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Abstract1

Sequence classification reduces the complexity of metagenomes and facilitates a fundamental under-2

standing of the structure and function of microbial communities. Binary metagenomic classifiers3

offer an insufficient solution because environmental metagenomes are typically derived from mul-4

tiple sequence sources, including prokaryotes, eukaryotes and the viruses of both. Here we intro-5

duce a deep-learning based (as opposed to alignment-based) sequence classifier, DeepMicroClass,6

that classifies metagenomic contigs into five sequence classes, i.e., viruses infecting prokaryotic or7

eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. At different8

sequence lengths, DeepMicroClass achieved area under the receiver operating characteristic curve9

(AUC) scores >0.98 for most sequence classes, with the exception of distinguishing plasmids from10

prokaryotic chromosomes (AUC scores ≈ 0.97). By benchmarking on 20 designed datasets with vari-11

able sequence class composition, we showed that DeepMicroClass obtained average accuracy scores12

of ~0.99, ~0.97, and ~0.99 for eukaryotic, plasmid and viral contig classification, respectively, which13

were significantly higher than the other state-of-the-art individual predictors. Using a 1-300 µm14

daily time-series metagenomic dataset sampled from coastal Southern California as a case study,15

we showed that metagenomic read proportions recruited by eukaryotic contigs could be doubled16

with DeepMicroClass’s classification compared to the counterparts of other alignment-based classi-17

fiers. With its inclusive modeling and unprecedented performance, we expect DeepMicroClass will18

be a useful addition to the toolbox of microbial ecologists, and will promote metagenomic studies of19

under-appreciated sequence types.20

keywords: metagenomic contig classification, microbial eukaryotes, eukaryotic viruses, phages,21

plasmids22

Introduction23

Microbes are major players of global biogeochemical cycles owing to their high abundance, immense24

diversity, versatile metabolism, and survivability in any conceivable ecosystem on the planet (Falkowski25

et al., 2008; Azam & Worden, 2004). Microbial communities are a collection of diverse biological en-26

tities, including ribosome-encoding cellular organisms (REOs), capsid-encoding organisms (CEOs, i.e.,27

viruses) that can only reproduce within cells of REOs, and orphan replicons (plasmids, transposons, etc)28

that parasitize REOs or CEOs for propagation (Raoult & Forterre, 2008). Viruses and plasmids are29

extrachromosomal genetic elements that have important implications for the diversity and function of30
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microbial communities owing to their roles in transferring genetic materials between or within microbes.31

Thus, together with transposable elements, they are collectively referred to as mobile genetic elements32

(MGEs). Depending on where, when and how metagenomic samples were collected, the microbial di-33

versity within a sample can range from a consortium of several dominant strains to a conglomerate of34

thousands of species. Soon after the discovery of the small subunit rRNA gene (SSU) as a universally35

conserved phylogenetic marker (Woese & Fox, 1977), the biodiversity and structure of environmental36

microbial communities can be easily assessed using the SSU-based amplicon surveys (Pace et al., 1986;37

Olsen et al., 1986). Microbial coding potentials can be further probed using cloning libraries of natural38

microbial assemblages (e.g., cosmid and fosmid libraries) (Olsen et al., 1986; Schmidt et al., 1991; Stein39

et al., 1996; Vergin et al., 1998; Rondon et al., 2000; Béjà et al., 2000; Legault et al., 2006), which40

have been revolutionized by shotgun metagenomes to infer functional capabilities and ecological roles41

of uncultured microbes (Venter et al., 2004; Handelsman, 2004). The rapid expansion of metagenomic42

datasets presents opportunities and challenges. Metagenomics enables the exploration of complex mi-43

crobial interactions and genetic evolution of individual species (Xia et al., 2011; Schloissnig et al., 2013).44

On the other hand, efficient and reliable retrieval of microbial genomes and MGEs from metagenomic45

sequence pools requires strategic approaches.46

47

By categorizing metagenomic contigs into distinct groups, the complexity of metagenomes can be re-48

duced to certain taxonomic levels, from coarse domains to consensus species or strains. Metagenomic49

applications developed to retrieve intended contigs can be briefly framed into two categories, supervised50

contig classification tools (i.e., viral contig predictors) and unsupervised contig clustering tools (i.e.,51

metagenomic binners, see Sedlar et al., 2017 for a review of binning strategies). Viruses are prevalent52

in aquatic, soil and host-associated systems, and are presumably the most abundant biological entities53

on Earth (Suttle, 2005, 2007). In marine systems, viral lysis is crucial in redirecting carbon and energy54

flow to the lower trophic levels (termed “Viral Shunt”), which has great implications for the global55

biogeochemical cycles (Fuhrman, 1999; Wilhelm & Suttle, 1999). Metagenomic contig classification has56

been heavily focused on the prediction of viral sequences. VirSorter (Roux et al., 2015) and VirFinder57

(Ren et al., 2017) are two pioneer tools to identify viral contigs from metagenomic assemblies. VirSorter58

predicts viral contigs based on viral signals and categorizes them into three tiers with different confi-59

dence levels. VirFinder employs k-mer frequencies and logistic regression to classify contigs to either60

viral or host sequences, which outperforms VirSorter at different contig lengths, especially for shorter61

contigs without detectable viral hallmark genes (Ren et al., 2017). The success of k-mer based methods62

has inspired the application of deep learning in viral sequence discovery, which led to the development63

of DeepVirFinder (Ren et al., 2020) and PPR-Meta (Fang et al., 2019), both of which use one-hot encod-64

ing to convert DNA sequences into presence/absence matrices of nucleotides, and use neural networks65

to train virus-host classifiers at different contig lengths. Besides, PPR-Meta combines both nucleotide66

path and codon path in the encoding step, and classifies contigs into viruses, host chromosomes and67

plasmids (Fang et al., 2019). VIBRANT (Kieft et al., 2020) uses neural networks to distinguish prokary-68

otic dsDNA, ssDNA and RNA viruses based on “v-score” metrics, which are calculated from significant69

protein hits to a collection of Hidden Markov Model (HMM) profiles derived from public databases.70

Most of the aforementioned tools target bacteriophages. Eukaryotic virus predictors are emerging in71

recent years, and one such tool is HostTaxonPredictor (HTP) (Gałan et al., 2019), which utilizes four72

machine learning methods to classify viral sequences to eukaryotic viruses or bacteriophages based73

on sequence features including mono-, dinucleotide absolute frequencies and di-trinucleotide relative74
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frequencies. Plasmids are another major type of MGEs heavily studied in environmental microbiome,75

particularly in host-associated systems or wastewater treatment plants. Via transferring among hosts76

or exchanging genes with their host genomes, plasmids facilitate the acquisition of new traits by hosts77

(Hall, 2016). Thus, by carrying genes related to resource utilization, antibiotic, metal resistance, and78

defense systems, plasmids contribute to the genetic and phenotypic plasticity of hosts, and increase their79

fitness to the changing environments. There are multiple dedicated tools developed besides PPR-Meta,80

such as cBar (Zhou & Xu, 2010), PlasFlow (Krawczyk et al., 2018), PlaScope (Royer et al., 2018) and81

PlasClass (Pellow et al., 2020). In principle, PlaScope employs a similarity searching approach based on82

species-specific databases, while cBar, PlasFlow and PlasClass use differential k-mer frequencies with83

different machine-learning methods. Beyond viruses and plasmids, there is a paucity of applications84

targeting the classification of eukaryotic contigs from metagenomes, while eukaryotes are indispensable85

to the ecological functioning of natural microbial communities. Alignment-based applications such as86

Kaiju (Menzel et al., 2016) and MetaEuk (Levy Karin et al., 2020) search for close matches in reference87

databases, thus can be used to assign reads or contigs to taxonomic groups. While the accuracy of88

these applications depends on the completeness of reference databases, their performance in classifying89

eukaryotic contigs is arguable due to the lack of a comprehensive microbial eukaryotic database (Keel-90

ing et al., 2014). EukRep (West et al., 2018) is a reference-independent application that uses k-mer91

frequency and linear-SVM to classify metagenomic contigs into eukaryotic and prokaryotic sequences.92

It has been proven that when combined with the conventional metagenomic and metatranscriptomic93

analyses, such as reconstructing eukaryotic bins and gene co-abundance analysis, biological and eco-94

logical insight can be readily obtained for uncultured eukaryotes (Vorobev et al., 2020; West et al.,95

2018). Eukaryotic sequences could also be identified using alignment-independent applications. Tiara96

(Karlicki et al., 2022) is a deep-learning based method used for eukaryotic sequence identification in97

metagenomes, and Whokaryote (Pronk & Medema, 2022) is a random forest classifier that uses gene-98

structure based features to distinguish eukaryotic and prokaryotic sequences.99

100

Despite the significant progress made in the past years, there isn’t one tool that can classify eukary-101

otic/prokaryotic genomes, eukaryotic/prokaryotic viruses, and plasmids in one shot. In fact, all these102

binary classifiers suffer from sequence types that are not modeled, such as eukaryotic contigs or plasmids103

can be misclassified as viruses by viral predictors, and viral contigs can be misclassified as plasmids by104

plasmid predictors, etc. Thus, to achieve a more reliable classification of the target sequences, one has105

to run several of these tools consecutively, each suffers from its sensitivity and specificity, and the error106

rates propagate throughout the workflow, resulting in less accurate and biased classification. Here we107

introduce DeepMicroClass, a versatile multi-class metagenomic contig classifier based on convolutional108

neural networks (CNN). The implementation of DeepMicroClass and code for experiments described109

in this paper can be accessed at https://github.com/chengsly/DeepMicroClass. We show that110

DeepMicroClass outperforms all the existing tools by precision and sensitivity across all benchmark111

datasets with variable sequence-type composition. Using a coastal marine metagenomic dataset as a112

case study, we showed that DeepMicroClass captures more eukaryotic contigs than alignment-based113

classifiers. DeepMicroClass is superior to the other tools by classifying all sequence types simultane-114

ously, which will greatly reduce the time and computation resource usage compared to the conventional115

workflow of chaining a set of different predictors.116

September 9, 2023 3/26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2023. ; https://doi.org/10.1101/2021.10.26.466018doi: bioRxiv preprint 

https://github.com/chengsly/DeepMicroClass
https://doi.org/10.1101/2021.10.26.466018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and methods117

Dataset preparation118

We collected 5 classes of sequences: prokaryotic host, eukaryotic host, plasmid, prokaryotic viral and119

eukaryotic viral sequences. For prokaryotic chromosome sequences, we downloaded all the prokaryotic120

genomes, including all the bacteria and archaea sequences from NCBI RefSeq on Aug 22, 2022. The121

prokaryotic genomes were cleaned up by removing all the sequences annotated as “Plasmid” according122

to the assembly reports, and sequences not annotated as plasmid but have identical sequence IDs in123

the plasmid dataset were also removed. The resulting sample set contains 40,208 sequences. The eu-124

karyotic host sequence database includes eukaryotic sequences from the eukaryotic taxa used by Kaiju125

(Menzel et al., 2016) and the PR2 database (Guillou et al., 2013). Specifically, we selected microbial126

eukaryotic genomes under taxa names: “Amoebozoa”, “Apusozoa”, “Cryptophyceae”, “Euglenozoa”,127

“Stramenopiles”, “Alveolata”, “Rhizaria”, “Haptista”, “Heterolobosea”, “Metamonada”, “Rhodophyta”,128

“Chlorophyta”, and “Glaucocystophyceae” using genome_updater (available at https://github.com-129

/pirovc/genome_updater) on Aug 22, 2022. A total of 612 eukaryotic sequences were downloaded. In130

addition to these eukaryotic genomes, we also included 32,073,625 eukaryotic host sequences from the131

678 marine eukaryotic transcriptomic re-assemblies (Johnson et al., 2019) of cultured samples generated132

by the MMETSP project (Keeling et al., 2014), which included 306 pelagic and endosymbiotic marine133

eukaryotic species representing more than 40 phyla.134

135

Plasmid sequences and corresponding metadata were retrieved from PLSDB (Galata et al., 2019) re-136

leased on Jun 23, 2021. The dataset contains 34,513 plasmid records. Viral sequences and associated137

metadata were retrieved from Virus-Host DB (Mihara et al., 2016) released on Jun 1, 2022, which138

contains 17,357 nucleic acid records, including 5,209 prokaryotic viruses and 12,148 eukaryotic viruses.139

In all downloaded sequences, we further cross compared sequence IDs in each class, and any sequence140

with an identical ID occurring in more than one class was removed so that we could reduce potential141

erroneous annotation from the source database.142

Benchmark Dataset Preparation143

Sequences were split into two parts according to the dates submitted to NCBI, using Jan 1, 2020 as a144

cutoff date. Sequences submitted before Jan 1, 2020 were used for training and validation, with 80%145

as training and 20% as validation using stratified split, and the sequences submitted after this date146

were used for testing. The Mash (Ondov et al., 2016) distance was used to estimate the similarity147

between sequences among training, validation and test sets. Sequences in the test set with a Mash148

distance < 0.1 to any sequence in the training or validation sets were removed from the test set. Virus-149

Host DB derived viral sequences (Mihara et al., 2016) and MMETSP derived eukaryotic sequences150

were not dated. These sequences were randomly split into training, validation and test sets with the151

proportions of 60%, 20% and 20%, respectively. Similarly, sequences were removed from the test set152

when the Mash distance < 0.1 to any sequence in the training or validation sets. The composition153

of a metagenomic sample is usually unknown, and the imbalance among different sequence classes154

might affect the performance of different classifiers. Moreover, existing methods focus on classifying155

one special sequence class, e.g. eukaryotic hosts, prokaryotic viruses or plasmids. Some tools could156

classify two or more sequence classes, for instance, PPR-Meta (Fang et al., 2019) can predict prokaryotic157

hosts, phages and plasmids. In order to compare with tools developed for a specific sequence class and158
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for multiple sequence classes, we generated 20 equal-sized (1000 contigs, each 10 kbs long) benchmark159

datasets with a variable composition of the 5 sequence classes. Briefly, the fractions of PROK (including160

prokaryotic hosts, prokaryotic viruses, and plasmids) to EUK (including eukaryotic hosts and eukaryotic161

viruses) sequences were determined using the ratios of 9:1, 7:3, 5:5, 3:7, and 1:9. Then for each fixed162

PROK:EUK ratio, the PROK fraction was further split into prokaryotic hosts, prokaryotic viruses and163

plasmids based on the ratios of 5:1:1, 4:1:1, 3:1:1, and 2:1:1; and the EUK fraction was further split164

into eukaryotic hosts and eukaryotic viruses according to the ratio of 5:1, 4:1, 3:1, and 2:1. Finally, the165

corresponding number of sequences were drawn from the test sequence pool for each class using the166

ratios specified above, the actual sequence source composition of the 20 test datasets were shown in167

Fig. S1 and Table S1 in the Supplementary Material.168

Model Design and Training169

DeepMicroClass employs a di-path convolutional neural network comprising a base-path and a codon-170

path to classify input sequences into one of the five classes. For the base-path, the input nucleotide171

sequence was firstly encoded as a one-hot matrix. Specifically, each of the A, C, G, and T nucleotides172

was translated into [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], respectively. Any non-ACGT nucleotide173

was represented with [0, 0, 0, 0]. The reverse complimentary strand of the input sequence can be one-hot174

encoded simply by flipping the forward one-hot matrix along both row and column. For the codon-path,175

the forward or reverse base-path matrix was first converted into three 64 dimensional one-hot matrices176

based on three reading frames, then the three matrices were concatenated into one matrix. Thus, for177

each strand of a input contig, a di-path incorporating both the base and codon level information was178

encoded and fed into the following convolutional layers. The overview of the network structure of179

DeepMicroClass is shown in Fig. 1.180

The di-path CNN model was trained by minimizing the cross-entropy loss between the predicted class181

and the actual class of input sequences. The training was run for 3000 epochs with a learning rate182

of 0.001 and batch size of 256. For each batch, sequences from the whole training dataset were firstly183

subsampled with weighted random sampling without replacement within an epoch. The weight for184

samples of each class i was defined as185

wi =
number of samples

5× number of samples in classi

After the sequences were sampled, a contig length was chosen from 500 bps, 1 kbps, 2 kbps, 3 kbps186

and 5 kbps, and a contig with the given length was sampled from the original sequence to construct187

the batch. In the testing stage, sequences with lengths < 5 kbps were fed directly to the model for188

prediction. For sequences with lengths > 5 kbps, each input sequence was first split into multiple189

non-overlapping 5 kbps chunks, then scores given by the model for each chunk were collected, and the190

mean score of all chunks was used as the final output of the input sequence.191

192

Use-case data preparation and analysis193

The daily time-series metagenomic samples were taken off the coast of Southern California using an194

Environmental Sample Processor (ESP), and the 1 µm A/E filters (Pall Gelman) collected during195

the day were used for DNA extraction as described previously (Needham et al., 2018). Metagenomic196

libraries were prepared using the Ovation® Ultralow V2 DNA-Seq library preparation kit (NuGEN,197
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Fig 1. Schematic representation of the multi-class CNN structure used in this study. The network
has two convolutional paths, a base-path encodes the nucleotide level information and a codon-path encodes
the codon level information. The hyperparameters used for each convolutional layer are marked on the figure.
For each strand, the output dimension of base- and codon-paths are 256 and 256, respectively. The di-path
outputs of forward and reverse strands are concatenated into a 1024-dimensional vector, which is used as the
input of following linear layers. The final linear layer outputs a 5-dimensional vector, with each dimension
indicating the probability of the input contig being eukaryotic host, eukaryotic virus, plasmid, prokaryotic host
and prokaryotic virus.

Tecan Genomics) under the manufacturer’s instruction using 10 ng of starting DNA and amplified for198

13 PCR cycles. Metagenomic libraries were sequenced on an Illumina NovaSeq 6000 platform (2× 150199

bp chemistries) at Berry Genomics Co. (Beijing, China). After demultiplexing, the raw reads were200

first checked with FastQC v0.11.2, then adapter and low quality regions were trimmed using fastp201

v0.21.0 (Chen et al., 2018) with the following parameters: -q 20 -u 20 -l 30 –cut_tail -W 4 -M 20 -c.202

PhiX174 and sequencing artifacts were removed using bbduk.sh and human genome sequences were203

removed using bbmap.sh with default parameters, both scripts can be found in the BBTools package204

v37.24 (https://jgi.doe.gov/data-and-tools/bbtools). Metagenomic samples were assembled indepen-205

dently using metaSPAdes v3.13.0 (Nurk et al., 2017) with a custom kmer set (-k 21,33,55,77,99,127).206

The assembled contigs were further coassembled as previously described (Long et al., 2021). Briefly,207

all the contigs were pooled and sorted into short (<2kb) or long (≥2kb) contig sets, the short contig208

set was first coassembled using Newbler v2.9 (Margulies et al., 2005), the resulting ≥2kb contigs were209

further coassembled with the long contig set (Treangen et al., 2011). A minimum overlap thresholds of210

80 nt and 200 nt were set for Newbler and minimus2, respectively. For both coassembly steps, a min-211

imum identity cutoff of 0.98 was applied. After co-assembly, contigs were further dereplicated at 0.98212

identity using cd-hit v4.6.8 (Li & Godzik, 2006), the resulting contigs were used as reference contigs213

for sequence classification and read recruitment analysis. Reference contigs were classified using Kaiju214

v1.7.3 (Menzel et al., 2016) and MetaEuk v1 (Levy Karin et al., 2020), as well as DeepMicroClass v0.1.0215

(in hybrid mode), read counts assigned to each sequence class were summarized using custom Python216

scripts. Reads were mapped to reference contigs using bwa mem v0.7.17 with default parameters, and217

the number of reads aligned >30 nt to reference contigs were counted using bamcov v0.1 (available at218
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https://github.com/fbreitwieser/bamcov) with default parameters.219

Results220

A CNN-based multi-class classifier221

Identifying contigs of microbial eukaryotes and the viruses infecting them from metagenomic assemblies222

is crucial for gaining a better understanding of their ecological roles. However, current state-of-the-art223

tools often do not fully appreciate most of the eukaryotic viruses and their hosts. Here two commonly224

used viral contig predictors, VirFinder (Ren et al., 2017) and PPR-Meta (Fang et al., 2019), were evalu-225

ated based on their predicted viral scores. As expected, both predictors gave high scores to prokaryotic226

viral sequences and low scores to prokaryotic host sequences. However, the scores for eukaryotic host227

and eukaryotic viral sequences were more evenly distributed (Fig. S2), revealing an insufficient ac-228

curacy in classifying these sequence classes. Out of 500 randomly subsampled genomic sequences for229

each sequence type of prokaryotes, prokaryotic viruses, microbial eukaryotes, and eukaryotic viruses230

downloaded from NCBI, 454 prokaryotic viruses and 85 prokaryotic hosts had VirFinder-scores (VF-231

scores) above 0.5, while 238 eukaryotic viruses and 157 eukaryotic hosts had VF-scores above this value232

(Fig. S2a). A similar trend can be observed for PPR-Meta (Fig. S2b), confirming these tools are233

not adequately equipped to handle eukaryotic viral and host sequences. This emphasizes the need for234

novel predictors that consider more sequence types during the model training process.235

236

Here the performance of DeepMicroClass on sequences with different lengths (500 bps, 1 kbps, 2 kbps,237

3 kbps, 5 kbps, 10 kbps, 50 kbps, and 100 kbps) was evaluated on test data. The model performance238

for each sequence type was visualized via the Receiver Operating Characteristics (ROC) curve using239

a one-versus-rest strategy (Fig. 2). Overall, we showed that as the sequence length increased, the240

model’s performance improved across most sequence types, as indicated by the Area Under the Re-241

ceiver Operating Characteristic (AUC) measurements (Fig. 2). DeepMicroClass performed well on all242

sequence types when the input sequence length was ≥ 1 kbps, with the minimum AUC score being243

0.963 on classifying prokaryotic sequences. At the sequence length of 500 bps, DeepMicroClass achieved244

fairly high AUC scores for eukaryotic (0.944) or prokaryotic (0.96) viruses, whilst the scores for both245

viral sequence types were always ≥ 0.99 at longer sequence lengths (≥ 2 kbps) (Fig. 2). For non-viral246

sequences, the AUC scores were highest for eukaryotic sequences, followed by plasmid and prokaryotic247

genome sequences. However, a slight drop in the True Positive Rate (TPR) could be observed for eu-248

karyotic sequences when the False Positive Rate (FPR) was near 0 (Fig. 2). With further investigation,249

the rough curve could be caused by the sharp drop in the number of available eukaryotic sequences in250

the training dataset, which dropped from 16,002 to 255 when the contig length changed from 10 kbps251

to 50 kbps.252

DeepMicroClass outperforms Tiara and Whokaryote in eukaryotic host sequence253

prediction254

In the following three sections, we investigate the performance of DeepMicroClass for particular classes255

of sequences. We used accuracy and F1 score as the metrics to assess the model performance. And256

the sequence type composition of different benchmark datasets was described in the section Benchmark257

Dataset Preparation.258

259
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Fig 2. The ROC curves and AUC scores of different length models assessed on test datasets.
Each different panel shows the ROC curves for 5 sequence classes at different contig lengths (500 bps, 1 kbps, 2
kbps, 3 kbps, 5 kbps, 10 kbps, 50 kbps and 100 kbps). Euk, eukaryotic sequences; EukVir, eukaryotic viral
sequences; Plasmid, plasmid sequences; Prok, prokaryotic genome sequences; ProkVir, prokaryotic viral
sequences.
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First, we compared the performance of DeepMicroClass with Tiara (Karlicki et al., 2022) and Whokary-260

ote (Pronk & Medema, 2022) on the classification of microbial eukaryotes. Tiara and Whokaryote are261

commonly used to identify eukaryotic contigs from metagenomic assemblies without prior knowledge262

of microbial phylogenetic affiliation. With the compiled benchmark datasets, we showed that DeepMi-263

croClass persistently outcompeted both tools in all scenarios in terms of accuracy and F1 score (Fig. 3,264

S3), and DeepMicroClass was robust to the different compositions of benchmark datasets (Fig. 3).265

266

The average accuracy and F1 score across all benchmark datasets for DeepMicroClass were both 0.99,267

which were significantly higher than these metrics of Tiara and Whokaryote (pairwise Wilcoxon test268

p-values ≤ 9.5e-05 for both accuracy and F1 score). The accuracy of Whokaryote dropped from ∼0.95269

to ∼0.75 as the proportion of eukaryotic sequences increased, and the F1 scores were substantially lower270

than 0.8 in all test datasets. In contrast, Tiara maintained high accuracy and F1 score across different271

eukaryotic proportions, though a slight decrease in accuracy could be observed when the eukaryotic272

proportion was high. DeepMicroClass achieved accuracy and F1 score above 0.98 for all tested scenarios273

and was robust to variable sequence composition.274

275

A further look into those misclassified sequences revealed that both Tiara and Whokaryote suffered276

from lower sensitivity in distinguishing eukaryotic sequences from other types of sequences. Especially277

for Whokaryote, a substantial amount of eukaryotic viruses were mistakenly classified as eukaryotes278

(Fig. S4).279
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Fig 3. Distribution patterns of accuracy (a) and F1 score (b) across 20 benchmark datasets for
DeepMicroClass, Tiara and Whokaryote. The top panel shows the sequence type composition of 20
benchmark datasets, and the detailed composition ratios can be found in Table S1. The dashed black lines
indicate where accuracy or F1 score equals 0.8.
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DeepMicroClass outcompetes PlasFlow, PPR-Meta and geNomad in plasmid se-280

quence classification281

Plasmids are the major agents of horizontal gene transfer (HGT) among prokaryotic microbial commu-282

nities. Here we compared the performance of DeepMicroClass with PlasFlow (Krawczyk et al., 2018),283

PPR-Meta (Fang et al., 2019) and geNomad (Camargo et al., 2023) in classifying plasmid sequences284

using the same benchmark datasets described above. DeepMicroClass showed significantly improved285

results than PlasFlow, PPR-Meta and geNomad in all tested cases in plasmid classification (pairwise286

Wilcoxon test adj.p-value ≤ 1.1e-07; Fig. 4 & S5). Although PlasFlow, PPR-Meta and geNomad were287

able to achieve a maximum F1 score of 0.68, 0.74 and 0.86, respectively, their performance was severely288

impaired with increasing proportions of eukaryotic sequences in the benchmark datasets (Fig. 4). In289

contrast, the F1 score of DeepMicroClass was constantly higher than 0.8, though a slight decrease could290

also be observed with increasing eukaryotic proportions.291

292

We further examined the misclassified sequences and found PlasFlow had high sensitivity but low293

specificity, and the dominance of misclassified sequence types was in line with the composition of294

benchmark datasets (Fig. S6). PPR-Meta might benefit from its modeling of prokaryotic chromo-295

somes and phages, while it still had a low specificity mainly due to the misclassification of prokaryotic296

and eukaryotic chromosomal sequences into plasmids (Fig. S6). On the other hand, geNomad mainly297

suffered from misclassifying prokaryotic chromosomes into plasmids, though the misclassified eukary-298

otic sequences also accounted for a significant share (Fig. S6). It’s noteworthy that DeepMicroClass299

might further benefit from its modeling of eukaryotic genomic and viral sequences since they were300

rarely misclassified as plasmids, though the misclassification rates between plasmids and prokaryotic301

chromosomal sequences were still the highest among all misclassifications (Fig. S12). Probable rea-302

sons for such observation are the high affinity and frequent genetic exchange between plasmids and303

prokaryotic chromosomes, further improvements on the neural network structures or using additional304

features extracted from gene- or operon-centric approaches might yield a better classifier.305

DeepMicroClass achieves improved results in viral sequence prediction306

Viruses are ubiquitously found in every natural system where cellular organisms colonize. Viral con-307

tigs have been commonly identified from metagenomes or viromes using essentially gene-centric (e.g.308

VirSorter (Roux et al., 2015), VirSorter2 (Guo et al., 2021), VIBRANT (Kieft et al., 2020)), or309

oligonucleotide-centric (e.g. VirFinder (Ren et al., 2017), DeepVirFinder (Ren et al., 2020), PPR-Meta310

(Fang et al., 2019)) approaches, or a combination of both approaches (e.g. geNomad (Camargo et al.,311

2023)). Here we compared the performance of DeepMicroClass with VirSorter2, geNomad, VIBRANT,312

DeepVirFinder and PPR-Meta on viral contig prediction using the aforementioned benchmark datasets.313

Among these methods, DeepVirFinder, VIBRANT, PPR-Meta and geNomad were trained for the pre-314

diction of prokaryotic viruses, while VirSorter2 was trained for the prediction of both eukaryotic and315

prokaryotic viruses. We compared the performance of DeepMicroClass with VirSorter2 on the predic-316

tion of both prokaryotic and eukaryotic viruses, and the performance of DeepMicroClass with other317

predictors on the prediction of prokaryotic viruses. In either case, DeepMicroClass achieved better318

performance in terms of both accuracy and F1 score than all the other tested tools (Fig. 5, S7 & S8).319

VIBRANT and VirSorter2 showed slightly lower accuracy than DeepMicroClass, followed by PPR-Meta320

and DeepVirFinder. More distinct differences were observed in the F1 score metric of these tools across321

dataset composition, DeepMicroClass achieved an average F1 score of ~0.96, followed by VirSorter2322
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Fig 4. Distribution patterns of accuracy (a) and F1 score (b) across 20 benchmark datasets for
DeepMicroClass, PlasFlow, PPR-Meta and geNomad on plasmid classification. The dashed black
lines indicate where accuracy or F1 score equals 0.8. The same benchmarking datasets were used as in Fig. 3.
DMC, DeepMicroClass; PPR, PPR-Meta

and VIBRANT (~0.90 and ~0.85, respectively). The F1 score of VIBRANT dropped from 0.94 to <0.80323

as increasing proportions of eukaryotic chromosomal and viral sequences in the benchmark datasets.324

PPR-Meta and DeepVirFinder showed a decreasing tendency in both accuracy and F1 score with the325

increasing of eukaryotic chromosomal and viral sequences (Fig. 5a & 5b, S7). When considering both326

prokaryotic and eukaryotic viral sequences as the positive viral set, DeepMicroClass and VirSorter2327

were both able to achieve accuracy >0.90 and F1 score >0.80 without being significantly affected by328

the variations of sequence type composition, and DeepMicroClass constantly outperformed VirSorter2329

in both metrics across the benchmark datasets (Fig. 5c & 5d, S8).330

331

The number of misclassified sequences by PPR-Meta, DeepVirFinder, VIBRANT, geNomad and Vir-332

Sorter2 is shown in Fig. S9. The distribution of misclassified sequences by PPR-Meta, DeepVirFinder333

and geNomad showed a similar pattern, that eukaryotic chromosomal and viral sequences were prone334

to be misidentified as prokaryotic viruses. This indicates tools or models trained without knowledge335

of eukaryotic sequences are likely to behave similarly when eukaryotes are not rare in the metage-336

nomic community. Although VIBRANT and VirSorter2 had fewer misclassified sequences compared337

to PR-Meta, DeepVirFinder and geNomad, both suffered from misclassifying prokaryotic chromosomal338

or plasmid sequences into prokaryotic viruses Fig. S9. Since both VIBRANT and VirSorter2 use a339

gene-centric approach, it’s possible that some of the viral signature genes or fragments could also be340

widely detected in prokaryotic genomes or plasmids as a result of frequent gene transfer among them.341

This contrasts with the oligonucleotide-centric tools since cross-kingdom viral infection or plasmid con-342

jugation and gene transfer are less common.343

344

Since DeepMicroClass, PPR-Meta and geNomad are multiclass classifiers, here we also compared their345

performance based on accuracy and F1 score metrics on multiclass sequence classification using the same346
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Fig 5. Distribution patterns of accuracy and F1 score across 20 benchmark datasets for viral
classification. The accuracy (a) and F1 score (b) metrics for DeepMicroClass, PlasFlow, PPR-Meta and
geNomad were evaluated on prokaryotic viral contig classification, and the accuracy (c) and F1 score (d)
metrics for DeepMicroClass and VirSorter2 were evaluated on both prokaryotic and eukaryotic viral contig
classification. The dashed black lines indicate where accuracy or F1 score equals 0.8. The same benchmark
datasets were used as in Fig. 3. DMC, DeepMicroClass; DVF, DeepVirFinder; PPR, PPR-Meta.

benchmark datasets (Fig. S10 & S11). Here we only considered prokaryotic chromosomal, prokaryotic347

viral and plasmid sequences for comparison with PPR-Meta and geNomad as they were not trained348

for eukaryotic sequence classification. On the other hand, all five sequence types were considered for349

the evaluation of DeepMicroClass. In this case, DeepMicroClass still outperformed PPR-Meta and350

geNomad in all tested scenarios as evaluated by both the accuracy or and F1 score metrics (pairwise351

Wilcoxon test p-values ≤ 1.9e-06; Fig. S10 & S11). Both accuracy and F1 scores of DeepMicroClass352

were rarely below 0.95 across the sequence composition of the 20 benchmark datasets, while they were353

rarely above 0.9 for geNomad, or rarely above 0.8 for PPR-Meta (Fig. S10). Although the performance354

of DeepMicroClass was also deteriorated by the misclassification between prokaryotic chromosomal and355

plasmid sequences (Fig. S12), the amounts of misclassified sequences were significantly lower than356
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VIBRANT, VirSorter2 or geNomad (Fig. S9).357

DeepMicroClass predicted more eukaryotic and viral contigs than alignment-based358

predictors359

Alignment-based classifiers can suffer from incomplete genomic databases, particularly for complex360

natural environments such as marine or soil systems. To test the performance of DeepMicroClass in361

real metagenomic context, here we examined its performance with the other two sequence classifiers,362

Kaiju (Menzel et al., 2016) and MetaEuk (Levy Karin et al., 2020), using a 1-300 µm size fraction363

marine metagenomic dataset sampled off the coast of Southern California (Needham et al., 2018). Us-364

ing the co-assembled contigs as the reference, we show DeepMicroClass classified less prokaryotic but365

more eukaryotic, eukaryotic viral and prokaryotic viral contigs than Kaiju and MetaEuk (Fig. 6a).366

Among all the prokaryotic contigs classified by both Kaiju and MetaEuk, 73.6% of them were pre-367

dicted to be prokaryotic by DeepMicroClass, and 11.88%, 10.39%, and 4.14% of them were predicted368

to be eukaryotic, prokaryotic viral and eukaryotic viral sequences, respectively (Fig. 6b). Contigs that369

couldn’t be taxonomically determined by Kaiju (16.41%) or MetaEuk (10.01%) are mainly dominated370

by eukaryotic sequences (57.13% / 38.3%) as predicted by DeepMicroClass (Fig. 6c & 6d). Although371

MetaEuk classified more eukaryotic contigs than Kaiju (21.88% vs 15.26%, Fig. 6a), the latter clas-372

sified more prokaryotic viral contigs (4.38% vs 1.51%, Fig. 6a). This is consistent with the higher373

percentage of prokaryotic viral sequences in the unclassified contigs of MetaEuk than Kaiju (28.86%374

vs 14.87%, Fig. 6c & 6d). By mapping reads to reference contigs, we calculated the read percentages375

recruited by different sequence types. The average eukaryotic read percentage recruited by DeepMi-376

croClass (6.15%) is considerably higher than by MetaEuk (4.78%) or Kaiju (3.50%), at the expense of377

lower prokaryotic read percentages (13.12%, 20.60% and 20.51%, respectively, Fig. 6f-h). Similarly,378

the average read percentages of prokaryotic viral and eukaryotic viral sequences recruited by Deep-379

MicroClass (6.07%/1.24%) are also higher than MetaEuk (0.49%/0.19%) and Kaiju (1.67%/0.37%)380

(Fig. 6f-h). Notably, though DeepMicroClass assigned less prokaryotic and more eukaryotic reads381

than other classifiers, the relative abundance profiles across the whole time series are highly correlated382

(Fig. S13a & S13b), and to a less extent for the prokaryotic viral read percentage profiles (Fig.383

S13c). This is not the case for eukaryotic viral read abundance profiles, where Kaiju and MetaEuk384

are highly correlated, but not to DeepMicroClass (Fig. S13d). To sum up, DeepMicroClass is more385

correlated with MetaEuk in eukaryotic read profiles, and more correlated with Kaiju in prokaryotic386

and prokaryotic viral read profiles.387

Discussion388

Microbial eukaryotes and viruses infecting them are understudied389

Microbial eukaryotes are prevalent in diverse ecosystems such as host-associated habitats (Parfrey et al.,390

2011), deep-sea benthos (Bik et al., 2012), and geothermal springs (Oliverio et al., 2018), etc. Due to391

challenges in the cultivation and whole genome-sequencing of microbial eukaryotes, biodiversity sur-392

veys of microbial eukaryotes were commonly performed using marker genes, such as the 18S rDNA393

hypervariable V4 or V9 regions (Pawlowski et al., 2012; Amaral-Zettler et al., 2009). The amplicon-394

based analysis provides valuable information on the taxonomy of microbial eukaryotes, while in order395

to probe their metabolic potentials or ecological functions, genomic and transcriptomic information396

are essential. Despite several achievements in collecting microbial eukaryotic genes (Carradec et al.,397
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Fig 6. Sequence classification and read abundance of a 1-300 µm size fraction marine
metagenomic dataset sampled off the coast of Southern California. Metagenomic contigs were
classified using DeepMicroClass, Kaiju and MetaEuk at a length cutoff of 2 kb, and percentages of different
sequence types were calculated (a). Contigs predicted as Prokaryotes by both Kaiju and MetaEuk (b), and
contigs that were not classified by Kaiju (c) or MetaEuk (d) were further broken down into DeepMicroClass’s
classification. Clean reads were aligned to metagenomic contigs and percentages of mappable reads were
calculated (e). Mapped read percentages were further summarized according to sequence types of reference
contigs as predicted by DeepMicroClass (f), Kaiju (g) and MetaEuk (h). Prokaryotes included both prokaryotic
hosts and plasmids. UnclassifiedViruses were sequences predicted to be viruses but their taxonomy couldn’t be
further resolved by Kaiju or MetaEuk.

2018; Vorobev et al., 2020), transcripts (Keeling et al., 2014) or single-cell amplified genomes (SAGs)398

(Sieracki et al., 2019) towards a comprehensive microbial eukaryotic database, our knowledge are still399

limited by the availability of diverse microbial eukaryotic genomes (Burki et al., 2020). With the rapid400

accumulation of metagenomic datasets and the availability of binning software, it’s appealing to recover401

eukaryotic genomes from natural microbial communities. EukRep was developed in such a context to402

identify eukaryotic contigs for metagenomic binning (West et al., 2018). This approach has enabled the403

genome-resolved analysis of fungi, protists, and rotifers from human microbiome studies (West et al.,404

2018; Olm et al., 2019). Similar approaches have been applied to marine microbiome studies (Duncan405

et al., 2020; Delmont et al., 2020), which recovered hundreds of eukaryotic metagenome-assembled406

genomes (MAGs) and provided insight into the functional diversity and evolutionary histories of micro-407

bial eukaryotes beyond the taxonomic information.408

409

Beyond microbial eukaryotes, current viromic studies are biased towards viruses infecting prokaryotes.410

This could be introduced by the skewed distribution of viral genomes in the RefSeq database, which411

is dominated by phages and pathogenic viruses. By Sept 1, 2023, among 18,729 viral reference se-412

quences, there were only 104 records belonging to algae-infecting Phycodnaviridae and 30 belonging to413

protists-infecting Mimiviridae. Both of the two viral families are subgroups of the Nucleocytoplasmic414

Large DNA Viruses (NCLDV) (Iyer et al., 2001). Since most of the commonly used viral predictors are415
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trained on the RefSeq viral database, it’s expected that these tools suffered from identifying eukaryotic416

viruses from the test datasets (Fig. 5, S7, & S8). Given the high diversity of protists (Foissner, 1999;417

Slapeta et al., 2005), high throughput metagenomes and single-cell genomes are expected to offer a418

culture-independent solution to rapidly expand the coverage of viral database. For instance, two recent419

studies reconstructed 2,074 and 501 NCLDV MAGs from global environmental metagenomes (Schulz420

et al., 2020; Moniruzzaman et al., 2020), dramatically increased the phylogenetic and functional di-421

versity of NCLDVs. Single-cell metagenomics was also employed to identify viruses infecting marine422

microbial eukaryotes (Needham et al., 2019a,b), these studies provided insightful findings of the viral423

encoded proteins and metabolic pathways.424

425

These studies demonstrated that metagenomics and single-cell genomics can be promising in studying426

microbial eukaryotes and viruses infecting them. While most commonly used tools are not optimized in427

classifying eukaryotes (Fig. 3 & S3) or eukaryotic viruses (Fig. 5 & S7). Given the high performance428

of DeepMicroClass and the evidence of abundant eukaryotic contigs in marine ecosystems (Fig. 6), we429

expect it will be a valuable addition to the toolbox of marine ecologists.430

The challenge of classifying prokaryotic host and plasmid sequences431

DeepMicroClass has a relatively lower accuracy in classifying plasmids when compared to the classifica-432

tion of eukaryotic or viral contigs (Fig. 3, 4, 5). The majority of the sequences that were misclassified433

as plasmids were from prokaryotic host genomes (Fig. S12), confirming classifying prokaryotic chromo-434

somal and plasmid sequences is a caveat of DeepMicroClass (Fig. 2). In comparison, the other tested435

plasmid classifiers suffered from both prokaryotic and eukaryotic sequences as we have benchmarked436

(Fig. 4 & S6). It’s noteworthy that this marginal advantage can be crucial in natural environments,437

such as marine environments as we mentioned here (Fig. 6), where eukaryotic sequences can have a438

substantial impact on the classification of plasmid sequences. This also indicates that it is achievable439

to separate plasmid sequences from eukaryotic sequences solely based on patterns of oligonucleotides,440

and current plasmid predictors can benefit from using a more comprehensive training dataset including441

eukaryotic sequences.442

443

It is understandable given the higher genome complexity of eukaryotes than prokaryotes (Lynch & Con-444

ery, 2003), such as the coding density, prevalence of introns and repetitive sequences, etc. In contrast,445

it’s challenging to classify plasmids and prokaryotic chromosomal sequences for all the tested plasmid446

predictors (Fig. 4). The reasons can be manifold, but plasmid transmission among microbial hosts447

and plasmid-chromosome gene shuffling can be two fundamental ones. The host range of plasmids is448

variable, it can be within closely related species for narrow host range plasmids or across distant phylo-449

genetic groups for broad host range plasmids (Jain & Srivastava, 2013). Broad host range plasmids can450

be important drivers of the gene flux among host microbes in natural environments (Heuer & Smalla,451

2007; Wolska, 2003; Davison, 1999). For instance, in natural soil microbial communities, the IncP-452

and IncPromA-type broad host range plasmids could transfer from proteobacteria to diverse bacteria453

belonging to 11 bacterial phyla (Klümper et al., 2015). When plasmid carriage could increase the454

hosts’ fitness, such as improving host survival with antibiotic resistance, it can be rapidly adopted and455

persistently maintained in natural microbial communities (Li et al., 2020; Bellanger et al., 2014). On456

the other hand, when the maintenance of plasmids imposed a high fitness cost on the hosts, plasmids457

or plasmid-borne genes could be lost in the process of purifying selection (Hall et al., 2016). Interest-458
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ingly, studies also suggested that sometimes this fitness cost could be ameliorated by compensatory459

evolution (Millan et al., 2014; Harrison et al., 2015; Loftie-Eaton et al., 2017), which was hypothesized460

to be the major factor of plasmid survival and persistence (Hall et al., 2017). Plasmid carriage also461

increases the chance of plasmid-chromosome genetic exchange mediated by SOS-induced mutagenesis462

(Rodríguez-Beltrán et al., 2021) or mobile genetic elements such as transposons and integrons, etc463

(Frost et al., 2005; Rodríguez-Beltrán et al., 2021). For instance, genes carried by transposons or in464

the variable regions were also frequently found on plasmids (Eberhard, 1990; Zheng et al., 2015). Thus,465

the permissive transfer of plasmids across diverse hosts and the plasmid-chromosome gene flow pose a466

challenge for current plasmid classifiers. The oligonucleotide-based approaches might be complemented467

by gene-centric approaches using plasmid signature genes or enriched gene functions, such as genes468

involved in mobilization or conjugation. In addition, a comprehensive plasmid database is also crucial469

for model training, and plasmid-enriched metagenomics (plasmidome) can be a promising way to screen470

plasmids from environmental samples (Shi et al., 2018).471

472

Conclusions473

DeepMicroClass as a versatile multi-class classifier enables the accurate classification of five different474

metagenomic sequence types in one shot, meanwhile, it avoids the time-consuming and error-prone475

preprocessing steps that could potentially propagate errors to the final classification. The inclusive476

modeling of all common sequence types in metagenomes also makes DeepMicroClass attain better per-477

formance than the other state-of-the-art individual predictors due to reduced cross misclassifications.478

We also detected high relative abundances of marine eukaryotes in a daily time-series dataset, which479

were underestimated by alignment-based classifiers due to the limitation of public reference databases.480

Our case study indicates that both host and viral sequences are essential components in the cellular481

metagenomes, and robust ecological patterns can be obtained with DeepMicroClass even for coarse482

sequence types. We argue that by using DeepMicroClass as a preliminary classification step on metage-483

nomic/viromic assemblies, one can further focus on the interested sequence types for the following484

analysis, such as metagenomic binning of prokaryotic or eukaryotic contigs, comparative genomic anal-485

ysis of viral or plasmid sequences, etc. We conclude DeepMicroClass achieves higher performance486

than the other benchmarked predictors, and its application can facilitate studies of under-appreciated487

sequence types, such as microbial eukaryotic or viral sequences.488
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genomes and viruses. Prok: prokaryotic genomes, ProkVir: prokaryotic viruses/phages, Plas: plas-518

mids, Euk: eukaryotic genomes, EukVir: eukaryotic viruses. Benchmark sequence files can be found at519

dx.doi.org/10.6084/m9.figshare.14576193.520

Supplemental Figure S1. Sequence source composition of 20 equal-sized benchmark datasets.521

The fractions of PROK (including prokaryotic hosts, prokaryotic viruses, and plasmids) to EUK (in-522

cluding eukaryotic hosts and eukaryotic viruses) sequences were determined using the ratios of 9:1, 7:3,523

5:5, 3:7, and 1:9. For each fixed PROK:EUK ratio, the PROK fraction was further split into prokary-524

otic hosts, prokaryotic viruses and plasmids based on the ratios of 5:1:1, 4:1:1, 3:1:1, and 2:1:1; and the525

EUK fraction was further split into eukaryotic hosts and eukaryotic viruses according to the ratio of526

5:1, 4:1, 3:1, and 2:1. The detailed ratios can be found in Table S1.527

Supplemental Figure S2. The distribution of viral confidence scores for (a) VirFinder and528

(b) PPR-Meta. For both predictors, the same dataset was used and the predictions were529

performed with default parameters. VirFinder uses VF-Scores to determine the likelihood of input530

sequences being viral or not, and PPR-Meta uses phage scores to discern viruses from host chromosomes531

and plasmids. Both predictors achieved a high recall for prokaryotic viruses, while the confidence scores532

of eukaryotic viruses were more evenly spread across all confidence regions. Besides, both predictors533

achieved a high performance in distinguishing prokaryotic host sequences from prokaryotic viruses, but534

less so for eukaryotic host sequences.535

Supplemental Figure S3. Performance of DeepMicroClass, Tiara and Whokaryote on536

eukaryotic sequence classification. Both the accuracy and F1 score were compared based on 20537

designed benchmark datasets. The sequence class composition of the 20 datasets can be found in Table538

S1. Values on top of the pairwise comparisons are Bonferroni adjusted t-test p-values.The significance539

of the overall ANOVA test was shown in the bottom left corner.540

Supplemental Figure S4. The distribution of misclassified sequence types by Tiara and541

Whokaryote. The distribution of misclassified sequence types by Tiara and Whokaryote. The se-542

quence composition of these datasets can be found in Table Supplemental Table S1. To make the figure543

more visible, the range of the y-axis is from 0 to 100 for Tiara and from 0 to 500 for Whokaryote.544

Supplemental Figure S5. Performance of DeepMicroClass, PlasFlow, PPR-Meta and545

geNomad on plasmid sequence classification. Both the accuracy and F1 score were compared546

based on 20 designed benchmark datasets. The sequence class composition of the datasets can be found547

in Table S1. Values on top of the pairwise comparisons are Bonferroni-adjusted t-test p-values. The548

significance of the overall ANOVA test is shown in the bottom left corner.549

Supplemental Figure S6. The distribution of misclassified sequence types by PlasFlow,550

PPR-Meta and geNomad. The sequence composition of these datasets can be found in Table S1.551

Supplemental Figure S7. Performance of DeepMicroClass (DMC), DeepVirFinder (DVF),552

VIBRANT, PPR-Meta (PPR) and geNomad on prokaryotic viral sequence classification.553

Both the accuracy and F1 score were compared based on 20 designed benchmark datasets. The sequence554
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class composition of the 20 test datasets can be found in Table S1. Values on top of the pairwise com-555

parisons are Bonferroni-adjusted t-test p-values. The significance of the overall ANOVA test is shown556

in the bottom left corner557

Supplemental Figure S8. Performance of DeepMicroClass and VirSorter2 on prokaryotic558

and eukaryotic viral sequence classification. Both the accuracy and F1 score were compared based559

on 20 designed benchmark datasets. The sequence class composition of these datasets can be found560

in Table S1. Values on top of the pairwise comparisons are Bonferroni-adjusted t-test p-values. The561

significance of the overall ANOVA test is shown in the bottom left corner.562

Supplemental Figure S9. TThe distribution of misclassified sequence types by PPR-Meta,563

DeepVirFinder, VIBRANT, geNomad and VirSorter2. For PPR-Meta, DeepVirFinder, VI-564

BRANT and geNomad, only prokaryotic viruses are considered as the positive set, and for VirSorter2565

both prokaryotic and eukaryotic viruses are considered positive. The sequence composition of these566

datasets can be found in Table S1. To make the figure more visible, the range of the y-axis is from 0 to567

500 for PPR-Meta and DeepVirFinder, from 0 to 50 for VIBRANT, and from 0 to 80 for VirSorter2.568

Supplemental Figure S10. Distribution patterns of accuracy (a) and F1 score (b) across569

20 benchmark datasets for DeepMicroClass, PPR-Meta and geNomad on the prokaryotic570

genome, prokaryotic virus and plasmid classification. DeepMicroClass received higher scores571

in both accuracy and F1 score metrics in all tested scenarios compared to PPR-Meta and geNomad in572

multi-class classification. The dashed black lines indicate where accuracy or F1 score equals 0.8. The573

same benchmark datasets were used as in Fig. Fig. 3.574

Supplemental Figure S11. Performance of DeepMicroClass, PPR-Meta and geNomad on575

the prokaryotic genome, prokaryotic virus and plasmid classification. Both the accuracy and576

F1 score were compared based on 20 designed benchmark datasets. The sequence class composition of577

these datasets can be found in Table S1. Values on top of the pairwise comparisons are Bonferroni-578

adjusted t-test p-values. The significance of the overall ANOVA test is shown in the bottom left corner.579

Supplemental Figure S12. The distribution of misclassified sequence types by DeepMi-580

croClass. The sequence composition of these datasets can be found in Table S1. The maximal number581

of errors across all benchmark datasets was 50, which was set as the maximum of the y-axis.582

Supplemental Figure S13. Correlation coefficients of Prokaryotic (a), Eukaryotic (b),583

ProkaryoticViral (c), and EukaryoticViral (d) sequence relative abundances of different584

sequence classifiers. Coefficients highlighted in colors are significant ones (p-value < 0.01).585
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