

1 Large-scale phenotypic and genomic characterization of *Listeria monocytogenes* susceptibility to
2 quaternary ammonium compounds
3

4 Mirena Ivanova^{1, #}, Martin Laage Kragh², Judit Szarvas¹, Elif Seyda Tosun¹, Natacha Friis Holmud¹,
5 Alexander Gmeiner¹, Corinne Amar³, Claudia Guldmann⁴, TuAnh N. Huynh⁵, Renáta Karpíšková⁶,
6 Carmen Rota García⁷, Diego Gomez⁷, Eurydice Aboagye⁸, Andrea Etter⁸, Patrizia Centorame⁹, Marina
7 Torresi⁹, Maria Elisabetta De Angelis⁹, Francesco Pomilio⁹, Anders Hauge Okholm¹⁰, Yinghua Xiao¹⁰,
8 Sylvia Kleta¹¹, Stefanie Lueth¹¹, Ariane Pietzka¹², Jovana Kovacevic¹³, Franco Pagotto¹⁴, Kathrin
9 Rychli¹⁵, Irena Zdovc¹⁶, Bojan Papić¹⁶, Even Heir¹⁷, Solveig Langsrød¹⁷, Trond Møretrø¹⁷, Roger
10 Stephan¹⁸, Phillip Brown¹⁹, Sophia Kathariou¹⁹, Taurai Tasara¹⁸, Frank Aarestrup¹, Patrick Murigu
11 Kamau Njage¹, Annette Fagerlund¹⁷, Lisbeth Truelstrup Hansen², Pimlapas Leekitcharoenphon¹
12

13 ¹Research Group for Genomic Epidemiology, National Food Institute, Technical University of
Denmark, Kgs Lyngby, Denmark

14 ²Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University
of Denmark, Kgs Lyngby, Denmark

15 ³ UK Health Security Agency, Gastrointestinal Bacteria Reference Unit, London, UK

16 ⁴Chair for Food Safety and Analytics, Ludwig-Maximilians-University Munich, Munich, Germany

17 ⁵University of Wisconsin-Madison, Madison, WI, USA

18 ⁶Masaryk University, Medical Faculty, Department of Public Health, Brno, Czech Republic

19 ⁷University of Zaragoza, Zaragoza, Spain

20 ⁸University of Vermont, Burlington, VT, USA

21 ⁹Istituto Zooprofilattico Sperimentale dell 'Abruzzo e del Molise "Giuseppe Caporale", Teramo, Italy

22 ¹⁰Arla Foods Amba, Arla Innovation Center, Aarhus N, Denmark

23 ¹¹German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for *Listeria*
monocytogenes (NRL-Lm), Berlin, Germany, Vienna, Austria

24 ¹²Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and
Hygiene, National Reference Laboratory for *Listeria monocytogenes*, Graz, Austria

25 ¹³Food Innovation Center, Oregon State University, Portland, OR, USA

26 ¹⁵Listeriosis Reference Service, Food Directorate, Bureau of Microbial Hazards, Ottawa, ON, Canada

27 ¹⁶Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public
Health, University of Veterinary Medicine, Vienna, Austria

28 ¹⁷Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Slovenia

29 ¹⁸Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway

30 ¹⁹Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland

31 ²⁰North Carolina State University, Raleigh, NC, USA

32
33
34
35
36
37

38 Running Head: *L. monocytogenes* susceptibility to QACs

39 Abstract word count: 250

40 [#]Address correspondence to Mirena Ivanova, e-mail: mirivan@food.dtu.dk

41

42

43

44 ABSTRACT

45 *Listeria monocytogenes* is a significant concern for the food industry due to its ability to persist in the
46 food processing environment. Decreased susceptibility to disinfectants is one of the factors that
47 contribute to the persistence of *L. monocytogenes*. The objective of this study was to explore the
48 diversity of *L. monocytogenes* susceptibility to quaternary ammonium compounds (QACs) using 1,671
49 *L. monocytogenes* isolates. This was used to determine the phenotype-genotype concordance and
50 characterize genomes of the QAC sensitive and tolerant isolates for stress resistance, virulence and
51 plasmid replicon genes. Distribution of QAC tolerance genes among 37,897 publicly available *L.*
52 *monocytogenes* genomes were also examined. The minimum inhibitory concentration to QACs was
53 determined by the broth microdilution method and non-sequenced isolates (n=1,244) were whole
54 genome sequenced. Genotype-phenotype concordance was 99% for benzalkonium chloride, DDAC and
55 a commercial QAC based sanitizer. Prevalence of QAC tolerance genes was 23% and 28% in our *L.*
56 *monocytogenes* collection and in the global dataset, respectively. *qacH* was the most prevalent gene in
57 our collection (61%), with 19% prevalence in the global dataset. Notably, *bcrABC* was most common
58 (72%) globally, while 25% in our collection. Prevalence of *emrC* and *emrE* was comparable in both
59 datasets, 7% and 2%, respectively. Replicon genes, indicative of plasmid harborage, were detected in
60 44% of the isolates and associated with the QAC tolerant phenotype. The presented analysis is based
61 on the biggest *L. monocytogenes* collection in diversity and quantity for characterization of the *L.*
62 *monocytogenes* QAC tolerance at both phenotypic and genomic levels.

63

64 IMPORTANCE

65 Contamination of *Listeria monocytogenes* within the food processing environment is of concern to the
66 food industry due to challenges in eradicating the pathogen once it becomes persistent in the
67 environment. Genetic markers associated with increased tolerance to disinfectants have been identified,
68 which alongside factors favor the persistence of *L. monocytogenes* in the production environment. By
69 employing a comprehensive large-scale phenotypic testing and genomic analysis our study significantly

70 enhances the understanding of the prevalence of quaternary ammonium compound (QAC) tolerant *L.*
71 *monocytogenes* and the genetic determinants associated with the increased tolerance. Furthermore, we
72 report on the prevalence of QAC tolerance genes among 37,897 publicly available *L. monocytogenes*
73 sequences and their distribution within clonal complexes, isolation sources and geographical locations.
74 As the propagation of QAC tolerance showed not be evenly distributed globally this highlights that
75 understanding the development of *L. monocytogenes* disinfectant tolerance can be monitored using
76 publicly available WGS data.

77

78 INTRODUCTION

79 *Listeria monocytogenes* is a free-living saprophyte and an intracellular pathogen responsible for
80 listeriosis, a serious foodborne infection with life-threatening complications in “at-risk populations”
81 such as individuals with weakened immune system, elderly, neonates, as well as miscarriages in
82 pregnant women (1). Unlike campylobacteriosis and salmonellosis, which are the two leading bacterial
83 causes of foodborne illnesses, listeriosis has a low incidence rate but a high mortality rate (2).
84 Contaminated ready-to-eat (RTE) foods have been identified as the major cause of several large
85 outbreaks, including foods such as polony in South Africa (3), cold cuts in Canada and Denmark in
86 2008 and 2014, respectively (4,5), and cheese made with unpasteurized milk in USA (6).

87 Food contamination may occur in the food production facilities where *L. monocytogenes* can enter with
88 e.g., raw materials, personnel or equipment and get established and persist for decades in the food
89 processing environment (FPE) despite ongoing cleaning and disinfection programs (7), or it can be
90 constantly introduced into FPEs with incoming raw materials. Both biotic (e.g., biofilm formation
91 ability, growth at refrigeration temperatures, increased tolerance to sanitizers and disinfectants, heavy
92 metals and desiccation, etc.) and abiotic (e.g., improper cleaning, biocide residuals, poor hygienic
93 design, difficult to clean areas, etc.) factors are involved in successful survival and persistence of *L.*
94 *monocytogenes* in FPEs, likely leading to contamination with *L. monocytogenes* clones with increased

95 persistence potential (8). Some *L. monocytogenes* clonal complexes (CCs) have been established as
96 successful persisters within FPEs, such as CC121 and CC9 that are also associated with hypovirulent
97 strains, while others have been strongly implicated with clinical sources and hypervirulence (CC1, CC2,
98 CC4 and CC6) (9)). Certain hypervirulent CCs (e.g., CC2) can also persist in FPE (Guidi et al., 2021).

99 To help control *L. monocytogenes* in FPEs, effective and robust cleaning and disinfection programs are
100 needed. Within cleaning and disinfection programs, three major biocide (disinfectants or sanitizers
101 according to EU and US definition, respectively) categories are widely applied in the food industry,
102 namely quaternary ammonium compounds (QACs) with main representatives benzalkonium chloride
103 (BC) and didecyldimethylammonium chloride (DDAC); peroxygens, (e.g., peracetic acid (PAA) and
104 hydrogen peroxide); and halogen-releasing agents, such as sodium hypochlorite (NaClO) (13–15). To
105 date, few specific genetic determinants associated with increased tolerance to oxidative agents such as
106 PAA and NaClO have been described, possibly due to the multiple modes of action of these agents
107 (14,16,17). In contrast, genetic determinants associated with increased tolerance to QACs have been
108 reported and include the efflux pumps genes *bcrABC*, *emrC*, *emrE* and *qacH* that provide *L.*
109 *monocytogenes* with increased survival in the presence of low concentrations of biocides (18–21). The
110 minimum inhibitory concentrations (MICs) of the QAC-based disinfectants towards *L. monocytogenes*
111 have been reported to vary between studies, ranging from 0.6 to >20 mg/L (17,22–25), while the
112 recommended concentrations in FPEs are 200–1000 mg/L facilities (27). Therefore, it has been
113 accepted that the term “tolerance” is more appropriate to describe the reduced *L. monocytogenes*
114 susceptibility to disinfectants than “resistance” (26).

115 Reduced *L. monocytogenes* susceptibility to food industry disinfectants, specifically to QACs, has been
116 the focus of many studies (17,22,27–29), including co-occurrence with antibiotic resistance genes
117 (22,30). However, the lack of a standardized disinfectant susceptibility method does not allow
118 comparison between the results reported by these studies. Variations in methods and factors such as
119 inoculum level, disinfectant dilutions and concentrations, media used, and incubation conditions can
120 contribute to variability of the MIC values without having a real connection to genetic variation. At the
121 same time, various efflux pump genes have been shown to play a role in increased tolerance to QAC

122 disinfectants in *L. monocytogenes*, including the *bcrABC* cassette, *emrE*, *emrC*, *qacH* (carried by
123 *Tn6188*), *mdrL*, and *lde* genes (31–33). Here, we aimed at elucidating the genotype-phenotype
124 concordance by performing disinfectant susceptibility testing of 1,671 *L. monocytogenes* isolates to two
125 QAC substances, BC and DDAC, and a commercial QAC based disinfectant and to whole-genome
126 sequence 1,244 isolates that have not been previously sequenced. We analyzed the genomes of the QAC
127 sensitive and tolerant isolates for stress resistance genes, virulence factors and plasmid content.
128 Additionally, the global dissemination of *bcrABC*, *qacH*, *emrC* and *emrE* genes, which were found
129 exclusively in the tolerant isolates in this study, was examined in 37,897 publicly available raw
130 sequencing data, deposited in the European Nucleotide Archive (ENA) as of April 2021. The
131 distribution of QAC-associated genes in the global dataset among CCs, isolation sources and
132 geographical locations was also investigated.

133

134 **RESULTS**

135 **Characterization of the *L. monocytogenes* strain collection and QAC tolerance**

136 To capture the full potential diversity of *L. monocytogenes* to QACs isolates from twenty collaborating
137 laboratories were combined to create a diverse collection of isolates in relation to isolation year,
138 environmental and geographical origin. In total 1,671 *L. monocytogenes* were included from >19
139 countries collected within a time span of 98 years, from 1924 to 2021 with >100 isolates from before
140 1990 (Fig. 1, Table S1). The isolates were of different origin with isolates sampled from human (n =
141 83; 5%), animal (n = 122; 7%), food (n = 839; 50%), FPEs (n = 488; 29%), feed (n = 4; <1%), natural
142 environment (n = 32; 2%), farm environment (n = 66; 4%) and unknown sources (n = 22; 1%) (Fig.
143 1A). Isolates from different environments and countries were included as the stresses (environmental,
144 antimicrobial, human etc.) faced by *L. monocytogenes* vary, which could affect the QAC tolerance and
145 adaptation of the isolates from different niches and countries (Fig 1B). All *L. monocytogenes* isolates
146 from collaborating partners were included in the strain collection and screened for QAC tolerance
147 before whole genome sequencing. Minimum inhibitory concentration (MIC) towards BC were

148 determined for all isolates and 1283 isolates (77%) were defined as BC sensitive isolates with a MIC <
149 1.25 mg/L, while 388 isolates (23%) were defined as BC tolerant with MIC > 1.25 mg/L.

150

151 **Genomic characteristics and phylogenetic analysis of the *L. monocytogenes* isolates.**

152 Genomes of the 1,671 *L. monocytogenes* isolates ranged from 2.75 to 3.32 Mbp in size with a G+C
153 content of 37.7 to 38.3% (Table S2). The isolates were assigned to four phylogenetic lineages based on
154 the genome alignment of 2,146 core genes present in \geq 99% of the isolates – lineage I (LI, n = 589,
155 35%), lineage II (LII, n = 1064, 64%), lineage III (LIII, n = 17, < 1%) and lineage IV (LIV, n = 1, < 1%)
156 (Fig. S1). Within the isolate set, there were six serogroups (1/2a (n = 875, 52%), 1/2b (n = 262, 16%),
157 1/2c (n = 165, 10%), 4b (n = 319, 19%), IVb-v1 (n = 10, 0.6%), L (n = 19, 1%), atypical (n = 1, < 1%)
158 and undetermined (n = 20, 1.2%)), and 75 CCs and 20 singleton sequence types (STs). Eleven CCs
159 predominated, accounting for 67% (n = 1,117) of all the examined isolates. The distribution of the
160 sources of isolates for the 11 most predominant CCs is presented in Fig. 2.

161

162 **Phenotype-genotype concordance of the *L. monocytogenes* QAC susceptibility.**

163 The genomes of the 1,671 *L. monocytogenes* isolates were screened for the presence of QAC tolerance
164 genes (i.e., *bcrABC*, *emrC*, *emrE* and *qacH*) and the genotypes were associated with the respective
165 phenotype (BC MIC values). The genes *bcrABC*, *emrC*, *emrE* and *qacH* were detected only in isolates
166 with MIC \geq 1.25 mg/L. Based on that, an MIC cut-off of \geq 1.25 mg/L for BC tolerance was established
167 (Fig. 3) and isolates were classified as BC sensitive (77%, n=1283) having MIC < 1.25 mg/L and BC
168 tolerant (23%, n=388) with MIC \geq 1.25 mg/L. Twenty (5%) of the BC tolerant isolates did not carry
169 any of the four QAC tolerance genes associated with the tolerant phenotype. Moreover, no BC sensitive
170 isolates with a QAC tolerance gene, nor BC tolerant isolates carrying more than one QAC tolerance
171 gene were found. A randomly selected subset of isolates was tested for sensitivity to DDAC (n=247)
172 and Mida San 360 OM (cQAC) (n=155), respectively. There was a clear distribution of the MIC values
173 for DDAC and cQAC and the cut-offs for tolerance were drawn at MIC > 0.4 mg/L and \geq 0.63 mg/L
174 for DDAC and cQAC, respectively, based on presence/absence of the four QAC tolerance genes (Fig.

175 3). All BC tolerant isolates were also tolerant to DDAC and cQAC, except one isolate (414a-1), which
176 was tolerant to BC but not to cQAC.

177 The most prevalent QAC tolerance gene found within our isolate collection was *qacH* (61% of the BC
178 tolerant isolates; n=237), followed by *bcrABC* (25%, n=96), *emrC* (7%, n=27) and *emrE* (2%, n=8)
179 (Fig. S2A). The majority of the *qacH*-harbouring isolates belonged to CC121 (83%) and CC9 (12%).
180 The isolates carrying *bcrABC* genes most commonly belonged to CC9 (30%), CC5 (26%) and CC321
181 (16%). The *emrC*-harbouring isolates belonged to 11 CCs, and among them CC6 (41%), CC14 (11%)
182 and CC403 (11%) were the most prevalent CCs. Meanwhile, *emrE* was detected among CC8 isolates.
183 Notably, the BC-tolerant isolates without an identified QAC tolerance gene were genetically diverse,
184 belonging to 12 different CCs (Fig. 4A). Overall, the majority of isolates harboring QAC tolerance
185 genes belonged to LII (85%), with 60% and 20% belonging to CC121 and CC9, respectively. QAC
186 tolerance genes were not detected among the LIII and LIV isolates. The majority of the QAC tolerance
187 genes were found in isolates from food (56%) and FPE (38%), and only 2.6% were from clinical sources
188 (Fig. 4B). All *bcrABC* and *emrC* genes were detected on plasmid contigs. The majority of the *qacH*
189 genes (n = 237) were located on contigs with no identified replicon gene and with lengths greater than
190 the largest identified *Listeria spp.* plasmid (>152 kbp, CP022021.1), assuming chromosomal origin.
191

192 **Identification of plasmids among the QAC tolerant and sensitive isolates**

193 Genetic determinants of the QAC tolerance are often plasmid-borne (e.g., *bcrABC*, *emrC*), therefore an
194 analysis to identify plasmid content in the tolerant and sensitive isolates was performed. Overall, 44%
195 of the isolates (n=735) were determined to carry plasmids. Of these, 712 carried one replicon gene, 24
196 carried two replicon genes, and three carried plasmids with unknown replication system. Ninety-seven
197 percent of the plasmid-harboring isolates (714/735) carried *repA* genes. In total 728 *repA* genes were
198 subjected to a phylogenetic analysis, presented in Fig 5A. The majority of the *repA* genes belonged to
199 phylogenetic groups G1 (n=326; 20%) and G2 (n=390; 23%), and 10 genes were allocated to G4. Two
200 *repA* variants clustered independently of any known RepA group and were most closely related to G3;
201 they were named G13 (Fig. 5A). These two G13 isolates (SKB398 and SKB102) belonged to CC912

202 and ST1365, originating from black bears. Additionally, 20 and three of the 735 isolates with identified
203 plasmids carried *repB* genes and plasmids with an unknown replication system, respectively. The *repB*
204 genes were found on 4 kb contigs, except for isolates N195 and LIS08. In these two isolates, the *repB*
205 genes were co-located with *repA* genes on plasmid contigs that were of length 53 and 81 kbp,
206 respectively. The majority of the *repA* genes were identified in isolates from food (55%) and FPE
207 (39%), while only 3.4% and 0.8% were seen in clinical, and farm and natural environment isolates,
208 respectively (Fig. 5A). Food and FPE isolates were evenly distributed among the plasmid phylogenetic
209 groups in this study. Prevalence of isolates determined as sensitive or tolerant to QAC were in addition
210 not significantly more associated with food or FPE as only significant differences were seen for human
211 clinical samples where QAC sensitive isolates were more prevalent (Fig. 5B). It is worth mentioning
212 that 91% of the *repA* genes in the phylogenetic group G2 belonged to LII isolates, while G1 was equally
213 distributed within LI and LII. Notably, 98% of the CC121 isolates carried *repA* genes belonging to G2,
214 while G1 was the predominant phylogenetic group (88%) in the CC9 isolates. Similarly, other CCs with
215 high frequency of *repA* had different distributions of the phylogenetic groups with CC3 (91% G1), CC5
216 (50% G1, 50% G2) and CC8 (96% G2). *repB* genes showed the highest nucleotide identity and coverage
217 to pLmN12-0935 (CP038643.1). Two of the three plasmid contigs with unknown replication systems
218 were most similar to plasmid pLIS55 (MZ151539.1), while the *repB* gene in isolate CDL77 had no
219 match to any known sequence in NCBI. The majority of the isolates which carried simultaneously two
220 *repA* genes came from FPEs and belonged to CC3, CC5, CC8 and CC89.

221 Further, blastn screening using a custom database of *L. monocytogenes* virulence and stress resistance
222 genes against the contigs carrying replicon genes (n = 735) identified co-location of *qacH* and *repA*
223 genes in six of the G4 plasmid group isolates. In these isolates, *qacH* had a different genetic context
224 from the previously described Tn6188 transposon structure, consisting of *tetR* and *qacH* genes, and an
225 upstream transcriptional regulator *mutR* (Fig. S3).

226 All *bcrABC* and *emrC* genes were detected on plasmid contigs as determined by their co-location with
227 other plasmid-associated genes. While the *bcrABC* gene was located on contigs of varying sizes (3.8 –
228 91.2 kbps), the *emrC* was found on small contigs (4.4 - 4.7 kbps) with higher nucleotide coverage

229 compared to the coverage of the other contigs in the assemblies. The *qacH* genes (n=237) were located
230 on contigs with no identified replicon gene and with lengths greater than the largest identified *Listeria*
231 spp. plasmid (>152 kbp, CP022021.1), suggesting chromosomal origin. *emrE* as part of the LGI-1 was
232 located on the chromosome in all isolates as previously described (18).

233 The LIPI-1 genes, *plcA*, *hly*, *mpl*, *plcB* and a truncated *actA* gene, associated with increased *L.*
234 *monocytogenes* virulence, were also found co-located with a *repA* gene in two isolates (ERR1432982
235 and ERR1432994). Genes encoding for resistance to arsenic (*ACR3*, *lmo2230*, *arsA*, *arsD*, *arsR*) (n =
236 8), cadmium resistance genes *cadA1C1* (n= 522) and *cadA2C2* (n = 45), heat resistance gene *clpL* (n =
237 348), genes for copper resistance *copB* (n = 198) and *copL* (n = 54), mobile genetic element consisting
238 of *gbuC* (n = 173), NiCo riboswitch (n = 168) and *npr* (n = 173), *tmr* (n=20), *mco* (n = 197) and the
239 mercury resistance operon (n = 2) were also co-carried with a *repA* gene (Table S6).

240

241 **Genetic organisation of the *bcrABC*-harbouring plasmid contigs.**

242 The *bcrABC* gene was detected in 96 isolates representing 11 CCs and four isolation sources (Fig. S4).
243 Using multiple sequence alignment, the *bcrABC*-carrying contigs were grouped into eight structures
244 (Fig. S5). Structures 1 and 1a, detected only in CC9 isolates, were identical except for the presence of
245 the genetic module NiCo riboswitch-*gbuC-npr* that was seen in structure 1 but absent from 1a.
246 Structures 2, 3 and 4 had a common backbone consisting of *ltrC*, *bcrABC*, recombinase, glyoxalase,
247 *tmr*, *qorB* and *ravA*. While structure 2 was detected only in the CC5 231a1 isolate, structures 3 and 4
248 were distributed among various CCs. A shared feature of the structures 5, 5a and 6, found in three non-
249 clonal *L. monocytogenes* isolates from CC1 (LI), and CC31 and CC204 (LII), was the presence of the
250 mercury resistance (*mer*) operon. Blastn search in NCBI of the *bcrABC* contigs of structures 5 and 5a
251 identified similarity to pLMR479a (HG813248.1) from a CC8 isolate from smoked salmon, with 84%
252 coverage, lacking only the *bcrABC* cassette and the *mer* operon, suggesting that these genetic elements
253 could horizontally be transferred together. The isolate with structure 6, N21-0102 isolated from poultry
254 in Switzerland, had 99.89-100% identity and over 100% coverage to the *Listeria innocua* plasmids
255 CP095722.1 and CP095729.1, found in isolates from meat in Jamaica. The sequences from the three
256 CC31 isolates from milk in Switzerland with structure 7 had 100% coverage and 100% identity to a *L.*

257 *innocua* pLIS35 plasmid (MZ127844.1), isolated from a food contact surface swab in Poland. Structure
258 8 was detected only in CC321 isolates from North America, in which the *bcrABC* cassette was carried
259 on a composite transposon associated with IS1216 (Fig. S5). This shows that there is a wide diversity
260 of genetic contexts surrounding the *bcrABC* operon, although it seems that the cassette is always located
261 on a plasmid.

262

263 **Identification of virulence and stress resistance genes among QAC tolerant and sensitive isolates**

264 The carriage of virulence factors and stress resistance genes have previously been linked to specific
265 CCs, environments and QAC phenotypes in small- and large-scale screening studies. To validate and
266 extent these observations with a larger isolate collection a variety of virulence and stress resistance
267 genes were identified in the 1,671 *L. monocytogenes* isolates.

268 Ten different mutations (including four newly detected in this study) and two internal deletions in the
269 *inlA* gene, leading to premature stop codons (PMSCs) and proteins with various lengths, were found in
270 21% of the isolates (Table S5). The majority of these isolates belonged to lineage II (97%) and
271 specifically CC121 (61%) and CC9 (30%). The most common mutation (C -> T at nucleotide 1474
272 leading to a protein with 491 aa), accounting for 61% of the total mutations, was only seen in CC121
273 isolates (34). All but five CC121 isolates (98%) carried an *inlA* PMSC mutation. Truncated *inlB* genes,
274 with deletion of amino acids from 356/357 to 630 (leading to a protein of 356/357 aa), were detected in
275 19 CC5 isolates originating from FPEs and food samples. PMSCs in *inlB* gene resulting in shorter
276 protein sequences were identified in five food isolates belonging to CC1 and CC8 (data not shown). All
277 isolates with truncated *inlB* genes harboured intact *inlA* genes. The *actA* gene, located on LIPI-1, was
278 truncated in all isolates from 20 CCs, including CC1, CC121, CC31, CC4, CC379 and CC88 (Fig. 6A).

279 The cadmium resistance genes *cadA1C1* and *cadA2C2*, located on plasmids with various sizes, were
280 the predominant cadmium resistance genes, while *cadA3C3*, *cadA4C4*, *cadA5C5*, *cadA6aC6a*,
281 *cadA6bC6b* were less frequently detected. Copper (*mco*, *copB*, *copY*, *zosA*, *ctpA*), arsenic
282 (*arsA1D1R1D2R2A2B1B2* and *arsCBADR*) and mercury (*merR1ETPAR2B1*) resistance genes were
283 unevenly distributed (Fig. 6A). The oxidative stress, heavy metal, salt and acid resistance cassette NiCo

284 riboswitch-*npr-gbuC*-like, were transferred together by the same mobile genetic element and found in
285 CCs that carry plasmid genes. The environmental stress islet SSI-1 was present in 45% of the CCs,
286 while SSI-2 was less prevalent (9%). The gene *comK*, a common hotspot for prophages in *L.*
287 *monocytogenes*, was truncated in 82% of the isolates, and a truncation was found in all but three CCs.
288 Two insertion sites were identified, TAA-TAAAA (at nucleotides 212 and 214) seen among 25% of the
289 isolates, and GGA (at nucleotide 190) seen in 57% of the isolates. Additionally, 98.6% of the isolates
290 contained full or partial dsDNA phage sequences and 52.3% had full phage sequences as identified by
291 VirSorter with minimum length of 1500 bp. The *bapL* gene, associated with biofilm formation, was
292 present in CCs from LII only. The LIPI-1 pathogenicity island, that carries the master regulator for
293 virulence transcription (*prfA*), and cluster of virulence genes used to escape from vacuolar
294 compartments (*hly*, *plcA*; *actA*; *mpl*, *plcB*, and *orfX*), was present in all isolates. The pathogenicity
295 islands LIPI-3 and LIPI-4 were present in the majority of the isolates in CCs from LI and were absent
296 in isolates from LII. CC218, CC217, CC506, CC1258 and CC639 harboured all LIPI-1, -3, and -4 genes,
297 indicative of potential to exhibit higher virulence level. The isolates from LIII and LIV did not carry
298 any of the screened stress resistance genes (Fig. 6A, Table S7). When isolated were grouped as sensitive
299 and QAC tolerant there were differences in the prevalence of several stress resistance genes between
300 the groups. When adjusting for the higher number of sensitive isolates in the isolate collection there
301 were a significantly ($P<0.05$) higher prevalence in QAC tolerant isolates of genes conferring resistance
302 to cadmium, and heat as well as SSI-2 (Fig. 6B).

303

304 **Global distribution of QAC tolerance genes in *L. monocytogenes***

305 The raw sequencing data from 39,196 *L. monocytogenes* isolates deposited in the European Nucleotide
306 Archive (ENA) were screened for the presence of QAC-tolerance genes *bcrABC*, *emrE*, *emrC* and *qacH*
307 (Table S8). Of the analyzed sequencing data, 10,953 (28%) carried one or more QAC tolerance genes.
308 *bcrABC* was the most abundant gene, present in 72% of the QAC tolerance gene positive isolates,
309 followed by *qacH* (19%), *emrC* (7%) and *emrE* (2%) (Fig. S2B). *qacH* had the highest nucleotide
310 variability among the four QAC tolerance genes, and nine *qacH* variants with nucleotide identity above
311 90% were detected in the global dataset based on analysis of raw reads using KMA (Fig. S6). Notably,

312 23 isolates carried simultaneously two QAC tolerance genes. Since several large-scale studies using in-
313 house sequencing data (35,36), including this study, detected no more than one QAC tolerance gene in
314 a single *L. monocytogenes* genome, the raw sequencing data of the isolates carrying two QAC tolerance
315 genes were assembled, re-screened by blastn and sub-typed by MLST. Subsequently, 7/23 isolates
316 carried only one QAC gene. Of the 16 isolates that still carried two QAC genes, two alleles of an MLST
317 gene were detected in three isolates, suggesting contamination of the sequencing reads. For the
318 remaining 13 genomes, in which *bcrABC* and *qacH* (seven isolates), *bcrABC* and *emrC* (one isolate),
319 and *qacH* and *emrC* (four isolates) were simultaneously detected, re-isolation and re-sequencing could
320 reveal if two QAC tolerance genes could in fact be carried by the same *L. monocytogenes* isolate (Table
321 S9). All QAC tolerance genes were present in *L. monocytogenes* isolates from LI and LII, with the
322 exception of one LIII (ST1142) isolate (SRR8223359) that harbored *bcrABC* and recovered from a FPE
323 isolate in the United States.

324 There were differences in the dissemination of the QAC tolerance genes among countries/continents
325 and CCs. The *bcrABC* cassette was widely distributed in the United States, while *qacH* and *emrC* were
326 mainly associated with Europe, and *emrE* had highest occurrence in Australia/Oceania (Fig. 7, Fig. S7,
327 Fig. S8). The *emrC*, *emrE* and *qacH* were associated with CC8, CC6 and CC121, respectively, while
328 the *bcrABC* cassette was distributed among several CCs, having the highest occurrence in CC5 followed
329 by CC321, CC155, CC9 and CC7 (Fig. S9). All genes were associated with FPE or food and feed
330 sources, except *emrC*, which was also associated with clinical sources (Fig. S10,).

331

332 **DISCUSSION**

333 The adaptation and persistence of *L. monocytogenes* in FPEs is a complex issue, often dependent on a
334 combination of factors, such as biofilm formation capacity of different strains, improper equipment
335 design, the presence of organic matter, insufficient removal of disinfectants during cleaning and
336 disinfection and presence of genes conferring tolerance to various environmental stressors, among
337 others (8,37). The QAC genes conferring tolerance to low concentrations of QACs can in combination

338 with the above events contribute to persistence of *L. monocytogenes* as isolates harboring such genes
339 have potentially higher survivability in the presence of low disinfectant concentrations in niches and
340 often carry additional stress genes as seen in present study (Fig. 6B).

341 *L. monocytogenes* susceptibility to food industry disinfectants, specifically QACs, which are applied in
342 the food industry, has been extensively examined (17,22,27,28,31,38). Most studies have included
343 either a small number of isolates or isolates restricted to certain geographical areas, or focused on
344 isolates recovered from specific environments, e.g., meat (24,39) or pork processing environments (40).
345 The 1,671 *L. monocytogenes* isolates in this study were collected to represent diverse origin sources
346 and geographical locations. Of all the isolates, 74% were selected solely based on the available
347 metadata, therefore minimizing the bias of choosing isolates with certain genetic characteristics. Yet,
348 *L. monocytogenes* isolates originating from FPEs and food prevailed in our collection, which could be
349 based on sampling bias, as FPEs and foods make up the important niches for studying *L. monocytogenes*
350 transmission routes (35,36,41,42).

351 Unlike for antibiotics, the lack of a harmonized assay for disinfectant susceptibility testing affects the
352 comparability of the phenotypic results produced by different studies. The previously reported QAC
353 MIC values vary significantly between studies due to differences in the biocide and/or inoculum
354 concentrations, variations in media and assay conditions (27,28,29,54,55). For instance, *L.*
355 *monocytogenes* exhibits different physiological traits at lower temperatures (e.g., 15°C) as compared to
356 37°C, such as the different types of motility and having different membrane fatty acid composition (43).
357 An important aspect of our large-scale study is the consistency and reliability of the phenotypic data
358 obtained using the same antimicrobial susceptibility method and conditions, which allowed us to
359 establish a cut-off for tolerance based on the presence/absence of known genetic determinants. The
360 observed distribution of the QAC MIC values allowed for a clear division of the sensitive and tolerant
361 phenotypes. The high concordance between a tolerant phenotype and the presence of a QAC tolerance
362 gene (99%) means that the phenotype of QAC tolerance can be predicted *in-silico* if the genotype is
363 known without the need for conducting wet lab phenotypic testing.

364 The few tolerant *L. monocytogenes* isolates with no known QAC genetic determinants belonged to
365 various CCs. This suggests a spread of mobilizable genetic elements distributed among diverse CCs, or
366 that these isolates may be tolerant due to altered expression regulation of efflux pump genes, such as
367 *mdrL* or *lde*. Other recent studies also reported QAC tolerant *L. monocytogenes* isolates with no known
368 QAC tolerance genes, e.g., a food environment ST155 isolate from the United States (44) and two
369 isolates from German food production facilities (22). Genome-wide association studies (GWAS) have
370 the power to identify novel genetic determinants associated with disinfectant tolerant phenotypes using
371 large collections of isolates (17). Among the pangenome orthologous groups (POGs), in the study of
372 Palma et al. (17), Tn6188_*qacH* and a cluster of 14 POGs, a part of a prophage region, were strongly
373 associated with BC tolerance (17). However, such findings have not yet been confirmed phenotypically.
374 It is also worth mentioning that the general efflux pumps genes previously associated with an increased
375 QAC tolerance (e.g., *mdrL* and *lde*) were detected in both QAC tolerant and sensitive isolates. The role
376 of these genes may be explained by gene expression regulation differences between resistant and
377 sensitive strains. It is possible that genetic variation in these genes cannot explain different QAC
378 tolerance phenotypes, but rather that the differential expression regulation may be responsible for these
379 effects.

380 Gene variants or specific genetic organizations located on plasmids, or a chromosome have been
381 reported to have an effect on the disinfectant inhibitory concentrations. For instance, Dutta et al. (57)
382 demonstrated that *L. monocytogenes* that carried *bcrABC* in different genetic locations, such as in
383 categories VI (presumed chromosomal origin) and VII (composite transposon), exhibited lower MICs
384 (30 mg/L) compared to categories I-V (MIC = 40 mg/L), which have been associated with plasmid
385 origin. In the present study all *brcABC* carrying isolates showed the same tolerance to BC. Mørertrø et
386 al. (27) reported a variation among the tolerant phenotypes due to a non-synonymous mutation in the
387 *qacH* gene. QacH harboring ⁴²Ser exhibited higher MIC values than those carrying ⁴²Cys. In this study,
388 ⁴²Ser was detected in QacH variants 4, 6 and 7, but no difference in the MIC values was observed. If
389 further in-depth phenotypic differences could be investigated with a more sensitive method such as
390 growth curve analysis (44).

391 Association between *qacH* location and its sequence has not previously been discussed in the literature,
392 except for the report of a *qacH* homolog in a *L. monocytogenes* isolate from FPE in a German production
393 facility, which lacked the other Tn6188 genes (NG_076646.1 of isolate 16-LI00532-0) (22) and a recent
394 report in a clinical isolate from Norway (35). In our study, we detected a *qacH* homolog in RepA G4
395 plasmid, with 100% nucleotide similarity to NG_076646.1 and 91-92% nucleotide identity to the
396 chromosomal *qacH* (HG329628.1). The plasmid-borne *qacH* homolog was associated with a *tetR* gene,
397 with 72% nucleotide identity to the chromosomal *tetR* located immediately upstream of *qacH*.
398 Similarly, Chmielowska et al. (45) and Schmitz-Esser et al. (12) observed that the RepA G4 plasmids,
399 although rarely found in their studies, encoded a putative novel QAC transporter. However, when we
400 used the broth microdilution method to test the isolates, differences in MIC values to BC there were not
401 difference in the tolerance of isolates with plasmid-borne *qacH* and the *qacH* on Tn6188. Additionally,
402 it was seen that all RepA G4 plasmids had a complete transfer module, which suggests that they can be
403 mobilized by a conjugative transfer. However, despite potential mobility, the occurrence of the RepA
404 G4 plasmids tends to be low. In our study only seven isolates carried these plasmids, with similar low
405 numbers observed by Chmielowska et al. (45) (n = 4), Schmitz-Esser et al. (12) (n = 8), one isolate in
406 a study by Fagerlund et al. (35) (n = 1). Notably, five of the strains carrying the novel *qacH* homolog
407 gene in the present study are from FPEs in three European countries (Italy, Spain and UK), isolated
408 between 2015 and 2020.

409 Regarding the *bcrABC* cassette structures identified in this study, the *bcrABC* genetic environment
410 consisted of genes encoding recombinase, glyoxalase and oxidoreductase, with exception of CC321
411 isolates which carried *bcrABC* on a composite transposon flanked by two IS1216 elements. It is
412 important to note that structure 8 in this study (Fig. S5) corresponds to category 7 in Dutta et al. (46).
413 Contrary to Dutta et al., who observed both plasmid- and chromosome-located *bcrABC* cassettes, all
414 structures in this study carried either the *cadC1* gene conferring resistance to cadmium, the mercury
415 resistance operon, the stress response module NiCo riboswitch-*gbuC-npr* and/or the *clpL* gene, all
416 suggesting plasmid origin of the contigs. None of the *bcrABC* genes in this study were associated with
417 chromosomal origin. As all *bcrABC* structures were found to co-occur with other genetic elements

418 conferring stress resistance, their impact on the persistence potential of *L. monocytogenes* in FPEs
419 should be further investigated. Castro et al. (32) found that mobile genetic elements harbouring
420 resistance genes for arsenic and cadmium were significantly more prevalent among persistent *L.*
421 *monocytogenes* isolates from farm environments than in non-persistent isolates. Conversely, persistent
422 isolates have been found to carry mutations associated with attenuated virulence, including a truncated
423 *inlA* gene (47), which is in line with our findings of 98% of the FPE CC121 isolates possessing a PMSC
424 in the *inlA* gene. Additionally, co-occurrence of QAC tolerance genes with other stress resistance genes,
425 such as metal and antibiotic resistance genes, can contribute to their adaptation and persistence in FPEs.
426 If exerted on disinfectant selective pressure, a response together with tolerance to other stressors may
427 occur. It is common for BC tolerant isolates from food and food processing facilities to be cadmium
428 resistant (48). However, our results also showed that in addition to cadmium resistance genes, the heat
429 resistance gene *clpL*, plasmid replicon genes and the SSI-2 genes are strongly associated with QAC
430 tolerant phenotype (Fig. 5A, Fig 6B). The SSI-2, involved in alkaline and oxidative stress responses,
431 has been described to predominate in the hypovirulent CC121 isolates, mostly associated with FPE, and
432 also carrying the *qacH* gene (49).

433 While not highly prevalent in our isolate collection, the high global prevalence of the *bcrABC* cassette
434 and its predominance in phylogenetically distant CCs, may be due to its location on plasmids with
435 various structures that allow for transfer between many different CCs (50). Evolutionarily, the high
436 prevalence could be due to an earlier acquisition of the cassette in the *Listeria* genome compared to the
437 other QAC *L. monocytogenes* genes. Another possible explanation for the *bcrABC* predominance in
438 food production facilities is their co-occurrence with other stress resistance genes, which can aid the
439 survival of the isolates that carry them. It is also possible that they have better genomic compatibility
440 with CCs that are likely to get established as persisters in FPEs, such as CC121, CC9, or in hypovirulent
441 genomes that carry PMSCs, or other signature genetic characteristics associated with FPE.

442 On the other hand, the global differences in the gene prevalence as clearly seen for *emrE* (Fig. S7, S8)
443 with much higher prevalence rates in some countries could be related to trading patterns between
444 different countries/continents (e.g., US and Oceania/Australia) as contamination of raw materials with

445 specific strains in one country can affect the *L. monocytogenes* prevalence rates in another country, as
446 well as practices for application and use of disinfectants. The higher sequencing rates and public
447 availability of bacterial genomes in US could partially explain the increased finding of *brcABC* among
448 the global dataset in this study (Fig. S8).

449 The majority of the QAC tolerance genes found in the global dataset were associated with food
450 production environment and food and feed samples, as previously reported by other studies (50,51),
451 with the exception of *emrC* whose predominance in the production environment was merely 1.6%,
452 compared to 44.2% seen in clinical samples. The latter is in agreement with the studies of Daeschel et
453 al. (51) and He et al. (50), who examined the prevalence of QAC tolerance genes among *L.*
454 *monocytogenes* isolates from US processing facilities and produce processing environments,
455 respectively, and did not detect *emrC*.

456 Despite being associated with one of the most prevalent CCs within the FPEs, CC121 and CC9, the
457 negligible detection of the *qacH* gene compared to the *bcrABC* cassette in the North American *L.*
458 *monocytogenes* isolates, could possibly be due to a lower CC121 distribution in this geographic region
459 or differences in the use of disinfectants in different countries/continents. It appears that the QAC-
460 tolerant *L. monocytogenes*, which persist in the FPE in US, are non-CC121 *bcrABC*-harbouring isolates,
461 such as CC5, CC321, CC155, CC7, CC9 and CC199 (35,41,46). Other large-scale studies comprising
462 of *L. monocytogenes* isolates from Europe, report *qacH* as the predominant QAC tolerance gene, 18.8%
463 in a French study (52) and 18.9% in an EU-study (53). This also leads to the idea that the distribution
464 of QAC tolerance genes in different geographic regions is related to the predominance of CCs (51).

465 Despite its widespread distribution among geographic regions and CCs, *bcrABC* has never been
466 associated with CC121, probably due to the high prevalence of *qacH* in this CC or possible
467 incompatibility of two QAC tolerance genes in one *L. monocytogenes* genome. We also found 17
468 isolates that carried two different QAC tolerance genes, specifically *bcrABC* and *qacH*, *bcrABC* and
469 *emrC*, and *qacH* and *emrC*. Kropac et al. (54) showed that *emrC* could be transformed in a *L.*
470 *monocytogenes* CC2 genome carrying chromosomal *qacH*. The authors even reported slight increase in

471 the BC MIC value of the transformant compared to the MIC value of the recipient cell and hypothesized
472 that acquiring additional BC efflux pump gene can have an additive effect on the tolerance level. It is
473 unknown, however, if in the nature it is advantageous for *L. monocytogenes* to harbour two QAC
474 tolerance genes, especially the *emrC* gene which is located on a high copy plasmid. Similarly, Daeschel
475 et al. (51) reported that 50% of the isolates screened in their study contained one or more of *bcrABC*,
476 *emrE* or *qacH* genes, however, harbourage of more than one QAC tolerance gene in a single *L.*
477 *monocytogenes* genome similarly to our study could be explained by their dataset, consisting of
478 sequencing data downloaded from NCBI Sequence Read Archive that could contain contaminating
479 reads.

480 In conclusion, this study showed that QAC tolerance can be *in-silico* predicted as genotype-phenotype
481 concordance was 99% for QAC-based disinfectants for the four assessed QAC tolerance genes which
482 all conferred the same level of tolerance to QACs as seen in the MICs. The propagation of QAC
483 tolerance genes is however not evenly distributed globally with differences between continents and
484 countries which showcases that understanding the development of *L. monocytogenes* disinfectant
485 sensitivity and tolerance can be monitored using publicly available WGS data as different QAC gene
486 variants and genetic contexts exist.

487

488 MATERIALS AND METHODS

489 ***Listeria monocytogenes* isolates.**

490 A total of 1671 *L. monocytogenes* isolates recovered from human (n = 83; 5%), animal (n = 122; 7%),
491 food (n = 839; 50%), FPE (n = 488; 29%), feed (n = 4; <1%), natural environment (n = 32; 2%), farm
492 environment (n = 66; 4%) and unknown sources (n = 22; 1%) were included in this study. Additionally,
493 14 *L. monocytogenes* isolates (<1%) with unspecified clinical origin and one *L. monocytogenes* isolate
494 (<1%) with unspecified environmental origin were also included. The isolates originated from 19
495 countries and were collected within a time span of 98 years, from 1924 to 2021 (Fig. 1C, Table S1).

496

497 **Determination of the *Listeria monocytogenes* minimum inhibitory concentrations to QACs.**

498 The minimum inhibitory concentrations (MIC) of *L. monocytogenes* to two pure biocide substances,
499 benzalkonium chloride (BC) (500 g/L, Thermo Fisher, Kandel, Germany), didecyldimethylammonium
500 chloride (DDAC) (500 g/L, Sigma-Aldrich, Denmark), and a commercial disinfectant - Mida SAN 360
501 OM (10-15% 2-methoxymethylethoxy propanol, 3-5% didecyl dimethyl ammonium chloride, < 3%
502 1,2-ethanediol; Christeyns, Denmark) were tested by an in-house optimized broth microdilution assay
503 according to Wiegand et al. (55). The *L. monocytogenes* isolates were streaked from -80°C on trypticase
504 soy agar plates (TSA; 40 g/L) and incubated at 37°C overnight. Three single colonies per isolate were
505 transferred to 0.1x trypticase soy broth (TSB; 3 g/L) and cultured at 15°C for 48 h under stationary
506 conditions until the optical density at 620 nm (OD₆₂₀) measured ~0.1, corresponding to 10⁸ CFU/mL.
507 The final inoculum concentration was 10⁵ CFU/mL per well. The range of the disinfectant
508 concentrations was selected according to previously reported MIC values (17) using two-fold dilutions.
509 A positive control consisting of inoculated 0.1x TSB and a negative control consisting of sterile 0.1x
510 TSB were included in each 96-well plate. The plates were sealed with adhesive film (ThermoFisher,
511 Denmark) and incubated at 15°C for 48 h. The MIC, defined as the lowest biocide concentration at
512 which the *L. monocytogenes* growth was inhibited, was determined by measuring the *L. monocytogenes*
513 OD₆₂₀ by a Multiscan FC Microplate Reader (Thermo Scientific, Denmark). The threshold for growth
514 was set at OD₆₂₀ ≥ 0.08, which is 60-65% of OD₆₂₀ of the positive control and 200% of the negative
515 control. The experiment was performed in two independent biological replicates with three technical
516 replicates each. The result was considered valid if two out of the three technical replicates had identical
517 MIC values. One two-fold MIC variation between biological replicates was considered acceptable and
518 the higher MIC value was reported as the final result, unless the two-fold dilution difference was at the
519 cut-off for tolerance (MIC ≥ 1.25 mg/L). In this case, the test was repeated a third time.

520

521 **DNA extraction and whole-genome sequencing.**

522 For whole-genome sequencing (WGS), as part of the current study, the *L. monocytogenes* isolates (n =
523 1,244) were grown on TSA at 37°C, overnight. A single colony per strain was transferred to 1.8 ml TSB

524 and grown at 37°C overnight. Genomic DNA was extracted by the DNeasy Blood and Tissue Kit
525 (Qiagen, Denmark) following the manufacturer's recommendations except that the DNA was eluted in
526 10 mM Tris-HCl (pH = 8.5) (BioNordika, Denmark). The DNA concentration was measured using
527 Quant-iT dsDNA high sensitivity kit (Invitrogen, Denmark) by VICTOR X2 Multilabel Microplate
528 Reader (Spectralab Scientific Inc.). Sequencing libraries were constructed using the Nextera XT Library
529 Prep Kit (Illumina, San Diego, CA, USA), normalized and denatured for loading in a NextSeq 500/550
530 Mid Output v2.5 Kit (300 cycles) (Illumina), and pair-end sequenced on a NextSeq 500 platform
531 (Illumina). The remaining 427 *L. monocytogenes* isolates were previously sequenced (Table S1).

532

533 **Assembly, species identification and *in silico* sub-typing.**

534 The raw sequencing data of the 1,671 isolates were processed with the FoodQCPipeline v1.6
535 (<https://bitbucket.org/genomicepidemiology/foodqcpipeline/src/master/>), which uses bbduk2 from
536 bbtools (Bushnell B. sourceforge.net/projects/bbmap/) for trimming and SPAdes (56) for genome
537 assembly. Quality control of the sequencing reads was performed before and after trimming by FastQC
538 v0.11.5 (57). Quality of the assemblies was assessed by Quast v4.5 (58) and thresholds for number of
539 contigs (\leq 300 contigs) and genome size (3 Mb \pm 0.5 Mb) were established. *In silico* species
540 identification was performed using KmerFinder v2.0 (59). Assemblies were submitted to the BIGSdb-
541 *L. monocytogenes* Pasteur MLST database (<https://bigsdb.pasteur.fr/listeria/>) for sub-typing (Table S1).

542

543 **Core-genome MLST and phylogenetic analysis.**

544 The assemblies were annotated with Prokka v1.14.6 referencing the genus *Listeria* and the species
545 *monocytogenes* (60). Core-genome alignment was generated by Roary v3.13.0 using the .gff files from
546 Prokka as input, with 95% blastp identity threshold and paralog splitting (-s) disabled (61) to prevent
547 presumed paralogous genes from being split into different gene groups. The core-gene alignment was
548 trimmed with trimAI (62) and option -gappyout to decide optimal thresholds based on the gap
549 percentage count over the whole alignment. A maximum-likelihood (ML) phylogenetic tree was
550 inferred using IQ-TREE v2.1.3 with the GTR+G nucleotide substitution model and 1000 bootstrap

551 replicates (--ufboot 1000) and mid-point rooted. The trees were visualized and annotated in iTOL (63)
552 or ggtreeExtra R package (64).

553

554 **Identification of plasmids.**

555 The plasmid replicon gene screening was carried out by BLAST+ v2.2.31 (65) with a database
556 consisting of representative *repA* genes from each of the eleven phylogenetic groups identified by
557 Chmielowska et al. (2021) (66), the *repA* G12 by Fagerlund et al. (2022) (35), the *repB* genes from the
558 small *Listeria* spp. plasmids, and the complete sequences of the plasmids with an unknown replication
559 system (Table S3). The blastn was performed with the fasta files as queries against the *repA* database
560 with minimum identification (--minid) and coverage (--mincov) thresholds of 80 and 95, respectively,
561 in ABRicate v1.0.1 (Seemann T, Abriicate, Github <https://github.com/tseemann/abricate>). The *repA*-
562 harboring contigs were extracted from the assemblies using *awk* and the *repA* gene sequences
563 subsequently extracted by getfasta in bedtools v2.30.0 (67). Translated *repA* gene sequences were
564 aligned with MAFFT v1.5.0 and used to infer maximum likelihood tree in IQ-TREE using the Le and
565 Gascuel (LG) amino-acid substitution model and ultrafast bootstrapping (--ufboot 1000). Reference
566 *RepA* sequences from each of the twelve *RepA* groups (G1-G12) (35,45) were included in the tree. The
567 tree was visualized and annotated in iTOL.

568

569 **Genetic organization of the *bcrABC*-harbouring plasmids.**

570 Plasmid contigs carrying *bcrABC* were annotated by Prokka with --compliant option. The contigs were
571 aligned in Geneious Prime 2023.0.4 by MAUVE and MAFFT and grouped according to their genetic
572 organization. From each group of identical contigs (indels or SNPs were ignored), one contig was
573 chosen as a representative and the .gbf from Prokka uploaded to Clinker (68) for pairwise alignment
574 and visualization. Plasmid contigs from each *bcrABC* category were aligned to a custom database
575 consisting of complete *Listeria* spp. plasmids carrying the *bcrABC* cassette (45,69). Additionally, the
576 plasmid contigs from each category were compared with publicly available sequences in NCBI.

577

578 **Virulence and resistance genes profiles.**

579 A set of 97 virulence and resistance genes identified based on the literature (Table S4) were searched
580 in the *L. monocytogenes* genomes using a custom database in ABRicate with minimum identification (-
581 -minid) threshold of 90%. Genes detected on contigs with very low coverage (<2×) compared to the
582 rest of the contigs in each assembly were excluded as possible contamination. Except for
583 truncations/interruptions in *actA*, *inlA*, *inlB* and *comK* genes, a gene was considered present when
584 coverage was >90%. Additionally, the assemblies were screened against the ResFinder v4.0 database
585 for the presence of antimicrobial resistance (AMR) genes. Mutations and internal truncations in *inlA*
586 and *inlB* genes were identified by extracting the genes as explained for plasmid replicon genes,
587 translated into protein sequences and aligned to the EGD-e *inlA* (NC_003210.1:454534..456936) and
588 *inlB* (NC_003210.1:457021..458913) as reference genes.

589

590 ***In silico* screening for disinfectant resistance genes in global *L. monocytogenes* isolates.**

591 To study the global prevalence of the genes associated with increased tolerance to QACs (*emrC*, *emrE*,
592 *bcrABC* and *qacH*) in *L. monocytogenes*, publicly available raw sequencing data deposited in ENA as
593 of 26 November 2018 were screened using COBS (COmpact Bit-sliced Signature index) v0.1.2 with
594 default settings for *emrE* (NC_013766.2:c1850670-1850347), *emrC* (MT912503.1:2384-2770)
595 *bcrABC* (JX023284.1) sequences and homology reduced to maximum 90% nucleotide identity for *qacH*
596 variants (Table S1). COBS consisted of 661,405 assembled and indexed bacterial genomes and 26,006
597 of them were annotated as *L. monocytogenes* (71). The STs of the *L. monocytogenes* isolates positive
598 for QAC tolerance genes were obtained from the metadata associated with COBS. Furthermore, the
599 pair-end sequencing runs deposited in ENA between 27 November 2018 and 29 April 2021 were
600 downloaded and screened for QAC tolerance genes using KMA with minimum template identity of
601 90% (72). To index the database of biocide genes, a k-mer = 16 was used as a default. The STs of the
602 *L. monocytogenes* isolates harboring the disinfectant resistance genes were determined by stringmlst
603 v0.6.3 (73) with k-mer = 35 using *L. monocytogenes* MLST database and converted to CCs using the
604 Pasteur's BIGSdb-Lm MLST database (<https://bigsdb.pasteur.fr/>). The world map for QAC tolerance
605 gene distribution was produced using the R packages *mapPies* (<https://search.r>-

606 project.org/CRAN/refmans/rworldmap/html/mapPies.html) and *rworldmap* version 1.3-6
607 (<https://cran.r-project.org/web/packages/rworldmap/rworldmap.pdf>).

608

609 **Statistical analysis.**

610 The heterogeneity in proportion of clonal complexes (CCs), geographical locations and isolation
611 sources that were positive within and between genes was estimated using a random-effects model
612 proposed by and implemented in the R package meta to produce forest plots (74). Statistical
613 heterogeneity within and between groups was estimated using the Cochran chi-square test and the
614 Cochrane I^2 index. The Pearson's chi-squared association test was performed using Microsoft Excel to
615 determine statistically significant ($p < 0.05$) association between presence or absence of plasmids, stress
616 survival and virulence genes in the phenotypes defined as tolerant or sensitive to BC.

617

618

619 **Data availability.**

620 The raw sequencing data have been deposited in the European Nucleotide Archive with metadata
621 overview in Table S1.

622

623 **ACKNOWLEDGEMENTS**

624 The authors gratefully acknowledge Pia Engelsmann, Resadije Idrizi, Rannvá Høgnadóttir Houmann
625 (Research Group for Food Microbiology and Hygiene, DTU) and Jacob Dyring Jensen, Gunhild Larsen
626 and Christina Aaby Svendsen (Research Group for Genomic Epidemiology, DTU) for excellent
627 technical assistance throughout the project. Stephanie Brown (Food Innovation Center, Oregon State
628 University, Portland, OR, USA) is thanked for her assistance with some of the US *L. monocytogenes*
629 isolates. Lone Gram (Department of Biotechnology and Biomedicine, DTU) is kindly acknowledged
630 for sharing *L. monocytogenes* isolates for this project. The Institut Pasteur teams are acknowledged for
631 the curation and maintenance of BIGSdb-Pasteur databases at <https://bigsdb.pasteur.fr/>. This work was

632 supported by the Danish Dairy Research Foundation, the Milk Levy Fund and Karl Pedersen og Hustrus
633 Industrifond (DI-2019-07020) grants.

634

635 **CONFLICTS OF INTEREST**

636 The authors have no conflicts of interest to declare.

637

638 **REFERENCES**

- 639 1. Radoshevich L, Cossart P. 2018. *Listeria monocytogenes*: towards a complete picture
640 of its physiology and pathogenesis. *Nat Rev Microbiol* 16:32-46.
- 641
- 642 2. Huang C, Lu TL, Yang Y. 2023. Mortality risk factors related to listeriosis — A
643 meta-analysis. *J Infect Public Health* 16:771-83.
- 644
- 645 3. Thomas J, Govender N, McCarthy KM, Erasmus LK, Doyle TJ, Allam M, Ismail A,
646 Ramalwa N, Sekwadi P, Ntshoe G, Shonhiwa A, Essel V, Tau N, Smouse S,
647 Ngomane HM, Disenyeng B, Page NA, Govender NP, Duse AG, Stewart R, Thomas
648 T, Mahoney D, Tourdjman M, Disson O, Thouvenot P, Maury MM, Leclercq A,
649 Lecuit M, Smith AM, Blumberg LH. 2020. Outbreak of listeriosis in South Africa
650 associated with processed Meat. *N Engl J Med* 313:632-43.
- 651
- 652 4. Gilmour MW, Graham M, Domselaar GV, Tyler S, Kent H, Trout-Yakel KM, Larios
653 O, Allen V, Lee B, Nadon C. 2010. High-throughput genome sequencing of two
654 *Listeria monocytogenes* clinical isolates during a large foodborne outbreak. *BMC
655 Genomics* 11:120.
- 656
- 657 5. Kvistholm Jensen A, Nielsen EM, Björkman JT, Jensen T, Müller L, Persson S,
658 Bjerager G, Perge A, Krause TG, Kiil K, Sørensen G, Andersen JK, Mølbak K,
659 Ethelberg S. 2016. Whole-genome sequencing used to investigate a nationwide

660 outbreak of listeriosis caused by ready-to-eat delicatessen meat, Denmark, 2014. Clin
661 Infect Dis 63:64-70.

662

663 6. Linnan MJ, Mascola L, Lou XD, Goulet V, May S, Salminen C, Hird DW, Yonekura
664 ML, Hayes P, Weaver R, Audurier A, Plikaytis BD, Fannin SL, Kleks A, Broome
665 CV. 1988. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med
666 319:823-8.

667

668 7. Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, Birren BW,
669 Ivy RA, Sun Q, Graves LM, Swaminathan B, Wiedmann M. 2008. Short-term
670 genome evolution of *Listeria monocytogenes* in a non-controlled environment. BMC
671 Genomics 9:539.

672

673 8. Belias A, Sullivan G, Wiedmann M, Ivanek R. 2022. Factors that contribute to
674 persistent Listeria in food processing facilities and relevant interventions: A rapid
675 review. Food Control 133:108579.

676

677 9. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A,
678 Criscuolo A, Gaultier C, Roussel S, Brisabois A, Disson O, Rocha EPC, Brisse S,
679 Lecuit M. 2016. Uncovering *Listeria monocytogenes* hypervirulence by harnessing its
680 biodiversity. Nat Genet 48:308–13.

681

682 10. Moura A, Lefrancq N, Leclercq A, Wirth T, Borges V, Gilpin B, Dallman TJ, Frey J,
683 Franz E, Nielsen EM, Thomas J, Pightling A, Howden BP, Tarr CL, Gerner-Smidt P,
684 Cauchemez S, Salje H, Brisse S, Lecuit M. 2020. Emergence and global spread of
685 *Listeria monocytogenes* main clinical clonal complex. Sci Adv 49:eabj9805.

686

687 11. Fagerlund A, Langsrød S, Schirmer BCT, Møretrø T, Heir E. 2016. Genome analysis
688 of *Listeria monocytogenes* sequence type 8 strains persisting in salmon and poultry
689 processing environments and comparison with related strains. PLOS ONE.
690 8:11:e0151117.

691

692 12. Schmitz-Esser S, Anast JM, Cortes BW. 2021. A large-scale sequencing-based survey
693 of plasmids in *Listeria monocytogenes* reveals global dissemination of plasmids.
694 Front Microbiol 12.

695

696 13. Bland R, Brown SRB, Waite-Cusic J, Kovacevic J. 2022. Probing antimicrobial
697 resistance and sanitizer tolerance themes and their implications for the food industry
698 through the *Listeria monocytogenes* lens. Compr Rev Food Sci Food Saf 21:1777-
699 802.

700

701 14. McDonnell G, Russell AD. 1999. Antiseptics and disinfectants: activity, action, and
702 resistance. Clin Microbiol Rev 12:147–79.

703

704 15. Fagerlund A, Heir E, Møretrø T, Langsrød S. 2020. *Listeria monocytogenes* biofilm
705 removal using different commercial cleaning agents. Molecules 12;25(4):792.

706

707 16. Manso B, Melero B, Stessl B, Jaime I, Wagner M, Rovira J, Rodríguez-Lázaro D.
708 2020. The response to oxidative stress in *Listeria monocytogenes* is temperature
709 dependent. Microorganisms 8:521.

710

711 17. Palma F, Radomski N, Guérin A, Sévellec Y, Félix B, Bridier A, Soumet C, Roussel
712 S, Guillier L. 2022. Genomic elements located in the accessory repertoire drive the
713 adaptation to biocides in *Listeria monocytogenes* strains from different ecological
714 niches. Food Microbiol 106:103757.

715

716 18. Kovacevic J, Ziegler J, Wałecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW.
717 2016. Tolerance of *Listeria monocytogenes* to quaternary ammonium sanitizers is
718 mediated by a novel efflux pump encoded by *emrE*. Appl Environ Microbiol 82:939–
719 53.

720

721 19. Müller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD,
722 Wagner M, Schmitz-Esser S. 2013. Tn6188 - A novel transposon in *Listeria*
723 *monocytogenes* responsible for tolerance to benzalkonium chloride. PLOS ONE
724 2;8:e76835.

725

726 20. Elhanafi D, Dutta V, Kathariou S. 2010. Genetic characterization of plasmid-
727 associated benzalkonium chloride resistance determinants in a *Listeria*
728 *monocytogenes* strain from the 1998-1999 outbreak. *Appl Environ Microbiol*
729 76:8231–8.

730

731 21. Kremer PHC, Lees JA, Koopmans MM, Ferwerda B, Arends AWM, Feller MM,
732 Schipper K, Seron MV, Ende A van der, Brouwer MC, Beek D van de, Bentley SD.
733 2017. Benzalkonium tolerance genes and outcome in *Listeria monocytogenes*
734 meningitis. *Clin Microbiol Infect* 23:265

735

736 22. Roedel A, Dieckmann R, Brendebach H, Hammerl JA, Kleta S, Noll M, S AD,
737 Vincze S. 2019. Biocide-tolerant *Listeria monocytogenes* isolates from German food
738 production plants do not show cross-resistance to clinically relevant antibiotics. *Appl*
739 *Environ Microbiol* 85:e01253-19.

740

741 23. Moretro T, Schirmer BCT, Heir E, Fagerlund A, Hjemli P, Langsrud S. 2017.
742 Tolerance to quaternary ammonium compound disinfectants may enhance growth of
743 *Listeria monocytogenes* in the food industry. *Int J Food Microbiol* 241:215–24.

744

745 24. Heir E, Lindstedt BA, Røtterud OJ, Vardund T, Kapperud G, Nesbakken T. 2004.
746 Molecular epidemiology and disinfectant susceptibility of *Listeria monocytogenes*
747 from meat processing plants and human infections. *Int J Food Microbiol* 96:85–96.

748

749 25. Assisi C, Forauer E, Oliver HF, Etter AJ. 2020. Genomic and transcriptomic analysis
750 of biofilm formation in persistent and transient *Listeria monocytogenes* isolates from
751 the retail deli environment does not yield insight into persistence mechanisms.
752 *Foodborne Pathog Dis* 18:179–88.

753

754 26. Bland R, Brown SRB, Waite-Cusic J, Kovacevic J. 2022. Probing antimicrobial
755 resistance and sanitizer tolerance themes and their implications for the food industry
756 through the *Listeria monocytogenes* lens. *Compr Rev Food Sci Food Saf* 21:1777–
757 802.

758

759 27. Møretrø T, Schirmer BCT, Heir E, Fagerlund A, Hjemli P, Langsrud S. 2017.
760 Tolerance to quaternary ammonium compound disinfectants may enhance growth of
761 *Listeria monocytogenes* in the food industry. *Int J Food Microbiol* 241:215–24.
762

763 28. Luque-Sastre L, Fox EM, Jordan K, Fanning S. 2018. A comparative study of the
764 susceptibility of *Listeria* species to sanitizer treatments when grown under planktonic
765 and biofilm conditions. *J Food Prot* 81:1481–90.
766

767 29. Conficoni D, Losasso C, Cortini E, Di Cesare A, Cibin V, Giaccone V, Corno G,
768 Ricci A. 2016. Resistance to biocides in *Listeria monocytogenes* collected in meat-
769 processing environments. *Front Microbiol* 2016 7.
770

771 30. Rakic-Martinez M, Drevets DA, Dutta V, Katic V, Kathariou S. 2011. *Listeria*
772 *monocytogenes* Strains selected on ciprofloxacin or the disinfectant benzalkonium
773 chloride exhibit reduced susceptibility to ciprofloxacin, gentamicin, benzalkonium
774 chloride, and other toxic compounds. *Appl Environ Microbiol* 77:8714–21.
775

776 31. Gelbicova T, Florianova M, Hluchanova L, Kalova A, Korena K, Strakova N,
777 Karpiskova R. 2021. Comparative analysis of genetic determinants encoding
778 cadmium, arsenic, and benzalkonium chloride resistance in *Listeria monocytogenes* of
779 human, food, and environmental origin. *Front Microbiol* 11.
780

781 32. Castro H, Douillard FP, Korkeala H, Lindström M. 2021. Mobile elements harboring
782 heavy metal and bacitracin resistance genes are common among *Listeria*
783 *monocytogenes* strains persisting on dairy farms. *mSphere* 6:4
784

785 33. Hurley D, Luque-Sastre L, Parker CT, Huynh S, Eshwar AK, Nguyen SV, Andrews
786 N, Moura A, Fox EM, Jordan K, Lehner A, Stephan R, Fanning S. 2019. Whole-
787 genome sequencing-based characterization of 100 *Listeria monocytogenes* isolates
788 collected from food processing environments over a four-year period. *mSphere* 4:4.
789

790 34. Olier M, Pierre F, Rousseaux S, Lemaître JP, Rousset A, Piveteau P, Guzzo J. 2003.
791 Expression of truncated internalin a is involved in impaired internalization of some

792 *Listeria monocytogenes* isolates carried asymptotically by humans. *Infect Immun*
793 71:1217–24.

794

795 35. Fagerlund A, Wagner E, Møretrø T, Heir E, Moen B, Rychli K, Langsrud S. 2022. Pervasive *Listeria monocytogenes* is common in the Norwegian food system and is associated with increased prevalence of stress survival and resistance determinants. *Appl Environ Microbiol* 88:e00861-22.

799

800 36. Fagerlund A, Møretrø T, Aspholm M, Lindbäck T, Langsrud S. 2022. WGS analysis of *Listeria monocytogenes* from rural, urban, and farm environments in Norway: Genetic diversity, persistence, and relation to clinical and food isolates. *Appl Environ Microbiol* 88:e02136-21.

804

805 37. Martínez-Suárez JV, Ortiz S, López-Alonso V. 2016. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of *Listeria monocytogenes* in food processing environments. *Front Microbiol* 7.

808

809 38. Stoller A, Stevens M, Stephan R, Guldmann C. 2019. Characteristics of *Listeria monocytogenes* strains persisting in a meat processing facility over a 4-year period. *Pathogens* 8:32.

812

813 39. Romanova N, Favrin S, Griffiths MW. 2002. Sensitivity of *Listeria monocytogenes* to sanitizers used in the meat processing industry. *Appl Environ Microbiol* 68:6405–9.

815

816 40. Ortiz S, López-Alonso V, Rodríguez P, Martínez-Suárez JV. 2016. The connection between persistent, disinfectant-resistant *Listeria monocytogenes* strains from two geographically separate Iberian pork processing plants: evidence from comparative genome analysis. *Appl Environ Microbiol* 82:308–17.

820

821 41. Ebner R, Stephan R, Althaus D, Brisson S, Maury M, Tasara T. 2015. Phenotypic and genotypic characteristics of *Listeria monocytogenes* strains isolated during 2011-2014 from different food matrices in Switzerland. *Food Cont* 57:321–6.

824

825 42. Meier AB, Guldmann C, Markkula A, Pöntinen A, Korkeala H, Tasara T. 2017.
826 Comparative phenotypic and genotypic analysis of Swiss and Finnish *Listeria*
827 *monocytogenes* isolates with respect to benzalkonium chloride resistance. Front
828 Microbiol 8.

829

830 43. Touche C, Hamchaoui S, Quilleré A, Darsonval M, Dubois-Brissonnet F. 2023.
831 Growth of *Listeria monocytogenes* is promoted at low temperature when exogenous
832 unsaturated fatty acids are incorporated in its membrane. Food Microbiol 110.

833

834 44. Bland RN, Johnson JD, Waite-Cusic JG, Weisberg AJ, Riutta ER, Chang JH,
835 Kovacevic J. 2021. Application of whole genome sequencing to understand diversity
836 and presence of genes associated with sanitizer tolerance in *Listeria monocytogenes*
837 from produce handling sources. Foods 10.

838

839 45. Chmielowska C, Korsak D, Chapkauskaitse E, Decewicz P, Lasek R, Szuplewska M,
840 Bartosik D. 2021. Plasmidome of *Listeria spp.* the repA-family business. Int J Mol
841 Sci 22:19.

842

843 46. Dutta V, Elhanafi D, Kathariou S. 2013. Conservation and distribution of the
844 benzalkonium chloride resistance cassette *bcrABC* in *Listeria monocytogenes*. Appl
845 Environ Microbiol 79:6067–74.

846

847 47. Nightingale KK, Ivy RA, Ho AJ, Fortes ED, Njaa BL, Peters RM, Wiedmann M.
848 2008. *inlA* premature stop codons are common among *Listeria monocytogenes*
849 isolates from foods and yield virulence-attenuated strains that confer protection
850 against fully virulent strains. Appl Environ Microbiol 74:6570–83.

851

852 48. Ratani SS, Siletzky RM, Dutta V, Yildirim S, Osborne JA, Lin W, Hitchins AD,
853 Ward TJ, Kathariou S. 2012. Heavy metal and disinfectant resistance of *Listeria*
854 *monocytogenes* from foods and food processing plants. Appl Environ Microbiol
855 78:6938–45.

856

857 49. Harter E, Wagner EM, Zaiser A, Halecker S, Wagner M, Rychli K. 2017. Stress
858 survival islet 2, predominantly present in *Listeria monocytogenes* strains of sequence

859 Type 121, is involved in the alkaline and oxidative stress responses. *Appl Environ*
860 *Microbiol* 83:e00827-17.

861

862 50. He Y, Xu T, Li S, Mann DA, Britton B, Oliver HF, Den Bakker HC, Deng X. 2022. Integrative assessment of reduced *Listeria monocytogenes* susceptibility to benzalkonium chloride in produce processing environments. *Appl Environ Microbiol* 88:e01269-22.

863

864

865

866

867 51. Daeschel D, Pettengill JB, Wang Y, Chen Y, Allard M, Snyder AB. 2022. Genomic analysis of *Listeria monocytogenes* from US food processing environments reveals a high prevalence of QAC efflux genes but limited evidence of their contribution to environmental persistence. *BMC Genomics* 23:11.

868

869

870

871

872 52. Maury MM, Bracq-Dieye H, Huang L, Vales G, Lavina M, Thouvenot P, Disson O, Leclercq A, Brisson S, Lecuit M. 2019. Hypervirulent *Listeria monocytogenes* clones' adaption to mammalian gut accounts for their association with dairy products. *Nat Commun* 10.

873

874

875

876

877 53. Painset A, Björkman JT, Kiil K, Guillier L, Mariet JF, Félix B, Amar C, Rotariu O, Roussel S, Perez-Reche F, Brisson S, Moura A, Lecuit M, Forbes K, Strachan N, Grant K, Møller-Nielsen E, Dallman TJ. 2019. LiSEQ – whole-genome sequencing of a cross-sectional survey of *Listeria monocytogenes* in ready-to-eat foods and human clinical cases in Europe. *Microb Genomics* 5:2.

878

879

880

881

882

883 54. Kropac AC, Eshwar AK, Stephan R, Tasara T. 2019. New insights on the role of the *pLMST6* plasmid in *Listeria monocytogenes* biocide tolerance and virulence. *Front Microbiol* 10.

884

885

886

887 55. Wiegand I, Hilpert K, Hancock REW. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. *Nat Protoc.* 3:163–75.

888

889

890

891 56. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes de novo assembler. *Curr Protoc Bioinforma* 70:1.

892

893

894 57. Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data.
<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

895

896

897 58. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: Quality assessment tool
898 for genome assemblies. *Bioinformatics* 29:1072-5

899

900 59. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H,
901 Sicheritz-Pontén T, Aarestrup FM, Ussery DW, Lund O. 2014. Benchmarking of
902 methods for genomic taxonomy. *J Clin Microbiol* 52:1529–39.

903

904 60. Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*
905 30:2068-9

906

907 61. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M,
908 Falush D, Keane JA, Parkhill J. 2015. Roary: Rapid large-scale prokaryote pan
909 genome analysis. *Bioinformatics*. 31:3691–3.

910

911 62. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for
912 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
913 25:1972–3.

914

915 63. Letunic I, Bork P. 2019. Interactive tree of life (iTOL) v4: Recent updates and new
916 developments. *Nucleic Acids Res* 47.

917

918 64. Xu S, Dai Z, Guo P, Fu X, Liu S, Zhou L, Tang W, Feng T, Chen M, Zhan L, Wu T,
919 Hu E, Jiang Y, Bo X, Yu G. 2021. ggtreeExtra: Compact visualization of richly
920 annotated phylogenetic data. *Mol Biol Evol* 38:4039–42.

921

922 65. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
923 2009. BLAST+: Architecture and applications. *BMC Bioinformatics* 10:421.

924

925 66. Chmielowska C, Korsak D, Szuplewska M, Grzelecka M, Mackiw E, Stasiak M,
926 Macion A, Skowron K, Bartosik D. 2021. Benzalkonium chloride and heavy metal

927 resistance profiles of *Listeria monocytogenes* strains isolated from fish, fish products
928 and food-producing factories in Poland. *Food Microbiol* 98.

929

930 67. Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing
931 genomic features. *Bioinformatics* 26:841–2.

932

933 68. Gilchrist CLM, Chooi YH. 2021. Clinker & clustermap.js: Automatic generation of
934 gene cluster comparison figures. *Bioinformatics* 37:2473–5.

935

936 69. Galata V, Fehlmann T, Backes C, Keller A. 2019. PLSDB: a resource of complete
937 bacterial plasmids. *Nucleic Acids Res* 47:195–202.

938

939 70. Roux S, Enault F, Hurwitz BL, Sullivan MB. 2015. VirSorter: mining viral signal
940 from microbial genomic data. *PeerJ* 28:3.

941

942 71. Blackwell G, Hunt MR, Malone K, Leandro GL, Horesh, Alako BTF, Thomson N,
943 Iqbal Z. 2021. Exploring bacterial diversity via a curated and searchable snapshot of
944 archived DNA sequences. *PLOS Biol* 19:11.

945

946 72. Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads
947 against redundant databases with KMA. 2018. *BMC Bioinformatics* 19:307.

948

949 73. Gupta A, Jordan IK, Rishishwar L. 2017. stringMLST: a fast k-mer based tool for
950 multilocus sequence typing. *Bioinformatics* 33:119–21.

951

952 74. DerSimonian R, Laird N. 1986. Meta-analysis in clinical trials. *Control Clin Trials*
953 7:177–88.

954

955

956

957

958

959

960

961

962

963

964 **Figure 1 A.** Percentage of *L. monocytogenes* isolates by source of isolation. Sources below 0.1% are
965 not shown. **B.** Division of isolates by source of isolation for each country of collection. Countries with
966 < 10 isolates are not shown on the figure: Turkey (n=3, food), Russia (n=3, food), Belgium (n=1, food),
967 China (n=1, food), Finland (n=1, food) and France (n=1, production environment). **C.** Temporal
968 distribution of the isolates in the collection covering a time span of 98 years.

969

970 **Figure 2.** Distribution of the main isolation sources within dominating CCs (CCs with > 50 isolates are
971 shown in the figure).

972

973 **Figure 3** Distribution of the MIC values of sensitive (blue) and tolerant (red) *L. monocytogenes*
974 isolates to Benzalkonium chloride (n=1671), Mida SAN 360 OM (cQAC, n=155) and
975 Didecyldimethylammonium chloride (DDAC, n=247).

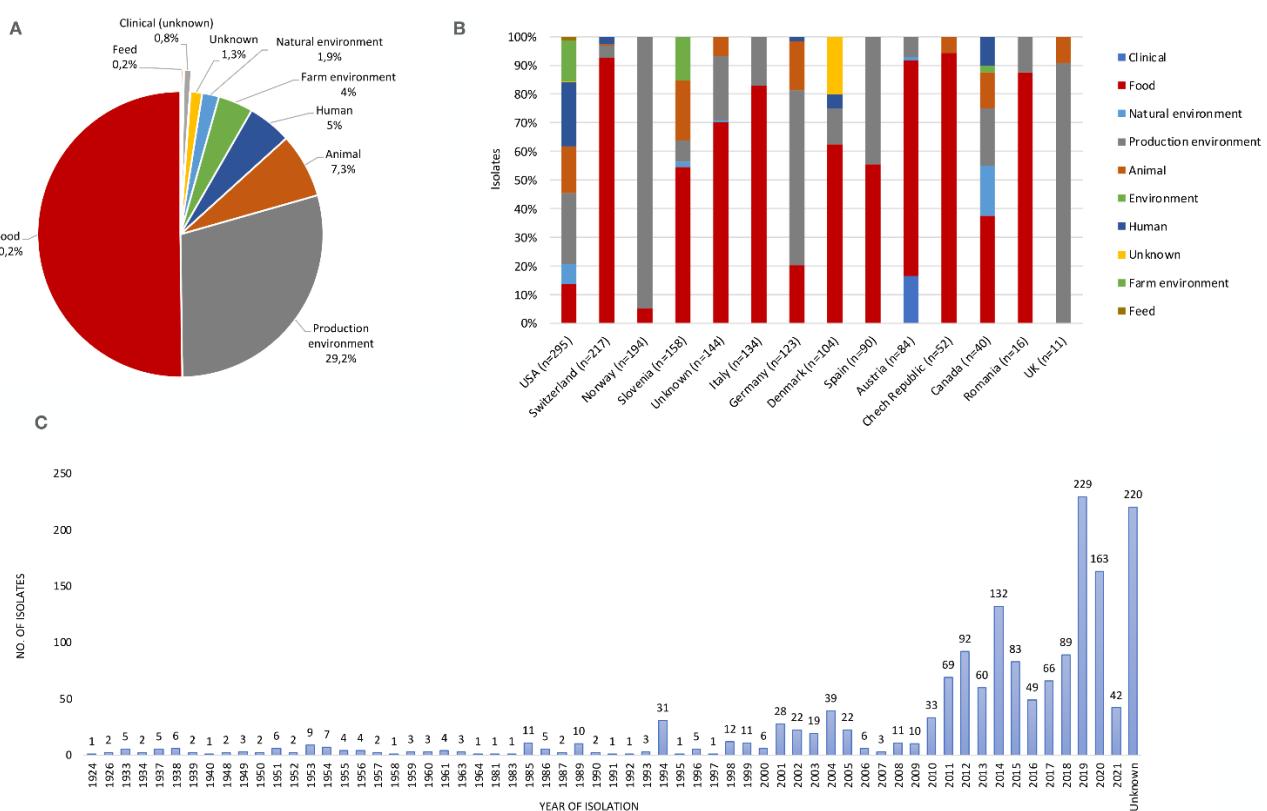
976

977 **Figure 4** Genomic characterisation of the *L. monocytogenes* tolerance to QACs. Distribution of CCs
978 (**A**) and isolation sources (**B**) among the isolates harbouring QAC tolerance genes and those isolates
979 with unknown mechanism of tolerance. Graphs were generated by Circos Viewer v0.63-10
980 (<http://mkweb.bcgsc.ca/tableviewer/>).

981

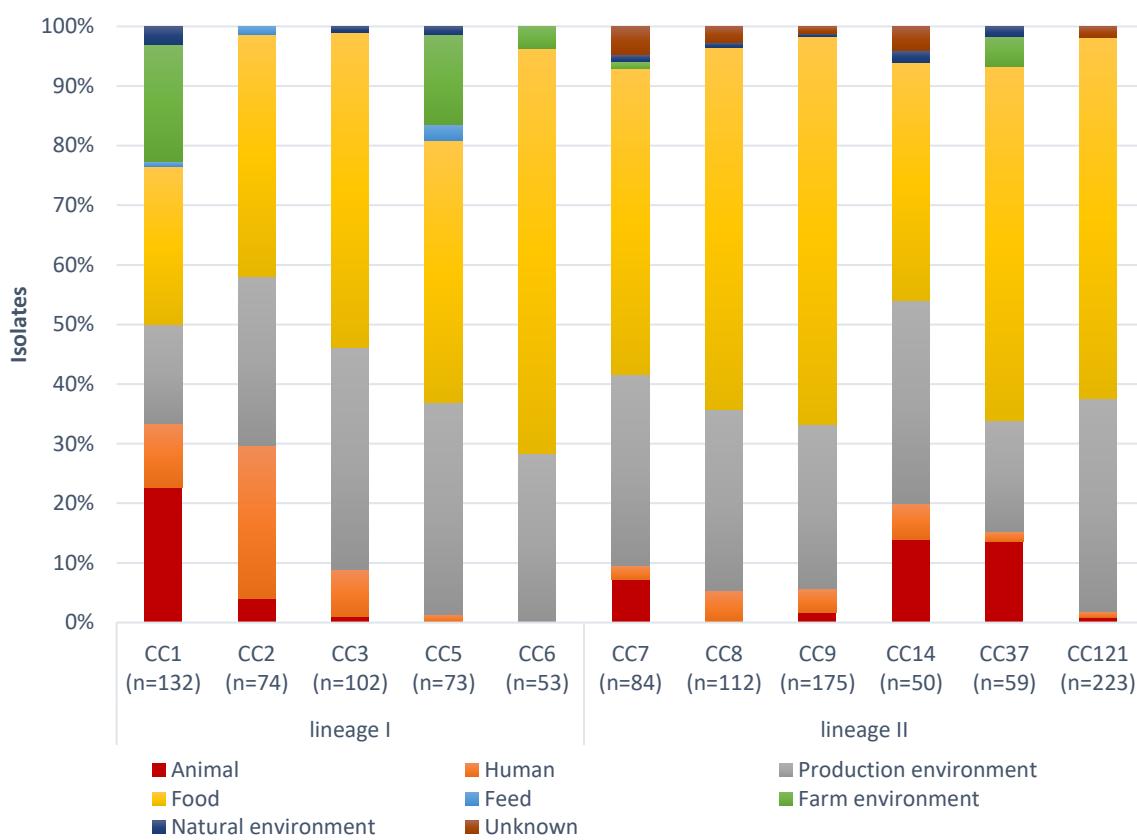
982 **Figure 5 A.** Mid-point rooted ML phylogenetic tree of the RepA sequences identified in 728
983 of the *L. monocytogenes* isolates. The 13 plasmid replicon groups detected among the isolates
984 in this study and the reference groups are indicated. **B.** Prevalence of plasmid carrying
985 isolates determined as sensitive or tolerant to QAC and their isolation source. Asterisks
986 indicate significant differences determined with the Pearson's chi-squared association test
987 with p < 0.05.

988

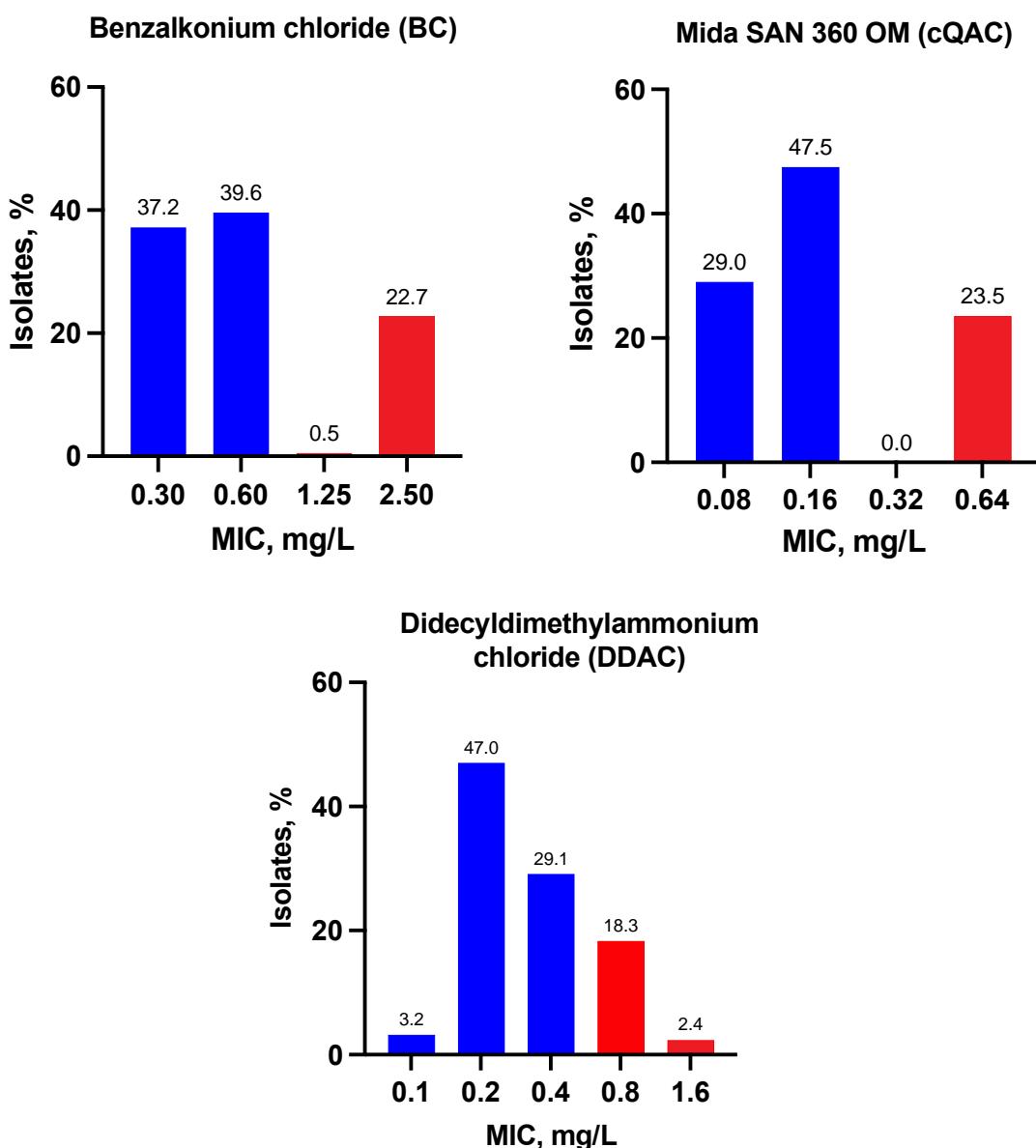

989 **Figure 6 A.** Stress resistance, virulence and plasmid replicon gene prevalence among the 95 CCs and
990 singleton STs in this study presented as percentage within each CC. A gene is considered present if the
991 gene coverage is > 90%. The phylogeny is a core-genome ML tree built with a representative isolate
992 (the most recent ancestor) from each CC with serogrouping based on the serogrouping scheme from
993 https://bigsdb.pasteur.fr/_nuxt/img/serogroups.9daaa98.png **B.** Prevalence of stress resistance genes
994 among the QAC tolerant (n=388) and sensitive (n=1283) isolates. Asterisks indicate significant
995 differences in prevalence determined with the Pearson's chi-squared association test with $P < 0.05$.

996

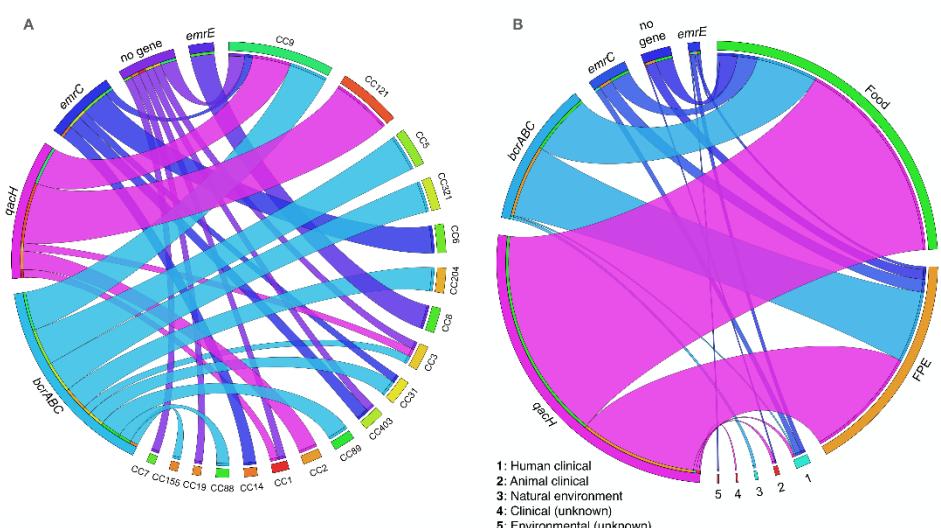
997 **Figure 7** Distribution of *bcrABC*, *qacH*, *emrE*, *emrC* genes globally (**A**) and in Europe (**B**) in *L.*
998 *monocytogenes* sequencing runs deposited in ENA as of 21 April 2021. The pie charts indicate the
999 proportion (rate) of the genes in each of the country in which at least one of the genes was present and
1000 their size reflects the rate of each gene per 1000 genomes (overview in Table S11).


1001 **FIGURES**

1002


1003

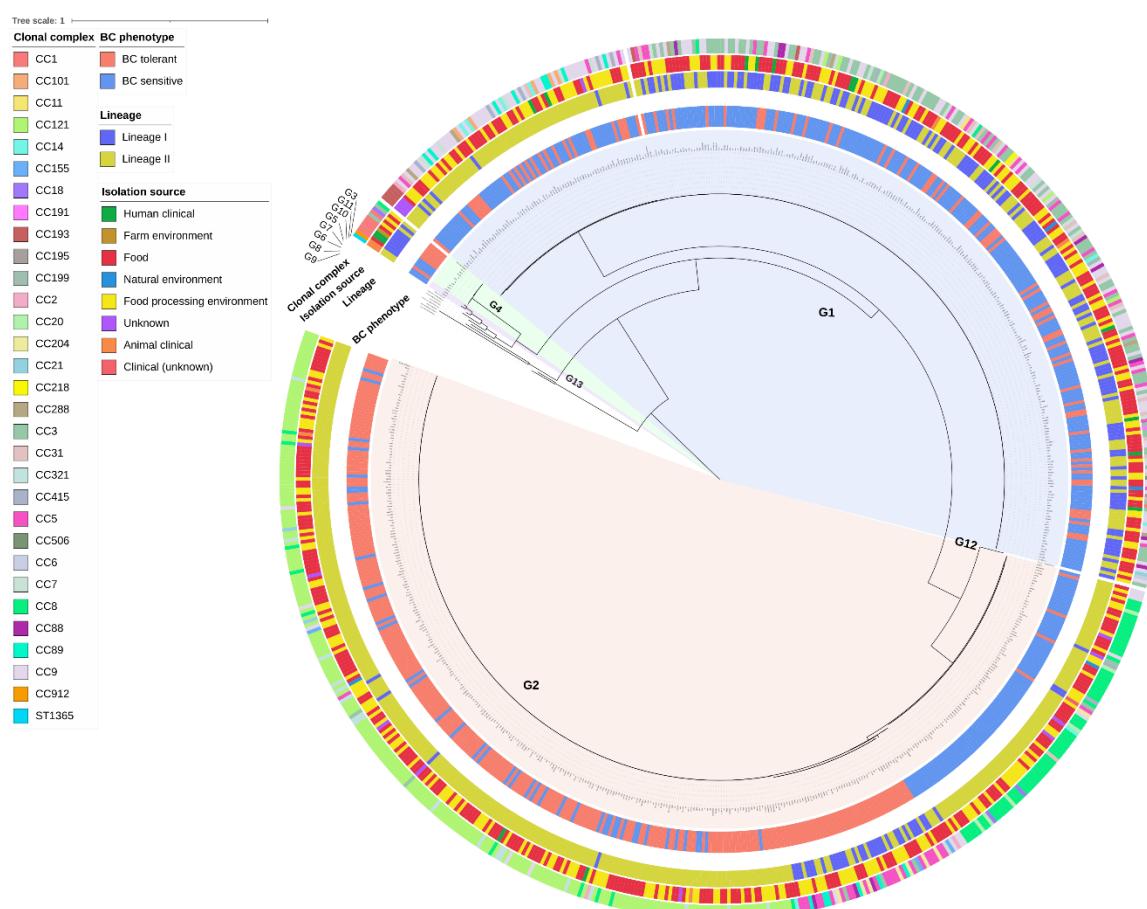
1004 **Figure 1 A.** Percentage of *L. monocytogenes* isolates by source of isolation. Sources below 0.1% are
1005 not shown. **B.** Division of isolates by source of isolation for each country of collection. Countries with
1006 < 10 isolates are not shown on the figure: Turkey (n=3, food), Russia (n=3, food), Belgium (n=1, food),
1007 China (n=1, food), Finland (n=1, food) and France (n=1, production environment). **C.** Temporal
1008 distribution of the isolates in the collection covering a time span of 98 years.


1009

1010 **Figure 2.** Distribution of the main isolation sources within dominating CCs (CCs with > 50 isolates are
1011 shown in the figure).

Figure 3 Distribution of the MIC values of sensitive (blue) and tolerant (red) *L. monocytogenes* isolates to Benzalkonium chloride (n=1671), Mida SAN 360 OM (cQAC, n=155) and Didecyldimethylammonium chloride (DDAC, n=247).

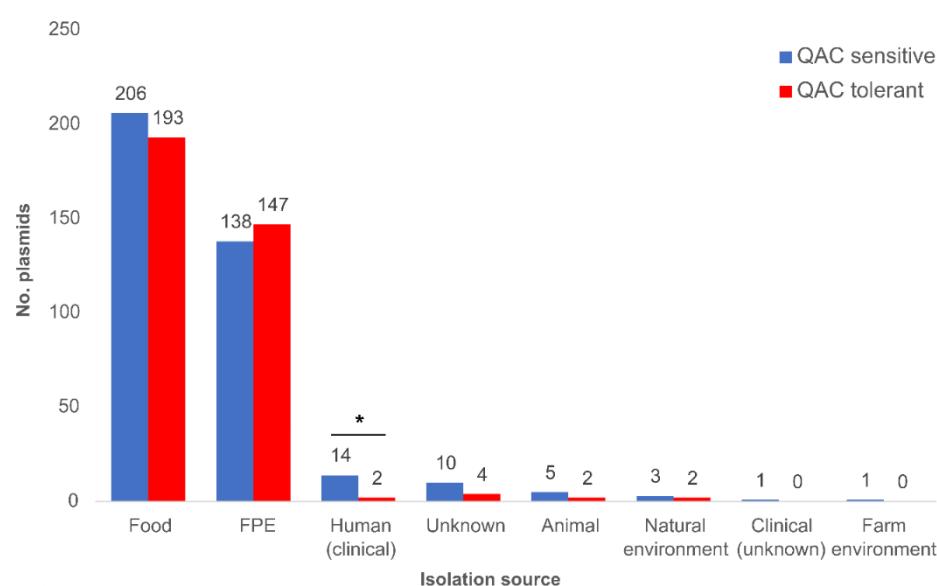
1019



1020

1021 **Figure 4** Genomic characterisation of the *L. monocytogenes* tolerance to QACs. Distribution of CCs
1022 (A) and isolation sources (B) among the isolates harbouring QAC tolerance genes and those isolates
1023 with unknown mechanism of tolerance. Graphs were generated by Circos Viewer v0.63-10
1024 (<http://mkweb.bcgsc.ca/tableviewer/>).

1025


A.

1026

1027

B.

1028

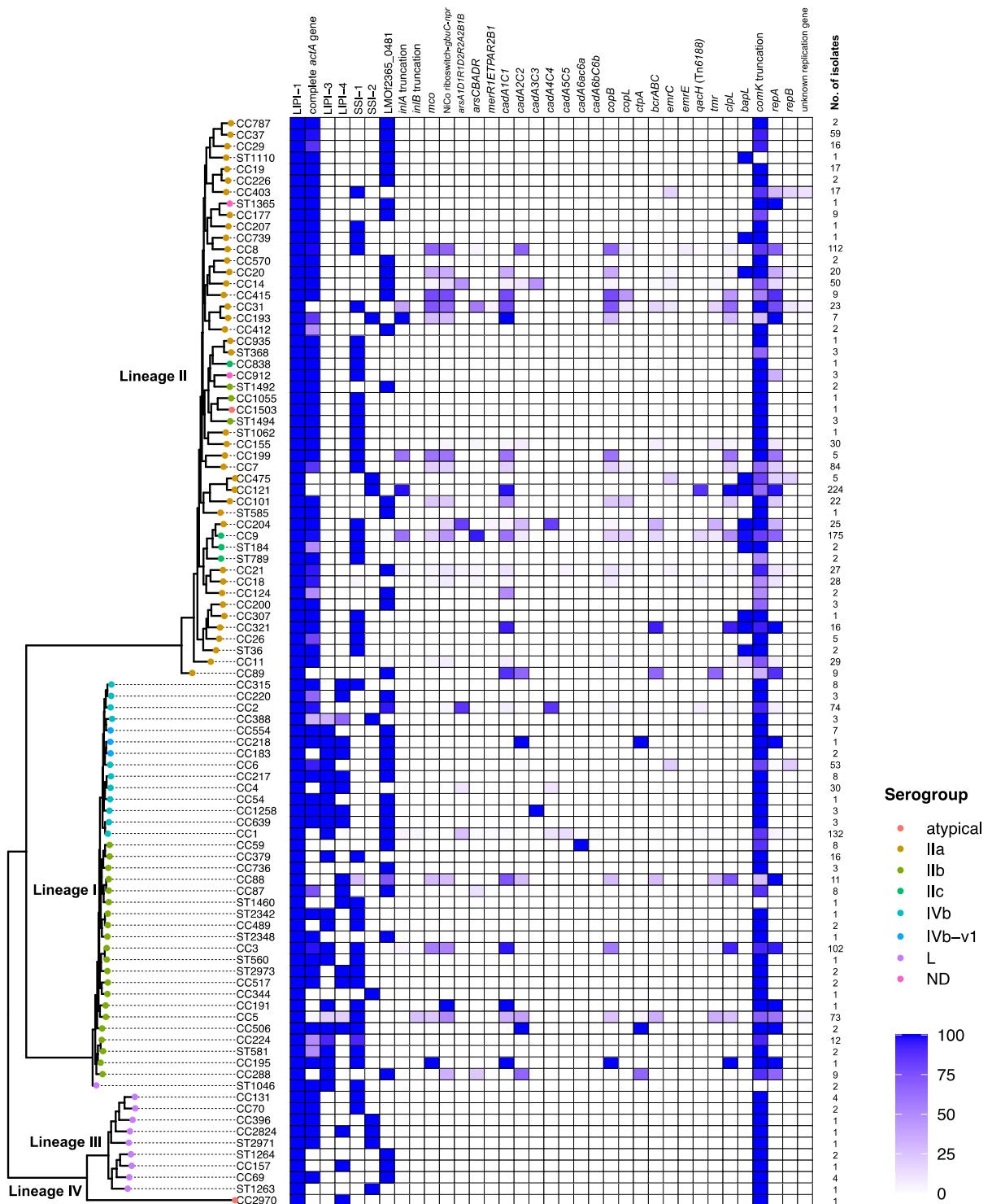
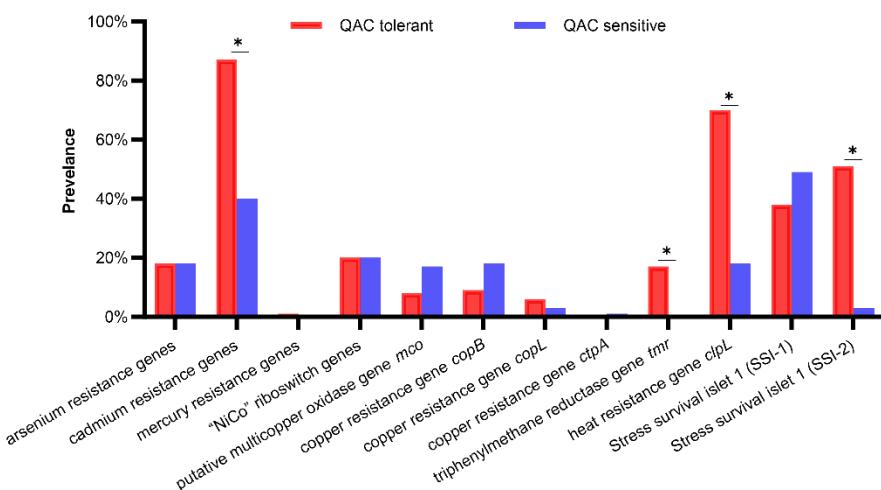
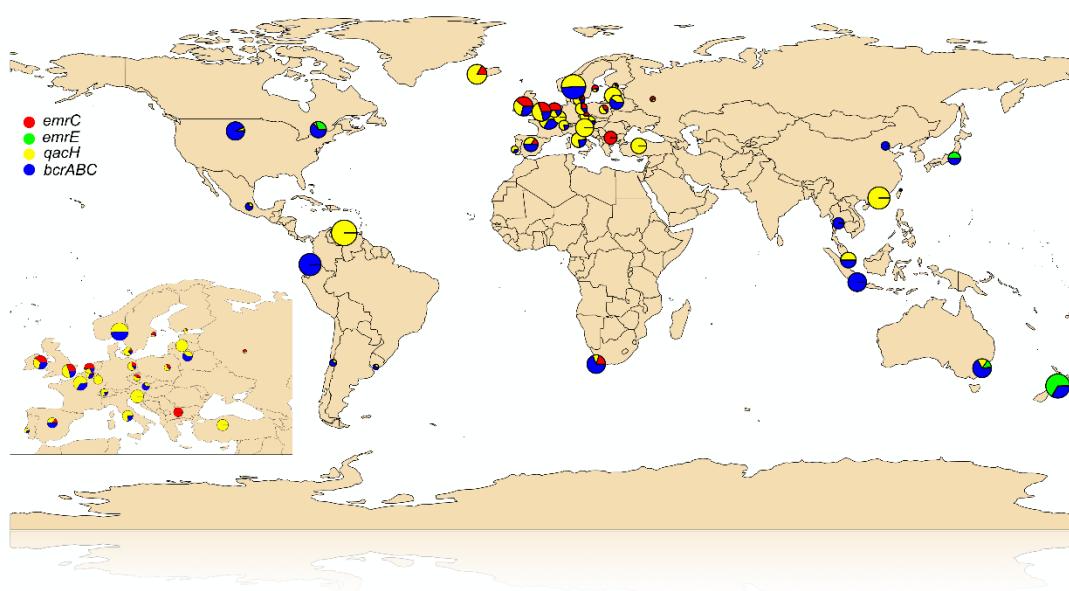

1029

Figure 5 A. Mid-point rooted ML phylogenetic tree of the RepA sequences identified in 728


1030

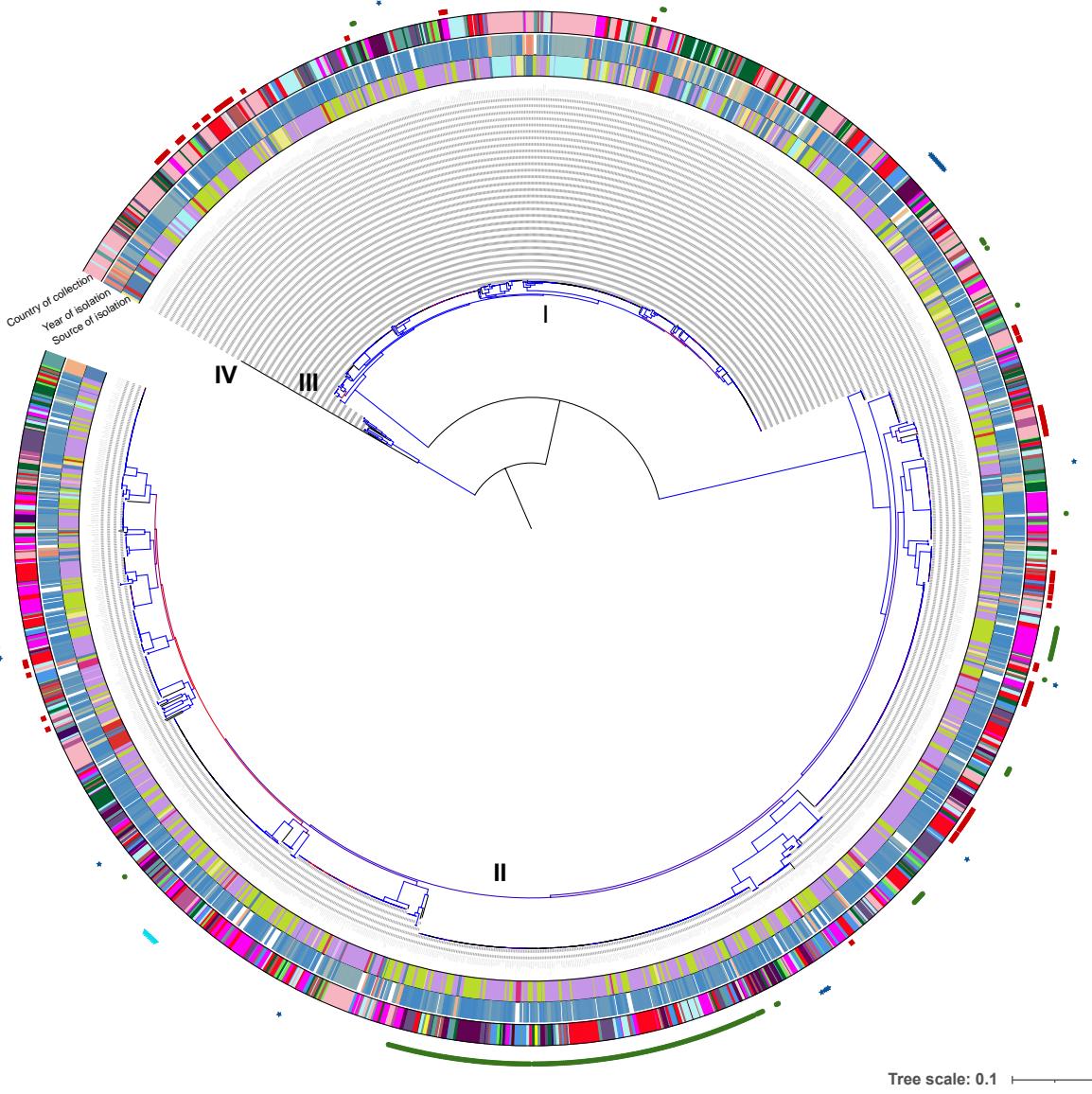
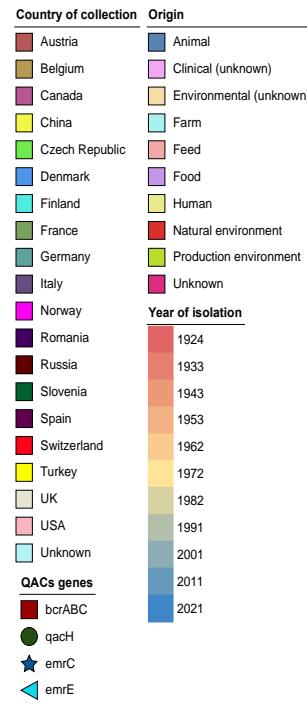
of the *L. monocytogenes* isolates. The 13 plasmid replicon groups detected among the isolates

1031 in this study and the reference groups are indicated. **B.** Prevalence of plasmid carrying
 1032 isolates determined as sensitive or tolerant to QAC and their isolation source. Asterisks
 1033 indicate significant differences determined with the Pearson's chi-squared association test
 1034 with $p < 0.05$.


1035

1036

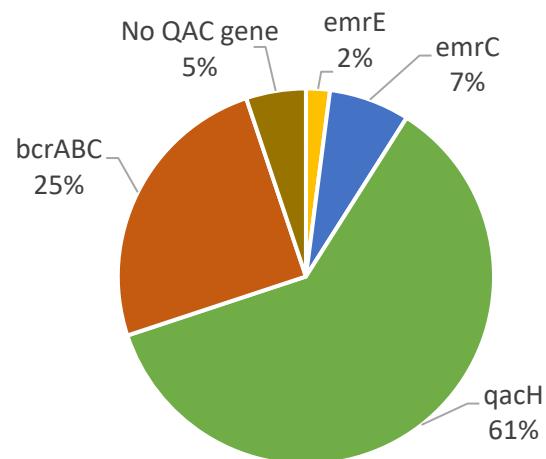
1037 **Figure 6 A.** Stress resistance, virulence and plasmid replicon gene prevalence among the 95 CCs and
1038 singleton STs in this study presented as percentage within each CC. A gene is considered present if the
1039 gene coverage is > 90%. The phylogeny is a core-genome ML tree built with a representative isolate
1040 (the most recent ancestor) from each CC with serogrouping based on the serogrouping scheme from
1041 https://bigsdb.pasteur.fr/_nuxt/img/serogroups.9daaa98.png **B.** Prevalence of stress resistance genes
1042 among the QAC tolerant (n=388) and sensitive (n=1283) isolates. Asterisks indicate significant
1043 differences in prevalence determined with the Pearson's chi-squared association test with $P < 0.05$.



1044

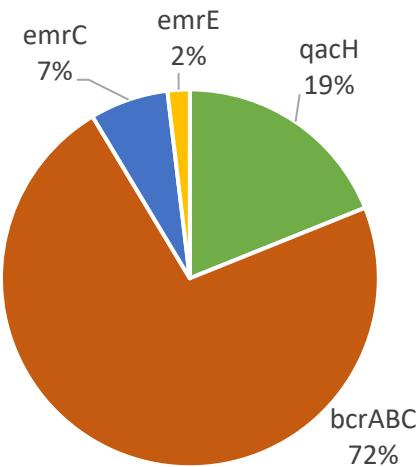
1045

1046 **Figure 7** Distribution of *bcrABC*, *qacH*, *emrE*, *emrC* genes globally (**A**) and in Europe (**B**) in *L.*
1047 *monocytogenes* sequencing runs deposited in ENA as of 21 April 2021. The pie charts indicate the
1048 proportion (rate) of the genes in each of the country in which at least one of the genes was present and
1049 their size reflects the rate of each gene per 1000 genomes (overview in Table S11).

1050 SUPPLEMENTARY FIGURES



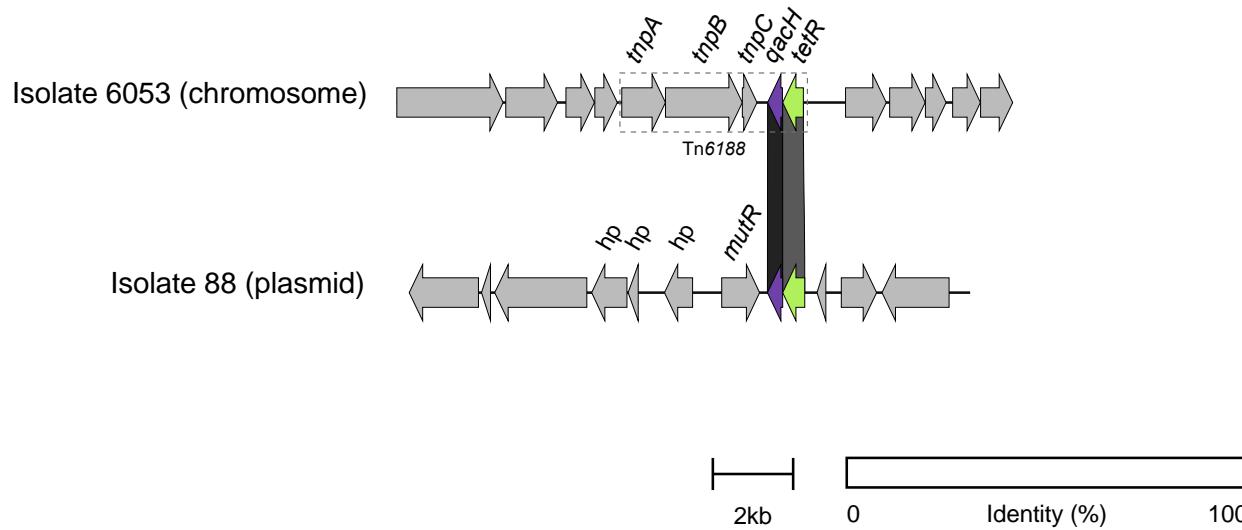
1052 **Figure S1** Mid-rooted maximum likelihood (ML) tree constructed from 2.19 Mb core-genome alignment using IQ-TREE with 1000 ultrafast bootstraps and
1053 GTR+G nucleotide substitution model. The color of the branches represents bootstrap support values, from 50 (red) to 100 (blue). Roman numbers represent
1054 the *L. monocytogenes* phylogenetic lineages. The rings from the inner to outer direction represent the source of isolation (origin), year of isolation (if known)
1055 and country of collection. Presence of QAC tolerance genes is presented by symbols outside the rings.
1056


1057

1058

A.

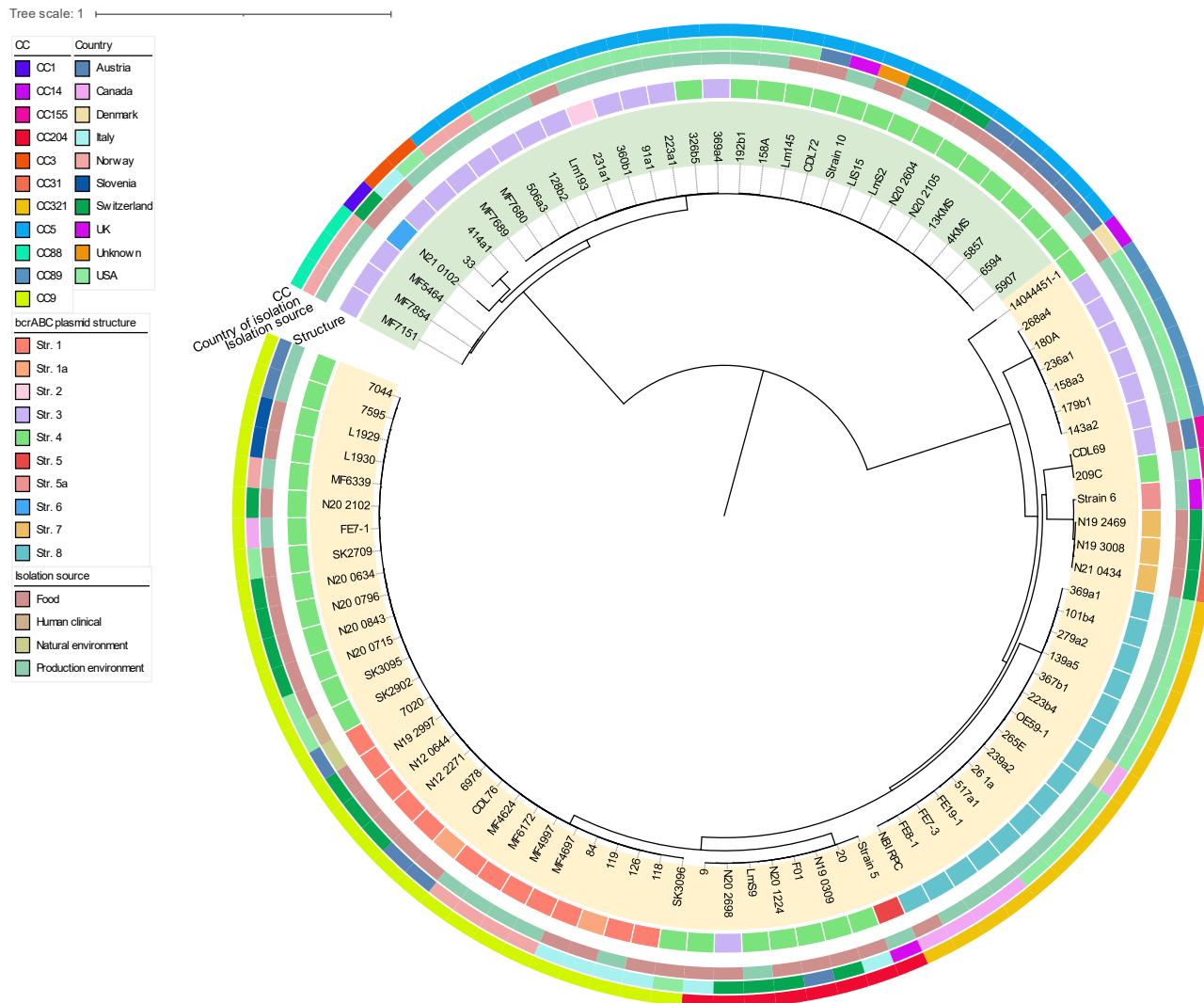
B.



1059

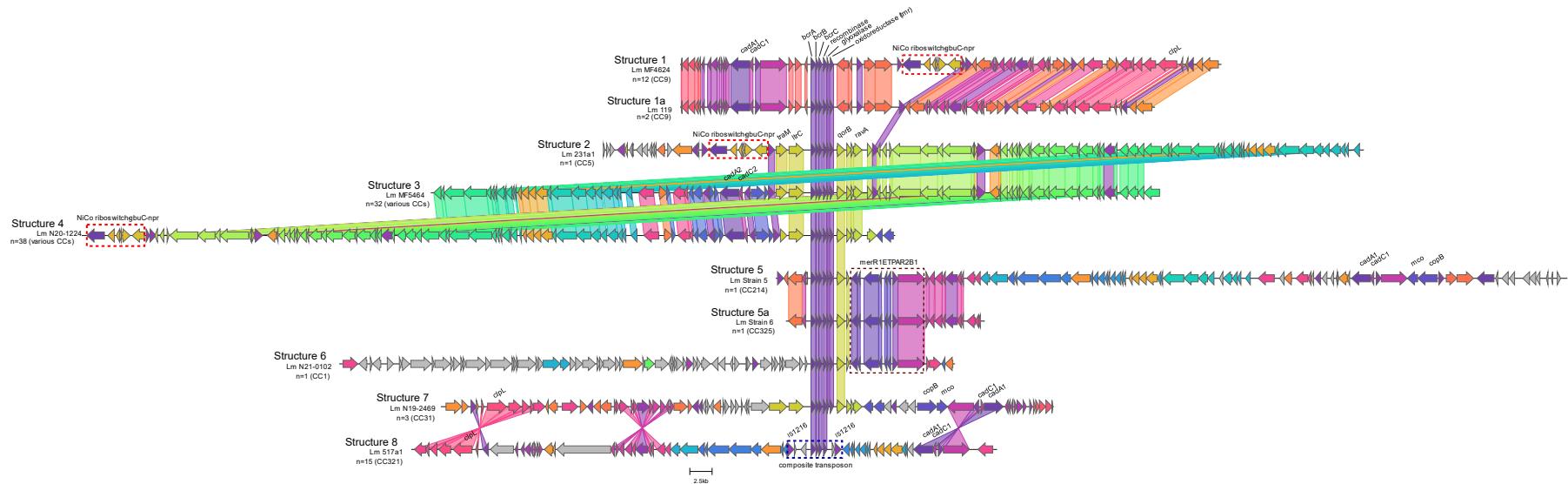
1060

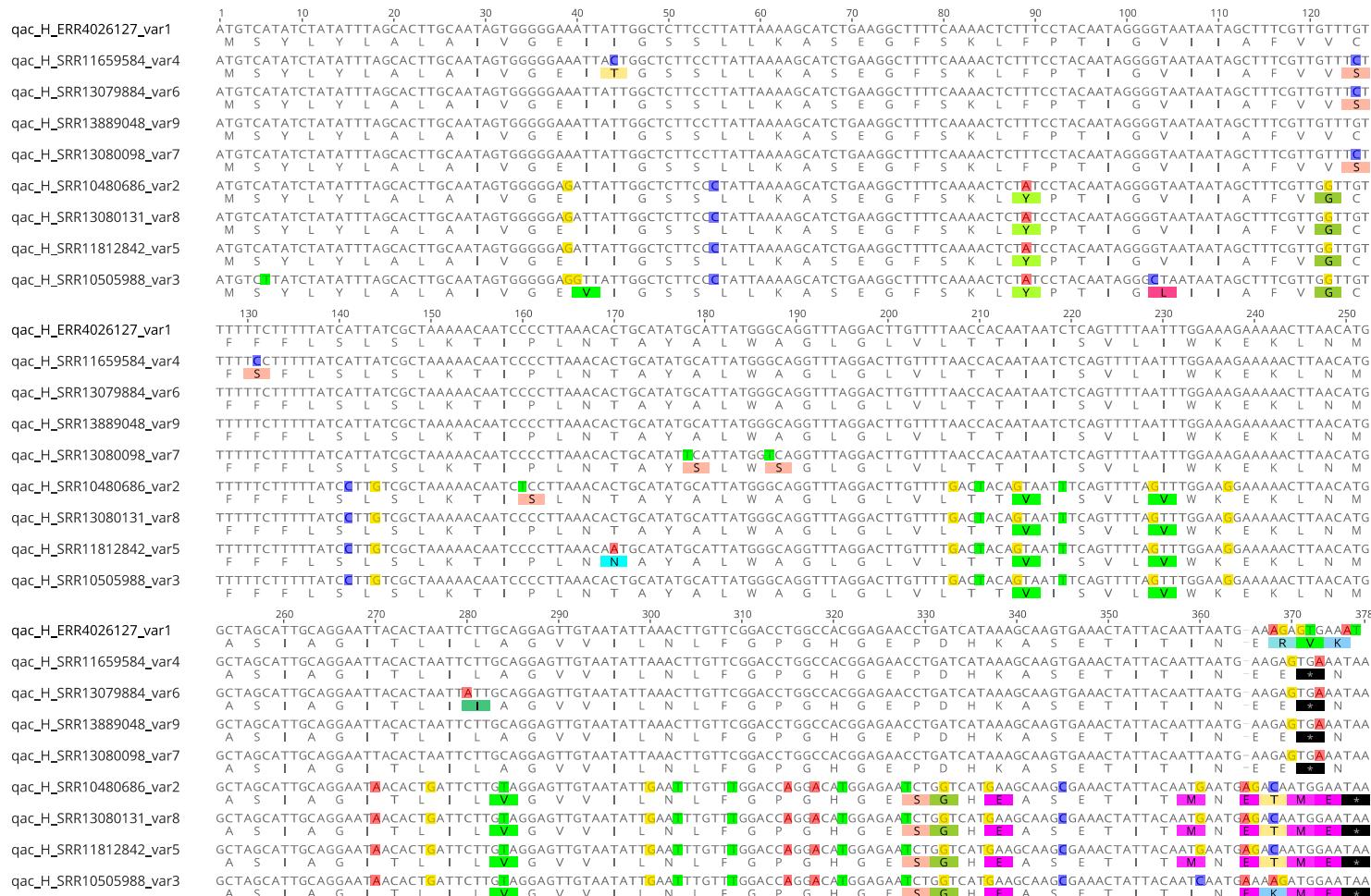
1061


Figure S2 Distribution of the QAC tolerance genes in the 388 QAC-tolerant *L. monocytogenes* isolates in this study (A) and in the ENA *L. monocytogenes* isolates as of April 2021 (B).

1062

1063

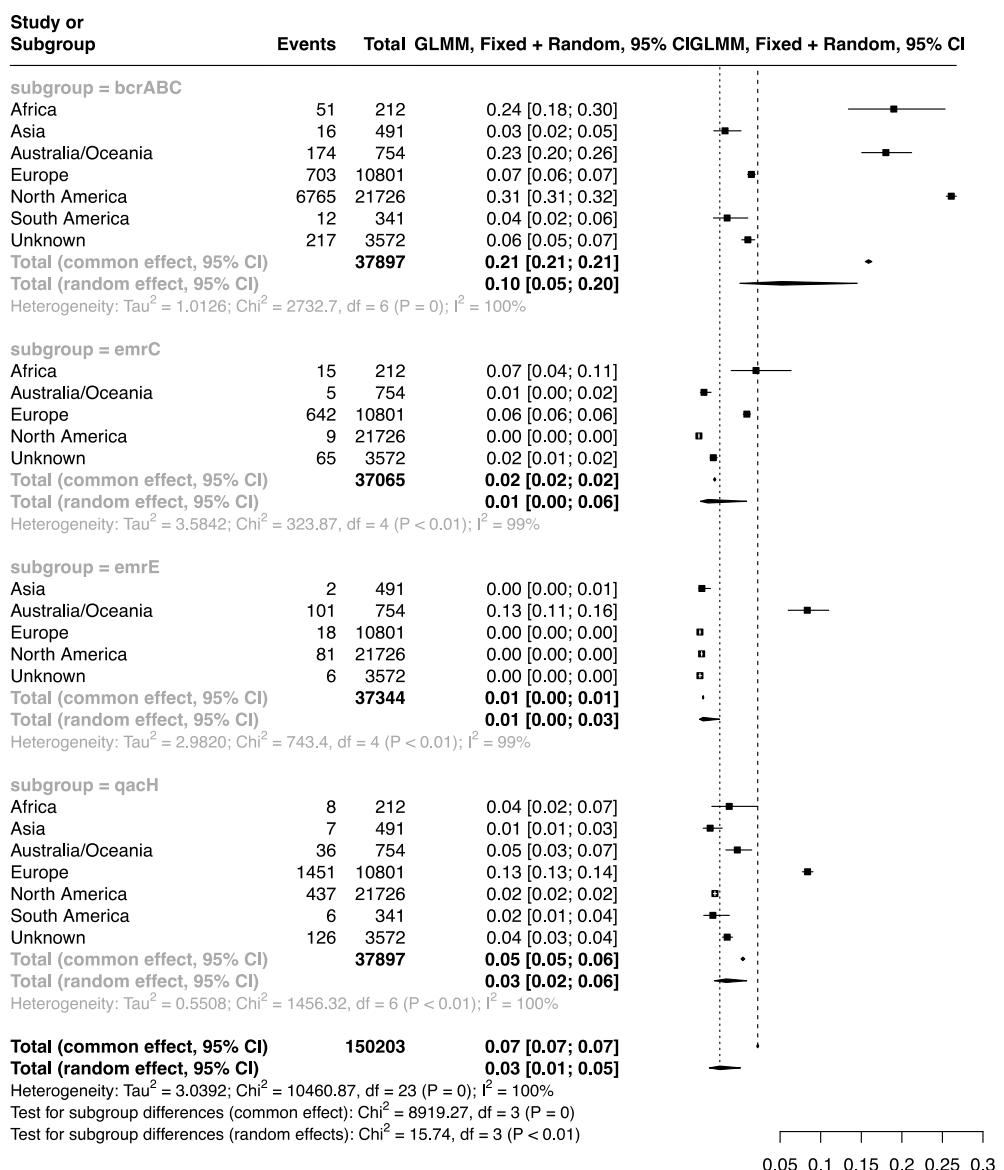

1064 **Figure S3** Genetic organisation of the *qacH* gene located on the chromosome and plasmids. The chromosome-located *qacH* is part of the previously
 1065 described Tn6188 (19), while plasmid-located *qacH* has different genetic environment, consisting of *tetR* (72% nucleotide identity to *tetR* on the
 1066 chromosome), *mutR* transcriptional regulator and genes encoding hypothetical proteins. The nucleotide identity between plasmid- and
 1067 chromosome-located *qacH* was 91%.


1068

1069

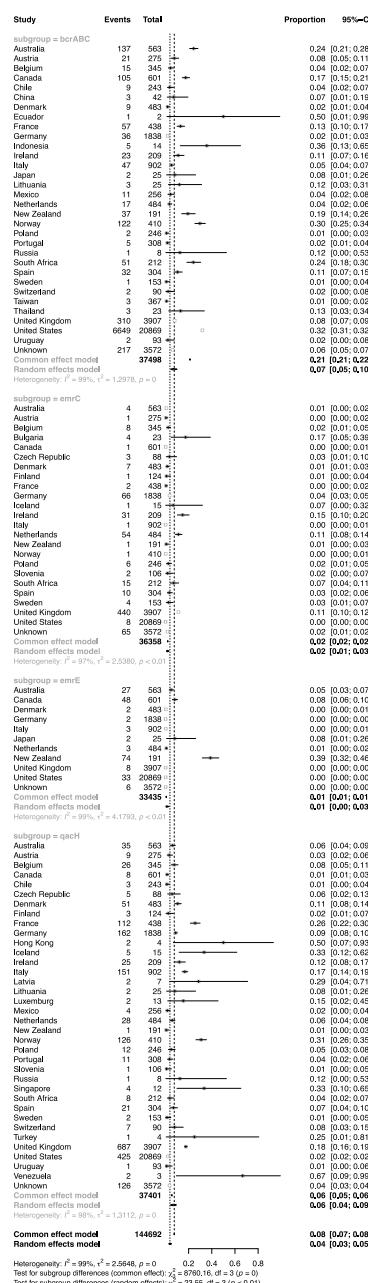
Figure S4 Mid-point rooted SNP-based phylogenetic tree of the 96 *bcrABC*-containing *L. monocytogenes* isolates.

1072 **Figure S5** Organisation of the *bcrABC*-harbouring contigs grouped into structures according to their genetic contexts. Links between homologous
 1073 genes are shown in different colours (the threshold for percentage identity is 90%). Genes in grey have no homologous genes within the analysed
 1074 plasmid contigs. The red dashed rectangles represent a mobile genetic element carrying Nico riboswitch, *gbuC* and *npr* genes, and the blue dashed
 1075 rectangle represents the composite transposon in plasmid structure 8. All stress resistance genes identified by blastn are annotated in the contigs;
 1076 “n” indicates the number of isolates in each structure. The genes are automatically coloured by clinker according to their protein functions



1077

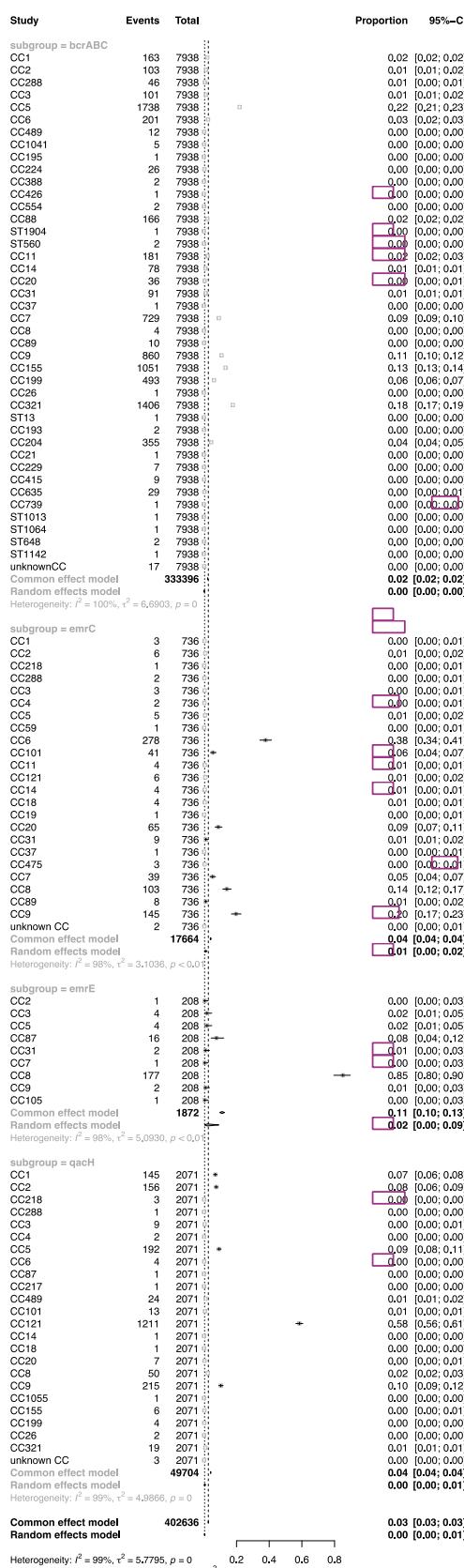
1078 **Figure S6** Nucleotide alignment and translation of the nine *qacH* variants identified among the global *L. monocytogenes* dataset with nucleotide


1079 identity above 90%. The ENA run accession numbers are given for each isolate harbouring the respective variant.

1080

1081

1082 **Figure S7** Forest plot showing the association between QAC tolerance genes and continent in the
1083 global *L. monocytogenes* dataset.

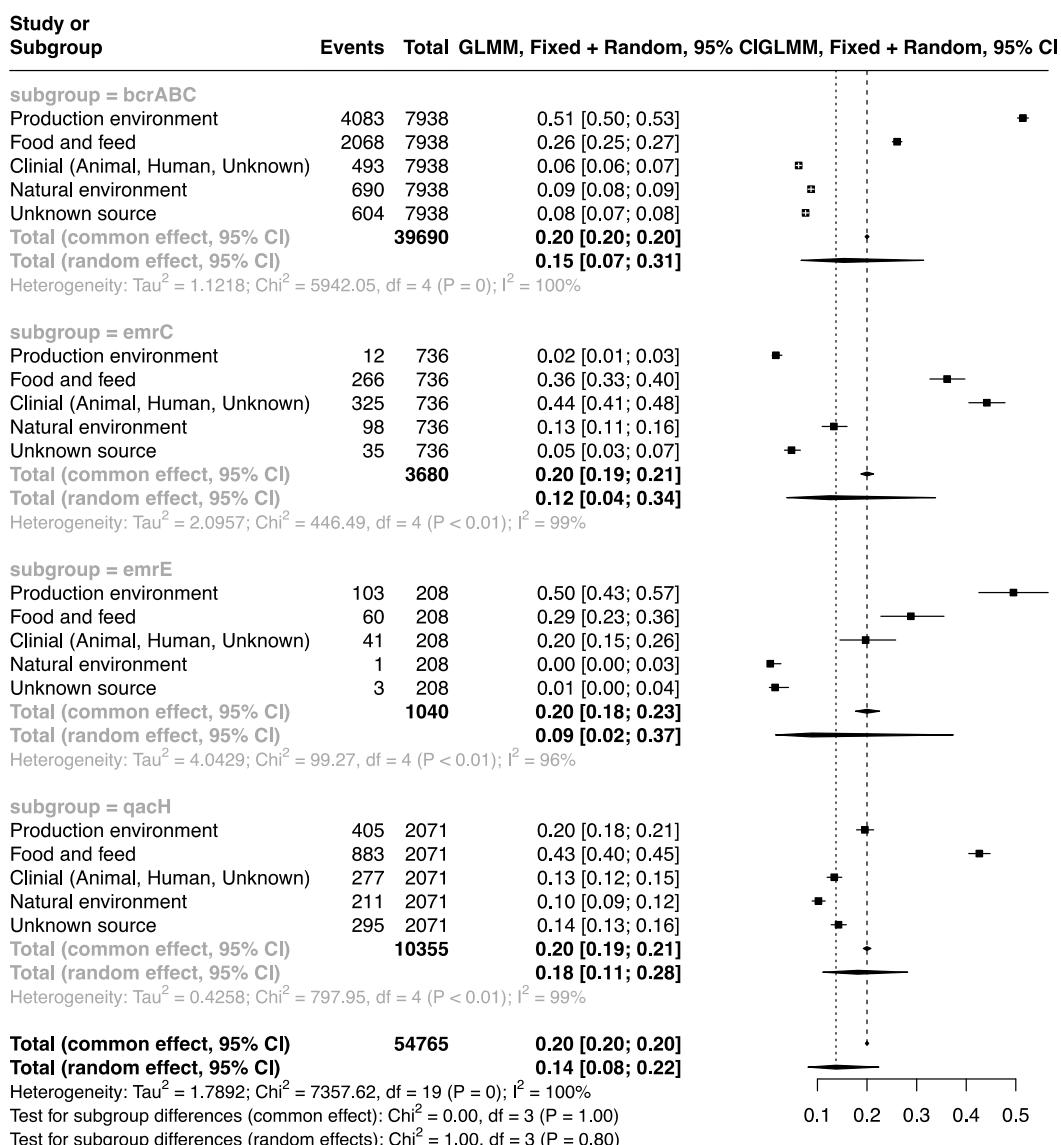


1084

1085 **Figure S8** Forest plot showing the association between QAC tolerance genes and country of isolation in the global *L. monocytogenes* dataset.

1086

1087



1088

1089 **Figure S9** Forest plot showing the association between QAC tolerance genes and CC in the global *L monocytogenes* dataset.

1090

1091

1092

1093 **Figure S10** Forest plot showing the association between QAC tolerance genes and source of isolation

1094 in the global *L. monocytogenes* dataset.