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Abstract

Sequence classification reduces the complexity of metagenomes and facilitates a fundamental under-
standing of the structure and function of microbial communities. Binary metagenomic classifiers
offer an insufficient solution because environmental metagenomes are typically derived from mul-
tiple sequence sources, including prokaryotes, eukaryotes and the viruses of both. Here we intro-
duce a deep-learning based (as opposed to alignment-based) sequence classifier, DeepMicroClass,
that classifies metagenomic contigs into five sequence classes, i.e., viruses infecting prokaryotic or
eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. At different
sequence lengths, DeepMicroClass achieved area under the receiver operating characteristic curve
(AUC) scores >0.98 for most sequence classes, with the exception of distinguishing plasmids from
prokaryotic chromosomes (AUC scores ~ 0.97). By benchmarking on 20 designed datasets with vari-
able sequence class composition, we showed that DeepMicroClass obtained average accuracy scores
of ~0.99, ~0.97, and ~0.99 for eukaryotic, plasmid and viral contig classification, respectively, which
were significantly higher than the other state-of-the-art individual predictors. Using a 1-300 pm
daily time-series metagenomic dataset sampled from coastal Southern California as a case study,
we showed that metagenomic read proportions recruited by eukaryotic contigs could be doubled
with DeepMicroClass’s classification compared to the counterparts of other alignment-based classi-
fiers. With its inclusive modeling and unprecedented performance, we expect DeepMicroClass will
be a useful addition to the toolbox of microbial ecologists, and will promote metagenomic studies of

under-appreciated sequence types.

keywords: metagenomic contig classification, microbial eukaryotes, eukaryotic viruses, phages,

plasmids

Introduction

Microbes are major players of global biogeochemical cycles owing to their high abundance, immense
diversity, versatile metabolism, and survivability in any conceivable ecosystem on the planet (Falkowski
et al., 2008; Azam & Worden, 2004). Microbial communities are a collection of diverse biological en-
tities, including ribosome-encoding cellular organisms (REOs), capsid-encoding organisms (CEOs, i.e.,
viruses) that can only reproduce within cells of REOs, and orphan replicons (plasmids, transposons, etc)
that parasitize REOs or CEOs for propagation (Raoult & Forterre, 2008). Viruses and plasmids are

extrachromosomal genetic elements that have important implications for the diversity and function of
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microbial communities owing to their roles in transferring genetic materials between or within microbes.
Thus, together with transposable elements, they are collectively referred to as mobile genetic elements
(MGEs). Depending on where, when and how metagenomic samples were collected, the microbial di-
versity within a sample can range from a consortium of several dominant strains to a conglomerate of
thousands of species. Soon after the discovery of the small subunit rRNA gene (SSU) as a universally
conserved phylogenetic marker (Woese & Fox, 1977), the biodiversity and structure of environmental
microbial communities can be easily assessed using the SSU-based amplicon surveys (Pace et al., 1986;
Olsen et al., 1986). Microbial coding potentials can be further probed using cloning libraries of natural
microbial assemblages (e.g., cosmid and fosmid libraries) (Olsen et al., 1986; Schmidt et al., 1991; Stein
et al., 1996; Vergin et al., 1998; Rondon et al., 2000; Béja et al., 2000; Legault et al., 2006), which
have been revolutionized by shotgun metagenomes to infer functional capabilities and ecological roles
of uncultured microbes (Venter et al., 2004; Handelsman, 2004). The rapid expansion of metagenomic
datasets presents opportunities and challenges. Metagenomics enables the exploration of complex mi-
crobial interactions and genetic evolution of individual species (Xia et al., 2011; Schloissnig et al., 2013).
On the other hand, efficient and reliable retrieval of microbial genomes and MGEs from metagenomic

sequence pools requires strategic approaches.

By categorizing metagenomic contigs into distinct groups, the complexity of metagenomes can be re-
duced to certain taxonomic levels, from coarse domains to consensus species or strains. Metagenomic
applications developed to retrieve intended contigs can be briefly framed into two categories, supervised
contig classification tools (i.e., viral contig predictors) and unsupervised contig clustering tools (i.e.,
metagenomic binners, see Sedlar et al., 2017 for a review of binning strategies). Viruses are prevalent
in aquatic, soil and host-associated systems, and are presumably the most abundant biological entities
on Earth (Suttle, 2005, 2007). In marine systems, viral lysis is crucial in redirecting carbon and energy
flow to the lower trophic levels (termed “Viral Shunt”), which has great implications for the global
biogeochemical cycles (Fuhrman, 1999; Wilhelm & Suttle, 1999). Metagenomic contig classification has
been heavily focused on the prediction of viral sequences. VirSorter (Roux et al., 2015) and VirFinder
(Ren et al., 2017) are two pioneer tools to identify viral contigs from metagenomic assemblies. VirSorter
predicts viral contigs based on viral signals and categorizes them into three tiers with different confi-
dence levels. VirFinder employs k-mer frequencies and logistic regression to classify contigs to either
viral or host sequences, which outperforms VirSorter at different contig lengths, especially for shorter
contigs without detectable viral hallmark genes (Ren et al., 2017). The success of k-mer based methods
has inspired the application of deep learning in viral sequence discovery, which led to the development
of DeepVirFinder (Ren et al., 2020) and PPR-Meta (Fang et al., 2019), both of which use one-hot encod-
ing to convert DNA sequences into presence/absence matrices of nucleotides, and use neural networks
to train virus-host classifiers at different contig lengths. Besides, PPR-Meta combines both nucleotide
path and codon path in the encoding step, and classifies contigs into viruses, host chromosomes and
plasmids (Fang et al., 2019). VIBRANT (Kieft et al., 2020) uses neural networks to distinguish prokary-
otic dsDNA, ssDNA and RNA viruses based on “v-score” metrics, which are calculated from significant
protein hits to a collection of Hidden Markov Model (HMM) profiles derived from public databases.
Most of the aforementioned tools target bacteriophages. Eukaryotic virus predictors are emerging in
recent years, and one such tool is HostTaxonPredictor (HTP) (Galan et al., 2019), which utilizes four
machine learning methods to classify viral sequences to eukaryotic viruses or bacteriophages based

on sequence features including mono-, dinucleotide absolute frequencies and di-trinucleotide relative
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frequencies. Plasmids are another major type of MGEs heavily studied in environmental microbiome,
particularly in host-associated systems or wastewater treatment plants. Via transferring among hosts
or exchanging genes with their host genomes, plasmids facilitate the acquisition of new traits by hosts
(Hall, 2016). Thus, by carrying genes related to resource utilization, antibiotic, metal resistance, and
defense systems, plasmids contribute to the genetic and phenotypic plasticity of hosts, and increase their
fitness to the changing environments. There are multiple dedicated tools developed besides PPR-Meta,
such as cBar (Zhou & Xu, 2010), PlasFlow (Krawczyk et al., 2018), PlaScope (Royer et al., 2018) and
PlasClass (Pellow et al., 2020). In principle, PlaScope employs a similarity searching approach based on
species-specific databases, while cBar, PlasFlow and PlasClass use differential k-mer frequencies with
different machine-learning methods. Beyond viruses and plasmids, there is a paucity of applications
targeting the classification of eukaryotic contigs from metagenomes, while eukaryotes are indispensable
to the ecological functioning of natural microbial communities. Alignment-based applications such as
Kaiju (Menzel et al., 2016) and MetaEuk (Levy Karin et al., 2020) search for close matches in reference
databases, thus can be used to assign reads or contigs to taxonomic groups. While the accuracy of
these applications depends on the completeness of reference databases, their performance in classifying
eukaryotic contigs is arguable due to the lack of a comprehensive microbial eukaryotic database (Keel-
ing et al., 2014). EukRep (West et al., 2018) is a reference-independent application that uses k-mer
frequency and linear-SVM to classify metagenomic contigs into eukaryotic and prokaryotic sequences.
It has been proven that when combined with the conventional metagenomic and metatranscriptomic
analyses, such as reconstructing eukaryotic bins and gene co-abundance analysis, biological and eco-
logical insight can be readily obtained for uncultured eukaryotes (Vorobev et al., 2020; West et al.,
2018). Eukaryotic sequences could also be identified using alignment-independent applications. Tiara
(Karlicki et al., 2022) is a deep-learning based method used for eukaryotic sequence identification in
metagenomes, and Whokaryote (Pronk & Medema, 2022) is a random forest classifier that uses gene-

structure based features to distinguish eukaryotic and prokaryotic sequences.

Despite the significant progress made in the past years, there isn’t one tool that can classify eukary-
otic/prokaryotic genomes, eukaryotic/prokaryotic viruses, and plasmids in one shot. In fact, all these
binary classifiers suffer from sequence types that are not modeled, such as eukaryotic contigs or plasmids
can be misclassified as viruses by viral predictors, and viral contigs can be misclassified as plasmids by
plasmid predictors, etc. Thus, to achieve a more reliable classification of the target sequences, one has
to run several of these tools consecutively, each suffers from its sensitivity and specificity, and the error
rates propagate throughout the workflow, resulting in less accurate and biased classification. Here we
introduce DeepMicroClass, a versatile multi-class metagenomic contig classifier based on convolutional
neural networks (CNN). The implementation of DeepMicroClass and code for experiments described
in this paper can be accessed at https://github.com/chengsly/DeepMicroClass. We show that
DeepMicroClass outperforms all the existing tools by precision and sensitivity across all benchmark
datasets with variable sequence-type composition. Using a coastal marine metagenomic dataset as a
case study, we showed that DeepMicroClass captures more eukaryotic contigs than alignment-based
classifiers. DeepMicroClass is superior to the other tools by classifying all sequence types simultane-
ously, which will greatly reduce the time and computation resource usage compared to the conventional

workflow of chaining a set of different predictors.
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Materials and methods

Dataset preparation

We collected 5 classes of sequences: prokaryotic host, eukaryotic host, plasmid, prokaryotic viral and
eukaryotic viral sequences. For prokaryotic chromosome sequences, we downloaded all the prokaryotic
genomes, including all the bacteria and archaea sequences from NCBI RefSeq on Aug 22, 2022. The
prokaryotic genomes were cleaned up by removing all the sequences annotated as “Plasmid” according
to the assembly reports, and sequences not annotated as plasmid but have identical sequence IDs in
the plasmid dataset were also removed. The resulting sample set contains 40,208 sequences. The eu-
karyotic host sequence database includes eukaryotic sequences from the eukaryotic taxa used by Kaiju
(Menzel et al., 2016) and the PR2 database (Guillou et al., 2013). Specifically, we selected microbial
eukaryotic genomes under taxa names: “Amoebozoa”; “Apusozoa”, “Cryptophyceae”, “Fuglenozoa”,
“Stramenopiles”, “Alveolata”, “Rhizaria”, “Haptista”, “Heterolobosea”, “Metamonada”, “Rhodophyta”,
“Chlorophyta”, and “Glaucocystophyceae” using genome_updater (available at https://github.com-
/pirove/genome__updater) on Aug 22, 2022. A total of 612 eukaryotic sequences were downloaded. In
addition to these eukaryotic genomes, we also included 32,073,625 eukaryotic host sequences from the
678 marine eukaryotic transcriptomic re-assemblies (Johnson et al., 2019) of cultured samples generated
by the MMETSP project (Keeling et al., 2014), which included 306 pelagic and endosymbiotic marine

eukaryotic species representing more than 40 phyla.

Plasmid sequences and corresponding metadata were retrieved from PLSDB (Galata et al., 2019) re-
leased on Jun 23, 2021. The dataset contains 34,513 plasmid records. Viral sequences and associated
metadata were retrieved from Virus-Host DB (Mihara et al., 2016) released on Jun 1, 2022, which
contains 17,357 nucleic acid records, including 5,209 prokaryotic viruses and 12,148 eukaryotic viruses.
In all downloaded sequences, we further cross compared sequence IDs in each class, and any sequence
with an identical ID occurring in more than one class was removed so that we could reduce potential

erroneous annotation from the source database.

Benchmark Dataset Preparation

Sequences were split into two parts according to the dates submitted to NCBI, using Jan 1, 2020 as a
cutoff date. Sequences submitted before Jan 1, 2020 were used for training and validation, with 80%
as training and 20% as validation using stratified split, and the sequences submitted after this date
were used for testing. The Mash (Ondov et al., 2016) distance was used to estimate the similarity
between sequences among training, validation and test sets. Sequences in the test set with a Mash
distance < 0.1 to any sequence in the training or validation sets were removed from the test set. Virus-
Host DB derived viral sequences (Mihara et al., 2016) and MMETSP derived eukaryotic sequences
were not dated. These sequences were randomly split into training, validation and test sets with the
proportions of 60%, 20% and 20%, respectively. Similarly, sequences were removed from the test set
when the Mash distance < 0.1 to any sequence in the training or validation sets. The composition
of a metagenomic sample is usually unknown, and the imbalance among different sequence classes
might affect the performance of different classifiers. Moreover, existing methods focus on classifying
one special sequence class, e.g. eukaryotic hosts, prokaryotic viruses or plasmids. Some tools could
classify two or more sequence classes, for instance, PPR-Meta (Fang et al., 2019) can predict prokaryotic

hosts, phages and plasmids. In order to compare with tools developed for a specific sequence class and
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for multiple sequence classes, we generated 20 equal-sized (1000 contigs, each 10 kbs long) benchmark
datasets with a variable composition of the 5 sequence classes. Briefly, the fractions of PROK (including
prokaryotic hosts, prokaryotic viruses, and plasmids) to EUK (including eukaryotic hosts and eukaryotic
viruses) sequences were determined using the ratios of 9:1, 7:3, 5:5, 3:7, and 1:9. Then for each fixed
PROK:EUK ratio, the PROK fraction was further split into prokaryotic hosts, prokaryotic viruses and
plasmids based on the ratios of 5:1:1, 4:1:1, 3:1:1, and 2:1:1; and the EUK fraction was further split
into eukaryotic hosts and eukaryotic viruses according to the ratio of 5:1, 4:1, 3:1, and 2:1. Finally, the
corresponding number of sequences were drawn from the test sequence pool for each class using the
ratios specified above, the actual sequence source composition of the 20 test datasets were shown in

Fig. S1 and Table S1 in the Supplementary Material.

Model Design and Training

DeepMicroClass employs a di-path convolutional neural network comprising a base-path and a codon-
path to classify input sequences into one of the five classes. For the base-path, the input nucleotide
sequence was firstly encoded as a one-hot matrix. Specifically, each of the A, C, G, and T nucleotides
was translated into [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1], respectively. Any non-ACGT nucleotide
was represented with [0, 0,0, 0]. The reverse complimentary strand of the input sequence can be one-hot
encoded simply by flipping the forward one-hot matrix along both row and column. For the codon-path,
the forward or reverse base-path matrix was first converted into three 64 dimensional one-hot matrices
based on three reading frames, then the three matrices were concatenated into one matrix. Thus, for
each strand of a input contig, a di-path incorporating both the base and codon level information was
encoded and fed into the following convolutional layers. The overview of the network structure of
DeepMicroClass is shown in Fig. 1.

The di-path CNN model was trained by minimizing the cross-entropy loss between the predicted class
and the actual class of input sequences. The training was run for 3000 epochs with a learning rate
of 0.001 and batch size of 256. For each batch, sequences from the whole training dataset were firstly
subsampled with weighted random sampling without replacement within an epoch. The weight for

samples of each class ¢ was defined as

number of samples

w; = .
5 x number of samples in class;

After the sequences were sampled, a contig length was chosen from 500 bps, 1 kbps, 2 kbps, 3 kbps
and 5 kbps, and a contig with the given length was sampled from the original sequence to construct
the batch. In the testing stage, sequences with lengths < 5 kbps were fed directly to the model for
prediction. For sequences with lengths > 5 kbps, each input sequence was first split into multiple
non-overlapping 5 kbps chunks, then scores given by the model for each chunk were collected, and the

mean score of all chunks was used as the final output of the input sequence.

Use-case data preparation and analysis

The daily time-series metagenomic samples were taken off the coast of Southern California using an
Environmental Sample Processor (ESP), and the 1 pm A/E filters (Pall Gelman) collected during
the day were used for DNA extraction as described previously (Needham et al., 2018). Metagenomic
libraries were prepared using the Ovation® Ultralow V2 DNA-Seq library preparation kit (NuGEN,
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Convolution Convolution Convolution
Condon Kernel: (2, 64) Kernel: 3 Kernel: 3
Transformer # Filter: 64 # Filter: 128 # Filter: 256
PRelu PRelu PRelu
AvgPool(3) AvgPool(3) GlobalAvgPool
BatchNorm BatchNorm BatchNorm
Linear
Forward Layers
Lx4
Output
5x1

256 x 1
Concat

A

Rev
Comp

Backward
Lx4

PRelu
AvgPool(3)
BatchNorm

PRelu
AvgPool(3)
BatchNorm

PRelu
GlobalAvgPool
BatchNorm

Convolution Convolution

Kernel: (6, 4) Convolution Kernel: 3 256 x 1
# Filter: 64 Kemel: 3 # Filter: 256
# Filter: 128

onvolutional Layer

Fig 1. Schematic representation of the multi-class CNN structure used in this study. The network
has two convolutional paths, a base-path encodes the nucleotide level information and a codon-path encodes
the codon level information. The hyperparameters used for each convolutional layer are marked on the figure.
For each strand, the output dimension of base- and codon-paths are 256 and 256, respectively. The di-path
outputs of forward and reverse strands are concatenated into a 1024-dimensional vector, which is used as the
input of following linear layers. The final linear layer outputs a 5-dimensional vector, with each dimension
indicating the probability of the input contig being eukaryotic host, eukaryotic virus, plasmid, prokaryotic host
and prokaryotic virus.

Tecan Genomics) under the manufacturer’s instruction using 10 ng of starting DNA and amplified for
13 PCR cycles. Metagenomic libraries were sequenced on an Illumina NovaSeq 6000 platform (2 x 150
bp chemistries) at Berry Genomics Co. (Beijing, China). After demultiplexing, the raw reads were
first checked with FastQC v0.11.2, then adapter and low quality regions were trimmed using fastp
v0.21.0 (Chen et al., 2018) with the following parameters: -q 20 -u 20 -1 30 —cut__tail -W 4 -M 20 -c.
PhiX174 and sequencing artifacts were removed using bbduk.sh and human genome sequences were
removed using bbmap.sh with default parameters, both scripts can be found in the BBTools package
v37.24 (https://jgi.doe.gov/data-and-tools/bbtools). Metagenomic samples were assembled indepen-
dently using metaSPAdes v3.13.0 (Nurk et al., 2017) with a custom kmer set (-k 21,33,55,77,99,127).
The assembled contigs were further coassembled as previously described (Long et al., 2021). Briefly,
all the contigs were pooled and sorted into short (<2kb) or long (>2kb) contig sets, the short contig
set was first coassembled using Newbler v2.9 (Margulies et al., 2005), the resulting >2kb contigs were
further coassembled with the long contig set (Treangen et al., 2011). A minimum overlap thresholds of
80 nt and 200 nt were set for Newbler and minimus2, respectively. For both coassembly steps, a min-
imum identity cutoff of 0.98 was applied. After co-assembly, contigs were further dereplicated at 0.98
identity using cd-hit v4.6.8 (Li & Godzik, 2006), the resulting contigs were used as reference contigs
for sequence classification and read recruitment analysis. Reference contigs were classified using Kaiju
v1.7.3 (Menzel et al., 2016) and MetaEuk v1 (Levy Karin et al., 2020), as well as DeepMicroClass v0.1.0
(in hybrid mode), read counts assigned to each sequence class were summarized using custom Python
scripts. Reads were mapped to reference contigs using bwa mem v0.7.17 with default parameters, and

the number of reads aligned >30 nt to reference contigs were counted using bamcov v0.1 (available at
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https://github.com/fbreitwieser /bamcov) with default parameters.

Results

A CNN-based multi-class classifier

Identifying contigs of microbial eukaryotes and the viruses infecting them from metagenomic assemblies
is crucial for gaining a better understanding of their ecological roles. However, current state-of-the-art
tools often do not fully appreciate most of the eukaryotic viruses and their hosts. Here two commonly
used viral contig predictors, VirFinder (Ren et al., 2017) and PPR-Meta (Fang et al., 2019), were evalu-
ated based on their predicted viral scores. As expected, both predictors gave high scores to prokaryotic
viral sequences and low scores to prokaryotic host sequences. However, the scores for eukaryotic host
and eukaryotic viral sequences were more evenly distributed (Fig. S2), revealing an insufficient ac-
curacy in classifying these sequence classes. Out of 500 randomly subsampled genomic sequences for
each sequence type of prokaryotes, prokaryotic viruses, microbial eukaryotes, and eukaryotic viruses
downloaded from NCBI, 454 prokaryotic viruses and 85 prokaryotic hosts had VirFinder-scores (VF-
scores) above 0.5, while 238 eukaryotic viruses and 157 eukaryotic hosts had VF-scores above this value
(Fig. S2a). A similar trend can be observed for PPR-Meta (Fig. S2b), confirming these tools are
not adequately equipped to handle eukaryotic viral and host sequences. This emphasizes the need for

novel predictors that consider more sequence types during the model training process.

Here the performance of DeepMicroClass on sequences with different lengths (500 bps, 1 kbps, 2 kbps,
3 kbps, 5 kbps, 10 kbps, 50 kbps, and 100 kbps) was evaluated on test data. The model performance
for each sequence type was visualized via the Receiver Operating Characteristics (ROC) curve using
a one-versus-rest strategy (Fig. 2). Overall, we showed that as the sequence length increased, the
model’s performance improved across most sequence types, as indicated by the Area Under the Re-
ceiver Operating Characteristic (AUC) measurements (Fig. 2). DeepMicroClass performed well on all
sequence types when the input sequence length was > 1 kbps, with the minimum AUC score being
0.963 on classifying prokaryotic sequences. At the sequence length of 500 bps, DeepMicroClass achieved
fairly high AUC scores for eukaryotic (0.944) or prokaryotic (0.96) viruses, whilst the scores for both
viral sequence types were always > 0.99 at longer sequence lengths (> 2 kbps) (Fig. 2). For non-viral
sequences, the AUC scores were highest for eukaryotic sequences, followed by plasmid and prokaryotic
genome sequences. However, a slight drop in the True Positive Rate (TPR) could be observed for eu-
karyotic sequences when the False Positive Rate (FPR) was near 0 (Fig. 2). With further investigation,
the rough curve could be caused by the sharp drop in the number of available eukaryotic sequences in
the training dataset, which dropped from 16,002 to 255 when the contig length changed from 10 kbps
to 50 kbps.

DeepMicroClass outperforms Tiara and Whokaryote in eukaryotic host sequence
prediction

In the following three sections, we investigate the performance of DeepMicroClass for particular classes
of sequences. We used accuracy and F1 score as the metrics to assess the model performance. And
the sequence type composition of different benchmark datasets was described in the section Benchmark

Dataset Preparation.
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Fig 2. The ROC curves and AUC scores of different length models assessed on test datasets.
Each different panel shows the ROC curves for 5 sequence classes at different contig lengths (500 bps, 1 kbps, 2
kbps, 3 kbps, 5 kbps, 10 kbps, 50 kbps and 100 kbps). Euk, eukaryotic sequences; EukVir, eukaryotic viral
sequences; Plasmid, plasmid sequences; Prok, prokaryotic genome sequences; ProkVir, prokaryotic viral

sequences.
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First, we compared the performance of DeepMicroClass with Tiara (Karlicki et al., 2022) and Whokary-
ote (Pronk & Medema, 2022) on the classification of microbial eukaryotes. Tiara and Whokaryote are
commonly used to identify eukaryotic contigs from metagenomic assemblies without prior knowledge
of microbial phylogenetic affiliation. With the compiled benchmark datasets, we showed that DeepMi-
croClass persistently outcompeted both tools in all scenarios in terms of accuracy and F1 score (Fig. 3,

S3), and DeepMicroClass was robust to the different compositions of benchmark datasets (Fig. 3).

The average accuracy and F1 score across all benchmark datasets for DeepMicroClass were both 0.99,
which were significantly higher than these metrics of Tiara and Whokaryote (pairwise Wilcoxon test
p-values < 9.5e-05 for both accuracy and F1 score). The accuracy of Whokaryote dropped from ~0.95
to ~0.75 as the proportion of eukaryotic sequences increased, and the F1 scores were substantially lower
than 0.8 in all test datasets. In contrast, Tiara maintained high accuracy and F1 score across different
eukaryotic proportions, though a slight decrease in accuracy could be observed when the eukaryotic
proportion was high. DeepMicroClass achieved accuracy and F1 score above 0.98 for all tested scenarios

and was robust to variable sequence composition.

A further look into those misclassified sequences revealed that both Tiara and Whokaryote suffered
from lower sensitivity in distinguishing eukaryotic sequences from other types of sequences. Especially

for Whokaryote, a substantial amount of eukaryotic viruses were mistakenly classified as eukaryotes
(Fig. S4).

a ciass [0 Plasmid | Prokaryote [l Prokaryote Virus Eukaryote [l Eukaryote Virus b cuass [ Plasmid | Prokaryote [l Prokaryote Virus Eukaryote [l Eukaryote Virus

1 1
0.9 0.9
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Predictor ® DMC M Tiara B Whokaryote Predictor ® DMC M Tiara B Whokaryote

Fig 3. Distribution patterns of accuracy (a) and F1 score (b) across 20 benchmark datasets for
DeepMicroClass, Tiara and Whokaryote. The top panel shows the sequence type composition of 20
benchmark datasets, and the detailed composition ratios can be found in Table S1. The dashed black lines
indicate where accuracy or F1 score equals 0.8.
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DeepMicroClass outcompetes PlasFlow, PPR-Meta and geNomad in plasmid se-

quence classification

Plasmids are the major agents of horizontal gene transfer (HGT) among prokaryotic microbial commu-
nities. Here we compared the performance of DeepMicroClass with PlasFlow (Krawczyk et al., 2018),
PPR-Meta (Fang et al., 2019) and geNomad (Camargo et al., 2023) in classifying plasmid sequences
using the same benchmark datasets described above. DeepMicroClass showed significantly improved
results than PlasFlow, PPR-Meta and geNomad in all tested cases in plasmid classification (pairwise
Wilcoxon test adj.p-value < 1.1e-07; Fig. 4 & S5). Although PlasFlow, PPR-Meta and geNomad were
able to achieve a maximum F1 score of 0.68, 0.74 and 0.86, respectively, their performance was severely
impaired with increasing proportions of eukaryotic sequences in the benchmark datasets (Fig. 4). In
contrast, the F1 score of DeepMicroClass was constantly higher than 0.8, though a slight decrease could

also be observed with increasing eukaryotic proportions.

We further examined the misclassified sequences and found PlasFlow had high sensitivity but low
specificity, and the dominance of misclassified sequence types was in line with the composition of
benchmark datasets (Fig. S6). PPR-Meta might benefit from its modeling of prokaryotic chromo-
somes and phages, while it still had a low specificity mainly due to the misclassification of prokaryotic
and eukaryotic chromosomal sequences into plasmids (Fig. S6). On the other hand, geNomad mainly
suffered from misclassifying prokaryotic chromosomes into plasmids, though the misclassified eukary-
otic sequences also accounted for a significant share (Fig. S6). It’s noteworthy that DeepMicroClass
might further benefit from its modeling of eukaryotic genomic and viral sequences since they were
rarely misclassified as plasmids, though the misclassification rates between plasmids and prokaryotic
chromosomal sequences were still the highest among all misclassifications (Fig. S12). Probable rea-
sons for such observation are the high affinity and frequent genetic exchange between plasmids and
prokaryotic chromosomes, further improvements on the neural network structures or using additional

features extracted from gene- or operon-centric approaches might yield a better classifier.

DeepMicroClass achieves improved results in viral sequence prediction

Viruses are ubiquitously found in every natural system where cellular organisms colonize. Viral con-
tigs have been commonly identified from metagenomes or viromes using essentially gene-centric (e.g.
VirSorter (Roux et al., 2015), VirSorter2 (Guo et al., 2021), VIBRANT (Kieft et al., 2020)), or
oligonucleotide-centric (e.g. VirFinder (Ren et al., 2017), DeepVirFinder (Ren et al., 2020), PPR-Meta
(Fang et al., 2019)) approaches, or a combination of both approaches (e.g. geNomad (Camargo et al.,
2023)). Here we compared the performance of DeepMicroClass with VirSorter2, geNomad, VIBRANT,
DeepVirFinder and PPR-Meta on viral contig prediction using the aforementioned benchmark datasets.
Among these methods, DeepVirFinder, VIBRANT, PPR-Meta and geNomad were trained for the pre-
diction of prokaryotic viruses, while VirSorter2 was trained for the prediction of both eukaryotic and
prokaryotic viruses. We compared the performance of DeepMicroClass with VirSorter2 on the predic-
tion of both prokaryotic and eukaryotic viruses, and the performance of DeepMicroClass with other
predictors on the prediction of prokaryotic viruses. In either case, DeepMicroClass achieved better
performance in terms of both accuracy and F1 score than all the other tested tools (Fig. 5, S7 & S8).
VIBRANT and VirSorter2 showed slightly lower accuracy than DeepMicroClass, followed by PPR-Meta
and DeepVirFinder. More distinct differences were observed in the F1 score metric of these tools across

dataset composition, DeepMicroClass achieved an average F1 score of ~0.96, followed by VirSorter2
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DeepMicroClass, PlasFlow, PPR-Meta and geNomad on plasmid classification. The dashed black
lines indicate where accuracy or F1 score equals 0.8. The same benchmarking datasets were used as in Fig. 3.
DMC, DeepMicroClass; PPR, PPR-Meta

and VIBRANT (~0.90 and ~0.85, respectively). The F1 score of VIBRANT dropped from 0.94 to <0.80
as increasing proportions of eukaryotic chromosomal and viral sequences in the benchmark datasets.
PPR-Meta and DeepVirFinder showed a decreasing tendency in both accuracy and F1 score with the
increasing of eukaryotic chromosomal and viral sequences (Fig. 5a & 5b, S7). When considering both
prokaryotic and eukaryotic viral sequences as the positive viral set, DeepMicroClass and VirSorter2
were both able to achieve accuracy >0.90 and F1 score >0.80 without being significantly affected by
the variations of sequence type composition, and DeepMicroClass constantly outperformed VirSorter2
in both metrics across the benchmark datasets (Fig. 5¢ & 5d, S8).

The number of misclassified sequences by PPR-Meta, DeepVirFinder, VIBRANT, geNomad and Vir-
Sorter2 is shown in Fig. S9. The distribution of misclassified sequences by PPR-Meta, DeepVirFinder
and geNomad showed a similar pattern, that eukaryotic chromosomal and viral sequences were prone
to be misidentified as prokaryotic viruses. This indicates tools or models trained without knowledge
of eukaryotic sequences are likely to behave similarly when eukaryotes are not rare in the metage-
nomic community. Although VIBRANT and VirSorter2 had fewer misclassified sequences compared
to PR-Meta, DeepVirFinder and geNomad, both suffered from misclassifying prokaryotic chromosomal
or plasmid sequences into prokaryotic viruses Fig. S9. Since both VIBRANT and VirSorter2 use a
gene-centric approach, it’s possible that some of the viral signature genes or fragments could also be
widely detected in prokaryotic genomes or plasmids as a result of frequent gene transfer among them.
This contrasts with the oligonucleotide-centric tools since cross-kingdom viral infection or plasmid con-

jugation and gene transfer are less common.

Since DeepMicroClass, PPR-Meta and geNomad are multiclass classifiers, here we also compared their

performance based on accuracy and F1 score metrics on multiclass sequence classification using the same
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Fig 5. Distribution patterns of accuracy and F1 score across 20 benchmark datasets for viral
classification. The accuracy (a) and F1 score (b) metrics for DeepMicroClass, PlasFlow, PPR-Meta and
geNomad were evaluated on prokaryotic viral contig classification, and the accuracy (¢) and F1 score (d)
metrics for DeepMicroClass and VirSorter2 were evaluated on both prokaryotic and eukaryotic viral contig
classification. The dashed black lines indicate where accuracy or F1 score equals 0.8. The same benchmark
datasets were used as in Fig. 3. DMC, DeepMicroClass; DVF, DeepVirFinder; PPR, PPR-Meta.

benchmark datasets (Fig. S10 & S11). Here we only considered prokaryotic chromosomal, prokaryotic
viral and plasmid sequences for comparison with PPR-Meta and geNomad as they were not trained
for eukaryotic sequence classification. On the other hand, all five sequence types were considered for
the evaluation of DeepMicroClass. In this case, DeepMicroClass still outperformed PPR-Meta and
geNomad in all tested scenarios as evaluated by both the accuracy or and F1 score metrics (pairwise
Wilcoxon test p-values < 1.9e-06; Fig. S10 & S11). Both accuracy and F1 scores of DeepMicroClass
were rarely below 0.95 across the sequence composition of the 20 benchmark datasets, while they were
rarely above 0.9 for geNomad, or rarely above 0.8 for PPR-Meta (Fig. S10). Although the performance
of DeepMicroClass was also deteriorated by the misclassification between prokaryotic chromosomal and

plasmid sequences (Fig. S12), the amounts of misclassified sequences were significantly lower than
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VIBRANT, VirSorter2 or geNomad (Fig. S9).

DeepMicroClass predicted more eukaryotic and viral contigs than alignment-based

predictors

Alignment-based classifiers can suffer from incomplete genomic databases, particularly for complex
natural environments such as marine or soil systems. To test the performance of DeepMicroClass in
real metagenomic context, here we examined its performance with the other two sequence classifiers,
Kaiju (Menzel et al., 2016) and MetaEuk (Levy Karin et al., 2020), using a 1-300 pm size fraction
marine metagenomic dataset sampled off the coast of Southern California (Needham et al., 2018). Us-
ing the co-assembled contigs as the reference, we show DeepMicroClass classified less prokaryotic but
more eukaryotic, eukaryotic viral and prokaryotic viral contigs than Kaiju and MetaEuk (Fig. 6a).
Among all the prokaryotic contigs classified by both Kaiju and MetaEuk, 73.6% of them were pre-
dicted to be prokaryotic by DeepMicroClass, and 11.88%, 10.39%, and 4.14% of them were predicted
to be eukaryotic, prokaryotic viral and eukaryotic viral sequences, respectively (Fig. 6b). Contigs that
couldn’t be taxonomically determined by Kaiju (16.41%) or MetaEuk (10.01%) are mainly dominated
by eukaryotic sequences (57.13% / 38.3%) as predicted by DeepMicroClass (Fig. 6¢c & 6d). Although
MetaEuk classified more eukaryotic contigs than Kaiju (21.88% vs 15.26%, Fig. 6a), the latter clas-
sified more prokaryotic viral contigs (4.38% vs 1.51%, Fig. 6a). This is consistent with the higher
percentage of prokaryotic viral sequences in the unclassified contigs of MetaFEuk than Kaiju (28.86%
vs 14.87%, Fig. 6¢c & 6d). By mapping reads to reference contigs, we calculated the read percentages
recruited by different sequence types. The average eukaryotic read percentage recruited by DeepMi-
croClass (6.15%) is considerably higher than by MetaEuk (4.78%) or Kaiju (3.50%), at the expense of
lower prokaryotic read percentages (13.12%, 20.60% and 20.51%, respectively, Fig. 6f-h). Similarly,
the average read percentages of prokaryotic viral and eukaryotic viral sequences recruited by Deep-
MicroClass (6.07%/1.24%) are also higher than MetaEuk (0.49%/0.19%) and Kaiju (1.67%/0.37%)
(Fig. 6f-h). Notably, though DeepMicroClass assigned less prokaryotic and more eukaryotic reads
than other classifiers, the relative abundance profiles across the whole time series are highly correlated
(Fig. S13a & S13b), and to a less extent for the prokaryotic viral read percentage profiles (Fig.
S13c). This is not the case for eukaryotic viral read abundance profiles, where Kaiju and MetaEuk
are highly correlated, but not to DeepMicroClass (Fig. S13d). To sum up, DeepMicroClass is more
correlated with MetaEuk in eukaryotic read profiles, and more correlated with Kaiju in prokaryotic

and prokaryotic viral read profiles.

Discussion

Microbial eukaryotes and viruses infecting them are understudied

Microbial eukaryotes are prevalent in diverse ecosystems such as host-associated habitats (Parfrey et al.,
2011), deep-sea benthos (Bik et al., 2012), and geothermal springs (Oliverio et al., 2018), etc. Due to
challenges in the cultivation and whole genome-sequencing of microbial eukaryotes, biodiversity sur-
veys of microbial eukaryotes were commonly performed using marker genes, such as the 185 rDNA
hypervariable V4 or V9 regions (Pawlowski et al., 2012; Amaral-Zettler et al., 2009). The amplicon-
based analysis provides valuable information on the taxonomy of microbial eukaryotes, while in order
to probe their metabolic potentials or ecological functions, genomic and transcriptomic information

are essential. Despite several achievements in collecting microbial eukaryotic genes (Carradec et al.,
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Fig 6. Sequence classification and read abundance of a 1-300 pnm size fraction marine
metagenomic dataset sampled off the coast of Southern California. Metagenomic contigs were
classified using DeepMicroClass, Kaiju and MetaEuk at a length cutoff of 2 kb, and percentages of different
sequence types were calculated (a). Contigs predicted as Prokaryotes by both Kaiju and MetaEuk (b), and
contigs that were not classified by Kaiju (c) or MetaEuk (d) were further broken down into DeepMicroClass’s
classification. Clean reads were aligned to metagenomic contigs and percentages of mappable reads were
calculated (e). Mapped read percentages were further summarized according to sequence types of reference
contigs as predicted by DeepMicroClass (f), Kaiju (g) and MetaEuk (h). Prokaryotes included both prokaryotic
hosts and plasmids. UnclassifiedViruses were sequences predicted to be viruses but their taxonomy couldn’t be
further resolved by Kaiju or MetaEuk.

2018; Vorobev et al., 2020), transcripts (Keeling et al., 2014) or single-cell amplified genomes (SAGs)
(Sieracki et al., 2019) towards a comprehensive microbial eukaryotic database, our knowledge are still
limited by the availability of diverse microbial eukaryotic genomes (Burki et al., 2020). With the rapid
accumulation of metagenomic datasets and the availability of binning software, it’s appealing to recover
eukaryotic genomes from natural microbial communities. EukRep was developed in such a context to
identify eukaryotic contigs for metagenomic binning (West et al., 2018). This approach has enabled the
genome-resolved analysis of fungi, protists, and rotifers from human microbiome studies (West et al.,
2018; Olm et al., 2019). Similar approaches have been applied to marine microbiome studies (Duncan
et al., 2020; Delmont et al., 2020), which recovered hundreds of eukaryotic metagenome-assembled
genomes (MAGs) and provided insight into the functional diversity and evolutionary histories of micro-

bial eukaryotes beyond the taxonomic information.

Beyond microbial eukaryotes, current viromic studies are biased towards viruses infecting prokaryotes.
This could be introduced by the skewed distribution of viral genomes in the RefSeq database, which
is dominated by phages and pathogenic viruses. By Sept 1, 2023, among 18,729 viral reference se-
quences, there were only 104 records belonging to algae-infecting Phycodnaviridae and 30 belonging to
protists-infecting Mimiviridae. Both of the two viral families are subgroups of the Nucleocytoplasmic
Large DNA Viruses (NCLDV) (Iyer et al., 2001). Since most of the commonly used viral predictors are
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trained on the RefSeq viral database, it’s expected that these tools suffered from identifying eukaryotic
viruses from the test datasets (Fig. 5, S7, & S8). Given the high diversity of protists (Foissner, 1999;
Slapeta et al., 2005), high throughput metagenomes and single-cell genomes are expected to offer a
culture-independent solution to rapidly expand the coverage of viral database. For instance, two recent
studies reconstructed 2,074 and 501 NCLDV MAGs from global environmental metagenomes (Schulz
et al., 2020; Moniruzzaman et al., 2020), dramatically increased the phylogenetic and functional di-
versity of NCLDVs. Single-cell metagenomics was also employed to identify viruses infecting marine
microbial eukaryotes (Needham et al., 2019a,b), these studies provided insightful findings of the viral

encoded proteins and metabolic pathways.

These studies demonstrated that metagenomics and single-cell genomics can be promising in studying
microbial eukaryotes and viruses infecting them. While most commonly used tools are not optimized in
classifying eukaryotes (Fig. 3 & S3) or eukaryotic viruses (Fig. 5 & S7). Given the high performance
of DeepMicroClass and the evidence of abundant eukaryotic contigs in marine ecosystems (Fig. 6), we

expect it will be a valuable addition to the toolbox of marine ecologists.

The challenge of classifying prokaryotic host and plasmid sequences

DeepMicroClass has a relatively lower accuracy in classifying plasmids when compared to the classifica-
tion of eukaryotic or viral contigs (Fig. 3, 4, 5). The majority of the sequences that were misclassified
as plasmids were from prokaryotic host genomes (Fig. S12), confirming classifying prokaryotic chromo-
somal and plasmid sequences is a caveat of DeepMicroClass (Fig. 2). In comparison, the other tested
plasmid classifiers suffered from both prokaryotic and eukaryotic sequences as we have benchmarked
(Fig. 4 & S6). It’s noteworthy that this marginal advantage can be crucial in natural environments,
such as marine environments as we mentioned here (Fig. 6), where eukaryotic sequences can have a
substantial impact on the classification of plasmid sequences. This also indicates that it is achievable
to separate plasmid sequences from eukaryotic sequences solely based on patterns of oligonucleotides,
and current plasmid predictors can benefit from using a more comprehensive training dataset including

eukaryotic sequences.

It is understandable given the higher genome complexity of eukaryotes than prokaryotes (Lynch & Con-
ery, 2003), such as the coding density, prevalence of introns and repetitive sequences, etc. In contrast,
it’s challenging to classify plasmids and prokaryotic chromosomal sequences for all the tested plasmid
predictors (Fig. 4). The reasons can be manifold, but plasmid transmission among microbial hosts
and plasmid-chromosome gene shuffling can be two fundamental ones. The host range of plasmids is
variable, it can be within closely related species for narrow host range plasmids or across distant phylo-
genetic groups for broad host range plasmids (Jain & Srivastava, 2013). Broad host range plasmids can
be important drivers of the gene flux among host microbes in natural environments (Heuer & Smalla,
2007; Wolska, 2003; Davison, 1999). For instance, in natural soil microbial communities, the IncP-
and IncPromA-type broad host range plasmids could transfer from proteobacteria to diverse bacteria
belonging to 11 bacterial phyla (Kliimper et al., 2015). When plasmid carriage could increase the
hosts’ fitness, such as improving host survival with antibiotic resistance, it can be rapidly adopted and
persistently maintained in natural microbial communities (Li et al., 2020; Bellanger et al., 2014). On
the other hand, when the maintenance of plasmids imposed a high fitness cost on the hosts, plasmids

or plasmid-borne genes could be lost in the process of purifying selection (Hall et al., 2016). Interest-
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ingly, studies also suggested that sometimes this fitness cost could be ameliorated by compensatory
evolution (Millan et al., 2014; Harrison et al., 2015; Loftie-Eaton et al., 2017), which was hypothesized
to be the major factor of plasmid survival and persistence (Hall et al., 2017). Plasmid carriage also
increases the chance of plasmid-chromosome genetic exchange mediated by SOS-induced mutagenesis
(Rodriguez-Beltran et al., 2021) or mobile genetic elements such as transposons and integrons, etc
(Frost et al., 2005; Rodriguez-Beltréan et al., 2021). For instance, genes carried by transposons or in
the variable regions were also frequently found on plasmids (Eberhard, 1990; Zheng et al., 2015). Thus,
the permissive transfer of plasmids across diverse hosts and the plasmid-chromosome gene flow pose a
challenge for current plasmid classifiers. The oligonucleotide-based approaches might be complemented
by gene-centric approaches using plasmid signature genes or enriched gene functions, such as genes
involved in mobilization or conjugation. In addition, a comprehensive plasmid database is also crucial
for model training, and plasmid-enriched metagenomics (plasmidome) can be a promising way to screen

plasmids from environmental samples (Shi et al., 2018).

Conclusions

DeepMicroClass as a versatile multi-class classifier enables the accurate classification of five different
metagenomic sequence types in one shot, meanwhile, it avoids the time-consuming and error-prone
preprocessing steps that could potentially propagate errors to the final classification. The inclusive
modeling of all common sequence types in metagenomes also makes DeepMicroClass attain better per-
formance than the other state-of-the-art individual predictors due to reduced cross misclassifications.
We also detected high relative abundances of marine eukaryotes in a daily time-series dataset, which
were underestimated by alignment-based classifiers due to the limitation of public reference databases.
Our case study indicates that both host and viral sequences are essential components in the cellular
metagenomes, and robust ecological patterns can be obtained with DeepMicroClass even for coarse
sequence types. We argue that by using DeepMicroClass as a preliminary classification step on metage-
nomic/viromic assemblies, one can further focus on the interested sequence types for the following
analysis, such as metagenomic binning of prokaryotic or eukaryotic contigs, comparative genomic anal-
ysis of viral or plasmid sequences, etc. We conclude DeepMicroClass achieves higher performance
than the other benchmarked predictors, and its application can facilitate studies of under-appreciated

sequence types, such as microbial eukaryotic or viral sequences.

Availability of data and materials

The source code and user guide are available at https://github.com/chengsly/DeepMicrobeFinder.

Benchmark datasets have been deposited at figshare (available at dx.doi.org/10.6084/m9.figshare.14576193).

Raw reads for the case study were deposited at NCBI under the umbrella bioproject PRJNA739254.

Additional details of data and analysis are available from the corresponding authors upon request.

Competing interests

The authors declare that they have no competing interests.

16,26



496

497

498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Authors’ contributions

SH, JAF, and FS conceived the project; SH, TT, SC and FS designed the neural network structure and
model evaluation procedures; SH and TT designed the training, test datasets and use-case applications;
SH, TT and SC prepared the training and test datasets; TT, SC and SH implemented the software
and performed the data analysis; SH, TT and SC prepared all the figures and tables; SH drafted the
manuscript; TT, SC, TC, JAF and FS reviewed and edited the manuscript.

Acknowledgements

This study was supported by the NIH grant (Grant ID: 2125142) to F. Sun, the Simons Collaboration on
Computational Biogeochemical Modeling of Marine Ecosystems/CBIOMES) grant (Grant ID: 549943)
and the Gordon and Betty Moore Foundation (Grant Number: 3779) to J. Fuhrman, the NSFC grants
to S. Hou (Grant ID: 42276163) and T. Chen (Grant ID: 61872218, 61721003), the Shenzhen Science,
Technology and Innovation Commission Programme to S. Hou (Grant ID: JCYJ20220530115401003),
and the National Key R&D Program of China (Grant ID: 2019YFB1404804) to T. Chen. The funders
had no roles in study design, data collection or analysis, the decision to publish, and the preparation of
the manuscript. We thank Dr. David M. Needham, Dr. J. Cesar Ignacio-Espinoza, and Erin B. Fichot

for their help with DNA extraction and metagenomic library preparation.

List of abbreviations

Abbreviations used in this manuscript:

Abbreviations Definition

CEOs capsid-encoding organisms

REOs ribosome-encoding cellular organisms
MGEs mobile genetic elements

SSU rRNA small subunit ribosomal RNA

HMM hidden Markov model

CNN convolutional neural network

ESP environmental sample processor
ROC receiver operating characteristics
AUC area under the ROC curve

TPR true positive rate

FPR false positive rate

HGT horizontal gene transfer

SAGs single-cell amplified genomes

MAGs metagenome-assembled genomes
NCLDVs nucleocytoplasmic large DNA viruses

Supporting information

Supplemental Table S1. The composition of 20 benchmark datasets used in this study.

PROK includes prokaryotic genomes, plasmids and prokaryotic viruses; EUK includes eukaryotic
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genomes and viruses. Prok: prokaryotic genomes, ProkVir: prokaryotic viruses/phages, Plas: plas-
mids, Euk: eukaryotic genomes, FukVir: eukaryotic viruses. Benchmark sequence files can be found at
dx.doi.org/10.6084/m9.figshare.14576193.

Supplemental Figure S1. Sequence source composition of 20 equal-sized benchmark datasets.

The fractions of PROK (including prokaryotic hosts, prokaryotic viruses, and plasmids) to EUK (in-
cluding eukaryotic hosts and eukaryotic viruses) sequences were determined using the ratios of 9:1, 7:3,
5:5, 3:7, and 1:9. For each fixed PROK:EUK ratio, the PROK fraction was further split into prokary-
otic hosts, prokaryotic viruses and plasmids based on the ratios of 5:1:1, 4:1:1, 3:1:1, and 2:1:1; and the
EUK fraction was further split into eukaryotic hosts and eukaryotic viruses according to the ratio of
5:1, 4:1, 3:1, and 2:1. The detailed ratios can be found in Table S1.

Supplemental Figure S2. The distribution of viral confidence scores for (a) VirFinder and
(b) PPR-Meta. For both predictors, the same dataset was used and the predictions were
performed with default parameters. VirFinder uses VF-Scores to determine the likelihood of input
sequences being viral or not, and PPR-Meta uses phage scores to discern viruses from host chromosomes
and plasmids. Both predictors achieved a high recall for prokaryotic viruses, while the confidence scores
of eukaryotic viruses were more evenly spread across all confidence regions. Besides, both predictors
achieved a high performance in distinguishing prokaryotic host sequences from prokaryotic viruses, but

less so for eukaryotic host sequences.

Supplemental Figure S3. Performance of DeepMicroClass, Tiara and Whokaryote on
eukaryotic sequence classification. Both the accuracy and F1 score were compared based on 20
designed benchmark datasets. The sequence class composition of the 20 datasets can be found in Table
S1. Values on top of the pairwise comparisons are Bonferroni adjusted t-test p-values.The significance
of the overall ANOVA test was shown in the bottom left corner.

Supplemental Figure S4. The distribution of misclassified sequence types by Tiara and
Whokaryote. The distribution of misclassified sequence types by Tiara and Whokaryote. The se-
quence composition of these datasets can be found in Table Supplemental Table S1. To make the figure

more visible, the range of the y-axis is from 0 to 100 for Tiara and from 0 to 500 for Whokaryote.

Supplemental Figure S5. Performance of DeepMicroClass, PlasFlow, PPR-Meta and
geNomad on plasmid sequence classification. Both the accuracy and F1 score were compared
based on 20 designed benchmark datasets. The sequence class composition of the datasets can be found
in Table S1. Values on top of the pairwise comparisons are Bonferroni-adjusted t-test p-values. The

significance of the overall ANOVA test is shown in the bottom left corner.

Supplemental Figure S6. The distribution of misclassified sequence types by PlasFlow,
PPR-Meta and geNomad. The sequence composition of these datasets can be found in Table S1.

Supplemental Figure S7. Performance of DeepMicroClass (DMC), DeepVirFinder (DVF),
VIBRANT, PPR-Meta (PPR) and geNomad on prokaryotic viral sequence classification.

Both the accuracy and F1 score were compared based on 20 designed benchmark datasets. The sequence
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class composition of the 20 test datasets can be found in Table S1. Values on top of the pairwise com-
parisons are Bonferroni-adjusted t-test p-values. The significance of the overall ANOVA test is shown

in the bottom left corner

Supplemental Figure S8. Performance of DeepMicroClass and VirSorter2 on prokaryotic
and eukaryotic viral sequence classification. Both the accuracy and F'1 score were compared based
on 20 designed benchmark datasets. The sequence class composition of these datasets can be found
in Table S1. Values on top of the pairwise comparisons are Bonferroni-adjusted t-test p-values. The

significance of the overall ANOVA test is shown in the bottom left corner.

Supplemental Figure S9. TThe distribution of misclassified sequence types by PPR-Meta,
DeepVirFinder, VIBRANT, geNomad and VirSorter2. For PPR-Meta, DeepVirFinder, VI-
BRANT and geNomad, only prokaryotic viruses are considered as the positive set, and for VirSorter2
both prokaryotic and eukaryotic viruses are considered positive. The sequence composition of these
datasets can be found in Table S1. To make the figure more visible, the range of the y-axis is from 0 to
500 for PPR-Meta and DeepVirFinder, from 0 to 50 for VIBRANT, and from 0 to 80 for VirSorter2.

Supplemental Figure S10. Distribution patterns of accuracy (a) and F1 score (b) across
20 benchmark datasets for DeepMicroClass, PPR-Meta and geNomad on the prokaryotic
genome, prokaryotic virus and plasmid classification. DeepMicroClass received higher scores
in both accuracy and F1 score metrics in all tested scenarios compared to PPR-Meta and geNomad in
multi-class classification. The dashed black lines indicate where accuracy or F1 score equals 0.8. The

same benchmark datasets were used as in Fig. Fig. 3.

Supplemental Figure S11. Performance of DeepMicroClass, PPR-Meta and geNomad on
the prokaryotic genome, prokaryotic virus and plasmid classification. Both the accuracy and
F1 score were compared based on 20 designed benchmark datasets. The sequence class composition of
these datasets can be found in Table S1. Values on top of the pairwise comparisons are Bonferroni-

adjusted t-test p-values. The significance of the overall ANOVA test is shown in the bottom left corner.

Supplemental Figure S12. The distribution of misclassified sequence types by DeepMi-
croClass. The sequence composition of these datasets can be found in Table S1. The maximal number

of errors across all benchmark datasets was 50, which was set as the maximum of the y-axis.

Supplemental Figure S13. Correlation coefficients of Prokaryotic (a), Eukaryotic (b),
ProkaryoticViral (c), and EukaryoticViral (d) sequence relative abundances of different

sequence classifiers. Coefficients highlighted in colors are significant ones (p-value < 0.01).
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