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Expanding the coverage of spatial proteomics
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Multiplexed protein imaging methods provide valuable infor-
mation about complex tissue structure and cellular heterogene-
ity. However, the number of markers that can be measured in
the same tissue sample is currently limited. In this paper, we
present an efficient method to choose a minimal predictive sub-
set of markers that for the first time allows the prediction of full
images for a much larger set of markers. We demonstrate that
our approach also outperforms previous methods for predicting
cell-level marker composition. Most importantly, we demon-
strate that our approach can be used to select a marker set that
enables prediction of a much larger set that could not be mea-
sured concurrently.
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Main

Multiplexed imaging methods enable researchers to analyze
individual cell properties and their spatial relationships in
complex tissues. These methods, like co-detection by index-
ing (CODEX), allow imaging of many dozens of markers in
the same tissue sample (1). However, unlike spatial transcrip-
tomics, in which many thousands of different gene transcripts
can be measured, spatial proteomics allows only a small frac-
tion of all proteins to be imaged in the same sample.

One approach for addressing this problem is ‘in silico label-
ing’, in which deep learning models are used to predict un-
measured signals from easily acquired reference signals. Ex-
amples include predicting subcellular components from unla-
beled microscope images (2-5), virtual histological staining
of tissue images (6-8), and predicting immunofluorescence
or directly inferring cell types from immunohistochemically
stained images (9, 10). This concept can be extended to pre-
dict a large number of biomarkers from images of a smaller
number (11, 12). For example, Wu et al. (13) described a
method to select 7 markers out of 40 that enabled accurate
prediction of cell types in a number of tissues, and showed
the effectiveness of the approach by imaging only those 7.
In this work, we first sought to develop a flexible approach for
finding a small subset of markers and using them to predict
the full-image expression pattern of the remaining markers.
In contrast to the method of Wu et al. (13), we consider the
problem of marker selection from an optimization standpoint;
our single-panel setting focuses on selecting biomarkers by
explicitly modeling the spatial relationship between marker
intensities with a graphical model and using a neural network
to directly infer the multiplexed fluorescence image instead
of predicting expression at the single-cell level. Our basic
approach is illustrated in Figure 1a.

To evaluate our approach, we used spleen and lymph node

CODEX image datasets from the HuBMAP project (14).
As described in Methods, each image was first normalized
and randomly cropped into small patches. Given a sub-
set of markers, predictors were trained by minimizing the
mean square error (MSE) between the predicted and observed
marker intensities (see Methods). Visual examination of ex-
amples of real and predicted image patches (Figure 2a) for the
markers that are predicted the best reveals their patterns are
essentially indistinguishable, and that those with the worst
predictions are still quite similar. We numerically compared
predictions using our selected sets with those of the sets de-
scribed by Wu et al. (13) and found that our method yields
smaller differences between predicted and real images for
both tissues (Figure 2b). (For context, since channel inten-
sities were normalized to z-scores, the expected MSE for
random predictions within a range of 2 standard deviations
is approximately 1.15; since it is calculated over thousands
of pixels the chance of obtaining MSE values below 0.3 at
random is infinitesimal.) We observed that the errors for the
lymph node images were larger than for spleen when using
only 7 input channels (the number chosen by Wu et al. (13)).
(Principal component analysis (PCA) (S Figure 2) showed
that the lymph node profile has a longer tail in its chan-
nel eigen-spectrum indicating greater interchannel variabil-
ity). We therefore selected 5 additional predictive markers
for that tissue; the improvement at each step in the training
processes is shown in Figure 2c¢ and leads to a better over-
all MSE. We also characterized the predictions for individual
cells (via difference in average channel intensities or in corre-
lations between intensities of pairs of channels) (Figure 2d).
Overall, our method achieves better performance in recon-
structing single-cell profiles derived from predicted images.

As discussed earlier, the number of protein markers that can
currently be imaged on the same sample is in the dozens,
while mammalian cells express tens of thousands of proteins.
Thus, creating a predictive set cannot be done by first col-
lecting an image of all (or even hundreds of) markers. We
therefore explored a more complicated setting for choosing a
predictive set using images of different samples of the same
tissue labeled with different panels of markers (see Figure
1b). The first step in this multipanel setting is to choose how
to divide a desired large set of markers into smaller panels.
We did this using information extracted from independently
acquired immunohistochemical images (from Human Pro-
tein Atlas (HPA) (15)) (Figure 1c). Markers were partitioned
into 5 panels by similarities in their expression patterns (with
some overlap; details of panel design are reported in Sup-
plementary Files). Figure 2i shows that the average dissim-
ilarity between markers within individual panels partitioned
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Fig. 1. Overview of our methods for identifying predictive markers. a Single-panel setting. A clique is constructed with a node for each marker. Then, nodes are iteratively
added to a predictive subset (shown in yellow) based on their expected improvement (see Methods), a predictor is trained from that subset (illustrated on the right), and edges
attached to them are updated by the predictor’s performance (also shown in yellow). b Multipanel setting. The set of markers is partitioned into panels (two in this case)
with some overlap ({ M1, Ms}). Predictors are then constructed from each panel separately. In Round 0, the graph is completed by assigning upperbound edge loadings
to edges connecting markers in different panels using the triangle inequality. Markers are iteratively chosen using the graph to be added to the predictive set and predictors
are retrained for one or both panels as appropriate. ¢ Panel creation. Markers are partitioned into smaller panels based on the centroids of their associated feature vectors

extracted with a trained immunohistochemical image classifier.

using immunohistochemical similarities is lower than the av-
erage achieved by random partitioning (and quite a bit lower
for small intestine). Given just the channels in each panel,
we selected a subset of markers by estimating how well that
set would be able to predict all markers. We tested this ap-
proach using small and large intestine CODEX datasets with
46 markers and assumed that we could only image 19 mark-
ers per sample. For each dataset, we first made a holdout test
set, then the remaining images were partitioned into train-
ing and validation sets (see Methods). To benchmark per-
formance, we ran the single-panel method on all 46 mark-
ers as an empirical upper bound for the multipanel method.
The difference in test MSE between the two settings is small
(Figure 2g). We note that prediction tasks on both intestine
datasets are harder than the spleen and lymph node datasets
since more markers are required to explain the same fraction
of variance (Figure S2).

In Supplementary Files, we listed the markers selected by ei-
ther the single- or multi-panel approach. For both datasets,
a large proportion of all markers are selected in both cases
(12 and 13 out of 19). As shown in Figure 2h, though the
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starting points of the optimization objective are higher for the
multipanel setting, it drops faster and goes even lower com-
pared to the single-panel setting in the final iterations. The
performances of two settings are very close, and the multi-
panel was even better for small intestine under some metrics.
When example real and predicted patches are examined visu-
ally (Figure 2f), both single and multipanel predictors do well
even for the worst predicted markers (with the exception of
the multipanel predictions for small intestine; the intensities
are much lower, but the spatial distributions are still correctly
predicted). The very similar performance between single and
multipanel is also seen at the single-cell level (Figure 2j).

Lastly, we trained new predictors on datasets from a differ-
ent batch of experiments using our selected markers to see
the generalization performance of our marker choices. We
used the 19 markers to train the new predictors on the lat-
est published CODEX image sets of large and small intes-
tine. Note that the new images have 54 markers, more than
the number used in the marker selection. Two new pre-
dictors were trained using the new datasets, and their gen-
eralization performances quantified by the test MSE were
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Fig. 2. Comparison of marker predictions. Example patches from synthetic and real test images for the best and worst 3 predicted protein markers for spleen and lymph node
(a), or large and small intestine (f). b, g, the changes of the average node cost (the overall unpredictability to be minimized) throughout the marker selection procedure. ¢, h
reconstruction error (MSE) for various prediction approaches. PCA refers to simply selecting a predictive set using the markers with the most variance in intensity. For lymph
node, the number inside the parentheses indicates the number of markers selected. d, j, single-cell level assessment (lower values are better). e, k, the Pearson Correlation
Coefficient (PCC) between synthetic and real images for each marker. i, Distribution of average dissimilarity between expression patterns of pairs of markers within each
randomly partitioned panel (lower is better). We also mark the resulting average dissimilarity within panels partitioned using immunohistochemical images (cyan dashline).
For panel f, the worst 3 markers were chosen from the intersection of predicted markers for the single and multi-panel settings.

0.591 and 0.536 (single-panel and multipanel) for the new
large intestine dataset and 0.563 and 0.583 (single-panel and
multipanel) for the new small intestine dataset respectively
(roughly similar to our previous results even though the new
datasets included 8 previously unseen markers). These re-
sults indicate good generalization of the selected sets to new
images.

Our results strongly suggest the feasibility of constructing
spatial networks for all proteins without imaging them in the
same sample and synthesizing multiplexed protein images
with high quality. The resulting models would be expected
to shed light on protein and cell type spatial interactions in
complex tissues. A future direction for optimizing marker
panels is to integrate other types of proteomics or genomics
information as a prior for panel partitioning.

Availability

All code and intermediate results are available in a
Reproducible Research Archive at https://github.
com/murphygroup/CODEXPanelOptimization; it
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includes a script to download relevant CODEX image data
from https://portal.hubmapconsortium.org/.
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Methods

Data-driven protein marker panel design. First, we in-
troduce the problem and an overview of our proposed heuris-
tic approach. Formally, we denote biomarkers of interest as
a set of random variables (RVs) X = {X;,...,Xx}, and
our goal is to partition X" into Xops and Apreq © X'\ Xobs,
where Xops denotes the set of predictive markers and Xjyreq
denotes the set of markers to be predicted. We write the
partition as ¢ : X — {0, 1}, let ¢; denote §(X;). That is,
Xobs = {X; : §; = 1}. Given a partition, the next step is to
construct a predictor f € F : Xgps — Aprea. In this work, we
use empirical risk minimization (ERM) to optimize f. We
denote Dy, as the distributions over Xyps. With the choice of
cost function used in the learning algorithm, L, we write the
risk of our predictor as R = E(w7y)ND0bs><'medL(f). Then,
the problem of finding a minimal predictive set can be viewed
as the following optimization programming,

Xobs = argmin |A]| s.t. p, 1
AeP(Xx)

where p denotes the chosen stopping criterion and P denotes
the powerset.

In general, finding an exactly minimal set of markers is com-
putationally hard.
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Single panel. Given the hardness of the problem, we used a
heuristic algorithm. Our algorithm starts with constructing a
directed graph G = (V, &) where nodes in V are associated
with the RVs in X. We use nodes v; € V and RV X inter-
changeably in the following text. £ denotes the edge set of G
where £ = {e; ; = (X, X;): Vi, j € [|X]], i # j}, where
each edge has a non-negative loading w; ;. Assume we have
some dissimilarity measure £ over X x X', we then initial-
ize the edge loading by the dissimilarity between the RVs
associated with the nodes, i.e. the dissimilarity between the
expression patterns of those two markers. In practice, we use
LI-norm as the dissimilarity measure in this work. Assume
we have a training set S and a validation set P. Initially, we
set the loadings as follows,

w; ; =Esé(X;, Xj), e €E, (#))

where Eg denotes the empirical expectation over S. After
initializing G, we assign a cost to each node in V by a non-
negative function ¢ : V — R, where ¢(v) denotes the cost
of node v, Vv € V. Also, we distinguish edges by if they are
activated, an activated edge by means it associates at least
one node whose associated RV is in Ay and goes out from
the node in Xy,s. When e; ; is activated, we denote x; j =
1. That is, k;; = 1 if X; € Xops and O otherwise. For a
node whose associated RV in X4, the node cost is assigned
by the minimal edge loading of activated edges it associates
with, and O for a node whose associated RV is in Xs. That
is,VX; e X

minx; wjq, suchthat k; =1 X; € Xpreq

3
X € Xops- ®)

q(vi) =

We start with Aj, containing only one RV, whose associated
node had the minimal node cost. Then, in each iteration, the
predictor f! is trained by ERM and predictions are made for
RVs in &preq. Our goal is to have node costs measuring the
unpredictability of their associated RVs, and edge loadings
measuring the risk occurring when predicting the value of
one connected node from the other observed connected node,
i.e. the dissimilarity between predicted and real patterns. We
update the loadings by the predictor’s generalization perfor-
mance on a held-out validation set P after training a new pre-
dictor, ie. V.X;, X; € X, X; # X},

fEPﬁ(X;,Xj) Xi € Xobs, Xj € Xpred
0 X,L',Xj € Xops 4

Wy otherwise
7]

wij =

where X]t denotes the prediction of X; from predictor f;.
Note that the loading of an edge from a predicted node to an
observed node will not be updated since the unpredictability
is only regarding the direction from observation to prediction.
In general, the initial dissimilarity measure between the ex-
pression patterns of a pair of markers is an approximate upper
bound of the unpredictability (i.e., the value that would result
if the prediction is trivially made by outputting the input pat-
terns). The algorithm aims to gradually reduce the overall
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Algorithm 1 Predictive Marker Identification
Require: S, P, F, X, p

1: t<0
Xobs < 0
setup edge weights by eq. 2
Xobs < Xobs Uargmin y, deg(v;)
degree
5: Xpred «— X\Xobs
6: while not p do
7: t+—t+1
8
9

Rl

> deg refers to node

Jt=argmingc r Rg > train the model by ERM
: VX;, X; € X, X; # X, update edge loadings by 4
10: VX; € X, update node costs by 3
11: X < expectedImprovement (Xops, Xpred, W, K)
12: Kobs < Xops UX
13: Xpred — X\Xobs
14: end while
15: return Xjp

unpredictability among all markers of interest by iteratively
including informative markers into Xy, as illustrated in Al-
gorithm 2.

In practice, we selected the RV that would most decrease the
summation of the node costs ;v ¢(vi). After selecting
a new marker into the predictive set, we retrain the predictor
using the updated set of selected markers. We illustrated the
full algorithm in Algorithm 1.

Algorithm 2 subroutine: expectedlmprovement

Require: X, Xpred; {wm- 1€ € 5}, {/i@j 1€ € 5}
1 IT={i: X; € Xou}
2: for each element k € 7 do

for i € [|X|] do

sow

q’(v‘) - {minxj wji, Stk =lorj=k X;€ Kpred
i

interest, X', can be measured using only two panels. We de-
note the markers in the two panels by X4 and X'p respec-
tively, where X4 U Xp = X'. Here, we assume the sizes of
both panels are less than or equal to the maximum number
of markers that can be imaged simultaneously. Also, we ex-
pect there will be a set of overlapping markers appearing in
both panels, namely Xy; = X4 N Xp # (). For markers in
every single panel, we can first set up individual sub-graphs
using the same approach as for the single panel in the single-
panel setting described above. We then consider complet-
ing the whole graph by inferring the loadings of edges be-
tween RVs in different panels. Recall that the edge load-
ings are initialized by the dissimilarity of two RVs and up-
dated by their unpredictability from one to the other RV as-
sociated with their connecting nodes. If we assume the un-
predictability is a valid norm (e.g. L1-norm), for any two
markers not in the same panel, we can get an upper bound
on the edge loading between X; and X; by the triangle in-
equality, w;; < wiq +wyj, for X4 € Xpy. By doing so, the
distributed version degenerates to the single-panel setting for
which we already had an approximate solution above. Each
round, two predictors are retrained with respect to markers in
X4 and X' respectively using the training sets S4 and Sp,
depending on the panel where the last marker was selected.
In the multipanel setting, the cost of edge e; ; is initialized
by the following three cases: when both X; and X both in
the overlap set X3/, the edge loading is the average dissim-
ilarity (measured by &) between two associated RVs among
two panels, as w; j = & <E5A£(Xi7Xj) +EsB§(Xi,Xj)>;
when two nodes are both in a single panel and not both in the
overlap set, we have w; ; = Ega o 8{(X;,X;); and lastly,
when two nodes locate in separated panels, we apply the tri-
angle inequality as w;; = minx, ex,, Wig + Wgq;-

It is then trivial to extend the method to a multipanel setting.
That is, consider the whole set of markers X being partitioned
into m subsets associated with m panels, i.e. X = J;"; X;;
and for each subset, there exists at least one other subset, their

0 1 =k or X; dm¥grsection is not empty (as in the two-panel case they share

end for .

w(k) ~ Zi:1 q/(vi)
end for
p < argming 7 (k)
return X,

R

Multipanel. The single panel setting assumes the training
and validation sets consist of images with all protein markers
of interest observed. However, this is not always true when
the number of markers of interest is large. For example, sup-
pose we have 200 markers of interest, but current imaging
technology only allows us to have up to 60 markers in a single
image. Then, the single-panel setting will fail as it requires
the samples in the S and P to contain all RVs in X" in order
to initialize G. We, therefore, extended the algorithm to solve
this problem.

For simplicity, we first consider the case that the markers of
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some overlap markers), which indicates the whole graph of
marker RVs has no disconnected compartments. By doing so,
for every two markers not in the same panel, we can find at
least one path in the graph connecting their associated RVs,
and therefore we can complete the whole set of edge load-
ings by chaining the triangle inequality and find the minimal
loading value if there exist multiple paths. In practice, finding
paths is realized by standard depth-first search. If a marker is
predicted by multiple predictors, the predictions will be aver-
aged.

Data preparation and machine learning. To illustrate the
single-panel setting, we used spleen and lymph node CODEX
image datasets from data published by the HuBMAP project
(14). These contained 8 and 9 multichannel images of dif-
ferent tissue regions respectively. We split the datasets into
training, validation, and test sets of 4:2:2 for the spleen
dataset and 4:2:3 for the lymph node dataset. Each image
in those data sets contains 29 measured biomarkers.
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We used HuBMAP datasets for large and small intestine im-
age datasets containing 16 different multichannel images,
where each image contains 46 measured biomarkers, to test
the multipanel settings. For both datasets, 4 images were held
out as a separate test set. The remaining 12 images, were
evenly split into training and validation sets.

The intensities of each channel were normalized for each
CODEX image using the same normalization method as (13)
for spleen and lymph node datasets, as follows

. Zq
;= h 5
€T; = ZScore <arcsm (max(5qo_2(m‘i), 15) >> , (5

where x; denotes the i-th channel of the image, qp.o de-
notes the 20-th percentile, and zscore(z) := % For small
and large intestine datasets, we directly applied zscore nor-
malization, since the signal in these two datasets is rela-
tively weak and sparse. Since the size of each CODEX im-
age was very large, during training time, patches (channel
number x 192 x 192) were randomly cropped from a CODEX
image as the input or target of the predictor. However, during
testing, the patches were cropped as a sliding window (not
randomly) from a single CODEX image, and the original size
image was recovered by stitching those patches.

We used convolutional neural networks as predictors in this
work. In particular, the network architecture was a U-Net
(16) with skip connections (17) which has been widely used
in modern computer vision applications. The predictor was
trained to minimize the empirical mean square error (MSE)
using an Adam optimizer with a learning rate of 10~%. The
validation set was used to monitor the training process and
the predictor with the lowest validation loss was selected.

As the predictive set selection required re-training predictors
each round (Line 8§ in Algorithm 1), the predictor in round ¢ +
1, fe41, inherited the trained weights from round ¢, f¢, for ¢ >
0. Since the predictor architecture of f;4; had an additional
input channel and one fewer output channel compared to f,
the weights of the selected channel in the input layer were
randomly initialized in f;y; and the weights of this channel
in the output layer of f; were not inherited. We randomly
initialized the weights of f; following a normal distribution.

Quality measures. Our first assessment is the overall un-
predictability of X, i.e. the sum of node costs, measured by
the L1-norm. A second is the predictor’s performance on the
test set in terms of reconstruction MSE and Pearson Corre-
lation Coefficient (PCC) between synthetic and real images.
We also examined the quality of single-cell level predictions.
We first segmented individual cells from test images. For
spleen and lymph node datasets, we directly used segmented
masks from HuBMAP. For intestine datasets, we segmented
the cells using DeepCell Mesmer (18). We then create ma-
trices (for both real and synthetic images) whose rows refer
to individual cells, columns refer to the markers, and each
entry refers to the average intensity of a marker for a par-
ticular cell. We also created another single-cell profile re-
ferred as the correlation profile, whose entries are PCC be-
tween a pair of marker patterns within a cell region. That
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is, the columns of this matrix refer to every pair of markers
of interest. We measured the difference between the matrices
resulting from real and synthetic images using the normalized
Frobenius norm.

Feature vectors of immunohistochemical image
patches. For an even smaller size of each subpanel, we have
to partition the markers of interest into several subpanels.
We designed the sub-panels according to the similarity of the
patterns of markers. Since predictors will be trained for each
sub-panel respectively, similarities within a panel gives the
best chance of their being predictable from each other. The
similarity was measured by feature vectors resulting from a
neural network classifier trained on immunohistochemical
image patches. There are 334 and 336 whole-side images of
41 markers available for colon and small intestine in the HPA
(for markers without HPA immunohistochemical images,
we randomly added them into sub-panels). Here, for each
whole slide immunohistochemical image, we decomposed
it into 2 channels referring to the protein marker and tissue
background using the algorithm described in (19), and
randomly cropped it into patches from regions with high
expression. For each tissue, we randomly split all patches
into training and validation sets, and trained a ResNet-50
based image model to learn to classify protein expression
patterns according to their associated protein markers. We
then collected all feature vectors associated with each image
patch (from both training and validation sets) from the
second-to-last layer of the classifier and performed PCA
to reduce their dimensionality to 2. Next, we grouped the
protein markers according to the centroids of their feature
vectors in the PC coordinates, resulting in 5 subpanels for
both tissues.
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