

1 **The global distribution of angiosperm genome size is shaped by climate**

2
3 Petr Bureš¹, Tammy L. Elliott^{1,2}, Pavel Veselý¹, Petr Šmarda¹, Félix Forest³, Ilia J. Leitch³,
4 Eimear Nic Lughadha³, Marybel Soto Gomez³, Samuel Pironon^{3,4}, Matilda J. M. Brown³,
5 Jakub Šmerda¹, František Zedek¹

6
7 ¹Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2,
8 611 37 Brno, Czech Republic

9
10 ²Department of Biological Sciences, University of Cape Town, Cape Town 7700, South
11 Africa

12 ³Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, United Kingdom

13 ⁴UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC),
14 Cambridge, Cambridgeshire, CB3 0DL, United Kingdom

15

16 **correspondence:** bures@sci.muni.cz, tammy.elliott@mail.mcgill.ca, fzedek@gmail.com

17

18 **Word count: 6443**

19 Introduction: 1507

20 Materials and Methods: 1990

21 Results: 1170

22 Discussion: 1776

23

24 **No. of figures: 5**

25 **No. of tables: 2**

26

27 **Supporting Information**

28 Supporting Figures: 13

29 Supporting Tables: 14

30 Supporting Datasets: 2

31

32 **Summary**

33 (1) Angiosperms, which inhabit diverse environments across all continents, exhibit
34 significant variation in genome sizes, making them an excellent model system for examining
35 hypotheses about the global distribution of genome size. These include the previously
36 proposed large-genome-constraint, mutational-hazard, polyploidy-mediated, and climate-
37 mediated hypotheses.

38 (2) We compiled the largest genome size dataset to date, encompassing >5% of known
39 angiosperm species, and analyzed genome size distribution using a comprehensive
40 geographic distribution dataset for all angiosperms.

41 (3) We observed that angiosperms with large range sizes generally had small genomes,
42 supporting the large-genome-constraint hypothesis. Climate was shown to exert a strong
43 influence on genome size distribution along the global latitudinal gradient, while the
44 frequency of polyploidy and the type of growth form had negligible effects. In contrast to the
45 unimodal patterns along the global latitudinal gradient shown by plant size traits and
46 polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S
47 is probably mediated by different (mostly climatic) mechanisms than the decrease in genome
48 sizes observed from 40–50°N northwards.

49 (4) Our analysis suggests that the global distribution of genome sizes in angiosperms is
50 mainly shaped by climatically-mediated purifying selection, genetic drift, relaxed selection,
51 and environmental filtering.

52

53 **Keywords:** C-value, chromosome size, geographic range size, flowering plants, glaciation,
54 latitudinal gradient, large genome constraint hypothesis, nuclear DNA content, polyploid
55 proportion, UV-B radiation, temperature

56

57

58 **Introduction**

59

60 The most essential structure of any organism is its genome, of which the size is a relatively
61 stable species-specific property. Angiosperms exhibit tremendous variation in genome sizes
62 (more than 2,400-fold; Pellicer *et al.*, 2018) and are found across all continents, with the
63 majority of species being narrow endemics while a minority are widespread cosmopolitan
64 species (Enquist *et al.*, 2019). This makes angiosperms a powerful model system for studying
65 the underlying drivers that shape genome size evolution and its distribution across the globe.
66 The recent increase in the use of flow cytometry in botanical studies has led to a substantial
67 accumulation of standardized genome size data across wide phylogenetic and geographic
68 scales (Garcia *et al.*, 2014; Leitch *et al.*, 2019; Šmarda *et al.*, 2019; Zonneveld, 2019). Given
69 that consistent geographic data has recently become available for most known species
70 through the World Checklist of Vascular Plants (WCVP; Govaerts *et al.*, 2021), it is now
71 possible to examine hypotheses seeking to understand the causal links between angiosperm
72 genome size, distribution, and environment at a global scale.

73 Key proximal mechanisms generating changes in genome size are polyploidization
74 followed by re-diploidization (Wendel, 2000; Leitch & Leitch, 2008; Soltis *et al.*, 2015;
75 Guignard *et al.*, 2016; Šmarda *et al.*, 2019) and the accumulation and removal of repetitive
76 DNA (Levin, 2002; Wendel *et al.*, 2016; Lwin *et al.*, 2017), especially transposable elements
77 (TEs), which constitute the main component of most plant genomes (Bennetzen *et al.*, 2005;
78 Tenaillon *et al.*, 2010; Lisch, 2013; Bennetzen & Wang, 2014).

79 The 'large-genome-constraint' hypothesis (LGCH) suggests that species with large
80 genomes might face selection pressure against them due to their negative impact on plant
81 anatomy and physiology (Vinogradov, 2003; Knight *et al.*, 2005). This is because more
82 genomic material occupies a larger volume, influencing the minimum cell size (Cavalier-
83 Smith, 2005; Šímová & Herben, 2012; Bhadra *et al.*, 2023). Consequently, plants with larger
84 genomes tend to have larger seeds (Knight & Ackerly, 2002; Beaulieu *et al.*, 2007; Carta *et*
85 *al.*, 2022; Bhadra *et al.*, 2023), a trait linked to smaller distributional ranges (Sonkoly *et al.*,
86 2022). Additionally, they possess larger stomatal guard cells (Beaulieu *et al.*, 2008; Veselý *et*
87 *al.*, 2012; Bhadra *et al.*, 2023), which close and open more slowly (Drake *et al.*, 2013;
88 Kardiman & Ræbild, 2018; Lawson & Matthews, 2020). This might be disadvantageous in,
89 for example, arid environments that demand efficient water management (Veselý *et al.*, 2020;
90 Bureš *et al.*, 2023; Šmarda *et al.*, 2023). Larger cells also limit the mesophyll surface area
91 packed into the leaf volume leading to lower CO₂ diffusion and rates of photosynthesis

92 (Théroux-Rancourt *et al.*, 2021). Species with large genomes also experience slower rates of
93 cell division (Francis *et al.*, 2008; Šimová & Herben, 2012) and have higher phosphorus (P)
94 and/or nitrogen (N) requirements (Šmarda *et al.*, 2013; Peng *et al.*, 2022). Large genomes
95 may thus limit species' dispersal abilities and have narrower ecological niches, potentially
96 resulting in smaller geographic ranges (Sheth *et al.*, 2020). In contrast, smaller genomes offer
97 more flexibility in cell size (Beaulieu *et al.*, 2007; Beaulieu *et al.*, 2008; Veselý *et al.*, 2012;
98 Meyerson *et al.*, 2020; Bhadra *et al.*, 2023), have faster rates of cell division (Francis *et al.*,
99 2008; Šimová & Herben, 2012), and lower P and N demands (Šmarda *et al.*, 2013; Peng *et
100 al.*, 2022) allowing greater plasticity in range size.

101 Although TE insertions can occasionally have adaptive effects (Casacuberta &
102 González, 2013; Schrader & Schmitz, 2019), they are mostly neutral or deleterious (Deniz *et
103 al.*, 2019). Thus, TE insertions mostly become fixed via genetic drift rather than by natural
104 selection or intragenomic selection favoring TE accumulation (Werren, 2011; Deniz *et al.*,
105 2019). As the relative importance of natural selection versus random genetic drift depends on
106 population size, the mutational-hazard hypothesis (MHH) posits that genome growth via TEs
107 occurs more readily in smaller populations, where genetic drift is more prominent than
108 natural selection (i.e., species with smaller effective population sizes will have larger
109 genomes; Lynch & Conery, 2003; Lynch, 2007). The relative importance of natural selection
110 and genetic drift also appears to hold for species range size in both plants and animals
111 (Corbett-Detig *et al.*, 2015), likely because of the positive abundance-occupation relationship
112 (Gaston *et al.*, 2002) where species with larger populations tend to have large distributional
113 ranges (e.g., Brown, 1984; Johnson, 1998; Gaston, 2003; Webb *et al.*, 2012; Drovetski *et al.*,
114 2014; Spence *et al.*, 2021; Guo *et al.*, 2022; Ten Caten *et al.*, 2022).

115 Considering the potential effects of genetic drift and natural selection on genome size
116 and their interplay with range size, the LGCH predicts that species with large ranges should
117 not have large genomes, resulting in a triangular relationship (Fig. 1a). On the other hand, the
118 MHH predicts that species genome sizes should decrease with increasing geographic ranges,
119 producing a negative relationship (Fig. 1b). Although effective population size is affected by
120 complex factors and range size is a relatively crude proxy, the high statistical power provided
121 by the large amount of currently available data on species genome size and distribution
122 should help overcome this imprecision.

123 Polyploidization is another major contributor to plant genome size evolution (Wendel,
124 2000; Leitch & Leitch, 2008; Soltis *et al.*, 2015; Guignard *et al.*, 2016; Šmarda *et al.*, 2019),
125 which, in newly formed polyploids (neopolyploids), leads to multiplication of the genome

126 size and chromosome number (Mandáková & Lysák, 2018). However, over time, polyploids
127 undergo post-polyploid diploidization that includes chromosome fusions and genome
128 downsizing (Mandáková & Lysák, 2018), thereby blurring the clear correlation between
129 genome size and chromosome number (Choi *et al.*, 2020; Roddy *et al.*, 2020). Because not all
130 of the duplicated portion of the genome is eliminated during the post-polyploid diploidization
131 (Bowers *et al.*, 2003; Paterson *et al.*, 2004; Wang *et al.*, 2015), repeated polyploidization-
132 diploidization cycles may lead to a gradual increase in genome size over time, especially in
133 regions where polyploids originate more frequently. The proportion of neopolyploids at
134 different latitudes across the globe shows a U-shaped pattern, being low in the tropics and
135 increasing polewards (Rice *et al.*, 2019). The latitudinal U-shape in the proportion of
136 neopolyploids is likely a consequence of the similarly U-shaped distribution of the
137 mechanisms underlying polyploid origin, for example, through the increased rate of
138 formation of unreduced gametes at low temperatures (Ramsey & Schemske, 1998; Mason &
139 Pires, 2015). As the relative positions of continents have remained similar over millions of
140 years, latitudinal gradients in the rate of the repeated polyploidization-diploidization cycles
141 (Wendel, 2015; Wendel *et al.*, 2016; Clark & Donoghue, 2017) should persist over geological
142 time scales and a U-shaped latitudinal distribution of genome size would gradually emerge in
143 this scenario (Fig. 1c; polyploid-mediated hypothesis: PMH).

144 Latitudinal gradients encompass climatic and other environmental variables that could
145 also be important factors contributing to genome size variation. These factors include
146 temperature, precipitation, aridity, seasonality, ultraviolet-B radiation (UV-B), and length of
147 the growing season (e.g., Bennett, 1976; Bennett *et al.*, 1982; Grime & Mowforth, 1982;
148 Rayburn & Auger, 1990; MacGillivray & Grime, 1995; Bottini *et al.*, 2000; Knight &
149 Ackerly, 2002; Grotkopp *et al.*, 2004; Dušková *et al.*, 2010; Díez *et al.*, 2013; Kang *et al.*,
150 2014; Du *et al.*, 2017; Bilinski *et al.*, 2018; Souza *et al.*, 2019; Becher *et al.*, 2021; Cacho *et*
151 *al.*, 2021; Greimler *et al.*, 2022; Sklenář *et al.*, 2022). Studies of climatically-mediated
152 (latitudinal or altitudinal) genome size distributions have found positive, negative, mixed, or
153 quadratic responses of genome size to climatic gradients (reviewed in Cacho *et al.*, 2021),
154 which may be explained by their narrow geographic and taxonomic scopes (Knight &
155 Ackerly, 2002; Greilhuber & Leitch, 2013). Nevertheless, one pattern that often emerges
156 from these studies is the exclusion of the largest genomes from both ends of the climatic
157 spectrum. This may arise from the complex ways in which the biophysical constraints
158 imposed by genome size (e.g., setting the minimum cell size and duration of mitosis and
159 meiosis) may impact many aspects of a plant's biology, such as the timing of growth and

160 physiological factors such as water and nutrient use efficiency, and hence influence where
161 plants grow. For example, in the case of temperature, large genomes might be predicted to be
162 excluded from areas with both the lowest and highest mean temperature (underpinned, in
163 part, by the impact of genome size on the rate of cell division) (Fig. 1d; *climate-mediated*
164 *hypothesis*: CMH).

165 Here, we test the following hypotheses (Fig. 1): 1) the *large-genome constraint*
166 *hypothesis* (LGCH), which predicts species which occupy large geographical ranges cannot
167 have large genomes; 2) the *mutational-hazard hypothesis* (MHH), which predicts that
168 genome size decreases with increasing geographic range size; 3) the *polyploid-mediated*
169 *hypothesis* (PMH), which predicts an increase in genome size from the equator to the poles;
170 and 4) the *climate-mediated hypothesis* (CMH), which predicts the exclusion of large
171 genomes from both ends of the climatic spectrum. We achieve this by combining the largest
172 dataset compiled to date for angiosperm genome size (16,017 species) with newly-available
173 data on the global distribution of angiosperms from the WCVP, and mapping the global
174 distribution of angiosperm genome size.

175

176 **Material and Methods**

177

178 *Taxonomic framework and geographic distribution*

179

180 The angiosperm species nomenclature considered in this study follows the World Checklist
181 of Vascular Plants (WCVP; Govaerts *et al.*, 2021). We provide details of the accepted names,
182 pertinent synonyms, and authorities for sampled taxa, as well as their WCVP
183 ‘plant_name_id’ and distribution ranges based on Level 3 Continental and Regional Codes
184 (i.e., botanical countries) established by the International Working Group on Taxonomic
185 Databases for Plant Sciences (TDWG hereafter; Brummitt *et al.*, 2001) in Supporting
186 Information Dataset S1. This dataset also includes new validly-published species yet to be
187 included in the WCVP database (marked as “NA” in the column “POWO ID” in Dataset S1),
188 their distribution ranges converted to TDWG, and corresponding sources. In exceptional
189 cases when the WCVP taxonomic framework differed from the Catalogue of Life (Roskov *et*
190 *al.*, 2019), World Plants (Hassler, 2022), or other sources, and this difference was supported
191 by different genome sizes, we adopted the framework congruent with the genome size data
192 (Dataset S1). We discarded taxa that were imprecisely identified (e.g., those only determined

193 at the generic level), cultivated species with unknown native distributions, and hybrids (with
194 the exception of a few cases where hybrid taxa have been accepted as species in some floras).

195

196 *Distributional range size estimation*

197

198 Distribution range sizes were calculated as the extent of occurrence (EOO) for each species
199 based on the Global Biodiversity Information Facility (GBIF) distribution data. To obtain
200 EOO estimates in square kilometers, we first cleaned the data for species occurrences from
201 GBIF following Elliott *et al.* (2022). Then, we calculated EOO (Dataset S1) using the ‘eoo’
202 function in the R package RANGEMAP v.0.1.18 (Cobos *et al.*, 2022), with the ‘polygons’
203 option set to ‘simple_wmap("simplest")’ to omit oceans from the calculations. In addition, as
204 an alternative measure of range size, we calculated the number of occupied TDWGs flagged
205 as native for each species (Dataset S1).

206

207 *Genome size compilation*

208

209 We extracted genome size estimates from several sources, including (1) research papers
210 published between 2012 and 2022 (or older studies that were absent from Release 8.0 of the
211 Angiosperm DNA C-values Database) retrieved using ‘Web of Science’, ‘ResearchGate’ and
212 ‘Google Scholar’ (9,515 taxa, 59.4 %); (2) the Angiosperm DNA C-values Database (5,973
213 taxa, 37.3 %; Release 8.0: December 2012, Bennett & Leitch, 2012; Release 9.0: April 2019,
214 Leitch *et al.*, 2019), and (3) unpublished genome size measurements from the Plant
215 Biosystematics Research Group of Masaryk University and the Royal Botanic Gardens, Kew
216 (529 taxa, 3.3 %). Three different criteria were applied in cases where genome sizes for the
217 same species were reported independently by different authors. These comprised (i) selecting
218 values measured by flow cytometry over those estimated with Feulgen densitometry, (ii)
219 choosing estimates from more recent reports over older ones, and (iii) assessing the
220 taxonomic expertise of the authors for the species studied (i.e., we preferentially selected
221 estimates from authors with taxonomic expertise in the group of interest when possible). We
222 chose the smaller genome size (and thus the smaller DNA ploidy level) in cases where
223 genome size varied within a species, corresponding to different DNA ploidy levels. For
224 multiple estimates presented for a species in the same publication, the genome size values
225 were averaged. Finally, in cases where publications used nomenclature that conflicted with
226 the WCVP and genome size values reflected this difference, we chose an alternative

227 taxonomic framework (predominantly the Catalogue of Life) and listed the source in Dataset
228 S1. Genome size estimations reported in pg were converted to Mbp using the equation 1 pg =
229 978 Mbp (Doležel *et al.*, 2003). The genome size per TDWG was calculated as the average of
230 the reported genome sizes for all taxa occurring in each region, which were \log_{10} -transformed
231 (Dataset S2).

232

233 *Chromosome number compilation*

234

235 Chromosome numbers were extracted (in order of preference) from: (i) the same publications
236 as the genome size data when both estimates were reported together; (ii) the Chromosome
237 Counts Database (CCDB: Rice *et al.*, 2015); and (iii) publications reporting only
238 chromosome number (Dataset S1). We first ensured the estimations were not pseudo-
239 replicated and then we selected the most prevalent number for a species. We report the
240 median value for a species when it was not possible to discern the prevailing chromosome
241 number (e.g., in cases of aneuploidy). When chromosome numbers varied based on differing
242 ploidy levels within a species, we compared the ploidy levels and chromosome numbers of
243 other congeners to aid in selecting the chromosome number corresponding to the reported
244 genome size of that species. Finally, we calculated the mean chromosome size of a species by
245 dividing the 2C genome size (in Mbp) by the diploid (2n) chromosome number. As mean
246 chromosome size removes the correlation between genome size and chromosome number, we
247 used it throughout the study as a correction for neopolyploidy (i.e., polyploids still
248 recognizable cytologically rather than those with polyploidy in their ancestry recognizable
249 only through DNA sequence analysis).

250

251 *Polyplloid distributions*

252

253 We extracted inferred ploidy-level data from Rice *et al.* (2019:
254 https://figshare.com/collections/The_Global_Biogeography_of_Polyplloid_Plants/4306004).
255 Duplicate records and species that are not accepted in the WCVP were omitted from the
256 dataset. We linked the remaining species to their geographic distribution based on TDWGs,
257 as specified by the WCVP. We used the ploidy-level inferences to calculate the proportion of
258 polyploids per TDWG (Dataset S2).

259

260 *Phylogenetic tree used in tests of MHH and LGCH*

261

262 We used one hundred species-level trees of all angiosperms comprising all 329,798 species
263 recognized by version 6 of the World Checklist of Vascular Plants (Forest, 2023) pruned to
264 species in our dataset.

265

266 *Growth form classification*

267

268 A relationship between genome size and growth form has been suggested by many authors
269 (e.g., Bennett, 1971; 1987; Beaulieu *et al.*, 2008; Francis *et al.*, 2008, Veselý *et al.*, 2012;
270 2013). To control for this effect, all taxa were classified according to four plant growth forms
271 (Dataset S1): (i) annuals (= therophytes; 12 % of species in the dataset), (ii) geophytes (11
272 %), (iii) non-geophytes (perennial herbs = hemicryptophytes + parasites + hydrophytes +
273 epiphytes; 47 %), (iv) woody plants (= chamaephyte + phanerophytes; 30 %), using standard
274 floras or The World Checklist of Selected Plant Families (WCSP, 2017). For each TDWG,
275 we calculated the percentage of species belonging to the four growth forms (Dataset S2).

276

277 *Latitude estimations*

278

279 We assigned a latitude to each TDWG (Dataset S2) using their geographic centroids,
280 determined using ArcGIS v.10 (Environmental Systems Research Institute, 2014). The
281 latitude associated with each species (Dataset S1) was then calculated as a mean of latitudinal
282 centroids of all the TDWGs occupied by a given species.

283

284 *Climatic variables*

285

286 We extracted 25 bioclimatic variables from the CHELSA database (Karger *et al.*, 2017;
287 <https://chelsa-climate.org/bioclim/>; Karger *et al.*, s.a.), three ultraviolet-B-related variables
288 from Beckmann *et al.* (2014; UVB1 = Annual Mean UV-B, UVB3 = Mean UV-B of Highest
289 Month, and UVB5 = Sum of Monthly Mean UV-B during Highest Quarter), and the Global-
290 Aridity Index (Global-Aridity_ET0; Trabucco & Zomer, 2018) at 30 arc-second resolution
291 (~1km). We then calculated the mean of each variable per TDWG region (Dataset S2) with
292 QGIS v.3.14 “pi” (QGIS Development Team, 2022). Collinearity was then assessed by
293 calculating Pearson correlation coefficients among all pairs of the 29 variables. Correlated

294 variables (Pearson correlation coefficient > 0.7) were assembled into six groups (Fig. S1,
295 Table S1). To select a single variable from the six groups for further analyses, we used each
296 variable as a predictor of 2C genome size in a polynomial regression and selected those with
297 the best explanatory power within their groups. To select an appropriate order of the
298 polynomials for the regression, we used the cost function combined with a visual inspection
299 of the bivariate plots of each variable and 2C genome size. We omitted GDD0 (Growing
300 degree days heat sum above 0°C) and Aridity index from further consideration because both
301 explained very little variation in the regression models ($R^2_{adj} = -0.002$ and 0.001 , respectively).
302 Thus, the variables selected for further analyses (Table S1) were GST (Growing Season mean
303 Temperature), BIO2 (mean diurnal air temperature range), BIO13 (precipitation of the
304 wettest month), and BIO15 (precipitation seasonality).

305 Even if variables are collinear, the essence of their influence on genome size may
306 differ (e.g., UV-B-caused deletion bias vs. temperature-affected cell size). Therefore, we
307 performed additional analyzes with selected variables that did not pass the above-mentioned
308 filtering steps (GSL – length of the growing season, UVB1 – mean annual UVB, BIO11 –
309 Daily mean air temperatures of the coldest quarter), if they had biological relevance or their
310 effect on genome size had already been hypothesized.

311

312 *Statistical analyses*

313

314 We applied a series of linear regressions to test our four hypotheses (Fig. 1). The LGCH and
315 MHH were modeled with genome size as a function of range size, with both variables log-
316 transformed (base 10) to account for the skew towards low values. We first performed
317 ordinary least squares regression (OLS) using the function ‘lm’ implemented in base R,
318 followed by phylogenetic generalized least square (PGLS) regression (Freckleton *et al.*,
319 2002) with the R package PHYLOLM v.2.6.2 (Ho & Ané, 2014). In PHYLOLM, we used the
320 weighted Akaike information criterion (AICw; Akaike, 1978; Wagenmakers & Farrel, 2004)
321 to select between seven evolutionary explicit models of trait evolution: Brownian motion,
322 Pagel’s lambda, kappa, and delta, two Ornstein-Uhlenbeck models with an ancestral state
323 estimated at the root or having the stationary distribution at the root, and the early burst
324 model. The best model was Pagel’s lambda with $\text{AICw} = 1$ (averaged across all 100 trees),
325 which we used to optimize branch lengths based on the data (model = ‘lambda’) using
326 maximum likelihood estimation. To examine whether the association between range size and
327 genome size is dependent upon differences in genome size, we applied quantile regression

328 analysis with nineteen different quantiles (from 0.05 to 0.95 at 0.05 intervals) using function
329 'rq' in the R package QUANTREG v.5.93 (Koenker *et al.*, 2022). To the best of our
330 knowledge, a tool has yet to be developed that is capable of performing quantile regression
331 while correcting for evolutionary relationships among taxa. To circumvent this problem, we
332 followed the multistep approach of Jovani *et al.* (2016), employing R packages CAPER
333 v.1.0.1 (Orme, 2013) and QUANTREG v.5.93 (Koenker *et al.*, 2022).

334 To examine how genome size is associated with latitude (testing the PMH and CMH
335 hypotheses), we specified genome size (log-10 transformed) as the response variable and
336 latitude as the predictor variable in an OLS regression model. We used the cost function and
337 the visual inspection of the bivariate plot of genome size and latitude to select the order of the
338 polynomial fit and found that the best model was the third-degree polynomial ($\log_{10}(\text{Genome}$
339 $\text{size}) \sim \text{latitude} + \text{latitude}^2 + \text{latitude}^3$). We also performed a multiple linear regression (MLR) that
340 included the selected bioclimatic variables (i.e., GST, BIO2, BIO13, BIO15 - see above) as
341 predictors to evaluate the potential effects of climatic factors on the distribution of genome
342 size across latitude. In this MLR, we specified interaction terms among all predictor variables
343 and conducted a backward stepwise model selection based on AIC values using the "step"
344 function in base R. Based on the AICs from the backward selection process, the best model
345 included only GST as a single predictor of 2C genome size ($\log_{10}(\text{Genome size}) \sim \text{GST} + \text{GST}^2$).
346 In all MLRs with polynomials, we fitted orthogonal polynomials using the "poly" function in
347 base R, but the "raw" parameter was set to "TRUE" to obtain parameter estimates
348 corresponding to response variable units. Each TDWG was weighted in the regression
349 analyses to account for the total number of species reported to occur in the region and the
350 percentage of these species for which we have genome size or polyploid data. The weight
351 was then calculated as the ratio of the number of species for which we have genome size data
352 (or the proportion of polyploids) and the number of all species in the TDWG (Dataset S2).
353 To evaluate causal relationships between the effects of GST and percentage of growth forms
354 on mean genome size across TDWGs, we employed a path analysis approach using the R
355 package LAVAAN v.4.2.3 (Rosseel, 2012).

356

357 **Results**

358

359 *Sampling bias*

360

361 We compiled the largest genome size dataset to date, encompassing >5% of known
362 angiosperm species (Dataset S1). Large datasets of phylogenetic representation and traits,
363 including genome size data, are latitudinally biased, with northern latitudes being more
364 thoroughly sampled (Vasconcelos, 2022). To check how this may have affected our data, we
365 compared the across-TDWG latitudinal distribution of range sizes of all angiosperms in the
366 WCVP to that of the taxa in our genome size dataset. Both datasets show an increase in range
367 size from south to north (Fig. S2).

368

369 *Genome size and range size (LGCH, MHH)*

370

371 Genome size and range size exhibit a triangular relationship (Fig. 2a), indicating that species
372 with small ranges can have any genome size, while species with large ranges only have small
373 genomes (i.e., species with large genomes do not have large range sizes). The OLS regression
374 model based on log-transformed data (Table 1) revealed a significant decrease in genome size
375 with increasing range size (Fig. 2b). The slope from the PGLS analysis, although still
376 significantly negative ($b = -0.007, P = 1.31\text{e-}06$), was flatter than that from the OLS ($b = -$
377 $0.039, P < 2\text{e-}16$), due to a strong phylogenetic signal (Pagel's $\lambda = 0.916$) in the genome
378 size/range size relationship (Table 1, Fig. S3a). Both ordinary (Fig. 2c, Table S2) and
379 phylogenetic (Fig. S3b, Table S3) quantile regressions showed more negative slopes for
380 higher quantiles of genome size, indicating that the relationship between genome size and
381 geographical range size is genome size dependent - becoming increasingly negative as
382 genome size increases; in accordance with the triangular relationship. Although the slopes
383 started decreasing at the genome size quantile 0.5 for the ordinary quantile regression (Fig.
384 2c), in the phylogenetic quantile regression, the slope decreased continuously with increasing
385 quantiles (Fig. S3b). When we used the number of occupied TDWGs as a measure of range
386 size (instead of the EOO), we observed very similar results (Fig. S4, S5, Tables S4, S5),
387 suggesting that, at least for our dataset, TDWG counts provide a reasonable proxy for range
388 size.

389 We also obtained very similar results when we controlled for the effect of
390 neopolyploidy by performing the across-species analyses using mean chromosome size
391 ($2C/2n$) instead of $2C$ genome size (Fig. S6, Tables S6-S8). For analyses with number of
392 occupied TDWGs as a measure of range size, see Fig. S7, Tables S9-S11). However, the
393 decrease in mean chromosome size with increasing range size was steeper than that of $2C$
394 genome size in both OLS and PGLS (Table 1, Table S6).

395

396 *Genome size, neopolyploidy, latitude, and climate*

397

398 Overall, the smallest genomes occur in the tropics, and their size increases towards the poles.
399 However, in the northern hemisphere, genome size decreases again from the temperate to the
400 arctic regions. The global distribution of genome size averaged per TDWG is shown on the
401 map in Fig. 3a. The genome size distribution maps of the two most species-rich eudicot
402 (Asteraceae, Fabaceae) and monocot (Orchidaceae, Poaceae) families are shown in Fig. S8.
403 Their genome size distribution resembles the overall trend in angiosperms. When the 2C
404 genome size is plotted against the latitudinal centroids of TDWGs, the S-shaped pattern
405 becomes evident (Fig. 3a). In the 3rd-order polynomial regression, latitude alone explained
406 40.12 % of the variation in 2C genome size (Table 2). The proportion of neopolyploid species
407 displayed a U-shaped distribution with the smallest values in the tropics and a continuous
408 increase in the proportion of polyploids towards the poles (Fig. 3b; Table 2).

409 Genome size and the proportion of polyploid species exhibited very different
410 latitudinal distributions (Fig. 3), with the proportion of polyploid species explaining only 1.77
411 % of the variation in 2C genome size (Table 2).

412 When we controlled for neopolyploidy by analyzing mean chromosome size across
413 TDWGs, the S-shape latitudinal trend remained broadly unchanged (Fig. S9). The S-shaped
414 latitudinal trend in genome size was robust to longitude, as the same pattern was recovered
415 when the data were separately analyzed for the New and Old Worlds (Fig. S10).

416 To assess which climatic parameters might be associated with the observed latitudinal
417 trend in 2C genome size, we tested 29 climatic variables, but only GST (mean temperature of
418 the growing season) was used in the final regression model based on backward selection (see
419 Methods for details). The best-fitting model was a quadratic polynomial regression of 2C
420 genome size on the GST (Table 2). The quadratic term had a negative coefficient, indicating
421 that genomes are smaller in TDWGs with high or low temperatures and larger for
422 intermediate temperatures (Table 2; compare with the graph in Fig. 2a). The GST explained
423 40.75 % of the variance in 2C genome size which is all the variance explained by latitude
424 (40.12 %; Table 2). If BIO11, which falls below 0°C in the northern hemisphere, is added
425 into the model, the explained variance increases to 46.35 % (Table S12), highlighting the
426 importance of freezing temperatures. Furthermore, if the MHH is combined with CMH by
427 adding the range size to the model with GST, the explained variance increases to 46.14 %
428 (Table S12).

429 We also tested whether smaller genomes are linked to shorter growing seasons. Our
430 regression analysis showed that as the genome gets larger, the growing season (GSL) gets
431 shorter ($P=0.0004$; Table S12). When analyzed only for TDWGs with latitudinal centroids of
432 at least 48.93° (the threshold at which genomes start decreasing northward), genome size
433 decreases with a shortening of the growing season, but the relationship is not significant
434 ($P=0.481$; Table S12). UVB1 (mean annual UVB) explained 34.6 % of the variation in mean
435 genome size across TDWGs (Table S12).

436 Due to genome size variations among different plant growth forms (Bennett, 1987;
437 Beaulieu *et al.*, 2008; Veselý *et al.*, 2013), and the presence of latitudinal trends in growth
438 form proportions (Taylor *et al.*, 2023; Fig. S11 here), we investigated whether the observed
439 S-shape (Fig. 3a) might be attributed to differences in the percentages of different growth
440 forms within TDWGs with increasing latitudes. Annuals, geophytes, and non-geophyte herbs
441 all exhibited the S-shape in mean genome size, varying only in magnitude (Fig. 4). Woody
442 plants, however, had slightly larger genomes in the tropics compared to temperate or arctic
443 regions (Fig. 4). These growth form patterns remained consistent across both species (Fig. 4a)
444 and TDWG means (Fig. 4b-e). As sole predictor, the percentage of growth forms explained
445 from 2% of genome size variance (in annuals) to 21% (in non-geophytes) (Table S13).
446 However, when growth form percentage was added to the model with GST, the effects of
447 non-geophytes and annuals became insignificant, with geophytes and woody plants
448 contributing only 3.4% and 1.4% additional explained variance, respectively (Table S14).
449 This significant drop in the explanatory power of growth forms suggests that GST directly
450 influences both growth form percentages and mean genome size within TDWGs. This was
451 confirmed through path analysis, which revealed that while GST strongly impacts genome
452 size and the percentages of non-geophytes and woody plants, growth forms have minimal or
453 negligible effects on the distribution of genome sizes across the globe (Fig. S12).

454

455 **Discussion**

456

457 *Support for the LGCH, while not ruling out the MHH*

458

459 We revealed a triangular relationship between range size and genome size, with a negative
460 association between range size and genome size that is accentuated as genome sizes increase
461 (Fig. 2b, 2c), supporting the LGCH (Fig. 1a). This relationship indicates that large-genomed
462 species are restricted to occupying smaller ranges, which is likely due to the nucleotypic

463 effects of their genomes hindering their dispersal distance and limiting their ecological niche
464 (Knight & Ackerly, 2002; Beaulieu *et al.*, 2007, 2008; Veselý *et al.*, 2012; Carta *et al.*, 2022;
465 Bhadra *et al.*, 2023). This places large-genomed species at a disadvantage compared to their
466 smaller-genomed counterparts that have greater nucleotypic plasticity (Mayerson *et al.*, 2020;
467 Bhadra *et al.*, 2023) and may thus occupy both large and small ranges (Fig. 2a). It is notable
468 that the most pronounced S-shape in the latitudinal distribution of genome size (see *Genome*
469 *size decreases [...] but not in the south* section below) is in geophytes (Fig. 4c), whose
470 genomes are the largest among the analyzed growth forms (Fig. 4a). Although the triangular
471 relationship we observed does not show support for the MHH, the LGCH does not
472 necessarily rule out the MHH. Notably, the largest genomes are found in the southern
473 hemisphere (Fig. 3a), where angiosperms in our dataset have the smallest ranges (Fig. S2)
474 and could thus be most susceptible to genetic drift (Fig. 5). Genetic drift could facilitate
475 genome growth in smaller-ranged species (as proposed in the MHH), which could further
476 reduce the range size of large-genomed species (LGCH) and throw them into a deadly
477 descending spiral toward extinction. This is supported by evidence showing that large-
478 genomed species are at higher risk of extinction (Vinogradov, 2003; Soto Gomez *et al.*, 2023
479 in this issue).

480

481 *Small genomes in the tropics*

482

483 The decrease in genome size from temperate to tropical regions across both hemispheres is
484 consistent with previous studies focusing on genome size (or its proxies) in Poaceae (e.g.,
485 Avdulov, 1931; Bennett, 1976), Fabaceae (e.g., Stebbins, 1966; Bennett, 1976; Souza *et al.*,
486 2019), Orchidaceae (e.g., Trávníček *et al.*, 2019), Zygophyllaceae (e.g., Vidal-Russell *et al.*,
487 2022) and at broader phylogenetic scales across angiosperms (Levin & Funderburg, 1979; Yu
488 *et al.*, 2018). In our study, the environmental variables most correlated with latitude were
489 temperature-related, and peaked in the tropics (Fig. 3a). In higher ambient temperatures,
490 metazoan ectotherms, unicellular eukaryotes, and prokaryotes tend to have smaller cells
491 (Atkinson *et al.*, 2003; Hessen *et al.*, 2013; Sabath *et al.*, 2013), possibly because the
492 maintenance of large cells becomes more difficult with increasing temperatures (Sabath *et al.*,
493 2013). Our finding that small genomes are prevalent in the tropics might reflect this
494 relationship, where it is advantageous to have smaller cells (and thus a smaller genome;
495 Cavalier-Smith, 2005) in the tropics.

496 Alternatively, small genomes in low latitudes could be a result of the DNA-damaging
497 effects of UV-B radiation (Bennett, 1976), which is generally highest in the tropics
498 (Beckmann *et al.*, 2014) and might result in selecting for smaller chromosomes that absorb
499 less energy, therefore decreasing radiosensitivity (Sparrow *et al.*, 1967). This idea is
500 supported by recent findings showing that plants with holocentric chromosomes, which
501 tolerate fragmentation (Zedek & Bureš, 2019), are less stressed (Zedek *et al.*, 2020; 2021)
502 and more competitive (Zedek *et al.*, 2022) under higher UV-B doses. Moreover, homologous
503 recombination used to repair UV-B-induced damage might increase rates of DNA deletion,
504 thereby further promoting genome downsizing (Schubert & Vu, 2016). However, as UV-B
505 radiation intensity (which explained 34.6 % of the variation) is strongly correlated with
506 temperature (Fig. S1), the individual effects of these two factors on genome size in the tropics
507 cannot be easily differentiated.

508 Finally, nutrient limitation might play a role in constraining the genome size of
509 tropical plants, as many tropical soils are low in nutrients (especially phosphorus; Vitousek *et*
510 *al.*, 2010), and yet building and maintaining cells in plants with large genomes is expensive in
511 terms of N and P. This may result in species with large genomes being less competitive in the
512 nutrient-poor tropical soils, resulting in their exclusion from these environments (Leitch &
513 Leitch, 2008; Šmarda *et al.*, 2013, Guignard *et al.*, 2016; Faizullah *et al.*, 2021; Veleba *et al.*,
514 2020).

515
516 *Genome size decreases from temperate regions towards the North pole, but not the South*
517
518 Differences in genome size trends across latitudinal gradients in the northern versus southern
519 hemisphere may be explained by the larger temperature gradient in the north, which could be
520 partially associated with differences in the distribution of landmasses and major water bodies
521 in the two hemispheres. Large areas of Eurasia and North America extend beyond 50°N and
522 are surrounded by less water and more land masses than regions in the southern hemisphere,
523 therefore experiencing weaker buffering effects from the ocean. If the distribution of genome
524 sizes in plants followed a similar pattern to the distribution of polyploid species, genomes
525 would be expected to be smaller near the equator and increase polewards. We find that this
526 trend holds, but only up to a certain, presumably limiting, low temperature threshold, beyond
527 which genome sizes decrease towards the high northern latitudes. In the southern hemisphere,
528 this low-temperature threshold is probably not reached (Fig. 1a). The existence of such a
529 latitudinal breakpoint in genome size was previously predicted (Bennett *et al.*, 1982). The

530 main drivers of selection pressure against larger genomes in polar regions were predicted to
531 be: (i) slower cell divisions mediated by lower temperatures (Francis & Barlow, 1988) and
532 (ii) longer generation times mediated by lower temperatures and/or by shorter growing
533 seasons (Bennett *et al.*, 1982; Bennett, 1987). Indeed, temperature variables alone explain a
534 relatively large proportion (up to ~40 %) of the variation in the global distribution of genome
535 sizes (Table 2, Table S1).

536 Several authors have hypothesized that the decrease in temperatures toward the poles
537 can result in a higher production of unreduced gametes in plants (Belling, 1925; Sakamura &
538 Stow, 1926; de Mol, 1928; Heilborn, 1930; Hagerup, 1932; Bretagnolle & Thompson, 1995;
539 Mason & Pires, 2015; Kreiner *et al.*, 2017). If this phenomenon explains the increase in the
540 proportion of polyploidy from the equator to the poles (Fig. 3b; Rice *et al.*, 2019), then the
541 polyploid proportion should be significantly higher in the northern hemisphere, where
542 temperatures reach lower values. However, neither our study nor that by Rice *et al.* (2019)
543 found a difference in the proportion of polyploids between the southern and northern
544 hemispheres (Fig. 3b), suggesting that unreduced gamete production might not be an
545 important variable in explaining latitudinal variation in polyploidy (but see below).

546 The decrease in genome size in the northern hemisphere from temperate regions to the
547 Arctic could also be related to glaciation cycles, as smaller-genomed species tend to occur in
548 previously glaciated TDWGs (Fig. S13). During glacial migrations, species with large
549 genomes might have been more prone to extinction because of their smaller range sizes, as
550 suggested by the negative association between geographic range size and genome size (Fig.
551 2a). Similarly, repeated glaciation cycles could have led to the extinction of some
552 (neo)polyploids whose genome sizes exceeded an upper selection limit, which could further
553 explain why the proportion of polyploids is not higher in the northern than the southern
554 hemisphere. In this case, the hypothesis relating the increased formation of unreduced
555 gametes to low temperatures and its role in increasing the proportion of polyploids from
556 tropical to polar regions would still be relevant. A further possibility explaining the decrease
557 in genome size from the northern temperate to polar regions is that shorter growing seasons
558 towards high latitudes might be important in selecting plants with smaller genomes, which
559 have faster growth rates and can complete their growth cycles in less time (Knight *et al.*,
560 2005). Nevertheless, our results show that any effect of length of growing season in the
561 Arctic on genome size, is likely to be minor (Table S12).

562

563 *Relatively large genomes in temperate regions*

564

565 Temperate regions offer mild conditions between the extremes of the tropics and arctic
566 regions discussed above. For instance, there are not very high nor low temperatures, lower
567 doses of UV-B radiation than in the tropics, and the area was not as extensively glaciated as
568 arctic regions. The temperate climate might thus relax selective pressures against larger
569 genomes, thereby increasing the overall range and mean genome sizes of plants growing in
570 temperate zones of both hemispheres (Fig. 4a).

571

572 *Latitudinal gradient in genome size is not underpinned by contrasting proportions of different*
573 *growth forms in different regions*

574

575 Although the proportion of growth forms, especially perennial herbs and woody plants, may
576 have significantly contributed to the global distribution of polyploids (Rice *et al.*, 2019), the
577 impact of different growth forms on the global distribution of genome size appears weak and
578 mostly mediated by temperature (Fig. S12, Table S14). The independence of global genome
579 size distribution on growth forms is further supported by the observation that annuals,
580 geophytes, and non-geophytes all exhibited the S-shape in mean genome size (Fig. 4). Woody
581 plants showed a different pattern, but their genome size still decreased northward (Fig. 4).
582 Woody angiosperms are seldom polyploid (Müntzing, 1936; Stebbins, 1940; Otto & Whitton,
583 2000; Zenil-Fergusson *et al.*, 2017; Rice *et al.*, 2019), which could explain why their
584 genomes did not increase in temperate regions. Also, the absence of relationship between
585 extinction risk and genome size in woody plants (Soto Gomez *et al.*, 2023) could suggest that
586 genome size dynamics operate differently in woody vs herbaceous species.

587

588 *Conclusions and future directions*

589

590 Our study found support for the large genome constraint hypothesis in explaining the global
591 distribution of genome sizes but could not rule out the mutation hazard hypothesis in also
592 contributing to explaining the distribution patterns observed. In addition, we show a small
593 effect of polyploidy and growth forms and a large effect of climate, especially temperature,
594 on the distribution of genome size. Overall, our findings indicate that mainly purifying
595 selection, genetic drift, relaxed selection, and environmental filtering influenced by climate
596 are likely to have shaped the global distribution of angiosperm genomes sizes (Fig. 5).
597 Further research should be directed at determining the relative contributions of long-term

598 processes shaping the global distribution of genome sizes, such as glaciation cycles, UV-B-
599 caused genome erosion, or polyploidization-rediploidization cycles. We also advocate more
600 thorough investigation of links between environmental factors and genome size at finer
601 regional or local scales. For instance, the use of vegetation plots combined with species
602 Ellenberg indicator values would enable a more in-depth understanding of the complex
603 interplay between genome size and both biotic (e.g., competition) and abiotic (e.g., altitude,
604 temperature, soil reaction and moisture) factors in influencing a species habitat and niche and
605 its resilience to environmental changes.

606

607 **Author contributions**

608

609 PB, TLE, and FZ designed the study, performed the analyses, and drafted the first version of
610 the manuscript. PB and FZ collected the genome size data. PV and PB prepared the datasets
611 for analysis, and PV assigned growth forms and contributed to the analysis. FF prepared
612 phylogenetic trees. JŠ performed flow cytometric measurement generating unpublished data
613 used in this study. PŠ, FF, IJL, ENL, MSG, SP, and MJMB contributed to analyses,
614 interpretation of the results, and the final form of the manuscript.

615

616 **Acknowledgments**

617

618 We thank Rafaël Govaerts for providing data from the World Checklist of Vascular Plants.
619 This work was financially supported by the Czech Science Foundation, grant no. GA20-
620 15989S.

621

622 **Funding**

623

624 This work was financially supported by the Czech Science Foundation, grant no. GA20-
625 15989S.

626

627 **Conflict of Interest Declaration**

628

629 The authors have no conflict to declare.

630

631 **References**

632
633 **Akaike H. 1978.** A Bayesian analysis of the minimum AIC procedure. *Annals of the Institute*
634 *of Statistical Mathematics* **30**: 9–14. doi: 10.1007/BF02480194.
635 **Atkinson D, Ciotti BJ, Montagnes DJ. 2003.** Protists decrease in size linearly with
636 temperature: ca. 2.5% degrees C(-1). *Proceedings of the Royal Society B: Biological*
637 *Sciences* **270**: 2605–2611. doi: 10.1098/rspb.2003.2538.
638 **Avdulov NP. 1931.** Karyo-systematische Untersuchungen der Familie Gramineen. *Bulletin of*
639 *Applied Botany, of Genetics and Plant Breeding, Leningrad* **44**: 1–428. (Russian with
640 German summary).
641 **Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008.** Genome size is a
642 strong predictor of cell size and stomatal density in angiosperms. *New Phytologist*
643 **179**: 975–986. doi: 10.1111/j.1469-8137.2008.02528.x.
644 **Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007.** Correlated
645 evolution of genome size and seed mass. *New Phytologist* **173**: 422–437. doi:
646 10.1111/j.1469-8137.2006.01919.x.
647 **Beckmann M, Václavík T, Manceur AM, Šprtová L, von Wehrden H, Welk E, Cord**
648 **AF. 2014.** glUV: a global UV-B radiation data set for macroecological studies.
649 *Methods in Ecology and Evolution* **5**: 372–383. doi: 10.1111/2041-210X.12168.
650 **Becher H, Powell RF, Brown MR, Metherell C, Pellicer J, Leitch IJ, Twyford AD. 2021.**
651 The nature of intraspecific and interspecific genome size variation in taxonomically
652 complex eyebrights. *Annals of Botany* **128**: 639–651. doi: 10.1093/aob/mcab102.
653 **Belling J. 1925.** The origin of chromosomal mutations in *Uvularia*. *Journal of Genetics* **15**:
654 245–266. doi: 10.1007/BF02983121.
655 **Bennett MD, Leitch IJ. 2005.** Genome size evolution in plants. In: TR Gregory, ed. *The*
656 *evolution of genome*. San Diego: Elsevier, 89–162.
657 **Bennett MD. 1971.** The duration of meiosis. *Proceedings of the Royal Society B: Biological*
658 *Sciences* **178**: 277–299. doi: 10.1098/rspb.1971.0066.
659 **Bennett MD. 1976.** DNA amount, latitude, and crop plant distribution. *Environmental and*
660 *Experimental Botany* **16**: 93–108. doi: 10.1016/0098-8472(76)90001-0.
661 **Bennett MD. 1987.** Variation in genomic form in plants and its ecological implications. *New*
662 *Phytologist* **106**: 177–200. doi: 10.1111/j.1469-8137.1987.tb04689.x.
663 **Bennett MD, Leitch IJ. 2012.** Plant DNA C-values Database (Release 8.0)
664 <https://cvalues.science.kew.org/>
665 **Bennett MD, Smith JB, Lewis-Smith RI. 1982.** DNA amounts of angiosperms from the
666 Antarctic and South Georgia. *Environmental and Experimental Botany* **22**: 307–318.
667 doi: 10.1016/0098-8472(82)90023-5.
668 **Bennetzen JL, Kellogg EA. 1997.** Do plants have a one-way ticket to genomic obesity?
669 *Plant Cell* **9**: 1509–1514. doi: 10.1105/tpc.9.9.1509.
670 **Bennetzen JL, Ma J., Devos KM. 2005.** Mechanisms of recent genome size variation in
671 flowering plants. *Annals of Botany* **95**: 127–132. doi: 10.1093/aob/mci008.
672 **Bennetzen JL, Wang H. 2014.** The contributions of transposable elements to the structure,
673 function and evolution of plant genomes. *Annual Review of Plant Biology* **65**: 505–
674 530. doi: 10.1146/annurev-arplant-050213-035811.
675 **Bhadra S, Leitch IJ, Onstein RE. 2023.** From genome size to trait evolution during
676 angiosperm radiation. *Trends in Genetics*: TIG, S0168-9525(23)00164-6. Advance
677 online publication. doi: 10.1016/j.tig.2023.07.006.
678 **Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K,**
679 **Yang J, Ross-Ibarra J. 2018.** Parallel altitudinal clines reveal trends in adaptive
680 evolution of genome size in *Zea mays*. *PLoS Genetics* **14**: e1007162. doi:
681 10.1371/journal.pgen.1007162.

682 **Blommaert J. 2020.** Genome size evolution: towards new model systems for old questions.
683 *Proceedings of the Royal Society B: Biological Sciences* **287**: 20201441.
684 doi:10.1098/rspb.2020.1441.

685 **Bonchev G, Parisod C. 2013.** Transposable elements and microevolutionary changes in
686 natural populations. *Molecular Ecology Resources* **13**: 765–775. doi: 10.1111/1755-
687 0998.12133.

688 **Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L. 2000.** Relationships among
689 genome size, environmental conditions and geographical distribution in natural
690 populations of NW Patagonian species of *Berberis* L. (Berberidaceae). *Annals of*
691 *Botany* **86**: 565–573. doi: 10.1006/anbo.2000.1218.

692 **Bowers JE, Chapman BA, Rong JK, Paterson AH. 2003.** Unravelling angiosperm genome
693 evolution by phylogenetic analysis of chromosomal duplication events. *Nature* **422**:
694 433–438. doi: 10.1038/nature01521.

695 **Bretagnolle F, Thompson JD. 1995.** Gametes with the somatic chromosome number:
696 Mechanisms of their formation and role in the evolution of autopolyploid plants. *New*
697 *Phytologist* **129**: 1–22. doi: 10.1111/j.1469-8137.1995.tb03005.x.

698 **Brown JH. 1984.** On the relationship between abundance and distribution of species.
699 *American Naturalist* **124**: 255–279. doi: 10.1086/284267.

700 **Brummitt RK, Pando F, Hollis S, Brummitt N. 2001.** *World geographical scheme for*
701 *recording plant distributions*. Pittsburgh, Pennsylvania: Hunt Institute for Botanical
702 Documentation, Carnegie-Mellon University.

703 **Bureš P, Ozcan M, Šmerda J, Michálková E, Horová L, Plačková K, Šmarda P, Elliott**
704 **TL, Veselý P, Čato S, Norouzi M, Sheidai M, František Zedek. 2023.** Evolution of
705 genome size and GC content in the tribe Carduinae (Asteraceae): rare descending
706 dysploidy and polyploidy, limited environmental control and strong phylogenetic
707 signal. *Preslia* **95**: 185–213. doi: 10.23855/preslia.2023.185.

708 **Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. 2021.** Genome size evolution is
709 associated with climate seasonality and glucosinolates, but not life history, soil
710 nutrients or range size, across a clade of mustards. *Annals of Botany* **127**: 887–902.
711 doi: 10.1093/aob/mcab028.

712 **Carta A, Mattana E, Dickie J, Vandeloek F. 2022.** Correlated evolution of seed mass and
713 genome size varies among life forms in flowering plants. *Seed Science Research* **32**:
714 46–52. doi: 10.1017/S0960258522000071.

715 **Casacuberta E, González J. 2013.** The impact of transposable elements in environmental
716 adaptation. *Molecular Ecology* **22**: 1503–1517. doi: 10.1111/mec.12170.

717 **Cavalier-Smith T. 1982.** Skeletal DNA and the evolution of genome size. *Annual Review of*
718 *Biophysics and Bioengineering* **11**: 273–302. doi:
719 10.1146/annurev.bb.11.060182.001421.

720 **Cavalier-Smith T. 2005.** Economy, speed and size matter: evolutionary forces driving
721 nuclear genome miniaturization and expansion. *Annals of Botany* **95**: 147–175. doi:
722 10.1093/aob/mci010.

723 **Chen J, Glémis S, Lascoux M. 2017.** Genetic diversity and the efficacy of purifying
724 selection across plant and animal species. *Molecular Biology and Evolution* **34**: 1417–
725 1428. doi: 10.1093/molbev/msx088.

726 **Choi IY, Kwon EC, Kim NS. 2020.** The C- and G-value paradox with polyploidy,
727 repeatomes, introns, phenomes and cell economy. *Genes Genomics* **42**: 699–714. doi:
728 10.1007/s13258-020-00941-9.

729 **Clark JW, Donoghue PCJ. 2017.** Constraining the timing of whole genome duplication in
730 plant evolutionary history. *Proceedings of the Royal Society B: Biological Sciences*
731 **284**: 20170912. doi: 10.1098/rspb.2017.0912.

732 **Cobos ME, Barve V, Barve N, Jiménez-Valverde A, Nuñez-Penichet C.** 2022.
733 “Rangemap: An R Package to Explore Species’ Geographic Ranges”. *Biodiversity*
734 *Informatics* **17**: 59–66. <https://doi.org/10.17161/bi.v17i.16271>.

735 **Corbett-Detig RB, Hartl DL, Sackton TB.** 2015. Natural selection constrains neutral
736 diversity across a wide range of species. *PLoS Biology* **13**: e1002112. doi:
737 10.1371/journal.pbio.1002112.

738 **de Mol, W.E.** 1928. The originating of diploid and tetraploid pollen-grains in Duc van Thol-
739 Tulips (*Tulipa suaveolens*) dependent on the method of culture applied. *Genetica* **11**:
740 119–212. doi: 10.1007/BF01726318.

741 **Deniz Ö, Frost JM, Branco MR.** 2019. Regulation of transposable elements by DNA
742 modifications. *Nature Reviews Genetics* **20**: 417–431. doi: 10.1038/s41576-019-0106-
743 6.

744 **Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, Tenaillon
745 MI.** 2013. Genome size variation in wild and cultivated maize along altitudinal
746 gradients. *New Phytologist* **199**: 264–276. doi: 10.1111/nph.12247.

747 **Doležel J, Bartoš J, Voglmayr H, Greilhuber J.** 2003. Nuclear DNA content and genome
748 size of trout and human. *Cytometry* **51**: 127–128. doi: 10.1002/cyto.a.10013.

749 **Drake PL, Froend RH, Franks PJ.** 2013. Smaller, faster stomata: scaling of stomatal size,
750 rate of response, and stomatal conductance. *Journal of Experimental Botany* **64**: 495–
751 505. doi: 10.1093/jxb/ers347.

752 **Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, Voelker G.**
753 2014. Does the niche breadth or trade-off hypothesis explain the abundance-
754 occupancy relationship in avian Haemosporidia? *Molecular Ecology* **23**: 3322–3229.
755 doi: 10.1111/mec.12744.

756 **Du YP, Bi Y, Zhang MF, Yang FP, Jia GX, Zhang XH.** 2017. Genome size diversity in
757 *Lilium* (Liliaceae) is correlated with karyotype and environmental traits. *Frontiers in
758 Plant Science* **8**: 1303. doi: 10.3389/fpls.2017.01303.

759 **Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K.**
760 2010. Genome size correlates with growth form, habitat and phylogeny in the Andean
761 genus *Lasiocephalus* (Asteraceae). *Preslia* **82**: 127–148.

762 **Elliott TL, Zedek F, Barrett B, Bruhl J, Escudero M, Hroudová Z, Joly S, Larridon I,
763 Luceño M, Márquez-Corro JI, Martin-Bravo S, Muasya AM, Šmarda P, Thomas
764 WW, Wilson K, Bures P.** 2022. Chromosome size matters: Genome evolution in the
765 cyperid clade. *Annals of Botany* **130**: 999–1014. doi: 10.1093/aob/mcac136.

766 **Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, Roehrdanz PR,
767 Thiers BM, Burger JR, Corlett RT, Couvreur TLP, Dauby G, Donoghue JC,
768 Foden W, Lovett JC, Marquet PA, Merow C, Midgley G, Morueta-Holme N,
769 Neves DM, Oliveira-Filho AT, Kraft NJB, Park DS, Peet RK, Pillet M, Serra-
770 Diaz JM, Sandel B, Schildhauer M, Šimová I, Viole C, Wieringa JJ, Wiser SK,
771 Hannah L, Svenning JC, McGill BJ.** 2019. The commonness of rarity: Global and
772 future distribution of rarity across land plants. *Science Advances* **5**: eaaz0414. doi:
773 10.1126/sciadv.aaz0414.

774 **Environmental Systems Research Institute (ESRI).** 2014. ArcGIS Release 10. Redlands,
775 CA.

776 **Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ.** 2021.
777 Exploring environmental selection on genome size in angiosperms. *Trends in Plant
778 Science* **26**: 1039–1049. doi: 10.1016/j.tplants.2021.06.001.

779 **Forest F.** 2023. Species-level phylogenetic trees of all angiosperm species (100 trees).
780 <https://zenodo.org/record/7600341>.

781 **Francis D, Barlow PW. 1988.** Temperature and the cell cycle. *Symposia of the Society for*
782 *Experimental Biology* **42**: 181–201.

783 **Francis D, Davies MS, Barlow PW. 2008.** A strong nucleotypic effect on the cell cycle
784 regardless of ploidy level. *Annals of Botany* **101**: 747–757. doi: 10.1093/aob/mcn038.

785 **Freckleton R, Harvey P, Pagel M. 2002.** Phylogenetic analysis and comparative data: A test
786 and review of evidence. *American Naturalist* **160**: 712–726. doi: 10.1086/343873.

787 **Garcia S, Leitch IJ, Anadon-Rosell A, Canela MÁ, Gálvez F, Garnatje T, Gras A,**
788 **Hidalgo O, Johnston E, Mas de Xaxars G, Pellicer J, Siljak-Yakovlev S, Vallès J,**
789 **Vitales D, Bennett MD. 2014.** Recent updates and developments to plant genome
790 size databases. *Nucleic Acids Research* **42(D1)**: D1159–D1166. doi:
791 10.1093/nar/gkt1195.

792 **Gaston KJ, Blackburn TM, Greenwood JJ, Gregory RD, Quinn RM, Lawton JH. 2002.**
793 Abundance–occupancy relationships. *Journal of Applied Ecology* **37**: 39–59. doi:
794 10.1046/j.1365-2664.2000.00485.x.

795 **Gaston KJ. 2003.** *The Structure and Dynamics of Geographic Ranges*. New York, USA:
796 Oxford University Press.

797 **Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021.** The World Checklist of
798 Vascular Plants, a continuously updated resource for exploring global plant diversity.
799 *Scientific Data* **8**: 215. doi: 10.1038/s41597-021-00997-6.

800 **Gregory TR. 2022.** *Animal Genome Size Database*. <http://www.genomesize.com> (accessed
801 2/Oct/2022).

802 **Greilhuber J, Leitch IJ. 2013.** Genome size and the phenotype. In: J Greilhuber, J Doležel,
803 JF Wendel, eds. *Plant genome diversity, Vol. 2: Physical structure, behaviour and*
804 *evolution of plant genomes*. Wien: Springer, 323–344.

805 **Greimler J, Temsch EM, Xue Z, Weiss-Schneeweiss H, Volkova P, Peintinger M,**
806 **Wasowicz P, Shang H, Schanzer I, Chiapella JO. 2022.** Genome size variation in
807 *Deschampsia cespitosa* sensu lato (Poaceae) in Eurasia. *Plant Systematics and*
808 *Evolution* **308**: 9. doi: 10.1007/s00606-021-01796-7.

809 **Grime JP. 1998.** Plant classification for ecological purposes: Is there a role for genome size?
810 *Annals of Botany* **82**: 117–120. doi: 10.1006/anbo.1998.0723.

811 **Grime JP, Mowforth MA. 1982.** Variation in genome size—an ecological interpretation.
812 *Nature* **299**: 151–153. doi: 10.1038/299151a0.

813 **Grime JP, Shacklock JML, Brand SR. 1985.** Nuclear DNA contents, shoot phenology and
814 species co-existence in a limestone grassland community. *New Phytologist* **100**: 435–
815 445.

816 **Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL. 2004.** Evolution of genome size in
817 pines (*Pinus*) and its life-history correlates: supertree analyses. *Evolution* **58**: 1705–
818 1729. doi: 10.1111/j.0014-3820.2004.tb00456.x.

819 **Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila CA, Trimmer M, Leitch IJ,**
820 **Leitch AR. 2016.** Genome size and ploidy influence angiosperm species' biomass
821 under nitrogen and phosphorus limitation. *New Phytologist* **210**: 1195–1206. doi:
822 10.1111/nph.13881.

823 **Guo Q, Qian H, Zhang J. 2022.** On the relationship between species diversity and range
824 size. *Journal of Biogeography* **49**: 1911–1919. doi: 10.1111/jbi.14477.

825 **Gustafsson A. 1948.** Polyploidy, life form and vegetative reproduction. *Hereditas* **34**: 1–22.
826 doi: 10.1111/j.1601-5223.1948.tb02824.x.

827 **Hagerup O. 1932.** Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie.
828 *Hereditas* **16**: 19–40. doi: 10.1111/j.1601-5223.1932.tb02560.x.

829 **Hassler M. 2022.** World Plants. Synonymic Checklist and Distribution of the World Flora.
830 Version 13.2; last update July 2nd, 2022. - www.worldplants.de.

831 **Heilborn, O. 1930.** Temperature und Chromosomenkonjugation. *Svensk Botanisk Tidskrift*
832 **24:** 12–24.

833 **Hessen DO, Daufresne M, Leinaas HP. 2013.** Temperature-size relations from the cellular-
834 genomic perspective. *Biological Reviews of the Cambridge Philosophical Society* **88:**
835 476–489. doi: 10.1111/brv.12006.

836 **Ho LST, Ane C. 2014.** A linear-time algorithm for Gaussian and non-Gaussian trait
837 evolution models. *Systematic Biology* **63:** 397–408. doi: 10.1093/sysbio/syu005.

838 **Johnson C. 1998.** Species extinction and the relationship between distribution and
839 abundance. *Nature* **394:** 272–274. doi: 10.1038/28385.

840 **Jovani R, Lascelles B, Garamszegi LZ, Mavor R, Thaxter CB, Oro D. 2016.** Colony size
841 and foraging range in seabirds. *Oikos* **125:** 968–974. doi: 10.1111/oik.02781.

842 **Kang M, Tao J, Wang J, Ren C, Qi Q, Xiang QY, Huang H. 2014.** Adaptive and
843 nonadaptive genome size evolution in Karst endemic flora of China. *New Phytologist*
844 **202:** 1371–1381. doi: 10.1111/nph.12726.

845 **Kardiman R, Raebild A. 2018.** Relationship between stomatal density, size and
846 speed of opening in Sumatran rainforest species. *Tree Physiology* **38:** 696–705.

847 **Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann
848 NE, Linder P, Kessler M. 2017.** Climatologies at high resolution for the Earth land
849 surface areas. *Scientific Data* **4:** 170122. doi: 10.1038/sdata.2017.122.

850 **Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann
851 NE, Linder P, Kessler M. s. a.** Data from: Climatologies at high resolution for the
852 earth's land surface areas. *Dryad Digital Repository*, doi:10.5061/dryad.kd1d4

853 **Klimešová J, Doležal J, Prach K, Košnar J. 2012.** Clonal growth forms in Arctic plants and
854 their habitat preferences: A study from Petuniabukta, Spitsbergen. *Polish Polar
855 Research* **33:** 421–442. doi: 10.2478/v1018-3-012-0019-y.

856 **Knight CA, Ackerly DD. 2002.** Variation in nuclear DNA content across environmental
857 gradients: a quantile regression analysis. *Ecology Letters* **5:** 66–76. doi:
858 10.1046/j.1461-0248.2002.00283.x.

859 **Knight CA, Beaulieu JM. 2008.** Genome size scaling through phenotype space. *Annals of
860 Botany* **101:** 759–766. doi: 10.1093/aob/mcm321.

861 **Knight CA, Molinari NA, Petrov DA. 2005.** The large genome constraint hypothesis:
862 Evolution, ecology and phenotype. *Annals of Botany* **95:** 177–190. doi:
863 10.1093/aob/mci011.

864 **Koenker R, Portnoy S, Ng PT, Melly B, Zeileis A, Grosjean P, Moler C, Saad Y,
865 Chernozhukov V, Fernandez-Val I, Ripley BD. 2022.** Package ‘quantreg’. Cran R-
866 project. org.

867 **Kreiner JM, Kron P, Husband BC. 2017.** Evolutionary Dynamics of Unreduced Gametes.
868 *Trends in Genetics* **33:** 583–593. doi: 10.1016/j.tig.2017.06.009.

869 **Lawson T, Matthews J. 2020.** Guard Cell Metabolism and Stomatal Function. *Annual
870 Review of Plant Biology* **71:** 273–302. doi: 10.1146/annurev-arplant-050718-100251.

871 **Leitch AR, Leitch IJ. 2008.** Genomic plasticity and the diversity of polyploid plants.
872 *Science* **320:** 481–483. doi: 10.1126/science.1153585.

873 **Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD. 2019.** Angiosperm DNA C-
874 values Database (Release 9.0) <https://cvalues.science.kew.org/>

875 **Levin DA, Funderburg SW. 1979.** Genome size in angiosperms: Temperate versus tropical
876 species. *American Naturalist* **114:** 784–795. doi: 10.1086/283528.

877 **Levin DA. 2002.** *The role of chromosomal change in plant evolution.* Oxford: Oxford
878 University Press.

879 **Lisch D. 2013.** How important are transposons for plant evolution? *Nature Review Genetics*
880 **14:** 49–61. doi: 10.1038/nrg3374.

881 **Lubbe FC, Klimešová J, Henry HAL.** 2021. Winter belowground: Changing winters and
882 the perennating organs of herbaceous plants. *Functional Ecology* **35**: 1627–1639. doi:
883 10.1111/1365-2435.13858.

884 **Lwin AK, Bertolini E, Pè ME, Zuccolo A.** 2017. Genomic skimming for identification of
885 medium/highly abundant transposable elements in *Arundo donax* and *Arundo plinii*.
886 *Molecular Genetics and Genomics* **292**: 157–171. doi: 10.1007/s00438-016-1263-3.

887 **Lynch M, Conery JS.** 2003. The origins of genome complexity. *Science* **302**: 1401–1404.
888 doi: 10.1126/science.1089370.

889 **Lynch M.** 2007. The frailty of adaptive hypotheses for the origins of organismal complexity.
890 *Proceedings of the National Academy of Sciences USA* **104**: 8597–8604. doi:
891 10.1073/pnas.0702207104.

892 **MacGillivray CW & Grime JP.** 1995. Genome size predicts frost resistance in British
893 herbaceous plants: Implications for rates of vegetation response to global warming.
894 *Functional Ecology* **9**: 320.

895 **Mandáková T, Lysák MA.** 2018. Post-polyploid diploidization and diversification through
896 dysploid changes. *Current Opinion in Plant Biology* **42**: 55–65. doi:
897 10.1016/j.pbi.2018.03.001.

898 **Mannion PD, Upchurch P, Benson RB, Goswami A.** 2014. The latitudinal biodiversity
899 gradient through deep time. *Trends in Ecology Evolution* **29**: 42–50. doi:
900 10.1016/j.tree.2013.09.012.

901 **Mason AS, Pires CJ.** 2015. Unreduced gametes: meiotic mishap or evolutionary
902 mechanism? *Trends in Genetics* **31**: 5–10. doi: 10.1016/j.tig.2014.09.011.

903 **Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran CT, Cronin JT.** 2020. Plant
904 genome size influences stress tolerance of invasive and native plants via plasticity.
905 *Ecosphere* **11**: e03145. doi: 10.1002/ecs2.3145.

906 **Mohlhenrich ER, Mueller RL.** 2016. Genetic drift and mutational hazard in the evolution of
907 salamander genomic gigantism. *Evolution* **70**: 2865–2878. doi: 10.1111/evo.13084.

908 **Müntzing A.** 1936. The evolutionary significance of autopolyploidy. *Hereditas* **21**: 263–378.
909 doi: 10.1111/j.1601-5223.1936.tb03204.x.

910 **Orme D.** 2013. The caper package: comparative analysis of phylogenetics and evolution in
911 R. <https://cran.r-project.org/web/packages/caper/index.html>.

912 **Otto SP, Whitton J.** 2000. Polyploid incidence and evolution. *Annual Review of Genetics*
913 **34**: 401–437.

914 **Paterson AH, Bowers JE, Chapman BA.** 2004. Ancient polyploidization predating
915 divergence of the cereals, and its consequences for comparative genomics.
916 *Proceedings of the National Academy of Sciences, USA* **101**: 9903–9908. doi:
917 10.1073/pnas.0307901101.

918 **Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ.** 2018. Genome size diversity and its impact
919 on the evolution of land plants. *Genes* **9**: 88. doi: 10.3390/genes9020088.

920 **Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X,
921 Jiang Y, Leitch AR, Wei C.** 2022. Plant genome size modulates grassland
922 community responses to multi-nutrient additions. *New Phytologist* **236**: 2091–2102.
923 doi: 10.1111/nph.18496.

924 **Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL.** 2015. Permafrost soils
925 and carbon cycling. *Soil* **1**: 147–171. doi.org/10.5194/soil-1-147-201.

926 **QGIS Development Team.** 2022. QGIS Geographic Information System. Open Source
927 Geospatial Foundation Project. <http://qgis.osgeo.org>.

928 **Ramsey J, Schemske DW.** 1998. Pathways, mechanisms, and rates of polyploid formation in
929 flowering plants. *Annual Review of Ecology and Systematics* **29**: 467–501. doi:
930 10.1146/annurev.ecolsys.29.1.467.

931 **Rayburn AL, Auger JA. 1990.** Genome size variation in *Zea mays* ssp. *mays* adapted to
932 different altitudes. *Theoretical and Applied Genetics* **79**: 470–474. doi:
933 10.1007/BF00226155.

934 **Rice A, Glick G, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. 2015.** The chromosome counts database (CCDB) – a community
935 resource of plant chromosome numbers. *New Phytologist* **206**: 16–26. doi:
936 10.1111/nph.13191.

937 **Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I. 2019.** The global biogeography of polyploid plants. *Nature Ecology & Evolution* **3**: 265–273. doi: 10.1038/s41559-018-0787-9.

938 **Roddy AB, Théroux-Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro S, Gilbride AB, Jensen B, Jiang G-F, Perkins JA, Perkins SD, Loureiro J, Syed Z, Thompson RA, Kuebbing SE, Simonin KA. 2020.** The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. *International Journal of Plant Science* **181**: 75–87. doi:
939 10.1086/706186.

940 **Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, Nieukerken E van, Zarucchi J, Penev L, eds. 2019.** Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. Digital resource at www.catalogueoflife.org/annual-checklist/2019. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-884X.

941 **Rosseel Y. 2012.** “lavaan: An R Package for Structural Equation Modeling.” *Journal of Statistical Software* **48**: 1–36. doi: 10.18637/jss.v048.i02.

942 **Sabath N, Ferrada E, Barve A, Wagner A. 2013.** Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. *Genome Biology and Evolution* **5**: 966–977. doi: 10.1093/gbe/evt050.

943 **Sakai A, Larcher W. 1987** *Frost survival of plant. Responses and adaptations to freezing stress*. Springer, Berlin.

944 **Sakamura T, Stow I. 1926.** Über die experimentell veranlasste Entstehung von keimfähigen Pollenkörnern mit abweichenden Chromosomenzahlen. *Japanese Journal of Botany* **3**: 111–137.

945 **Schrader L, Schmitz, J. 2019.** The impact of transposable elements in adaptive evolution. *Molecular Ecology* **28**: 1537–1549.

946 **Sheth SN, Morueta-Holme N, Angert AL. 2020.** Determinants of geographic range size in plants. *New Phytologist* **226**: 650–665. doi: 10.1111/nph.16406.

947 **Schnablová R, Huang L, Klimešová J, Šmarda P, Herben T. 2021.** Inflorescence preformation prior to winter: a surprisingly widespread strategy that drives phenology of temperate perennial herbs. *New Phytologist* **229**: 620–630. doi: 10.1111/nph.16880.

948 **Schubert I, Vu GTH. 2016.** Genome stability and evolution: Attempting a holistic view. *Trends in Plant Science* **21**: 749–757. doi: 10.1016/j.tplants.2016.06.003.

949 **Sklenář P, Ptáček J, Klimeš A. 2022.** Genome size of alpine plants does not predict temperature resistance. *Planta* **256**: 18. doi: 10.1007/s00425-022-03935-x.

950 **Soltis DE, Soltis PS, Bennett MD, Leitch IJ. 2003.** Evolution of genome size in the angiosperms. *American Journal of Botany* **90**: 1596–1603. doi: 10.3732/ajb.90.11.1596.

951 **Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. 2015.** Polyploidy and genome evolution in plants. *Current Opinion in Genetics and Development* **35**: 119–25. doi:
952 10.1016/j.gde.2015.11.003.

979 **Sonkoly J, Deák B, Valkó O, Molnár VA, Tóthmérész B, Török P.** 2017. Do large-seeded
980 herbs have a small range size? The seed mass–distribution range trade-off hypothesis.
981 *Ecology and Evolution* **7**: 11204–11212. doi: 10.1002/ece3.3568.

982 **Soto Gomez M, Brown MJM, Pironon S, Veselý P, Bureš P, Elliott TL, Zedek F, Pellicer
983 J, Forest F, Nic Lughadha E, Leitch IJ.** 2023. Genome size is positively correlated
984 with extinction risk in herbaceous angiosperms. *New Phytologist* **XXX**: XXX–XXX.

985 **Souza G, Costa L, Guignard MS, Van-Lume B, Pellicer J, Gagnon E, Leitch IJ, Lewis
986 GP.** 2019. Do tropical plants have smaller genomes? Correlation between genome
987 size and climatic variables in the *Caesalpinia* Group (Caesalpinioidae,
988 Leguminosae). *Perspectives in Plant Ecology, Evolution and Systematics* **38**: 13–23.
989 doi: 10.1016/j.ppees.2019.03.002.

990 **Sparrow AH, Underbrink AG, Sparrow RC.** 1967. Chromosomes and cellular
991 radiosensitivity. I. The relationship of D_{α} to chromosome volume and complexity in
992 seventy-nine different organisms. *Radiation Research* **32**: 915–945.

993 **Spence ES, Fant JB, Gailing O, Griffith MP, Havens K, Hipp AL, Kadav P, Kramer A,
994 Thompson P, Toppila R, Westwood M, Wood J, Zumwalde BA, Hoban S.** 2021.
995 Comparing Genetic Diversity in Three Threatened Oaks. *Forests* **12**: 561. doi:
996 10.3390/f12050561.

997 **Stebbins GL.** 1940. The significance of polyploidy in plant evolution. *American Naturalist*
998 **74**: 54–66.

999 **Stebbins GL.** 1966. Chromosomal variation and evolution: Polyploidy and chromosome size
1000 and number shed light on evolutionary processes in higher plants. *Science* **152**: 1463–
1001 1469. doi: 10.1126/science.152.3728.1463.

1002 **Šimová I, Herben T.** 2012. Geometrical constraints in the scaling relationships between
1003 genome size, cell size and cell cycle length in herbaceous plants. *Proceedings of the
1004 Royal Society B: Biological Sciences* **279**: 867–875. doi: 10.1098/rspb.2011.1284.

1005 **Šmarda P, Hejcmán M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P,
1006 Hejcmánová P, Schellberg J.** 2013. Effect of phosphorus availability on the selection
1007 of species with different ploidy levels and genome sizes in a long-term grassland
1008 fertilization experiment. *New Phytologist* **200**: 911–921. doi: 10.1111/nph.12399.

1009 **Šmarda P, Klem K, Knápek O, Veselá B, Veselá K, Holub P, Kuchař V, Šílerová A,
1010 Horová L, Bureš P.** 2023. Growth, physiology, and stomatal parameters of plant
1011 polyploids grown under ice age, present-day, and future CO₂ concentrations. *New
1012 Phytologist* in press. doi: 10.1111/nph.18955.

1013 **Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, Veselý P,
1014 Šmerda J, Rotreklová O, Bureš P.** 2019. Genome sizes and genomic
1015 guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for
1016 1700 species. *Preslia* **91**: 117–142. doi: 10.23855/preslia.2019.117.

1017 **Taylor A, Weigelt P, Denelle P, Cai L, Kretzschmar H.** 2023. The contribution of plant life and
1018 growth forms to global gradients of vascular plant diversity. *New Phytologist*: in
1019 press. doi: 10.1111/nph.19011.

1020 **Ten Caten C, Holian LA, Dallas T.** 2022. Effects of occupancy estimation on abundance–
1021 occupancy relationships. *Biology Letters* **18**: 20220137. doi: 10.1098/rsbl.2022.0137.

1022 **Tenaillon MI, Hollister JD, Gaut BS.** 2010. A triptych of the evolution of plant
1023 transposable elements. *Trends in Plant Science* **15**: 471–478. doi:
1024 10.1016/j.tplants.2010.05.003.

1025 **Théroux-Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK,
1026 Tholen D, McElrone AJ, Simonin KA, Brodersen CR.** 2021. Maximum CO₂
1027 diffusion inside leaves is limited by the scaling of cell size and genome size.

1028 *Proceedings of the Royal Society B: Biological Sciences* **288**: 20203145. doi:
1029 10.1098/rspb.2020.3145.

1030 **Trabucco A, Zomer RJ. 2018.** Global aridity index and potential evapo-transpiration (ET0)
1031 Climate Database v2. CGIAR Consortium for Spatial Information (CGIAR-CSI).
1032 Published online, available from the CGIAR-CSI GeoPortal at
1033 <https://cgiarcsi.community>

1034 **Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. 2019.** Diversity in
1035 genome size and GC content shows adaptive potential in orchids and is closely linked
1036 to partial endoreplication, plant life-history traits and climatic conditions. *New*
1037 *Phytologist* **224**: 1642–1656. doi: 10.1111/nph.15996.

1038 **Vasconcelos T. 2022.** Discovering the rules of plant biogeography using a trait-based
1039 approach, *preprint*, doi: 10.32942/osf.io/azytc.

1040 **Veleba A, Zedek F, Horová L, Veselý P, Srba M, Šmarda P, Bureš P.** Is the evolution of
1041 carnivory connected with genome size reduction? *American Journal of Botany* **107**:
1042 1253–1259. doi: 10.1002/ajb2.1526.

1043 **Veselý P, Bureš P, Šmarda P, Pavláček T. 2012.** Genome size and DNA base composition
1044 of geophytes: The mirror of phenology and ecology? *Annals of Botany* **109**: 65–75.
1045 doi: 10.1093/aob/mcr267.

1046 **Veselý P, Bureš P, Šmarda P. 2013.** Nutrient reserves may allow for genome size increase:
1047 Evidence from comparison of geophytes and their sister non-geophytic relatives.
1048 *Annals of Botany* **112**: 1193–1200. doi: 10.1093/aob/mct185.

1049 **Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K,
1050 Šílerová A, Šmerda J, Knápek O. 2020.** Environmental pressures on stomatal size
1051 may drive plant genome size evolution: Evidence from a natural experiment with
1052 Cape geophytes. *Annals of Botany* **126**: 323–330. doi: 10.1093/aob/mcaa095.

1053 **Vidal-Russell R, Tadey M, Urfusová R, Urfus T, Souto CP. 2022.** Evolutionary
1054 importance of the relationship between cytogeography and climate: New insights on
1055 creosote bushes from North and South America. *Plant Diversity* **44**: 492–498. doi:
1056 10.1016/j.pld.2021.11.006.

1057 **Vinogradov AE. 2003.** Selfish DNA is maladaptive: evidence from the plant Red list. *Trends
1058 in Genetics* **19**: 609–614. doi: 10.1016/j.tig.2003.09.010.

1059 **Vitousek PM, Border S, Houlton BZ, Chadwick OA. 2010.** Terrestrial phosphorus
1060 limitation: mechanisms, implications, and nitrogen–phosphorus interactions.
1061 *Ecological Applications* **20**: 5–15. doi: 10.1890/08-0127.1.

1062 **Wagenmakers EJ, Farrell S. 2004.** AIC model selection using Akaike weights.
1063 *Psychonomic Bulletin & Review* **11**: 192–196. doi: 10.3758/bf03206482.

1064 **Wang X, Wang J, Jin D, Guo H, Lee T-H, Liu T, Paterson AH. 2015.** Genome alignment
1065 spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters
1066 inferred dates for key evolutionary events. *Molecular Plant* **8**: 885–898. doi:
1067 10.1016/j.molp.2015.04.004.

1068 **WCSP. 2017.** WCSP: World Checklist of Selected Plant Families: Royal Botanic Gardens,
1069 Kew. URL: <http://apps.kew.org/wcsp/home.do>, Retrieved 06 February 2017

1070 **Webb TJ, Freckleton RP, Gaston KJ. 2012.** Characterizing abundance–occupancy
1071 relationships: there is no artefact. *Global Ecology and Biogeography* **21**: 952–957.
1072 doi: 10.1111/j.1466-8238.2011.00736.x.

1073 **Wendel JF, Jackson SA, Meyers BC, Wing RA. 2016.** Evolution of plant genome
1074 architecture. *Genome Biology* **17**: 37. doi: 10.1186/s13059-016-0908-1.

1075 **Wendel JF. 2000.** Genome evolution in polyploids. *Plant Molecular Biology* **42**: 225–249.
1076 doi: 10.1007/978-94-011-4221-2_12.

1077 **Wendel JF. 2015.** The wondrous cycles of polyploidy in plants. *American Journal of Botany*
1078 **102:** 1753–1756. doi: 10.3732/ajb.1500320.

1079 **Werren JH. 2011.** Selfish genetic elements, genetic conflict, and evolutionary innovation.
1080 *Proceedings of the National Academy of Sciences USA* **108**(Suppl 2): 10863–10870.
1081 doi: 10.1073/pnas.1102343108.

1082 **Yu J, Li D, Lou Y, Guo S. 2018.** Nuclear DNA content variation of herbaceous angiosperm
1083 species on 10 global latitudinal transects. *Journal of the Torrey Botanical Society* **145**:
1084 340–352. doi: 10.3159/TORREY-D-16-00062.1.

1085 **Zachariassen KE, Kristiansen E. 2000.** Ice nucleation and antinucleation in nature (a
1086 review). *Cryobiology* **41**: 2710–3279. doi: 10.1006/cryo.2000.2289.

1087 **Zedek F, Bureš P. 2019.** Pest arthropods with holocentric chromosomes are more resistant to
1088 sterilizing ionizing radiation. *Radiation Research* **191**: 255–261. doi:
1089 10.1667/RR15208.1.

1090 **Zedek F, Plačková K, Veselý P, Šmerda J, Šmarda P, Horová L, Bureš P. 2020.**
1091 Endopolyploidy is a common response to UV-B stress in natural plant populations,
1092 but its magnitude may be affected by chromosome type. *Annals of Botany* **126**: 883–
1093 889. doi: 10.1093/aob/mcaa109.

1094 **Zedek F, Šmerda J, Veselý P, Horová L, Kocmanová J, Bureš P. 2021.** Elevation-
1095 dependent endopolyploid response suggests that plants with holocentric chromosomes
1096 are less stressed by UV-B. *Botanical Journal of the Linnean Society* **195**: 106–113.
1097 doi: 10.1093/botlinnean/boaa054.

1098 **Zedek F, Veselý P, Tichý L, Elliott TL, Garbolino E, de Ruffray P, Bureš P. 2022.**
1099 Holocentric plants are more competitive under higher UV-B doses. *New Phytologist*
1100 **233**: 15–21. doi: 10.1111/nph.17750.

1101 **Zonneveld BJM. 2019.** The DNA weights per nucleus (genome size) of more than 2350
1102 species of the Flora of The Netherlands, of which 1370 are new to science, including
1103 the pattern of their DNA peaks. *Forum Geobotanicum* **8**: 24–78. doi:
1104 10.3264/FG.2019.1022.

1105

1106 **Figure captions**

1107

1108 **Fig. 1** Expected associations between genome size and (a, b) range size and (c, d) latitude
1109 based on four hypotheses outlined in the Introduction. The question mark in (d) indicates
1110 uncertainty about the potential shape of the curve. Given this uncertainty, we present a curve
1111 that could possibly result from the effects of temperature.

1112

1113 **Fig. 2** Associations between genome and range size per species (a, b, c). The association of
1114 the raw data between genome and range size is shown in (a), whereas both variables are log-
1115 transformed in the other two plots (b, c). The slope estimates from the quantile regression,
1116 including 95% confidence intervals (dark grey), are indicated in (c). The solid red line in (b)
1117 indicates the fit of the ordinary least squares (OLS) regressions, while the solid red line in (c)
1118 indicates the slope value from the OLS analysis. Dashed red lines (in b, c) represent 95%
1119 confidence intervals.

1120

1121 **Fig. 3** The global distribution of mean genome size (a) and polyploid proportion (b) in
1122 flowering plants. Mean genome size (2C) and the proportion of polyploids were calculated
1123 per TDWG Level-3 region. The two plots on the left side show (a) the distribution of genome
1124 size and (b) the proportion of polyploids across latitude. Dark red and dark blue indicate
1125 TDWG regions with the highest and lowest temperatures in the coldest quarter, respectively
1126 (BIO11 from CHELSA). The solid line in the plot indicates the mean from the regression fit.
1127 Dashed lines indicate 95% confidence intervals. The size of points in the plots indicates the
1128 weights used in the regression analysis. The weight was calculated as the ratio of the number
1129 of species for which we have genome size data (or the proportion of polyploids) to the
1130 number of all species in the TDWG. The maps on the right side show the distribution of (a)
1131 mean genome size and (b) polyploid proportion, with dark red and light yellow TDWG
1132 regions indicating areas with relatively high and low values for each variable, respectively.

1133

1134 **Fig. 4** The association of genome size (2C; Gbp) and latitude across four growth forms
1135 groupings. Plot (a) is based on species genome sizes (grey circles), whereas the latter four
1136 plots (b, c, d, e) represent the mean genome size calculated per TDWG for a given growth
1137 form. All results are based on polynomial regressions of the 3rd order, where solid lines
1138 represent the model estimates. The dashed lines in (a) show the 95% confidence intervals.

1139

1140 **Fig. 5** Proposed major factors (to the left of arrows) affecting physiological, anatomical, and
1141 molecular response (to the right of arrows), resulting in expansions/contractions of the
1142 genome and thus ultimately forming the global latitudinal trend in genome size (S-shaped
1143 curve). Relatively high genome sizes in the temperate regions could be the result of relaxed
1144 selective pressure, whereas various drivers might be constraining or pushing this trait in
1145 tropical and arctic regions. The proportion of polyploid species (low in the tropics and
1146 increasing toward the poles), which is not included in the figure, could also weakly contribute
1147 to the observed latitudinal trend in genome size (see Table 2).

1148

1149 **Supporting Information**

1150 Additional Supporting Information may be found online in the Supporting Information
1151 section at the end of the article.

1152
1153 **Fig. S1** Pearson's correlation coefficients (r) among 29 climatic variables assessed to be
1154 included in the multiple linear regression model explaining genome size variation along the
1155 global latitudinal gradient. Dark red and dark blue circles indicate high and low r values,
1156 respectively. Larger circles in the upper triangle represent stronger correlations between
1157 variables (both negative and positive), whereas the numbers in the lower triangle indicate the
1158 r values.

1159 **Fig. S2** Global distribution of mean geographic range sizes for those species included in the
1160 genome size dataset (a) and for all species in the WCVP dataset (b) mapped per TDWG
1161 Level-3 region. The two plots on the left-hand side of the figure show the distribution of
1162 mean geographic range sizes across the global latitudinal gradient. Dark red shading in the
1163 maps on the right-hand side of the figure indicates relatively high mean range sizes of species
1164 included in each TDWG unit, whereas light yellows indicate TDWGs with species with
1165 relatively small range sizes.

1166 **Fig. S3** Associations between genome and range size (as Extent of Occurrence, EOO) per
1167 species considering phylogenetic relationships. The solid red line in (a) indicates the fit of the
1168 phylogenetic generalized least squares regression (PGLS), while the red line in (b) indicates
1169 the slope value from the phylogenetic quantile regression analysis. The slope estimates from
1170 the phylogenetic quantile regression, including 95% confidence intervals (error bars), are
1171 indicated in (b). Dashed red lines represent 95% confidence intervals. Both genome and
1172 range size are transformed by \log_{10} in (a) and (b).

1173 **Fig. S4** Associations between genome and range size per species when the number of
1174 occupied TDWG regions (instead of Extent of Occurrence, EOO) is used as a measure of
1175 range size. The association of the raw data between genome and range size is shown in (a),
1176 whereas both variables are log-transformed in the other two plots (b, c). The slope estimates
1177 from the quantile regression, including 95% confidence intervals (dark grey), are indicated in
1178 (c). The solid red line in (b) indicates the fit of the ordinary least squares (OLS) regressions,
1179 while the solid red line in (c) indicates the slope value from the OLS analysis. Dashed red
1180 lines represent 95% confidence intervals.

1181 **Fig. S5** Associations between genome and range size per species considering phylogenetic
1182 relationships when the number of occupied TDWG regions (instead of the Extent of
1183 Occurrence, EOO) is used as a measure of range size. The solid red line in (a) indicates the fit of the
1184 phylogenetic generalized least squares regression (PGLS), while the red line in (b)
1185 indicates the slope value from the phylogenetic quantile regression analysis. The slope
1186 estimates from the phylogenetic quantile regression, including 95% confidence intervals
1187 (error bars), are indicated in (b). Dashed red lines represent 95% confidence intervals. Both
1188 genome and range size are transformed by \log_{10} in (a) and (b).

1189 **Fig. S6** Associations between mean chromosome size and range size (as Extent of
1190 Occurrence, EOO) per species. The solid red lines in (a) and (c) indicate the fit of the
1191 ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS) regressions,
1192 respectively. The solid black circles and the gray shading in (b) represent the slope estimates
1193 and the 95% confidence intervals across 19 quantiles, whereas the hollow circles and the
1194 error bars in (d) indicate slope estimates and the 95% confidence intervals of the phylogenetic

1195 quantile regression. The horizontal red line in (b) represents the slope estimate of the OLS
1196 regression, while the horizontal red line in (d) shows the slope estimate of the PGLS
1197 regression. Dotted red lines in all four plots indicate the 95% confidence intervals of the slope
1198 estimates.

1199 **Fig. S7** Associations between mean chromosome size and range size (as the number of
1200 occupied TDWG regions) per species. The solid red lines in (a) and (c) indicate the fit of the
1201 ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS) regressions,
1202 respectively. The solid black circles and the gray shading in (b) represent the slope estimates
1203 and the 95% confidence intervals across 19 quantiles, whereas the hollow circles and the
1204 error bars in (d) indicate slope estimates and the 95% confidence intervals of the phylogenetic
1205 quantile regression. The horizontal red line in (b) represents the slope estimate of the OLS
1206 regression, while the horizontal red line in (d) shows the slope estimate of the PGLS
1207 regression. Dotted red lines in all four plots indicate the 95% confidence intervals of the slope
1208 estimates.

1209 **Fig. S8** Mean genome sizes (2C; Gbp) averaged per TDWG region for the two most species-
1210 rich monocot (a – Orchidaceae, b – Poaceae) and dicot (c – Asteraceae, d – Fabaceae)
1211 families. Dark red colors indicate relatively large mean genome sizes, whereas light yellow
1212 shades indicate TDWG regions with relatively small mean genome sizes.

1213 **Fig. S9** The global distribution of mean chromosome size in flowering plants calculated per
1214 TDWG region. The plot on the left side shows the distribution of mean chromosome sizes
1215 across latitudes, with dark reds indicating TDWG regions with high temperatures in the
1216 coldest quarter (BIO11 from Bioclim) and dark blues showing regions with low temperatures.
1217 The size of points in the plots indicates the weights used in the regression analysis (see
1218 Methods for details). The map on the right side shows the distribution of mean chromosome
1219 sizes mapped according to each TDWG region, where dark reds indicate relatively high
1220 values.

1221 **Fig. S10** Mean genome sizes (2C; Gbp) across the global latitudinal gradient for the Old
1222 World (a) and New World (b). Circles in both plots represent the genome size averaged per
1223 TDWG region.

1224 **Fig. S11** Latitudinal distribution of the percentage of (a) nongeophyte, (b) annual, (c)
1225 geophyte, and (d) woody species in our genome size dataset (Dataset S2).

1226 **Fig. S12** Path analysis of causal relationships among the effects of the growing season
1227 temperature (GST) and percentages of species of different growth forms on the mean genome
1228 size in TDWG regions: (a) nongeophytes, (b) annuals, (c) geophytes, and (d) woody species.
1229 The numbers indicate standardized regression coefficients from the path analyses. The arrows
1230 show the direction of the causal effects, their thickness indicates the relative effects, the
1231 fading indicates significance of the effect and the color indicates positive (red) or negative
1232 (blue) effect.

1233 **Fig. S13** Mean genome sizes (2C; Gbp) across the global latitudinal gradient illustrating
1234 TDWG regions that were glaciated (blue) and non-glaciated (red) during the last glacial
1235 maximum (LGM) approximately 18,000 years before the present. We assessed the glaciation
1236 status of each TDWG region at the Last Glacial Maximum (LGM; ~18,000 years BP) using
1237 past climatic reconstructions from Ehlers (2015). We considered TDWG regions to be
1238 ‘Glaciated’ if their centroids were covered by the ice sheets during the LGM (Dataset S2).

1239

1240 **Dataset S1** Dataset containing 16,017 angiosperm taxa, their genome sizes, chromosome
1241 numbers, chromosome sizes, geographic ranges, latitudinal centroids, and growth forms.

1242 **Dataset S2** Dataset containing 369 TDWGs (Botanical countries), their geographic centroids,
1243 counts of all angiosperm taxa and counts of angiosperm taxa with genomic traits; mean
1244 values for genome size, chromosome size, range size; mean values for genome size in growth
1245 forms; proportion of polyploid taxa; glaciation status; growth form percentages in TDWG
1246 regions.

1247

1248 **Table S1** Bioclim variables as they explain the variance in 2C genome size across TDWG
1249 regions in the polynomial regression of a given order.

1250 **Table S2** Results of quantile regression of 2C genome size on range size (EOO).

1251 **Table S3** Results of phylogenetic quantile regression of 2C genome size on range size
1252 (EOO).

1253 **Table S4** Results of quantile regression of genome size on range size (TDWGs).

1254 **Table S5** Results of phylogenetic quantile regression of genome size on range size
1255 (TDWGs).

1256 **Table S6** Results of OLS and PGLS regressions of mean chromosome size on range size
1257 (EOO).

1258 **Table S7** Results of quantile regression of mean chromosome size on range size (EOO).

1259 **Table S8** Results of phylogenetic quantile regression of mean chromosome size on range size
1260 (EOO).

1261 **Table S9** Results of OLS and PGLS regressions of mean chromosome size on range size
1262 (TDWGs).

1263 **Table S10** Results of quantile regression of mean chromosome size on range size (TDWGs).

1264 **Table S11** Results of phylogenetic quantile regression of mean chromosome size on range
1265 size (TDWGs).

1266 **Table S12** Additional regressions of 2C genome size on other biologically relevant variables.

1267 **Table S13** Results of regressions of 2C genome size on percentage of growth forms in
1268 TDWGs.

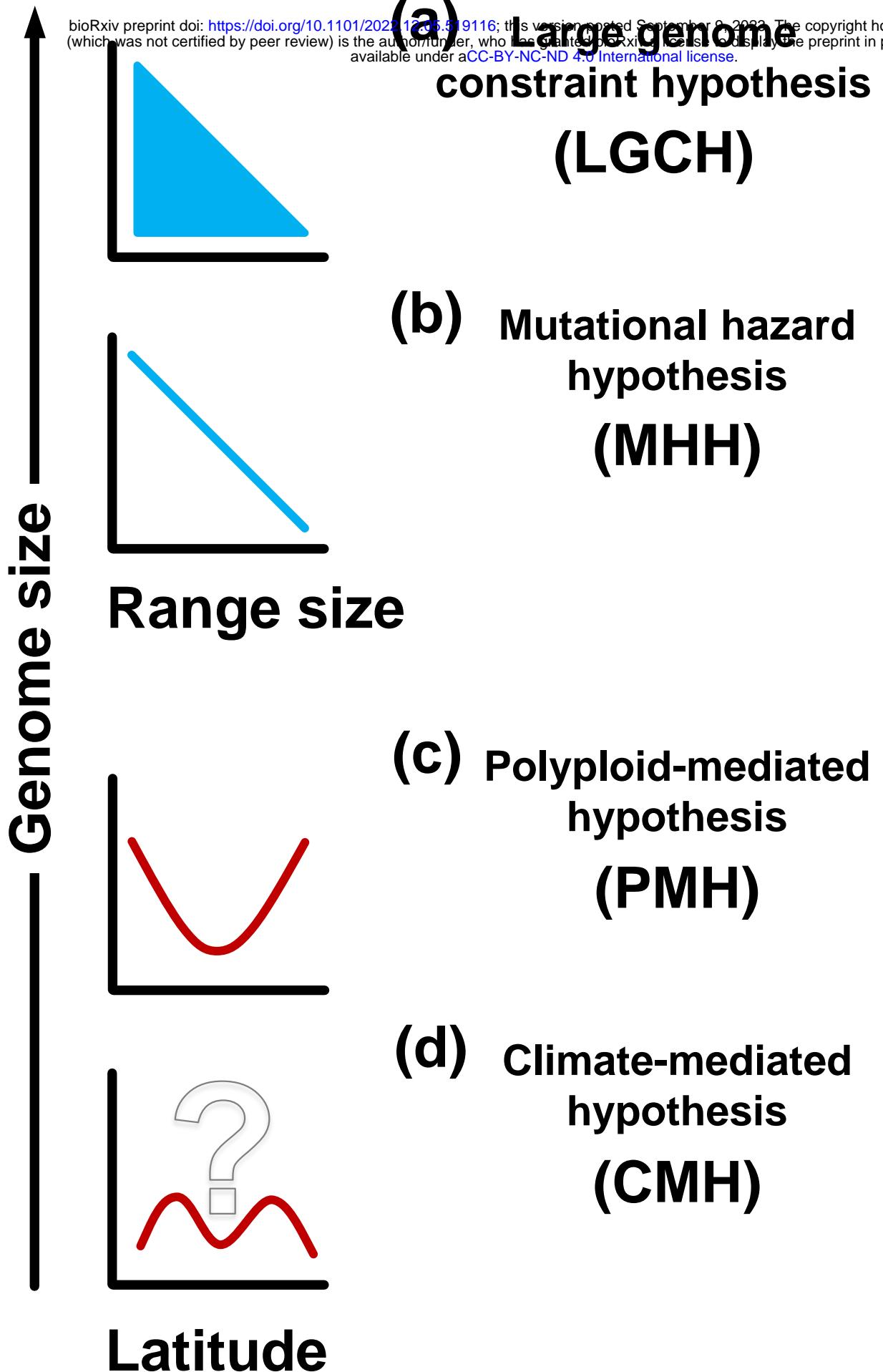
1269 **Table S14** Results of regressions of 2C genome size on additive effects of GST and
1270 percentage of growth forms in TDWGs.

Table 1: Results of OLS and PGLS regressions of 2C genome size on range size

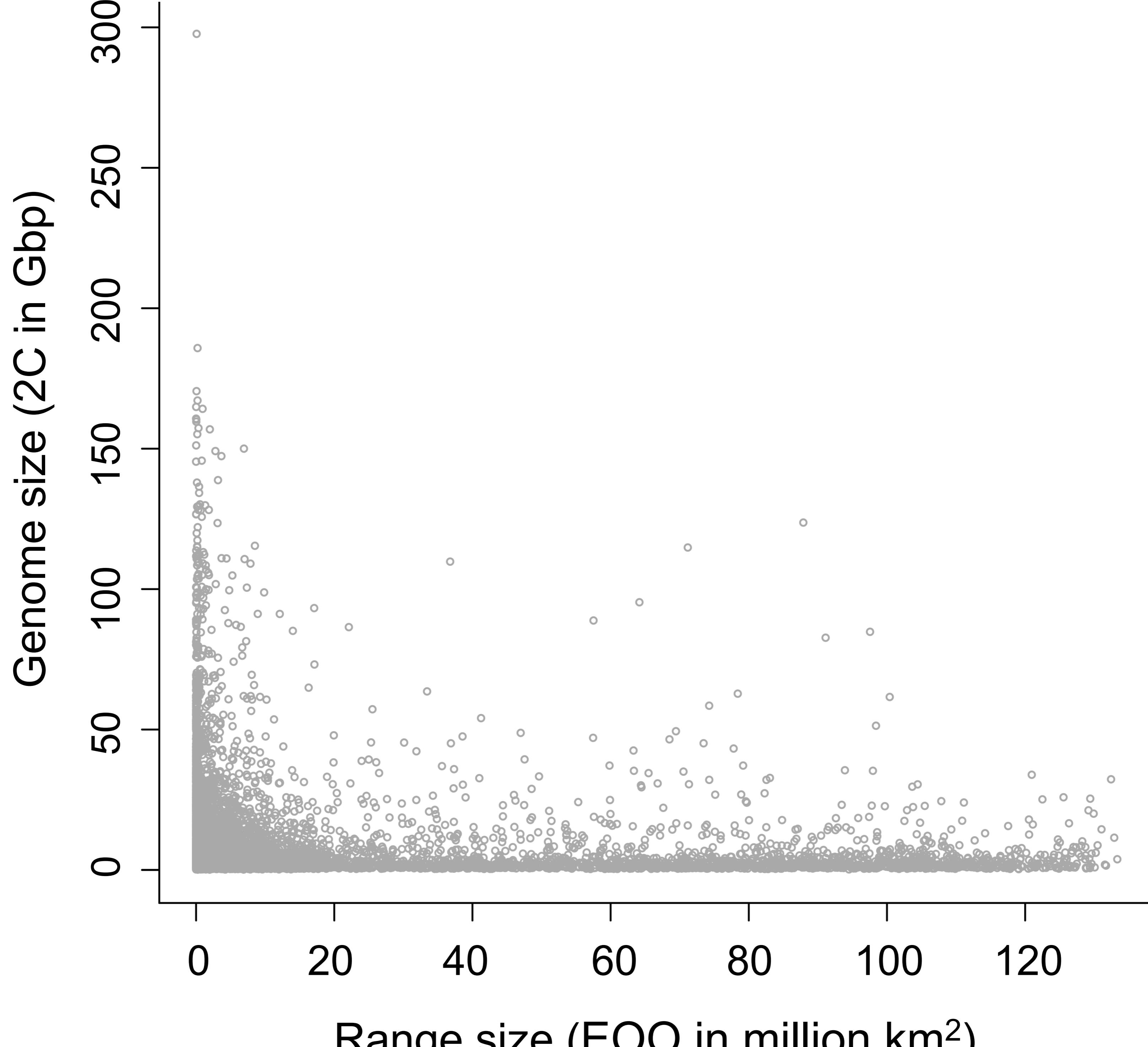
OLS model: $\log_{10}(2C \text{ genome size}) \sim \log_{10}(\text{Range size})$					
Model term	b_i	95%CI	t	P	R^2_{adj}
Intercept	3.746	<3.708, 3.784>	191.71	<2E-16	0.012
$\log_{10}(\text{Range size})$	-0.039	<-0.046, -0.033>	-12.24	<2E-16	
PGLS model: $\log_{10}(2C \text{ genome size}) \sim \log_{10}(\text{Range size})$					
Model term	b_i	95%CI	P	lambda	R^2_{adj}
Intercept	3.583	<3.5782, 3.5887>	<2E-16	0.916	0.002
$\log_{10}(\text{Range size})$	-0.007	<-0.008, -0.0066>	1.31E-06		

Table 1: Results of ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regression of 2C genome size on range size. b_i - regression estimates of model terms; 95%CI - lower and upper 95% confidence intervals of the regression estimates; R^2_{adj} - R squared adjusted indicating explained variance. The OLS analysis was performed with 12,137 species. The PGLS analysis was performed with 12,123 species. The PGLS was performed repeatedly with one hundred different trees (see Methods). Therefore, the values for PGLS are averages across these one hundred regressions.

1271

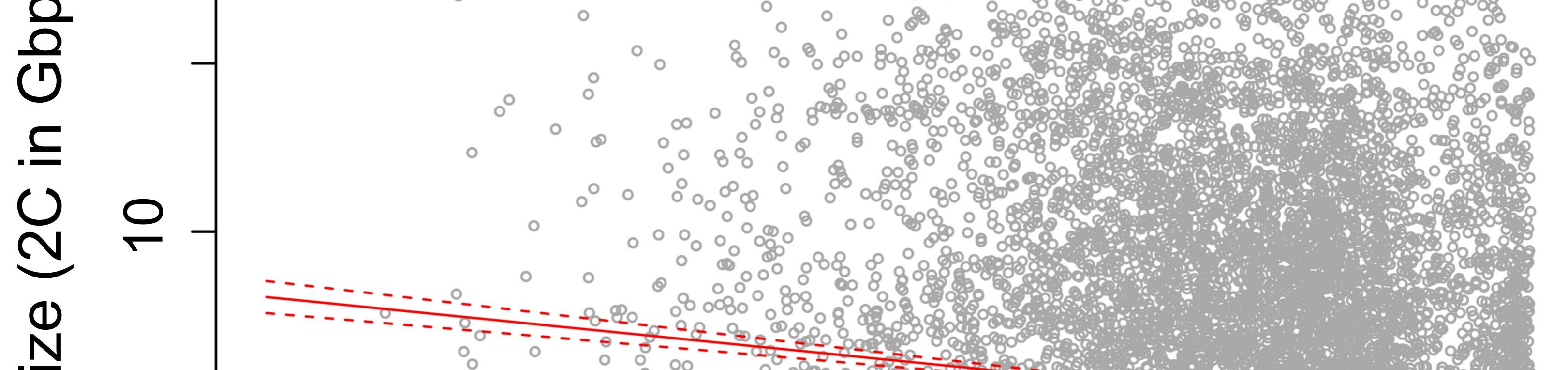

Table 2: Results of linear and polynomial regressions of 2C genome size and polyploid proportion on various predictors.

Polynomial regression (N=367): $\log_{10}(2C \text{ genome size}) \sim \text{latitude} + \text{latitude}^2 + \text{latitude}^3$					
Model term	b_i	95%CI	t	P	R^2_{adj}
Intercept	3.320	<3.305, 3.335>	434.02	<2E-16	0.4012
Latitude	2.136E-03	<1.67E-03, 2.60E-03>	9.07	<2E-16	
Latitude ²	6.734E-05	<5.85E-05, 7.62E-05>	14.99	<2E-16	
Latitude ³	-1.215E-06	<-1.40E-06, -1.03E-06>	-13.09	<2E-16	
Polynomial regression (N=368): polyploid proportion $\sim \text{latitude} + \text{latitude}^2$					
Model term	b_i	95%CI	t	P	R^2_{adj}
Intercept	0.344	<0.330, 0.357>	49.06	<2E-16	0.2947
Latitude	-1.11E-03	<-1.48E-03, -7.27E-04>	-5.75	1.95E-08	
Latitude ²	5.47E-05	<4.59E-05, 6.35E-05>	12.19	<2E-16	
Linear regression (N=367): $\log_{10}(2C \text{ genome size}) \sim \text{polyploid proportion}$					
Model term	b_i	95%CI	t	P	R^2_{adj}
Intercept	3.372	<3.338, 3.407>	191.10	<2E-16	0.0177
Polyploid proportion	0.116	<0.033, 0.199>	2.75	0.006	
Polynomial regression (N=365): $\log_{10}(2C \text{ genome size}) \sim \text{GST} + \text{GST}^2$					
Model term	b_i	95%CI	t	P	R^2_{adj}
Intercept	3.444	<3.405, 3.483>	172.53	<2E-16	0.4075
GST	0.005	<-4.33E-05, -0.0099>	1.95	0.052	
GST ²	0.000	<-0.0005, -0.0003>	-5.34	<2E-07	

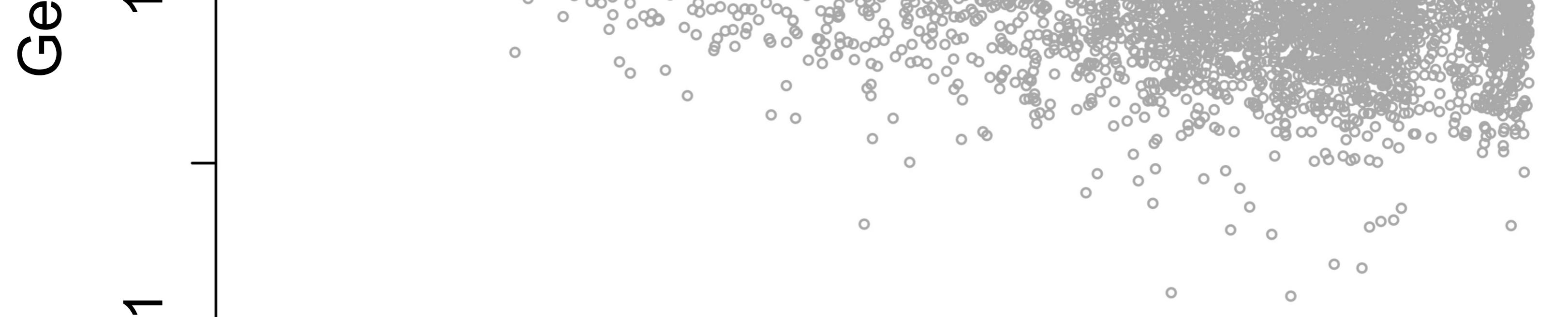

Table 2: N - number of TDWGs included in the analysis; b_i - regression estimates of model terms; 95%CI - lower and upper limits of 95% confidence intervals of the regression estimates; R^2_{adj} - R squared adjusted indicating explained variance. GST is the mean temperature of the growing season. In the case of polynomial regressions, we fitted orthogonal polynomials using the "poly" function in

base R, but the parameter "raw" was set to "TRUE" to obtain parameter estimates corresponding to response variables.

1272



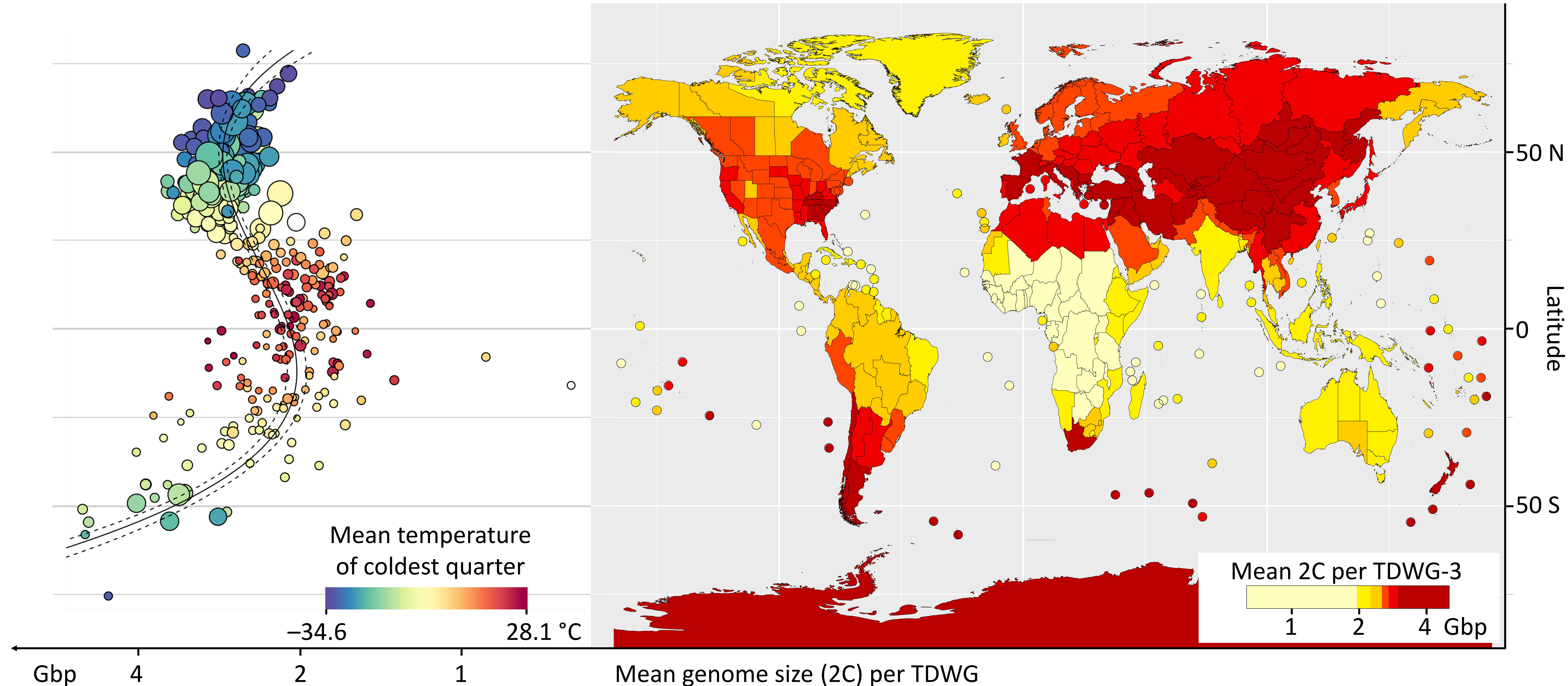
(a) Range size, EOO ~ Genome size per species


Range size (EOO in million km²)

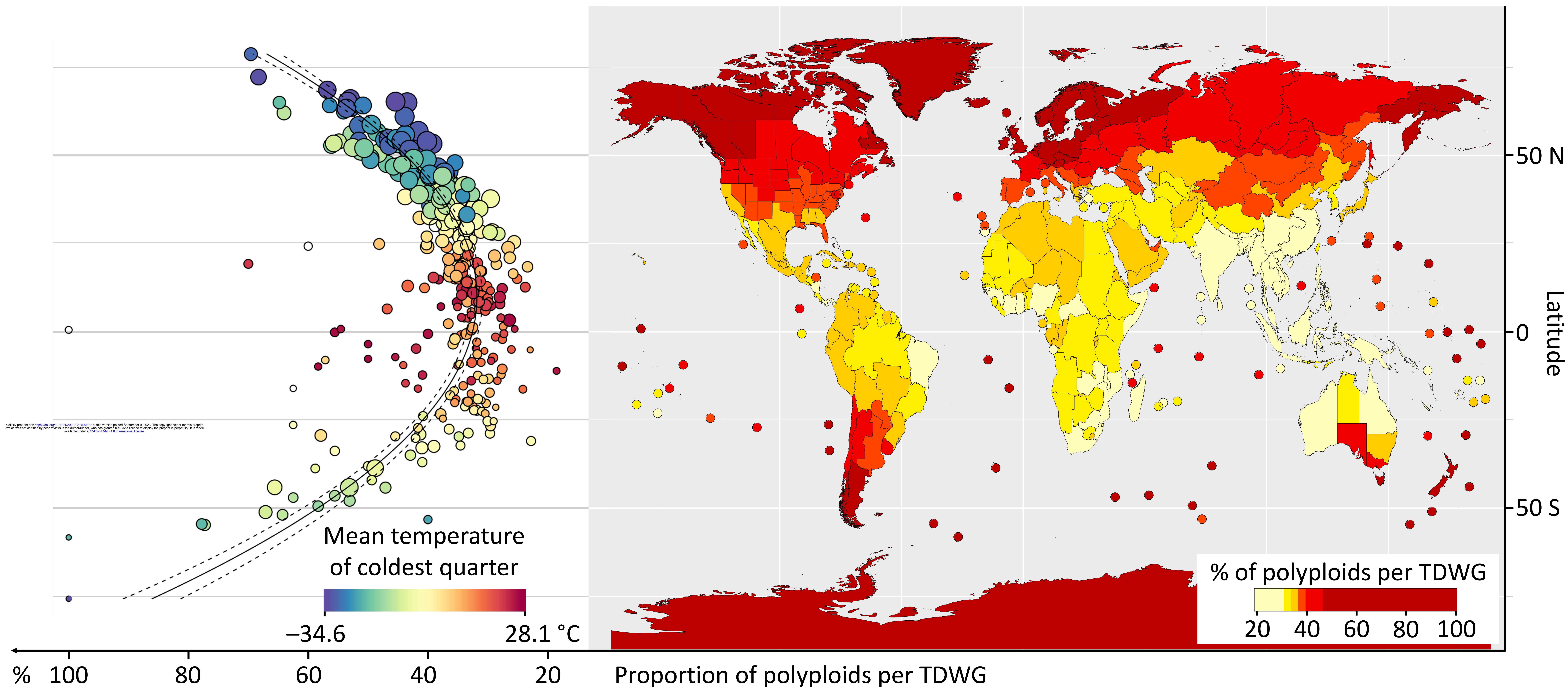
(b) OLS: Range size, EOO → Genome size per species

Range size (EOO in km²)

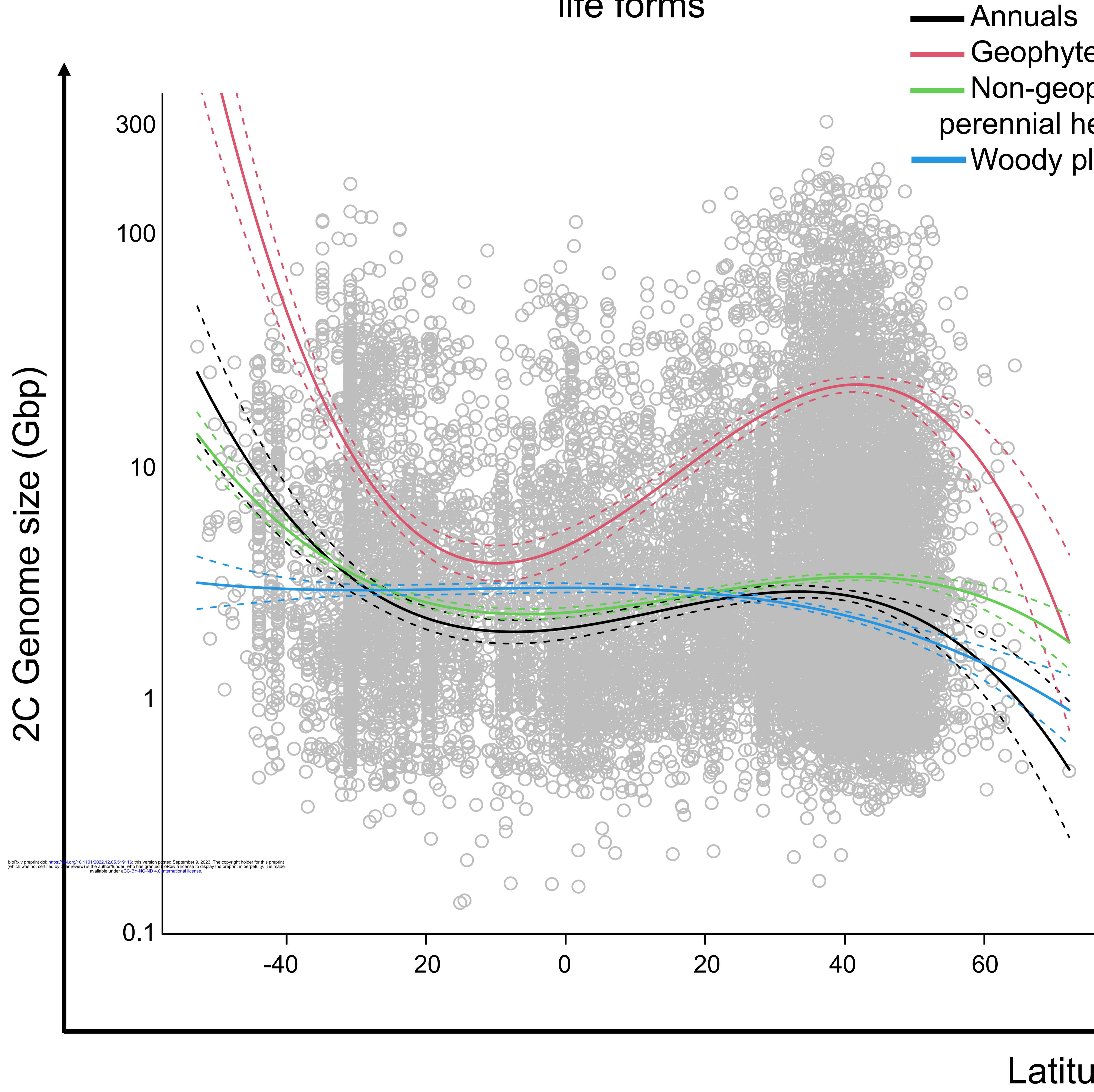
(c) Quantile regression per species



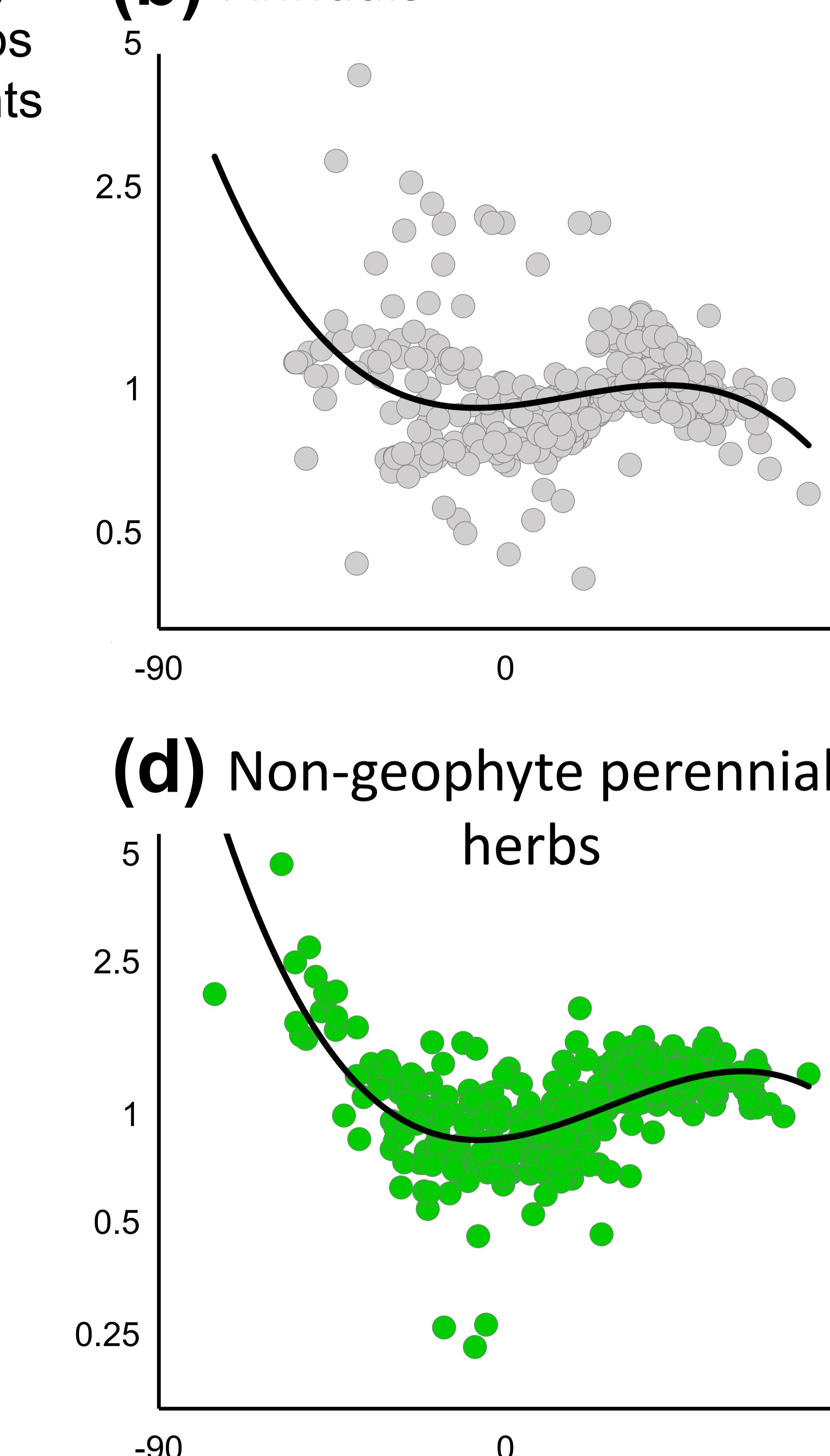
Slope


Quantile

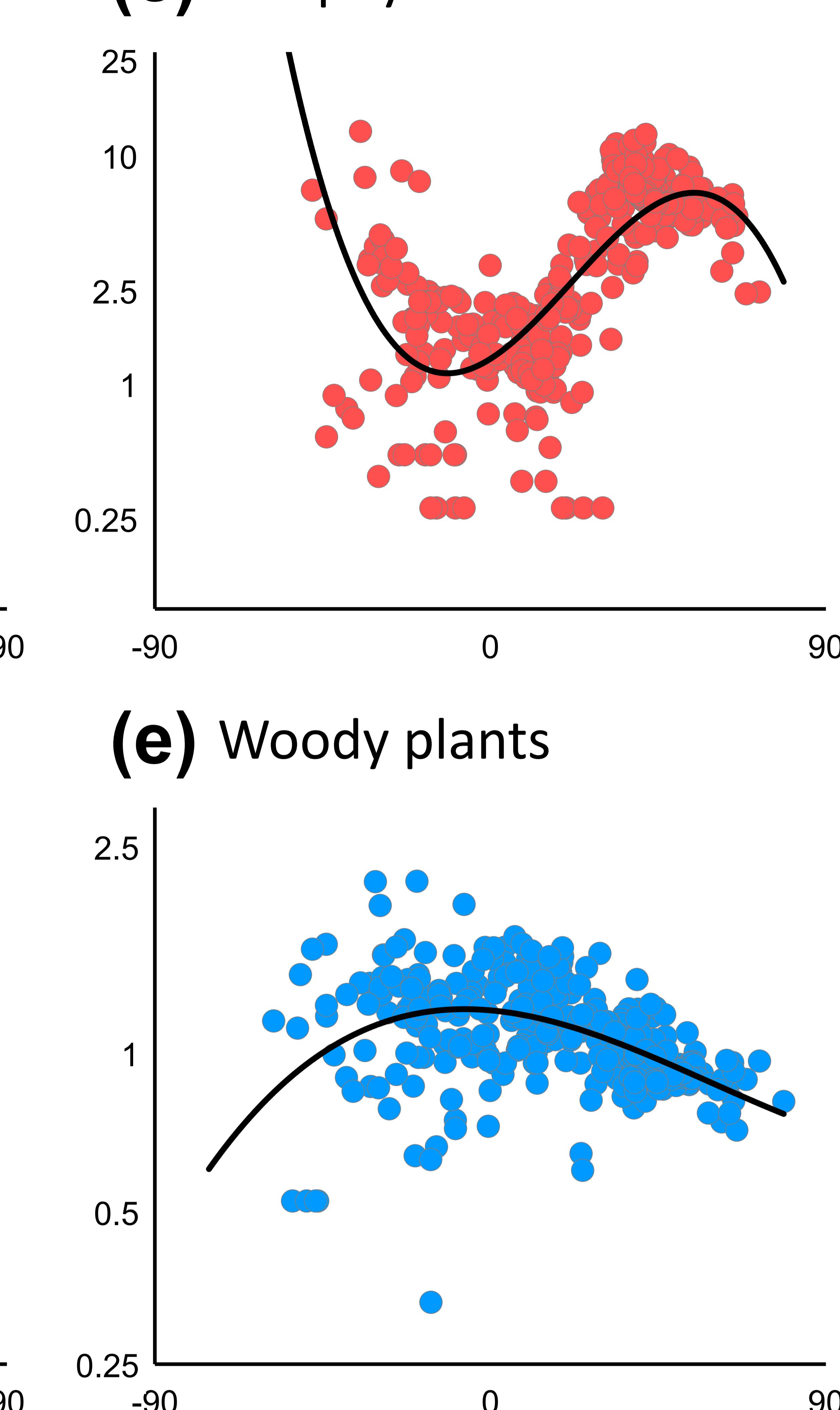
bioRxiv preprint doi: <https://doi.org/10.1101/242121>; this version posted September 3, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


(a) Latitudinal gradient of mean genome size (2C) in flowering plants

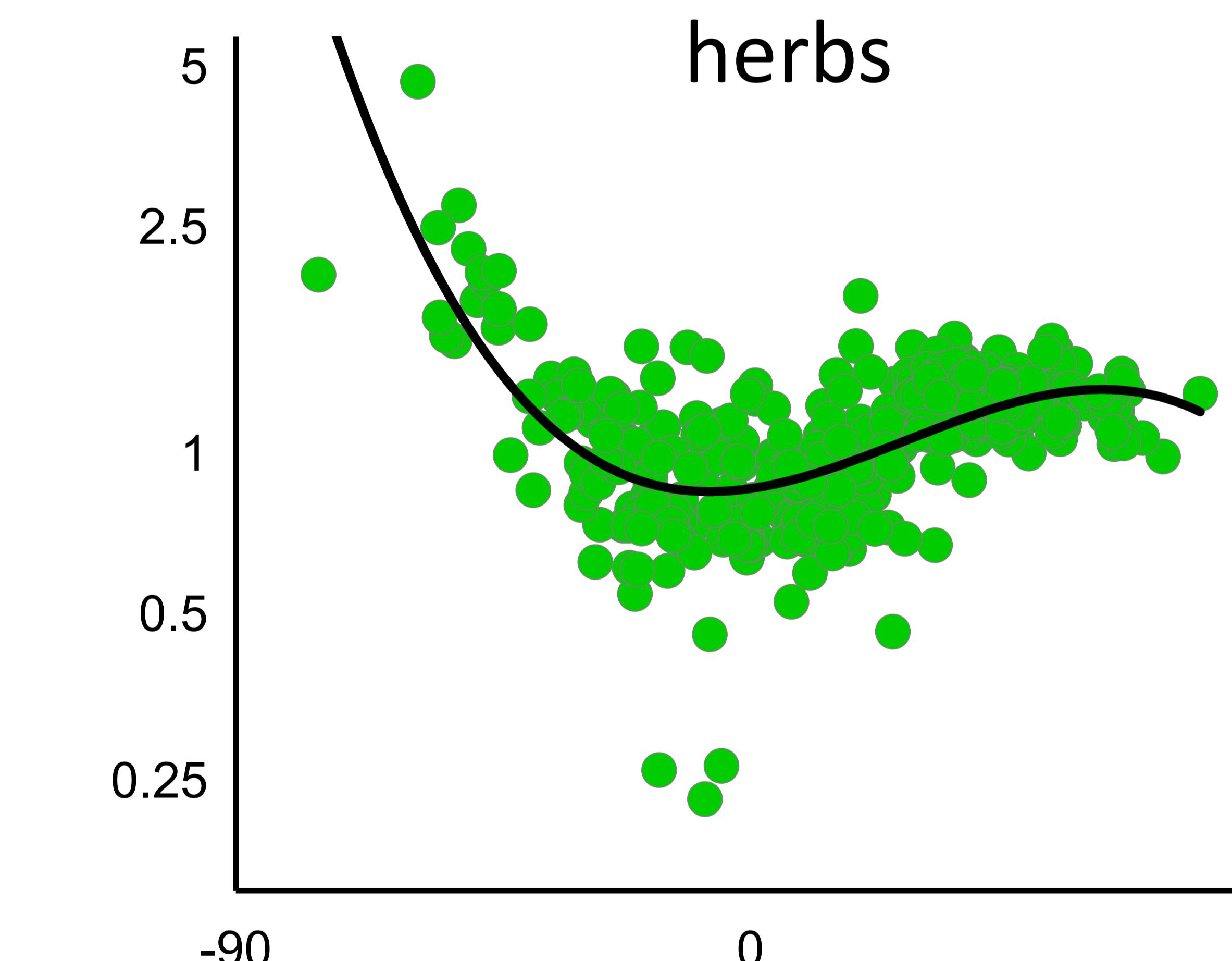
(b) Latitudinal gradient of polyploid proportion (%) in flowering plants

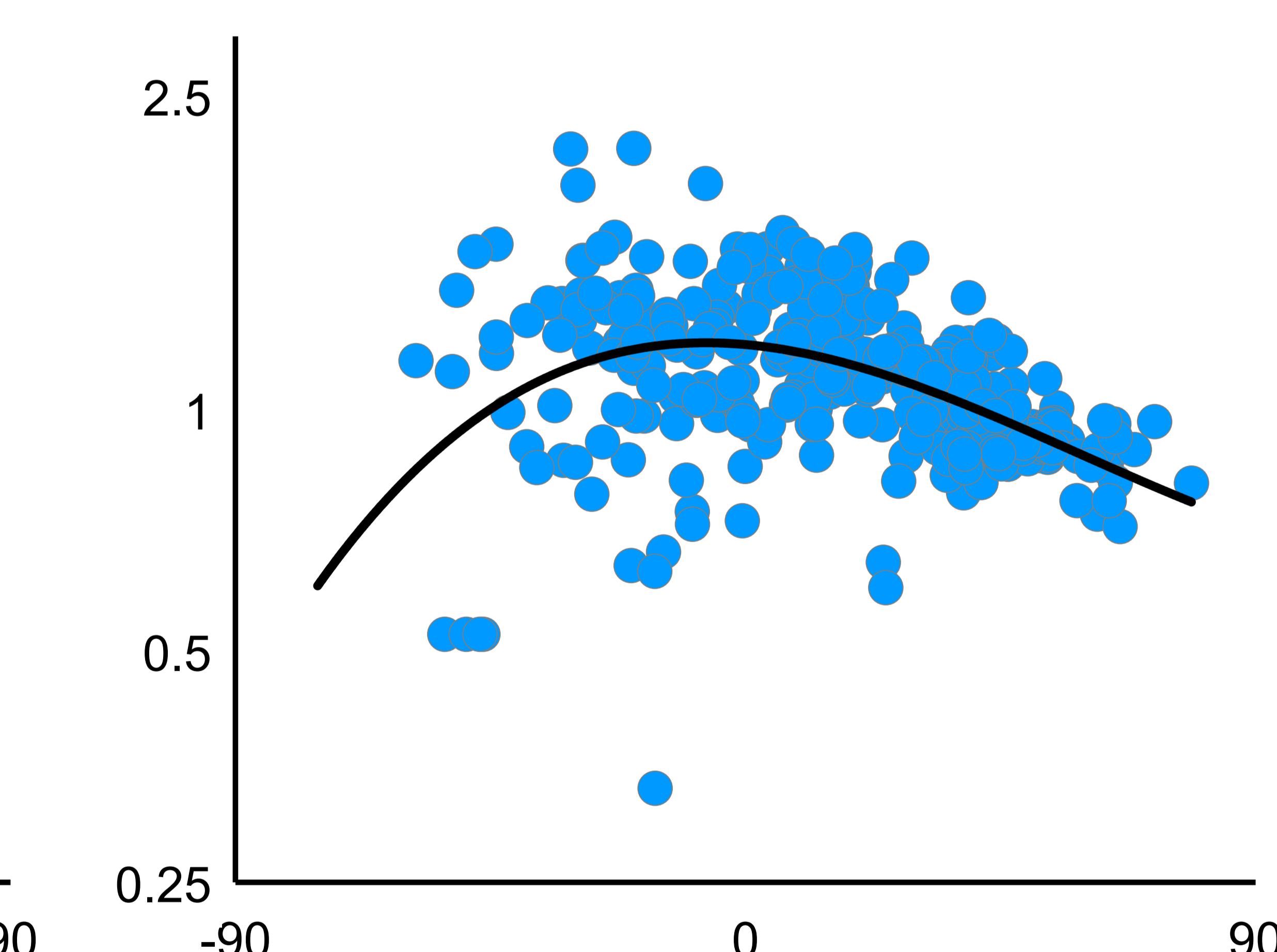


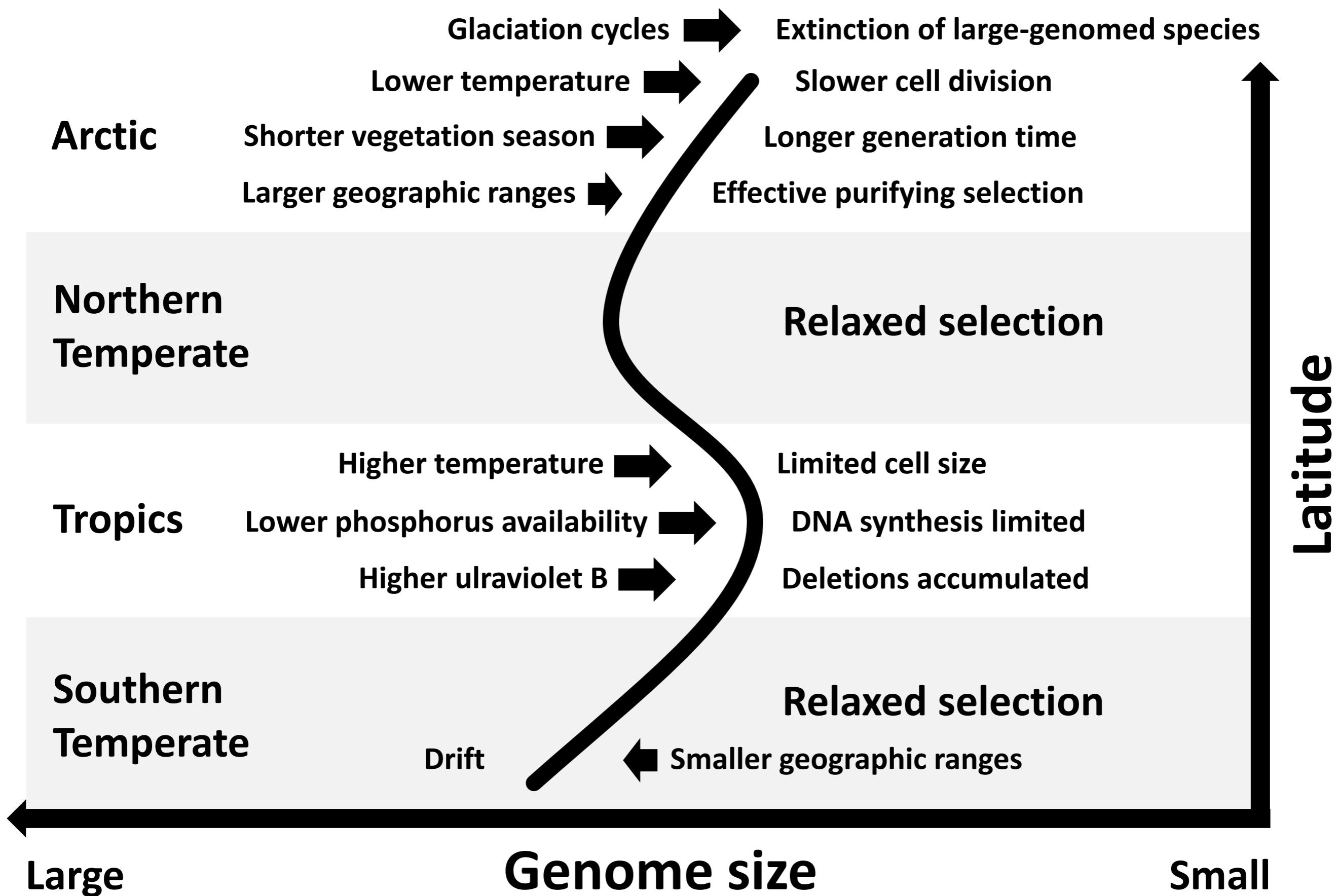
(a) Latitudinal trend in genome sizes across species and life forms



Latitudinal trends in mean genome sizes across TDWGs and life forms


(b) Annuals


(c) Geophytes



(d) Non-geophyte perennial herbs

(e) Woody plants

