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Summary

(1) Angiosperms, which inhabit diverse environments across all continents, exhibit
significant variation in genome sizes, making them an excellent model system for examining
hypotheses about the global distribution of genome size. These include the previously
proposed large-genome-constraint, mutational-hazard, polyploidy-mediated, and climate-
mediated hypotheses.

(2) We compiled the largest genome size dataset to date, encompassing >5% of known
angiosperm species, and analyzed genome size distribution using a comprehensive
geographic distribution dataset for all angiosperms.

(3) We observed that angiosperms with large range sizes generally had small genomes,
supporting the large-genome-constraint hypothesis. Climate was shown to exert a strong
influence on genome size distribution along the global latitudinal gradient, while the
frequency of polyploidy and the type of growth form had negligible effects. In contrast to the
unimodal patterns along the global latitudinal gradient shown by plant size traits and
polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S
is probably mediated by different (mostly climatic) mechanisms than the decrease in genome
sizes observed from 40-50°N northwards.

(4) Our analysis suggests that the global distribution of genome sizes in angiospermsis
mainly shaped by climatically-mediated purifying selection, genetic drift, relaxed selection,
and environmental filtering.

Keywords: C-value, chromosome size, geographic range size, flowering plants, glaciation,
latitudinal gradient, large genome constraint hypothesis, nuclear DNA content, polyploid
proportion, UV-B radiation, temperature


https://doi.org/10.1101/2022.12.05.519116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519116; this version posted September 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

available under aCC-BY-NC-ND 4.0 International license.

I ntroduction

The most essential structure of any organism is its genome, of which the size is arelatively
stable species-specific property. Angiosperms exhibit tremendous variation in genome sizes
(more than 2,400-fold; Pellicer et al., 2018) and are found across all continents, with the
majority of species being narrow endemics while a minority are widespread cosmopolitan
species (Enquist et al., 2019). This makes angiosperms a powerful model system for studying
the underlying drivers that shape genome size evolution and its distribution across the globe.
The recent increase in the use of flow cytometry in botanical studies has led to a substantial
accumulation of standardized genome size data across wide phylogenetic and geographic
scales (Garciaet al., 2014; Leitch et al., 2019; Smarda et al., 2019; Zonneveld, 2019). Given
that consistent geographic data has recently become available for most known species
through the World Checklist of Vascular Plants (WCVP; Govaerts et al., 2021), it is now
possible to examine hypotheses seeking to understand the causal links between angiosperm
genome size, distribution, and environment at a global scale.

Key proximal mechanisms generating changes in genome size are polyploidization
followed by re-diploidization (Wendel, 2000; Leitch & Leitch, 2008; Soltis et al., 2015;
Guignard et al., 2016; Smarda et al., 2019) and the accumulation and removal of repetitive
DNA (Levin, 2002; Wendel et al., 2016; Lwin et al., 2017), especially transposable elements
(TEs), which constitute the main component of most plant genomes (Bennetzen et al., 2005;
Tenaillon et al., 2010; Lisch, 2013; Bennetzen & Wang, 2014).

The 'large-genome-constraint' hypothesis (LGCH) suggests that species with large
genomes might face selection pressure against them due to their negative impact on plant
anatomy and physiology (Vinogradov, 2003; Knight et al., 2005). This is because more
genomic material occupies alarger volume, influencing the minimum cell size (Cavalier-
Smith, 2005; Simova & Herben, 2012; Bhadra et al., 2023). Consequently, plants with larger
genomes tend to have larger seeds (Knight & Ackerly, 2002; Beaulieu et al., 2007; Carta et
al., 2022; Bhadraet al., 2023), atrait linked to smaller distributional ranges (Sonkoly et al.,
2022). Additionally, they possess larger stomatal guard cells (Beaulieu et al., 2008; Vesely et
al., 2012; Bhadraet al., 2023), which close and open more slowly (Drake et al., 2013;
Kardiman & Raehild, 2018; Lawson & Matthews, 2020). This might be disadvantageousiin,
for example, arid environments that demand efficient water management (Vesely et al., 2020;
BureS et al., 2023; Smardaet al., 2023). Larger cells also limit the mesophyll surface area
packed into the leaf volume leading to lower CO, diffusion and rates of photosynthesis

3


https://doi.org/10.1101/2022.12.05.519116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519116; this version posted September 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

available under aCC-BY-NC-ND 4.0 International license.

(Théroux-Rancourt et al., 2021). Species with large genomes also experience slower rates of
cell division (Francis et al., 2008; Simova & Herben, 2012) and have higher phosphorus (P)
and/or nitrogen (N) requirements (Smarda et al., 2013; Peng et al., 2022). Large genomes
may thus limit species’ dispersal abilities and have narrower ecological niches, potentially
resulting in smaller geographic ranges (Sheth et al., 2020). In contrast, smaller genomes offer
more flexibility in cell size (Beaulieu et al., 2007; Beaulieu et al., 2008; Vesdly et al., 2012;
Meyerson et al., 2020; Bhadraet al., 2023), have faster rates of cell division (Franciset al.,
2008; Simovéa & Herben, 2012), and lower P and N demands (Smarda et al., 2013; Peng et
al., 2022) allowing gresater plasticity in range size.

Although TE insertions can occasionally have adaptive effects (Casacuberta &
Gonzélez, 2013; Schrader & Schmitz, 2019), they are mostly neutral or deleterious (Deniz et
al., 2019). Thus, TE insertions mostly become fixed via genetic drift rather than by natural
selection or intragenomic selection favoring TE accumulation (Werren, 2011; Deniz et al.,
2019). Asthe relative importance of natural selection versus random genetic drift depends on
population size, the mutational-hazard hypothesis (MHH) posits that genome growth via TES
occurs more readily in smaller populations, where genetic drift is more prominent than
natural selection (i.e., species with smaller effective population sizes will have larger
genomes; Lynch & Conery, 2003; Lynch, 2007). The relative importance of natural selection
and genetic drift also appears to hold for species range size in both plants and animals
(Corbett-Detig et al., 2015), likely because of the positive abundance-occupation relationship
(Gaston et al., 2002) where species with larger populations tend to have large distributional
ranges (e.g., Brown, 1984; Johnson, 1998; Gaston, 2003; Wehb et al., 2012; Drovetski et al.,
2014; Spenceet al., 2021; Guo et al., 2022; Ten Caten et al., 2022).

Considering the potential effects of genetic drift and natural selection on genome size
and their interplay with range size, the LGCH predicts that species with large ranges should
not have large genomes, resulting in atriangular relationship (Fig. 1a). On the other hand, the
MHH predicts that species genome sizes should decrease with increasing geographic ranges,
producing a negative relationship (Fig. 1b). Although effective population sizeis affected by
complex factors and range size is arelatively crude proxy, the high statistical power provided
by the large amount of currently available data on species genome size and distribution
should help overcome this imprecision.

Polyploidization is another mgjor contributor to plant genome size evolution (Wendel,
2000; Leitch & Leitch, 2008; Soltis et al., 2015; Guignard et al., 2016; Smarda et al., 2019),
which, in newly formed polyploids (neopolyploids), leads to multiplication of the genome

4


https://doi.org/10.1101/2022.12.05.519116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519116; this version posted September 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

available under aCC-BY-NC-ND 4.0 International license.

size and chromosome number (Mandékova & Lysak, 2018). However, over time, polyploids
undergo post-polyploid diploidization that includes chromosome fusions and genome
downsizing (Mandékova & Lysak, 2018), thereby blurring the clear correlation between
genome size and chromosome number (Choi et al., 2020; Roddy et al., 2020). Because not all
of the duplicated portion of the genome is eliminated during the post-polyploid diploidization
(Bowerset al., 2003; Paterson et al., 2004; Wang et al., 2015), repeated polyploidization-
diploidization cycles may lead to a gradual increase in genome size over time, especially in
regions where polyploids originate more frequently. The proportion of neopolyploids at
different latitudes across the globe shows a U-shaped pattern, being low in the tropics and
increasing polewards (Rice et al., 2019). The latitudinal U-shape in the proportion of
neopolyploidsis likely a consequence of the similarly U-shaped distribution of the
mechanisms underlying polyploid origin, for example, through the increased rate of
formation of unreduced gametes at low temperatures (Ramsey & Schemske, 1998; Mason &
Pires, 2015). Asthe relative positions of continents have remained similar over millions of
years, latitudinal gradients in the rate of the repeated polyploidization-diploidization cycles
(Wendel, 2015; Wendel et al., 2016; Clark & Donoghue, 2017) should persist over geological
time scales and a U-shaped latitudinal distribution of genome size would gradually emergein
this scenario (Fig. 1c; polyploid-mediated hypothesis. PMH).

Latitudinal gradients encompass climatic and other environmental variables that could
also be important factors contributing to genome size variation. These factors include
temperature, precipitation, aridity, seasonality, ultraviolet-B radiation (UV-B), and length of
the growing season (e.g., Bennett, 1976; Bennett et al., 1982; Grime & Mowforth, 1982;
Rayburn & Auger, 1990; MacGillivray & Grime, 1995; Bottini et al., 2000; Knight &
Ackerly, 2002; Grotkopp et al., 2004; Duskova et al., 2010; Diez et al., 2013; Kang et al .,
2014; Du et al., 2017; Bilinski et al., 2018; Souza et al., 2019; Becher et al., 2021; Cacho et
al., 2021; Greimler et al., 2022; Sklenar et al., 2022). Studies of climatically-mediated
(latitudinal or altitudinal) genome size distributions have found positive, negative, mixed, or
quadratic responses of genome size to climatic gradients (reviewed in Cacho et al., 2021),
which may be explained by their narrow geographic and taxonomic scopes (Knight &
Ackerly, 2002; Greilhuber & Leitch, 2013). Nevertheless, one pattern that often emerges
from these studies is the exclusion of the largest genomes from both ends of the climatic
spectrum. This may arise from the complex ways in which the biophysical constraints
imposed by genome size (e.g., setting the minimum cell size and duration of mitosis and
mei0sis) may impact many aspects of a plant’s biology, such as the timing of growth and
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physiological factors such as water and nutrient use efficiency, and hence influence where
plants grow. For example, in the case of temperature, large genomes might be predicted to be
excluded from areas with both the lowest and highest mean temperature (underpinned, in
part, by the impact of genome size on the rate of cell division) (Fig. 1d; climate-mediated
hypothesis: CMH).

Here, we test the following hypotheses (Fig. 1): 1) the large-genome constraint
hypothesis (LGCH), which predicts species which occupy large geographical ranges cannot
have large genomes; 2) the mutational-hazard hypothesis (MHH), which predicts that
genome size decreases with increasing geographic range size; 3) the polyploid-mediated
hypothesis (PMH), which predicts an increase in genome size from the equator to the poles;
and 4) the climate-mediated hypothesis (CMH), which predicts the exclusion of large
genomes from both ends of the climatic spectrum. We achieve this by combining the largest
dataset compiled to date for angiosperm genome size (16,017 species) with newly-available
data on the global distribution of angiosperms from the WCV P, and mapping the global

distribution of angiosperm genome size.

Material and Methods

Taxonomic framewor k and geographic distribution

The angiosperm species nomenclature considered in this study follows the World Checklist
of Vascular Plants (WCVP; Govaerts et al., 2021). We provide details of the accepted names,
pertinent synonyms, and authorities for sampled taxa, as well as their WCVP

‘plant_name _id" and distribution ranges based on Level 113 Continental and Regional Codes
(i.e., botanical countries) established by the International Working Group on Taxonomic
Databases for Plant Sciences (TDWGs hereafter; Brummitt et al., 2001) in Supporting
Information Dataset S1. This dataset also includes new validly-published species yet to be
included in the WCVP database (marked as “NA” in the column “POWO ID” in Dataset S1),
their distribution ranges converted to TDWGs, and corresponding sources. In exceptional
cases when the WCV P taxonomic framework differed from the Catalogue of Life (Roskov et
al., 2019), World Plants (Hassler, 2022), or other sources, and this difference was supported
by different genome sizes, we adopted the framework congruent with the genome size data
(Dataset S1). We discarded taxa that were imprecisely identified (e.g., those only determined
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at the generic level), cultivated species with unknown native distributions, and hybrids (with

the exception of afew cases where hybrid taxa have been accepted as speciesin some floras).

Distributional range size estimation

Distribution range sizes were calculated as the extent of occurrence (EOQO) for each species
based on the Global Biodiversity Information Facility (GBIF) distribution data. To obtain
EOO estimates in square kilometers, we first cleaned the data for species occurrences from
GBIF following Elliott et al. (2022). Then, we calculated EOO (Dataset S1) using the ‘eoo’
function in the R package RANGEMAP v.0.1.18 (Cobos et al., 2022), with the ‘polygons’
option set to ‘simple_wmap("simplest")’ to omit oceans from the calculations. In addition, as
an alternative measure of range size, we calculated the number of occupied TDWGs flagged

as native for each species (Dataset S1).

Genome size compilation

We extracted genome size estimates from several sources, including (1) research papers
published between 2012 and 2022 (or older studies that were absent from Release 8.0 of the
Angiosperm DNA C-values Database) retrieved using ‘Web of Science’, ‘ ResearchGate’ and
‘Google Scholar’ (9,515 taxa, 59.4 %); (2) the Angiosperm DNA C-values Database (5,973
taxa, 37.3 %,; Release 8.0: December 2012, Bennett & Leitch, 2012; Release 9.0: April 2019,
Leitch et al., 2019), and (3) unpublished genome size measurements from the Plant
Biosystematics Research Group of Masaryk University and the Royal Botanic Gardens, Kew
(529 taxa, 3.3 %). Three different criteria were applied in cases where genome sizes for the
same species were reported independently by different authors. These comprised (i) selecting
values measured by flow cytometry over those estimated with Feulgen densitometry, (i)
choosing estimates from more recent reports over older ones, and (iii) assessing the
taxonomic expertise of the authors for the species studied (i.e., we preferentially selected
estimates from authors with taxonomic expertise in the group of interest when possible). We
chose the smaller genome size (and thus the smaller DNA ploidy level) in cases where
genome size varied within a species, corresponding to different DNA ploidy levels. For
multiple estimates presented for a species in the same publication, the genome size values
were averaged. Finally, in cases where publications used nomenclature that conflicted with

the WCV P and genome size values reflected this difference, we chose an alternative
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taxonomic framework (predominantly the Catalogue of Life) and listed the source in Dataset
S1. Genome size estimations reported in pg were converted to Mbp using the equation 1 pg =
978 Mbp (Dolezel et al., 2003).The genome size per TDWG was calculated as the average of
the reported genome sizes for all taxa occurring in each region, which were log.-transformed
(Dataset S2).

Chromosome number compilation

Chromosome numbers were extracted (in order of preference) from: (i) the same publications
as the genome size data when both estimates were reported together; (ii) the Chromosome
Counts Database (CCDB: Riceet al., 2015); and (iii) publications reporting only
chromosome number (Dataset S1). We first ensured the estimations were not pseudo-
replicated and then we selected the most prevalent number for a species. We report the
median value for a species when it was not possible to discern the prevailing chromosome
number (e.g., in cases of aneuploidy). When chromosome numbers varied based on differing
ploidy levels within a species, we compared the ploidy levels and chromosome numbers of
other congeners to aid in selecting the chromosome number corresponding to the reported
genome size of that species. Finally, we calculated the mean chromosome size of a species by
dividing the 2C genome size (in Mbp) by the diploid (2n) chromosome number. As mean
chromosome size removes the correlation between genome size and chromosome number, we
used it throughout the study as a correction for neopolyploidy (i.e., polyploids still
recognizable cytologically rather than those with polyploidy in their ancestry recognizable
only through DNA sequence analysis).

Polyploid distributions

We extracted inferred ploidy-level data from Rice et al. (2019:
https:.//figshare.com/collections/The Global Biogeography of Polyploid_Plants4306004).
Duplicate records and species that are not accepted in the WCV P were omitted from the
dataset. We linked the remaining species to their geographic distribution based on TDWGs,
as specified by the WCVP. We used the ploidy-level inferences to calculate the proportion of
polyploids per TDWG (Dataset S2).

Phylogenetic tree used in tests of MHH and LGCH
8
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We used one hundred species-level trees of all angiosperms comprising all 329,798 species
recognized by version 6 of the World Checklist of Vascular Plants (Forest, 2023) pruned to
speciesin our dataset.

Growth form classification

A relationship between genome size and growth form has been suggested by many authors
(e.g., Bennett, 1971; 1987; Beaulieu et al., 2008; Francis et al., 2008, Vesely et al., 2012;
2013). To control for this effect, all taxa were classified according to four plant growth forms
(Dataset S1): (i) annuals (= therophytes; 12 % of speciesin the dataset), (ii) geophytes (11
%), (iii) non-geophytes (perennial herbs = hemicryptophytes + parasites + hydrophytes +
epiphytes; 47 %), (iv) woody plants (= chamaephyte + phanerophytes; 30 %), using standard
floras or The World Checklist of Selected Plant Families (WCSP, 2017). For each TDWG,
we calculated the percentage of species belonging to the four growth forms (Dataset S2).

Latitude estimations

We assigned a latitude to each TDWG (Dataset S2) using their geographic centroids,
determined using ArcGIS v.10 (Environmental Systems Research Institute, 2014). The
latitude associated with each species (Dataset S1) was then calculated as amean of latitudinal
centroids of all the TDWGs occupied by a given species.

Climatic variables

We extracted 25 bioclimatic variables from the CHELSA database (Karger et al., 2017;
https.//chelsa-climate.org/bioclim/; Karger et al., s.a.), three ultraviolet-B-related variables
from Beckmann et al. (2014; UVB1 = Annual Mean UV-B, UVB3 = Mean UV-B of Highest
Month, and UVB5 = Sum of Monthly Mean UV-B during Highest Quarter), and the Global-
Aridity Index (Global-Aridity ETO; Trabucco & Zomer, 2018) at 30 arc-second resolution
(~1km). We then calculated the mean of each variable per TDWG region (Dataset S2) with
QGISv.3.14 “pi” (QGIS Development Team, 2022). Collinearity was then assessed by
calculating Pearson correlation coefficients among al pairs of the 29 variables. Correlated
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variables (Pearson correlation coefficient > 0.7) were assembled into six groups (Fig. S1,
Table S1). To select asingle variable from the six groups for further analyses, we used each
variable as a predictor of 2C genome size in apolynomial regression and selected those with
the best explanatory power within their groups. To select an appropriate order of the
polynomials for the regression, we used the cost function combined with avisual inspection
of the bivariate plots of each variable and 2C genome size. We omitted GDDO (Growing
degree days heat sum above 0°C) and Aridity index from further consideration because both
explained very little variation in the regression models (Rz,, = -0.002 and 0.001, respectively).
Thus, the variables selected for further analyses (Table S1) were GST (Growing Season mean
Temperature), BIO2 (mean diurnal air temperature range), BIO13 (precipitation of the
wettest month), and BIO15 (precipitation seasonality).

Even if variables are collinear, the essence of their influence on genome size may
differ (e.g., UV-B-caused deletion bias vs. temperature-affected cell size). Therefore, we
performed additional analyzes with selected variables that did not pass the above-mentioned
filtering steps (GSL — length of the growing season, UVB1 — mean annual UVB, BIO11 —
Daily mean air temperatures of the coldest quarter), if they had biological relevance or their

effect on genome size had already been hypothesized.

Statistical analyses

We applied aseries of linear regressionsto test our four hypotheses (Fig. 1). The LGCH and
MHH were modeled with genome size as a function of range size, with both variables log-
transformed (base 10) to account for the skew towards low values. We first performed
ordinary least squares regression (OLS) using the function ‘Im’ implemented in base R,
followed by phylogenetic generalized least square (PGLS) regression (Freckleton et al.,
2002) with the R package PHYLOLM v.2.6.2 (Ho & Ané, 2014). In PHYLOLM, we used the
weighted Akaike information criterion (AICw; Akaike, 1978; Wagenmakers & Farrel, 2004)
to select between seven evolutionary explicit models of trait evolution: Brownian motion,
Pagel’ s lambda, kappa, and delta, two Ornstein-Uhlenbeck models with an ancestral state
estimated at the root or having the stationary distribution at the root, and the early burst
model. The best model was Pagel’s lambda with AICw = 1 (averaged across all 100 trees),
which we used to optimize branch lengths based on the data (model = ‘lambda’) using
maximum likelihood estimation. To examine whether the association between range size and

genome size is dependent upon differences in genome size, we applied quantile regression
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analysis with nineteen different quantiles (from 0.05 to 0.95 at 0.05 intervals) using function
‘rq’ in the R package QUANTREG v.5.93 (Koenker et al., 2022). To the best of our
knowledge, a tool has yet to be developed that is capable of performing quantile regression
while correcting for evolutionary relationships among taxa. To circumvent this problem, we
followed the multistep approach of Jovani et al. (2016), employing R packages CAPER
v.1.0.1 (Orme, 2013) and QUANTREG v.5.93 (Koenker et al., 2022).

To examine how genome size is associated with latitude (testing the PMH and CMH
hypotheses), we specified genome size (log-10 transformed) as the response variable and
latitude as the predictor variablein an OLS regression model. We used the cost function and
the visual inspection of the bivariate plot of genome size and latitude to select the order of the
polynomial fit and found that the best model was the third-degree polynomial (Iog.,(Genome
size)~latitudetlatitude+latitude’). We also performed a multiple linear regression (MLR) that
included the selected bioclimatic variables (i.e., GST, BIO2, BIO13, BIO15 - see above) as
predictors to evaluate the potential effects of climatic factors on the distribution of genome
size across latitude. In this MLR, we specified interaction terms among all predictor variables
and conducted a backward stepwise model selection based on AIC values using the “ step”
function in base R. Based on the AICs from the backward selection process, the best model
included only GST as asingle predictor of 2C genome size (log.,(Genome size)~GST+GST?).
In all MLRs with polynomials, we fitted orthogonal polynomials using the "poly" functionin
base R, but the “raw” parameter was set to "TRUE" to obtain parameter estimates
corresponding to response variable units. Each TDWG was weighted in the regression
analyses to account for the total number of species reported to occur in the region and the
percentage of these species for which we have genome size or polyploid data. The weight
was then calculated as the ratio of the number of species for which we have genome size data
(or the proportion of polyploids) and the number of all speciesin the TDWG (Dataset S2).
To evaluate causal relationships between the effects of GST and percentage of growth forms
on mean genome size across TDWGs, we employed a path analysis approach using the R
package LAVAAN v.4.2.3 (Rossedl, 2012).

Results

Sanmpling bias
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361 We compiled the largest genome size dataset to date, encompassing >5% of known

362  angiosperm species (Dataset S1). Large datasets of phylogenetic representation and traits,
363 including genome size data, are latitudinally biased, with northern latitudes being more

364  thoroughly sampled (Vasconcelos, 2022). To check how this may have affected our data, we
365 compared the across-TDWG latitudinal distribution of range sizes of all angiosperms in the
366 WCVPto that of the taxain our genome size dataset. Both datasets show an increase in range
367 sizefrom south to north (Fig. S2).

368

369 Genome size and range size (LGCH, MHH)

370

371  Genome size and range size exhibit atriangular relationship (Fig. 2a), indicating that species
372 with small ranges can have any genome size, while species with large ranges only have small
373  genomes (i.e., species with large genomes do not have large range sizes). The OLS regression
374  model based on log-transformed data (Table 1) revealed a significant decrease in genome size
375  with increasing range size (Fig. 2b). The slope from the PGLS analysis, although still

376  dgnificantly negative (b = -0.007, P = 1.31e-06), was flatter than that from the OLS (b = -
377  0.039, P < 2e-16), due to astrong phylogenetic signal (Pagel’s: = 0.916) in the genome

378  sizefrange size relationship (Table 1, Fig. S3a). Both ordinary (Fig. 2¢, Table S2) and

379  phylogenetic (Fig. S3b, Table S3) quantile regressions showed more negative slopes for

380  higher quantiles of genome size, indicating that the relationship between genome size and
381 geographical range size is genome size dependent - becoming increasingly negative as

382 genome sizeincreases; in accordance with the triangular relationship. Although the slopes
383  started decreasing at the genome size quantile 0.5 for the ordinary quantile regression (Fig.
384  2¢), inthe phylogenetic quantile regression, the slope decreased continuously with increasing
385 quantiles (Fig. S3b). When we used the number of occupied TDWGs as a measure of range
386 size(instead of the EOQO), we observed very similar results (Fig. $4, S5, Tables $4, Sb),

387  suggesting that, at least for our dataset, TDWG counts provide a reasonable proxy for range
388 sSize

389 We also obtained very similar results when we controlled for the effect of

390 neopolyploidy by performing the across-species analyses using mean chromosome size

391 (2C/2n) instead of 2C genome size (Fig. S6, Tables S6-S8). For analyses with number of

392  occupied TDWGs as a measure of range size, see Fig. S7, Tables S9-S11). However, the

393  decrease in mean chromosome size with increasing range size was steeper than that of 2C

394 genomesizein both OLSand PGLS (Table 1, Table S6).
12
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Genome size, neopolyploidy, latitude, and climate

Overall, the smallest genomes occur in the tropics, and their size increases towards the poles.
However, in the northern hemisphere, genome size decreases again from the temperate to the
arctic regions. The global distribution of genome size averaged per TDWG is shown on the
map in Fig. 3a. The genome size distribution maps of the two most species-rich eudicot
(Asteraceae, Fabaceae) and monocot (Orchidaceae, Poaceae) families are shown in Fig. S8.
Their genome size distribution resembles the overall trend in angiosperms. When the 2C
genome sizeis plotted against the latitudinal centroids of TDWGs, the S-shaped pattern
becomes evident (Fig. 3a). In the 3rd-order polynomial regression, latitude alone explained
40.12 % of the variation in 2C genome size (Table 2). The proportion of neopolyploid species
displayed a U-shaped distribution with the smallest values in the tropics and a continuous
increase in the proportion of polyploids towards the poles (Fig. 3b; Table 2).

Genome size and the proportion of polyploid species exhibited very different
latitudinal distributions (Fig. 3), with the proportion of polyploid species explaining only 1.77
% of the variation in 2C genome size (Table 2).

When we controlled for neopolyploidy by analyzing mean chromosome size across
TDWGs, the S-shape latitudinal trend remained broadly unchanged (Fig. S9). The S-shaped
latitudinal trend in genome size was robust to longitude, as the same pattern was recovered
when the data were separately analyzed for the New and Old Worlds (Fig. S10).

To assess which climatic parameters might be associated with the observed latitudinal
trend in 2C genome size, we tested 29 climatic variables, but only GST (mean temperature of
the growing season) was used in the final regression model based on backward selection (see
Methods for details). The best-fitting model was a quadratic polynomial regression of 2C
genome size on the GST (Table 2). The quadratic term had a negative coefficient, indicating
that genomes are smaller in TDWGs with high or low temperatures and larger for
intermediate temperatures (Table 2; compare with the graph in Fig. 2a). The GST explained
40.75 % of the variance in 2C genome size which is all the variance explained by latitude
(40.12 %,; Table 2). If BIO11, which falls below 0°C in the northern hemisphere, is added
into the model, the explained variance increases to 46.35 % (Table S12), highlighting the
importance of freezing temperatures. Furthermore, if the MHH is combined with CMH by
adding the range size to the model with GST, the explained variance increases to 46.14 %
(Table S12).

13
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We also tested whether smaller genomes are linked to shorter growing seasons. Our
regression analysis showed that as the genome gets larger, the growing season (GSL) gets
shorter (P=0.0004; Table S12). When analyzed only for TDWGs with latitudinal centroids of
at least 48.93° (the threshold at which genomes start decreasing northward), genome size
decreases with a shortening of the growing season, but the relationship is not significant
(P=0.481; Table S12). UVB1 (mean annua UVB) explained 34.6 % of the variation in mean
genome size across TDWGs (Table S12).

Due to genome size variations among different plant growth forms (Bennett, 1987;
Beaulieu et al., 2008; Vesely et al., 2013), and the presence of latitudinal trendsin growth
form proportions (Taylor et al., 2023; Fig. S11 here), we investigated whether the observed
S-shape (Fig. 3a) might be attributed to differences in the percentages of different growth
forms within TDWGs with increasing latitudes. Annuals, geophytes, and non-geophyte herbs
all exhibited the S-shape in mean genome size, varying only in magnitude (Fig. 4). Woody
plants, however, had slightly larger genomes in the tropics compared to temperate or arctic
regions (Fig. 4). These growth form patterns remained consistent across both species (Fig. 49)
and TDWG means (Fig. 4b-€). As sole predictor, the percentage of growth forms explained
from 2% of genome size variance (in annuals) to 21% (in non-geophytes) (Table S13).
However, when growth form percentage was added to the model with GST, the effects of
non-geophytes and annuals became insignificant, with geophytes and woody plants
contributing only 3.4% and 1.4% additional explained variance, respectively (Table S14).
This significant drop in the explanatory power of growth forms suggests that GST directly
influences both growth form percentages and mean genome size within TDWGs. Thiswas
confirmed through path analysis, which reveaed that while GST strongly impacts genome
size and the percentages of non-geophytes and woody plants, growth forms have minimal or

negligible effects on the distribution of genome sizes across the globe (Fig. S12).

Discussion

Support for the LGCH, while not ruling out the MHH

We revealed atriangular relationship between range size and genome size, with a negative
association between range size and genome size that is accentuated as genome sizes increase
(Fig. 2b, 2c), supporting the LGCH (Fig. 1a). This relationship indicates that large-genomed

species are restricted to occupying smaller ranges, which is likely due to the nucleotypic
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effects of their genomes hindering their dispersal distance and limiting their ecological niche
(Knight & Ackerly, 2002; Beaulieu et al., 2007, 2008; Vesely et al., 2012; Carta et al., 2022;
Bhadra et al., 2023). This places large-genomed species at a disadvantage compared to their
smaller-genomed counterparts that have greater nucleotypic plasticity (Mayerson et al., 2020;
Bhadra et al., 2023) and may thus occupy both large and small ranges (Fig. 2a). It is notable
that the most pronounced S-shape in the latitudinal distribution of genome size (see Genome
size decreases|...] but not in the south section below) is in geophytes (Fig. 4c), whose
genomes are the largest among the analyzed growth forms (Fig. 4a). Although the triangular
relationship we observed does not show support for the MHH, the LGCH does not
necessarily rule out the MHH. Notably, the largest genomes are found in the southern
hemisphere (Fig. 3a), where angiosperms in our dataset have the smallest ranges (Fig. S2)
and could thus be most susceptible to genetic drift (Fig. 5). Genetic drift could facilitate
genome growth in smaller-ranged species (as proposed in the MHH), which could further
reduce the range size of large-genomed species (LGCH) and throw them into a deadly
descending spiral toward extinction. Thisis supported by evidence showing that large-
genomed species are at higher risk of extinction (Vinogradov, 2003; Soto Gomez et al., 2023

inthisissue).

Small genomes in the tropics

The decrease in genome size from temperate to tropical regions across both hemispheresis
consistent with previous studies focusing on genome size (or its proxies) in Poaceae (e.g.,
Avdulov, 1931; Bennett, 1976), Fabaceae (e.g., Stebbins, 1966; Bennett, 1976; Souzaet al.,
2019), Orchidaceae (e.g., Travnicek et al., 2019), Zygophyllaceae (e.g., Vidal-Russell et al.,
2022) and at broader phylogenetic scales across angiosperms (Levin & Funderburg, 1979; Yu
et al., 2018). In our study, the environmental variables most correlated with latitude were
temperature-related, and peaked in the tropics (Fig. 3a). In higher ambient temperatures,
metazoan ectotherms, unicellular eukaryotes, and prokaryotes tend to have smaller cells
(Atkinson et al., 2003; Hessen et al., 2013; Sabath et al., 2013), possibly because the
maintenance of large cells becomes more difficult with increasing temperatures (Sabath et al.,
2013). Our finding that small genomes are prevalent in the tropics might reflect this
relationship, whereit is advantageous to have smaller cells (and thus a smaller genome;
Cavalier-Smith, 2005) in the tropics.
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Alternatively, small genomesin low latitudes could be aresult of the DNA-damaging
effects of UV-B radiation (Bennett, 1976), which is generally highest in the tropics
(Beckmann et al., 2014) and might result in selecting for smaller chromosomes that absorb
less energy, therefore decreasing radiosensitivity (Sparrow et al., 1967). Thisideais
supported by recent findings showing that plants with holocentric chromosomes, which
tolerate fragmentation (Zedek & Bures, 2019), are less stressed (Zedek et al., 2020; 2021)
and more competitive (Zedek et al., 2022) under higher UV-B doses. Moreover, homologous
recombination used to repair UV-B-induced damage might increase rates of DNA deletion,
thereby further promoting genome downsizing (Schubert & Vu, 2016). However, as UV-B
radiation intensity (which explained 34.6 % of the variation) is strongly correlated with
temperature (Fig. S1), the individual effects of these two factors on genome size in the tropics
cannot be easily differentiated.

Finally, nutrient limitation might play arole in constraining the genome size of
tropical plants, as many tropical soils are low in nutrients (especially phosphorus; Vitousek et
al., 2010), and yet building and maintaining cells in plants with large genomes is expensive in
terms of N and P. This may result in species with large genomes being less competitive in the
nutrient-poor tropical soils, resulting in their exclusion from these environments (Leitch &
Leitch, 2008; Smarda et al., 2013, Guignard et al., 2016; Faizullah et al., 2021; Velebaet al.,
2020).

Genome size decr eases from temperate regions towards the North pole, but not the South

Differences in genome size trends across latitudinal gradients in the northern versus southern
hemisphere may be explained by the larger temperature gradient in the north, which could be
partially associated with differencesin the distribution of landmasses and major water bodies
in the two hemispheres. Large areas of Eurasiaand North America extend beyond 50°N and
are surrounded by less water and more land masses than regions in the southern hemisphere,
therefore experiencing weaker buffering effects from the ocean. If the distribution of genome
sizesin plants followed a similar pattern to the distribution of polyploid species, genomes
would be expected to be smaller near the equator and increase polewards. We find that this
trend holds, but only up to acertain, presumably limiting, low temperature threshold, beyond
which genome sizes decrease towards the high northern latitudes. In the southern hemisphere,
this low-temperature threshold is probably not reached (Fig. 1a). The existence of such a
latitudinal breakpoint in genome size was previously predicted (Bennett et al., 1982). The
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main drivers of selection pressure against larger genomesin polar regions were predicted to
be: (i) slower cell divisions mediated by lower temperatures (Francis & Barlow, 1988) and
(i) longer generation times mediated by lower temperatures and/or by shorter growing
seasons (Bennett et al., 1982; Bennett, 1987). Indeed, temperature variables alone explain a
relatively large proportion (up to ~40 %) of the variation in the global distribution of genome
Sizes(Table 2, Table S1).

Several authors have hypothesized that the decrease in temperatures toward the poles
can result in a higher production of unreduced gametesin plants (Belling, 1925; Sakamura &
Stow, 1926; de Mol, 1928; Heilborn, 1930; Hagerup, 1932; Bretagnolle & Thompson, 1995;
Mason & Pires, 2015; Kreiner et al., 2017). If this phenomenon explains the increasein the
proportion of polyploidy from the equator to the poles (Fig. 3b; Rice et al., 2019), then the
polyploid proportion should be significantly higher in the northern hemisphere, where
temperatures reach lower values. However, neither our study nor that by Rice et al. (2019)
found a difference in the proportion of polyploids between the southern and northern
hemispheres (Fig. 3b), suggesting that unreduced gamete production might not be an
important variable in explaining latitudinal variation in polyploidy (but see below).

The decrease in genome size in the northern hemisphere from temperate regions to the
Arctic could also be related to glaciation cycles, as smaller-genomed species tend to occur in
previously glaciated TDWGs (Fig. S13). During glacial migrations, specieswith large
genomes might have been more prone to extinction because of their smaller range sizes, as
suggested by the negative associ ation between geographic range size and genome size (Fig.
2d). Similarly, repeated glaciation cycles could have led to the extinction of some
(neo)polyploids whose genome sizes exceeded an upper selection limit, which could further
explain why the proportion of polyploidsis not higher in the northern than the southern
hemisphere. In this case, the hypothesis relating the increased formation of unreduced
gametes to low temperatures and its role in increasing the proportion of polyploids from
tropical to polar regions would still be relevant. A further possibility explaining the decrease
in genome size from the northern temperate to polar regionsis that shorter growing seasons
towards high latitudes might be important in selecting plants with smaller genomes, which
have faster growth rates and can complete their growth cyclesin lesstime (Knight et al.,
2005). Nevertheless, our results show that any effect of length of growing season in the

Arctic on genome ssize, islikely to be minor (Table S12).

Relatively large genomes in temperate regions
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Temperate regions offer mild conditions between the extremes of the tropics and arctic
regions discussed above. For instance, there are not very high nor low temperatures, lower
doses of UV-B radiation than in the tropics, and the area was not as extensively glaciated as
arctic regions. The temperate climate might thus relax selective pressures against larger
genomes, thereby increasing the overall range and mean genome sizes of plants growing in

temperate zones of both hemispheres (Fig. 4a).

Latitudinal gradient in genome size is not underpinned by contrasting proportions of different

growth forms in different regions

Although the proportion of growth forms, especially perennial herbs and woody plants, may
have significantly contributed to the global distribution of polyploids (Rice et al., 2019), the
impact of different growth forms on the global distribution of genome size appears weak and
mostly mediated by temperature (Fig. S12, Table S14). The independence of global genome
size distribution on growth forms is further supported by the observation that annuals,
geophytes, and non-geophytes all exhibited the S-shapein mean genome size (Fig. 4). Woody
plants showed a different pattern, but their genome size still decreased northward (Fig. 4).
Woody angiosperms are seldom polyploid (Mntzing, 1936; Stebbins, 1940; Otto & Whitton,
2000; Zenil-Fergusson et al., 2017; Rice et al., 2019), which could explain why their
genomes did not increase in temperate regions. Also, the absence of relationship between
extinction risk and genome size in woody plants (Soto Gomez et al., 2023) could suggest that

genome size dynamics operate differently in woody vs herbaceous species.

Conclusions and future directions

Our study found support for the large genome constraint hypothesis in explaining the global
distribution of genome sizes but could not rule out the mutation hazard hypothesisin also
contributing to explaining the distribution patterns observed. In addition, we show a small
effect of polyploidy and growth forms and alarge effect of climate, especially temperature,
on the distribution of genome size. Overall, our findings indicate that mainly purifying
selection, genetic drift, relaxed selection, and environmental filtering influenced by climate
are likely to have shaped the global distribution of angiosperm genomes sizes (Fig. 5).

Further research should be directed at determining the relative contributions of long-term
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processes shaping the global distribution of genome sizes, such as glaciation cycles, UV-B-
caused genome erosion, or polyploidization-rediploidization cycles. We also advocate more
thorough investigation of links between environmental factors and genome size at finer
regional or local scales. For instance, the use of vegetation plots combined with species
Ellenberg indicator values would enable a more in-depth understanding of the complex
interplay between genome size and both biotic (e.g., competition) and abiotic (e.g., altitude,
temperature, soil reaction and moisture) factors in influencing a species habitat and niche and

its resilience to environmental changes.
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Figure captions

Fig. 1 Expected associations between genome size and (a, b) range size and (c, d) latitude
based on four hypotheses outlined in the Introduction. The question mark in (d) indicates
uncertainty about the potential shape of the curve. Given this uncertainty, we present a curve
that could possibly result from the effects of temperature.

Fig. 2 Associations between genome and range size per species (a, b, ¢). The association of
the raw data between genome and range size is shown in (&), whereas both variables are log-
transformed in the other two plots (b, ¢). The slope estimates from the quantile regression,
including 95% confidence intervals (dark grey), are indicated in (c). The solid red linein (b)
indicates the fit of the ordinary least squares (OLS) regressions, while the solid red linein (c)
indicates the slope value from the OL S analysis. Dashed red lines (in b, c) represent 95%
confidence intervals.

Fig. 3 The global distribution of mean genome size (@) and polyploid proportion (b) in
flowering plants. Mean genome size (2C) and the proportion of polyploids were calculated
per TDWG Level-3 region. The two plots on the |eft side show (@) the distribution of genome
size and (b) the proportion of polyploids across latitude. Dark red and dark blue indicate
TDWG regions with the highest and lowest temperatures in the coldest quarter, respectively
(BIO11 from CHELSA). The solid line in the plot indicates the mean from the regression fit.
Dashed lines indicate 95% confidence intervals. The size of points in the plots indicates the
weights used in the regression analysis. The weight was calculated as the ratio of the number
of species for which we have genome size data (or the proportion of polyploids) to the
number of all speciesin the TDWG. The maps on the right side show the distribution of (&)
mean genome size and (b) polyploid proportion, with dark red and light yellow TDWG
regions indicating areas with relatively high and low values for each variable, respectively.

Fig. 4 The association of genome size (2C; Gbp) and latitude across four growth forms
groupings. Plot (a) is based on species genome sizes (grey circles), whereas the latter four
plots (b, ¢, d, €) represent the mean genome size calculated per TDWG for a given growth
form. All results are based on polynomial regressions of the 3« order, where solid lines
represent the model estimates. The dashed linesin (a) show the 95% confidence intervals.

Fig. 5 Proposed major factors (to the left of arrows) affecting physiological, anatomical, and
molecular response (to the right of arrows), resulting in expans ons/contractions of the
genome and thus ultimately forming the global latitudinal trend in genome size (S-shaped
curve). Relatively high genome sizes in the temperate regions could be the result of relaxed
selective pressure, whereas various drivers might be constraining or pushing thistrait in
tropical and arctic regions. The proportion of polyploid species (low in the tropics and
increasing toward the poles), which is not included in the figure, could also weakly contribute
to the observed latitudinal trend in genome size (see Table 2).
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Supporting I nformation

Additional Supporting Information may be found online in the Supporting Information
section at the end of the article.

Fig. S1 Pearson’s correlation coefficients (r) anong 29 climatic variables assessed to be
included in the multiple linear regression model explaining genome size variation along the
global latitudinal gradient. Dark red and dark blue circlesindicate high and low r values,
respectively. Larger circlesin the upper triangle represent stronger correlations between
variables (both negative and positive), whereas the numbers in the lower triangle indicate the
r values.

Fig. S2 Global distribution of mean geographic range sizes for those species included in the
genome size dataset (a) and for all speciesin the WCV P dataset (b) mapped per TDWG
Level-3 region. The two plots on the left-hand side of the figure show the distribution of
mean geographic range sizes across the global latitudinal gradient. Dark red shading in the
maps on the right-hand side of the figure indicates relatively high mean range sizes of species
included in each TDWG unit, whereas light yellows indicate TDWGs with species with
relatively small range sizes.

Fig. S3 Associations between genome and range size (as Extent of Occurrence, EOO) per
species considering phylogenetic relationships. The solid red linein (a) indicates the fit of the
phylogenetic generalized least squares regression (PGLS), while the red linein (b) indicates
the slope value from the phylogenetic quantile regression analysis. The slope estimates from
the phylogenetic quantile regression, including 95% confidence intervals (error bars), are
indicated in (b). Dashed red lines represent 95% confidence intervals. Both genome and
range size are transformed by log,, in (a) and (b).

Fig. $4 Associations between genome and range size per species when the number of
occupied TDWG regions (instead of Extent of Occurrence, EOO) is used as a measure of
range size. The association of the raw data between genome and range sizeis shown in (a),
whereas both variables are log-transformed in the other two plots (b, ¢). The slope estimates
from the quantile regression, including 95% confidence intervals (dark grey), are indicated in
(c). The solid red linein (b) indicates the fit of the ordinary least squares (OLS) regressions,
while the solid red linein (c) indicates the slope value from the OLS analysis. Dashed red
lines represent 95% confidence intervals.

Fig. S5 Associations between genome and range size per species considering phylogenetic
relationships when the number of occupied TDWG regions (instead of the Extent of
Occurrence, EOQ) is used as a measure of range size. The solid red linein (a) indicates the fit
of the phylogenetic generalized least squares regression (PGLS), while the red line in (b)
indicates the slope value from the phylogenetic quantile regression analysis. The slope
estimates from the phylogenetic quantile regression, including 95% confidence intervals
(error bars), areindicated in (b). Dashed red lines represent 95% confidence intervals. Both
genome and range size are transformed by 1og10 in (@) and (b).

Fig. S6 Associations between mean chromosome size and range size (as Extent of
Occurrence, EOQ) per species. The solid red lines in (a) and (c) indicate the fit of the
ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS) regressions,
respectively. The solid black circles and the gray shading in (b) represent the slope estimates
and the 95% confidence intervals across 19 quantiles, whereas the hollow circles and the
error barsin (d) indicate slope estimates and the 95% confidence intervals of the phylogenetic
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1195 quantileregression. The horizontal red line in (b) represents the slope estimate of the OLS
1196  regression, while the horizontal red line in (d) shows the slope estimate of the PGLS

1197  regression. Dotted red linesin al four plotsindicate the 95% confidence intervals of the slope
1198  estimates.

1199  Fig. S7 Associations between mean chromosome size and range size (as the number of

1200 occupied TDWG regions) per species. The solid red linesin (a) and (c) indicate the fit of the
1201  ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS) regressions,
1202  respectively. The solid black circles and the gray shading in (b) represent the slope estimates
1203  and the 95% confidence intervals across 19 quantiles, whereas the hollow circles and the
1204  error barsin (d) indicate slope estimates and the 95% confidence intervals of the phylogenetic
1205 quantile regression. The horizontal red line in (b) represents the slope estimate of the OLS
1206  regression, while the horizontal red line in (d) shows the slope estimate of the PGLS

1207  regression. Dotted red linesin al four plotsindicate the 95% confidence intervals of the slope
1208  estimates.

1209  Fig. S8 Mean genome sizes (2C; Gbp) averaged per TDWG region for the two most species-
1210  rich monocot (a— Orchidaceae, b — Poaceae) and dicot (c — Asteraceae, d — Fabaceae)

1211 families. Dark red colors indicate relatively large mean genome sizes, whereas light yellow
1212  shadesindicate TDWG regions with relatively small mean genome sizes.

1213  Fig. 9 Theglobal distribution of mean chromosome size in flowering plants calculated per
1214  TDWG region. The plot on the left side shows the distribution of mean chromosome sizes
1215  across latitudes, with dark reds indicating TDWG regions with high temperatures in the

1216  coldest quarter (BIO11 from Bioclim) and dark blues showing regions with low temperatures.
1217  Thesize of pointsin the plots indicates the weights used in the regression analysis (see

1218  Methods for details). The map on the right side shows the distribution of mean chromosome
1219  sizes mapped according to each TDWG region, where dark reds indicate relatively high

1220 values.

1221  Fig. S10 Mean genome sizes (2C; Gbp) across the global latitudinal gradient for the Old
1222  World (a) and New World (b). Circlesin both plots represent the genome size averaged per
1223  TDWG region.

1224  Fig. S11 Latitudinal distribution of the percentage of (a) nongeophyte, (b) annual, (c)
1225  geophyte, and (d) woody speciesin our genome size dataset (Dataset S2).

1226  Fig. S12 Path analysis of causal relationships among the effects of the growing season

1227  temperature (GST) and percentages of species of different growth forms on the mean genome
1228 sizein TDWG regions: (a) nongeophytes, (b) annuals, (c) geophytes, and (d) woody species.
1229  The numbers indicate standardized regression coefficients from the path analyses. The arrows
1230  show the direction of the causal effects, their thickness indicates the relative effects, the

1231  fadingindicates significance of the effect and the color indicates positive (red) or negative
1232 (blue) effect.

1233  Fig. S13 Mean genome sizes (2C; Gbp) across the global latitudinal gradient illustrating
1234  TDWG regions that were glaciated (blue) and non-glaciated (red) during the last glacial
1235 maximum (LGM) approximately 18,000 years before the present. We assessed the glaciation
1236  status of each TDWG region at the Last Glacial Maximum (LGM; ~18,000 years BP) using
1237  past climatic reconstructions from Ehlers (2015). We considered TDWG regionsto be

1238 ‘Glaciated’ if their centroids were covered by theice sheets during the LGM (Dataset S2).

1239
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1240 Dataset S1 Dataset containing 16,017 angiosperm taxa, their genome sizes, chromosome
1241  numbers, chromosome sizes, geographic ranges, latitudinal centroids, and growth forms.

1242  Dataset S2 Dataset containing 369 TDWGs (Botanical countries), their geographic centroids,
1243  counts of all angiosperm taxa and counts of angiosperm taxa with genomic traits; mean

1244  vaues for genome size, chromosome size, range size; mean values for genome size in growth
1245  forms; proportion of polyploid taxa; glaciation status; growth form percentagesin TDWG
1246  regions.

1247
1248  Table Sl Bioclim variables as they explain the variance in 2C genome size across TDWG
1249  regionsin the polynomial regression of agiven order.

1250 Table S2 Results of quantile regression of 2C genome size on range size (EOQO).

1251  Table S3 Results of phylogenetic quantile regression of 2C genome size on range size
1252 (EOQO).

1253  Table $4 Results of quantile regression of genome size on range size (TDWGS).

1254  Table S5 Results of phylogenetic quantile regression of genome size on range size
1255 (TDWGs).

1256  Table S6 Results of OLS and PGLS regressions of mean chromosome size on range size
1257  (EOO).

1258 Table S7 Results of quantile regression of mean chromosome size on range size (EOO).

1259  Table S8 Results of phylogenetic quantile regression of mean chromosome size on range size
1260  (EOOQ).

1261 Table SO Results of OLS and PGL S regressions of mean chromosome size on range size
1262 (TDWGs).

1263  Table S10 Results of quantile regression of mean chromosome size on range size (TDWGS).

1264  Table S11 Results of phylogenetic quantile regression of mean chromosome size on range
1265 size(TDWGS).

1266  Table S12 Additional regressions of 2C genome size on other biologically relevant variables.

1267  Table S13 Results of regressions of 2C genome size on percentage of growth formsin
1268 TDWGs.

1269  Table S14 Results of regressions of 2C genome size on additive effects of GST and
1270  percentage of growth formsin TDWGs.
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Table 1: Results of OLSand PGL Sregressions of 2C genome size on range Size

OLS model: 10g,(2C genome size) ~ log,(Range size)

Model term b 95%ClI t P R,
Intercept 3.746 <3.708, 3.784> 191.71 <2E-16 0.012
log.(Range size) -0.039 <-0.046, -0.033> -12.24 <2E-16

PGLS model: log.,(2C genome size) ~ log.(Range size)

Model term b 95%ClI P lambda Rz,
Intercept 3.583 <3.5782, 3.5887 <2E-16 0.916 0.002
>
log..(Range size) -0.007 <-0.008, -0.0066 1.31E-06
>

Table 1: Results of ordinary least squares (OLS) and phylogenetic generalised least squares (PGLYS)
regression of 2C genome size on range size. bi - regression estimates of model terms; 95%CI - lower
and upper 95% confidence intervals of the regression estimates, R2adj - R squared adjusted indicating
explained variance. The OLS analysis was perfromed with 12,137 species. The PGLS analysis was
perfromed with 12,123 species. The PGLS was performed repeatedly with one hundred different trees
(see Methods). Therefore, the valuesfor PGLS are averages across these one hundred regressions.
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Table 2: Results of linear and polynomial regressions of 2C genome size and polyploid
proportion on various predictors.

Polynomial regression (N=367): 10g.,(2C genome size) ~ latitude + latitude: + latitude:

Model term b, 95%Cl t P Rz,
Intercept 3.320 <3.305, 3.335> 434.02 <2E-16 0.4012
Latitude 2.136E-03 | <1.67E-03, 2.60E- 9.07 <2E-16

03>
Latitude 6.734E-05 | <5.85E-05, 7.62E- 14.99 <2E-16

05>
Latitude -1.215E-06 | <-1.40E60, -1.03E- | -13.09 <2E-16

06>

Polynomial regression (N=368): polyploid proportion ~ latitude + latitude:

Model term b 95%ClI t P Rz,
Intercept 0.344 <0.330, 0.357> 49.06 <2E-16 0.2947
Latitude -1.11E-03 <-1.48E-03, - -5.75 1.95E-08
7.27E-04>
Latitude: 5.47E-05 <4.59E6%5, 6.35E- 12.19 <2E-16
>

Linear regression (N=367): 10g.,(2C genome size) ~ polyploid proportion

Model term b 95%ClI t P R,
Intercept 3.372 <3.338, 3.407> 191.10 <2E-16 0.0177
Polyploid 0.116 <0.033, 0.199> 2.75 0.006

proportion

Polynomia regression (N=365): l0g.,(2C genome size) ~ GST + GST:

Model term b 95%ClI t P Rz,
Intercept 3.444 <3.405, 3.483> 172.53 <2E-16 0.4075
GST 0.005 <-4.33E-05, - 1.95 0.052

0.0099>
GST: 0.000 <-0.0005, -0.0003> -5.34 <2E-07

Table 2: N - number of TDWGs included in the analysis; b, - regression estimates of moddl terms;
95%CI - lower and upper limits of 95% confidence intervals of the regression estimates; R,,- R
sgquared adjusted indicating explained variance. GST isthe mean temperature of the growing season.
In the case of polynomial regressions, we fitted orthogonal polynomials using the "poly" function in

35


https://doi.org/10.1101/2022.12.05.519116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519116; this version posted September 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

base R, but the parameter "raw" was set to "TRUE" to obtain parameter estimates corresponding to
response variables.
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(a) Range size, EOO ~ Genome size per species
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(a) Latitudinal gradient of mean genome size (2C) in flowering plants
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