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Abstract: Machine learning (ML) identification of covalently
ligandable sites may significantly accelerate targeted cova-
lent inhibitor discoveries and expand the druggable proteome
space. Here we report the development of the tree-based
models and convolutional neural networks trained on a newly
curated database (LigCys3D) of over 1,000 liganded cys-
teines in nearly 800 proteins represented by over 10,000 X-
ray structures as reported in the protein data bank (PDB).
The unseen tests yielded 94% AUC (area under the receiver
operating characteristic curve), demonstrating the highly pre-
dictive power of the models. Interestingly, application to
the proteins evaluated by the activity-based protein profiling
(ABPP) experiments in cell lines gave a lower AUC of 72%.
Analysis revealed significant discrepancies in the structural
environment of the ligandable cysteines captured by X-ray
crystallography and those determined by ABPP. This surpris-
ing finding warrants further investigations and may have im-
plications for future drug discoveries. We discuss ways to
improve the models and project future directions. Our work
represents a first step towards the ML-led integration of big
genome data, structure models, and chemoproteomic exper-
iments to annotate the human proteome space for the next-
generation drug discoveries.

INTRODUCTION

Over the past two decades, targeted covalent inhibitor
(TCI) discovery has become mainstream in the efforts to
overcome the limitations of traditional reversible inhibitors
and expand the druggable proteome space. 1–3 In the TCI de-
sign, an electrophilic functional group (also known as the war-
head) is incorporated into a reversible ligand to enhance po-
tency, selectivity, and target residence time or to inhibit a pre-
viously deemed undruggable protein, e.g., KRAS-G12C that
lacks of a traditional ligandable pocket for reversible binding. 4

An irreversible and sometimes also reversible covalent bond
is formed between the warhead and a nucleophilic or reac-
tive amino acid residue in the target protein. Due to the high
intrinsic nucleophilicity, cysteine has been the most popular
site of covalent ligation. In the recent decade, a chemical
proteomic technique called the activity-based protein profil-
ing (ABPP) 5,6 has emerged as a linchpin technology in the
rational design of TCIs on a large scale, 7–9 as ABPP can be
performed with lysates or intact cells to assess ligandabili-
ties of amino acid sites. The cysteine-directed ABPP experi-
ments have quantified thousands of cysteines in various cell
lines.10,11

In silico approaches are significantly faster and may com-
plement the ABPP experiments to greatly accelerate the
proteome-wide TCI discovery efforts. In recent years, co-

valent docking10 and molecular dynamics (MD) based ap-
proaches 12–14 have been developed to assess cysteine re-
activities and ligandabilities; however, these computation-
ally intensive approaches cannot be scaled up to the pro-
teome level. Recently, machine learning (ML) classifica-
tion models trained on the cysteine-liganded co-crystal struc-
tures in the protein data bank (PDB) have been reported.
The support vector machine (SVM) models trained on 1057
cysteine-liganded co-crystal structures (515 proteins) in the
PDB achieved the best AUC (area under the curve of re-
ceiver operating characteristic or ROC), recall, and precision
of 0.73, 0.62, and 0.41, respectively,15 in an unseen test. In-
variant of the classification threshold, AUC is a primary met-
ric for evaluating the effectiveness of classification models,
while recall measures the proportion of actual positives iden-
tified correctly, and precision measures the proportion of pos-
itive predictions that are actually correct. Most recently, the
graph neural network (GNN) models DeepCoSI were trained
on the CovalentInDB database which contains 1042 cysteine-
liganded co-crystal structures (259 proteins) and achieved
the best AUC of 0.92 in the training validation; however, the
test metrics are not given. 16

The arrival of the powerful and continuously improving Al-
phaFold2 (AF2) structure prediction engine 17 further under-
scores the potential value of highly predictive structure-based
ML models in TCI discovery campaigns. ML models are com-
plementary to the ABPP experiments. For example, the ML
model may inform specific cysteine sites that are not easily
detectable by chemoproteomics. Coupled to MD simulations,
the ML models may also be used to understand how struc-
tural or conformational changes, e.g., as a result of protein
phosphorylation, impact the cysteine reactivities and ligand-
abilities, as recently found by ABPP experiments. 18

Here we report the rigorous development and validation
of two types of ML models, the tree-based models and the
three-dimensional convolutional neural networks (3D-CNNs),
trained on an exhaustively curated new database LigCys3D,
comprised of >10,000 X-ray crystal structures in the PDB
representing 1,133 unique ligandable cysteines in 780 unique
proteins. To our best knowledge, this database is the largest
to date and significantly surpasses those used for the previ-
ous ML models 15,16 in terms of the number of unique proteins
and cysteines as well as the number of structural represen-
tations. We asked if the current crystal structure information
in the PDB is sufficient for developing highly predictive ML
models. In multiple tests, our best tree models and CNNs
deliver the AUCs of about 94%. Interestingly, testing on the
ABPP quantified cysteines that are not in LigCys3D resulted
in lowered AUC. We discuss the discrepancies between the
liganded cysteines captured by crystallography and those de-
termined by chemoproteomics and the possible ways to im-
prove the models. Our work paves the way for the ML-led in-
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Figure 1. Analysis of the ligandable cysteines and the associated X-ray structures in the PDB. a) Functional classes of the proteins
that have at least one ligandable (positive) cysteine according to the structures deposited in the PDB. Functional information is taken from the

UniProtKB.19 b) Nedd4-1 (cyan) contains a cysteine (C627, orange) at the PPI with ubiquitin (magenta) in the PDB entry 5C7J. While not
liganded in this structure, Cys627 is liganded by a covalent inhibitor in a different, monomeric structure (PDB ID: 5C91). c) Number of unique
positive and negative cysteines, and the number of PDB structures containing these cysteines. A positive cysteine is represented by up to 10
PDB structures, and the cysteine is modified in at least one structure. d) Number of (nonunique) cysteines that are in monomer, dimer, and
multimer structures based on the biological assembly information in the PDB. e) Number of PDB structures that represent positive or negative

cysteines that are near the PPI or not. A PPI cysteine was defined using a distance cutoff of 4.5 Å between the sulfhydrl sulfur and the nearest
heavy atom in another chain. f) Number of PDB structures that are apo (ligand free) or holo (bound to any ligand) for positive and negative
cysteines.

tegration of big data, structural models, and chemoproteomic
experiments to interrogate the proteome space for novel TCI
discoveries.

RESULTS and DISCUSSION

Construction of a structure database of cysteine-
liganded proteins determined by crystallography. In
order to train ML models, we first built a database of pro-
teins containing cysteines that have been covalently modi-
fied by ligands. The recently published CovPDB 20 and Co-
valentInDB 16 databases together contain 659 liganded cys-
teines in 484 unique proteins. We performed an exhaustive
search in the PDB and found additional 474 liganded cys-
teines in 296 unique proteins. Together, we compiled 1133
liganded cysteines in 780 unique proteins. These cysteines
will be referred to as positives. The rest of the 3077 cysteines
in these proteins are unliganded, which will be referred to as
negatives. We note, although the unliganded cysteines are
more reliable negatives than the cysteines in proteins that
have not been cysteine-liganded before, false negatives are
still possible. Using the most recent PDBx/mmCIF files by
SIFTS,21 we matched each cysteine with the (gene) acces-
sion number and residue ID in the UniProt knowledge base
(UniProtKB). 19 76% of the cysteine-liganded proteins are
enzymes, including 101 proteases, 59 kinases and 433 other
enzymes (Fig. 1a). Channels/transporters/receptors (58),
transcription factors and regulators (41) are also present,
along with 66 proteins that do not have functional classifica-
tions based on UniProtKB 19 or SCOP2 22(Fig. 1a).

The CovPDB 20 and CovalentInDB 16 databases contain

only the cysteine-liganded PDB structures, based on which
the previously reported ML models were trained. 15,16 This
is not ideal, as the conformational variability is neglected,
which may limit the model transferability (see later discus-
sion). Thus, we augmented the dataset to a total of 10,105
positive entries (10,105 X-ray structures representing 1,133
positive cysteines) and 97,754 negative entries (97,754 X-
ray structures representing 3,084 unique negative cysteines).
The quaternary structure was built based on the bioassembly
information in the PDB. On average, each positive cysteine
is represented by 9 structures, and in most of these struc-
tures the positive cysteine is not liganded, i.e., the structure
is either ligand free or in complex with a reversible ligand.
We will refer to this dataset as LigCys3D (ligandable cysteine
three-dimensional structure database) hereafter. Since there
are significantly more negatives than positives, we randomly
down-sampled the negative entries to 10,267, i.e., 10,267 X-
ray structures representing 3,084 negative cysteines (on av-
erage, 3 structures per negative cysteine). In total, 20,259
entries were curated as the dataset for model hold-out and
training as well as cross-validation (CV, Fig. 1b).

Structural diversity, variability, and allostery are repre-
sented in the augmented dataset. Considering the qua-
ternary structures associated with the entries, 8,757 are
monomers, 7,196 are dimers, and 4,306 multimers (Fig. 1c).
In addition, 685 structures associated with the (119) positive
cysteines and 392 structures associated with the (110) neg-
ative cysteines are located at the protein-protein (or protein-
nucleic acid) interfaces (PPIs, Fig. 1d), as defined using a dis-
tance cutoff of 4.5 Å between the cysteine sulfur and its near-
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est heavy atom from a different chain in the PDB file. An inter-
esting PPI example is the HECT E3 ubiquitin ligase Nedd4-1,
which regulates metabolism, growth, and development and is
a promising target for treating cancers and other diseases. 23

Nedd4-1 has a noncatalytic cysteine C627, which is located
at the binding interface with ubiquitin (PDB ID: 5C7J) 24 and
has been modified by a covalent inhibitor (PDB ID: 5C91). 23

In addition to the cysteine-liganded structures, through data
augmentation the positive cysteines are also represented by
co-crystal structures in complex with reversible ligands as
well as surprisingly more than 50% ligand-free structures.
For the positive entries, 3,912 are ligand free and 3,695 are
ligand bound, while for the negative entries, 3,601 are lig-
and free and 3,003 are ligand bound (Fig. 1f). These analy-
ses demonstrate that our data augmentation strategy affords
structure diversity and variability, which we surmised to be
essential for training truly predictive and transferable models.
The inclusion of structural variation may also help with the de-
tection of cryptic pockets. 25 We should also note that in the
LigCys3D dataset, each protein has on average 1.5 ligand-
able cysteines, which suggests that allosteric sites are also
represented.

The top three tree models are highly predictive of ligand-
able cysteines. The recent constant pH MD titration sim-
ulations of a large number of kinases uncovered common
structural and physical features for reactive cysteines (high
tendency to deprotonate at physiological pH) and ligand-
able cysteines. 12,14,26,27 Thus, we surmised that the feature-
based ML classification models such as decision trees may
be suited for predicting cysteine ligandabilities. Based on
the findings from these studies 12,14,26,27 we devised a set of
descriptors (37 after removal of multicollinearity, see Meth-
ods) for training the tree-based classifiers using PyCaret. 28

From the down-sampled LigCys3D, 10% of the entries were
randomly picked as hold-out for the ”unseen” test, while the
remaining 90% of the entries were reserved for training/CV.
UniProt assession number and residue IDs were used to en-
sure cysteines are unique between the training/CV and test
sets. The 10-fold CV was used, where different folds have
unique cysteines. This process (data splitting, training/CV,
and test) was repeated six times to generate statistics for
model evaluation (Fig. 2a). Following CV, the model was re-
trained with hyperparameter tuning before being applied to
the test set.

The eXtreme Gradient Boosting (XGBoost), Extra Tree
(ET), and Light Gradient Boosting (LightGBM) are the top
three best performing models according to the AUC, recall,
precision, and F1 score in the unseen tests (Table 1). These
four metrics analyze the model performance in different ways.
The AUC is an aggregate measure of true and false posi-
tive rates across all possible classification thresholds. Re-
call measures the accuracy of the positive predictions given
a threshold (percentage of the predicted positives that are
truly positive), while precision measures the percentage of
positive entries correctly identified. The F1 score is the har-
monic mean of recall and precision. Note, we also calculated
the selectivity and negative predictive value (NPV), which re-
spectively measure the accuracy and precision of predicting
negatives. These metrics are deemphasized in this work be-
cause our training set might contain false negatives as dis-
cussed before and knowing the positives are more relevant
in drug discovery.

The best model XGBoost gave an AUC of 0.94±0.01

(Fig. 2b) and a maximum F1 score of 0.92±0.02, which
was achieved at the threshold value of 0.30 (Fig. 2c). With
this threshold, the recall and precision are 0.92±0.01 and
0.91±0.01, respectively (Table 1). The test metrics of the ET
classifier closely follow those of the XGBoost. Considering
the test AUC, recall, and precision of 0.93–0.94, 0.89–0.96,
and 0.89–0.91, respectively, the top three tree-based models
are highly predictive of ligandable cysteines.

Model performance is unbiased with respect to protein
quaternary structure and proximity to interface. It is im-
portant to verify that the model performance is unbiased with
respect to the protein quaternary structures and proximity to
interfaces (if any). We compared the XGBoost model perfor-
mance metrics for cysteines in the monomer, dimer, and mul-
timer structures (Fig. 2d and Supplemental Table S1). The
AUCs for monomers and dimers are identical (0.94) and it
is only marginally lower for multimers (0.92). While the re-
call or precision for monomers and dimers are also identical
(0.93 or 0.92, respectively), it is only somewhat lower for mul-
timers (0.87 and 0.86, respectively). As to non-PPI vs. PPI
cysteines, the AUC, recall, and precision are nearly identi-
cal (Fig. 2e and Supplemental Table S2). These analyses
demonstrate that the models are equally predictive for large
protein assemblies and PPIs. The latter is desirable, as TCI
discovery targeting PPIs has been very challenging. 29

Cysteine ligandability is determined by a set of structural
and physico-chemical features. A significant advantage
of decision tree as opposed to neural network models is inter-
pretability. The permutation feature importance scores were
calculated to understand the structural and physicochemical
features that determine cysteine ligandability. The feature im-
portance score represents the decrease in the model score
when a feature is randomly shuffled. 30 Accordingly, cysteine’s
sidechain solvent-accessible surface area (sasa side) is by
far the most important feature (Fig. 2f), which is readily un-
derstood, as solvent exposure promotes cysteine reactivity
due to the stabilizing solvation free energy of the anionic thi-
olate state. However, an earlier study found a poor corre-
lation between the solvent accessibility and thiol reactivity. 31

An early bioinformatics analysis showed that cysteine is the
least-exposed amino acid 32 and the recent constant pH MD
simulations showed that many hyperreactive cysteines in ki-
nases 26,27 and other proteins 13 are buried. We will come
back to this discussion. The next four features: the secondary
structure at the cysteine+4 position (dssp 4), the distance
from the cysteine sulfur to the nearest pocket (sg pocket d1),
the distance to the nearest nonpolar atom in another residue
(npol 1), and the number of heavy atoms within 15 Å from
the cysteine sulfur (n hv 15), are also consistent with the in-
tuition or knowledge from other studies. In accord with the
importance score of dssp 4, the N-terminal capping (Ncap)
cysteine on a helix has been suggested as highly reactive two
decades ago,33 which is supported by the fact that the front-
pocket Ncap cysteine is the most popular site of targeted co-
valent inhibition among all kinases. 26 Similar to the BURIED
term in the empirical pK a prediction program PROPKA, 34 the
two features npol 1 and n hv 15 indicate how deeply the cys-
teine is buried, which affects both the cysteine reactivity and
ligand accessibility.

Complementary to the feature importance scores, the
game-theoretic SHAP (SHapley Additive exPlanations) val-

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.08.17.553742doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553742
http://creativecommons.org/licenses/by-nc/4.0/


Protein structure

Generate features

prediction

pred 1 pred 2 pred n

Original Data Weighted Data Weighted Data

Aggregate

a)

b) c)

XGBoost

d) e)

Model output
0.2

sasa_side: 1.25

d_interface: 3.99

sg_pocket_d1: 3.00

hb_N2: 5.64

f) g)

…

n_ca_12: 36

29 other features

0.4 0.6 0.8 1.0 1.2 1.4 1.6

+0.13

+0.2

+0.26

+0.32

+0.53

-0.61

E[f(x)] = 0.15

f(x) = 0.978

Figure 2. Performance of the tree-based models for predicting cysteine ligandabilities. a) Model workflow based on the Extreme
Gradient Boosting (XGBoost) classifier. b) Receiver operating characteristic (ROC) curve for the XGBoost models obtained from 6 rounds of
data splitting followed by training with 10-fold cross validation. The area under the curve (AUC) is 0.94. c) Recall/Precision/F1 score as a
function of the classification threshold. The highest F1 score of 0.92 was achieved at a threshold of 0.30. d) Performance metrics of the ET
models for cysteines in monomer, dimer, and multimer structures. e) Performance metrics of the ET models for cysteines at the interfaces (PPIs)
or not. f) Permutation-based feature importance scores for the top five features: the sidechain SASA; the distance from the cysteine sulfur to the
second nearest nitrogen in His, Asn, Gln, or Trp sidechain (hb N2), the minimum distance to any nonpolar atom in a different residue (npol 1),

and the number of Cα atoms within 12 Å of the cysteine sulfur. g) The “Waterfall” SHAP value plot to explain the ligandability prediction
for C627 in Nedd4-1’s structure (PDB: 2XBB; UniProt: P46934, C627). The five most impactful features (values are given next to the names)
are shown on the top and the rest 29 features are collapsed into one and shown on the bottom. The corresponding SHAP values shown in red
(positive) or blue (negative) bars accumulate to shift the expected model output E[f(x)] from the random guess output (0.15) to the real output
(f(x) = 0.978), where f(x) is the model output before the logistic link function is applied.

Table 1. Performance of the tree-based and CNN models in the cross validations and unseen tests using the (downsampled) LigCys3D dataa

Metrics ET XGBoost LightGBM CNN
CV Test CV Test CV Test CV Test

AUC 0.90±0.00 0.94±0.00 0.90±0.00 0.94±0.01 0.90±0.00 0.93±0.01 0.98±0.01 0.93±0.04
Recall 0.82±0.01 0.89±0.02 0.87±0.01 0.92±0.01 0.78±0.01 0.86±0.02 0.93±0.01 0.96±0.02
Precision 0.77±0.01 0.93±0.01 0.75±0.01 0.91±0.01 0.79±0.01 0.94±0.01 0.92±0.02 0.89±0.03
Selectivity 0.81±0.01 0.81±0.02 0.77±0.01 0.77±0.04 0.84±0.01 0.85±0.02 0.94±0.02 0.69±0.10
NPV 0.85±0.00 0.74±0.03 0.89±0.01 0.79±0.03 0.84±0.00 0.70±0.03 0.94±0.01 0.86±0.06
ACC 0.81±0.00 0.87±0.01 0.82±0.00 0.88±0.00 0.82±0.00 0.86±0.01 0.93±0.02 0.88±0.04
F1 0.79±0.00 0.91±0.01 0.80±0.00 0.92±0.00 0.78±0.01 0.90±0.01 0.92±0.02 0.92±0.02

a Metrics are the average and standard deviation from the 10-fold cross validation (CV) or from the external tests by six trained models. Cysteines
do not overlap between the training and test datasets. The same train and test sets were used for all models. The test AUC, recall, precision, and F1
score of the top tree model and CNN were highlighted in bold font. The metrics from the null model (random guess) are near 0.5 since the number of
positives and negatives is nearly equal in the training and testing sets.
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ues inform the impact of feature values on the prediction out-
comes.35,36 A positive or negative SHAP value increases or
decreases the model output of a prediction from its expec-
tation value estimated by randomly guessing from the fea-
tures.36 As an example, Fig. 2g explains the model predic-
tion for C627 in Nedd4-1 (PDB: 2XBB) based on the SHAP
values of the features. While the sasa side is small (1.25 Å2)
and decreases the model output by 0.61, the other four im-
portant features, the cysteine sulfur distance to the interface
(d interface, 3.99 Å), to the nearest pocket (sg pocket d1,
3.00 Å), and to the second nearest potential hydrogen bond
donor nitrogen (hb N2, 5.64 Å), as well as the number of
Cα atoms within 12 Å of the cysteine sulfur (n ca 12, 36) in-
crease the model output by 0.53, 0.32, 0.26, and 0.20 respec-
tively. Together with the 0.13 positive contribution from the
rest of the features, the model output f(x) is upshifted from
the expected value (E[f(x)]) of 0.15 to the value of 0.978,
which returns a class probability score of 0.73.

The CNN models show similar performance as the XG-
Boost models. Since many of the tree model features are
spatially related, we reasoned that three-dimensional con-
volutional neural networks (3D-CNN) may offer high perfor-
mance. We adapted and modified the 3D-CNN architecture
of Pafnucy which was developed for protein-ligand binding
affinity predictions37 and recently adapted for protein pK a

predictions. 38 In our modified architecture, a cubic grid of
20x20x20 Å with a resolution of 1 Å was created centering
at the cysteine sulfur, and each voxel represents a nearby
atom and encodes 20 features (Fig. 3a). To remove rota-
tional variance, each cubic box was generated 20 times by
randomly rotating the PDB coordinates. The input grid is pro-
cessed by a block of 3D convolutional layers that have 128
filters (Fig. 3a, details see Methods). To allow comparison to
the tree models, data splitting and CV were conducted in the
same manner. Interestingly, the 3D-CNN gave very similar
to the best tree model XGBoost, with the AUC, accuracy and
precision of 0.93±0.04, 0.96±0.02, 0.89±0.03, respectively
(Table 1). It is also noteworthy that the standard deviations in
the test metrics resulting from the six data splits, training/CV,
and testing are overall slightly larger than those of the XG-
Boost models (Fig. 3b). Although the best average F1 score
(0.92) is the same as the XGBoost models, it is achieved with
a lower prediction probability threshold (0.15, Fig. 3c).

We also examined the CNN performance for different pro-
tein quaternary structures and PPI vs. non-PPI cysteines in
comparison to the XGBoost models (Fig. 3d and Table S3).
While the AUC, recall, and precision are maintained between
monomers and dimers with the XGBoost models, there is a
0.02 decrease in the average AUC or recall and 0.03 de-
crease in the average precision going from monomers to
dimers with the CNN models. As to multimers, the average
AUC or recall drop only by 0.01 relative to the dimers (smaller
than the XGBoost models) but the precision drops by 0.08
(larger than the XGBoost models). This analysis suggests
that the classification power of the CNN models deteriorates
slightly more for dimers and multimers as compared to the
XGBoost models.

The trend in the model performance differences among
quaternary structures is consistent with that between the PPI
and non-PPI cysteines (Fig. 3e and Table S4). While the av-
erage AUC and recall are maintained going from the non-PPI
to the PPI cysteines with the XGBoost models, the respective
decrease is 0.03 and 0.02 with the CNNs. As to the preci-

sion, the decrease from the non-PPI to the PPI cysteines is
only 0.01 as compared to 0.03 with the XGBoost models. In-
terestingly, the standard deviations among the different CNN
tests are doubled going from the non-PPI to the PPI cys-
teines, which is consistent with the XGBoost tests, although
the standard deviations of the latter are overall significantly
smaller. One possible reason for the performance deterio-
ration of the CNNs for dimers and multimers is the finite-size
grid which may exclude part of the chains that carries relevant
information for the model prediction. In contrast, the distance-
based features used in the tree models cover all residues in
the bioassembly regardless the distances to the cysteine of
interest.

Model assessment of the ABPP quantified cysteines in
the cells. Given the high performance of the ML models
for predicting liganded cysteines captured by crystallography,
we asked if the liganded cysteines determined by chemo-
proteomic experiments in lysate or intact cells but not yet
proved by crystallography (i.e., not in LigCys3D) can be re-
capitulated. For this purpose, we turned to the data from
the isotopic tandem orthogonal proteolysis (isoTOP) activity
based protein profiling (ABPP) experiments in two cancer cell
lines.10 Here, the cells were treated with electrophilic small-
molecule fragments and exposed to the broad-spectrum cys-
teine reactive probe iodoacetamide (IA)-alkyne; the liganded
cysteines were defined as those that showed greater than
75% reduction in IA-alkyne labelling by at least two elec-
trophilic fragments. 10 The overlap between the ABPP quan-
tified (liganded and unliganded) cysteine dataset and Lig-
Cys3D is surprisingly small (65), including 21 positive and
44 negative cysteines. To prepare the ABPP test set, we re-
moved these overlapping cysteines, cysteines in disulfides,
those inconsistent with other ABPP experiments, 39–43 and
those in the proteins that do not have a PDB structure or
an Alpha2 (AF2) model representations. 17 We further divided
the ABPP data in two sets: the cysteines represented by the
PDB structures (ABPP1) and the cysteines only represented
by the AF2 models (ABPP2). ABPP1 is comprised of 179
liganded cysteines in 153 proteins and 429 unliganded cys-
teines in 265 proteins. In the latter category, 237 proteins
have no liganded cysteines at all, which is different from Lig-
Cys3D where all proteins contain at least one ligandable cys-
teines.

Table 2 lists the prediction metrics of the three tree mod-
els and CNNs for the ABPP1 and ABPP2 datasets along with
the null model metrics. The latter represent random guesses,
i.e., equal probabilities for predicting positives and negatives.
Due to the overwhelming ratio of negatives to positives, the
precision is decreased from 0.5 for balanced classes to 0.29
and 0.10 for the ABPP1 and ABPP2 datasets, respectively.
For predictions of the ABPP1 data, each cysteine was rep-
resented by a single (highest resolution) PDB structure. We
focus on the AUC, recall, and precision. Consistent with the
unseen tests, the performances of ET, XGBoost, and Light-
GBM predictions of ABPP1 are on par, with the average AUC
of 0.70–0.75, recall of 0.79–0.82, and precision of 0.40–0.44.
The latter represents an enrichment of 38%–52% over ran-
dom guesses, and is equivalent to a precision of 0.69–0.76
given balanced classes. Although lower than the test met-
rics (above 0.91 for AUC, recall, and precision), these metrics
are acceptable given how different crystallography and pro-
teomics experiments are. Surprisingly, the CNNs gave the
average AUC, recall, and precision of 0.66, 0.77, and 0.37,
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Figure 3. Performance of the three-dimensional convolutional neural network (CNN). a) Architecture of the 3D-CNN for cysteine lig-
andability predictions. b) ROC curve obtained from 6 train/test experiments. The AUC is indicated for the average curve. c) Recall/precision/F1
score as a function of the classification threshold. The best F1 score 0.92 is achieved at a threshold of 0.15. d) Comparison of the CNN perfor-
mance metrics for cysteines in monomer, dimer, and multimer structures. e) Comparison of the CNN performance metrics for PPI and non-PPI
cysteines.

respectively, which are 0.03–0.06 lower than the tree mod-
els.
Table 2. Model predictions of the ABPP quantified cysteines that
are not in LigCys3D

Metrics ET XGBoost LightGBM CNN Nullc

ABPP1 (179:429, PDB structures)a

AUC 0.72±0.01 0.70±0.01 0.75±0.01 0.66±0.02 0.50
Recall 0.82±0.02 0.83±0.01 0.79±0.01 0.77±0.04 0.50
Prec 0.40±0.00 0.40±0.01 0.44±0.01 0.37±0.00 0.29
Select 0.49±0.01 0.48±0.01 0.57±0.02 0.45±0.03 0.50
NPV 0.87±0.01 0.87±0.01 0.87±0.00 0.83±0.01 0.71
ACC 0.59±0.00 0.58±0.01 0.64±0.01 0.55±0.01 0.50
F1 0.54±0.01 0.54±0.01 0.56±0.00 0.50±0.01 0.37

ABPP2 (482:4422, AF2 models)b

AUC 0.60±0.00 0.60±0.00 0.60±0.00 0.60±0.01 0.50
Recall 0.82±0.03 0.79±0.01 0.72±0.03 0.82±0.04 0.50
Prec 0.11±0.00 0.11±0.00 0.12±0.00 0.11±0.00 0.10
Select 0.29±0.04 0.33±0.01 0.41±0.05 0.30±0.04 0.50
NPV 0.94±0.00 0.93±0.00 0.93±0.00 0.94±0.01 0.90
ACC 0.34±0.03 0.38±0.01 0.44±0.04 0.35±0.03 0.50
F1 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.17

a179 liganded and 429 unliganded cysteines determined by the
isoTOP-ABPP experiments 10 have PDB structures. b509 liganded
and 4497 unliganded cysteines have AF2 models only. The average
and standard deviation are from the predictions using the 6 trained
models. cThe predictions based on a random decision. The AUC,
recall, and precision of the best tree model are in bold font.

For the ABPP2 dataset, since no PDB structures are avail-
able, all predictions were made using the AF2 models (Ta-
ble 2). Although the average AUC and precision of all three
tree models are nearly identical, the ET model gave a recall
that is 0.03 and 0.10 higher than the XGBoost and LightGBM
models, respectively. The ET’s average AUC, recall, and pre-
cision are 0.60, 0.82, and 0.11, respectively. Note, the recall
is the same as in the ABPP1 predictions, however, the preci-
sion is much lower and represents only 10% enrichment over
random guess (equivalent to 0.55 given balanced classes).
As to the CNN models, Since the test performance of the
CNN is very similar to that of the best tree model (XGBoost),
we expected the prediction metrics for the ABPP data to be

similar as well. This is indeed the case for the AF2-based
predictions; however, for predictions with PDB structures, the
average AUC, recall, and precision of the CNNs are 0.03–
0.05 lower than the XGBoost or 0.03–0.06 lower than the ET
model (Table 2).

Differences between the liganded cysteines in LigCys3D
and ABPP1 datasets. To explain the significant decrease
in the AUC, recall, and precision of the models in recapit-
ulating the ABPP quantified cysteines as compared to the
unseen tests, we considered several factors. We first com-
pared the LigCys3D and ABPP1 datasets (Fig. 1 and Sup-
plemental Fig. S1). In terms of protein functional classes, en-
zymes dominate in both datasets. In terms of the percentage
of PPI cysteines, it is similar as well. Next, we considered
the possibility that some of the unliganded cysteines in our
model training set may in fact be ligandable, i.e., negatives
are wrongly labeled. However, the distribution of the num-
ber of liganded cysteines per protein in LigCys3D is similar to
the liganded ABPP1 dataset, i.e., proteins with at least one
liganded cysteine (Supplemental Fig. S3). The average num-
ber of liganded cysteines per protein in LigCys3D is ∼1.6, as
compared to ∼1.2 in the liganded ABPP1 dataset (Supple-
mental Fig. S3). Thus, the likelihood is low to have significant
number of wrongly labeled negatives.

Having ruled out the above, we hypothesized that the the
cysteine environment in the protein structures captured by X-
ray crystallography may be different from that in the struc-
tures representing the ABPP liganded cysteines. To test
this hypothesis, we plotted the distributions of the cysteine
sidechain SASA and the distance to the nearest pocket,
which are important features of the tree models (Fig. 4). For
the LigCys3D cysteines, the positives are separated into the
modified and unmodified groups, which refer to whether the
cysteine is liganded or modified in the structure or not. Note,
the unmodified structures can be either apo or in complex
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with a reversible ligand. Surprisingly, the major peak of the
SASA distribution for the modified positives is at ∼20 Å2,
while that of the unmodified positives is at ∼5 Å2, which is
much closer to the negatives (Fig. 4a, top plot). This sug-
gests that covalent modification on average perturbs the pro-
tein structure so as to increase cysteine’s solvent exposure.
Structural perturbation by reversible ligands is a well-known
phenomenon; 44 however, not much is known about the effect
of covalent ligands. Comparison of the SASA distributions
between the unmodified positives and the negatives demon-
strates that while the cysteines in the positives are overall
more exposed to solvent, a significant fraction of them are
deeply buried. This is consistent with the notion that cysteine
is the least-exposed amino acid 32 and our recent finding that
most reactive cysteines in kinases 14,26,27 and other proteins
are in fact buried. 13

a)

b)

Figure 4. Comparison of cysteine’s structural environ-
ment in the LigCys3D (downsampled) and ABPP1
datasets. a) Distributions of the cysteine sidechain SASA
based on the structures in the downsampled LigCys3D (top) and
ABPP1 (bottom) datasets. b) Distributions of the distance from
the cysteine sulfur to the nearest pocket (alpha sphere) based
on the structures in the LigCys3D (downsampled) and ABPP
datasets. Modified Pos (dashed red) and unmodified Pos (solid
red) refer to the positive structures in which the cysteine is lig-
anded or not.

Now we examine the SASA distributions of the ABPP1
positives and negatives (Fig. 4a, bottom plot). Since the
structures representing the ABPP liganded cysteines are not
cysteine-liganded, we expected the SASA distribution of the
ABPP1 positives to resemble that of the unmodified positives.
This is indeed the case, although the ABPP1 distribution is
quite flat with a broad maximum in the range of 5–15 Å2. Sim-
ilarly, the distribution peak height for the ABPP1 negatives is
also much lower than that for the (downsampled) LigCys3D
negatives. Overall, the difference in the SASA distribution
between the ABPP1 positives and negatives is much smaller

than between the LigCys3D positives and negatives.
The distribution of the cysteine distance to the nearest

pocket displays a peak near 3 Å for both modified and un-
modified positives (near 3 Å, Fig. 4b, top plot); however, the
modified positives have a higher peak intensity, suggesting
that covalent ligand binding may slightly “pull” the cysteine
towards the pocket. Interestingly, the distribution of the neg-
atives also displays a peak near 3 Å, although with a lower
peak height as compared to the positives, and importantly,
the distribution has a fat tail, suggesting that many negative
cysteines are far away from any pocket, as expected. Similar
to the SASA distributions, the difference in the pocket dis-
tance distribution between the ABPP1 positives and nega-
tives is significantly smaller than the LigCys3D counterparts
(Fig. 4b, bottom plot). Furthermore, the pocket distance dis-
tribution of ABPP1 positives shows an appreciable population
from 4 to 6 Å, which is not the case for the the LigCys3D posi-
tives. This suggests that more ABPP1 liganded cysteines are
further away from the nearest pocket than those captured by
X-ray crystallography.

Training on the cysteine-unliganded structures lowers
test performance but improves model transferability. In
light of the above finding that ligand modification of a cysteine
perturbs the structural environment, we hypothesized that
training with the cysteine-unmodified structures alone can
improve model prediction of the ABPP1 liganded cysteines.
To test this, we retrained the ET models using the modified
(model 1), unmodified (model 2), and combined (model 3)
structures, and compared their performances in the unseen
test and ABPP1 predictions. Surprisingly, the test AUC, re-
call, and precision of model 1 are all above 0.95, whereas
the metrics of model 2 are only between 0.75–0.85 and the
model 3 metrics are in-between (Table 3). This may be ex-
plained by the observation that the differences in the struc-
ture features (e.g., the cysteine SASA) between the modified
positives and negatives are much larger than between the un-
modified positives and negatives (Fig. 4a, top). Since model
3 uses the combined training data, its test performance is
between model 1 and 2.

Model 1 can be directly compared with the published mod-
els trained with the cysteine-liganded structures only. The ET
metrics (AUC, recall and precision all above 0.95) well sur-
pass the feature-based SVM model (test AUC, recall and pre-
cision of 0.73, 0.62, and 0.41), 15 which may be attributed to
the larger training set and the physio-chemical features born
out of the detailed studies of cysteine reactivities and ligand-
abilities. The ET model’s test AUC (0.96) is also higher than
the validation AUC (0.92) of the most recent GNN model (test
AUC not known). 16

In contrast to the test performances, model 1 has by far
the lowest recall and model 3 has the highest overall per-
formance in recapitualating the ABPP1 positives (Table 3).
Model 3’s average AUC, recall, and precision are 0.72, 0.82,
and 0.40, respectively. Model 2’s average AUC is the same,
but the recall and precision is 0.01 lower than model 3. Model
1’s AUC is 0.01 lower than model 2 and 3; however, its recall
is 0.04 and 0.05 lower than model 2 and 3, respectively. This
analysis shows that training on the cysteine-modified struc-
tures alone may produce models with ”deceptively” high per-
formances but limited transferabilities. The slight increase of
the recall and precision in the ABPP1 predictions by model
3 vs. model 2 confirms that data augmentation via struc-
ture variation (the number of structures is doubled) enhances
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model performance.
Table 3. Impact of training with cysteine-unliganded structures on
the ET model predictions of the test and ABPP1 cysteinesa

Modelb Model 1 Model 2 Model 3
Structures Modified Unmodified Combined
Pos:Negc 5931:5931 4061:4061 9992:10267

Testd

AUC 0.96±0.00 0.85±0.02 0.94±0.00
Recall 0.95±0.01 0.75±0.03 0.89±0.02
Prec 0.96±0.01 0.78±0.03 0.93±0.01
F1 0.95±0.01 0.77±0.03 0.91±0.01

ABPP1 (179:429)e

AUC 0.71±0.01 0.72±0.01 0.72±0.01
Recall 0.67±0.02 0.81±0.02 0.82±0.02
Prec 0.42±0.00 0.39±0.01 0.40±0.00
F1 0.52±0.01 0.53±0.01 0.54±0.01
aAverage and standard deviation of the metrics from the six model
predictions are given. The metrics of the best model are highlighted
in bold font. bModel 1, Model 2, and Model 3 refer to the ET mod-
els trained with the cysteine-liganded, cysteine-unliganded, and com-
bined structures, respectively. cThe number of positives and nega-
tives in the entire dataset (training, CV, and unseen test). dThe null
model metrics for the test are ∼0.5. eThe ABPP1 dataset is unbal-
anced (179 positives and 429 negatives). The precision and F1 score
of the null model are 0.29 and 0.37, respectively.

Voting-the-best scheme substantially improves recall
without sacrificing precision in recapitulating the ABPP1
cysteines. In the model prediction of the ABPP quantified
cysteines reported in Table 2 and 3, only one structure was
used for each cysteine. An obvious question is how the recall
and precision are affected by the use of multiple target struc-
tures. By increasing the structural representations of the cys-
teines of interest, the model performance may also be more
rigorously assessed. To address this question, we selected
the ABPP1 cysteines with at least two PDB structures, which
resulted in 112 positive and 43 negatives cysteines repre-
sented by 1486 and 265 structures, respectively. By voting
the best, i.e., using the highest predicted class probability
among all structures for a given cysteine, the average recall
is increased to 0.91 from 0.83 while precision is increased
to 0.80 from 0.79, as compared to the single-structure-based
predictions (Table 4). This suggests that the increase in true
positives somewhat outweighs the additional false positives
when incorporating structural variation. As a result, the av-
erage F1 score is improved to 0.85 from 0.81 (Table 4). A
similar trend can be seen for the CNN predictions by voting
the best, where the recall is increased to 0.95 from 0.80, al-
though the precision is slightly lowered by 0.02 as compared
to the single-structure-based predictions (Table 4).

To take a closer look at the single-structure vs. voting-the-
best scheme, we examined the ET predictions of the ABPP
cysteines with the largest number of structure representa-
tions: 18 liganded cysteines with at least 20 PDB structures
each and 14 unliganded cysteines with at least 5 PDB struc-
tures each (Fig. 5). The single scheme gave 14 true positives
(TPs), 4 false negatives (FNs), and 8 false positives (FPs),
resulting in a recall of 78% and a precision of 64%. Using
the voting-the-best scheme, the TPs increase to 18, the FNs
decrease to 0, and the FPs increase to 9, which results in
a recall of 100% and a precision of 61%. In this example,
voting-the-best scheme significantly improves the recall and
only marginally worsens the precision.

We also tested the voting-by-majority scheme, i.e., classifi-
cation by the majority of structures. In the ET predictions, the

Table 4. Impact of using multiple target structures on the ET and
CNN model predictions of the ABPP1 cysteinesa

Metrics Bestb Majorc Singled Nulle

ET
AUC 0.70±0.01 0.70±0.01 0.71±0.01 0.50
Recall 0.91±0.01 0.84±0.02 0.83±0.02 0.50
Prec 0.80±0.00 0.79±0.00 0.79±0.00 0.72
F1 0.85±0.00 0.81±0.01 0.81±0.01 0.59

CNN
AUC 0.68±0.01 0.69±0.01 0.68±0.01 0.50
Recall 0.95±0.01 0.81±0.03 0.80±0.04 0.50
Prec 0.78±0.01 0.80±0.01 0.80±0.01 0.72
F1 0.86±0.01 0.80±0.02 0.80±0.02 0.59
aThe ABPP1 cysteines with at least two PDB structures.
bClassification using the highest predicted class probability for all
structures. cClassification by the majority (≥50%) of structures.
dPredictions based on a single (highest resolution) crystal structure.
eThe null-model metrics represent random guesses from 112 posi-
tives and 43 negatives.

AUC, recall, precision, and F1 remain identical to the single-
structure predictions, while for the CNNs, the AUC and recall
are increased by 0.01 and 0.04, respectively, and precision
remains the same (Table 4). Together, these results demon-
strate that sampling diverse structural representations of a
cysteine improves the recall of ligandable cysteines without
sacrificing the precision and voting-the-best scheme outper-
forms voting-by-majority scheme.

Why is it challenging to recapitulate the ABPP ligand-
ability data without PDB structures? Recapitulating the
ABPP quantified cysteines without PDB structures (ABPP2
dataset) proved challenging. The AUC is decreased from
0.72 in the prediction of ABPP1 cysteines to 0.60 using all
three tree models and CNNs. Overall, the performances are
similarly poor across all models. We hypothesized that the
structure representations by the AF2 models may not be ac-
curate. To test this, we separated out the ABPP2 cysteines
represented by the high quality AF2 models, as defined here
by the average per-residue confidence score pLDDT (pre-
dicted local distance difference test) 17,45 > 90 greater than
90 for the entire chain and for the cysteine of interest. The
prediction AUC for this small subset of cysteines (71 posi-
tives and 960 negatives) remains the same (Supplemental
Table S6), suggesting that the model accuracy is not the cul-
prit.

We next considered protein classes, as enzymes dominate
the LigCys3D and ABPP1 datasets (Fig. 1 and Supplemen-
tal Fig. S1), whereas the majority of proteins in the ABPP2
dataset are not found in the SCOP2 database, 22 Supple-
mental Fig. S2), suggesting that they have unknown func-
tional classes. To test if the models indeed have more predic-
tive power for enzymes, the ET models were used to predict
the cysteines in the ABPP2 enzymes (44 positives and 904
negatives, Supplemental Table S7). The AUC is increased
from 0.60 in predicting all ABPP2 cysteines to 0.66, demon-
strating that the classification power of the models is indeed
strong for enzymes albeit to a small degree. One possibility
is that among the proteins with unknown functional classes
are a large number of transmembrane proteins which are un-
derrepresented in the model training set. It is also possible
that lipid-facing cysteines in transmembrane proteins may be
false positives, as they would be calculated as solvent ex-
posed due to the lack of membrane representation. Other
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a) b)ABPP liganded ABPP unliganded

Figure 5. ET predictions of the ABPP1 cysteines using the single-structure and voting-the-best schemes. a) Predicted class
probabilities of the 18 ABPP1 liganded cysteines (labeled by the UniProt assession numbers) that have at least 20 PDB structures each. b)
Predicted class probabilities of the 14 ABPP1 unliganded cysteines that have at least 5 PDB structures each. Every structure was used to make a
prediction. The classification threshold is indicated by the grey line. The positive and negative predictions are colored red and blue, respectively.
The class probabilities in the single-structure scheme (same as in Table 2) are marked as crosses. One ET model was used for making predictions.

factors that may contribute to the lower AUC in classifying
the ABPP2 cysteines include the lack of information of the
protein quaternary structure and more importantly, the bound
ligand or interaction partner in a complex.

CONCLUDING DISCUSSION

Exploiting a newly curated comprehensive database (Lig-
Cys3D) of liganded cysteines captured by X-ray crystallogra-
phy, we have developed the tree-based and 3D-CNN mod-
els for cysteine ligandability predictions. In multiple unseen
tests, the ET and XGBoost models gave the AUC of 94%,
while the CNN models gave the AUC of 93%. An initially
surprising finding is that the models trained on the cysteine-
liganded structures only (model 1) have extremely high per-
formances (AUC of 96%), as compared to models trained on
the apo and reversible ligand bound structures. This can be
explained by the significant difference in the structural envi-
ronment (e.g., solvent exposure and distance to the nearest
pocket) between the ligandable and unligandable cysteines in
the cysteine-liganded structures, and the difference is much
smaller in the cysteine-unliganded structures. In other words,
covalent labeling perturbs the protein structure, making the
classification task easier. As expected, model 1 recall dras-
tically decreases (to 67%) when applied to the ABPP1 data,
demonstrating the limited transferability. In contrast, models
trained on the cysteine-unliganded or combined structures
give the recall of 81% or 82%, demonstrating that accounting
for structure variability is critical for developing transferable
models.

Another surprising finding is that with only 37 structural and
physico-chemical features, the top three tree-based models
(e.g., AUC of 72% for ET) outperform the CNNs (AUC of
66%) in recapitulating the ABPP cysteines with PDB struc-
tures, although the test performances are on par. This sup-
ports the notion that incorporating physical properties can
improve model transferability. It is encouraging to see that
with voting-the-best scheme significantly increases the re-
call without sacrificing precision in predicting the ABPP1 cys-

teines. The ET models using the voting-the-best scheme
achieved the recall of 91% as compared to 83% using the
single-structure scheme.

Recapitulation of the ABPP2 ligandability data without PDB
structures proved challenging; the AUC is lowered to 60%
from 72% (single-structure) with PDB structures. Unlike the
ABPP1 dataset where enzymes dominate, ABPP2 dataset
contains mostly proteins for which the functional classes have
not been annotated by SCOP2. 22 A significant fraction of
them may be transmembrane proteins for which the lipid en-
vironment is not taken into account by the models leading to
possible false positives (e.g. lipid-facing cysteines). Miss-
ing biological details such as the presences of ligand, cofac-
tors, protein quaternary structure and binding partners may
also contribute to the discrepancies between model predic-
tions and cell-based ABPP data. These are issues that can
be addressed in the future using emerging tools derived from
AlphaFold2, 17 e.g., to generate heterodimeric protein com-
plexes 46 or to add bound ligand and cofactors. 47 However,
the lack of conformational variability and more importantly,
the model representation of the flexible and often functionally
important regions remains a weakness for AlphaFold2 mod-
els. 48

The model assessment of the ABPP quantified cysteines
led us to contemplate the divergence between the ligand-
abilities captured by crystallography and those determined
by ABPP. First, the liganded cysteines in transmembrane
proteins and other non-enzyme protein families are signif-
icantly underrepresented in the PDB but they dominate in
the cell-based ABPP experiments. A significant fraction of
ABPP quantified proteins have yet to be annotated functional
classes. Second, the difference between the local struc-
tures of the liganded and unliganded cysteines in the ABPP
dataset is much more subtle as compared to the LigCys3D
dataset. This observation has several implications. As the
ABPP experiments are conducted in cells, 10 some cysteines
may be ligandable only in the cellular environment, e.g., due
to the interaction with another protein as suggested in a re-
cent experiment 49 or due to a post-translational modifica-
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tion (e.g., phosphorylation) that may increase the cysteine
reactivity as demonstrated recently. 18 Conformational state
and/or cysteine environment may also be influenced by the
binding of endogenous ligand or cofactor in the cells, which in
turn modulates cysteine ligandability. Additionally, mutations
may also perturb the structure and cysteine ligandability, but
mutants and wild types are not differentiated by our models or
in the published ABPP datasets 10 due to the use of UniProt
assession numbers for protein identification. This may be ex-
acerbated given that cancer cell lines were used in the ABPP
experiment 10 against which our models are tested.

Without the knowledge of the membrane environment,
post-translational modification, binding and interaction part-
ner, or mutation, training models on the ABPP data is chal-
lenging, as evidenced by the significant lower test AUC
(77%) of a preliminary ET model trained on the ABPP1 data,
as compared to the ET models trained on the cysteine-
unliganded structures alone (AUC of 85%). In light of the
above considerations, future work will be directed at incorpo-
rating biological context and the optimum use of AlphaFold2
models as well as combining MD simulations to account
for state dependence. Developing ML models as a surro-
gate of crystallography may also further unleash the power
of chemoproteomics, accelerating the discoveries of first-in-
class therapeutics. Our work represents a first step towards
the ML-led integration of big genome data, structure models,
and chemoproteomics experiments to annotate the human
proteome for the next-generation drug discoveries.

Materials and Methods

Construction of the LigCys3D database. Two recently
published databases, CovPDB 20 and CovalentInDB, 16 com-
piled cysteine-liganded co-crystal structures in the RCSB
Protein Data bank (PDB). These two databases have over-
lap and together they provide 2875 cysteine-liganded co-
crystal structures representing 662 liganded cysteines in 489
unique proteins. We conducted an exhaustive search in the
PDB and found additionally 472 liganded cysteines in 294
unique proteins. We note, the “L-peptide linking” 50 cysteines
that were chemically modified at locations other than the sul-
fur (SG) atom or simply oxidized were excluded, as well as
the cysteines involved in disulfide bonds, zinc-finger coordi-
nation, or iron-sulfur clusters. Following the compilation of
the cysteine-liganded structures, we used SIFTS 21 to an-
notate the liganded cysteines with UniProt assession num-
bers and residue IDs (https://www.uniprot.org), 19 which
allowed us to retrieve all PDB entries associated with these
cysteines. We refer to a cysteine as positive if it is liganded in
any crystal structure, and the other cysteines in these struc-
tures are referred to as negatives. Note, the bioassembly
structures (CIF files) were downloaded, and the coordinates
of missing atoms or residues if any were added using pdb-
fixer (https://github.com/openmm/pdbfixer). 51 We refer to this
dataset as LigCys3D.

Data engineering for the ML models. To constructed a ML
training set with balanced positive and negative classes and
to reduce model training time, we down-sampled the number
of structures in LigCys3D as follows. For each unique pos-
itive cysteine (based on the UniProt assession number and
residue ID), all cysteine-liganded structures were kept and
up to four cysteine-unliganded structures were selected (see

below). We refer to these structures as the liganded and unli-
ganded positives, respectively. For each unique negative cys-
teine, up to ten structures were selected (see below). To max-
imize structural variation, the unliganded positive structures
were put into four bins based on the cysteine sidechain sol-
vent accessible surface area (SASA) values, and one struc-
ture was randomly picked from each bin. Similarly, the struc-
tures representing a negative cysteine were put into ten bins
based on the SASA values, and one structure was randomly
picked from each bin. Subsequently, a cysteine ligandabil-
ity data set (down-sampled from LigCys3D) was constructed,
comprising 9,992 positive (1,133 unique positive cysteines in
9,992 structures) and 10,267 negative (3,084 unique nega-
tive cysteines in 10,267 structures) entries. We will use this
data set for model training and testing.

Feature engineering for the tree models. Features are
critical for the performance of tree-based models. We con-
ceived a set of structural and physico-chemical features
based on our findings from the constant pH molecular dy-
namics (MD) analysis of cysteine reactivities and ligandabil-
ities in a large number of kinases 12,14,26,27 and other en-
zymes. 13 In total, eights types of features were calculated
based on the input structure, including solvent accessibility
(proximity to hydrophobic residues and the cysteine SASA
calculated with NACCESS 52); distance to pockets (defined
by fpocket53); potential hydrogen bonding; electrostatic inter-
actions; secondary structures (calculated with Biopython 54);
residue flexibility (calculated with PredyFlexy 55); distance to
protein-protein/nucleic acid interface; and presence or ab-
sence of ligand binding. A detailed list of the features that
were tested is given in Supplemental Methods. After remov-
ing highly correlated features, 37 features were left (see Sup-
plemental Methods).

Training of the tree-based models. PyCaret28 was used
for building tree-based classifiers. We manually separated
10% of the data as the unseen test set and 90% as train-
ing set (see below). The training set was used for the 10-
fold cross validations (CVs). To ensure that the training and
testing sets do not contain structures representing the same
cysteine, we first grouped the structures according to the
UniProt residue IDs and then performed the training-test split
by the UniProt residue IDs. In the cross validation, the group-
Kfold method was used to avoid putting structures associ-
ated the same cysteine in different folds. Multicollinearity
was removed with a threshold of 0.9. This leads to a total
of 37 features (see above). Categorical features were one-
hot encoded. Model training used the binary cross-entropy
as loss function and default hyperparameters. The default
scikit-learn search library was used to search the hyper-
parameters, which were tuned using the tune model function
in PyCaret 5000 times by optimizing the F1 score across all
validation folds. Following tuning, the best hyper-parameters
were used to train the entire training set, and the final model
was saved for predictions on the unseen test set or the ABPP
data set. Feature importance scores were generated using
the evaluate model function. To generate statistics for model
evaluation, the above process was repeated 6 times, and the
average and standard deviation of the model performance
metrics were calculated.
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Training of the convolutional neural networks (CNNs).
The test-train splitting and 10-fold cross validation were per-
formed in the same manner as the tree models. The 3D-CNN
architecture was adapted and modified from the Pafnucy
model,37 which was recently adapted for protein pK a predic-
tions.38 The input of the CNN represents a 3D image of the
protein with 20 color channels. Specifically, a 20-Å 3D grid
centered at the SG atom of the cysteine of interest was cre-
ated. The protein heavy atoms were mapped to the grid with
a 1-Å resolution, and each grid point was encoded with 20
features (the default is zero if no atoms): one-hot encoding
of 5 atom types C, N, O, S, and others; 1 integer (1/2/3) for
atom hybridization; 1 integer for the number of bonded heavy
atoms; 1 integer for the number of bonded hetero atoms;
one-hot encoding (5 in total) of the SMARTS patterns 56 hy-
drophobic, aromatic, acceptor, donor, and ring; 1 float for
grid charge; one-hot encoding of 6 residue types Asp/Glu,
Lys/Arg, His, Cys, Asn/Gln/Trp/Tyr/Ser/Thr, and others. Each
cubic box was generated 20 times by rotating the coordinates
in the PDB structure to remove rotational variance.

Keras57 was used to build the CNN. The CNN model con-
tains two Conv3D layers and each Conv3D layer has 128
filters, kernel size 5, activation function relu, and ’same’
padding, followed by a pool size 2 MaxPool3D layer and a
BatchNormalization layer. Next, a GlobalAveragePooling3D
layer is added to do global pooling and then the data is flat-
terned by a 128 units Dense layer with relu activation, nor-
malized by a BatcheNormalization layer, and filtered by a 0.5
ratio Dropout layer. Finally, a Dense layer of 1 unit and sig-
moid activation function is used to generate a binary classifi-
cation result. Batch size is set to 32 and binary cross-entropy
is used as loss function. 50 epochs of training in Adam opti-
mizer is used, with the learning rate of 0.0001 and early stop-
ping if the validation loss plateaus in 5 epochs. The model
with the lowest loss in the validation set is saved for the tests
on the unseen LigCys3D data and the ABPP data. In these
tests, we used the voting result based on the predictions by
the 10 saved models from CVs. The voting threshold was
determined by the average F1 score on the test set across 6
train/CV:test splitting experiments.

Tests on the ABPP quantified cysteines that are not been
in LigCys3D. The ABPP experiment of Backus et al. 10

identified 758 liganded and 5399 unliganded cysteines. Af-
ter removing the 36 positive and 31 negative cysteines that
are in LigCys3D and the negatives that were found positive
by other experiments,39–43 as well as those that do not have
PDB structures or AlphaFold2 models, 17 190 positive and
439 negative cysteines were left, which were used in the pre-
dictions. X-ray structures with the highest resolution for the
positive and negative cysteines were fetched from the RCSB.
AlphaFold2 models for the same residues available in RCSB
PDB were downloaded from the European Bioinformatics
Institute website https://alphafold.ebi.ac.uk/. 17,58 Other treat-
ments were the same as in the test predictions.

Calculation of the model performance metrics. Given a
confusion matrix comprised of the number of true positives
(TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs), the model performance metrics, recall (or
true positive rate TPR), precision, specificity, negative predic-
tive value (NPV), accuracy (ACC), and F1 score are defined

as follows.

Recall = TP/(TP + FN) (1)

Precision = TP/(TP + FP ) (2)

Selectivity = TN/(TN + FP ) (3)

NPV = TN/(TN + FN) (4)

ACC = (TP + TN)/(TP + TN + FP + FN) (5)

F1 = 2 ∗ Recall ∗ Precision/(Recall + Precision) (6)

AUC is calculated by integrating the area under the ROC (re-
ceiver operating characteristic) curve, which consists of the
recall and false positive rate (1 - selectivity) at all possible
classification threshold values.

Supporting Information Available Supporting Information
contains supplemental methods, tables, and figures. All
training, testing, and validation on the ABPP data as well
as models are downloadable from https://github.com/

JanaShenLab/DeepCys.
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