.737	10.192	-2.322	
400	9. ER ~ GS + CLIM + LF + ENDEM	8.480	169.416	26.993	11.081	-2.405	
401	10. ER ~ GS + CLIM + ENDEM	2.566	125.144	28.187	10.816	-2.381	
402	11. ER ~ GS + CLIM + LF + ENDEM + GS:ENDEM	1.327	204.013	28.506	10.674	-2.368	
403	12. ER ~ GS + CLIM + ENDEM + GS:ENDEM	2.897	264.908	29.031	10.254	-2.328	
404	13. ER ~ GS + LF + GS:LF + ENDEM	12.204	63.872	30.908	8.967	-2.194	
405	14. ER ~ GS + LF + GS:LF + ENDEM + GS:ENDEM	10.628	64.414	31.252	9.337	-2.234	
406	15. ER ~ GS + LF + ENDEM	45.456	104.885	70.703	9.928	-2.295	
407	16. ER ~ GS + LF + ENDEM + GS:ENDEM	47.236	109.374	71.392	9.947	-2.297	
408	17. ER ~ GS + ENDEM	53.402	112.891	76.957	9.583	-2.260	
409	18. ER ~ GS + ENDEM + GS:ENDEM	53.888	116.883	78.773	9.617	-2.264	
410	19. ER ~ GS + CLIM	277.800	467.911	322.086	10.294	-2.332	
411	20. ER ~ GS + CLIM + LF	276.585	454.061	335.081	10.855	-2.385	
412	21. ER ~ GS + CLIM + GS:CLIM + LF + GS:LF	324.172	612.424	367.352	9.809	-2.283	
413	22. ER ~ GS + CLIM + LF + GS:LF	322.923	505.778	369.068	11.485	-2.441	
414	23. ER ~ GS + CLIM + GS:CLIM + LF	303.128	618.148	379.051	11.845	-2.472	
415	24. ER ~ GS + LF	349.906	450.726	388.134	9.504	-2.252	

416	25. ER ~ GS + CLIM + GS:CLIM	290.380	569.379	391.807	11.746	-2.464
417	26. ER ~ GS	379.371	466.915	417.929	10.075	-2.310
418	27. ER ~ GS + LF + GS:LF	352.672	653.418	478.628	11.337	-2.428
419						

420


421 **Table 2.** Consensus coefficients for a baseline phylogenetic logistic regression model
422 characterizing angiosperm extinction risk as a function of genome size across four varying threat
423 thresholds for dichotomizing the response variable (depicted in Fig. 1b). The point of reference
424 threshold reflects the Red List definition of threat for grouping species into non-threatened (i.e.,
425 Least Concern, Near Threatened) and threatened (i.e., Vulnerable, Endangered, Critically
426 Endangered, Extinct in the Wild) groupings. The three comparison binarizations represent threat
427 thresholds that are lower (by shifting Near Threatened species into the threatened grouping),
428 higher (by shifting Vulnerable species into the non-threatened grouping) or polarizing (by
429 excluding Near Threatened species altogether). Values represent mean coefficients from 100
430 separate analyses conducted for each model using different phylogenies as input.

431

432	Point of reference	Lower threat	Higher threat	Polarizing	
433	threat threshold	threshold	threshold	threat threshold	
435	Intercept	-1.703	-1.434	-2.336	-1.605
436	Slope	0.841	0.826	1.001	0.778

438

439 **Figure 1.** Characterization of the relationship between angiosperm genome size and extinction
440 risk based on the 3,250-species dataset assembled here. **(a)** Distribution of genome sizes across
441 Red List Categories (omitting Extinct in the Wild, EW, due to a small sample size of seven
442 species). Significance was tested using ANOVA and Tukey's range test. **(b)** Phylogenetic
443 logistic regression curves predicting the probability of threat as a function of genome size using
444 the Red List definition of threat as a point of reference for aggregating species into non-
445 threatened or threatened groupings (shown as a dotted line) and using three additional threat
446 thresholds for comparison (shown as solid, dashed and double-dashed lines). Curves represent
447 mean coefficients summarized across the 100 different phylogenies used as input for each variant
448 threat threshold; the shaded areas indicate 95% confidence intervals from bootstrap analyses.

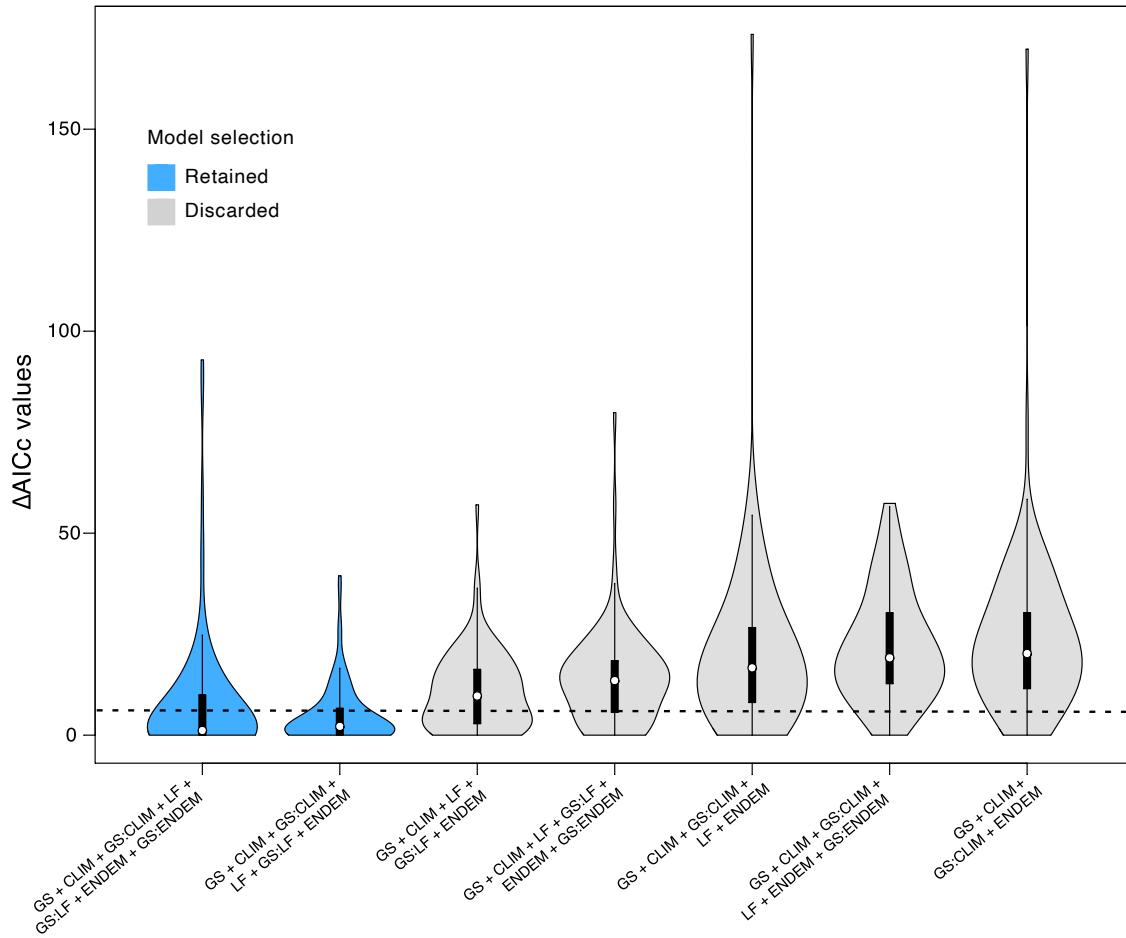
449 *Probability of threat as a function of genome size, life form, climate zone, and endemism*
450 Model fit improved in phylogenetic logistic regressions that included genome size alongside life
451 form, climate zone, and endemism as predictors of extinction risk, regardless of the threat
452 threshold used to dichotomize the response variable (Tables 1, S5). Of the 27 models tested, we
453 retained two best models when using the Red List definition of threat as a point of reference
454 threat threshold (Fig. 2). One best model included genome size and the remaining three variables
455 as both additive and interaction terms; the second model differed by lacking a genome size-
456 endemism interaction term (Table 1, Fig. 2). We retained three best models in regressions using
457 higher and polarizing threat thresholds for comparison to the point of reference, and one best
458 model when using a lower threshold (Table S5, Figs. S8–S10). Coefficients were approximately
459 normally distributed and yielded consistent predictions across the 100 analyses conducted for
460 each of the best models across the four varying threat thresholds (Table S6, Figs. S11–S19).

461 All best models showed that genome size and extinction risk were positively correlated in
462 both endemic and non-endemic herbaceous species across climate zones (Figs. 3, S20–22).
463 Averaging predictions across the best models for the point of reference threat threshold, this
464 relationship was strongest for herbaceous species that are endemic to a single botanical country,
465 where the threat probability increased by 52.2–66.4% between very small (≤ 1.18 Gb/1C) and
466 large (≥ 11.76 Gb/1C) genomes across climate zones (Table 3, Fig. 3). For non-endemic herbs,
467 the threat probability increased by 27.8–54.7% (Table 3, Fig. 3). However, in woody species, the
468 threat probability remained nearly constant with increasing genome size, regardless of climate
469 and endemism (Fig. 3). We found consistent patterns for both herbaceous and woody species
470 using the three comparison threat thresholds (Figs. S20–S22), which differed more substantially
471 from the point of reference threshold in the intercept term than in the slope (Table S7), as with
472 the baseline model.

473
474 **Table 3.** Mean coefficients and threat probabilities summarized across the two best models
475 found in phylogenetic logistic regressions using the Red List definition of threat as a point of
476 reference for dichotomizing the response variable into a non-threatened group (comprising Least
477 Concern and Near Threatened species) and a threatened group (comprising Vulnerable,
478 Endangered, Critically Endangered and Extinct in the Wild species), shown in Fig. 3.
479 Probabilities represent averaged estimates across very small-genomed (≤ 1.18 Gb/1C) and large-

480 genomed (≥ 11.76 Gb/1C) herbaceous angiosperms sampled here, expressed as percentages.
481 Mean 95% confidence intervals (CIs) from bootstrap analysis are shown in brackets. The Δ
482 threat probability was calculated as the difference in the probability of threat between the two
483 genome size categories (as depicted in Fig. S3). Coefficients and threat probabilities for three
484 comparison threat thresholds are summarized in Table S7.

485

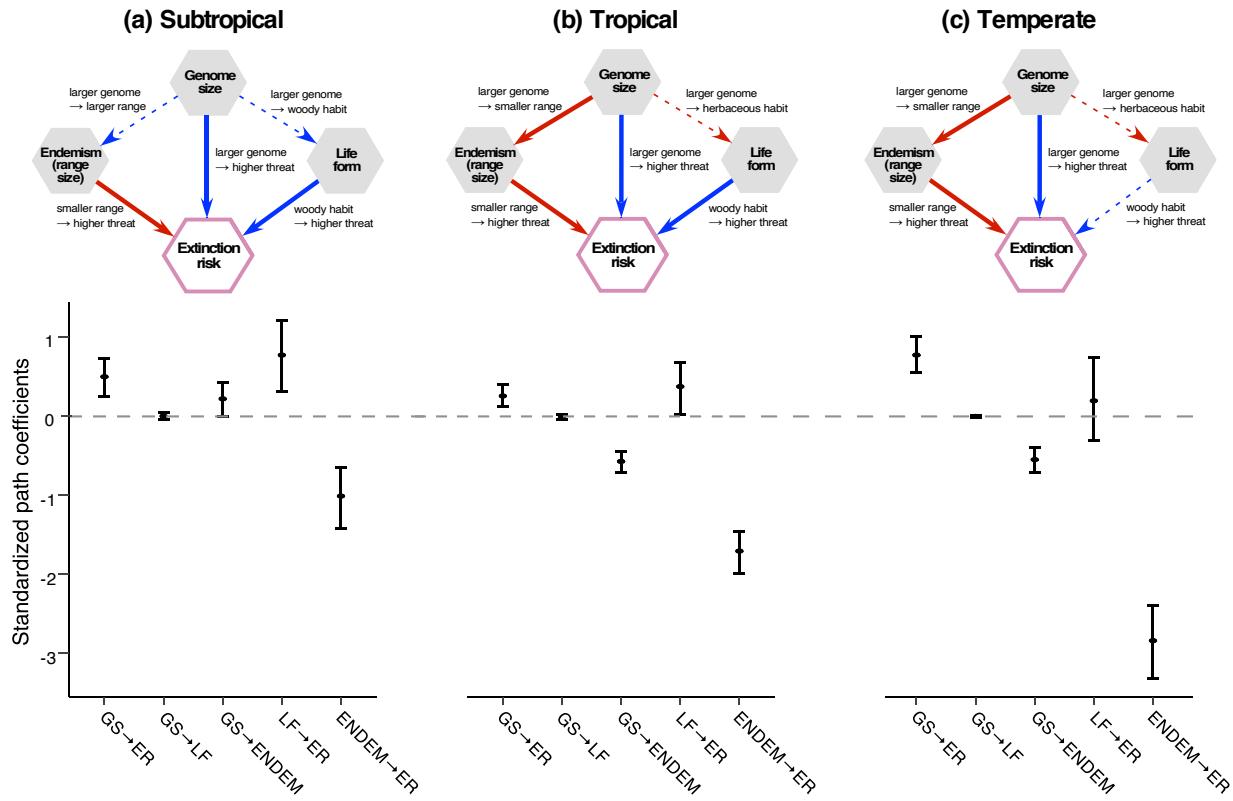

486 **Probability of threat**

487

488 Endemism/	489 Coefficient	490 Very small	491 Large	492 Δ
493 Climate	494 estimates	495 genome	496 genome	497 threat
498	499	500 (95% CIs)	501 (95% CIs)	502 probability
<u>Endemic</u>				
Desert	1.86	21.0 (17.6–25.8)	73.2 (59.2–81.9)	52.2
Subtropical	1.89	14.8 (10.4–21.9)	81.3 (62.8–90.6)	66.4
Temperate	1.84	10.8 (7.1–16.4)	71.2 (48.8–84.2)	60.4
Tropical	1.23	26.0 (20.3–34.2)	89.0 (77.1–94.4)	62.9
<u>Not-endemic</u>				
Desert	1.68	3.0 (2.2–4.5)	30.8 (16.5–47.0)	27.8
Subtropical	1.71	2.6 (1.4–4.9)	46.2 (21.3–69.3)	43.6
Temperate	1.66	1.6 (0.8–2.9)	33.0 (13.1–56.0)	31.4
Tropical	1.05	6.2 (3.7–10.9)	61.0 (34.8–79.7)	54.7

504

505 **Figure 2.** Model selection based on ΔAICc values estimated from phylogenetic logistic
506 regressions using the Red List definition of threat as a point of reference for dichotomizing the
507 response variable into a non-threatened group (comprising Least Concern and Near Threatened
508 species) and a threatened group (comprising Vulnerable, Endangered, Critically Endangered and
509 Extinct in the Wild species); model selection for three comparison threat groupings is shown in
510 Figs. S8–S10. ΔAICc values were calculated by first ranking all 27 tested models within each of
511 the 100 different phylogenies used as input in analyses, and then summarizing by model across
512 all trees (as shown in Fig. S2). The plot shows the distribution of ΔAICc values for the seven (of
513 27) models that had the best AICc value (i.e., $\Delta\text{AICc} = 0$) in at least one of the phylogenies (see
514 Table 1 for support values of the remaining models). Models are ordered by increasing median
515 ΔAICc values. The dashed line at $\Delta\text{AICc} = 6$ indicates that models with a median ΔAICc below
516 this cut-off were retained. Abbreviations: GS = genome size, CLIM = climate zone, LF = life
517 form, ENDEM = endemism (proxy for range size).


518

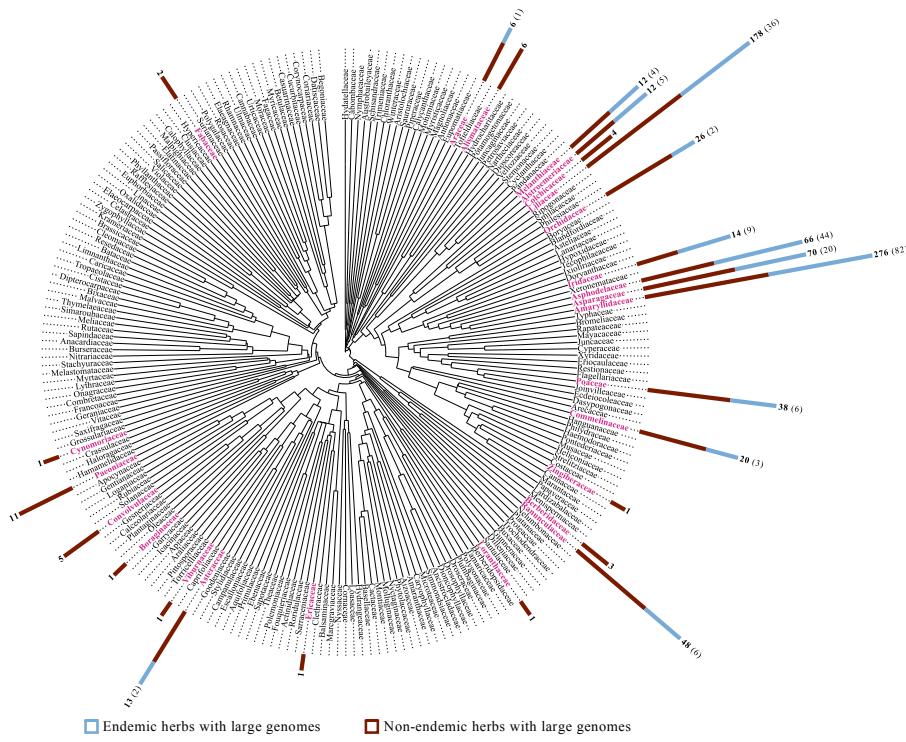
519 **Figure 3.** Phylogenetic logistic regression curves predicting the probability of threat in
 520 angiosperms as a function of genome size, life form, climate zone and endemism in the two best
 521 models selected when using the Red List definition of threat as a point of reference for grouping
 522 Least Concern and Near Threatened species as non-threatened and Vulnerable, Endangered,
 523 Critically Endangered and Extinct in the Wild species as threatened (see Fig. 2). Curves
 524 represent mean coefficients from phylogenetic logistic regressions, summarized across the 100
 525 different phylogenies used as input in individual regressions conducted for each of the two best
 526 models (the latter are shown in blue and orange). Shaded areas indicate the mean 95%
 527 confidence intervals from bootstrap analysis for each model. The start and end points of the
 528 curves and confidence intervals indicate the minimum and maximum genome sizes represented
 529 across the different variable partitions (also given in Table S3). Abbreviations: n = sample size,
 530 GS = genome size, CLIM = climate zone, LF = life form, ENDEM = endemism.

531 *Direct and indirect effects of genome size on extinction risk*

532 Considering that the four varying thresholds for dichotomizing extinction risk produced
533 consistent results across logistic regressions, we focused on the point of reference threshold to
534 test four causal models in confirmatory phylogenetic path analyses (Fig. S4). We found one best
535 causal model for subtropical and tropical species, and two best models for temperate species
536 (Fig. S23). We omitted findings for desert species as these analyses did not converge (likely due
537 to a small sample size; Table S3) and were therefore unreliable. Causal model one was common
538 to all three of the reported climates; it included a direct link between genome size and extinction
539 risk, in addition to indirect links through life form and endemism (Figs. 4, S4a). Causal model
540 three, exclusive to temperate species, differed by lacking a life form-extinction risk link (Figs.
541 S4c, S23, S24).

542 All best causal models showed that increases in genome size were significantly
543 associated with higher extinction risk across climate zones (Figs. 4, S24). This link was strongest
544 in temperate species (coefficients = 0.772 and 0.764 for causal models one and three,
545 respectively), followed by subtropical (coefficient = 0.498) and tropical (coefficient = 0.255)
546 species (Figs. 4, S24). Genome size increases were also significantly associated with endemism
547 (i.e., smaller range sizes) in tropical and temperate species (Fig. 4b-c), but not in subtropical
548 species (Fig. 4a). Nevertheless, in all three climate zones, single-country endemics were
549 significantly associated with increased extinction risk. This endemism-risk link was the most
550 influential across climates and best causal models, with coefficients ranging from -1.01 to -2.839
551 (Figs. 4, S24). The genome size-life form link was not significant across the best models (Figs. 4,
552 S24). Although we found significant links between life form and risk for subtropical and tropical
553 species, which may merit further exploration, these fall outside of the genome size-related
554 hypotheses tested here.

555


556 **Figure 4.** Schematics and coefficients for the best causal model obtained from confirmatory
557 phylogenetic path analyses for **(a)** subtropical, **(b)** tropical and **(c)** temperate species using the
558 Red List definition of threat as a point of reference for grouping Least Concern and Near
559 Threatened species as non-threatened, and Vulnerable, Endangered, Critically Endangered and
560 Extinct in the Wild species as threatened (desert species are excluded as analyses for this data
561 subset did not converge). The schematics represent causal model one (shown in Fig. S4a), the
562 single best model found for subtropical and tropical species based on Δ CICc model selection
563 (Fig. S23); for the additional best model found for temperate species (shown in Fig. S4c), see
564 Fig. S24. Positive links between variables are indicated by blue arrows and negative links by red
565 arrows; solid and dashed arrows indicate significant and non-significant links, respectively. Plots
566 show the mean standardized path coefficients and 95% confidence intervals (the latter obtained
567 from bootstrap analyses) for links present in the models above, after summarising across the 100
568 different phylogenies used as input in individual path analyses for each climate. Confidence
569 intervals fully above or below the dashed line (coefficient = 0) indicate significant coefficients.

570 Abbreviations: GS = genome size, ER = extinction risk, LF = life form, ENDEM = endemism
571 (proxy for range size).

572

573 *Species with a potentially heightened risk of extinction*

574 As genome size is positively correlated with extinction risk in herbaceous angiosperms (Figs. 3,
575 **S20–S22**), we filtered the 11,764 sampled species that lacked a Red List assessment to identify
576 816 large-genomed herbs (≥ 11.76 Gb/1C; Fig. 5). This group is expected to contain a higher
577 proportion of threatened than non-threatened species based on their genome size and life form.
578 Of the 816 species identified (Table S8), 729 (89.3%) were monocots from 14 families and 87
579 (10.7%) were eudicots from 11 families (Fig. 5). In comparison, monocots represent 4,484
580 (38.1%) of the 11,764 unassessed species in our sampling and 806 (85.6%) of the 942 unassessed
581 large-genomed species, while eudicots represent 7,189 (61.1%) and 132 (14%) of these species,
582 respectively (Table S1). Of the large-genomed herbs identified, 231 (28.3%) are single-country
583 endemics (Fig. 5).

584

585 **Figure 5.** Summary phylogeny of 237 angiosperm families that contain species for which
586 genome size information is available, but a Red List threat assessment is lacking. A randomly
587 selected phylogeny is depicted (out of the 100 different species-level trees used in analyses),
588 with a single terminal per family. Pink terminals indicate priority families that contain
589 herbaceous species with large (i.e., ≥ 11.76 Gb/1C) genomes. The total number of unassessed
590 large-genomed herbs in these families is represented by the full length of the bar graphs (red and
591 blue areas) and indicated in bold font; the blue area of each bar and the values in brackets
592 indicate the proportion of large-genomed herbs that are endemic. Note that species numbers are
593 converted using a log10 scale for projection as bar graphs. For the full list of 816 species in these
594 priority families see Table S8.

595 **Discussion**

596 *Genome size and extinction risk are positively correlated across angiosperms*

597 Our findings from phylogenetically-informed logistic regressions and path analyses provide
598 unambiguous support for our hypothesis that genome size is positively correlated with extinction
599 risk in angiosperms (Figs. 1, 4). This is consistent with Vinogradov's (2003) report of
600 significantly larger mean genome sizes in globally threatened species than in those not assessed
601 as threatened. Our study and that of Vinogradov are congruent despite differences in their overall
602 approaches, notably including the underlying threat data. Here we used the Red List, which
603 comprises 54,263 assessments and employs quantitative criteria (IUCN, 2022), whereas
604 Vinogradov (2003) used the UNEP-WCMC Species Database that predated the 1994 Red List
605 (fide Walter & Gillett, 1998) and instead relied on qualitative criteria to assess ~34,000 species.
606 Our use of the Red List uncovered that genome size does not increase gradually across categories
607 denoting increasing risk; instead, it displays a binary pattern with significantly smaller genomes
608 in LC compared to NT, EN and CR species (Fig. 1a). The point where genome size begins
609 playing a significant role in influencing extinction risk is unclear, but likely lies within the size
610 ranges encountered in NT and VU species (Fig. 1a). We captured this uncertainty by using four
611 varying threat thresholds in logistic regressions, which all produced consistent results (Figs. 1b,
612 3, S20–S22), suggesting that the broad categorization of extinction risk applied here and in
613 Vinogradov (2003) accurately captures its association with genome size.

614 Large genome size may thus represent a biological attribute associated with an increasing
615 intrinsic susceptibility to extinction that additionally interacts with a range of (anthropogenic)
616 threats to shape species risk (Vazquez & Lucifora, 2023). The effects of this intrinsic
617 susceptibility were previously described in the “large genome constraint” hypothesis proposed
618 by Knight *et al.* (2005), who found tentative support for evolutionary, biogeographic and
619 phenotypic correlates of genome size that may contribute to large-genomed species being
620 “trimmed” from the angiosperm tree of life. Evolutionary correlates included significantly lower
621 species richness (measured as number of species per genus), underpinned by the confounding
622 effects of higher extinction and/or lower speciation rates, but nevertheless indicative of costs
623 imposed by large genomes over evolutionary time and not as an exclusively recent occurrence
624 (Vinogradov, 2003). Biogeographic correlates are reflected in more restricted range sizes and
625 ecological distributions of large-genomed species (e.g., Knight & Ackerly, 2002; Pandit *et al.*,

626 2014; Bureš *et al.*, 2022). The narrower environmental tolerances documented for large genomes
627 are likely shaped by diverse phenotypic correlates, including a lower variation in cell sizes and
628 packing densities, which have been shown to limit metabolic variation and therefore the ability
629 to optimize performance across a range of environments (e.g., Roddy *et al.*, 2020). Using range
630 size as a proxy for effective population size (e.g., Gaston, 2003), the “mutational hazard
631 hypothesis” proposed by Lynch and Conery (2003) may provide an underlying mechanism for
632 the relatively restricted ranges of large-genomed species, whereby mutation frequency increases
633 alongside genome size due to a higher availability of target DNA. Despite posing a selective cost
634 from mutational hazards, large genomes may become fixed in small populations due to the
635 prevalence of genetic drift over natural selection, potentially increasing extinction risk over time.
636 However, more direct measures of population size (e.g., census data) are required for confirming
637 this hypothesis, as support for it has been equivocal in angiosperms (Bureš *et al.*, 2022) or
638 conflicting in animals (e.g., Yi & Streelman, 2005; Roddy *et al.*, 2021; Pincheira-Donoso *et al.*,
639 2023).

640 These genome size correlates, in conjunction with angiosperms generally having smaller
641 genomes than expected given the ubiquity of repetitive DNA and polyploidy (e.g., Wang *et al.*,
642 2021), provide persuasive arguments for the potentially maladaptive consequences of large
643 genomes (Vinogradov, 2003; Knight *et al.*, 2005). However, genome size alone does not fully
644 explain extinction risk, as illustrated by the presence of both threatened and non-threatened
645 species with large genomes in our sampling (Table S3). Moreover, the contrasting responses to
646 environmental stress conditions documented for large-genomed angiosperms across different
647 lineages and growth forms (e.g., Faizullah *et al.*, 2021; Feng *et al.*, 2022; Zhang *et al.*, 2022)
648 make it difficult to provide a single explanation for why species with large genomes are more
649 likely to be threatened.

650

651 *The relationship between genome size and extinction risk varies across life forms*

652 Our second main finding is that the genome size and extinction risk relationship is driven by a
653 signal in herbaceous, but not woody species (Fig. 3). Despite woody angiosperms having
654 generally smaller genomes and lower overall size variance compared to herbs (Table S3; Carta *et*
655 *al.*, 2022), our dataset contains enough genome size variation in woody species that we would
656 expect to detect a relationship with extinction risk if indeed it exists. Rather, the lack of signal in

657 woody species may be associated with the scaling effects of cell size, as small genomes are
658 typically associated with small stomata that can close rapidly, a potential advantage in tall plants
659 for permitting greater conductance through long xylem pathways while reducing hydraulic
660 dysfunction, particularly under drought conditions (e.g., Hetherington & Woodward, 2003;
661 Beaulieu *et al.*, 2010). Thus, large genomes are predicted to be removed by strong selection in
662 trees (Beaulieu *et al.*, 2010), enabled by their typically large effective population sizes (Petit &
663 Hampe, 2006), as predicted by the mutational hazard hypothesis (Lynch & Conery, 2003).
664 Selective pressures may be reinforced by the generally long generation times of woody species
665 and relatively uniform environments experienced over their lifetime, two factors that are
666 expected to reduce dynamism in genome evolution (Levin & Wilson, 1976). These forces could
667 in turn constrain genome growth in woody species to a point where genome size does not
668 increase extinction risk, which is instead driven by extrinsic factors such as habitat loss or
669 degradation (Newton & Oldfield, 2008). In contrast, genetic drift rather than selection may shape
670 genome size dynamics in the generally smaller population sizes of herbaceous angiosperms,
671 which are additionally likelier to experience a range of variable local environments (Leitch &
672 Leitch, 2012).

673 Comparing our findings for woody angiosperms with gymnosperms (the other major
674 vascular plant lineage containing woody species) may be of interest. However, we expect this to
675 provide limited insights to support or refute our hypotheses given the contrasts between these
676 two lineages concerning genome dynamics and profiles, including genome size ranges,
677 chromosome numbers and polyploidy frequency (Leitch & Leitch, 2012).

678
679 *Genome size is associated with extinction risk both directly and indirectly via range size*
680 We found that genome size and range size (using endemism as a proxy) are interwoven in their
681 effects on extinction risk. First, path analyses showed that some of the effect of range size on
682 extinction risk can be indirectly attributed to genome size (Fig. 4). This is somewhat expected
683 given (i) the generally small range sizes of large-genomed species compared to the diverse range
684 sizes of small-genomed species (Bureš *et al.*, 2022); and (ii) the fact that range size underpins
685 Red List criterion B, designed to identify risk in populations with restricted distributions (in
686 combination with additional population-level metrics; IUCN, 2013). Second, logistic regressions
687 showed that genome size has a stronger effect on the extinction risk of species that are endemic

688 to a single botanical country than non-endemic species (Fig. 3). In-silico modelling provides a
689 potential mechanism for this finding, whereby genome expansion drives extinction risk in small
690 populations by increasing the lethal mutational burden (LaBar & Adami, 2020). Restricted
691 ranges may also interact with major anthropogenic impacts like land conversion and species
692 overexploitation to further exacerbate risk.

693 Path analyses showed that a large genome size, beyond its indirect link via range size,
694 additionally has direct and significant effects on angiosperm extinction risk, likely underpinned
695 by the nuclear-, cellular-, and organism-level constraints imposed by large genomes (Fig. 4).
696 Although data for these constraints are not available at the scale of this study and therefore were
697 not explicitly included in our models, our findings highlight the possibility that genome size may
698 be a useful proxy for parameters that are difficult to measure but associated with intrinsic risk in
699 angiosperms and aligned with Red List criteria. These parameters may include maximum
700 photosynthetic rate, water-use efficiency, and nutrient demand (Guignard *et al.*, 2016; Faizullah
701 *et al.*, 2021; Schley *et al.*, 2022).

702

703 *Genome size influences extinction risk relatively uniformly across climates*

704 In contrast to life form and range size, we found weaker support for climatic heterogeneity in the
705 genome size and extinction risk relationship. In both logistic regressions and path analyses (Figs.
706 3, 4), the effect of genome size was smallest in tropical species. Other studies documented on
707 average smaller genomes for tropical than temperate species (e.g., Levin & Funderburg, 1979;
708 Bureš *et al.*, 2022), perhaps arising from selection against larger genomes that have a
709 competitive disadvantage in environments requiring rapid growth to trap sunlight due to slower
710 rates of cell division. The advantages of smaller genomes may therefore partly explain our
711 findings of a more limited role for genome size in the tropics, where other factors, such as
712 differences in the global distribution of threat types, are likely to influence extinction risk. For
713 example, the main threats documented in the Red List for terrestrial vertebrates differed between
714 tropical areas, where agriculture and logging are more pervasive, compared to temperate areas,
715 where pollution and invasive species are the dominant documented threats (Harfoot *et al.*, 2021).
716 Whether these patterns accurately reflect the relative strength of threats globally, or bias in how
717 threat is recorded in the Red List, they may contribute to explaining why genome size-related
718 threats may appear less important in the tropics when facing swift anthropogenic drivers of

719 extinction like land conversion, which would be only indirectly associated with genome size
720 through its effects on range size (Figs. 3, 4). In contrast, intrinsic factors like genome size may
721 underlie our findings of relatively larger effect sizes in temperate species (Fig. 4), where the
722 cascading effects of large genomes may constrain plant responses to threats like pollution (e.g.,
723 Temsch *et al.*, 2010).

724

725 *Implications for conservation*

726 Our main finding of concurrent increases in genome size and extinction risk in herbaceous
727 angiosperms (Figs. 1, 3, 4), has both theoretical and practical implications for conservation. In
728 addition to guiding fundamental research to understand the underlying causes of differential
729 extinction risk, it may also prove useful for informing decisions relevant to plant conservation.
730 For example, we identified 816 herbaceous species lacking a Red List assessment but belonging
731 to a pool likely containing a higher proportion of at-risk species based on their large genomes
732 and life form (Fig. 5). Considering genome size in the context of predictors with high importance
733 for estimating plant extinction risk, such as range size (Pelletier *et al.*, 2018; Walker *et al.*, 2022),
734 may prove useful for understanding the relative risk of species with similar geographic and
735 ecological characteristics but dissimilar genome size. Additionally, it may serve as motivation
736 for addressing underrepresentation in the Red List of herbaceous angiosperms (Table S4),
737 particularly monocots (Nic Lughadha *et al.*, 2020), a group with an exceptionally high number of
738 large-genomed herbs (Fig. 5; Pellicer *et al.*, 2018). Conversely, genome size may be useful
739 information for fast tracking the identification of LC species (e.g., Bachman *et al.*, 2020),
740 considering that small-genomed herbs have a 15–43% lower threat probability than large-
741 genomed ones (Table 3, Fig. 3). Extending the number of species with both genome size data
742 and a Red List assessment, while maximising taxonomic and geographic representativity, will
743 enhance our understanding of the role of genome size in extinction risk and its potential for
744 informing conservation strategies. Additionally, future studies characterizing how the impacts of
745 genome size vary across different threat types may help to explicitly model the influence of
746 anthropogenic activities on angiosperm extinction risk.

747

748 **Acknowledgements**

749 The authors thank Marie Henniges for assistance with phylopath analyses, Cecile Ané for advice
750 on phyloglm, Barbara Holland and Ben Halliwell for their suggestions on phylogenetic
751 comparative methods, and Barnaby Walker for providing scripts to standardise life form data.
752 This research was supported by a Future Leader Fellowship (RBG, Kew) to M. Soto Gomez; J.
753 Pellicer benefited from a Ramón y Cajal grant (Ref: RYC-2017-2274) funded by both
754 MCIN/AEI/ 10.13039/501100011033 and “ESF Investing in your future”.

755

756 **Conflict of interest**

757 The authors have no conflicts to declare.

758

759 **Author contributions**

760 M.S.G, I.L., E.N.L. and M.J.M.B. designed the research. P.V., P.B, T.L.E. and F.Z. provided
761 genome size and life form data. F.F. provided angiosperm phylogenies for analyses. M.S.G and
762 M.J.M.B. performed data analysis, interpretation and visualization with input from S.P and
763 E.N.L. M.S.G. led the writing of the manuscript with substantial input from I.L., E.N.L., J.P. All
764 authors participated in manuscript writing and editing.

765

766 **Data availability statement**

767 The dataset assembled for this study is available in the supplementary materials (Table S1).

768

769 **References**

770 **Antonelli A, Fry C, Smith RJ, Simmonds MSJ, Kersey PJ, Pritchard HW, Abbo MS, Acedo C, Adams J, Ainsworth AM, et al. 2020.** State of the World's Plants and Fungi
771 2020. Royal Botanic Gardens, Kew: Royal Botanic Gardens, Kew.
772
773 **Bachman S, Walker BE, Barrios S, Copeland A, Moat J. 2020.** Rapid Least Concern: towards
774 automating Red List assessments. *Biodiversity Data Journal* **8**: e47018.
775 **Bachman SP, Brown MJ, Nic Lughadha E, Leão TC, Walker B. 2023.** Extinction risk
776 predictions for the world's flowering plants to support their conservation. *bioRxiv*:
777 2023.2008. 2029.555324.
778 **Bachman SP, Field R, Reader T, Raimondo D, Donaldson J, Schatz GE, Lughadha EN.**
779 2019. Progress, challenges and opportunities for Red Listing. *Biological Conservation*
780 **234:** 45-55.
781 **Bachman SP, Nic Lughadha EM, Rivers MC. 2018.** Quantifying progress toward a
782 conservation assessment for all plants. *Conservation biology* **32**(3): 516-524.
783 **Beaulieu JM, Leitch IJ, Knight CA. 2007.** Genome size evolution in relation to leaf strategy
784 and metabolic rates revisited. *Annals of Botany* **99**(3): 495-505.

785 **Beaulieu JM, Smith S, Leitch IJ. 2010.** On the tempo of genome size evolution in angiosperms.
786 *Journal of Botany* **2010**: Article ID 989152.

787 **Bennett MD. 1971.** The duration of meiosis. *Proceedings of the Royal Society of London Series*
788 *B* **178**: 277-299.

789 **Bennett MD. 1972.** Nuclear DNA content and minimum generation time in herbaceous plants.
790 *Proceedings of the Royal Society of London Series B* **181**: 109-135.

791 **Bennett MD. 1987.** Variation in genomic form in plants and its ecological implications. *New*
792 *Phytologist* **106**(1): 177-200.

793 **Brilhante M, Roxo G, Catarino S, dos Santos P, Reyes-Betancort JA, Caujapé-Castells J,**
794 **Sequeira MM, Talhahas P, Romeiras MM. 2021.** Diversification of *Aeonium* species
795 cross Macaronesian Archipelagos: Correlations between genome-size variation and their
796 conservation status. *Frontiers in Ecology and Evolution* **9**: 26.

797 **Brown MJM, Walker BE, Black N, Govaerts R, Ondo I, Turner R, Nic Lughadha E. 2023.**
798 rWCVP: a companion R package for the World Checklist of Vascular Plants. *New*
799 *Phytologist*: (in press).

800 **Brummitt RK, Pando F, Hollis S, Brummitt N. 2001.** World Geographic Scheme for
801 Recording Plant Distributions, Edition 2. Hunt Institute for Botanical Documentation,
802 Carnegie Mellon University (Pittsburgh).

803 **Bureš P, Elliott TL, Veselý P, Šmarda P, Forest F, Leitch IJ, Lughadha EN, Gomez MS,**
804 **Pironon S, Brown MJM, et al. 2022.** The global biogeography of angiosperm genome
805 size is shaped by climate and range size. *bioRxiv*: 2022.2012.2005.519116.

806 **Burnham KP, Anderson DR. 2002.** *Model selection and inference: A practical information-*
807 *theoretic approach*: Springer.

808 **Carta A, Mattana E, Dickie J, Vandeloek F. 2022.** Correlated evolution of seed mass and
809 genome size varies among life forms in flowering plants. *Seed Science Research* **32**(1):
810 46-52.

811 **Darbyshire I, Anderson S, Asatryan A, Byfield A, Cheek M, Clubbe C, Ghrabi Z, Harris T,**
812 **Heatubun CD, Kalema J. 2017.** Important Plant Areas: revised selection criteria for a
813 global approach to plant conservation. *Biodiversity and Conservation* **26**: 1767-1800.

814 **Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. 2021.**
815 Exploring environmental selection on genome size in angiosperms. *Trends in Plant*
816 *Science* **26**: 1039-1049.

817 **Feng X, Zhong L, Zhou H, Bi J, Batool H, Zhang X, Zhao W. 2022.** The limiting effect of
818 genome size on xylem vessel diameter is shifted by environmental pressures in seed
819 plants. *Plant Direct* **6**(12): e471.

820 **Forest F 2023.** Species-level phylogenetic trees of all angiosperm species (100 trees).
821 <https://zenodo.org/record/7600341>.

822 **Francis D, Davies MS, Barlow PB. 2008.** A strong nucleotypic effect of DNA C-value on the
823 cell cycle regardless of ploidy level. *Annals of Botany* **101**: 747-757.

824 **Fritz SA, Purvis A. 2010.** Selectivity in mammalian extinction risk and threat types: a new
825 measure of phylogenetic signal strength in binary traits. *Conservation biology* **24**(4):
826 1042-1051.

827 **Gaston KJ. 2003.** *The structure and dynamics of geographic ranges*. Oxford University Press.

828 **Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021.** The World Checklist of
829 Vascular Plants, a continuously updated resource for exploring global plant diversity.
830 *Scientific Data* **8**(1): 215.

831 **Grover CE, Wendel JF. 2010.** Recent insights into mechanisms of genome size change in
832 plants. *Journal of Botany* **2010**: 1-8.

833 **Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C-A, Trimmer M, Leitch IJ, Leitch AR. 2016.** Genome size and ploidy influence angiosperm species' biomass under
834 nitrogen and phosphorus limitation. *New Phytologist* **210**: 1195-1206.

835 **Guo W-Y, van Kleunen M, Pierce S, Dawson W, Essl F, Kreft H, Maurel N, Pergl J, Seebens H, Weigelt P, et al. 2019.** Domestic gardens play a dominant role in selecting
836 alien species with adaptive strategies that facilitate naturalization. *Global Ecology and Biogeography* **28**(5): 628-639.

837 **Harfoot MBJ, Johnston A, Balmford A, Burgess ND, Butchart SHM, Dias MP, Hazin C, Hilton-Taylor C, Hoffmann M, Isaac NJB, et al. 2021.** Using the IUCN Red List to
838 map threats to terrestrial vertebrates at global scale. *Nature Ecology & Evolution* **5**(11):
839 1510-1519.

840 **Hetherington AM, Woodward FI. 2003.** The role of stomata in sensing and driving
841 environmental change. *Nature* **424**(6951): 901-908.

842 **Ho LST, Ané C. 2014a.** A linear-time algorithm for Gaussian and non-Gaussian trait evolution
843 models. *Systematic Biology* **63**(3): 397-408.

844 **Ho LST, Ané C. 2014b.** Intrinsic inference difficulties for trait evolution with Ornstein-
845 Uhlenbeck models. *Methods in Ecology and Evolution* **5**(11): 1133-1146.

846 **Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS. 2019.** Global
847 dataset shows geography and life form predict modern plant extinction and rediscovery.
848 *Nature Ecology & Evolution* **3**(7): 1043-1047.

849 **IPBES. 2019.** E. S. Brondizio JS, S. Díaz, and H. T. Ngo, ed. Global assessment report on
850 biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on
851 Biodiversity and Ecosystem Services. <https://doi.org/10.5281/zenodo.3831673>: IPBES
852 secretariat, Bonn, Germany.

853 **IUCN 2013.** The IUCN Red List of Threatened Species. Version 2013.1

854 **IUCN 2022.** The IUCN Red List of Threatened Species (Version 2022-1).

855 **Ives AR, Garland T, Jr. 2010.** Phylogenetic logistic regression for binary dependent variables.
856 *Systematic Biology* **59**(1): 9-26.

857 **Knight CA, Ackerly DD. 2002.** Variation in nuclear DNA content across environmental
858 gradients: a quantile regression analysis. *Ecology letters* **5**(1): 66-76.

859 **Knight CA, Molinari NA, Petrov DA. 2005.** The large genome constraint hypothesis:
860 evolution, ecology and phenotype. *Annals of Botany* **95**: 177-190.

861 **LaBar T, Adami C 2020.** Genome size and the extinction of small populations. In: Banzhaf W,
862 Cheng BHC, Deb K, Holekamp KE, Lenski RE, Ofria C, Pennock RT, Punch WF,
863 Whittaker DJ eds. *Evolution in Action: Past, Present and Future*: Springer, Cham, 167-
864 183.

865 **Le Roux JJ, Hui C, Castillo ML, Iriondo JM, Keet J-H, Khapugin AA, Médail F, Rejmánek M, Theron G, Yannelli FA, et al. 2019.** Recent anthropogenic plant
866 extinctions differ in biodiversity hotspots and coldspots. *Current Biology* **29**: 2912-
867 2918.e2912.

868 **Leitch AR, Leitch IJ. 2012.** Ecological and genetic factors linked to contrasting genome
869 dynamics in seed plants. *New Phytologist* **194**(3): 629-646.

870 **Leitch IJ, Bennett MD. 2004.** Genome downsizing in polyploid plants. *Biological Journal of
871 the Linnean Society* **82**: 651-663.

877 **Leitch IJ, Chase MW, Bennett MD. 1998.** Phylogenetic analysis of DNA C-values provides
878 evidence for a small ancestral genome size in flowering plants. *Annals of Botany* **82**
879 (supplement A): 85-94.

880 **Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD 2019.** Plant DNA C-values
881 Database (release 7.1, April 2019).

882 **Levin DA, Funderburg SW. 1979.** Genome size in angiosperms: temperate versus tropical
883 species. *American Naturalist* **114**(6): 784-795.

884 **Levin DA, Wilson AC. 1976.** Rates of evolution in seed plants - net increase in diversity of
885 chromosome numbers and species numbers through time. *Proceedings of the National
886 Academy of Sciences (USA)* **73**(6): 2086-2090.

887 **Lynch M, Conery JS. 2003.** The origins of genome complexity. *Science* **302**(5649): 1401-1404.

888 **Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akçakaya HR, Leader-Williams N,
889 Milner-Gulland EJ, Stuart SN. 2008.** Quantification of extinction risk: IUCN's system
890 for classifying threatened species. *Conservation biology* **22**(6): 1424-1442.

891 **Newton A, Oldfield S. 2008.** Red Listing the world's tree species: a review of recent progress.
892 *Endangered Species Research* **6**(2): 137-147.

893 **Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon
894 KL, Brewer RFA, Gâteblé G, et al. 2020.** Extinction risk and threats to plants and
895 fungi. *PLANTS, PEOPLE, PLANET* **2**(5): 389-408.

896 **Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S,
897 Kovařík A, Pellicer J, Wang W, et al. 2020.** Repeat-sequence turnover shifts
898 fundamentally in species with large genomes. *Nature Plants* **6**(11): 1325-1329.

899 **Pandit MK, Pocock MJO, Kunin WE. 2011.** Ploidy influences rarity and invasiveness in
900 plants. *Journal of Ecology* **99**(5): 1108-1115.

901 **Pandit MK, White SM, Pocock MJO. 2014.** The contrasting effects of genome size,
902 chromosome number and ploidy level on plant invasiveness: a global analysis. *New
903 Phytologist* **203**(2): 697-703.

904 **Payne JL, Finnegan S. 2007.** The effect of geographic range on extinction risk during
905 background and mass extinction. *Proceedings of the National Academy of sciences*
906 **104**(25): 10506-10511.

907 **Pelletier TA, Carstens BC, Tank DC, Sullivan J, Espíndola A. 2018.** Predicting plant
908 conservation priorities on a global scale. *Proceedings of the National Academy of
909 sciences* **115**(51): 13027-13032.

910 **Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018.** Genome size diversity and its impact on
911 the evolution of land plants. *Genes* **9**(2): 88.

912 **Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X,
913 Yong J, et al. 2022.** Plant genome size modulates grassland community responses to
914 multi-nutrient additions. *New Phytologist* **236**: 2091-2102.

915 **Petit RJ, Hampe A. 2006.** Some evolutionary consequences of being a tree. *Annual Review of
916 Ecology Evolution and Systematics* **37**: 187-214.

917 **Pincheira-Donoso D, Harvey LP, Johnson JV, Hudson D, Finn C, Goodyear LEB, Guirguis
918 J, Hyland EM, Hodgson DJ. 2023.** Genome size does not influence extinction risk in
919 the world's amphibians. *Functional Ecology* **37**: 190– 200.

920 **Raunkiær C. 1934.** *The life forms of plants and statistical plant geography being the collected
921 papers of C. Raunkiaer*: Great Britain: Oxford at the Clarendon Press.

922 **Rivers MC, Brummitt NA, Nic Lughadha E, Meagher TR. 2014.** Do species conservation
923 assessments capture genetic diversity? *Global Ecology and Conservation* **2**: 81-87.

924 **Roddy AB, Alvarez-Ponce D, Roy SW. 2021.** Mammals with small populations do not exhibit
925 larger genomes. *Molecular Biology and Evolution* **38**(9): 3737-3741.

926 **Roddy AB, Théroux-Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro**
927 **S, Gilbride AB, Jensen B, Jiang G-F, et al. 2020.** The scaling of genome size and cell
928 size limits maximum rates of photosynthesis with implications for ecological strategies.
929 *International Journal of Plant Sciences* **181**(1): 75-87.

930 **Schley RJ, Pellicer J, Ge X-J, Barrett C, Bellot S, Guignard MS, Novák P, Suda J, Fraser**
931 **D, Baker WJ, et al. 2022.** The ecology of palm genomes: repeat-associated genome size
932 expansion is constrained by aridity. *New Phytologist* **236**: 433-446.

933 **Schmidt C, Hoban S, Hunter M, Paz-Vinas I, Garraway CJ. 2023.** Genetic diversity and
934 IUCN Red List status. *Conserv Biol* **37**(4): e14064.

935 **Simonin KA, Roddy AB. 2018.** Genome downsizing, physiological novelty, and the global
936 dominance of flowering plants. *PLOS Biology* **16**(1): e2003706.

937 **Šimová I, Herben T. 2012.** Geometrical constraints in the scaling relationships between genome
938 size, cell size and cell cycle length in herbaceous plants. *Proceedings of the Royal Society*
939 *B: Biological Sciences* **279**(1730): 867-875.

940 **Slatyer RA, Hirst M, Sexton JP. 2013.** Niche breadth predicts geographical range size: a
941 general ecological pattern. *Ecology letters* **16**(8): 1104-1114.

942 **Šmarda P, Hejcmánk M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P,**
943 **Hejcmánková P, Schellberg J. 2013.** Effect of phosphorus availability on the selection of
944 species with different ploidy levels and genome sizes in a long-term grassland
945 fertilization experiment. *New Phytologist* **200**: 911-921.

946 **Sparrow AH, Miksche JP. 1961.** Correlation of nuclear volume and DNA content with higher
947 plant tolerance to chronic radiation. *Science* **134**(3474): 282-283.

948 **Tanentzap AJ. 2017.** The costs of saving nature: Does it make “cents”? *PLOS Biology* **15**(7):
949 e2003292.

950 **Temsch EM, Temsch W, Ehrendorfer-Schratt L, Greilhuber J. 2010.** Heavy metal pollution,
951 selection, and genome size: The species of the Žerjav study revisited with flow
952 cytometry. *Journal of Botany* **2010**: Article ID 596542, 596511 pages.

953 **Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C. 2016.** Testing the link
954 between genome size and growth rate in maize. *PeerJ* **4**: e2408.

955 **Théroux-Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK,**
956 **Tholen D, McElrone AJ, Simonin KA, Brodersen CR. 2021.** Maximum CO₂ diffusion
957 inside leaves is limited by the scaling of cell size and genome size. *Proceedings of the*
958 *Royal Society B: Biological Sciences* **288**(1945): 20203145.

959 **van der Bijl W. 2018.** phylopath: Easy phylogenetic path analysis in R. *PeerJ* **6**: e4718.

960 **Vazquez DM, Lucifora LO. 2023.** Estimating intrinsic susceptibility to extinction when little
961 ecological information is available: The case of Neotropical freshwater stingrays
962 (Chondrichthyes: Potamotrygoninae). *Fish and Fisheries*.

963 **Veselý P, Bureš P, Šmarda P. 2013.** Nutrient reserves may allow for genome size increase:
964 evidence from comparison of geophytes and their sister non-geophytic relatives. *Annals*
965 *of Botany* **112**(6): 1193-1200.

966 **Veselý P, Bureš P, Šmarda P, Pavlicek T. 2012.** Genome size and DNA base composition of
967 geophytes: the mirror of phenology and ecology? *Annals of Botany* **109**: 65-75.

968 **Vinogradov AE. 2003.** Selfish DNA is maladaptive: evidence from the plant Red List. *Trends in*
969 *Genetics* **19**(11): 609-614.

970 **Vinogradov AE. 2004.** Genome size and extinction risk in vertebrates. *Proceedings of the Royal*
971 *Society of London. Series B: Biological Sciences* **271**(1549): 1701-1705.

972 **von Hardenberg A, Gonzalez-Voyer A. 2013.** Disentangling evolutionary cause-effect
973 relationships with phylogenetic confirmatory path analysis. *Evolution* **67**(2): 378-387.

974 **Walker BE, Leão TCC, Bachman SP, Lucas E, Nic Lughadha E. 2022.** Evidence-based
975 guidelines for automated conservation assessments of plant species. *Conservation*
976 *biology*(n/a): e13992.

977 **Walter KS, Gillett HJ. 1998.** *1997 IUCN red list of threatened plants*: IUCN.

978 **Wang X, Morton J, Pellicer J, Leitch IJ, Leitch AR. 2021.** Genome downsizing after
979 polyploidy: mechanisms, rates and selection pressures. *The Plant Journal* **107**: 1003-
980 1015.

981 **Wendel JF. 2015.** The wondrous cycles of polyploidy in plants. *American Journal of Botany*
982 **102**(11): 1753-1756.

983 **White AC, Rogers A, Rees M, Osborne CP. 2016.** How can we make plants grow faster? A
984 source-sink perspective on growth rate. *Journal of Experimental Botany* **67**(1): 31-45.

985 **Yi S, Streelman JT. 2005.** Genome size is negatively correlated with effective population size
986 in ray-finned fish. *Trends in Genetics* **21**(12): 643-646.

987 **Zhang H-Y, Lü X-T, Wei C-Z, Powell JR, Wang X-B, Xing D-L, Xu Z-W, Li H-L, Han X-**
988 **G. 2022.** β -diversity in temperate grasslands is driven by stronger environmental filtering
989 of plant species with large genomes. *Ecology*(n/a): e3941.

990 **Zhukovskaya NV, Ivanov VB. 2022.** Dependence of the duration of periods of the mitotic cycle
991 on the holoploid DNA content in root apical meristems. *Russian Journal of*
992 *Developmental Biology* **53**: 363-372.

993

994 **Supporting Information**

995 The following Supporting Information is available for this article:

996

997 **Supplementary Methods S1.** Dataset assembly and taxonomic reconciliation with the World
998 Checklist of Vascular Plants.

999 **Supplementary Methods S2.** Adjustments to life form, climate zone and geographic
1000 information.

1001 **Supplementary Methods S3.** Preparation of angiosperm phylogenies

1002 **Supplementary Methods S4.** Characterization of species representativeness in the genome size
1003 dataset.

1004 **Supplementary Methods S5.** Exploration of likelihood space for a baseline phylogenetic
1005 logistic regression model.

1006 **Supplementary Methods S6.** Selection of best models from phylogenetic logistic regressions.

1007 **Supplementary Methods S7.** Direct and indirect effects of genome size on extinction risk

1008

1009 **Table S1** (separate Excel table). Complete dataset used across analyses, comprising angiosperm

1010 genome size, life form, climatic zone and endemism status (proxy for range size).

1011 **Table S2** (separate Word table). Summary of sample size in individual Red List categories

1012 across data partitions in the 3,250-species dataset.

1013 **Table S3** (separate Word table). Summary statistics on sample size and genome size for the

1014 3,250-species dataset.

1015 **Table S4** (separate Word table). Evaluation of species representativeness across data partitions

1016 in the 3,250-species dataset.

1017 **Table S5** (separate Word table). Summary of logistic regression models, fit and phylogenetic

1018 signal across varying threat thresholds for dichotomizing extinction risk.

1019 **Table S6** (separate Word table). Consensus coefficients for best models identified in

1020 phylogenetic logistic regressions using varying threat thresholds for dichotomizing extinction

1021 risk.

1022 **Table S7** (separate Excel table). Mean threat probabilities summarized across best models from

1023 phylogenetic logistic regressions using varying threat thresholds to dichotomize extinction risk.

1024 **Table S8** (separate Word table). List of candidate species for prioritizing threat assessments.

1025

1026 **Figure S1.** Comparison of point-based and binary representations of species ranges.

1027 **Figure S2.** Schematic of the model selection pipeline applied to phylogenetic logistic

1028 regressions.

1029 **Figure S3.** Schematic of the methods used to estimate a mean probability of threat for very

1030 small- and large-genomed herbaceous species across best models from logistic regressions.

1031 **Figure S4.** Competing causal models tested in confirmatory phylogenetic path analyses.

1032 **Figure S5.** Phylogenetic distribution of the genera represented in the 3,250-species dataset.

1033 **Figure S6.** Distribution of genome sizes in the 3,250-species dataset and a larger sampling of

1034 angiosperms.

1035 **Figure S7.** Distribution of mean genome size differences in the 3,250-species dataset and 999

1036 down-sampled subsets with equal proportions of threatened and non-threatened species.

1037 **Figure S8.** Model selection for phylogenetic logistic regressions using a higher threat threshold
1038 than the Red List to dichotomize extinction risk.

1039 **Figure S9.** Model selection for phylogenetic logistic regressions using a polarizing threat
1040 threshold (by excluding Near Threatened species) to dichotomize extinction risk.

1041 **Figure S10.** Model selection for phylogenetic logistic regressions using a lower threat threshold
1042 than the Red List to dichotomize extinction risk.

1043 **Figure S11.** Coefficients distribution for one of two best models from phylogenetic logistic
1044 regressions using the Red List definition of threatened to dichotomize extinction risk.

1045 **Figure S12.** Coefficients distribution for a second of two best models from phylogenetic logistic
1046 regressions using the Red List definition of threatened to dichotomize extinction risk.

1047 **Figure S13.** Coefficients distribution for the best model from phylogenetic logistic regressions
1048 using a lower threat threshold than the Red List to dichotomize extinction risk.

1049 **Figure S14.** Coefficients distribution for one of three best models from phylogenetic logistic
1050 regressions using a higher threat threshold than the Red List to dichotomize extinction risk.

1051 **Figure S15.** Coefficients distribution for a second of three best models from phylogenetic
1052 logistic regressions using a higher threat threshold than the Red List to dichotomize extinction
1053 risk.

1054 **Figure S16.** Coefficients distribution for a third of three best models from phylogenetic logistic
1055 regressions using a higher threat threshold than the Red List to dichotomize extinction risk.

1056 **Figure S17.** Coefficients distribution for one of three best models from phylogenetic logistic
1057 regressions using a polarizing threat threshold (omitting Near Threatened species) to
1058 dichotomize extinction risk.

1059 **Figure S18.** Coefficients distribution for a second of three best models from phylogenetic
1060 logistic regressions using a polarizing threat threshold (omitting Near Threatened species) to
1061 dichotomize extinction risk.

1062 **Figure S19.** Coefficients distribution for a third of three best models from phylogenetic logistic
1063 regressions using a polarizing threat threshold (omitting Near Threatened species) to
1064 dichotomize extinction risk.

1065 **Figure S20.** Curves predicting threat probability in a best model common to phylogenetic
1066 logistic regressions using a lower, higher and polarizing threshold to dichotomize extinction risk.

1067 **Figure S21.** Curves predicting threat probability in a best model common to phylogenetic
1068 logistic regressions using a higher, polarizing and point of reference threshold to dichotomize
1069 extinction risk.

1070 **Figure S22.** Curves predicting threat probability in a best model common to phylogenetic
1071 logistic regressions using a higher and polarizing threshold to dichotomize extinction risk.

1072 **Figure S23.** Support for competing causal models tested in confirmatory phylogenetic path
1073 analyses across different climates using the Red List definition of threatened to dichotomize
1074 extinction risk.

1075 **Figure S24.** Schematic and coefficients for one of two best causal models for temperate species
1076 using the Red List definition of threatened to dichotomize extinction risk.