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Abstract

Motivation

Microbial communities influence both human health and different environments. Viruses
infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial
communities within environments. High-quality phage genome sequences are essential for
advancing our understanding of phage biology, enabling comparative genomics studies, and
developing phage-based diagnostic tools. Most available viral identification tools consider
individual sequences to determine whether they are of viral origin. As a result of the challenges
in viral assembly, fragmentation of genomes can occur, leading to the need for new approaches
in viral identification. Therefore, the identification and characterisation of novel phages remain a

challenge.
Results

We introduce Phables, a new computational method to resolve phage genomes from
fragmented viral metagenome assemblies. Phables identifies phage-like components in the
assembly graph, models each component as a flow network, and uses graph algorithms and
flow decomposition techniques to identify genomic paths. Experimental results of viral
metagenomic samples obtained from different environments show that Phables recovers on
average over 49% more high-quality phage genomes compared to existing viral identification
tools. Furthermore, Phables can resolve variant phage genomes with over 99% average

nucleotide identity, a distinction that existing tools are unable to make.
Availability and Implementation

Phables is available on GitHub at https://github.com/Vini2/phables.

Contact
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Introduction

Bacteriophages (hereafter phages) are viruses that infect bacteria, which influence microbial
ecology and help modulate microbial communities (Edwards and Rohwer 2005; Rodriguez-
Valera et al. 2009). Phages are considered the most abundant biological entity on earth,
totalling an estimated 103 particles (Comeau et al. 2008). Since their discovery by Frederick
Twort in 1915 (Twort 1915), phages have been isolated from many diverse environments (Keen
2015). When sequencing technologies were first developed, phage genomes were the first to be
sequenced due to their relatively small genome size (Sanger et al. 1977). With the advent of
second-generation sequencing technologies, the first metagenomic samples to be sequenced
were phages (Breitbart et al. 2002). The availability of advanced sequencing technologies has
facilitated the investigation of the effect of phages on the functions of microbial communities,
especially in the human body’s niche areas. For example, phages residing in the human gut
have a strong influence on human health (Lusiak-Szelachowska et al. 2017) and impact
gastrointestinal diseases such as inflammatory bowel disease (IBD) (Norman et al. 2015). To
date, our understanding of the diversity of phages is limited, as most have not been cultured
due to the inherent difficulty of recovering phages from their natural environments. Although
countless millions of phage species are thought to exist, only 25,936 complete phage genomes
have been sequenced according to the INfrastructure for a PHAge REference Database
(INPHARED) (Cook et al. 2021) (as of the July 2023 update).

Metagenomics has enabled the application of modern sequencing techniques for the culture-
independent study of microbial communities (Hugenholtz, Goebel, and Pace 1998).
Metagenomic sequencing provides a multitude of sequencing reads from the genetic material in
environmental samples that are composed of a mixture of prokaryotic, eukaryotic, and viral
species. Metagenomic analysis pipelines start by assembling sequencing reads from
metagenomic samples into longer contiguous sequences that are used in downstream
analyses. Most metagenome assemblers (D. Li et al. 2015; Nurk et al. 2017; Namiki et al. 2012;
Peng et al. 2011) use de Bruijn graphs (P. A. Pevzner, Tang, and Waterman 2001) as the
primary data structure where they break sequencing reads into smaller pieces of length k
(known as ‘k-mers’) and represent k-mers as vertices and edges as overlaps of length k-1. After
performing several simplification steps, the final assembly graph represents sequences as
vertices and connection information between these sequences as edges (Nurk et al. 2017; V.

Mallawaarachchi, Wickramarachchi, and Lin 2020). Non-branching paths in the assembly graph


https://paperpile.com/c/pxYma7/6IIHE+50pHI
https://paperpile.com/c/pxYma7/6IIHE+50pHI
https://paperpile.com/c/pxYma7/Nlj1V
https://paperpile.com/c/pxYma7/t57gE
https://paperpile.com/c/pxYma7/YT9D9
https://paperpile.com/c/pxYma7/YT9D9
https://paperpile.com/c/pxYma7/MECUz
https://paperpile.com/c/pxYma7/tpeV7
https://paperpile.com/c/pxYma7/McuIr
https://paperpile.com/c/pxYma7/rOXi6
https://paperpile.com/c/pxYma7/LclJo
https://paperpile.com/c/pxYma7/QQLQR
https://paperpile.com/c/pxYma7/nuWFV+iF6GU+r5uM+VPPJ
https://paperpile.com/c/pxYma7/nuWFV+iF6GU+r5uM+VPPJ
https://paperpile.com/c/pxYma7/TZXu
https://paperpile.com/c/pxYma7/iF6GU+bfVw9
https://paperpile.com/c/pxYma7/iF6GU+bfVw9
https://doi.org/10.1101/2023.04.04.535632
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.04.535632; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

70  (paths where all vertices have an in-degree and out-degree of one, except for the first and last
71  vertices) are referred to as unitigs (Kececioglu and Myers 1995). Unitigs are entirely consistent
72  with the read data and belong to the final genome(s). Assemblers condense unitigs into

73 individual vertices and resolve longer optimised paths through the branches into contiguous

74  sequences known as contigs (Bankevich et al. 2012). As the contextual and contiguity

75 information of reads is lost in de Bruijn graphs, mutations in metagenomes with high strain

76  diversity appear as “bubbles” in the assembly graph where a vertex has multiple outgoing edges
77  (branches) which eventually converge as incoming edges into another vertex (P. A. Pevzner,
78 Tang, and Waterman 2001; Pavel A. Pevzner, Tang, and Tesler 2004). Assemblers consider
79 these bubbles as errors and consider one path of the bubble corresponding to the dominant

80 strain (Bankevich et al. 2012) or terminate contigs prematurely (D. Li et al. 2015). Moreover,

81 most metagenome assemblers are designed and optimised for bacterial genomes and fail to

82  recover viral populations with low coverage and genomic repeats (Roux et al. 2017; Sutton et al.
83  2019). However, previous studies have shown that contigs that are connected to each other are
84  more likely to belong to the same genome (V. Mallawaarachchi, Wickramarachchi, and Lin

85 2020; V. G. Mallawaarachchi, Wickramarachchi, and Lin 2020, 2021). Hence, the assembly

86  graph retains important connectivity and neighbourhood information within fragmented

87  assemblies. This concept has been successfully applied to develop tools such as GraphMB

88  (Lamurias et al. 2022), MetaCoAG (V. Mallawaarachchi and Lin 2022a, [b] 2022), and RepBin
89  (Xue et al. 2022), where the assembly graphs are utilised in conjunction with taxonomy-

90 independent metagenomic binning methods to recover high-quality metagenome-assembled
91 genomes (hereafter MAGS) of bacterial genomes. Moreover, assembly graphs have been used
92 for bacterial strain resolution in metagenomic data (Quince et al. 2021). However, limited

93 studies have been conducted to resolve phage genomes in metagenomic data, particularly viral

94  enriched metagenomes.

95  Computational tools have enabled large-scale studies to recover novel phages entirely from
96 metagenomic sequencing data (Simmonds et al. 2017) and gain insights into interactions with
97  their hosts (Nayfach, Paez-Espino, et al. 2021; M. J. Roach, McNair, et al. 2022; Hesse et al.
98  2022). While exciting progress has been made towards identifying new phages, viral dark
99  matter remains vast. Current methods are either too slow or result in inaccurate or incomplete
100 phage genomes. Generating high-quality phage genomes via de novo metagenome assembly is
101  challenging due to the modular and mosaic nature of phage genomes (Lima-Mendez,
102  Toussaint, and Leplae 2011; Hatfull 2008; Belcaid, Bergeron, and Poisson 2010). Repeat

103 regions can result in fragmented assemblies and chimeric contigs (Casjens and Gilcrease 2009;

4
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Merrill et al. 2016). Hence, current state-of-the-art computational tools rely on the combination
of either more conservative tools based on sequence- and profile-based screening (e.g.
MetaPhinder (Jurtz et al. 2016)) or machine learning approaches based on nucleotide
signatures (e.g. Seeker (Auslander et al. 2020), refer to Table S1 in section 1 of the
Supplementary material). Resulting predictions are then evaluated using tools such as CheckV
(Nayfach, Camargo, et al. 2021) and VIBRANT (Kieft, Zhou, and Anantharaman 2020) to
categorise the predicted phages based on their completeness, contamination levels, and
possible lifestyle (virulent or temperate) (McNair, Bailey, and Edwards 2012). Due to the
supervised nature of the underlying approaches, most of these tools cannot characterise novel
viruses that are significantly different from known viruses. Moreover, the approach used by
these tools can be problematic with fragmented assemblies where contigs do not always
represent complete genomes. In an attempt to address this limitation, tools such as MARVEL
(Amgarten et al. 2018) and PHAMB (Johansen et al. 2022) were developed to identify viral
metagenome-assembled genomes (VMAGS) of phages from metagenomic data. These
programs rely on existing taxonomy-independent metagenomic binning tools such as MetaBAT2
(Kang et al. 2019) or VAMB (Nissen et al. 2021) and attempt to predict viral genome bins from

this output using machine learning techniques.

Metagenomic binning tools are designed to capture nucleotide and sequence coverage-specific
patterns of different taxonomic groups; therefore, sequences from viruses with low and uneven
sequence coverage are often inaccurately binned. Many metagenomic binning tools filter out
short sequences (e.g., shorter than 1,500 bp (Kang et al. 2019)), which further result in the loss
of essential regions in phage genomes that are often present as short fragments in the
assembly (Casjens and Gilcrease 2009). Moreover, most metagenomic binning tools struggle to
distinguish viruses from genetically diverse populations with high strain diversity and
guasispecies dynamics. These tools do not resolve the clustered sequences into contiguous
genomes and the bins produced often contain a mixture of multiple strains resulting in poor-
quality MAGs (Meyer et al. 2022). Existing solutions developed for viral quasispecies assembly
only consider one species at a time (Baaijens, Stougie, and Schdnhuth 2020; Freire et al. 2021,
2022) and cannot be applied to complex metagenomes. Despite the recent progress, it is
challenging for currently available tools to recover complete high-quality phage genomes from
metagenomic data, and a novel approach is required to address this issue. The use of
connectivity information from assembly graphs could overcome these challenges (as shown in
previous studies on bacterial metagenomes (V. Mallawaarachchi and Lin 2022a, [b] 2022;

Lamurias et al. 2022)) to enable the recovery of high-quality phage genomes.
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In this paper, we introduce Phables, a software tool that can resolve complete high-quality
phage genomes from viral metagenome assemblies. First, Phables identifies phage-like
components in the assembly graph using conserved genes. Second, using read mapping
information, graph algorithms and flow decomposition techniques, Phables identifies the most
probable combinations of varying phage genome segments within a component, leading to the
recovery of accurate phage genome assemblies (Figure 1). We evaluated the quality of the
resolved genomes using different assessment techniques and demonstrate that Phables
produces complete and high-quality phage genomes.

Materials and Methods

Pre-processing

Assemble reads and obtain the Identify unitigs with PHROGSs and bacterial
Sample 1 Sample 2 Sample 3 Sample M assemply graph and rea!c! mapping Single-copy marker genes
R information of unitigs N PHROG unitigs
e —— 1: tail protein
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_— — — — — ? ) g ::‘r‘rrglgag; large subunit
g g — — — q GFA ﬁ ) ﬁ

SMG unitigs
3: Ribosomal_L5
4: Ribosomal_S8
6: TIGRO0001

4

Step 2: Represent assembly graphs of phage components and obtain genomic paths Step 1: Identify
phage components

— BAM BAM BAM -~ BAM

Metagenomic reads Assembly graph and BAM files

\ Step 2c: Step 2b: Step 2a: For
Retrieve Determine Represent the each
genomic flow assembly
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J

Qutput phage genomes and related information

0c00.000cQ0(Ho 00 FEFIE

Figure 1: Phables workflow. Pre-processing: Assemble reads, obtain the assembly graph and
read mapping information, and identify unitigs with PHROGs and bacterial single copy marker

genes. Step 1: Identify phage components from the initial assembly. Step 2: For each phage
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component, represent the assembly graph, determine the flow paths and retrieve the genomic

paths. Finally, output phage genomes and related information.

Here we present the overall workflow of Phables (Figure 1). Metagenomic reads from single or
multiple viral metagenomic samples are assembled, and the assembly graph and read mapping
information are obtained. The unitig sequences from the assembly graph are extracted and
screened for Prokaryotic Virus Remote Homologous Groups (PHROGS) (Terzian et al. 2021)
and bacterial single-copy marker genes. Phables identifies sub-graphs (known as phage
components) and resolves separate phage genomes from each phage component. Finally,
Phables outputs the resolved phage genomes and related information. Each step of Phables is

explained in detalil in the following sections.

Pre-processing

The pre-processing step performed by Phables uses an assembly graph and generates the
read mapping information and the gene annotations required for Step 1 in the workflow. We
recommend Hecatomb (M. J. Roach, Beecroft, et al. 2022) to assemble the reads into contigs
and obtain the assembly graph. However, Phables will work with any assembly graph in

Graphical Fragment Assembly (GFA) format.

The unitig sequences are extracted from the assembly graph, and the raw sequencing reads
are mapped to the unitigs using Minimap2 (H. Li 2018) and Samtools (H. Li et al. 2009).
Phables uses CoverM (Woodcroft and Newell 2017) to calculate the read coverage of unitigs,
using the reads from all samples, and records the mean coverage (the average number of reads

that map to each base of the unitig).

Phables identifies unitigs containing Prokaryotic Virus Remote Homologous Groups (PHROGS)
(Terzian et al. 2021). PHROGs are viral protein families commonly used to annotate prokaryotic
viral sequences. MMSeqs2 (Steinegger and Sdding 2017) is used to identify PHROGS in unitigs

using an identity cutoff of 30% and an e-value of less than 101° (by default).

Phables identifies unitigs containing bacterial single-copy marker genes. Most bacterial
genomes have conserved genes known as single-copy marker genes (SMGs) that appear only
once in a genome (Dupont et al. 2012; Albertsen et al. 2013). FragGeneScan (Rho, Tang, and
Ye 2010) and HMMER (Eddy 2011) are used to identify sequences containing SMGs. SMGs
are considered to be present if more than 50% (by default) of the gene length is aligned to the

unitig. The list of SMGs is provided in Table S2 in section 2 of the Supplementary material.
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Step 1: Identify phage components

Phables identifies components from the final assembly graph where all of its unitigs do not have
any bacterial SMGs (identified from the preprocessing step) and at least one unitig contains one
or more genes belonging to a PHROG for at least one of the PHROG categories: head and
packaging, connector, tail and lysis which contain known phage structural proteins and are
highly conserved in tailed phages (Auslander et al. 2020) (refer to Figure S1 in section 3 of the
Supplementary material for an analysis of the PHROG hits to all known phage genomes). The
presence of selected PHROGSs ensures the components are phage-like and represent potential
phage genomes. The absence of bacterial SMGs further ensures that the components are not
prophages. These identified components are referred to as phage components. Components
that are comprised of a single circular unitig (the two ends of the unitig overlap) or a single linear
unitig and that satisfy the above conditions for genes are considered phage components only if
the unitig is longer than the predefined threshold minlength thatis set to 2,000 bp by default,

as this is the approximate lower bound of genome length for tailed phages (Luque et al. 2020).

Step 2: Represent assembly graphs of phage components and

obtain genomic paths

Step 2a: Represent the assembly graph

Following the definitions from STRONG (Quince et al. 2021), we define the assembly graph
G=(V.E)fora phage component where V' ={1,2,3,,[VI}is a collection of vertices
corresponding to unitig sequences that make up a phage component and directed edges

FE €V x V represent connections between unitigs. Each directed edge (u™ — v™) is defined
by a starting vertex « and an ending vertex « (the arrow denotes the direction of the overlap),
where @1, d2 € {+, =} indicates whether the overlap occurs between the original sequence,

indicated by a -+ sign or its reverse complement, indicated by a — sign.

The weight of each edge (uh — v®) irrespective of the orientation of the edge, termed

we(u = ) is set to the minimum of the read coverage values of the two unitigs « and =. We
also define the confidence of each edge (u® — v®) irrespective of whether the overlap occurs
between the original sequence or its reverse complement, termed ce(t = v)js defined as the

number of paired-end reads spanning across (u— ), Here, the forward read maps to unitig «
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and the reverse read maps to unitig ©. We also define the confidence of paths (t—u—v)
termed ¢»(t = 4 — V) a5 the number of paired-end reads spanning across unitigs f and .
Paired-end information has been used in previous studies for assembling viral qguasispecies
(Freire et al. 2022; J. Chen, Zhao, and Sun 2018) to untangle assembly graphs. Moreover,
paired-end reads are widely used in manual curation steps to join contigs from metagenome
assemblies and extend them to longer sequences (L.-X. Chen et al. 2020). The more paired-
end reads map to the pair of unitigs, the more confident we are about the overlap represented
by the edge (refer to Figure S2 in section 4 of the Supplementary material for histograms of

edge confidence).

Step 2b: Determine flow paths

Phables models the graph of the phage component as a flow decomposition problem and obtain
the genomic paths with their coverage values calculated from the read coverages of unitigs and
read mapping information. We define three cases based on the number and arrangement of
unitigs present in the phage component as shown in Figure 2. Each case will be discussed in

detail in the following sub-sections.

e S

\/\ -
(a) Case 1 (b) Case 2 (c) Case 3

Figure 2: Cases of phage components. (a) Case 1 represents a phage component with one
circular unitig or one linear unitig. (b) Case 2 represents a phage component with two circular
unitigs connected to each other. (c) Case 3 represents a phage component that is more

complex with multiple unitigs and multiple paths.
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Case 1: Phage component consists of one circular unitig

When the phage component has only one linear/circular unitig longer than the predefined
threshold minlength, Phables considers this unitig as one genome. The genomic path is

defined as the unitig sequence itself.

Case 2: Phage component consists of two circular unitigs

The phage components in case 2 have two circular unitigs connected together where at least
one is longer than the predefined threshold minlength Thisis an interesting case as the
shorter unitig corresponds to the terminal repeats of phages. Some phages have double-
stranded repeats at their termini which are a few hundred base pairs in length and are exactly
the same in every virion chromosome (i.e. they are not permuted) (Casjens and Gilcrease
2009). The terminal repeats are generated by a duplication of the repeat region in concert with
packaging (Zhang and Studier 2004; Yeon-Bo Chung et al. 1990) (refer to Figure S3 in section
5 of the Supplementary material). This type of end structure could be overlooked when a phage
genome sequence is determined by shotgun methods because sequence assembly can merge
the two ends to give a circular sequence. Phables successfully resolves these terminal repeats

to form complete genomes.

To resolve the phage component in case 2, we consider the shorter unitig (shorter than
minlength) as the terminal repeat. Now we combine the original sequence of the terminal
repeat to the beginning of the longer unitig and the reverse complement of the terminal repeat to
the end of the longer unitig (refer to Figure S3 in section 5 of the Supplementary material). The

coverage of the path will be set to the coverage of the longer unitig.

Case 3: Phage component consists of three or more unitigs

In case 3, we have more complex phage components where there are more than two unitigs
forming branching paths, and we model them as a minimum flow decomposition (MFD)
problem. The MFD problem decomposes a directed acyclic graph (DAG) into a minimum
number of source-to-sink (s — #) paths that explain the flow values of the edges of the graph
(Vatinlen et al. 2008; Dias et al. 2022). The most prominent applications of the MFD problem in
bioinformatics include reconstructing RNA transcripts (Shao and Kingsford 2017; Tomescu et al.
2013; Gatter and Stadler 2019) and viral quasispecies assembly (Baaijens, Stougie, and
Schonhuth 2020). The MFD problemcan be solved using integer linear programming (ILP)
(Schrijver 1998).
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262
263

264
265

266
267

268
269 (d)

270  Figure 3: Example of a phage component (a) being modelled as a flow network and resolved
271 into paths denoted using (b) flow network visualisation with flow values, (c) graph visualisation

272  with directed edges and (d) Bandage (Wick et al. 2015) visualisation (with corresponding unitig

273  numbers). Here three s — t flow paths (1-2-3, 1-2-4 and 1-5) can be obtained corresponding

274  to three phage genomes. The arrows in (b) - (d) denote the resolution into 3 paths.
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In the viral metagenomes, we have identified structures containing several phage variant
genomes, that are similar to viral quasispecies often seen in RNA viruses (Domingo and
Perales 2019). Hence, Phables models each of the remaining phage components as an MFD
problem and uses the MFD-ILP implementation from Dias et al. (Dias et al. 2022). MFD-ILP
finds a I"P(P,w) with a set of s — * flow paths P and associated weights « such that the
number of flow paths is minimized. These flow paths represent possible genomic paths. An

example of a phage component with possible paths is shown in Figure 3.

First, we convert the assembly graph of the phage component into a DAG. We start by
removing dead-ends from (z. We consider a vertex to be a dead-end if it has either no incoming
edges or no outgoing edges, which arise due to errors at the start or end of reads that can
create protruding chains of deviated edges (Bankevich et al. 2012). Dead-ends are patrticularly
problematic in later steps of Phables as they can affect the continuity of genomic paths. Hence,
their removal ensures that all the possible paths in the graph form closed cycles. We eliminate
dead-ends by recursively removing vertices with either no incoming edges or no outgoing
edges. Note that removing one dead-end can cause another vertex that is linked only to the

removed one to become a dead-end, hence the removal process is done recursively.

Since a case 3 phage component forms a cyclic graph as shown in Figure 3 (a), we have to
identify a vertex to represent the source/sink (referred to as s#) in order to convert the graph to a
DAG and model it as a flow network. Starting from every vertex (source), we conduct a breadth-
first-search and identify an iterator, (level, vertices)  \here vertices is the non-empty list of
vertices at the same distance /cvel from the source. The method that generates this iterator is
known as 0./ s-layers and we use the NetworkX implementation

(https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.

traversal.breadth first search.bfs layers.html#networkx.algorithms.traversal.breadth first sear

ch.bfs layers). We extract the vertices in the final layer and check if their successors are equal
to source. If this condition holds for some vertex in (&, we consider this vertex to be the st vertex
of G. If more than one vertex satisfies the condition to be a st vertex, then we pick the vertex
corresponding to the longest unitig as the st vertex. This process is carried out to find a vertex
common to the flow paths (refer to Algorithm S1 in section 6 of the Supplementary material). As
an example, consider vertex 1 in Figure 3 (a). When we do a breadth-first-search starting from
vertex 1, the vertices in the last layer in our iterator will be 3 and 4. The successor of both 3 and
4 is vertex 1. Since the successors of the vertices in the last layer are the same as the starting

vertex, we consider vertex 1 as the st vertex.
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308 The edges of (- that are weighted according to unitig coverage, may not always satisfy the

309 conservation of flow property because of uneven sequencing depths at different regions of the
310 genomes (Peng et al. 2012; Gunasekera et al. 2021). Hence, we use inexact flow networks

311 which allow the edge weights to belong to an interval. Once we have identified a st vertex, we
312 separate that vertex into two separate vertices for the source s and sink t. We create an inexact
313 flow network Gr = (V. £, f, f) from s to + and model the rest of the vertices and edges in G=. For
314  example, in Figure 3 (b) vertex 1 is broken into two vertices s and ¢, and the network flows from s
315 tof,. For every edge (u,v) € E \ve have associated two positive integer values Juw € [ and
316 fu € f, satisfying fuv < fuo where fuv = We(u = 0) fun = [ X COVnas] o0 > 1is the

317 coverage multiplier parameter (1.2 by default) and ¢0Umaz is the maximum coverage of a unitig
318 in the phage component. In Figure 3 (b), each edge has two values (fuvs fuv) that define the

319  flow interval for the inexact flow network G'#. This modelling ensures that the flow through each
320 edge is bounded by a relaxed interval between the edge weight and the maximum coverage
321  within the component. For example, in Figure 3 (b), the edge (2= 3)hasa weight of 4 (which is

322 the minimum of the read coverage values of the two unitigs 2 and 3 obtained from Step 2a).

323 o = 1.2and €OUma: = 9 for the component. Hence, we set.fuv = 4 and fur = 10,

324  Next, we define a set of simple paths R ={R1, Ry, Rs, ..., Ri} where the edges that form each
325 path have paired-end reads spanning across them, i.e. ce(uw — v) = mincov, Enforcing these
326  paths to contain paired-end reads ensures that genuine connections are identified and reflected
327 in at least one decomposed path. For example, in Figure 3 (b), the edge (2= 3) has 4 paired-
328 end reads spanning across the edge. Hence, we add the path R =(2,3)1o R, Moreover, for a
329 patht — u — v passing through the junction « (where the in-degree and out-degree are non-
330  zero), we add the path /% = (t,u,v) 1o R, if cpt = u = v) = mincov gy i

331 |we(t = u) — we(u — v)|js |ess than a predefined threshold ¢OVtolerance (100 by default). This
332 allows Phables to specify longer subpaths across complex junctions.

333 Now we model our inexact flow network &'f as a minimum inexact flow decomposition (MIFD)
334  problem and determine a minimum-sized set of s — # paths P = (P, P, P, ... P) and

335 associated weights W = (w1, w2, ws, ..., wk) with each Wi € Z* where the following conditions
336  hold.

337
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Juw < Z w; < .f;'u
1. i€ {1, kYs.t.(u,v)EP; Y(u,v) € E

2 VR; € R,3F; € P such that R; is a subpath of F;

A path £ will consist of unitigs with orientation information. The weight «; will be the coverage of
the genome represented by the path £.

Step 2c: Retrieve genomic paths

The flow paths obtained from cases 1 and 2 described in the previous section are directly
translated to genomic paths based on the unitig sequences. In case 3, we get s — ¢ paths from
the flow decompaosition step (as shown in Figure 3). The paths longer than the predefined
threshold minlength and have a predefined coverage threshold of mincov (10 by default) or
above are retained. For each remaining path, we remove 7 from the path as s and ¢ are the same
vertex and combine the nucleotide sequences of the unitigs corresponding to the vertices and
the orientation of edges in the flow path (refer to Figure 3 (c) and (d)). Once the genomic paths
of phage components are obtained, we record the constituent unitigs, path length (in bp),

coverage (i.e., the flow value of the path) and the GC content of each genomic path.
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Experimental Design

Simulated phage dataset

We simulated reads from the following four phages with the respective read coverage values

and created a simulated phage dataset (referred to as simPhage) to evaluate Phables.

Enterobacteria phage P22 (AB426868) - 100 x
Enterobacteria phage T7 (NC_001604) - 150x
Staphylococcus phage SAP13 TA-2022 (ON911718) - 200 x
Staphylococcus phage SAP2 TA-2022 (ON911715) - 400 x

N

The Staphylococcus phage genomes have an average nucleotide identity (ANI) of 96.89%.
Paired-end reads were simulated using InSilicoSeq (Gourlé et al. 2019) with the predefined
MiSeq error model. We used metaSPAdes (Nurk et al. 2017) from SPAdes version 3.15.5 to
assemble the reads into contigs and obtain the assembly graph for the simPhage dataset.
Tables S3 and S5 in section 7 of the Supplementary material summarise the details of the

simulations and assemblies.

Real datasets

We tested Phables on the following real viral metagenomic datasets available from the National

Center for Biotechnology Information (NCBI).

1. Water samples from Nansi Lake and Dongping Lake in Shandong Province, China
(NCBI BioProject number PRINA756429), referred to as Lake Water

2. Soil samples from flooded paddy fields from Hunan Province, China (NCBI BioProject
number PRINA866269), referred to as Paddy Soil

3. Wastewater virome (NCBI BioProject number PRINA434744), referred to as
Wastewater

4. Stool samples from patients with IBD and their healthy household controls (NCBI
BioProject number PRJEB7772) (Norman et al. 2015), referred to as IBD

All the real datasets were processed using Hecatomb version 1.0.1 to obtain a single assembly
graph for each dataset (M. J. Roach, Beecroft, et al. 2022). Tables S3 - S5 in section 7 of the

Supplementary material summarise the information about the datasets and their assemblies.
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Tools benchmarked

We benchmarked Phables with PHAMB (Johansen et al. 2022), a viral identification tool that
predicts whether MAGs represent phages and outputs genome sequences. PHAMB takes
binning results from a metagenomic binning tool and predicts bins that contain bacteriophage
sequences. The MAGs for PHAMB were obtained by running VAMB (version 3.0.8), a binning
tool that does not rely on bacterial marker genes, in co-assembly mode on the original contigs
with the author-recommended parameter --minfasta 2000 and the —-cuda flag. The

commands used to run all the tools can be found in section 8 of the Supplementary material.

Evaluation criteria

Evaluation criteria for binning tools

The resolved genomes from Phables and identified MAGs from PHAMB were evaluated using
CheckV version 1.0.1 (Nayfach, Camargo, et al. 2021) (with reference database version 1.5)
which compares bins against a large database of complete viral genomes. We compare the

following metrics from the CheckV results.

CheckV viral quality
Completeness of sequences - number of sequences with >90% completeness

Contamination of sequences - number of sequences with <10% contamination

DN e

The number and length distribution of sequences with the following warnings
a. Contig >1.5x longer than expected genome length

b. High kmer_freq may indicate a large duplication

Since PHAMB predicts all viral bins, we only consider the bins from PHAMB that contain the

contigs corresponding to the unitigs recovered by Phables for a fair comparison.

Evaluation criteria for resolved genomes

The number of components resolved by Phables for each case was recorded. The viral quality
of the resolved genomes and the unitigs and contigs contained in the corresponding genomic
paths were evaluated using CheckV version 1.0.1 (Nayfach, Camargo, et al. 2021). Since the
reference genomes for the simPhage dataset were available, we evaluated the resolved

genomes using metaQUAST (Mikheenko, Saveliev, and Gurevich 2016).
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Results

Benchmarking results on the simulated phage dataset

We first benchmarked Phables using the simPhage dataset. We evaluated the resolved phage
genomes using metaQUAST (Mikheenko, Saveliev, and Gurevich 2016). We analysed the
genome coverage from metaQUAST and the coverage values reported by Phables. Figure 4
denotes the assembly graph (Bandage visualisation) of the simPhage dataset and how Phables

resolved the complex case 3 component containing Staphylococcus phages.

G

(\ {_> ()‘t} Enterobacteria phage P22 i :
(b)

Staphylococcus phage SAP13 TA-2022
Staphylococcus phage SAP2 TA-2022

/_\/

Enterobacteria phage T7

(@)

Figure 4: Visualisation of the (a) assembly graph from the simPhage with phage components

and (b) resolution of two paths (red and blue) from the Staphylococcus phage component.

Phables recovered the two Staphylococcus phage genomes with over 92% genome
completeness (refer to Table 1). The slightly low genome coverage for Staphylococcus phage

SAP2 TA-2022 may have been due to the omission of the dead-end which was not properly
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assembled. Moreover, Phables has recovered the circular genome of Enterobacteria phage P22
and the linear genome of Enterobacteria phage T7 as well. According to Table 1, the coverage
values reported from Phables are similar or close to the actual simulated coverage values of the
genomes. VAMB failed to run on this dataset as there were fewer contigs than the minimum

possible batch size and hence PHAMB could not be run.

Table 1: Evaluation results for the genomes resolved from Phables for the simPhage dataset

Genome Simulated | Phables predicted Genome
coverage coverage coverage (%)
Enterobacteria phage P22 100 100 99.947
Enterobacteria phage T7 150 150 99.599
Staphylococcus phage SAP13 TA-2022 200 206 100
Staphylococcus phage SAP2 TA-2022 400 401 92.406

Benchmarking results on the real datasets

Phables resolves unitigs within phage components to produce multiple complete and high-
guality genomes from the viral metagenomes (Figure 5). The genome quality of Phables results
was compared with the viral-MAG prediction tool PHAMB (Johansen et al. 2022) and evaluated
using CheckV (Nayfach, Camargo, et al. 2021). Figure 5 denotes the comparison of genome
length distributions and genome/bin counts of different CheckV quality categories for Phables
and PHAMB results. Unlike Phables, PHAMB has produced genomes with longer sequences as
shown in Figures 5 (a), (c), (e) and (g), because PHAMB combines all the contigs in a bin to
form one long sequence. As denoted in Figures 5 (b), (d), (f) and (h), Phables has recovered
the greatest number of complete and high-quality genomes combined for all the datasets; 165 in
Lake Water, 389 in Paddy Soil, 55 in Wastewater and 205 in IBD, with 49.54% more genomes
recovered than PHAMB on average.
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Figure 5: Genome length distribution (first column of figures) and abundance of genomes
(second column of figures) belonging to different CheckV quality categories identified by
Phables (denoted in orange) and PHAMB (Johansen et al. 2022) (denoted in blue) for the viral

metagenomic datasets Lake Water, Paddy soil, Wastewater, and I1BD.
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452  Figure 6: Genome length distribution (first column of figures) and abundance of genomes
453  (second column of figures) having the selected CheckV warnings from Phables (denoted in
454  orange) and PHAMB (Johansen et al. 2022) (denoted in blue) results for the viral metagenomic

455 datasets Lake Water, Paddy soil, Wastewater, and IBD.

456  Phables accurately recovers short sequences such as terminal repeats that are challenging for
457  metagenomic binning tools to recover using the assembly graph and produces high-quality
458 genomes. We observed that VAMB incorrectly binned the majority of the short sequences,
459  which reduced the quality of PHAMB results. For example, the repeat sequences in the case 2
460 phage components identified by Phables had a mean length of 600 bp in Lake Water, 649 bp in
461 Paddy Soil, 511 bp in Wastewater and 638 bp in IBD datasets (refer to Table S6 in section 9 of

462 the Supplementary material for exact lengths of the sequences). All of these short sequences,
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except for those from the IBD dataset were found in a different bin than the bin of their

connected longer sequence in the PHAMB results (8 out of 8 in Lake Water, 2 out of 2 in Paddy
Soil and 1 out of 1 in Wastewater). Phables recovered these short repeat sequences along with
their connected longer sequences within a phage component using the connectivity information

of the assembly graph.

Phables resulted in a high number of low-quality genomes as determined by CheckV in the
Wastewater dataset compared to the other datasets (Figure 5 (f)). A possible reason for this is
that these may be novel phages (as they contain conserved phage markers even though
CheckV categorises them as “low-quality” or “not-determined”), and so they are not yet present

in the databases that CheckV relies on.

PHAMB does not carry out any resolution steps when combining the contigs of identified MAGs,
which results in erroneous genome structures, high levels of contamination and duplications
within genomes because of the presence of multiple variant genomes. Such duplications are
identified from the warnings reported by CheckV. Hence, we evaluated the number and length
distribution of sequences having CheckV warnings and the results are shown in Figure 6.
PHAMB has produced the highest number of genomes with CheckV warnings and produced
some very long genomes (~355 - 485 kbp as shown in Figures 6 (a) and (g)), suggesting the
combination of two or more variant genomes together in a bin. Only a few genomes produced
from Phables (5 or less) contain CheckV warnings (refer to Table S8 in section 10 of the
Supplementary material for the exact number of genomes with warnings). These results show
that Phables accurately recovers variant genomes including regions like terminal repeats from
viral metagenomic samples and produces more high-quality/complete genomes compared to

existing state-of-the-art tools.

Components resolved and comparison of resolved genomes

The number of phage components resolved by Phables under each case was recorded for all
the datasets (refer to Table S7 in section 9 of the Supplementary material for the exact counts).
Most of the resolved components belong to either case 1 with a single circular unitig or case 2
with the terminal repeat. When resolving case 2 components, Phables provides information
regarding terminal repeats such as the length of the repeat region, that will be overlooked by
other tools. Except for the IBD dataset, Phables was able to resolve all the case 3 phage

components from the rest of the datasets. In a few cases, the case 3 phage components could

21


https://doi.org/10.1101/2023.04.04.535632
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.04.535632; this version posted September 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

494  not be resolved because Phables was unable to find a st vertex for these very complex bubbles
495  (refer to Figure S8 in section 11 of the Supplementary material for examples of unresolved
496 phage components).

Lake Water Paddy Soil
250 4

231

200 A
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1501

Count
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497

498  Figure 7: Counts of resolved genomes of Phables, unitigs and contigs included in case 2 and 3
499 phage components with different CheckV qualities in the viral metagenomic datasets Lake
500 Water, Paddy soil, Wastewater, and IBD.

501

502 Assemblers attempt to resolve longer paths in the assembly graph by connecting unitigs to form
503 contigs (Bankevich et al. 2012; Kolmogorov et al. 2019). However, they are still unable to
504 resolve complete genomes for complex datasets due to the mosaic nature of phage genomes

505 and produce fragmented assemblies. Phables can be used to resolve these problematic contigs
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(or unitigs) and obtain high-quality genomes. Figure 7 denotes the comparison of CheckV
guality of the genomes resolved in Phables and the unitigs and contigs included in the cases 2
and 3 phage components. The most complete and high-quality sequences can be found as
genomes (61 and 104 for Lake Water, 231 and 158 for Paddy Soil, 21 and 34 for Wastewater,
and 62 and 143 for IBD, respectively). In contrast, most medium- and low-quality genomes can
be found from contigs and unitigs. Hence, genomes resolved using Phables have higher quality

and will be better candidates for downstream analysis than contigs.

We compared the similarity between the genomes recovered within each case 3 phage
components for the IBD dataset using pyani (Pritchard et al. 2015), pyGenomeViz (Shimoyama
2022) and MUMmer (Marcais et al. 2018) (refer to section 12 of the Supplementary material for
the detailed results). The average nucleotide identity (ANI) analysis revealed that the genomes
resolved had over 95% ANI with some genomes having over 99% ANI and over 85% alignment
coverage. Moreover, as shown in Figure S10 in the Supplementary material, the mosaic
genome structure can be clearly seen where some unitigs are shared between genomes and
some genomes have unigue unitigs. Depending on the size and location within a specific
genome, these unitigs potentially correspond to functional modules. Hence, Phables can
resolve highly similar variant genomes with mosaic genome structures that the assemblers are

unable to distinguish.

Phage components from other assembly methods

We extended our testing of Phables with co-assemblies obtained from other metagenome
assemblers including metaSPAdes (Nurk et al. 2017) and MEGAHIT (D. Li et al. 2015) to show
that the components with bubbles observed in the assembly graph are not an artefact of the
assembly approach used in Hecatomb. Co-assembly is conducted by combining reads from
multiple metagenomes and assembling them together, which increases the sequencing depth
and provides sufficient coverage for low-abundance genomes to be recovered (Delgado and
Andersson 2022). However, this becomes a computationally intensive approach as the number
of samples increases, and hence we have limited the results to just the Lake Water dataset. The
results are provided in section 13 of the Supplementary material and show that the phage
component structures are still present in the assemblies and were correctly resolved by

Phables, producing more high-quality genomes than PHAMB.
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Implementation and resource usage

The source code of Phables was implemented using Python 3.10.12 and is available as a
pipeline (including all the preprocessing steps) developed using Snaketool (M. Roach et al.
2022). The commands used to run all the software can be found in section 8 of the
Supplementary material. The running times of Phables core methods and including the
preprocessing steps were recorded for all the datasets and can be found in Tables S10 and S11
in section 14 of the Supplementary material. The core methods of Phables can be run in under

2 minutes with less than 4 gigabytes of memory for all the datasets.

Phables uses a modified version of the MFD-ILP implementation from Dias et al. (Dias et al.
2022) which supports inexact flow decomposition with subpath constraints. Gurobi version
10.0.2 was used as the ILP solver. To reduce the complexity of the ILP solver, the maximum

number of unitigs in a phage component to be solved was limited to 200.

Discussion

The majority of the existing viral identification tools rely on sequence similarity- and profile-
based approaches, only identifying whether assembled sequences are of viral origin, and
cannot produce complete and high-quality phage genomes. Viral binning tools have been able
to overcome these shortcomings up to a certain extent by producing viral MAGSs, but these
MAGs are fragmented and do not represent continuous genomes. Generally, the assembly
process produces many short contigs where some represent regions which while important are
challenging to resolve in phages, such as terminal repeat regions. These short contigs are
discarded or binned incorrectly by viral binning tools, producing incomplete MAGs. Moreover,
the mosaic genome structures of phage populations are a widely-documented phenomenon
(Lima-Mendez, Toussaint, and Leplae 2011; Hatfull 2008; Belcaid, Bergeron, and Poisson
2010), and cannot be resolved by existing assemblers and binning tools. The resulting MAGs

may contain multiple variant genomes assembled together and hence have high contamination.

Here, we introduce Phables, a new tool to resolve complete and high-quality phage genomes
from viral metagenome assemblies using assembly graphs and flow decomposition techniques.
We studied the assembly graphs constructed from different assembly approaches and different
assembly software and consistently observed phage-like components with variation (phage

components). Phables models the assembly graphs of these components as a minimum flow
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decomposition problem using read coverage and paired-end mapping information and recovers
the genomic paths of different variant genomes. Experimental results confirmed that Phables
recovers complete and high-quality phage genomes with mosaic genome structures, including
important regions such as terminal repeats. However, Phables can identify certain plasmids as
phages (e.g. phage-plasmids (Ravin, Svarchevsky, and Deho 1999; Pfeifer et al. 2021; Pfeifer,
Bonnin, and Rocha 2022)) because they can encode proteins homologous to phage sequences
(refer to section 15 in the Supplementary material). Hence, if users run mixed-microbial
communities through Phables, further downstream analysis is required to ensure that the

predicted genomes do not include plasmids.

Decomposing assembly graphs has become a popular method to untangle genomes and
recover variant genomes from assemblies and while we have successfully used it to obtain
mostly circular phage genomes, further work needs to be conducted to handle viral
metagenomes and recover the range of phage genomes. In the future, we intend to add support
for long-read assemblies from dedicated metagenome assemblers that will enable Phables to
enforce longer subpaths that will span across more sequences during the flow decomposition
modelling. We also intend to extend the capabilities of Phables to recover linear phage
genomes and explore the avenues for recovering high-quality eukaryotic viral genomes from

metagenomes.

Data and Code Availability

All the real datasets containing raw sequencing data used for this work are publicly available
from their respective studies. The Lake Water dataset was downloaded from NCBI with
BioProject number PRINA756429, the Paddy Soil dataset from BioProject number
PRJINA756429, the Wastewater dataset from BioProject number PRINA434744, and the whole
genome sequencing runs of the IBD data from BioProject number PRJEB7772. The sequencing
reads for the simPhage dataset, all the assembled data and results from all the tools are

available on Zenodo at https://zenodo.org/record/8137197.

The code of Phables is freely available on GitHub under the MIT license and can be found at

https://github.com/Vini2/Phables. All analyses in this study were performed using Phables

v.1.1.0 with default parameters. Phables is also available as a package on bioconda at

https://anaconda.org/bioconda/phables and on PyPI at https://pypi.org/project/phables/.
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