

1 *Running title:* CrPHT4-7, a chloroplastic phosphate transporter

2 *Corresponding author:* Szilvia Z. Tóth

3 ORCID: <https://orcid.org/0000-0003-3419-829X>

4 e-mail: toth.szilviazita@brc.hu

5

6 **The chloroplastic phosphate transporter CrPHT4-7 supports phosphate homeostasis and**
7 **photosynthesis in Chlamydomonas**

8 Dávid Tóth^{1,2}, Soujanya Kuntam¹, Áron Ferenczi³, André Vidal-Meireles^{1#}, László Kovács¹,
9 Lianyong Wang⁴, Zsuzsa Sarkadi^{5,6}, Ede Migh⁵, Klára Szentmihályi⁷, Roland Tengölics^{6,8}, Julianne
10 Neupert⁹, Ralph Bock⁹, Martin C. Jonikas^{4,10}, Attila Molnar³ and Szilvia Z. Tóth^{1*}

11

12 ¹Laboratory for Molecular Photobioenergetics, Institute of Plant Biology, Biological Research
13 Centre, Szeged, Temesvári krt 62, H-6726 Szeged, Hungary

14 ²Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6722 Szeged, Hungary

15 ³Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University
16 of Edinburgh EH9 3BF, United Kingdom

17 ⁴Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington
18 Road, Princeton, NJ 08544, United States

19 ⁵Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt 62, H-6726 Szeged,
20 Hungary

21 ⁶HCEMM-BRC Metabolic Systems Biology Lab; Temesvári krt 62, H-6726, Szeged, Hungary

22 ⁷Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar
23 tudósok körútja 2, H-1117 Budapest, Hungary

24 ⁸Metabolomics Lab, Core facilities, Biological Research Centre, Temesvári krt 62, H-6726 Szeged,
25 Hungary

26 ⁹Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany

27 ¹⁰Howard Hughes Medical Institute, Princeton University, Lewis Thomas Laboratory, Washington
28 Road, Princeton, NJ 08544, United States

29

30 [#] Current address: Photosynthesis and Environment Team, BiAM DRF, CEA Cadarache Bat 1900,
31 R+1, Saint Paul Lez Durance, 13108, France

32 *One-sentence summary:*

33 We demonstrate that the CrPHT4-7 transporter of *Chlamydomonas reinhardtii* is located in the
34 chloroplast envelope membrane and contributes to maintaining phosphate homeostasis and
35 photosynthesis.

36

37

38 **Abstract**

39 In eukaryotic cells, phosphorus is assimilated and utilized primarily as phosphate (Pi). Pi
40 homeostasis is mediated by transporters that have not yet been adequately characterized in green
41 algae. This study reports on CrPHT4-7 from *Chlamydomonas reinhardtii*, a member of the PHT4
42 transporter family, which exhibits remarkable similarity to AtPHT4;4 from *Arabidopsis thaliana*, a
43 chloroplastic ascorbate transporter. Using fluorescent protein tagging we show that CrPHT4-7
44 resides in the chloroplast envelope membrane. *Crpht4-7* mutants, generated by the CRISPR/Cas12a-
45 mediated single- strand templated repair, show retarded growth especially in high light, enhanced
46 sensitivity to phosphorus limitation, reduced ATP level, strong ascorbate accumulation and
47 diminished non-photochemical quenching in high light. Conversely, CrPHT4-7 overexpressing lines
48 exhibit enhanced biomass accumulation under high light conditions in comparison with the wild-
49 type strain. Expressing CrPHT4-7 in a yeast strain lacking Pi transporters substantially recovered its
50 slow growth phenotype demonstrating that it transports Pi. Even though CrPHT4-7 shows a high
51 degree of similarity to AtPHT4;4, it does not display any significant ascorbate transport activity in
52 yeast or intact algal cells. Thus, the results demonstrate that CrPHT4-7 functions as a chloroplastic
53 Pi transporter essential for maintaining Pi homeostasis and photosynthesis in *Chlamydomonas*
54 *reinhardtii*.

55

56 *Keywords:* ascorbate; *Chlamydomonas*; chloroplast; CRISPR/Cas12a; phosphate transporter; PHT4;
57 photosynthesis; yeast

58

59

60

61 **Introduction**

62

63 Phosphorus is essential for living organisms and is found in every compartment of the plant cell. It is
64 a structural component of nucleic acids and phospholipids, and also indispensable for signal
65 transduction and energy transfer reactions, including photosynthesis. Plants take up phosphorus from
66 the soil in the form of inorganic phosphate (Pi) through the cell wall and plasma membrane, which
67 then is transported into the various cell organelles. Despite its widespread occurrence in the
68 environment, Pi availability often limits plant growth, because of phosphate complexation with
69 metal cations and organic particles in the soil (e.g., Gutiérrez-Alanís et al., 2018, Crombez et al.,
70 2019). Fertilizers, derived from non-renewable rock phosphate, improve crop yields that otherwise
71 are limited by Pi availability, but the leaching of excess Pi into aquatic ecosystems causes
72 environmental problems such as eutrophication. For these reasons, studying Pi uptake and transport
73 in plants is of high importance.

74 PHT family members are the best-studied phosphate transporters in vascular plants. They are
75 well known for their roles in Pi uptake from soil and Pi translocation within the plant (Versaw and
76 Garcia, 2017; Wang et al., 2021). *Arabidopsis thaliana* has five high-affinity Pi transporter families
77 (PHT1-5) that are distinguished based on their functional differences and subcellular localization.
78 The PHT1 proteins are plasma membrane proton-coupled Pi-symporters that mediate Pi acquisition
79 from the soil and Pi translocation within the plant. Members of the PHT2 and PHT4 families are
80 present in plastids and in the Golgi apparatus, whereas PHT3 transporters are found in mitochondria
81 and PHT5;1 is a vacuolar Pi transporter (Versaw and Garcia, 2017; Srivastava et al., 2018).

82 Phosphate transport is poorly studied in green algae and surprisingly, no Pi transporter has
83 been characterized in detail (Wang et al., 2020). Understanding the mechanisms of Pi uptake and
84 cellular distribution is highly relevant since microalgae can accumulate and store large amounts of Pi
85 in the form of polyphosphate granules in specific vacuoles called acidocalcisomes (Sanz-Luque et al.
86 2020). This so-called “luxury uptake” (Riegman et al., 2000) may enable recovery of Pi upon
87 wastewater treatment (Shilton et al., 2012) to subsequently produce phosphate-rich fertilizers
88 (Slocombe et al., 2020). Thus, understanding Pi uptake and transport in microalgae are of high
89 importance to the protection of the environment and water management.

90 The *PHT* gene family in *C. reinhardtii* contains 25 putative *PHT* genes, categorized in four
91 subfamilies, namely *CrPTA*, *CrPTB*, *CrPHT3*, and *CrPHT4* (Wang et al., 2020). The *CrPTA*,

92 *CrPTB*, *CrPHT3*, and *CrPHT4* subfamilies may contain four, eleven, one, and nine members,
93 respectively (Wang et al 2020). Members of the *CrPTA* family, a sister family of *PHT1* in land
94 plants, may be found in the plasma membrane (Wang et al., 2020) or targeted to secretory and other
95 pathways (Tardif et al., 2012, Wang et al., 2023). *CrPTB* members were shown or predicted to be
96 targeted to the secretory and other pathways (Tardif et al., 2012, Wang et al., 2020, Wang et al.,
97 2023); however, based on homology with streptophyte algae, they are likely to be located in the
98 plasma membrane (Bonnot et al., 2017). *CrPHT3* (Cre03.g172300) is possibly found in
99 mitochondria (Tardif et al., 2012, Wang et al., 2020, Wang et al., 2023). Several *CrPHT4* family
100 members are predicted to be localized in the chloroplast, whereas others may be targeted to secretory
101 pathways or the mitochondria (Tardif et al., 2012, Wang et al., 2020, Wang et al., 2023). It is
102 interesting to note that *CrPHT* transcript levels responded differently to Pi starvation, with most
103 genes belonging to the *CrPTA* and *CrPTB* families showing significant inductions (Moseley et al.,
104 2006, Wang et al., 2020).

105 Here, we investigated a member of the *CrPHT4* family, called *CrPHT4-7* (Cre16.g663600,
106 called *CrPHT7* in Phytozome v. 13). This transporter has several *PHT4* homologs in *Arabidopsis*
107 *thaliana* with varied location and roles: *AtPHT4;1* to *AtPHT4;5* are expressed in plastids, whereas
108 *AtPHT4;6* in the Golgi apparatus (Guo et al., 2008a; reviewed by Versaw and Garcia, 2017,
109 Fabiańska et al., 2019). *AtPHT4;1* was found in the thylakoid membranes (Pavón et al., 2008), and
110 *AtPHT4;4* in the chloroplast envelope membrane of mesophyll cells (Miyaji et al., 2015). The
111 expressions of *AtPHT4;3* and *AtPHT4;5* are restricted mostly to leaf phloem cells, and *AtPHT4;2* is
112 most highly expressed in the roots and other non-photosynthetic tissues (Guo et al., 2008b). All
113 *AtPHT4* transporters may act as phosphate transporter as they could complement the yeast PAM2
114 mutant lacking Pi transporters (Guo et al., 2008a), and they exhibit H⁺ and/or Na⁺-coupled Pi
115 transport activities (Guo et al., 2008a, Irigoyen et al., 2011, Miyaji et al., 2015). Interestingly, it was
116 found that *AtPHT4;4* transports ascorbate (Asc) into the chloroplasts (Miyaji et al., 2015), to ensure
117 appropriate Asc level for its multiple roles (Tóth, 2023). *AtPHT4;1*, on the other hand, may export Pi
118 out of the thylakoid lumen (Karlsson et al., 2015). *AtPHT4;2* has been shown to act bidirectionally,
119 and its suggested physiological role is to export Pi from root plastids to support ATP homeostasis
120 (Irigoyen et al., 2011).

121 Here we found that CrPHT4-7 is a Pi transporter located in the chloroplast envelope
122 membrane of *C. reinhardtii*, and it is required for maintaining Pi homeostasis and optimal
123 photosynthesis under high light conditions.

124

125 **Results**

126

127 *CrPHT4-7 is localized in the chloroplast envelope membrane*

128 CrPHT4-7 belongs to the PHT4 family of transporters, showing similarity to members of the solute
129 carrier family 17 (sodium-dependent Pi co-transporter, SLC17A). CrPHT4-7 shows 42,6% similarity
130 to the *Arabidopsis thaliana* AtPHT4;5 (AT5G20380) Pi transporter and around 29 to 36% similarity
131 with other Pi transporters in the PHT4 family, namely AtPHT4;2, 4;1, 4;6, and 4;3. CrPHT4-7 also
132 shows a relatively high, 37,4% similarity to the chloroplastic Asc transporter AtPHT4;4
133 (AT4G00370.1) (according to Phytozome v.13, see Suppl. Fig. 1 for the sequence alignments).

134 In *Arabidopsis*, AtPHT4 transporters are located in the chloroplast envelope membrane of
135 plastids, in thylakoid membranes, and in the Golgi apparatus (reviewed by Fabiańska et al., 2019).
136 Prediction algorithms do not provide a clear indication as to where CrPHT4-7 is localized within the
137 cell. According to DeepLoc 1.0 (Thumuluri et al., 2022), CrPHT4-7 is associated with the Golgi
138 apparatus, whereas LocTree 3 (Goldberg et al., 2014) predicts that the mature protein is localized in
139 the chloroplast membrane. In contrast, ChloroP 1.1 (Emanuelsson et al., 1999) indicates that
140 CrPHT4-7 is not targeted to the chloroplast, and PredAlgo 1.0 (Tardif et al., 2012) predicts that is
141 not in the chloroplast, mitochondria or secretory pathway. The *in silico* analysis by Wang et al.
142 (2020) suggested that CrPHT4-7 is likely localized in the secretory pathway. The recently developed
143 protein prediction tool PB-Chlamy predicts that PHT4-7 is found in the chloroplast (Wang et al.,
144 2023).

145 To determine the subcellular location of CrPHT4-7, we tagged the CrPHT4-7 with the
146 fluorescent marker Venus at the C-terminus and then introduced the resulting construct (pLM005-
147 CrPHT4-7, Fig. 1A) into the UVM11 strain that has been shown to support enhanced transgene
148 expression (Neupert et al., 2009, Neupert et al., 2020). With its faster maturation rate, improved
149 folding, and reduced sensitivity to environmental pH, Venus represents a versatile fluorescent
150 protein tag (Nagai et al., 2002; the pLM005 base plasmid has been employed in Wang et al., 2023).
151 In parallel, we also introduced the construct into the *Chlamydomonas* CC-4533 strain (also called

152 cMJ030), which is the host strain used in the Chlamydomonas Library Project (Fauser et al., 2022,
153 Wang et al., 2023). In both the UVM11 and CC-4533 strains, the fluorescent signals from Venus-
154 tagged CrPHT4-7 could be detected (Fig. 1, and Suppl. Fig. 2, respectively). In the case of the
155 UVM11 strain, the signal was detected in 41 out of 93 transformed clones tested (corresponding to
156 44% efficiency). The merged images of Venus-tagged CrPHT4-7 and Chl *a* autofluorescence (Fig. 1,
157 Suppl. Fig. 2) show that CrPHT4-7 is localized to the chloroplast envelope.

158
159 *CrPHT4-7 is required for normal growth especially at high light*
160 To investigate the physiological role of CrPHT4-7, we studied *pht4-7* knock out mutants, which
161 were generated by CRISPR/Cas12a-mediated single-strand templated repair introducing early stop
162 codons (Ferenczi et al., 2017). In the initial CRISPR/Cas12a-ssODN mutagenesis screen, the *pht4-7*
163 mutants formed smaller colonies than wild-type cells (WT, CC-1883); Ferenczi et al., 2017). In
164 agreement with this observation, five independent mutant lines showed a similar slow growth
165 phenotype in comparison with the WT strain as estimated by absorbance at 720 nm (OD₇₂₀) in a
166 Multi-Cultivator photobioreactor (Suppl. Fig. 3; Thoré et al., 2021). Of these, we have randomly
167 selected two independent mutants, called *pht4-7#7* and *#9* for further detailed analyses.

168 The presence of the introduced sequence variations and premature stop codons was
169 confirmed by Sanger sequencing in the *pht4-7#7* and *#9* mutant lines (Fig. 2A). The stop codons
170 were introduced into the third exon of *CrPHT4-7* to prevent the translation of half of the C-terminal
171 transmembrane helices (Fig. 2B). Consequently, the *pht4-7#7* and *#9* mutants are very likely to
172 express a strongly truncated, non-functional form of CrPHT4-7.

173 In agreement with the preliminary experiments, a significant difference in biomass
174 accumulation (as assessed by OD₇₂₀) between the WT and *pht4-7* mutant lines was found when
175 grown at normal light (60 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$, measured inside the culture tube; Fig. 2C). At high
176 light (350 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$), the fitness penalty associated with the absence of *pht4-7* became
177 even more pronounced (Fig. 2D). Accordingly, the cell number and the Chl concentrations of the
178 cultures (Chl(a+b)/ml) measured after three days of growth were significantly lower in the mutants
179 than in the WT at both 60 and 350 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$ (Figs. 2E,G). We noted that the cell sizes of
180 the mutants and the WT were very similar at normal and high light (Fig. 2F).

181 The F_V/F_M value, an indicator of photosynthetic performance (Schansker et al., 2014, Sipka
182 et al., 2021), was approximately 0.65 - 0.7 in all genotypes at normal light (Fig. 2H), which is typical

183 for *C. reinhardtii* (e.g. Bonente et al., 2012, Santabarbara et al., 2019). At intense illumination, the
184 F_v/F_M value was about 0.45 in the WT, indicating downregulation of photosynthetic electron
185 transport possibly involving photoinhibition. The reduction of photosynthetic efficiency was more
186 enhanced in the *pht4-7* mutants than in the WT strain (Fig. 2H). From the above data, we conclude
187 that CrPHT4-7 is required for cellular fitness, particularly under intense illumination.

188 We have also performed measurements on cultures grown in photoautotrophic conditions, in
189 high salt (HS) medium, at normal light with CO_2 supplementation. The *pht4-7* mutants were found
190 to have mild growth phenotypes, thus photoautotrophic conditions did not enhance their stress
191 sensitivity at moderate light intensity (Suppl. Fig. 4).

192
193 *Is CrPHT4-7 an ascorbate or a phosphate transporter?*
194 Since CrPHT4-7 shows high amino acid sequence similarity to the AtPHT4;4 Asc transporter, we
195 decided to assess Asc metabolism and function. This analysis, and the consecutive ones were carried
196 out on alga cultures grown in TAP medium in Erlenmeyer flasks, enabling cultivating many more
197 cultures in parallel than in the Multi-Cultivator instrument. By determining the cell number and the
198 Chl content of the cultures after three days of growth in the Erlenmeyer flasks, we could confirm that
199 the *pht4-7* mutant cultures grow more slowly than the WT especially at high light (Suppl. Fig. 5). In
200 comparison with the Multi-Cultivator instrument, the difference between the mutants and WT was
201 milder, indicating that shake-flask culturing was less stressful for the cells than growing in the Multi-
202 Cultivator (see also Materials and Methods).

203 The cellular Asc concentration was about 0.8 mM in the CC-1883 strain when grown at 80
204 μ mol photons $m^{-2}s^{-1}$ (Fig. 3A), that is in the same range as in other *C. reinhardtii* WT strains (Vidal-
205 Meireles et al., 2017, 2020). In the *pht4-7* #7 mutant, the Asc concentration was about 1.1 mM and
206 in the *pht4-7*#9 line it was about 1.8 mM. At 500 μ mol photons $m^{-2}s^{-1}$, the Asc content increased
207 three-fold in the WT, whereas an about a ten-fold increase was observed in both *pht4-7* mutants,
208 reaching approximately 15 mM Asc in the cell (Fig. 3A).

209 Next, we investigated the effect of Asc treatment on the fast Chl *a* fluorescence kinetics,
210 which is a sensitive method to detect alterations in the function of the photosynthetic electron
211 transport chain (e.g. Schansker et al., 2014). It was demonstrated earlier that a 10 mM Asc treatment
212 causes a substantial, approx. 20-fold increase in cellular Asc content; at this high concentrations, Asc
213 may inactivate the oxygen-evolving complex (OEC) in *C. reinhardtii* resulting in diminished

214 variable Chl *a* fluorescence (Nagy et al., 2016; Nagy et al., 2018). We hypothesized that, if CrPHT4-
215 7 is an Asc transporter in the chloroplast envelope membrane, then Asc transport into the chloroplast
216 would be less efficient in its absence and consequently, less damage to the OEC should occur upon
217 Asc treatment. As expected, the 20 mM Asc treatment resulted in a loss of variable fluorescence in
218 cultures grown in normal light, but there were no clear differences between the WT and the *pht4-7*
219 mutants (Fig. 3B). This result indicates that CrPHT4-7 does not contribute significantly to Asc
220 transport into the chloroplast.

221 Ascorbate is a reductant for violaxanthin deepoxidase in vascular plants (Saga et al., 2010;
222 Hallin et al., 2016), but is not required for green algal-type violaxanthin deepoxidases (Li et al.,
223 2016; Vidal-Meireles et al., 2020). Instead, Asc mitigates an oxidative stress-related qI component
224 of non-photochemical quenching (NPQ) and, therefore, NPQ is increased upon Asc-deficiency in *C.*
225 *reinhardtii* (Vidal-Meireles et al., 2020). As expected, when the cultures were grown in normal light
226 in TAP medium, the rapidly developing energy-dependent phase (qE) of NPQ was basically absent
227 and NPQ mostly consisted of a slow phase, involving the zeaxanthin-dependent (qZ), state transition
228 (qT) and the photoinhibitory (qI) components (e.g. Xue et al., 2015; Vidal-Meireles et al., 2020).
229 The NPQ kinetics of the *pht4-7* mutants and the WT were similar in normal light (Fig. 4A). In high
230 light, NPQ diminished remarkably in the *pht4-7* mutants relative to the WT (Fig. 4B). Since upon
231 chloroplastic Asc-deficiency increased NPQ was observed due to the increase of qI (Vidal-Meireles
232 et al., 2020), these results suggest that Asc transport into the chloroplast was maintained in the *pht4-7*
233 mutants.

234 We conducted state transition experiments using consecutive red and far-red illuminations in
235 order to determine why NPQ was diminished in the *pht4-7* mutants (based on Ruban and Johnson,
236 2009; representative Chl *a* fluorescence traces can be found in Suppl. Fig. 6). The *pht4-7* mutants
237 displayed reduced qT, especially under high light conditions (Fig. 4C), although to a lesser degree
238 than a *stt7* state transition mutant (Fleischmann et al., 1999). This result raises the possibility that
239 chloroplastic Pi may be decreased in the *pht4-7* mutants, since it has been described that state
240 transition can be limited by Pi deficiency through insufficient LHCII phosphorylation (Petrou et al.,
241 2008).

242 Next, measurements related to phosphate homeostasis were carried out. Phosphorous is taken
243 up mostly in the form of Pi, therefore reduced Pi transport into the cell should decrease both the
244 inorganic and organic phosphorous contents. We used ICP-OES to determine the total cellular

245 phosphorous content and found that at normal light it was unaltered in the *pht4-7* mutants, whereas
246 at high light, it was slightly diminished in the *pht4-7#7* mutant and augmented in the *pht4-7#9*
247 mutant relative to the WT (Fig. 4D). Consequently, these data indicate that the absence of PHT4-7
248 did not limit phosphorous uptake into cells. On the other hand, inorganic phosphate is essential for
249 ATP synthesis, and if CrPHT4-7 is a Pi transporter in the chloroplast envelope membrane, then its
250 absence could limit ATP synthesis. Indeed, we found that cellular ATP content decreased in both
251 *pht4-7* mutants, both in normal and high light conditions (Fig. 4E).

252 ATP production in the chloroplast is driven by transthylakoid proton motive force (pmf) that
253 is physiologically stored as a ΔpH and a membrane potential ($\Delta\Psi$) (Cruz et al., 2005). Decreased
254 chloroplastic phosphate availability, thereby ATP production (Carstensen et al., 2018) is expected to
255 lead to increased pmf across the thylakoid membrane, especially in strong light (Cruz et al., 2005).
256 As shown in Fig. 4F, total pmf is increased in both mutants at high light conditions, supporting this
257 scenario.

258 As a next step, sensitivity to Pi limitation was assessed. Spot test, using four different Pi
259 concentrations (0.2, 2, 100 and 200% of regular TAP medium) revealed that the growth of the *pht4-7*
260 mutant strains was severely compromised upon Pi limitation in comparison with the WT (Fig. 5A).
261 In liquid TAP cultures containing 0.5% Pi, cell proliferation was significantly diminished in the
262 *pht4-7* mutants, as assessed by the Chl(a+b) content and cell number of the cultures (Fig. 5B,C).

263 Regarding the photosynthetic activity, we found that six days of Pi deprivation decreased the
264 F_v/F_m values very strongly (to about 0.1), and the decrease was slightly stronger in the mutants than
265 in the WT (Fig. 6A). Importantly, the decrease in F_v/F_m was caused by a very strong increase of the
266 F_0 value (Fig. 6B), indicating that the photosynthetic electron transport became reduced under Pi
267 deprivation, most probably due to ATP deficiency (Fig. 4E), therefore a limited Calvin-Benson cycle
268 activity. Upon the re-addition of Pi, the F_v/F_m was almost fully restored within 24 h, showing that
269 the downregulation of photosynthetic activity was reversible (Fig. 6A). Moreover, upon Pi
270 limitation, NPQ increased, with the increase being less substantial in the *pht4-7* mutants than in the
271 WT (Figs. 6C,D).

272 In addition, we have detected a very strong (about twenty to thirty-fold) increase in Asc
273 contents upon Pi limitation in each strain, which was substantially restored by the re-addition of Pi
274 within 24 h (Fig. 6E). These data show that Pi limitation leads to a strong Asc accumulation,

275 similarly to sulphur deprivation involving oxidative stress (Nagy et al., 2018), and that upon the
276 release of this stress effect, the Asc content rapidly returns to its original level.

277
278 *Genetic complementation and overexpression of CrPHT4-7*
279 To confirm the relationship between the observed effects and the CrPHT4-7 mutation, genetic
280 complementation experiments were carried out. We cloned the full-length CrPHT4-7 cDNA between
281 the promoter and terminator sequence of *PSAD*, and subsequently transformed the *pht4-7* mutants
282 with this construct (Fig. 7A). The complementation rescued the slow growth phenotype of the *pht4-7*
283 mutants in at least 70% of the transformants tested (randomly selected lines for the complemented
284 *pht4-7#7* mutant are shown in Suppl. Fig. 7A). The restored growth phenotype was also associated
285 with higher Chl(a+b)/ml contents, improved photosynthetic performance (as assessed by the F_v/F_m
286 value), and moderate increases in Asc content, when grown in high light (Suppl. Figs. 7 B-D).
287 Importantly, the complemented lines grew similarly upon Pi limitation in normal light as the WT
288 (Suppl. Fig. 7E).

289 We also transformed CC-1883 with the above-mentioned construct to obtain CrPHT4-7-
290 overexpressing lines. Out of 15 randomly selected lines, five showed significantly improved growth
291 relative to the WT, as evidenced by higher Chl(a+b)/ml contents when grown in high light (Fig. 7B).
292 The relative transcript abundance of *PHT4-7* was significantly increased in the selected
293 overexpressing lines (Fig. 7C). The F_v/F_m values of the WT and the overexpressing lines did not
294 differ significantly under high light treatment (Fig. 7D), indicating that the performance of the
295 photosynthetic apparatus was similar in the overexpressing lines and the WT.

296
297 *Expression of CrPHT4-7 in a yeast strain lacking phosphate transporters*
298 In order to study the substrate specificity of CrPHT4-7, we used the EY917 yeast strain in which five
299 Pi transporters (PHO84, PHO87, PHO89, PHO90, PHO91) were inactivated, and the *GAL1*
300 promoter drives the expression of *PHO84* enabling growth on galactose-containing media (Wykoff
301 and O’Shea 2001). The EY917 strain lacking the five Pi transporters is considered conditional lethal,
302 because spores are unable to germinate in the absence of galactose (i.e., on normal glucose-
303 containing growth media). Plant phosphate transporters have been successfully investigated using Pi
304 transporter-deficient yeast strains (Wang et al., 2015, Chang et al., 2019).

305 We transformed the EY57 (WT) and EY917 strains with the p426-TEF plasmid containing
306 the *CrPHT4-7* gene (Fig. 8A). As controls, we used the EY57 and EY917 yeast strains transformed
307 with the empty vector. The effect of expressing *CrPHT4-7* on the growth characteristics was then
308 analyzed on glucose-containing medium. We found that the growth of the yeast strain expressing
309 *CrPHT4-7* was remarkably improved relative to the EY917 empty vector strain. Expressing
310 *CrPHT4-7* in the control strain EY57 had no significant effect on its growth properties in
311 comparison with the EY57 empty vector strain (Fig. 8B). These data demonstrate that *CrPHT4-7*
312 acts as a Pi transporter.

313 Since *CrPHT4-7* is also a potential Asc transporter because it shares high similarity with the
314 Asc transporter AtPHT4;4, its Asc uptake activity was also investigated in yeast cells. To this end,
315 yeast cultures expressing *CrPHT4-7* or an empty vector were incubated in the presence of 2, 5, 10
316 and 20 mM Na-Asc for 15 min. The control cultures contained no Asc, in agreement with published
317 reports that yeast contains no Asc, but erythroascorbate instead (Spickett et al., 2000). At the two
318 lowest concentration levels (2 and 5 mM), no significant difference between the EY917 and the
319 *CrPHT4-7* expressing yeast strains were observed. At 10 and 20 mM concentration levels, the uptake
320 in the *CrPHT4-7* expressing strain was more enhanced; however, the intracellular Asc concentration
321 was only approx. 20 to 50 μ M, i.e. approx. 0.2% of the external Asc level. This shows that Asc
322 uptake by yeast cells is very moderate and it is only slightly increased by *CrPHT4-7*. We also note
323 that the regular Asc content in *C. reinhardtii* in the range of 0.1 to 1 mM (Vidal-Meireles et al.,
324 2017, and Fig. 3A), making it also unlikely that *CrPHT4-7* substantially contributes to Asc content
325 into the chloroplasts of *C. reinhardtii*. These data are in agreement with our results obtained with
326 Chlamydomonas cells (Fig. 3B) and indicate that *CrPHT4-7* does not act as an effective Asc
327 transporter.

328

329 **Discussion**

330
331 Phosphorus is an essential macronutrient fulfilling a wide range of functions for all living organisms,
332 including microalgae. It is an essential compound of proteins, sugar phosphates, nucleic acids, and
333 structural phospholipids and it is also required for information transfer via signal cascades (Dyhrman
334 2016). Phosphorus is of limited availability in nature; therefore, efficient P acquisition and storage,

335 as well as the ability to cope with P limitation, are among the key factors determining the
336 geographical distribution of single-celled phototrophs.

337 Cellular metabolism is severely affected by P starvation, including a slowdown of growth,
338 changes in protein, lipid and starch biosynthesis and degradation, cellular respiration, and recycling
339 of internal structures and compounds (reviewed by Sanz-Luque and Grossman, 2023). Ribosome
340 degradation and a decrease in photosynthetic electron transport activity, including the loss of the
341 PSII subunit, PsbA, has been also observed (Couso et al., 2020, Wykoff et al., 1998). This
342 downregulation of photosynthetic electron transport helps to minimise photodamage, as due to the
343 diminished Calvin-Benson cycle activity, much of the absorbed light energy cannot be used to
344 support cell metabolism. Under P starvation, a number of photoprotective, P storage and uptake
345 mechanisms are activated (reviewed by Sanz-Luque and Grossman, 2023).

346 Transporters play an essential role in Pi uptake and distribution within the cell. The Pi
347 transporters situated in the cytoplasmic membrane of the cell are divided into two categories
348 according to their affinity to the translocated Pi: there are low-rate high-affinity and high-rate low-
349 affinity transporters, of which high-affinity Pi transporters are upregulated during P shortage
350 (Grossman and Aksoy 2015). These include putative H^+/PO_4^{3-} PTA and Na^+/PO_4^{3-} PTB symporters
351 (Moseley et al., 2006, Wang et al., 2020, Sanz-Luque and Grossman, 2023). In addition to PTA and
352 PTB transporters, PHT3 and PHT4 transporters have also been identified by genetic analysis (e.g.
353 Wang et al., 2020), but to our knowledge, none have been characterized in detail.

354 We found that CrPHT4-7, a member of the PHT4 family in *C. reinhardtii*, is a Pi transporter
355 localized to the chloroplast envelope membrane (Fig. 1). The *pht4-7* mutants displayed retarded
356 growth, compromised high-light tolerance, diminished ATP content and enhanced sensitivity
357 towards Pi deprivation (Figs. 2, 4-6), demonstrating that CrPHT4-7 is required for maintaining Pi
358 homeostasis in the chloroplast and for cellular fitness. These effects were particularly apparent under
359 high light conditions. The reason could be that, at high light, Pi limitation within the chloroplast
360 leads to relative ATP shortage (Fig. 4E), thereby limiting Calvin-Benson cycle activity and causing
361 slower growth. At the same time, the photosynthetic electron transport chain becomes over-reduced,
362 as indicated by the increased pmf (Fig. 4F). The decrease of the F_v/F_m value in high light (Fig. 2H)
363 indicates that in addition to the over-reduced electron transport chain, PSII may become also
364 photoinhibited. Similar observations have been made upon Pi deficiency in green algae and in higher

365 plants (Wykoff et al., 1998, Petrou et al., 2008; Carstensen et al., 2018) and in a *pht2;1* mutant of
366 wheat (Guo et al., 2013).

367 Phosphate transporter mutants of vascular plants display enhanced NPQ due to a higher ΔpH
368 induced by ATP limitation (Guo et al., 2013; Karlsson et al., 2015). By contrast, in our *pht4-7*
369 mutants, NPQ decreased when grown in high light. NPQ mechanisms in green algae differ in many
370 respects from those in vascular plants (Erickson et al., 2015, Vecchi et al., 2020). qE, which is a
371 rapid ΔpH -dependent component appearing mostly under photoautotrophic growth conditions
372 (Erickson et al., 2015), was not induced under our conditions (Fig. 4). Instead, NPQ developed on a
373 timescale of several minutes, which may include the zeaxanthin-dependent (qZ), state transition-
374 related (qT), and photoinhibitory (qI) components of NPQ (Erickson et al., 2015, Vidal-Meireles et
375 al., 2020). We observed that pmf was elevated in both *pht4-7* mutants, suggesting that the decreased
376 NPQ was not due to lack of membrane energization. On the other hand, ATP production and state
377 transition (responsible for the qT component) were diminished in the *pht4-7* mutants (Fig. 4), most
378 probably due to a limited Pi availability (as observed previously in *Dunaliella* upon Pi starvation,
379 Petrou et al., 2008). Compromised state transition, acting as a major photoprotective mechanism in
380 green algae (e.g., Goldschmidt-Clermont and Bassi 2015), may also explain the diminished F_v/F_m
381 values in the *pht4-7* mutants grown at high light (Fig. 2).

382 The apparent Pi limitation in the chloroplast led to a dramatic increase in cellular Asc content
383 when the cultures were grown in high light (Fig. 3A). The high-level accumulation of Asc in the
384 *pht4-7* mutants may occur to mitigate reactive oxygen species, as provoked by compromised state
385 transition and ATP synthesis diminishing CO_2 fixation. When accumulating to high levels, Asc may
386 also inactivate the OEC to alleviate the consequences of over-reduction of the electron transport
387 chain when CO_2 assimilation is impaired (Nagy et al., 2018). Thus, it seems that chloroplastic Pi-
388 deficiency triggers high Asc accumulation in *C. reinhardtii*, similar to induction of Asc
389 accumulation upon sulfur deprivation (Nagy et al., 2016). Conversely, overexpression of CrPHT4-7
390 in *C. reinhardtii* resulted in enhanced resistance to high light stress, demonstrating that Pi transport
391 can limit photosynthesis under intensive illumination.

392 Although CrPHT4-7 exhibits a relatively high degree of similarity with AtPHT4;4, it did not
393 show significant Asc transport activity. In algal cells, Asc uptake into the chloroplasts, as tested by
394 incubating the cultures with Asc and measuring Chl α fluorescence transients, did not seem to differ
395 between the WT and the *pht4-7* mutants. When expressed in yeast, CrPHT4-7 did not enhance Asc

396 uptake into the cells in the physiologically relevant concentration range (Figs. 3, 8). At high
397 concentrations, there was a slight enhancement of Asc uptake by the CrPHT4-7 transporter;
398 however, physiologically, it is probably of little significance.

399 In summary, we have shown that CrPHT4-7 supports Pi homeostasis and photosynthesis in the
400 chloroplasts and overexpressing CrPHT4-7 enhanced high light tolerance. On the other hand, the
401 loss of CrPHT4-7 function was not lethal even though Pi is essential to maintain chloroplast
402 function. It thus appears likely that there are additional PHT transporters located in the chloroplast
403 envelope membrane. PHT2 transporters are not found in green algae (Bonnot et al., 2017), therefore,
404 other members of the PHT4 family are likely to supply Pi to chloroplasts, as suggested also by *in*
405 *silico* analysis (Wang et al., 2020, Wang et al., 2023). Confirming the identity and revealing the
406 physiological roles of additional chloroplastic Pi transporters should be the subject of future studies.
407 Pi transporters located in the plasma membrane, the mitochondria, and other cellular compartments
408 have not been characterized in detail in green algae; their analysis will be important to fully exploit
409 the so-called “luxury uptake” characteristics of green algae towards mitigating excess Pi in polluted
410 waters and for the development of new wastewater treatment strategies.

411

412 Materials and Methods

413 Algal strains

414 The *pht4-7#7* and *pht4-7#9* mutant strains had been generated via CRISPR/Cas12a, published
415 previously, using CC-1883 as the background strain (Ferenczi et al., 2017). To generate
416 complementation and PHT4-7 overexpressing lines, the coding sequence of the *CrPHT4-7* gene was
417 synthesized (GeneCust, Boynes, France) with NdeI and EcoRI restriction sites at the 5' and 3' ends,
418 respectively. The fragment was cloned into the similarly digested vector pJR39 (Neupert et al.,
419 2009), generating the transformation vector pJR101. Nuclear transformation of the CC-1883 and
420 *pht4-7#7* strains of *C. reinhardtii* was performed using the glass bead method (Neupert et al., 2012).
421 Selection was performed on TAP plates supplemented with 10 µg/mL paromomycin.

422

423 Generation of PHT4-7 expressing yeast strains

424 We used the EY57 (*MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3*) and the EY917
425 (*MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3 pho84::HIS3 pho87::CgHIS3*

426 *pho89::CgHIS3 pho90::CgHIS3 pho91::ADE2, pGAL1-PHO84* (EB1280)) *S. cerevisiae* strains that
427 were kindly provided by Dr. Dennis Wykoff (Villanova University, USA).

428 The coding sequence of the *CrPHT4-7* gene with BamHI and EcoRI restriction sites at the 5'
429 and 3' ends was cloned into the similarly digested vector p426-TEF (containing *URA3* marker),
430 generating the transformation plasmid. We transformed EY57 and EY917 *S. cerevisiae* strains with
431 the plasmid containing the *CrPHT4-7* gene by selecting for the *URA3* marker. We followed the
432 transformation protocol by Gietz and Schiestl (2007). For transformation, strains were grown in
433 synthetic media lacking uracil and containing 2% galactose.

434

435 *Structure prediction of PHT4-7 and sequence alignment*

436 To predict the transmembrane helices of CrPHT4-7, we used the TMHMM v. 2.0 (Krogh et al.,
437 2001), Deep TMHMM v. 1.0.24 (Hallgren et al., 2022) and the Phyre² v. 2.0 (Kelley et al., 2015)
438 online softwares. Amino acid sequence alignment was performed by MultAlin (Corpet, 1988).

439

440 *Growth of alga cultures*

441 Precultures were grown mixotrophically in Tris-acetate-phosphate medium (TAP, Gorman and
442 Levine, 1965) in 25-mL Erlenmeyer flasks for three days on a rotatory shaker at 130 rpm, at 23°C
443 and 80 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$, measured at the top of the flasks. By the third day of growth in TAP, a
444 cell density of 2-4 million cells/mL was reached.

445 For the assessment of culture growth parameters (in Fig. 2), the precultures were diluted to
446 0.5 $\mu\text{g Chl(a+b)}/\text{mL}$ and were placed in a Multi-Cultivator MC 1000-OD instrument (Photon
447 Systems Instruments, Brno, Czech Republic). The cultures were grown for up to three days at 23°C
448 with intense air bubbling, at a light intensity of 60 or 350 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ measured within the
449 culture tubes.

450 For measuring the rest of the physiological measurements (e.g. photosynthetic parameters,
451 ATP and Asc contents), the cultures were grown in 50-mL Erlenmeyer flask for three days on a
452 rotatory shaker at 130 rpm, 23°C. For most experiments, the cultures were grown in TAP medium,
453 and in a subset of experiments high salt (HS) medium was used. The initial Chl concentration was
454 0.5 $\mu\text{g Chl(a + b)}/\text{mL}$, and the light intensity was 80 or 500 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$, measured at the
455 top of the flasks (the effective light intensity is remarkably lower within the flask). We noted that

456 shake-flask culturing was less stressful for the cells than growth in the Multi-Cultivator MC 1000-
457 OD instrument.

458

459 *Growth of yeast cultures for CrPHT4-7 expression*

460 In order to enable the growth of the EY917 strain (containing *GAL1-PHO84*), precultures for both
461 strains (EY57 and EY917) were grown in synthetic yeast media with 2% galactose and appropriate
462 amino acids for one day on a rotatory shaker at 30°C. To prevent *PHO84* expression, the precultures
463 were harvested by centrifugation (3000 g, 1 min, 25°C), washed two times, and were diluted to
464 OD₆₀₀ = 0.1 with synthetic yeast media containing 2% glucose and appropriate amino acids without
465 uracil. The cultures were grown for two days on a rotatory shaker at 140 rpm at 30°C.

466

467 *Chlorophyll and Asc content measurements and phosphorus content determination in C. reinhardtii*
468 Chl(a+b) content was determined according to Porra et al. (1989), and the Asc content was
469 determined as in Kovács et al., (2016). Total phosphorus content determination was performed by
470 ICP-OES, as described in Nagy et al. (2018).

471

472 *ATP content determination*

473 ATP was measured using the Adenosine 5'-triphosphate (ATP) Bioluminescent Assay Kit (Sigma-
474 Aldrich) according to the instructions of the manufacturer. 3x10⁷ algal cells were harvested by
475 centrifugation (21130 g, 1 min, 4°C) and washed once with ice cold sterile water. The pellets were
476 resuspended in 250 µl ice cold sterile water. Cells were broken by vortexing for 2 min with 80 µl
477 quartz sand. After the vortexing the samples were centrifuged (21130 g, 1 min, 4°C). 200 µl of the
478 supernatant were transferred into EZ-10 Spin Columns (Bio Basic Inc.) and rapidly spun down
479 (21130 g, 1 min, 4°C). Until ATP determination the samples were stored on ice. The cellular ATP
480 concentration was determined using a cell volume of 140 femtoliters (Craigie and Cavalier-Smith,
481 1982).

482

483 *Phosphorus deprivation*

484 Precultures were grown mixotrophically in TAP medium in 50 mL Erlenmeyer flasks for three days
485 on a rotatory shaker at 130 rpm, 23°C and 80 µmol photons m⁻² s⁻¹. After three days the cells were
486 harvested by centrifugation (3000 g, 1 min, 23°C), washed three times, and were diluted to 0.5

487 $\mu\text{g/mL}$ Chl (a+b) with 0.5% Pi-containing TAP medium. The cultures were grown at 23°C, 80 μmol
488 photons $\text{m}^{-2} \text{s}^{-1}$, on a rotatory shaker at 130 rpm, for six days.

489

490 *Drop test*

491 The growth characteristics of the strains were tested on TAP agar plates, containing different
492 amounts of phosphorus (2,04 μM - 0,2%; 20,4 μM - 2%; 1,02 mM - 100% 2,04 mM - 200%).
493 Precultures were grown mixotrophically in TAP medium in 50 mL Erlenmeyer flasks for three days
494 on a rotatory shaker at 130 rpm, 23°C and 80 μmol photons $\text{m}^{-2} \text{s}^{-1}$. After three days the cells were
495 harvested by centrifugation (3000 g, 1 min, 23°C), washed three times, and were diluted to 5 $\mu\text{g/mL}$
496 Chl (a+b) with 0.5% Pi-containing TAP medium. 10 μL of each algal strain was dropped onto the
497 agar plates. The plates were incubated at 23 °C for 6 days. The intensity of illumination was 80 μmol
498 photons $\text{m}^{-2} \text{s}^{-1}$.

499

500 *Ascorbate uptake measurements in *C. reinhardtii* and yeast*

501 The three days old *C. reinhardtii* precultures (in TAP medium) were diluted to 10 $\mu\text{g/mL}$ Chl (a+b),
502 and incubated for two hours on a rotatory shaker at 23°C and 80 μmol photons $\text{m}^{-2} \text{s}^{-1}$ with or
503 without 20 mM Asc.

504 Yeast cultures were kept in yeast synthetic media with 2% glucose and appropriate amino
505 acids for one day on a rotatory shaker at 30 °C. After one day we measured the OD₆₀₀ values of the
506 cultures (the strains were grown to log phase OD₆₀₀ = 0.7 - 1.5), and set OD₆₀₀ = 0.8. We added 0, 2,
507 5, 10 , 20 mM Asc, and incubated the cultures for 15 minutes on a rotatory shaker at 30°C. We
508 harvested the cells by centrifugation (3000 g, 1 min, 4°C), washed three times with 40 mL ice cold
509 synthetic media, and immediately frozen in liquid nitrogen. Cells were broken by vortexing for 30 s
510 with glass beads (425-600 μm , Sigma-Aldrich, St. Louis, USA). The Asc content was determined as
511 in Kovács et al., (2016) with slight modifications.

512

513 *Analysis of gene expression*

514 For isolation of RNA, 2 ml of cultures were harvested and Direct-Zol RNA MiniPrep kit (Zymo
515 Research) was used, following the recommendations of the manufacturer. To remove contaminating
516 DNA from the samples, the isolated RNA was treated with DNaseI (Zymo Research). RNA integrity
517 was checked on a 1% (w/v) denaturing agarose gel. 1 μg of total RNA was used for cDNA synthesis

518 with random hexamers using FIREScript reverse transcriptase (Solis BioDyne). To confirm the
519 absence of DNA contaminations, an aliquot of the RNA sample was used without reverse
520 transcriptase. Real-time qPCR analysis was performed using a Bio-Rad CFX384 Touch Real-Time
521 PCR Detection System, using HOT FIREPol EvaGreen qPCR Mix Plus (Solis Biodyne) for cDNA
522 detection. The primer pairs for the reference genes (*actin* [Cre13.g603700], β -*Tub2*
523 [Cre12.g549550], *CBLP* [Cre06.g278222], *UBQ2* [Cre09.g396400]) used in RT-qPCR were
524 published earlier in Vidal-Meireles et al. (2017). For *PHT4-7* 5'-CAACTGGGGCTACTACACGC-
525 3' forward and 5'-CCATGACCCGCTCCTCATATC-3' reverse primers were used. The data are
526 presented as fold-change in mRNA transcript abundance, normalized to the average of the reference
527 genes, and relative to the WT sample. Real-time qPCR analysis was carried out with three technical
528 replicates for each sample and three to four biological replicates were analysed. The standard errors
529 (SE) were calculated based on the different transcript abundances amongst the independent
530 biological replicates.

531

532 *Determination of cell size and cell number*

533 The cell size and cell number were determined by a Luna-FL™ dual fluorescence cell counter
534 (Logos Biosystems Inc.).

535

536 *Chl a fluorescence measurements*

537 Fast chl *a* fluorescence measurements were carried out with a Handy-PEA instrument (Hansatech
538 Instruments Ltd, King's Lynn, UK), as described in Nagy et al. (2018).

539 Non-photochemical quenching was measured using a Dual-PAM-100 instrument (Heinz
540 Walz GmbH). *C. reinhardtii* cultures were dark adapted for 30 min on a rotatory shaker; then, liquid
541 culture containing 40 μ g Chl(*a+b*)/mL was filtered onto Whatman glass microfiber filters (GF/B)
542 that were placed between two microscopy coverslips with a spacer to allow for gas exchange. For
543 NPQ induction, light adaptation consisted of 30 min illumination at 532 μ mol photons $m^{-2} s^{-1}$,
544 followed by 12 min of dark adaptation interrupted with saturating pulses of 3000 μ mol photons
545 $m^{-2} s^{-1}$.

546 For analyzing state transition, actinic red light (AL, 15 μ mol photons $m^{-2} s^{-1}$) and far red (FR)
547 light (255 μ mol photons $m^{-2} s^{-1}$) were employed for 15 min (phase 1) on dark-adapted cultures. After
548 this phase, the far red light was turned off and only red light illumination was employed for 15 min

549 to induce state II (phase 2). Finally, we used again the red light - far red light combination for 15 min
550 to drive the state II - state I transition (phase 3). During the measurement, saturating light pulses
551 ($8000 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ for 600 ms) were given every minute. qT parameter was calculated as:
552 $qT = (F_M^I - F_M^{II})/F_M^{II}$, in which F_M^I was determined at the end of the phase 3, and F_M^{II} at the end of
553 the phase 2.

554

555 *Pmf measurements*

556 Estimation of the trans-thylakoid proton motive force (pmf) was carried out by Dual-PAM-100
557 system with the P515/535 extended emitter-detector modules (Schreiber and Klughammer, 2008).
558 Before the measurement, samples were kept for 10 min in darkness, and cultures equivalent to 40
559 $\mu\text{g/mL Chl (a+b)}$ were filtered onto a GF/C filter paper. Samples were placed between two object
560 slides with a spacer to allow for gas exchange. Samples were illuminated with $190 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$
561 actinic red light for two minutes, then actinic light was switched off. The absorbance change at
562 515 nm against the 535 nm reference wavelength was recorded during the light-dark transition (Cruz
563 et al., 2001; Kramer and Sacksteder, 1998). The change of signal was expressed in $\Delta I/I$ units
564 (Schreiber and Klughammer, 2008).

565

566 *Generation of PHT4-7-Venus expressing lines and localization of PHT4-7 in Chlamydomonas*
567 Nuclear transformation of strains UVM11 and CC-4533 (also known as cMJ030) of *C. reinhardtii*
568 with the plasmid pLM005-CrPHT4-7 was done using the glass bead method (Neupert et. al., 2012).
569 We also transformed the CC-1883 strain and the *pht4-7* mutants with this construct, but failed to
570 obtain transgenic clones showing a clear Venus signal, most probably due to very low expression
571 levels caused by epigenetic transgene silencing (Neupert et al., 2020).

572 The pLM005-CrPHT4-7 plasmid contains the full length CrPHT4-7 gene including the
573 introns. The plasmid was linearized using the restriction enzyme *ScalI*. Pre-cultures of the
574 transformed strains were grown mixotrophically in TAP medium in 25-mL Erlenmeyer flasks for
575 three days. The strains were then transferred to Tris-phosphate (TP) medium and further grown for
576 16 hrs under the above-mentioned conditions, after which the cells were immobilized in 0.8% low-
577 melt agarose (Carl Roth, Karlsruhe, Germany) before imaging. Imaging was performed using a
578 Leica TCS SP8 confocal laser scanning microscope with a hybrid detector (Leica, Heidelberg,
579 Germany). Single optical sections were taken using HCPLAPO CS2 63 \times (NA:1.2) water immersion

580 objective with a working distance of 0.3 mm. Microscope configuration was as follows: scan speed:
581 200; line averaging: 4; scanning mode: unidirectional; zoom: 7 \times ; excitation: 514 nm (Venus-
582 CrPHT4-7), 552 nm (Chl auto-fluorescence). Venus-CrPHT4-7 fluorescence and Chl auto-
583 fluorescence were detected between 520-540 nm and 650-750 nm respectively. HyD SP GaAsP
584 detector was used to detect the Venus-CrPHT4-7 signal. Images were pseudocolored and analyzed
585 using Leica LAS AF software (version 2.6) and ImageJ (version 1.53k).

586

587 *Statistics*

588 The presented data are based on at least three independent experiments. When applicable, averages
589 and standard errors (\pm SE) were calculated. Statistical significance was determined using Welch's
590 unpaired t-test (GraphPad Prism v. 10.0.2.232 online software), ANOVA with Tukey post-hoc test
591 (OriginPro 2020b software) or Dunette post-hoc test (IBM SPSS Statistics v. 25.0 software).
592 Changes were considered statistically significant at $P < 0.05$.

593

594 *Accession Numbers*

595 The accession number for *C. reinhardtii* PHT4-7 (also called *PHT7*) gene is Cre16.g663600.

596

597 *Acknowledgements*

598 The authors thank Drs. Péter Horváth and Balázs Papp (BRC Szeged, Hungary) for laboratory
599 equipment support and Dr. Cornelia Spetea (University of Gothenburg, Sweden) for the fruitful
600 discussions. The authors also thank Miklós Prodán (TTK, Budapest, Hungary) for the assistance
601 with phosphorus content determination and Dr. Dennis Wykoff (Villanova University, USA) for
602 providing us with the yeast strains.

603

604 *Data Availability Statement*

605 All data presented in this study are available within this article or Supplementary Materials. There
606 are no special databases associated with this manuscript.

607

608 *Supporting Information*

609 Additional Supporting Information may be found online in the Supporting Information section at the
610 end of the article.

611

612 *Author contributions*

613 SZT conceived the study with the contributions of AM and MCJ. DT, SK, AF, AVM, LK, LW, ZK,
614 RT, EM, KS, and JN performed the experiments and data analysis. SZT wrote the manuscript with
615 the contributions of DT, SK, JN, RB, MCJ, and AM.

616 All authors reviewed the manuscript and approved the final version.

617

618 *Funding*

619 This work was supported by the Lendület/Momentum Programme of the Hungarian Academy of
620 Sciences (LP2014/19 research grant to S.Z.T.) and the National Research, Development, and
621 Innovation Office (K132600 research grant to S.Z.T.) A.F. was supported by Biotechnology and
622 Biological Sciences Research Council (BBSRC) grant BB/R506163/1. L.W and M.J. were supported
623 by U.S. Department of Energy Grant DE-SC0020195. M.J. is an Investigator of the Howard Hughes
624 Medical Institute. J.N. and R.B. were supported by the Max Planck Society.

625

626 **Figure legends**

627

628 **Figure 1. CrPHT4-7 is found in the chloroplast envelope membrane. A,** Map of the pLM005-
629 CrPHT4-7 plasmid expressing a Venus-tagged CrPHT4-7 version. **B,** Representative fluorescence
630 microscopic images of the UVM11 strain (upper row) and the UVM11 strain expressing pLM005-
631 CrPHT4-7 with Venus-3×FLAG (lower row). Venus fluorescence and Chl auto-fluorescence were
632 detected between 520-540 nm and 650-750 nm, respectively. The merged Venus + Chl fluorescence
633 image is also shown. Scale bar: 5 μ m.

634

635 **Figure 2. pht4-7 mutants generated via the CRISPR/Cas12a technique exhibit diminished**
636 **fitness. A,** Physical map of *CrPHT4-7* (obtained from Phytozome, v. 13) with the replacement
637 sequence including a stop codon, and a PAM sequence in the third exon in the *Crpht4-7#7 and #9*
638 mutants. Exons are shown as blue boxes, introns as black lines, and promoter/5' UTR and terminator
639 sequences as green boxes. **B,** Prediction of transmembrane helices of CrPHT4-7 by Deep TMHMM
640 v. 1.0.24. The introduction of the stop codon prevents the translation of at least six transmembrane
641 helices. **C,** Culture growth of *pht4-7* mutants and the CC-1883 wild type, in TAP medium in
642 continuous illumination of 60 μ mol photons $m^{-2} s^{-1}$ at 23°C, bubbled with air for 72 h in a Multi-
643 Cultivator photobioreactor. The initial Chl content was set to 0.5 μ g Chl(a+b)/mL. **D,** Culture
644 growth in TAP medium under continuous illumination of 350 μ mol photons $m^{-2} s^{-1}$ at 23°C, bubbled
645 with air for 72 h in a Multi-Cultivator photobioreactor. The initial Chl content was set to 0.5 μ g
646 Chl(a+b)/mL. A photograph of an aliquot of the cultures after 72 h of growth is shown in the inset.
647 **E,** Cell numbers at 60 and 350 μ mol photons $m^{-2} s^{-1}$ after 72 h of growth. **F,** Cell sizes at 60 and 350
648 μ mol photons $m^{-2} s^{-1}$. **G,** Chl(a+b) contents after 72 h of growth at 60 and 350 μ mol photons $m^{-2} s^{-1}$ in
649 a photobioreactor. **H,** F_v/F_m values after 72 h of growth at 60 and 350 μ mol photons $m^{-2} s^{-1}$. The
650 averages are based on three to five independent experiments with two to six biological replicates in
651 each. The significance of differences between means were determined by ANOVA with Tukey post-
652 hoc test. The means with different letters are significantly different ($P < 0.05$).

653

654 **Figure 3. The pht4-7 mutation leads to strong ascorbate (Asc) accumulation at high light and**
655 **does not affect chloroplastic Asc uptake. A,** Asc content of the *pht4-7* mutants and the CC-1883
656 strain after 72 h of growth in TAP medium at 80 and 500 μ mol photons $m^{-2} s^{-1}$. **B,** Fast Chl *a*

657 fluorescence transients measured with or without 20 mM of Asc on cultures grown at 80 μmol
658 photons $\text{m}^{-2} \text{s}^{-1}$. The cultures were grown in Erlenmeyer flasks. The averages are based on three to
659 six independent experiments with two to four biological replicates in each. The significance of
660 differences between means were determined by ANOVA with Tukey post-hoc test. The means with
661 different letters are significantly different ($P < 0.05$).

662

663 **Figure 4. The *pht4-7* mutation alters photosynthetic redox homeostasis.** **A**, NPQ of cultures
664 grown in TAP medium at 80 μmol photons $\text{m}^{-2} \text{s}^{-1}$. **B**, NPQ of cultures grown in TAP medium at 500
665 μmol photons $\text{m}^{-2} \text{s}^{-1}$. For NPQ induction in panels A and B, light adaptation consisted of 30 min
666 illumination at 532 μmol photons $\text{m}^{-2} \text{s}^{-1}$, followed by 12 min of dark adaptation interrupted with
667 saturating pulses of 3000 μmol photons $\text{m}^{-2} \text{s}^{-1}$. **C**, State transition (qT, see the d in the Materials and
668 methods section). **D**, Total phosphorous content. **E**, Cellular ATP content. **F**, Total proton motive
669 force, determined based on the absorbance change at 515 nm against the 535 nm reference
670 wavelength, expressed in $\Delta I/I$ units. All the cultures were grown in Erlenmeyer flasks. The averages
671 are based on three to twelve independent experiments with one to two biological replicates in each.
672 The significance of differences between means were determined by ANOVA with Tukey post-hoc
673 test. The means with different letters are significantly different ($P < 0.05$). In the cases of panel A
674 and B, significance was calculated at the end of the illumination period. In panel C, each mutant
675 were compared to its own wild type. DW, dry weight.

676

677 **Figure 5. The *pht4-7* mutation leads to enhanced sensitivity to phosphorous limitation.** **A**,
678 Growth test of *pht4-7* mutants and the wild type strain on TAP agar plates containing different
679 amounts of phosphorous; the photos were taken after 6 days. **B**, Chl(a+b) contents at the beginning
680 and after 6 days phosphorous deprivation. **C**, Cell numbers at the beginning and after 6 days
681 phosphorous deprivation. In panels B and C, liquid cultures were grown in Erlenmeyer flasks at 80
682 μmol photons $\text{m}^{-2} \text{s}^{-1}$. The averages are based on five to ten independent experiments with one to two
683 biological replicates in each. The significance of differences between means were determined by
684 ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P <$
685 0.05).

686

687 **Figure 6. Alterations in photosynthetic activity upon phosphorous limitation.** **A**, F_v/F_M values
688 of cultures grown in TAP and in TAP medium containing 0.5% P of regular TAP, for six days. For
689 recovery, cultures were transferred to regular TAP media for one day. **B**, Fast Chl α fluorescence
690 transients. **C**, NPQ (induced at 532 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$) of cultures grown in regular TAP medium.
691 **D**, NPQ of cultures grown in 0.5% P containing TAP medium for 6 days. **E**, Total cellular Asc
692 contents. All the cultures were grown in Erlenmeyer flasks at 80 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$. The same
693 Chl(a+b) amounts were set for the Chl α fluorescence measurements. The averages are based on
694 three to five independent experiments with one to two biological replicates in each. The significance
695 of differences between means were determined by ANOVA with Tukey post-hoc test. The means
696 with different letters are significantly different ($P < 0.05$). In the cases of panel A and B, significance
697 was calculated at the end of the illumination period.

698
699 **Figure 7. Overexpressing CrPHT4-7 in CC-1883 leads to improved growth in high light.** **A**,
700 Map of the pJR101 plasmid containing the coding sequence of *CrPHT4-7*, the strong *PSAD*
701 promoter, the *APHVIII* resistance gene and the *PSAD* terminator. **B**, Chl(a+b) contents of CC-1883,
702 *pht4-7* mutants, and several randomly selected *pht4-7*-overexpressing lines after three days of
703 growth at 500 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$ in TAP medium in Erlenmeyer flasks. **C**, *PHT4-7* transcript
704 abundance in CC-1883 and the selected *pht4-7*-overexpressing lines (OE#3, OE#10, OE#14) **D**,
705 F_v/F_M values measured on the same cultures. The averages are based on three to six independent
706 experiments with two to six replicates in each. The significance of differences between means were
707 determined by ANOVA with Dunette post-hoc test. Asterisks indicate significantly different means
708 ($p < 0.05$) compared to the control strain CC-1883.

709
710 **Figure 8. CrPHT4-7 transports phosphate in a yeast experimental system.** **A**, Physical map of
711 the construct for heterologous complementation. **B**, Growth rates of strain EY57 and the phosphate-
712 transporter deficient strain EY917 expressing the empty vector or CrPHT4-7. **C**, Uptake of ascorbate
713 (Asc) into yeast cells expressing CrPHT4-7 in comparison to the control strain. The cultures were
714 incubated with 0, 2, 5, 10, 20 mM Asc for 15 minutes. The averages are based on three to four
715 independent experiments. Data were analyzed by Welch's unpaired *t*-test. Asterisks indicate
716 significantly different means ($p < 0.05$) compared to the respective empty vector-containing strain.
717 ND – non-detectable.

718

719

720

721 **Supplementary materials**

722

723 **Suppl. Figure 1. Amino acid sequence alignment of members of the PHT4 family in**
724 *Arabidopsis thaliana* (AtPHT4) and CrPHT4-7 in *C. reinhardtii*. Conserved amino acids are
725 indicated in red. Predicted transmembrane regions are shown in green boxes. The amino acid
726 sequence alignment and prediction of transmembrane helices were performed using the MultAlin
727 and the Phyre2 v. 2.0 online software, respectively.

728

729 **Suppl. Figure 2. Subcellular localization of CrPHT4-7 in the CC-4533 strain. A,** Representative
730 fluorescence microscopy images of CC-4533 and **B,** CC-4533 expressing pLM005-CrPHT4-7.
731 Venus fluorescence and Chl autofluorescence were detected between 520-540 nm and 650-750 nm,
732 respectively. The merged Venus + Chl autofluorescence image is also shown. Scale bar: 5 μ m.

733

734 **Suppl. Figure 3. Culture growth of independent *pht4-7* mutant lines generated by the**
735 **CRISPR/Cas12a technique in TAP medium in continuous illumination in a Multi-Cultivator**
736 **photobioreactor. A,** Culture growth at 60 μ mol photons $m^{-2} s^{-1}$ as assessed by measuring optical
737 density (OD) at 720 nm. **B,** Culture growth at 350 μ mol photons $m^{-2} s^{-1}$. The initial Chl content was
738 set to 0.5 μ g Chl(a+b)/mL, the temperature was kept at 23°C, and the cultures were bubbled with air.

739

740 **Suppl. Figure 4. Phenotype of *pht4-7* mutants under photoautotrophic growth conditions. A,**
741 Culture growth of *pht4-7* mutants and the CC-1883 wild type, in HS medium in continuous
742 illumination of 60 μ mol photons $m^{-2} s^{-1}$ at 23°C, bubbled with air for 72 h in a Multi-Cultivator
743 photobioreactor. The initial Chl content was set to 0.5 μ g Chl(a+b)/mL. **B,** F_v/F_m values after 72 h
744 of growth in HS medium at 60 μ mol photons $m^{-2} s^{-1}$. **C,** NPQ of cultures grown in HS medium at 60
745 μ mol photons $m^{-2} s^{-1}$. The averages are based on three independent experiments with one to two
746 biological replicates in each. The significance of differences between means were determined by
747 ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P <$

748 0.05). In the case of panel A significance was calculated for the last time point (72 h). In the case of
749 panel C significance was calculated at the end of the illumination period.

750

751 **Suppl. Figure 5. Cell number and chlorophyll values of *pht4-7* mutants and the wild type**
752 **grown in Erlenmeyer flasks. A**, Cell numbers after 72 h of growth at 80 and 500 $\mu\text{mol photons m}^{-2}$
753 s^{-1} . **B**, Chl(a+b) contents after 72 h of growth at 80 and 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **C**, μg
754 Chl(a+b)/million cells values after 72 h of growth at 80 and 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. The averages
755 are based on 15 to 20 independent experiments with one to three biological replicates in each. The
756 significance of differences between means were determined by ANOVA with Tukey post-hoc test.
757 The means with different letters are significantly different ($P < 0.05$).

758

759 **Suppl. Figure 6. Typical state transition kinetics of *pht4-7* and *stt7* mutants. A-E**, Cultures were
760 grown in TAP medium in Erlenmeyer flasks under continuous illumination of 80 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$.
761 **F-J**, Cultures were grown in TAP medium under continuous illumination of 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$.
762 F_M^{II} and F_M^{I} values were used to calculate qT (see Materials and Methods).

763

764 **Suppl. Figure 7. Complementation of the *pht4-7#7* CRISPR/Cas12a mutant. A**, Phenotype of
765 the CC-1883 strain, the *pht4-7#7* mutant, and several randomly selected complementation lines
766 grown for three days at 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **B**, Chl(a+b) contents of the CC-1883 strain, the
767 *pht4-7#7* mutant, and two selected complementation lines (*C#23, C#24*) at 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$.
768 **C**, F_V/F_M values under the same conditions. **D**, Ascorbate accumulation under the same conditions.
769 **E**, Chl(a+b) contents after six days of phosphate deprivation at 80 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. The cultures
770 were grown in Erlenmeyer flasks. The averages are based on four to ten independent experiments.
771 The significance of differences between means were determined by ANOVA with Tukey post-hoc
772 test. The means with different letters are significantly different ($P < 0.05$).

773

774

775 **Literature Cited**

776 Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of *Chlamydomonas*
777 *reinhardtii* to different growth irradiances. *J Biol Chem* 287: 5833-5847

778 Bonnot C, Proust H, Pinson B, Colbalchini FPL, Lesly-Veillard A, Breuninger H, Champion C,
779 Hetherington AJ, Kelly S, Dolan L (2017) Functional PTB phosphate transporters are present in
780 streptophyte algae and early diverging land plants. *New Phytol* 214: 1158-1171

781 Carstensen A, Herdean A, Birkelund Schmidt S, Sharma A, Spetea C, Pribil M, Husted S (2018) The
782 impacts of phosphorus deficiency on the photosynthetic electron transport chain. *Plant Physiol*
783 177: 271-284

784 Chang MX, Gu M, Xia YW, Dai XL, Dai CR, Zhang J, Wang SC, Qu HY, Yamaji N, Feng Ma J,
785 Xu GH (2019) OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under
786 extremely low phosphate regimes. *Plant Physiol* 179: 656-670

787 Corpet F (1988) Multiple sequence alignment with hierarchical clustering. *Nucl Acids Res*, 16:
788 10881-10890

789 Craigie RA, Cavalier-Smith T (1982) Cell volume and the control of the *Chlamydomonas* cell cycle.
790 *J Cell Sci* 54: 173-191

791 Crombez H, Motte H, Beeckman T (2019) Tackling plant phosphate starvation by the roots. *Dev
792 Cell* 48: 599-615

793 Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field ($\Delta\psi$) to
794 steady-state transthylakoid proton motive force (pmf) *in vitro* and *in vivo*. Control of pmf parsing
795 into $\Delta\psi$ and ΔpH by ionic strength. *Biochemistry* 40: 1226-1237

796 Cruz JA, Kanazawa A, Treff N, Kramer DM (2005) Storage of light-driven transthylakoid proton
797 motive force as an electric field ($\Delta\Psi$) under steady-state conditions in intact cells of
798 *Chlamydomonas reinhardtii*. *Photosynth Res* 85: 221-233

799 Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In:
800 Borowitzka MA, Beardall J, Raven J (eds) *The physiology of microalgae*. Springer, Cham, pp
801 155-183

802 Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for
803 predicting chloroplast transit peptides and their cleavage sites. *Protein Sci* 8: 978-984

804 Erickson E, Wakao S, Niyogi KK (2015) Light stress and photoprotection in *Chlamydomonas*
805 *reinhardtii*. *Plant J* 82: 449-465

806 Fabiańska I, Bucher M, Häusler RE (2019) Intracellular phosphate homeostasis – A short way from
807 metabolism to signalling. *Plant Sci* 286: 57-67

808 Fauser F, Vilarrasa-Blasi J, Onishi M, Ramundo S, Patena W, Millican M, Osaki J, Philp C, Nemeth
809 M, Salomé PA, Li X, Wakao S, Kim RG, Kaye Y, Grossman AR, Niyogi KK, Merchant SS,
810 Cutler SR, Walter P, Dinneny JR, Jonikas MC, Jinkerson RE (2022) Systematic characterization
811 of gene function in the photosynthetic alga *Chlamydomonas reinhardtii*. *Nat Genet* 54: 705-714

812 Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement
813 in *Chlamydomonas reinhardtii* using Cpf1 ribonucleoproteins and single-stranded DNA. *Proc
814 Natl Acad Sci USA* 114: 13567-13572

815 Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, and Rochaix JD (1999)
816 Isolation and characterization of photoautotrophic mutants of *Chlamydomonas reinhardtii*
817 deficient in state transition. *J Biol Chem* 274: 30987-30994

818 Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier
819 DNA/PEG method. *Nat Protoc* 2: 31-34

820 Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, Ahmed N, Altermann U, Angerer P, Ansorge S,
821 Balasz K, Bernhofer M, Betz A, Cizmadija L, Do KT, Gerke J, Greil R, Joerdens V, Hastreiter
822 M, Hembach K, Herzog M, Kalemanov M, Kluge M, Meier A, Nasir H, Neumaier U, Prade V,
823 Reeb J, Sorokoumov A, Troshani I, Vorberg S, Waldraff S, Zierer J, Nielsen H, Rost B.
824 LocTree3 prediction of localization. *Nucleic Acids Res* 42: W350-355

825 Goldschmidt-Clermont M, Bassi R (2015) Sharing light between two photosystems: mechanism of
826 state transitions. *Curr Opin Plant Biol* 25: 71-78

827 Gorman DS, Levine RP (1965) Cytochrome F and plastocyanin: Their sequence in the
828 photosynthetic electron transport chain of *Chlamydomonas reinhardi*. *Proc Natl Acad Sci USA*
829 54: 1665-1669

830 Grossman AR, Aksoy M (2015) Algae in a phosphorus-limited landscape. In: Plaxton W, Lambers
831 H (eds) *Phosphorus metabolism in plants*. Wiley-Blackwell, London, pp 337-374

832 Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008a) Functional analysis of the
833 *Arabidopsis* PHT4 family of intracellular phosphate transporters. *New Phytol* 177: 889-898

834 Guo B, Irigoyen S, Fowler TB, Versaw WK (2008b) Differential expression and phylogenetic
835 analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter
836 family for photosynthetic and heterotrophic tissues. *Plant Signal. Behav.* 3: 784-790

837 Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K (2013) Function of wheat phosphate
838 transporter gene *TaPHT2;1* in Pi translocation and plant growth regulation under replete and
839 limited Pi supply conditions. *Planta* 237: 1163-1178

840 Gutiérrez-Alanís D, JO Ojeda-Rivera, Yong-Villalobos L, Cárdenas-Torres L, Herrera-Estrella L
841 (2018) Adaptation to phosphate scarcity: Tips from *Arabidopsis* roots. *Trends Plant Sci* 23: 721-
842 730

843 Hallgren J, Tsirigos KD, Pedersen MD, Armenteros JJA, Marcatili P, Nielsen H, Krogh A and
844 Winther O (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep
845 neural networks. *bioRxiv* <https://doi.org/10.1101/2022.04.08.487609>

846 Hallin EI, Guo K, Åkerlund H-E (2016) Functional and structural characterization of domain
847 truncated violaxanthin de-epoxidase. *Physiol Plantarum* 157: 414-421

848 Irigoyen S, Karlsson PM, Kuruvilla J, Spetea C, Versaw WK (2011) The sink-specific plastidic
849 phosphate transporter PHT4;2 influences starch accumulation and leaf size in *Arabidopsis*. *Plant*
850 *Physiol* 157: 1765-1777

851 Karlsson PM, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy
852 G, Garab G, Versaw WK, Spetea C (2015) The *Arabidopsis* thylakoid transporter PHT4;1
853 influences phosphate availability for ATP synthesis and plant growth. *Plant J* 84: 99-110

854 Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for
855 protein modeling, prediction and analysis. *Nat Protoc.* 10: 845-58

856 Kovács L, Vidal-Meireles A, Nagy V, Tóth SZ (2016) Quantitative determination of ascorbate from
857 the green alga *Chlamydomonas reinhardtii* by HPLC. *Bio-Protoc* 6:e2067

858 Kramer DM, Sacksteder CA (1998) A diffused-optics flash kinetic spectrophotometer (DOFS) for
859 measurements of absorbance changes in intact plants in the steady-state. *Photosynth Res* 56: 103-
860 112

861 Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein
862 topology with a hidden Markov model: Application to complete genomes. *J Mol Biol* 305: 567-
863 580

864 Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR (2010) Kinetic and spectral
865 resolution of multiple nonphotochemical quenching components in *Arabidopsis* leaves. *Plant*
866 *Physiol* 152: 1611-1624

867 Li R, Wang J, Xu L, Sun M, Yi K, Zhao H (2020) Functional analysis of phosphate transporter
868 OsPHT4 family members in rice. *Rice Sci* 27: 493-503

869 Li Z, Peers G, Dent RM, Bai Y, Yang SY, Apel W, Leonelli L, Niyogi KK (2016) Evolution of an
870 atypical de-epoxidase for photoprotection in the green lineage. *Nat Plants* 2: 16140

871 Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H,
872 Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4;4 is a chloroplast-localized ascorbate
873 transporter in *Arabidopsis*. *Nat Comm* 6: 5928

874 Moseley JL, Chang CW, Grossman AR (2006) Genome-based approaches to understanding
875 phosphorus deprivation responses and PSR1 control in *Chlamydomonas reinhardtii*. *Eukaryotic
876 Cell* 5: 26-44

877 Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow
878 fluorescent protein with fast and efficient maturation for cell-biological applications. *Nat
879 Biotechnol* 20: 87-90

880 Nagy V, Vidal-Meireles A, Podmaniczki A, Szentmihályi K, Rákely G, Zsigmond L, Kovács L,
881 Tóth SZ (2018) The mechanism of photosystem-II inactivation during sulphur deprivation-
882 induced H₂ production in *Chlamydomonas reinhardtii*. *Plant J* 94: 548-561

883 Nagy V, Vidal-Meireles A, Tengölcs R, Rákely G, Garab G, Kovács L, Tóth SZ (2016) Ascorbate
884 accumulation during sulphur deprivation and its effects on photosystem II activity and H₂
885 production of the green alga *Chlamydomonas reinhardtii*. *Plant Cell Environ* 39: 1460-1472

886 Neupert J, Karcher D, Bock R (2009) Generation of *Chlamydomonas* strains that efficiently express
887 nuclear transgenes. *Plant J* 57: 1140-1150

888 Neupert J, Shao N, Lu Y, Bock R (2012) Genetic transformation of the model green alga
889 *Chlamydomonas reinhardtii*. *Methods Mol Biol* 847: 35-47

890 Neupert J, Gallaher SD, Lu Y, Strenkert D, Segal N, Barahimipour R, Fitz-Gibbon ST, Schroda M,
891 Merchant SS, Bock R (2020) An epigenetic gene silencing pathway selectively acting on
892 transgenic DNA in the green alga *Chlamydomonas*. *Nat Commun* 11: 1-17

893 Pavón LR, Lundh F, Lundin B, Mishra A, Persson BL, Spetea C (2008) *Arabidopsis* ANTR1 is a
894 thylakoid Na⁺-dependent phosphate transporter - Functional characterization in *Escherichia coli*.
895 *J Biol Chem* 283: 13520-13527

896 Petrou K, Doblin MA, Smith RA, Ralph PJ, Shelly K, Beardall J (2008) State transitions and
897 nonphotochemical quenching during a nutrient-induced fluorescence transient in phosphorus-
898 starved *Dunaliella tertiolecta*. *J Phycol* 44: 1204-1211

899 Porra RJ, Thompson WA, Kriedeman PE (1989) Determination of accurate extinction coefficients
900 and simultaneous equations for essaying chlorophylls-a and -b with four different solvents:
901 verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.
902 *Biochim Biophys Acta* 975: 384-394

903 Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase
904 (EC 3:1:3:1) activity of *Emiliania huxleyi* (*Prymnesiophyceae*) during growth under N and P
905 limitation in continuous cultures. *J Phycol* 36: 87-96

906 Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with
907 state transitions. *Photosynth Res* 99:173-183

908 Pavón RL, Karlsson PM, Carlsson J, Samyn D, Persson B, Persson BL, Spetea C (2010)
909 Functionally important amino acids in the *Arabidopsis* thylakoid phosphate transporter:
910 homology modeling and site-directed mutagenesis. *Biochemistry* 49: 6430-6439

911 Saga G, Giorgetti A, Fufezan C, Giacometti GM, Bassi R, Morosinotto T (2010) Mutation analysis
912 of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis.
913 *J Biol Chem* 285: 23763-23770

914 Santabarbara S, Villafiorita Monteleone F, Remelli W, Rizzo F, Menin B, Casazza AP (2019)
915 Comparative excitation-emission dependence of the F_v/F_m ratio in model green algae and
916 cyanobacterial strains. *Physiol Plantarum* 166: 351-364

917 Sanz-Luque E, Bhaya D, Grossman AR (2020) Polyphosphate: A multifunctional metabolite in
918 cyanobacteria and algae. *Front Plant Sci* 11: 938

919 Sanz-Luque E, Grossman AR (2023) Phosphorus and sulfur uptake, assimilation, and deprivation
920 responses. Eds: Grossman AR, Wollman F-A, *The Chlamydomonas Sourcebook* (Third Edition),
921 Academic Press, pp 129-165

922 Schansker G, Tóth SZ, Holzwarth AR, Garab G (2014) Chlorophyll *a* fluorescence: beyond the
923 limits of the Q_A model. *Photosynth Res* 120: 43-58

924 Schreiber U, Klughammer C (2008) New accessory for the DUAL-PAM-100: The P515/535 module
925 and examples of its application. *PAM Appl Notes* 1: 1-10

926 Shilton AN, Powell N, Guiyesse B (2012) Plant based phosphorus recovery from wastewater via
927 algae and macrophytes. *Curr Opin Biotechnol* 23: 884-889

928 Sipka G, Magyar M, Mezzetti A, Akhtar P, Zhu Q, Xiao Y, Han G, Santabarbara S, Shen J-R,
929 Lambrev PH, Garab G (2021) Light-adapted charge-separated state of photosystem II: structural
930 and functional dynamics of the closed reaction center. *Plant Cell* 33: 1286-1302

931 Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A (2020) Fixing the
932 broken phosphorus cycle: wastewater remediation by microalgal polyphosphates. *Front Plant Sci*
933 11: 1-17

934 Spickett CM, Smirnoff N, Pitt AR (2000) The biosynthesis of erythroascorbate in *Saccharomyces*
935 *cerevisiae* and its role as an antioxidant. *Free Radic Biol Med* 28: 183-192

936 Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, Phan Tran L-S (2018)
937 Cellular and subcellular phosphate transport machinery in plants. *Int J Mol Sci* 19: 1914

938 Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiére S, Hippler M, Ferro M, Bruley C,
939 Peltier G, Vallon O, Cournac L (2012) PredAlgo: a new subcellular localization prediction tool
940 dedicated to green algae. *Mol Biol Evol* 29: 3625-3639

941 Thoré ESJ, Schoeters F, Spit J, Van Miert S (2021) Real-time monitoring of microalgal biomass in
942 pilot-scale photobioreactors using nephelometry. *Processes* 9: 1530

943 Thumuluri V, Armenteros JJA, Rosenberg Johansen A, Nielsen H, Winther O (2022) DeepLoc 2.0:
944 multi-label subcellular localization prediction using protein language models. *Nucleic Acids Res*
945 50: W228-W234

946 Tóth SZ (2023) The functions of chloroplastic ascorbate in vascular plants and algae. *Int J Mol Sci*
947 24: 2537

948 Vecchi V, Barera S, Bassi R, Dall’Osto L (2020) Potential and challenges of improving
949 photosynthesis in algae. *Plants* 9: 67

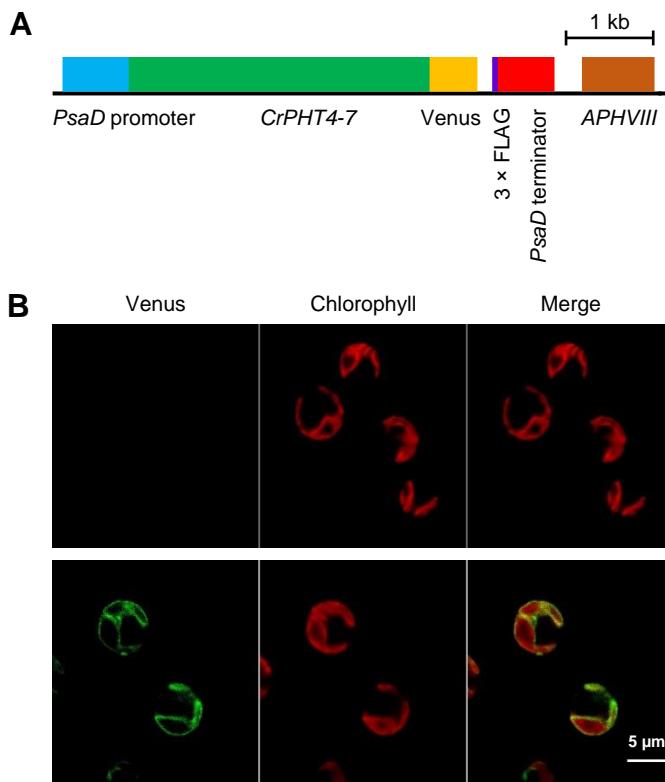
950 Versaw WK, Garcia LR (2017) Intracellular transport and compartmentation of phosphate in plants.
951 *Curr Opin Plant Biol* 39: 25-30

952 Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A,
953 Fernie AR, Bock R, Tóth SZ (2017) Regulation of ascorbate biosynthesis in green algae has
954 evolved to enable rapid stress-induced response via the *VTC2* gene encoding GDP-L-galactose
955 phosphorylase. *New Phytol* 214: 668-681

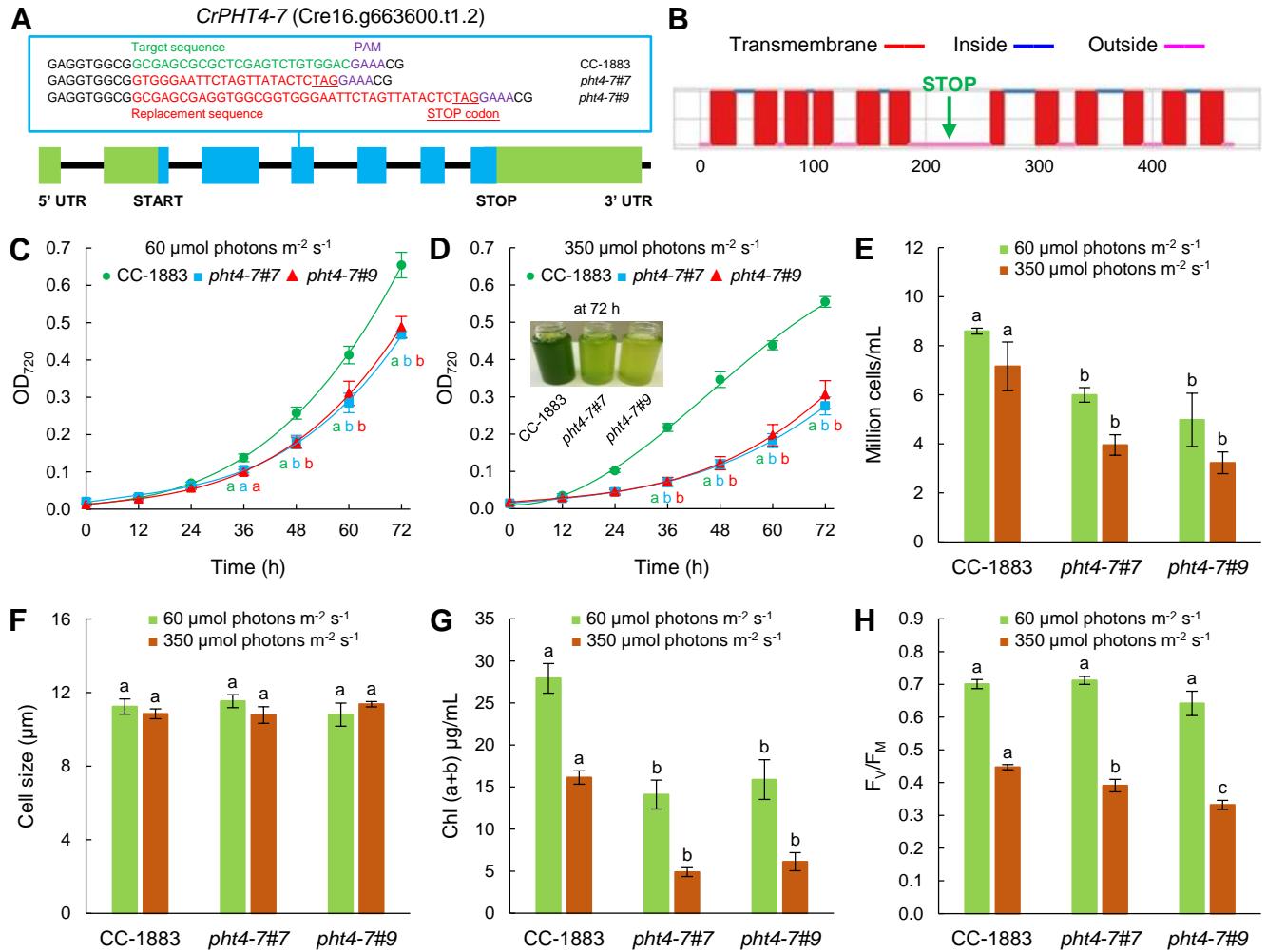
956 Vidal-Meireles A, Tóth D, Kovács L, Neupert J, Tóth SZ (2020) Ascorbate deficiency does not limit
957 nonphotochemical quenching in *Chlamydomonas reinhardtii*. Plant Physiol 182: 597-611

958 Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H (2015) Rice
959 SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in
960 maintaining phosphate homeostasis in rice. Plant Physiol 169: 2822-2831

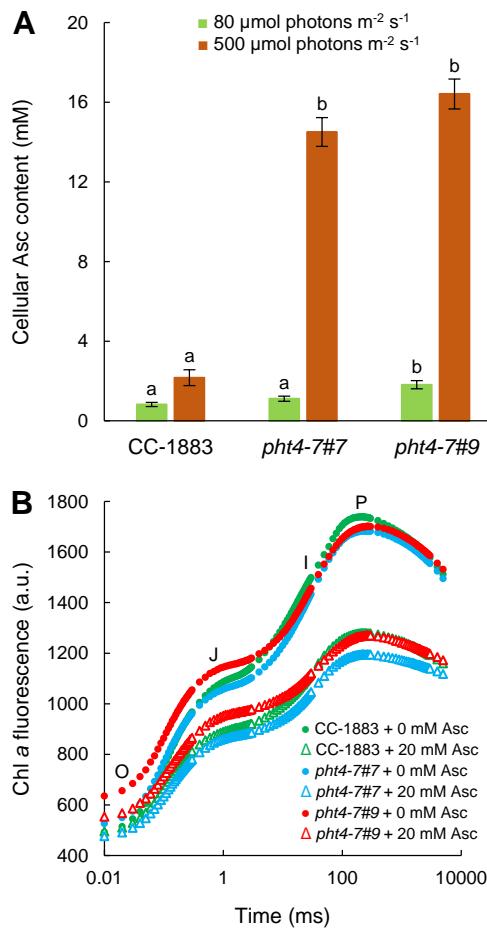
961 Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L,
962 Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi
963 M, Hu J, Schnell DJ, McWhite CD, Jonikas MC (2023) A chloroplast protein atlas reveals
964 punctate structures and spatial organization of biosynthetic pathways. Cell 186: 3499-3518.e14

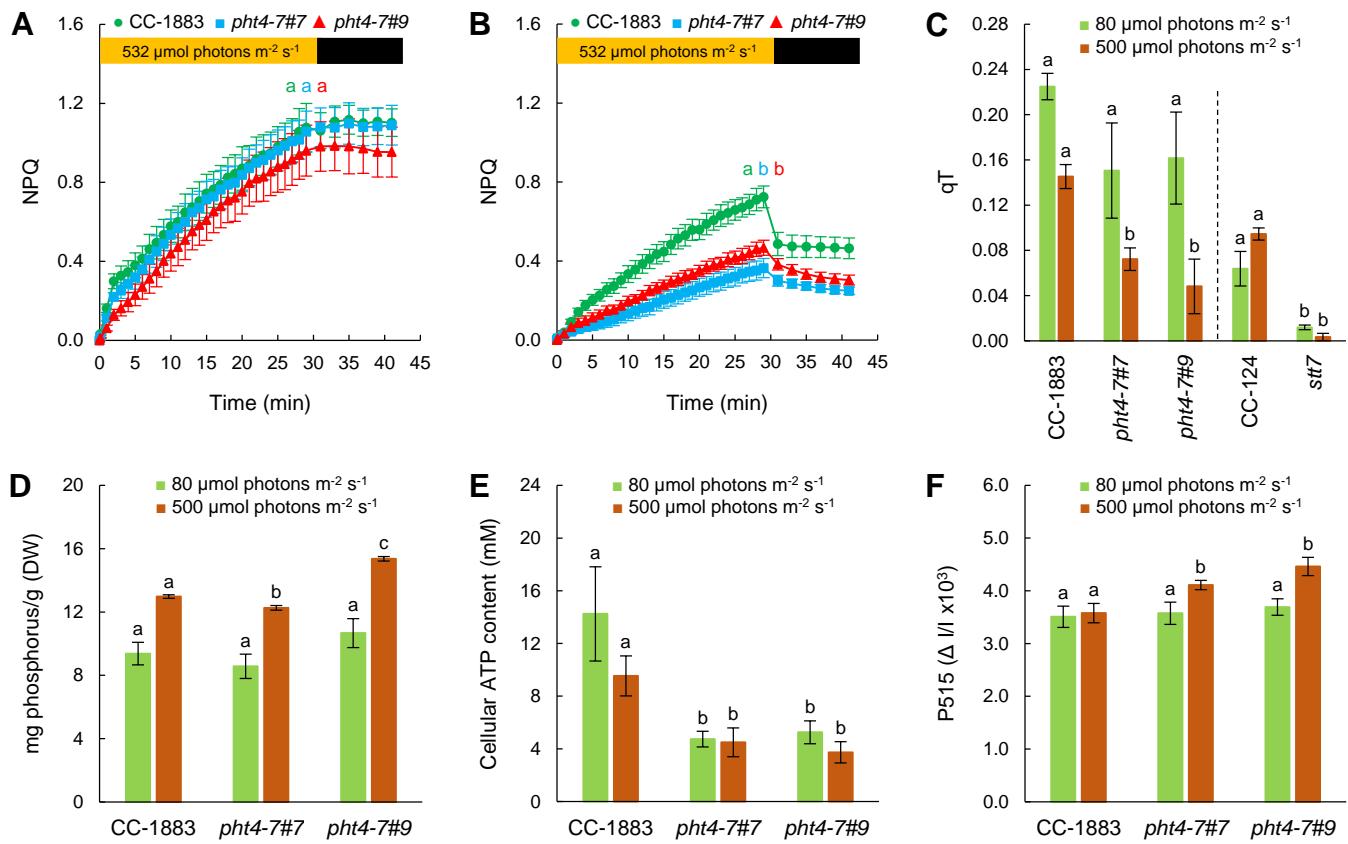

965 Wang L, Xiao L, Yang H, Chen G, Zeng H, Zhao H, Zhu Y (2020) Genome-wide identification,
966 expression profiling, and evolution of phosphate transporter gene family in green algae. Front
967 Genet 11: 590947

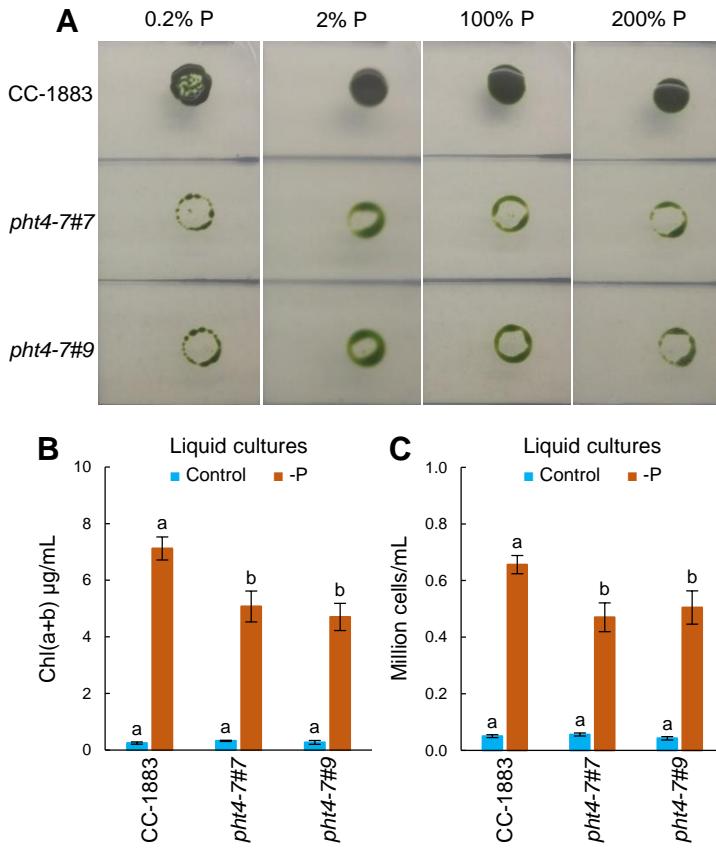
968 Wang Y, Wang F, Lu H, Liu Y, Mao C (2021) Phosphate uptake and transport in plants: An
969 elaborate regulatory system. Plant Cell Physiol 62: 564-572


970 Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron
971 transport during nutrient deprivation in *Chlamydomonas reinhardtii*. Plant Physiol 117: 129-139

972 Wykoff DD, O'Shea EK (2001) Phosphate transport and sensing in *Saccharomyces cerevisiae*.
973 Genetics 159: 1491-1499


974 Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M (2015) Photosystem II subunit R
975 is required for efficient binding of Light-Harvesting Complex Stress-Related Protein 3 to
976 photosystem II-light-harvesting supercomplexes in *Chlamydomonas reinhardtii*. Plant Physiol
977 167: 1566-1578


Figure 1. CrPHT4-7 is found in the chloroplast envelope membrane. A, Map of the pLM005-CrPHT4-7 plasmid expressing a Venus-tagged CrPHT4-7 version. B, Representative fluorescence microscopic images of the UVM11 strain (upper row) and the UVM11 strain expressing pLM005-CrPHT4-7 with Venus-3×FLAG (lower row). Venus fluorescence and Chl auto-fluorescence were detected between 520-540 nm and 650-750 nm, respectively. The merged Venus + Chl fluorescence image is also shown. Scale bar: 5 μ m.


Figure 2. *pht4-7* mutants generated via the CRISPR/Cas12a technique exhibit diminished fitness. **A**, Physical map of *CrPHT4-7* (obtained from Phytozome, v. 13) with the replacement sequence including a stop codon, and a PAM sequence in the third exon in the *Crpht4-7#7* and *#9* mutants. Exons are shown as blue boxes, introns as black lines, and promoter/5' UTR and terminator sequences as green boxes. **B**, Prediction of transmembrane helices of *CrPHT4-7* by Deep TMHMM v. 1.0.24. The introduction of the stop codon prevents the translation of at least six transmembrane helices. **C**, Culture growth of *pht4-7* mutants and the CC-1883 wild type, in TAP medium in continuous illumination of 60 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ at 23°C, bubbled with air for 72 h in a Multi-Cultivator photobioreactor. The initial Chl content was set to 0.5 $\mu\text{g Chl(a+b)}/\text{mL}$. **D**, Culture growth in TAP medium under continuous illumination of 350 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ at 23°C, bubbled with air for 72 h in a Multi-Cultivator photobioreactor. The initial Chl content was set to 0.5 $\mu\text{g Chl(a+b)}/\text{mL}$. A photograph of an aliquot of the cultures after 72 h of growth is shown in the inset. **E**, Cell numbers at 60 and 350 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **F**, Cell sizes at 60 and 350 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **G**, Chl(a+b) contents after 72 h of growth at 60 and 350 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ in a photobioreactor. **H**, F_v/F_m values after 72 h of growth at 60 and 350 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. The averages are based on three to five independent experiments with two to six biological replicates in each. The significance of differences between means were determined by ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P < 0.05$).

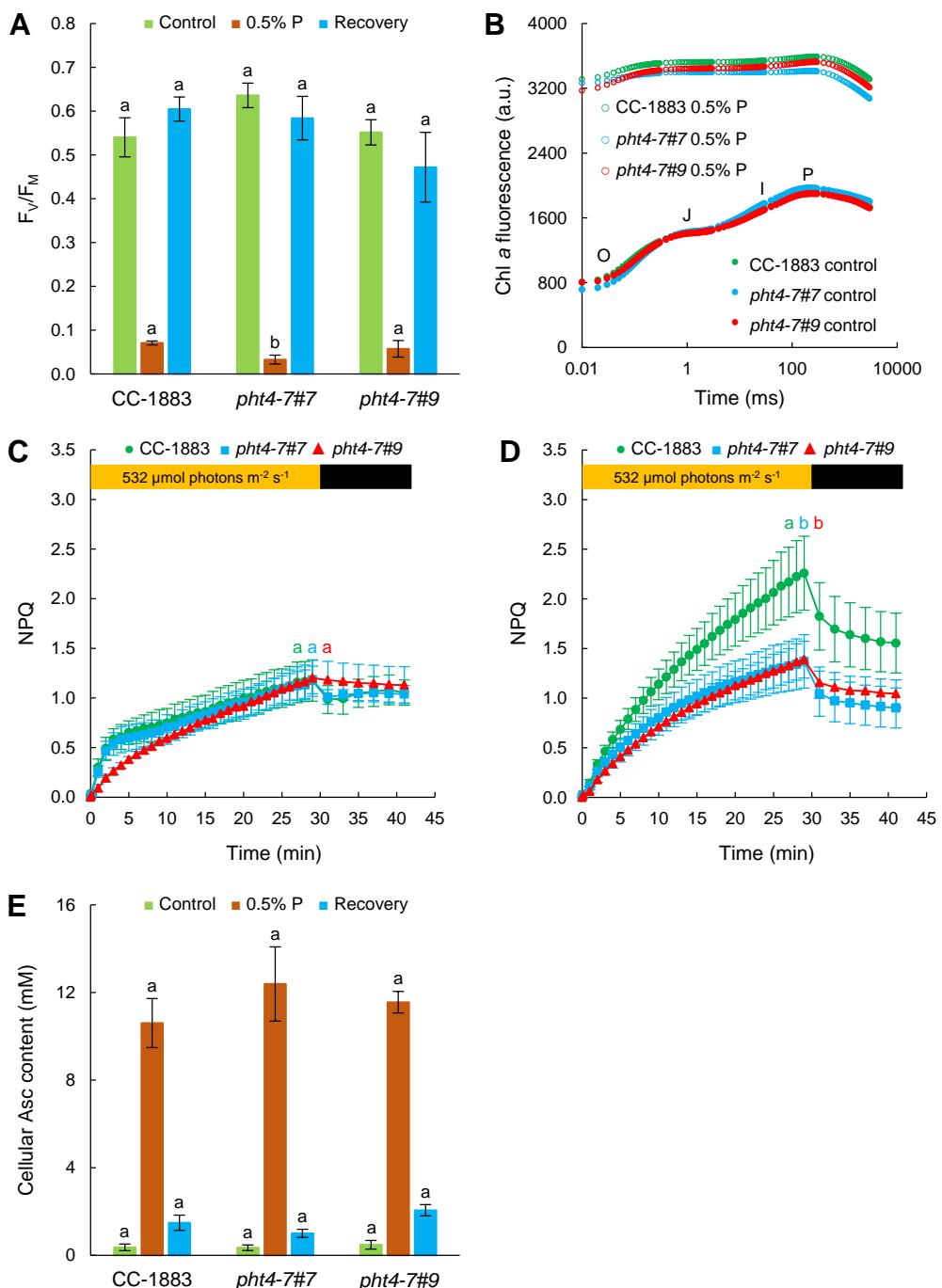

Figure 3. The *pht4-7* mutation leads to strong ascorbate (Asc) accumulation at high light and does not affect chloroplastic Asc uptake. A, Asc content of the *pht4-7* mutants and the CC-1883 strain after 72 h of growth in TAP medium at 80 and 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. B, Fast Chl a fluorescence transients measured with or without 20 mM of Asc on cultures grown at 80 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. The cultures were grown in Erlenmeyer flasks. The averages are based on three to six independent experiments with two to four biological replicates in each. The significance of differences between means were determined by ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P < 0.05$).

Figure 4. The pht4-7 mutation alters photosynthetic redox homeostasis. **A**, NPQ of cultures grown in TAP medium at 80 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **B**, NPQ of cultures grown in TAP medium at 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. For NPQ induction in panels A and B, light adaptation consisted of 30 min illumination at 532 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$, followed by 12 min of dark adaptation interrupted with saturating pulses of 3000 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **C**, State transition (qT, see the description in the Materials and methods section). **D**, Total phosphorous content. **E**, Cellular ATP content. **F**, Total proton motive force, determined based on the absorbance change at 515 nm against the 535 nm reference wavelength, expressed in $\Delta I/I$ units. The cultures were grown in Erlenmeyer flasks. The averages are based on three to twelve independent experiments with one to two biological replicates in each. The significance of differences between means were determined by ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P < 0.05$). In the cases of panel A and B, significance was calculated at the end of the illumination period. In panel C, each mutant were compared to its own wild type. DW, dry weight.

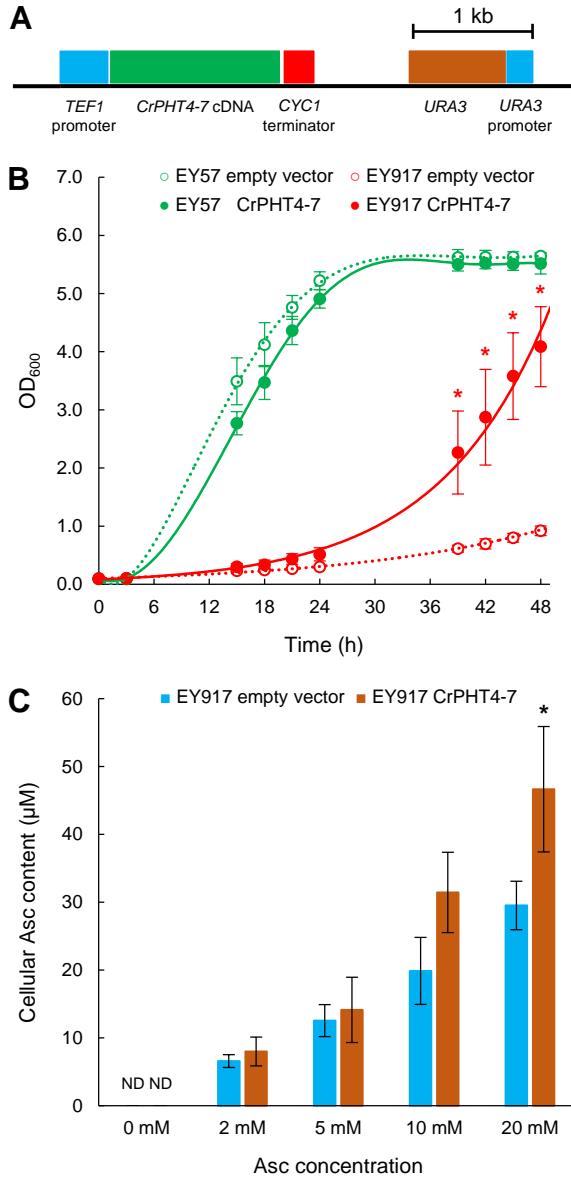

Figure 5. The *pht4-7* mutation leads to enhanced sensitivity to phosphorous deprivation. **A**, Growth test of *pht4-7* mutants and the wild type strain on TAP agar plates containing different amounts of phosphorous; the photos were taken after 6 days. **B**, Chl(a+b) contents at the beginning and after 6 days phosphorous deprivation. **C**, Cell numbers at the beginning and after 6 days phosphorous deprivation. In panels B and C, liquid cultures were grown in Erlenmeyer flasks at $80 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$. The averages are based on five to ten independent experiments with one to two biological replicates in each. The significance of differences between means were determined by ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P < 0.05$).

Figure 6. Alterations in photosynthetic activity upon phosphorous limitation. **A**, F_v/F_M values of cultures grown in TAP and in TAP medium containing 0.5% P of regular TAP, for six days. For recovery, cultures were transferred to regular TAP media for one day. **B**, Fast Chl a fluorescence transients. **C**, NPQ (induced at 532 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) of cultures grown in regular TAP medium. **D**, NPQ of cultures grown in 0.5% P containing TAP medium for 6 days. **E**, Total cellular Asc contents. The cultures were grown in Erlenmeyer flasks at 80 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. The same Chl(a+b) amounts were set for the Chl a fluorescence measurements. The averages are based on three to five independent experiments with one to two biological replicates in each. The significance of differences between means were determined by ANOVA with Tukey post-hoc test. The means with different letters are significantly different ($P < 0.05$). In the cases of panel C and D, significance was calculated at the end of the illumination period.

Figure 7. Overexpressing CrPHT4-7 in CC-1883 leads to improved growth in high light. A, Map of the pJR101 plasmid containing the coding sequence of *CrPHT4-7*, the strong *PSAD* promoter, the *APHVIII* resistance gene and the *PSAD* terminator. **B**, Chl(a+b) contents of CC-1883, *pht4-7* mutants, and several randomly selected *pht4-7*-overexpressing lines after three days of growth at 500 μmol photons $\text{m}^{-2} \text{ s}^{-1}$ in TAP medium in Erlenmeyer flasks. **C**, *PHT4-7* transcript abundance in CC-1883 and the selected *pht4-7*-overexpressing lines (OE#3, OE#10, OE#14) **D**, F_v/F_m values measured on the same cultures. The averages are based on three to six independent experiments with two to six replicates in each. The significance of differences between means were determined by ANOVA with Dunette post-hoc test. Asterisks indicate significantly different means ($p < 0.05$) compared to the control strain CC-1883.

Figure 8. CrPHT4-7 transports phosphate in a yeast experimental system. A, Physical map of the construct for heterologous complementation. **B**, Growth rates of strain EY57 and the phosphate-transporter deficient strain EY917 expressing the empty vector or CrPHT4-7. **C**, Uptake of ascorbate (Asc) into yeast cells expressing CrPHT4-7 in comparison to the control strain. The cultures were incubated with 0, 2, 5, 10, 20 mM Asc for 15 minutes. The averages are based on three to four independent experiments. Data were analyzed by Welch's unpaired *t*-test. Asterisks indicate significantly different means ($p < 0.05$) compared to the respective empty vector-containing strain. ND – non-detectable.

Parsed Citations

Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of *Chlamydomonas reinhardtii* to different growth irradiances. *J Biol Chem* 287: 5833-5847

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bonnot C, Proust H, Pinson B, Colbalchini FPL, Lesly-Veillard A, Breuninger H, Champion C, Hetherington AJ, Kelly S, Dolan L (2017) Functional PTB phosphate transporters are present in streptophyte algae and early diverging land plants. *New Phytol* 214: 1158-1171

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Carstensen A, Herdean A, Birkelund Schmidt S, Sharma A, Spetea C, Pribil M, Husted S (2018) The impacts of phosphorus deficiency on the photosynthetic electron transport chain. *Plant Physiol* 177: 271-284

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chang MX, Gu M, Xia YW, Dai XL, Dai CR, Zhang J, Wang SC, Qu HY, Yamaji N, Feng Ma J, Xu GH (2019) OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. *Plant Physiol* 179: 656-670

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Corpet F (1988) Multiple sequence alignment with hierarchical clustering. *Nucl Acids Res*, 16: 10881-10890

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Craigie RA, Cavalier-Smith T (1982) Cell volume and the control of the *Chlamydomonas* cell cycle. *J Cell Sci* 54: 173-191

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Crombez H, Motte H, Beeckman T (2019) Tackling plant phosphate starvation by the roots. *Dev Cell* 48: 599-615

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field ($\Delta\psi$) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into $\Delta\psi$ and ΔpH by ionic strength. *Biochemistry* 40: 1226-1237

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cruz JA, Kanazawa A, Treff N, Kramer DM (2005) Storage of light-driven transthylakoid proton motive force as an electric field ($\Delta\Psi$) under steady-state conditions in intact cells of *Chlamydomonas reinhardtii*. *Photosynth Res* 85: 221-233

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven J (eds) *The physiology of microalgae*. Springer, Cham, pp 155-183

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. *Protein Sci* 8: 978-984

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Erickson E, Wakao S, Niyogi KK (2015) Light stress and photoprotection in *Chlamydomonas reinhardtii*. *Plant J* 82: 449-465

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fabiańska I, Bucher M, Häusler RE (2019) Intracellular phosphate homeostasis – A short way from metabolism to signalling. *Plant Sci* 286: 57-67

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fauser F, Vilarrasa-Blasi J, Onishi M, Ramundo S, Patena W, Millican M, Osaki J, Philp C, Nemeth M, Salomé PA, Li X, Wakao S, Kim RG, Kaye Y, Grossman AR, Niyogi KK, Merchant SS, Cutler SR, Walter P, Dinneny JR, Jonikas MC, Jinkerson RE (2022) Systematic characterization of gene function in the photosynthetic alga *Chlamydomonas reinhardtii*. *Nat Genet* 54: 705-714

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in *Chlamydomonas reinhardtii* using Cpf1 ribonucleoproteins and single-stranded DNA. *Proc Natl Acad Sci USA* 114: 13567-13572

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, and Rochaix JD (1999) Isolation and characterization of photoautotrophic mutants of *Chlamydomonas reinhardtii* deficient in state transition. *J Biol Chem* 274: 30987-30994

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. *Nat Protoc* 2: 31-34

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, Ahmed N, Altermann U, Angerer P, Ansorge S, Balasz K, Bernhofer M, Betz A, Cizmadija L, Do KT, Gerke J, Greil R, Joerdens V, Hastreiter M, Hembach K, Herzog M, Kalemanov M, Kluge M, Meier A, Nasir H, Neumaier U, Prade V, Reeb J, Sorokoumov A, Troshani I, Vorberg S, Waldraff S, Zierer J, Nielsen H, Rost B. LocTree3 prediction

of localization. Nucleic Acids Res 42: W350-355

Goldschmidt-Clermont M, Bassi R (2015) Sharing light between two photosystems: mechanism of state transitions. Curr Opin Plant Biol 25: 71-78
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gorman DS, Levine RP (1965) Cytochrome F and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54: 1665-1669
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grossman AR, Aksoy M (2015) Algae in a phosphorus-limited landscape. In: Plaxton W, Lambers H (eds) Phosphorus metabolism in plants. Wiley-Blackwell, London, pp 337-374
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008a) Functional analysis of the *Arabidopsis* PHT4 family of intracellular phosphate transporters. New Phytol 177: 889-898
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo B, Irigoyen S, Fowler TB, Versaw WK (2008b) Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signal. Behav. 3: 784-790
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K (2013) Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta 237: 1163-1178
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gutiérrez-Alanís D, JO Ojeda-Rivera, Yong-Villalobos L, Cárdenas-Torres L, Herrera-Estrella L (2018) Adaptation to phosphate scarcity: Tips from *Arabidopsis* roots. Trends Plant Sci 23: 721-730
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hallgren J, Tsirigos KD, Pedersen MD, Armenteros JJA, Marcatili P, Nielsen H, Krogh A and Winther O (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv <https://doi.org/10.1101/2022.04.08.487609>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hallin EI, Guo K, Åkerlund H-E (2016) Functional and structural characterization of domain truncated violaxanthin de-epoxidase. Physiol Plantarum 157: 414-421
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Irigoyen S, Karlsson PM, Kuruvilla J, Spetea C, Versaw WK (2011) The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in *Arabidopsis*. Plant Physiol 157: 1765-1777
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karlsson PM, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy G, Garab G, Versaw WK, Spetea C (2015) The *Arabidopsis* thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J 84: 99-110
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 10: 845-58
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kovács L, Vidal-Meireles A, Nagy V, Tóth SZ (2016) Quantitative determination of ascorbate from the green alga *Chlamydomonas reinhardtii* by HPLC. Bio-Protoc 6:e2067
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kramer DM, Sacksteder CA (1998) A diffused-optics flash kinetic spectrophotometer (DOFS) for measurements of absorbance changes in intact plants in the steady-state. Photosynth Res 56: 103-112
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567-580
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR (2010) Kinetic and spectral resolution of multiple nonphotochemical quenching components in *Arabidopsis* leaves. Plant Physiol 152: 1611-1624
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li R, Wang J, Xu L, Sun M, Yi K, Zhao H (2020) Functional analysis of phosphate transporter OsPHT4 family members in rice. Rice Sci 27: 493-503

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li Z, Peers G, Dent RM, Bai Y, Yang SY, Apel W, Leonelli L, Niyogi KK (2016) Evolution of an atypical de-epoxidase for photoprotection in the green lineage. *Nat Plants* 2: 16140

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4;4 is a chloroplast-localized ascorbate transporter in *Arabidopsis*. *Nat Comm* 6: 5928

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moseley JL, Chang CW, Grossman AR (2006) Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in *Chlamydomonas reinhardtii*. *Eukaryotic Cell* 5: 26-44

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. *Nat Biotechnol* 20: 87-90

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nagy V, Vidal-Meireles A, Podmaniczki A, Szentmihályi K, Rákely G, Zsigmond L, Kovács L, Tóth SZ (2018) The mechanism of photosystem-II inactivation during sulphur deprivation-induced H₂ production in *Chlamydomonas reinhardtii*. *Plant J* 94: 548-561

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nagy V, Vidal-Meireles A, Tengölics R, Rákely G, Garab G, Kovács L, Tóth SZ (2016) Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H₂ production of the green alga *Chlamydomonas reinhardtii*. *Plant Cell Environ* 39: 1460-1472

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Neupert J, Karcher D, Bock R (2009) Generation of *Chlamydomonas* strains that efficiently express nuclear transgenes. *Plant J* 57: 1140-1150

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Neupert J, Shao N, Lu Y, Bock R (2012) Genetic transformation of the model green alga *Chlamydomonas reinhardtii*. *Methods Mol Biol* 847: 35-47

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Neupert J, Gallaher SD, Lu Y, Strenkert D, Segal N, Barahimipour R, Fitz-Gibbon ST, Schroda M, Merchant SS, Bock R (2020) An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga *Chlamydomonas*. *Nat Commun* 11: 1-17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pavón LR, Lundh F, Lundin B, Mishra A, Persson BL, Spetea C (2008) *Arabidopsis ANTR1* is a thylakoid Na⁺-dependent phosphate transporter - Functional characterization in *Escherichia coli*. *J Biol Chem* 283: 13520-13527

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Petrou K, Doblin MA, Smith RA, Ralph PJ, Shelly K, Beardall J (2008) State transitions and nonphotochemical quenching during a nutrient-induced fluorescence transient in phosphorus-starved *Dunaliella tertiolecta*. *J Phycol* 44: 1204-1211

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Porra RJ, Thompson WA, Kriedeman PE (1989) Determination of accurate extinction coefficients and simultaneous equations for essaying chlorophylls-a and -b with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. *Biochim Biophys Acta* 975: 384-394

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3.1.3.1) activity of *Emiliania huxleyi* (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. *J Phycol* 36: 87-96

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. *Photosynth Res* 99:173-183

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pavón RL, Karlsson PM, Carlsson J, Samyn D, Persson B, Persson BL, Spetea C (2010) Functionally important amino acids in the *Arabidopsis* thylakoid phosphate transporter: homology modeling and site-directed mutagenesis. *Biochemistry* 49: 6430-6439

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saga G, Giorgetti A, Fufezan C, Giacometti GM, Bassi R, Morosinotto T (2010) Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis. *J Biol Chem* 285: 23763-23770

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Santabarbara S, Villafiorita Monteleone F, Remelli W, Rizzo F, Menin B, Casazza AP (2019) Comparative excitation-emission dependence of the FV/FM ratio in model green algae and cyanobacterial strains. *Physiol Plantarum* 166: 351-364

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sanz-Luque E, Bhaya D, Grossman AR (2020) Polyphosphate: A multifunctional metabolite in cyanobacteria and algae. Front Plant Sci 11: 938

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sanz-Luque E, Grossman AR (2023) Phosphorus and sulfur uptake, assimilation, and deprivation responses. Eds: Grossman AR, Wollman F-A, The *Chlamydomonas* Sourcebook (Third Edition), Academic Press, pp 129-165

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schansker G, Tóth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120: 43-58

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schreiber U, Klughammer C (2008) New accessory for the DUAL-PAM-100: The P515/535 module and examples of its application. PAM Appl Notes 1: 1-10

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shilton AN, Powell N, Guiyesse B (2012) Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr Opin Biotechnol 23: 884-889

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sipka G, Magyar M, Mezzetti A, Akhtar P, Zhu Q, Xiao Y, Han G, Santabarbara S, Shen J-R, Lambrev PH, Garab G (2021) Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell 33: 1286-1302

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Slcombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A (2020) Fixing the broken phosphorus cycle: wastewater remediation by microalgal polyphosphates. Front Plant Sci 11: 1-17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Spickett CM, Smirnoff N, Pitt AR (2000) The biosynthesis of erythroascorbate in *Saccharomyces cerevisiae* and its role as an antioxidant. Free Radic Biol Med 28: 183-192

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, Phan Tran L-S (2018) Cellular and subcellular phosphate transport machinery in plants. Int J Mol Sci 19: 1914

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiére S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29: 3625-3639

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thoré ESJ, Schoeters F, Spit J, Van Miert S (2021) Real-time monitoring of microalgal biomass in pilot-scale photobioreactors using nephelometry. Processes 9: 1530

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thumuluri V, Armenteros JJA, Rosenberg Johansen A, Nielsen H, Winther O (2022) DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res 50: W228-W234

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tóth SZ (2023) The functions of chloroplastic ascorbate in vascular plants and algae. Int J Mol Sci 24: 2537

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vecchi V, Barera S, Bassi R, Dall'Osto L (2020) Potential and challenges of improving photosynthesis in algae. Plants 9: 67

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Versaw WK, Garcia LR (2017) Intracellular transport and compartmentation of phosphate in plants. Curr Opin Plant Biol 39: 25-30

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ (2017) Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-L-galactose phosphorylase. New Phytol 214: 668-681

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vidal-Meireles A, Tóth D, Kovács L, Neupert J, Tóth SZ (2020) Ascorbate deficiency does not limit nonphotochemical quenching in *Chlamydomonas reinhardtii*. Plant Physiol 182: 597-611

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H (2015) Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169: 2822-2831

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC (2023) A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. *Cell* 186: 3499-3518.e14

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang L, Xiao L, Yang H, Chen G, Zeng H, Zhao H, Zhu Y (2020) Genome-wide identification, expression profiling, and evolution of phosphate transporter gene family in green algae. *Front Genet* 11: 590947

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang Y, Wang F, Lu H, Liu Y, Mao C (2021) Phosphate uptake and transport in plants: An elaborate regulatory system. *Plant Cell Physiol* 62: 564-572

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in *Chlamydomonas reinhardtii*. *Plant Physiol* 117: 129-139

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wykoff DD, O'Shea EK (2001) Phosphate transport and sensing in *Saccharomyces cerevisiae*. *Genetics* 159: 1491-1499

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M (2015) Photosystem II subunit R is required for efficient binding of Light-Harvesting Complex Stress-Related Protein 3 to photosystem II-light-harvesting supercomplexes in *Chlamydomonas reinhardtii*. *Plant Physiol* 167: 1566-1578

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)