

1 Molecular model of a bacterial flagellar 2 motor *in situ* reveals a “parts-list” of 3 protein adaptations to increase torque

4 Tina Drobnič^{1,2,3,£}, Eli J. Cohen^{1,4,£}, Mona Alzheimer^{5,6}, Kathrin Froschauer^{5,7}, Sarah
5 Svensson^{5,8,9}, Nanki Singh¹, Sriram G. Garg^{10,11}, Louie Henderson^{1,12}, Trishant Umrekar¹,
6 Andrea Nans^{13,14}, Deborah Ribardo¹⁵, Georg Hochberg¹¹, David R. Hendrixson^{15,16}, Cynthia
7 M. Sharma^{5,17}, Peter Rosenthal^{18,19}, Morgan Beeby^{1,20,*}

8 ¹Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK

9 ²ORCID: 0000-0001-6364-1874

10 ³Tina Drobnič current affiliation: MRC Laboratory of Molecular Biology, Cambridge CB2
11 0QH, UK.

12 ⁴ORCID: 0000-0001-9265-7517

13 ⁵University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular
14 Infection Biology II, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany

15 ⁶ORCID: 0000-0002-0094-3987

16 ⁷ORCID: 0000-0001-5288-4440

17 ⁸Current affiliation: The Center for Microbes, Development and Health, CAS Key Laboratory
18 of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of
19 Sciences, Shanghai, China 200031. email: sarah.svensson@ips.ac.cn

20 ⁹ORCID: 0000-0002-3183-6084

21 ¹⁰ORCID 0000-0003-4160-5228

22 ¹¹Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

23 ¹²Current affiliation: Peptone Ltd, 370 Grays Inn Road, London WC1X 8BB, UK

24 ¹³Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1
25 1AT, UK

26 ¹⁴ORCID: 0000-0002-3791-2447

27 ¹⁵Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
28 75390

29 ¹⁶ORCID: 0000-0001-8496-2466

30 ¹⁷ORCID: 0000-0002-2321-9705

31 ¹⁸Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London
32 NW1 1AT, UK

33 ¹⁹ORCID: 0000-0002-0387-2862

34 ²⁰ORCID: 0000-0001-6413-9835

35 [£] These authors contributed equally to this work

36 *Correspondence: mbeeby@imperial.ac.uk

37 Abstract

38 One hurdle to understanding how molecular machines function and evolve is our inability to
39 see their structures *in situ*. Here we describe a minicell system that enables *in situ* cryogenic
40 electron microscopy imaging and single particle analysis to probe the mechanisms and
41 evolution of an iconic molecular machine, the bacterial flagellar motor, which spins a helical
42 propeller for bacterial propulsion. Innovations in sample preparation and imaging enabled
43 resolutions sufficient to build an *in situ* molecular model of the *C. jejuni* flagellar motor. Our
44 results provide unprecedented insights into the *in situ* context of flagellar motors, highlight
45 origins of recruited components involved in the unusually high torque of the *C. jejuni* motor,
46 identify previously unknown components, and reveal corresponding modifications of core
47 components. We also visualise structures involved in torque generation and secretion
48 previously recalcitrant to structure determination. This technique will be of broad applicability
49 to other large membrane-residing protein complexes. Note that this manuscript has a sibling
50 manuscript titled “*Evolution of a large periplasmic disk in Campylobacterota flagella*
51 *facilitated efficient motility alongside autoagglutination*” that dissects the function of the large
52 disk described in this manuscript.

53 Introduction

54 How evolution produces novelty remains a central question in biology. While innovations in
55 eukaryotes often arise by rewiring existing gene transcriptional networks (1), examples of the
56 emergence of evolutionary novelty at the molecular scale remain scarce. The few case
57 studies in the emergence of new molecular structures are limited to small protein complexes
58 (2–5).

59 Examples of the emergence of novelty in molecular machines are found in bacterial flagella,
60 helical propellers rotated by a cell-envelope-embedded rotary motor (Fig. 1A) (6). The
61 flagellar motor is composed of a ring of inner-membrane motor proteins (“stator complexes”)
62 which harness ion flux to rotate a large cytoplasmic rotor ring (the “C-ring”). Torque is
63 transmitted through a chassis (the “MS-ring”) and periplasm-spanning axial driveshaft (the
64 “rod”) to extracellular universal joint and propeller structures (the “hook” and “flagellar
65 filament”, respectively) to generate thrust. While the conserved flagellar core predates the
66 last universal bacterial ancestor, many species have incorporated diverse additional proteins
67 to adapt motor function (7), often scaffolding more than the ~11 stator complexes in
68 *Salmonella enterica* and *Escherichia coli* (8–10). Some of the most structurally complex

69 motors are found in *Campylobacterota*, which produce three times higher torque than *E. coli*
70 and *Salmonella*, and includes the pathogens *Campylobacter jejuni* and *Helicobacter pylori*
71 (9,11). *Campylobacterota* flagellar motors have incrementally incorporated additional
72 proteins (10); one of the most complex motors, that of *C. jejuni*, features a large periplasmic
73 outer membrane-associated basal disk together with a periplasmic scaffold of novel proteins
74 required for incorporation of 17 stator complexes in a wider ring than simpler motors (9). This
75 additional complexity relative to model organisms, together with the motor's size and easy-
76 to-assay motility phenotype, make it ideal for investigating keys steps in motor evolution.

77 Understanding how and why these additional proteins were incorporated into the motor
78 requires molecular models, but the size, intimate membrane association, and multiple
79 moving parts have hampered structural determination. Cryogenic electron microscopy
80 (cryoEM) subtomogram average structures to between 16 and 18 Å-resolution (12) (13), and
81 structures of purified flagellar motors by single particle analysis cryoEM lacking dynamic
82 components (14,15) cannot answer a number of critical questions, and advance in imaging
83 membrane proteins are restricted to spherical liposomes rather than native context (16,17).

84 To address these challenges we engineered *C. jejuni* minicells to determine a
85 subnanometre-resolution structure of the flagellar motor *in situ* using single particle analysis.
86 The quality of our map enabled us for the first time to build a near-complete molecular model
87 of an intact flagellar motor in its native context. Our model provides key insights into the
88 functional contributions of recruited proteins, reveals distant homologies based on structural
89 comparisons, identifies previously unknown components, and contextualises adaptations of
90 pre-existing core machinery to these recruited proteins. We also gain insights into the
91 function of the conserved core of the flagellar motor and its integral type III secretion system
92 (T3SS). This first *in situ* structure of such a complex motor suggests a general approach for
93 structural studies of other molecular machines.

94 Results

95 ***Minicell engineering and projection imaging enable subnanometre*** 96 ***flagellar motor resolution***

97 We used a hybrid cryoEM imaging approach to determine the *in situ* structure of the *C. jejuni*
98 flagellar motor. Bacterial cell division can be disrupted to produce flagellated minicells that
99 retain the ability to swim (18). To increase particle number for high-throughput, high-
100 resolution structure determination, we exploited the multiply-flagellated minicells produced by

101 a $\Delta f/hG$ mutation (19) and deleted flagellar filament components *flaA* and *flaB* for efficient
102 centrifugal purification (Fig. 1B,C). The resulting ~200 nm-diameter minicells are thinner and
103 more homogenous than ~350 nm-diameter minicells from enteric bacteria, enabling us to
104 enrich to >99% minicells for high-throughput imaging (20).

105 We acquired micrographs of purified minicells for *in situ* single particle analysis. Preliminary
106 processing and 2-D classification revealed major features including the stator complexes
107 and their periplasmic scaffold, basal disk, C-ring, MS-ring, rod, and the integral flagellar type
108 III secretion system (Fig. 1D). Classification and refinement using applied C17 symmetry (9)
109 yielded a whole-motor reconstruction from 32,790 particles to 9.4 Å resolution (Fig. 1E, Fig.
110 S1), improving upon our previous subtomogram averaging structure of 44 Å resolution (9).
111 This structure resolved membranes and protein components (Fig. 1F). Focused refinement of
112 the innermost ring of the basal disk, the periplasmic scaffold, and the embedded stator
113 complexes improved resolution to 7.9 Å (Fig. 2A, Fig. S1D,E,F), sufficient to resolve
114 secondary structure features of most subunits (Fig. 2B). The periplasmic scaffold is
115 composed of the outer membrane-proximal basal disk, the medial disk, and the inner
116 membrane-proximal proximal disk, all of which share a 17-fold symmetry axis. A single
117 asymmetric unit of the 17-fold symmetric periplasmic scaffold revealed that the basal disk is
118 composed of concentric rings (Fig. 2B). The medial disk-facing sides of the first five of these
119 rings featured additional densities whose intensity decreased with ring radius. The medial
120 and proximal disks are 17-fold symmetric proteinaceous lattices with clearly-resolved α -
121 helices, and the periplasmic domain of MotB is evident at the outer radius of the proximal
122 disk (9).

123 ***The basal disk is composed of concentric rings of FlgP***

124 To understand structural features of the basal disk, which we previously determined is
125 composed of FlgP and tentatively FlgQ (Fig. 2C). The disk is sufficiently rigid to push the
126 outer membrane away from the inner membrane at increasing distances from the rotational
127 axis of the motor, consistent with our previous observation that the disk retains its distinct
128 shape even after deletion of other parts of the periplasmic scaffold (9). Our density map
129 revealed concentric rings; the innermost ring shared the 17-fold symmetry of the medial and
130 proximal disks, with 17 trimeric repeats of 51 protomers. One protomer from each trimeric
131 repeat featured the additional densities that face the medial disk described above (Fig. 2B),
132 suggesting the 17 trimers template the overall 17-fold symmetry of the other periplasmic
133 structures. We predicted the structure of the major protein component of the basal disk, FlgP
134 (9), in monomeric and multimeric forms, excluding the N-terminal 65-residue signal
135 sequence and disordered linker using AlphaFold (21) (Fig S2A). The FlgP monomer folds as

136 a modified SHS2 domain with a core α -helix and three-stranded β -sheet in a $\beta\alpha\beta\beta$ topology
137 similar to flavoprotein dodecin (22) (Fig S2A,D). Structural searches revealed that FlgP
138 shares this fold with *Helicobacter* protein Lpp20 (23) (top Dali (24) hit, reported RMSD 2.1 Å)
139 (Fig. 2J). FlgP is further modified with a short C-terminal helix and a long β -hairpin between
140 the α -helix and second β -sheet that extends 35 Å at a ~42° angle to the vertical axis (Fig
141 S2A). Structural predictions of FlgP oligomers suggested that this β -hairpin forms a smooth
142 continuous β -sheet with lateral association of one FlgP to the next two protomers. Arcs of
143 these interlocked FlgP oligomers fitted well into our density map, with 51 protomers forming
144 the complete innermost basal disk ring (Fig. 2C,E, Fig S2E). Although we could not discern
145 the symmetries of subsequent concentric rings, they have comparable cross-sections, and
146 we modelled them as rings of FlgP by inferring their subunit number based on ratios of
147 circumferences (Fig 2B,C).

148 FlgQ occurs in an operon with FlgP, is outer membrane-localized, and required for FlgP
149 stability (21). We found that its predicted structure resembles a two-protomer repeat of FlgP
150 (Supplemental Fig S2B). To clarify the location of FlgQ location in the disk we fused an
151 mCherry tag to FlgQ and determined a subtomogram average structure. The structure,
152 however, was indistinguishable from the WT motor (Supplemental Fig. S2C), and we
153 surmise that FlgQ is a low-abundance or irregular component of the disk, or an assembly
154 chaperone.

155 The basal disk is adjacent to the outer rim of the P-ring of the LP-ring complex (Fig. 1F). Due
156 to comparable diameters of the LP-ring complexes and distal rods of *C. jejuni* and
157 *Salmonella*, and lack of substantial insertions or deletions in corresponding protein
158 sequences, we surmise that the *C. jejuni* LP-ring complex shares the 26-fold symmetry of
159 that in *Salmonella* (14,15). We did not model YecR, which in *Salmonella* caps the L-ring,
160 because we could neither discern a likely protein density atop the L-ring nor find a *C. jejuni*
161 homolog (14). In an accompanying manuscript we show that the basal disk can assemble
162 despite being pushed away from the P-ring, indicating that it does not directly interface with
163 the P-ring despite assembling at a corresponding axial height. The medial disk is composed
164 of lattice of previously unidentified PflC

165 The identity of the medial disk between the proximal disk and basal disk remained unclear.
166 An unpublished Tn-seq based infection screen from our lab using *C. jejuni* NCTC11168
167 (Alzheimer, Svensson, Froschauer, Sharma, in preparation) revealed two new proteins,
168 encoded by Cj1643 and Cj0892c, that were required for motility and localised to the cell
169 poles, but did not abolish flagellar filament assembly, suggesting them as possible motor
170 components. Co-immunoprecipitation with proximal disk component PflA in *C. jejuni* 81-176

171 recovered the Cj1643 homolog CJJ81176_1634 and Cj0892c homolog CJJ81176_0901
172 (Table S1). Henceforth we refer to these proteins as PflC and PflD (Paralysed flagellum C
173 and D), respectively. Subtomogram average structures of deletion mutants in *C. jejuni*
174 NCTC11168 revealed loss of the proximal and medial disks upon deletion of *pflC* and loss of
175 a peripheral cage-like structure bridging the outer radii of the medial and proximal disks upon
176 deletion of *pflD* (Fig. 2D).

177 PflC is a 364-residue periplasmic protein predicted to have two domains separated by a
178 proline-rich linker. It features a fold similar to trypsin-like HtrA serine proteases (Fig. 2K)
179 (25). The N-terminal region PflC_N, (residues 16-252) contains a serine protease domain and
180 a PDZ-like domain (PDZ1). Separated by a proline-rich linker, C-terminal PflC_C (residues
181 265-364) features a second PDZ-like domain (PDZ2). We found that 17 copies of PflC fit
182 well into the densities projecting beneath each third FlgP subunit of the first basal disk ring,
183 with PflC_C binding FlgP and PflC_N forming the inner band of the medial disk. A density likely
184 to be the ordered proline linker bridges adjacent PflC protomers. This indicates that the PflC_C
185 domain of one chain assembles with the PflC_N domain of another, producing a continuous
186 daisy-chain of PflC_C protomers (Fig. 2E). Pulldowns using FLAG-tagged PflC verified its
187 interaction with FlgP (Fig. S3A).

188 PDZ domains interface with binding partners via a hydrophobic pocket using β -strand
189 addition, but PflC_C interactions are evidently mediated by non-canonical PDZ binding (26).
190 The PDZ2 ligand-binding groove is filled by a β -strand from its own polypeptide chain, is
191 oriented away from FlgP, and lacks the conserved PDZ-ligand-binding loop (27). Instead, a
192 loop on the opposite side of the domain comes closest to FlgP. PflC_N contacts other scaffold
193 components, including PflA. The substrate-binding pockets of the protease-like and PDZ1
194 domains are not proximal to other flagellar proteins, suggesting that their interactions are
195 also mediated by non-canonical binding modes.

196 The remainder of the medial disk is an intricate lattice of α -helical densities. The well-
197 resolved secondary structures in this region enabled an exhaustive search with the predicted
198 structures of all *C. jejuni* periplasmic proteins. Our search indicated that this lattice is
199 composed of additional PflC_N subunits related by three dimerisation interfaces (Fig 2F, Fig
200 S4A). An asymmetric unit within this 17-fold symmetric lattice contains six additional PflC_N,
201 which we refer to as PflC₂₋₇. Five of these six protomers (PflC₂₋₆) form radial spokes with a
202 slight twist, while PflC₇ bridges between spokes. As with PflC₁, the C-terminal domains of
203 PflC₂₋₇ explain the densities on the underside of the basal disk (opaque purple density in 2B).

204 Our structure predicts that purified PflC would oligomerise *ex situ*. We heterologously
205 expressed and purified PflC in *E. coli*. Size exclusion chromatography (SEC) (Fig. S5A,B)
206 and mass photometry measurements (Fig. S5C) revealed a dimer. The *in situ* PflC_N-PflC_C
207 daisy chaining suggests that the two domains of some PflC polypeptides might also self-
208 associate, reducing the abundance of the dimer. To test this we removed PflC_C (residues
209 236-349) to yield PflC_N alone. PflC_N produced dimers that were more abundant than PflC_{NC}
210 dimers (Fig. S5D,E,F), supporting an inter-PflC_N interaction. We speculate that interaction of
211 PflC_N and PflC_C from the same polypeptide prevents cytoplasmic oligomerization, and
212 binding of PflC_C to the basal disk catalyzes assembly of the medial disk only in the context of
213 the assembled motor.

214 The second candidate medial disk component, PflD, is a 162-residue periplasmic protein
215 that was pulled down with PflA of the proximal disk (Table S1). Together with its polar
216 localization (Alzheimer, Svensson, Froschauer, Sharma, in preparation), this implicated it as
217 a structural motor component. We inspected the peripheral part of the medial disk adjacent
218 to PflC_{4N} which disappeared when we deleted *pflD*, and found that a model of PflD fitted well
219 into this density (Fig 2A,D).

220 ***The proximal disk is composed of PflA spokes and a rim of PflB***

221 We finally modelled the proximal disk, known to contain PflA and PflB, together with stator
222 complex protein MotB (9). Extensive short α -helical bundles were consistent with repetitive
223 TPR motifs, short 34-residue repeats of two antiparallel α -helices (28,29), seen in proximal
224 disk components PflA and PflB. We modelled monomeric PflA and PflB and a PflA and PflB
225 dimer. PflA forms an elongated superhelix consisting of 16 TPR motifs connected by an
226 unstructured linker to an N-terminal β -sandwich domain. The structure of PflB is α -helical
227 except for two five-residue β -sheets. These models fitted clearly into our map, with 17 radial
228 spokes of PflA positioning a continuous rim of 17 PflBs (Fig. 2G). The PflA linker binds a
229 TPR-superhelical groove in PflB to create a PflAB heterodimer, with the α -helical part of PflA
230 pointing inwards, and the β -sandwich domain wrapping around PflB. To test our PflAB dimer
231 model we measured their interaction using mass photometry. PflAB heterodimerise even at
232 nanomolar concentrations, and deleting the putative β -sandwich interaction domain of PflA
233 (residues 16-168) to form PflA_{Δ168} abolished dimer formation (Fig. 2I, Fig. S6). A
234 subtomogram average structure of the motor in a PflA_{Δ168} mutant further confirmed that PflB
235 is unable to assemble into the motor (Figure 2H), although the C-terminal end of PflA
236 remains evident relative to a *pflB* deletion mutant (9) (Figure 2H). Taken together with the
237 interaction of PflA and PflB seen in pulldowns (30), we conclude that PflAB dimerisation is
238 essential for proximal disk assembly.

239 Our positioning of PflA explains two additional short densities protruding from the midpoint of
240 each PflA superhelix. PflA is a glycoprotein, with N-linked glycans attached at asparagines
241 458 and 497 (31). These residues are situated at the base of these rodlike densities,
242 meaning glycans are the best explanation for their identity (Fig. 2G, red atoms). We also saw
243 similar protrusions from every copy of PflC_N at asparagine 239 (Figure S4B), meaning PflC is
244 also a likely glycoprotein.

245 We could not assign proteins to three remaining densities in the scaffold: the so-called E-ring
246 that spaces the MS-ring from PflA, a cage previously observed in *H. pylori* (32) on the
247 periphery of the PflB rim that extends through the membrane to wrap around the stator
248 complexes, and a small density adjacent to PflD (Fig 2B, opaque regions). The relatively low
249 resolution of these regions lead to many equally plausible fits of candidate proteins.

250 ***The periplasmic scaffold positions 17 stator complexes***

251 To better understand the flagellar torque-generation machinery we performed focussed
252 refinement of the stator complexes and the outer edge of the periplasmic scaffold, enabling
253 us to resolve the pentameric structure of MotA contacting the C-ring (Fig. 3A). We located
254 the periplasmic peptidoglycan-binding domain of MotB by cross-referencing our previous
255 work (9), and we were able to discern the MotB linker extending toward the membrane from
256 the periplasmic domain. We fitted the structure of *C. jejuni* MotA into the pentameric density
257 (33) (Fig. 3B) and a dimer of a model of the periplasmic region of MotB into the periplasmic
258 density. Additional densities reach from the cytoplasmic face of MotA around its outer rim to
259 contact the membrane at the same radius as the periplasmic cage. These cytoplasmic
260 densities may be composed of proteins implicated in *C. jejuni* motility and form a structure
261 continuous with the periplasmic scaffold (30).

262 An arc of density partially encircling the periplasmic MotB linker had similar radius and
263 location as complete circles of FliL in the *H. pylori* and *Borrelia burgdorferi* motors (32,34).
264 We found that a curved tetrameric homology model of FliL fitted well into this arc (Figure
265 3C). Co-immunoprecipitation assays revealed that FliL is found in pulldowns of PflA and PflB
266 (Tables S1). Together this suggests that a partial circle of FliL is augmented by PflB and PflA
267 to scaffold MotB (Fig. S7) and explains why PflA and PflB are both required for the high
268 occupancy or static anchoring of stator complexes into the *C. jejuni* motor (9). Indeed, we
269 found that deletion of *fliL* in *C. jejuni* has only a modest impact upon motility (Fig. S8) in
270 contrast to *H. pylori* where FliL is essential.

271 The presence of the stator complexes in the *C. jejuni* structure, in contrast to their absence
272 in *Salmonella*, indicates either high occupancy or static anchoring mediated by the
273 interactions between the stators and the PflA, PflB, FliL, and potential cytoplasmic proteins.

274 The consistent rotational register of the stator complexes in our averaged structure, with a
275 pentameric corner pointing toward the C-ring, indicates that stator complexes are more
276 frequently in this rotational register than any other. Conserved rotor components have
277 adapted to a high torque role

278 We wondered how the *C. jejuni* rotor (the C-ring, MS-ring, and rod) has adapted to retain its
279 function yet interact with the substantially wider stator complex ring. The *C. jejuni* C-ring is
280 substantially wider, with a radius of 26.5 nm compared to the 21.5 nm-radius *Salmonella* C-
281 ring. This is likely achieved by increasing the number of subunits that make up the C-ring,
282 and based on the ratios of circumferences of the *C. jejuni* C-ring compared to the 34 copies
283 of FliG in *Salmonella*, we estimate 42 copies of FliG in the membrane-proximal ring of the *C.*
284 *jejuni* C-ring.

285 The *C. jejuni* MS-ring is also wider than that of *Salmonella*, consistent with the 1:1
286 stoichiometry of FliF to FliG (35,36). We modelled MS-rings with various FliF stoichiometries
287 while maintaining the same inter-protomer azimuthal spacing as in *Salmonella*, whose MS-
288 ring features 34 copies of FliF. A 42-protomer model best agreed with our observed density,
289 and matches our C-ring estimate. We modelled the RBM1 and RBM2 domains as in
290 previous work (37), although we found that the circumference of the inner RBM12 domains,
291 unlike other parts of the MS-ring, was the same as in *Salmonella*. We therefore modelled 23
292 protomers into the inner ring as in *Salmonella*, and the outer ring the remaining 19 protomers
293 (Fig. 3E).

294 We docked a homology model of the rod and export gate complex (FlhB_N, FliP, FliQ, and
295 FliR at the rod tip) into our density map based on *Salmonella* structures (Fig. 3E). The model
296 was positioned taking into account known interactions between FliF's RBM2 loop and
297 FliP/FliQ (14). In *Salmonella*, the rod and MS-ring are intricately stitched together by multiple
298 interactions. Rod interaction with this wider MS-ring is achieved by FlgC and FlgF sequence
299 insertions to produce a wider rod. In contrast, the RBM2 ring in the MS-ring retains contact
300 with FliP and FliQ in the export gate by retaining the same radial placement as in isolated
301 *Salmonella* motors, despite change in overall FliF stoichiometry.

302 ***An in situ model of the type III secretion system***

303 The mechanism of type III secretion, key to flagellar assembly, has been elusive due to our
304 inability to determine the structure of the N-terminal integral membrane domain of FlhA. By
305 combining our map with structural predictions and information from previous studies we were
306 able to place FlhA_N in our model. We modelled a trimer of FlhA_N with no *a priori* information
307 about its full oligomeric state. Our trimer formed an arc with 40° inter-protomer curvature;
308 extrapolation of this trimer yielded a complete ring that matched the established nine-
309 protomer stoichiometry (Fig. 4A). The 6 nm-diameter cytoplasmic FHIPEP portal subdomain
310 features a 1.7 nm channel pointing toward FlhA_C and the cytoplasm. The inner and outer
311 faces of the main FlhA_N ring are hydrophobic, but while the outer face is perpendicular to the
312 membrane, the inner face is angled at 60° to the membrane, echoing the hydrophobicity and
313 60° slope of the conical tip of the peri-membrane export gate (Fig. 4B). Positioning FlhA_N
314 using the relationship of this band to the membrane, visualization of the protruding
315 cytoplasmic subdomain, and established location of FlhA_C all indicated that FlhA_N is spaced
316 beneath the export gate. Indeed, the 60°-slanted faces of both FlhA_N and the export gate are
317 positively charged (Fig. 4C,D), consistent with interactions with anionic phospholipids and
318 inconsistent with protein interfaces. Further consistent with a lack of interaction between
319 FlhA_N and the export gate, attempts to dock the FlhBFliQ₄ export gate tip into the FlhA_N
320 nonamer failed using AlphaFold2 (38,39), MDockPP (40), and GRAMM (41). We suggest the
321 best way to reconcile these observations is that a truncated cone of phospholipids separates
322 FlhA_N from the export gate. Nevertheless, the axial atrium between the export gate and
323 FlhA_N cannot accommodate FlhB_C. Modelling FlhB_C and its linker from FlhB_N onto the tip of
324 our export gate homology model suggests that FlhB_C reaches through the FlhA_N nonamer
325 toward FlhA_C.

326 **Discussion**

327 We determined a near-complete molecular model of the bacterial flagellar motor from *C.*
328 *jejuni* using *in situ* electron cryomicroscopy imaging, an important step in understanding
329 motor function and our long term goal of understanding the evolution of a complex molecular
330 machine. Our approach is a proof-of-principle demonstration of the power of using minicells
331 and single particle analysis for high-resolution of motors, and extends imaging procedures
332 used for abundant surface-exposed structures to scarce structures embedded in the cell.
333 Our results, including a structure to sufficient resolution for molecular model docking and
334 refinement, provide a near-complete inventory of the proteins incorporated into the

335 Campylobacterota motor during evolution of higher torque output and the adaptations of pre-
336 existing components (Table S2). Our results also provide insights into universal principles of
337 flagellar rotation and type III secretion.

338 The architecture of the basal disk suggests its evolutionary origin. FlgP is the major
339 component of the basal disk, with 17 FlgP trimeric repeats that may dictate the symmetry of
340 the remainder of the periplasmic scaffold. FlgP is a member of lipoprotein InterPro family
341 IPR024952, which also includes *Helicobacter* Lpp20. A key difference is that the SHS2
342 domain of FlgP is modified by a β -hairpin insertion between the α -helix and second β -sheet.
343 This insert is also evident in FlgT, which also forms outer membrane-associated rings in γ -
344 proteobacterial flagellar motors (42). FlgP-like proteins evidently have longstanding
345 associations with flagellar motors for building outer-membrane associated structures, and
346 formation of rings perhaps facilitated by a β -hairpin oligomerisation insert. Curiously, the
347 basal disk from *Wolinella* has been proposed to form a spiral, not concentric rings (43).
348 Concentric rings best explain the uniform and well-resolved PflC densities around the *C.*
349 *jejuni* motor and a snug fit of the basal disk around the P-ring that templates the remaining
350 17-fold symmetry. *Wolinella* lacks a PflC lattice (10) raising the possibility that FlgP forms
351 archimedean spirals only in the absence of PflC.

352 Similarly, the architecture of the medial disk suggests its origin. The medial disk is made of a
353 lattice of PflC, a protein with the domain organisation and structure of HtrA-family enzymes,
354 although lacking the catalytic residues (Fig S4C) (44). The innermost PflC₁ ring forms a
355 daisychain of 17 protomers composed of the N-terminal domain from one polypeptide and
356 the C-terminal domain from another, a protomer that superimposes on monomeric HtrA. This
357 inner ring adapts the 51-fold symmetry of the innermost FlgP ring to the 17-fold symmetry of
358 the periplasmic scaffold, and a lattice of six additional PflC protomers, PflC₂₋₇, assemble on
359 each inner PflC₁, resulting in a lattice of 119 PflC chains. HtrA also forms higher-order
360 oligomers (25), suggesting that this oligomerisation tendency may have been present for
361 exaptation to function as a structural scaffold. HtrA family proteins are secreted to the
362 periplasm, meaning that they already co-localised to the same subcellular locale as the
363 flagellar motor. Taken together, the similarities in domain organisation suggest PflC is
364 descended from an ancient HtrA protease. PflC sequences in *Wolinella* and *Helicobacter*
365 species motors that lack a medial disk do not have the inter-PDZ domain linker that
366 mediates the head-to-tail oligomerisation of the PflC ring between the basal disk and PflAB.

367 The ancestry of PflA and PflB, which comprise the proximal disk, is less clear, due to the
368 ubiquity of TPR motifs. TPR motifs are widespread building blocks of structural scaffolds; for
369 example, the Tol/Pal component YbgF features TPR motifs (45). Parts of the Tol/Pal system

370 share homology with flagellar components, consistent with recruitment of a colocalised and
371 abundant structure (6), but little more can be said at this stage.

372 As well as the identity and possible origins of the novel structures in the *C. jejuni* flagellar
373 motor, our structure reveals adaptations of core components necessary in the evolution of
374 higher torque. Three major changes are evident in the rotor components to mediate
375 adaptation of the conserved core to the additional stator complexes. First, the radius of the
376 MS-ring has increased to template a wider C-ring to maintain contact with the larger stator
377 ring by increasing the stoichiometry of FliF from 34 to 42. Second, the rod needs to retain
378 contact with this wider MS-ring, achieved by sequence insertions in FlgC, and to a lesser
379 extent FlgF to pad the space introduced by a wider rod. It will be intriguing to probe whether
380 rod diameter is solely responsible for increased MS-ring symmetry. Third, the RBM2 ring of
381 the MS-ring retains the symmetry it has in *Salmonella*. FliF has previously been proposed to
382 be a symmetry adapter, and this is further evidenced here, with RBM2 retaining the same
383 architecture as in *Salmonella* while other parts acquire higher symmetries.

384 Stator components have also evolved in *C. jejuni*. The stator complexes are enclosed by a
385 cage of PflA, PflB, FliL, and as-yet-unidentified proteins. MotB interacts with this structure,
386 required for the high occupancy or static positioning of the *C. jejuni* stator complexes (9). It is
387 unclear whether *C. jejuni* MotB also still interacts with peptidoglycan. The putative
388 peptidoglycan binding site of MotB is exposed but angled towards the flagellar axis. In *E.*
389 *coli*, peptidoglycan is located 20 nm above the inner membrane (46), beyond the reach of
390 MotB's periplasmic domain in *C. jejuni*. MotB may indirectly bind peptidoglycan that is
391 clamped by the motor's proteinaceous lattice. Indeed, purified *C. jejuni* peptidoglycan have
392 50 nm-wide polar holes (47), suggesting that peptidoglycan extends into the ~80 nm-wide
393 protein lattice.

394 These results enhance our understanding of how high torque evolved in the
395 Campylobacterota. A wider C-ring may have initially only required insertions into the
396 proximal rod, leading to wider MS- and C-rings. The width of the stator complex ring does
397 not need to rigidly track with C-ring width (9), and subsequent addition of the periplasmic
398 scaffold could add a larger ring of additional stator complexes, a process involving
399 recruitment of FlgP and PflC from members of the Lpp20 and HtrA family, respectively,
400 among others. Our pseudoatomic model of structures unique to Campylobacterota and their
401 interfacing with core flagellar components, combined with phylogenetic analysis will enable
402 further studies to probe how novel interfaces arose during protein recruitment. Our next
403 steps will be to determine phylogenies of these new components, clarify and experimentally
404 validate binding interfaces, and work toward ancestral sequence reconstructions to test

405 hypotheses as to how novel protein interfaces emerge, and how components become
406 essential. PflC is particularly promising given the absence of the PflC-composed medial disk
407 in other Campylobacterota.

408 Our study also sheds light on universal flagellar mechanisms. We were surprised to find that
409 our resolution was sufficient to discern the pentameric shape of MotA. This indicates a
410 consistent rotational register of the MotA pentamer, in which the vertex of pentamers is
411 closest to the C-ring. We attempted focused classification of individual stator complexes but
412 failed to resolve classes with other rotational registers. Given the symmetry mismatch
413 between the 17 stator complexes and 42 FliG protomers, we would expect that a high duty
414 ratio of the stator complexes would result in a continuum of rotational registers and therefore
415 an averaged structure of a homogenous circle instead of a pentamer. Predictions of stator
416 complexes having a high duty ratio assumed an elastic linker from peptidoglycan to MotA as
417 in *Salmonella* (48), although this does not hold for *C. jejuni* in which stator complexes are
418 rigidly encased in their proteinaceous cage. Our structure is therefore consistent with recent
419 results suggesting that the motor has a low duty ratio (49), and MotA's rotational register is
420 dictated by an energy minimum of rotation around MotB instead of against FliG.

421 One longstanding mystery has been how the T3SS assembles and functions. Our structure
422 contextualises previous studies to explain why FlhA_N has been recalcitrant to structure
423 determination. We believe that the structure of FlhA_N has not been determined because
424 while FlhA_N domains remain monomeric until in a conical membrane, which is imposed by
425 the export gate; detergents no longer provide this context. This explains why FliPQR
426 assemble without FlhA and pucker the membrane (50), the absence of co-evolutionary
427 signal between FlhA and export gate components (51), and the complex-confounding
428 symmetry mismatch between the asymmetric export gate and FlhA. The export gate must
429 therefore assemble first (20). FlhA_C nonamers independently oligomerise tethered to nine
430 monomeric FlhA_N transmembrane domains (FlhA_C oligomerization is a prerequisite for
431 formation of a membrane dome likely to be FlhA_N (52)). The intrinsic curvature of FlhA_N
432 transmembrane interfaces attract them to the membrane cone imposed by the export gate
433 where they oligomerise around the export gate and FlhB linker, leaving FlhB_C on the
434 membrane-side of FlhA_N and FlhB_N on the cytoplasmic side (indeed, FlhA assembly needs
435 the export gate but not the cytoplasmic FlhB_C domain (52)). Thus while the export gate
436 mediates FlhA_N oligomerisation, it does so indirectly.

437 The separation and high-order symmetry mismatch of FlhA_N from the export gate hints that
438 FlhA can rotate relative to the export gate. The opposed positive charges between the FlhA_N
439 and the export gate may function like a 'Maglev' to keep the two components separate in

440 combination with a ring of phospholipids (Fig. 4E). The export gate is contiguous with the
441 cytoplasmic ATPase, Flil (through FliF and the C-ring), indicating that Flil is static relative to
442 the export gate. FliJ, however, which may rotate in the axial channel through Flil, contacts
443 FlhA. We propose that ATP hydrolysis by Flil powers rotation of FliJ and FlhA relative to the
444 other rotor components. The bacterial flagellar motor thus has three distinct rotating
445 subcomplexes: the static stator structure including the periplasmic scaffold and LP-rings; the
446 rotor including the C-ring, MS-ring, rod, and majority of the T3SS, and FlhA and FliJ.

447 The principal limitation of our approach is our reliance on the prominent 17-fold symmetry of
448 the periplasmic scaffold and stator complexes. In the case of *C. jejuni* flagellar components
449 with other symmetries, prior knowledge of the symmetry of conserved components in
450 *Salmonella* enabled us to overcome these limitations. And while our resolution is insufficient
451 to resolve residue-level interactions, it is sufficient to unambiguously assign domains to
452 densities. Nevertheless, two insights lie beyond our reach. This first is how consecutive rings
453 of FlgP in the basal disk interface to construct a rigid structure that can bend the membrane
454 despite inherent inter-ring symmetry mismatch. The second is how the E-ring, which appears
455 to contain densities interfacing with PflA and PflC (i.e., stator components) interacts with the
456 MS-ring (i.e., a rotor component). The inner radius of the E-ring does not share the 17-fold
457 symmetry of the periplasmic scaffold, and the implications of this will remain unclear until it
458 can be determined.

459 Our study is the first to achieve sufficient resolution to build molecular models of a bacterial
460 molecular machine *in situ*, providing invaluable information on the mechanisms of torque
461 generation and secretion and enabling us to advance our understanding of the evolutionary
462 origins of bacterial flagellar motors and providing invaluable information on the mechanisms
463 of torque generation and secretion. Our approach confirms that using single particle analysis
464 of protein machines *in situ* can provide sufficient resolution for molecular modelling. We posit
465 that *in situ* imaging in the future will increasingly involve optimised cellular systems such as
466 the one described here to provide high resolution projection images that can be mapped
467 onto low-resolution density envelopes derived from subtomogram averaging datasets. The
468 future of structural biology is *in situ*.

469 Acknowledgements

470 We thank Paul Simpson in the Imperial College London Electron Microscopy Centre and the
471 Francis Crick Institute Structural Biology science technology platform for electron microscopy
472 assistance, and Willie Taylor for initial thoughts on modelling the transmembrane region of

473 FIhA. This work was supported by Medical Research Council grant MR/V000799/1 to EJC
474 and MB, Human Frontier Science Program grant RGP0028/2021-HOCHBERG to MB and
475 GH, NIH grant R01AI065539 to DRH, BBSRC doctoral training grant BB/M011178/1 and a
476 short-term DAAD grant to TD. PBR is supported by the Francis Crick Institute, which
477 receives its core funding from Cancer Research UK (CC2106), the UK Medical Research
478 Council (CC2106), and the Wellcome Trust (CC2106). CMS is supported by research grants
479 Sh580/7-2 and Sh580/8-2 in the framework of the DFG (Deutsche Forschungsgemeinschaft)
480 priority program SPP2002 (Small proteins in prokaryotes, an unexplored world), the DFG
481 Research Training Group GRK2157 “3D-Infect”, and a “CampyRNA” junior consortium grant
482 within the 2nd call of Infect-ERA (ERA-NET; www.infect-era.eu)/Bundesministerium für
483 Bildung und Forschung (BMBF; www.bmbf.de).

484 For the purpose of open access, the author has applied a Creative Commons Attribution (CC
485 BY) license to any Author Accepted Manuscript version arising.

486 Author Contributions

487 TD: sample prep, image processing, analysis, molecular modelling, mass photometry, wrote
488 paper, EJC: sample prep, image processing, analysis, NS: image processing, TU: sample
489 prep, data acquisition, image processing, AN: data acquisition, image processing, DR: flgQ-
490 mCherry, pulldowns, fliL knockout, SS, KF, MA, CS: PflC and PflD identification, LDH: PflD
491 subtomogram averaging, GH, SGG: Mass photometry data acquisition supervision and
492 analysis, funding acquisition, DRH: flgQ-mCherry, pulldowns, funding acquisition, PR: image
493 processing, funding acquisition, MB: conceptualization, funding acquisition, supervision,
494 wrote paper

495 Declaration of Interests

496 The authors declare no competing interests.

497 Figure titles and legends

498 **Figure 1. Engineering of homogenous *Campylobacter jejuni* minicells enabled us to**
499 **determine the *in situ* structure of a flagellar motor by single particle analysis electron**
500 **cryo-microscopy (A) Schematic of the flagellar motor from *C. jejuni*. Proton flux**
501 **through the stator complexes drives rotation of the C-ring, MS-ring, rod, and**
502 **hook/filament. In the *Campylobacterota*, a basal disk and periplasmic scaffold have**
503 **evolved that scaffold a wider ring of additional stator complexes thought to be**
504 **increase motor torque. IM/OM: inner/outer membrane (B) WT *C. jejuni* cells typically**
505 **provide 1 flagellar motor per field of view as compared to (C) many motors per field of**
506 **view in our minicells strain, greatly increasing throughput (D) Periplasmic and**
507 **cytoplasmic features are evident in 2-D classes of manually picked motors. (E) Cross-**
508 **section through an isosurface rendering of a whole-motor 3-D reconstruction. (F)**
509 **Density map from (E), segmented and exploded along the z-axis to highlight**
510 **component structures.**

511 **Figure 2. An enlarged ring of 17 stator complexes are held in place by a periplasmic**

512 scaffold composed of novel proteins. (A) Whole-motor map shows that the scaffold

513 attaches to the innermost ring of the basal disk, which itself is a series of concentric

514 rings. Different sections of the periplasmic scaffold and basal disk in colour. (B)

515 Docked and refined molecular models of the scaffold and basal disk, in a transparent

516 density map. Regions unaccounted-for by molecular models are shown as solid.

517 Shown is an asymmetric unit of the C17-symmetric structure in side view. (C) The

518 refined scaffold map and basal disk density (right) and fitted structural models (left) of

519 known basal disk and scaffold proteins. The models have been exploded along the

520 horizontal axis. (D) *pflC* and *pflD* deletion leads to discrete losses in subtomogram

521 average structures of resultant motors (magenta boxes depict losses). (E) Structure of

522 the basal and medial disks, showing docked and refined FlgP (purple), PflC (the inner

523 most ring, PflC₁, magenta; spokes of six additional monomers per asymmetric unit,

524 PflC₂₋₇, teal), and PflD (black) models. Right panel: Each FlgP contacts the next two

525 subunits by an extended β -sheet, interlocking to form rings. The innermost ring has

526 51 FlgPs, to which are attached 17 copies of the innermost ring of PflC, i.e., PflC₁

527 (magenta). PflC_{1C} domains interact with every third FlgP and contact PflC_{1N} of the next

528 monomer in a head-tail fashion. A single PflC molecule contributes to two protomers

529 (magenta outline) (F) Left: The medial disk is a protein lattice of an additional six PflC

530 chains per asymmetric unit of the 17-fold symmetric periplasmic structure. These

531 PflC_{2-7N} domains (teal) have a different arrangement to the inner FlgP-binding PflC₁s.

532 Right: PflD (black) is attached to the PflC_{4N} on the edge of the PflC₂₋₇ lattice, and forms

533 part of a bridge that connects the medial and proximal disks. Isosurface threshold

534 increased to demonstrate fit to map. (G) Top view of an asymmetric unit of the

535 proximal disk. PflA (light green) is positioned radially like spokes, interacting at its N-

536 terminal end with PflB (dark green) at the outer edge of the scaffold. An arc of FliL

537 (red) and periplasmic domain of MotB (pink, residues 68-247) are also accounted for.

538 (H) Deleting the β -sandwich and linker of PflA prevents incorporation of PflB into the

539 motor. (I) Mass photometry measurements confirm the PflAB dimer (red background)

540 forms *in vitro*. Deleting the β -sandwich and linker domains of PflA abolishes dimer

541 formation. (J) FlgP shares the SHS2-like fold with Lpp20 of *Helicobacter pylori* and

542 FlgT of *Vibrio alginolyticus*. All are OM-associated and FlgT is a flagellar component,

543 indicating shared evolutionary origin. (K) A domain-swapped PflC shares its domain

544 architecture and overall fold with HtrA, a serine protease.

545 **Figure 3. Wider rings of additional stator complexes are incorporated in the scaffold**
546 **while the rotor components are correspondingly wider. (A) A focused refinement of**
547 **the stator complexes reveals 17 pentameric densities on the cytoplasmic face of the**
548 **IM. (B) A structure of transmembrane MotAB (PDB ID 6ykm) fitted into the pentameric**
549 **stator density in our whole-motor map. There are additional unaccounted densities on**
550 **the cytoplasmic side of MotA. (C) A tetrameric arc of FliL wraps around the MotB**
551 **stalk. (D) Flagellar motor of *Salmonella* does not contain any periplasmic scaffolding**
552 **structures. Models of the LP-rings, rod and FliF (14) are docked into a STA structure**
553 **of an *in situ* *Salmonella* motor (9). (E) The rotor (rod, MS-ring, and C-ring) of *C. jejuni***
554 **is wider than that of *Salmonella*. Insertions in FlgF and FlgC in *C. jejuni* retain contact**
555 **with the MS-ring. The MotAB stator is embedded in the inner membrane and**
556 **periplasmic scaffold. The Periplasmic domains of MotB form an apparent complex**
557 **with PflA, PflB, and FliL.**

558 **Figure 4. A model of the flagellar type III secretion system suggests that FlhA is**
559 **separated from the export gate by a band of phospholipids. (A) Hydrophobicity of**
560 **FlhA_N depicting reveals hydrophobic bands on the outer and inner rims of the FlhA_N**
561 **nonamer. The inner band is angled at 60° to the plane of the membrane. (B)**
562 **Hydrophobicity of the export gate reveals a matching hydrophobic band. (C)**
563 **Electrostatic potential reveals a positively charged band at the base of the FlhA_N**
564 **funnel, corresponding to (D) a positively charged region around the neck of the FlhB**
565 **linker. (E) A model for the structure of the flagellar type III secretion system *in situ***
566 **suggests that FlhA and the export gate are discrete structures that might be capable**
567 **of rotating relative to one-another.**

568 Tables with titles and legends

569 **Table 1: List of bacterial strains and plasmids used in this work.**

Description/ name	Bacterial strain or plasmid	Source
<i>C. jejuni</i> DRH212	<i>C. jejuni</i> 81-176 <i>rpsl</i> Sm (Sm ^R)	(53)
<i>C. jejuni</i> Minicell-producing strain	<i>C. jejuni</i> 81-176 Δ <i>flhG</i> Δ <i>flaAB</i>	This work
<i>C. jejuni</i> PflA truncation	<i>C. jejuni</i> 81-176 <i>pflA</i> _{Δ18-168}	This work
<i>C. jejuni</i> NCTC11168 WT CSS-0032	<i>C. jejuni</i> NCTC11168 wildtype	This work

<i>C. jejuni</i> PflC deletion CSS-4087	<i>C. jejuni</i> NCTC11168 Δ cj1643	This work
<i>C. jejuni</i> PflD deletion CSS-4081	<i>C. jejuni</i> NCTC11168 Δ cj0892c	This work
<i>C. jejuni</i> PflC-3xFLAG CSS-4720	<i>C. jejuni</i> NCTC11168 Cj1643-3xFLAG	This work
<i>C. jejuni</i> PflD-sfGFP CSS-4666	<i>C. jejuni</i> NCTC11168 Δ cj0892c + cj0892c-sfgfp	This work
<i>C. jejuni</i> PflD-sfGFP, PflA-3xFLAG CSS-5714	<i>C. jejuni</i> NCTC11168 Δ cj0892c + cj0892c-sfgfp, PflA-3xFLAG	This work
<i>C. jejuni</i> PflD-sfGFP, PflB-3xFLAG CSS-5716	<i>C. jejuni</i> NCTC11168 Δ cj0892c + cj0892c-sfgfp, PflB-3xFLAG	This work
pRY109	source of <i>cat</i> cassette for chloramphenicol resistance reference:	DOI: 10.1016/0378-1119(93)90355-7
pRY112	<i>E. coli</i> - <i>C. jejuni</i> shuttle vector	DOI: 10.1016/0378-1119(93)90355-7
pDAR1003	pRY112 with 76-bp fragment containing <i>cat</i> promoter with start codon and in- frame BamHI restriction site cloned into the XbaI and XmaI sites	This work
pDAR1006	pDAR1003 with DNA encoding <i>mcherry</i> and stop codon cloned in-frame with respect to the <i>cat</i> start codon and BamHI site into the XmaI and EcoRV sites	This work
FlgQ-mCherry plasmid pDRH7476	with <i>flgQ</i> from codon 2 to the penultimate codon cloned into the BamHI site of pDAR1006 to create a FlgQ-mCherry fusion	This work
<i>C. jejuni</i> FlgQ-mCherry DRH7516	<i>C. jejuni</i> 81-176 Δ flgQ / pDRH7476	This work
Cloning strain	<i>E. coli</i> DH5 α	Lab stock
Protein expression strain	<i>E. coli</i> BL21(DE3)	Lab stock
Cloning vector backbone	pLIC (Amp ^R)	Franziska Sendker
Full-length PflA (16-788)	pLIC-PflA	This work

PflA TPR regions (169-788)	pLIC-PflA α	This work
PflA N-terminal half (16-454)	pLIC-PflA N	This work
Soluble PflB (113-820)	pLIC-PflB	This work
Full-length PflC (17-364)	pLIC-PflC	This work
PflC C-terminal truncation (17-235)	pLIC-PflC $_{\Delta 236-349}$	This work
<i>C. jejuni</i> DAR1124	<i>C. jejuni</i> 81-176 <i>rpsL</i> Sm Δ <i>pflA</i>	(9)
<i>C. jejuni</i> DAR3447	<i>C. jejuni</i> 81-176 <i>rpsL</i> Sm Δ <i>pflA/pDAR3417</i>	This work
<i>C. jejuni</i> DAR3477	<i>C. jejuni</i> 81-176 <i>rpsL</i> Sm Δ <i>pflA/pDAR1604</i>	This work
<i>C. jejuni</i> DAR981	<i>C. jejuni</i> 81-176 <i>rpsL</i> Sm Δ <i>pflB</i>	(9)
<i>C. jejuni</i> DAR3451	<i>C. jejuni</i> 81-176 <i>rpsL</i> Sm Δ <i>pflB/pDAR3414</i>	This work
<i>C. jejuni</i> DAR3479	<i>C. jejuni</i> 81-176 <i>rpsL</i> Sm Δ <i>pflB/pDAR965</i>	This work
pRY108	<i>E. coli</i> - <i>C. jejuni</i> shuttle vector	(54)
pECO102	<i>E. coli</i> - <i>C. jejuni</i> shuttle vector containing cat promoter and start codon for expression of genes for complementation	(55)
pDAR965	<i>E. coli</i> - <i>C. jejuni</i> shuttle vector containing cat promoter and start codon followed by DNA encoding an in-frame N-terminal FLAG tag	(56)
pDAR1425	pRY108 with 206 base pair fragment containing flaA promoter and start codon with in-frame SpeI site cloned into the XbaI and BamHI sites	This work
pDAR1604	<i>E. coli</i> - <i>C. jejuni</i> shuttle vector containing flaA promoter and start codon followed by DNA encoding an in-frame N-terminal FLAG tag	(57)
pDAR3414	pECO102 with codon 2 to penultimate codon of pflB and an in-frame C-	This work

	terminal FLAG epitope cloned into the BamHI site	
pDAR3417	pDAR1425 with codon 2 to penultimate codon of pflA and an in-frame C-terminal FLAG epitope cloned into the BamHI site	This work

570 **Table 2: Data collection statistics of two cryoEM data collection sessions.**

Parameter	Dataset 1 ("F3")	Dataset 2 ("K2")
Voltage (kV)	300	300
Detector	Falcon III	K2
Pixel size (Å/px)	1.75	2.2
Exposure dose per frame (e ⁻ /Å/frame)	5	1.53
Total exposure dose (e ⁻ /Å)	50	50
Defocus range (μm)	-1.5 to -3.0	-1.5 to -3.0
Total micrographs	8,774	42,988

571

572 **Methods**

573 **Resource availability**

574 **Lead contact**

575 Further information and requests for resources and reagents should be directed to and will
576 be fulfilled by the lead contact, Morgan Beeby (mbeeby@imperial.ac.uk)

577 **Materials availability**

578 Plasmids and strains generated in this study are available on request from the lead author.

579 **Data and code availability**

580 **Data resources**

581 The cryo-EM map of the whole-motor map has been deposited in the Electron Microscopy
582 Data Bank (EMDB) with accession code EMD-16723 together with the original micrographs
583 deposited to the EMPIAR repository with public accession code EMPIAR-11580 (DOI:

584 10.6019/EMPIAR-10016). The refined periplasmic scaffold map has been deposited in the
585 EMDB with accession code EMD-16724. STA maps have been deposited in the EMDB with
586 the following accession codes: $\Delta pflC$ - EMD-17415; $\Delta pflD$ - EMD-17416; $pflA_{\Delta 16-168}$ - EMD-
587 17417, FlgQ-mCherry - EMD-17419.

588 **Experimental model and study participant details**

589 Please see Table 1 for details of strains and plasmids used in this study.

590 **Method details**

591 **Bacterial strains and growth conditions**

592 *C. jejuni* 81-176 or NCTC11168 were cultured from frozen stocks on Mueller-Hinton (MH)
593 agar (1.5% w/v) supplemented with trimethoprim (10 μ g/mL) (MHT) for 1-2 days at 37°C
594 under microaerophilic conditions (5% O₂, 10% CO₂, 85% N₂) in a in a Heracell 150i tregas
595 incubator (Thermo Fisher Scientific). Additional antibiotics were added to the agar medium
596 when required: kanamycin (Km) at 50 μ g/mL, streptomycin (Sm) at 2 mg/mL. All 81-176
597 mutants were constructed in DRH212 (53), a streptomycin resistant derivative of *C. jejuni*
598 81-176, which is the reference wild-type strain in this work unless otherwise stated. All
599 constructed strains are listed in Table 1.

600 When working with *E. coli*, cultures were grown at 37°C on Luria-Bertani (LB) agar plates
601 (1.5% w/v) or in LB medium with agitation, both supplemented with carbenicillin at 100
602 μ g/ml.

603 **Strain construction**

604 The minicell ($\Delta flhG \Delta flaAB$) and PflA truncation ($pflA_{\Delta 18-168}$) strains were constructed as
605 described previously (53,58). Briefly, *aphA-rpsL*^{WT} cassettes flanked by ~500 bp overhangs
606 with homology to the targeted chromosomal loci and ecoRI sites at the 5' and 3' termini were
607 synthesised by “splicing by overlap extension” PCR (SOE PCR). Linear DNA fragments
608 were methylated at their ecoRI sites with ecoRI methyltransferase (New England Biolabs)
609 and transformed into *C. jejuni* using the biphasic method (59). Transformants were selected
610 for on MH agar supplemented with 50 μ g/mL kanamycin. Replacement of the *aphA-rpsL*^{WT}
611 with the desired mutation was achieved using the same method, but with transformants
612 being selected for on MH agar supplemented with 2 mg/mL streptomycin sulfate.
613 Kanamycin-sensitive, streptomycin-resistant transformants were single-colony purified and
614 checked by Sanger sequencing (Source Biosciences UK). For the minicell background, in-

615 frame deletion of *flihG* leaves the first and last 20 codons intact, while the $\Delta fliAB$ allele spans
616 from 20 base pairs upstream of the *fliA* translational start site to codon 548 of *fliB*.

617 To construct the *C. jejuni fliL* mutant, we made a *cat* insertional knockout and confirmed
618 absence of polar effects. To preserve expression of the essential *acpS* gene downstream of
619 *fliL*, we constructed a *fliL* mutant that disrupted *fliL* with an antibiotic-resistance cassette
620 containing an intact *fliA* promoter positioned to maintain expression of *acpS*. First, the *fliL*
621 locus from *C. jejuni* 81-176 was PCR amplified with a *Hpa*I site engineered within the *fliL*
622 coding sequence. This fragment was then cloned into the *Bam*HI site of pUC19 to create
623 pDAR1712. The *fliA* promoter and start codon were PCR amplified from *C. jejuni* 81-176
624 and cloned into the *Xba*I and *Bam*HI sites of pUC19 to create pDAR2039. The
625 chloramphenicol-resistance cassette containing *cat* was digested as a *Pst*I fragment from
626 pRY109 and cloned into *Pst*I-digested pDAR2039 to create pDAR2045. The *cat-fliA*
627 promoter was then digested from pDAR2045 as a *Eco*RI-*Bam*HI fragment, treated with T4
628 DNA polymerase to create blunt ends and cloned into the *Hpa*I site of pDAR1712 to create
629 pDAR2072. pDAR2072 was verified to contain the *cat-fliA* promoter in the correct
630 orientation to maintain expression of *acpS*. DRH212 was then electroporated with
631 pDAR2072 and chloramphenicol-resistance transformants were recovered. Colony PCR
632 verified creation of a *fliL* mutant (DAR2076).

633 Deletion mutants of *C. jejuni* NCTC11168 were constructed by double-crossover
634 homologous recombination with an antibiotic resistance cassette to remove most of the
635 coding sequence using overlap PCR products. As an example, deletion of *cj1643 (pfIC)* is
636 described. First, ~500 bp upstream of the *cj1643* start codon was amplified using CSO-
637 3359/3360 and ~500 bp downstream of the *cj1643* stop codon was amplified with CSO-
638 3361/-3362 from genomic DNA (gDNA) of the wild-type strain (CSS-0032). A non-polar
639 kanamycin resistance cassette (*aphA-3*, Kan^R) (Skouloubris et al., 1998) was amplified from
640 pGG1 (60) with primers HPK1/HPK2. To fuse the up- and downstream regions of *cj1643*
641 with the resistance cassette, the three fragments were mixed and subjected to overlap-
642 extension PCR with CSO-3359/ 3362. PCR products were electroporated into the WT strain
643 as previously described (61). The final deletion strain (CSS-4087; NCTC11168 $\Delta cj1643$) was
644 verified by colony PCR with CSO-3363/HPK2. Deletion of *cj0892c (pfID)* in *C. jejuni* strain
645 NCTC11168 was generated in a similar fashion: *cj0892c::aphA-3* (CSS-4081; NCTC11168
646 $\Delta cj0892c$).

647 To fuse *sfgfp* fusion to the penultimate codon of *cj0892c* (*pflD*), its coding sequence was first
648 amplified with CSO-3611/3612, digested with *Nsel/Cla*l, and inserted into similarly-digested
649 pSE59.1 ((62); amplified with CSO-0347/CSO-0760) to generate pSSv106.5, where *cj0892c*
650 transcription is driven from the *metK* promoter. The plasmid was verified by colony PCR with
651 CSO-0644/3270 and sequencing with CSO-0759. Next, *sfgfp* was amplified from its second
652 codon from pXG10-SF (63) with CSO-3279/3717, digested with *Cla*l, and ligated to
653 pSSv106.5 (amplified with CSO-3766/0347 and also digested with *Cla*l). This generated
654 pSSv114.1, which was verified by colony PCR with CSO-0644/0593 and sequencing with
655 CSO-0759/3270. The fusion of *rdxA*::P_{*metK*}-*cj0892c*-sfGFP was amplified from pSSv114.1
656 with CSO-2276/2277 and introduced into the *rdxA* locus of Δ *cj0892c* (CSS-4081) by
657 electroporation. Clones were verified via colony PCR and sequencing with CSO-0349 and
658 CSO-0644. Colony PCR was also used to confirm retention of the original deletion with CSO-
659 3343 and HPK2.

660

661 Similar to construction of deletion mutants, C-terminal epitope tagged strains were
662 generated by homologous recombination at the native locus by electroporation of a DNA
663 fragment. The 3xFLAG sequence was fused to the penultimate codon of the coding
664 sequence to allow in-frame translation of the tag. The DNA fragment contained ~ 500 bp
665 upstream of the penultimate codon of the gene of interest, the sequence of the epitope tag, a
666 non-polar resistance cassette, and the ~500 bp downstream sequence of the gene. As an
667 example, 3xFLAG tagging of *PflA* (CSS-5714) is described. The upstream fragment was
668 amplified with CSO-4224 and CSO-4225 from *C. jejuni* NCTC11168 WT gDNA. The
669 downstream fragment was amplified using CSO-4226 and CSO-4227. The fusion of the
670 3xFLAG tag with the gentamicin resistance cassette was amplified from *fliW*::3xFLAG-
671 *aac*(3)-IV (60) using CSO-0065 and HPK2. Next, a three-fragment overlap PCR using CSO-
672 4224 and CSO-4227 was performed and the resulting PCR product was electroporated into
673 CSS-4666. The obtained clones were validated by PCR using CSO-4223 and HPK2 and by
674 sequencing using CSO-4223. *PflB*-3xFLAG (CSS-5716) and *PflC*-3xFLAG (CSS-4720) were
675 generated similarly. The 3xFLAG with a non-polar kanamycin resistance cassette was
676 amplified from *csrA*::3xFLAG-*aphA*-3 (60).

677 To construct a FlgQ-mcherry fusion protein for expression, a 76-bp DNA fragment containing
678 the cat promoter and start codon with an in-frame BamHI site from pRY109 was amplified by
679 PCR and cloned into the *Xba*l and *Xma*l sites of pRY112 to create pDAR1003. PCR was
680 then used to amplify mcherry from codon to the stop codon, which was then inserted into
681 *Xma*l and *EcoRV* sites of pDAR1003 to create pDAR1006. This plasmid contains a start

682 codon that is in-frame with DNA for BamHI and XmaI sites followed by the mcherry coding
683 sequence. Primers were then designed and used for PCR to amplify *flgQ* from codon 2 to
684 the stop codon from *C. jejuni* 81-176. This fragment was inserted in-frame into the BamHI
685 site of pDARH1006 to create pDRH7476, which was then conjugated into DRH2071 to result
686 in DRH7516.

687 **CryoEM sample preparation**

688 *C. jejuni* $\Delta flhG \Delta flaAB$ cells were grown on MH plates and resuspended in phosphate-
689 buffered saline (PBS buffer, 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM
690 KH₂PO₄, pH 7.4). Cells were spun at 4,000 rpm for 20 min to pellet whole cells. The
691 minicell-enriched supernatant was removed and spun in a tabletop microcentrifuge at 15,000
692 rpm for 5 min to pellet the minicells. The pellet was then resuspended to a theoretical OD₆₀₀
693 of ~15.

694 Minicells were vitrified on QUANTIFOIL® R0.6/1 or R1.2/1.3 holey carbon grids (Quantifoil
695 Micro Tools) using a Vitrobot Mark IV (Thermo Fisher Scientific).

696 For cryoET, whole-cells were grown on MHT agar, re-streaked on fresh plates and grown
697 overnight before use. Freshly grown cells were suspended into ~1.5 mL of PBS buffer and
698 concentrated to an approximate theoretical OD₆₀₀ of 10 by pelleting at 3000 rpm for 5 min on
699 a tabletop microcentrifuge and resuspending appropriately. 30 μ L of the concentrated cell
700 sample was mixed with 10 nm gold fiducial beads coated with bovine serum albumin (BSA).
701 3 μ L of this mixture was applied to freshly glow-discharged QUANTIFOIL® R2/2, 300 mesh
702 grids. Grids were plunge-frozen in liquified ethane-propane using a Vitrobot mark IV.

703 **Image acquisition**

704 Micrographs of the minicell sample were collected using a 300 keV Titan Krios TEMs
705 (Thermo Fisher Scientific), across two sessions. The first dataset was collected on a
706 microscope with a Falcon III direct electron detector (Thermo Fisher Scientific), the second
707 dataset using a K2 direct electron detector equipped with a GIF energy filter (Gatan), using a
708 slit width of 20 eV. Due to our large particle size relative to that of the holes, we collected
709 one shot per hole. Gain correction was done on-the-fly. Details of data collection parameters
710 are described on Table 2.

711 **Tilt series acquisition**

712 Tilt series of motors in *pflA_{Δ18-168}* were collected using a 300 keV Titan Krios TEM (Thermo
713 Fisher Scientific) equipped with a K2 direct electron detector and a GIF energy filter (Gatan)
714 using a slit width of 20 eV. Data was collected in Tomography 5 (Thermo Fisher Scientific)
715 using a dose-symmetric tilt scheme across $\pm 57^\circ$ in 3° increments. We used a dose of $3 \text{ e}^-/\text{\AA}^2$
716 per tilt, distributed across 4 movie frames. The pixel size was 2.2 \AA and defocus range from -
717 4.0 to $-5.0 \mu\text{m}$. All other tilt series datasets were acquired on a 200-kV FEI Tecnai TF20 FEG
718 transmission electron microscope (FEI Company) equipped with a Falcon II direct electron
719 detector camera (FEI Company) using Gatan 914 or 626 cryo-holders. Tilt series were
720 recorded from -57° to $+57^\circ$ with an increment of 3° collected defocus of approximately -4
721 μm using Leginon automated data-collection software at a nominal magnification of $25,000 \times$
722 and were binned two times. Cumulative doses of $\sim 120 \text{ e}^-/\text{\AA}^2$ were used. Overnight data
723 collection was facilitated by the addition of a 3-L cold-trap Dewar flask and automated
724 refilling of the Dewar cryo-holder triggered by a custom-written Leginon node interfaced with
725 a computer controlled liquid nitrogen pump (Norhof LN2 Systems).

726 **Single particle analysis**

727 Movie frames were aligned and dose-weighted according to exposure, as implemented in
728 MotionCor 2.1 (64). All subsequent processing was done in RELION 3.1 (65,66). CTF-
729 correction was performed using CTFFIND4 (67), using the RELION wrapper. Flagellar motor
730 positions were picked manually, yielding 79,287 particle coordinates for the K2 dataset and
731 14,605 particle coordinates in the F3 dataset.

732 The two datasets were first processed separately in RELION 3.1, before merging for a final
733 round of refinement. For the K2 dataset, 79287 particles were extracted at a box size of
734 800 px. A round of 2D classification removed junk and membrane particles, and an initial
735 model was created using these particles with imposed C17 symmetry, which is known from
736 past structural characterisation of the motor by subtomogram averaging (9). A round of
737 mask-free 3D classification and refinement with applied C17 symmetry produced the first
738 consensus refinement. 27,164 particles were then re-extracted, centering on the periplasmic
739 structures. After another round of 3D classification, 19,736 particles were refined in C17
740 symmetry to produce a whole-motor reconstruction at 9.88 \AA using gold-standard

741 refinement. For the F3 data, 14,605 particles were extracted at a box size of 1000 px
742 rescaled to 500 px. They underwent 2D classification to remove junk, 3D classification and
743 refinement to arrive at an initial consensus 3D structure. The particles were again re-
744 centered on the periplasmic structures and underwent another round of refinement. Finally,
745 the 13,054 particles were re-extracted at an un-binned 1000 px box size for a final round of
746 refinement. The two re-centered refined datasets were merged, assigning them different
747 RELION 3.1 optics groups, and refined to a global resolution of 9.36 Å (32,790 total
748 particles).

749 Signal subtraction was used to further refine the structure of the periplasmic scaffold. A
750 mask encompassing the regions of interest was made by segmenting and smoothing the
751 whole-motor map using UCSF Chimera 1.16 (68,69) and its Segger plugin (70), binarising
752 and adding a soft-edge in RELION 3.1. The mask included the periplasmic scaffold and first
753 ring of the basal disk, as the scaffold appears to attach onto it. This mask was used to
754 computationally remove signal outside of the periplasmic regions of interest, as implemented
755 in RELION 3.1. The signal subtraction and subsequent masked classification and refinement
756 was conducted for the combined dataset, as well as K2 and F3 datasets separately. The
757 highest resolution was reached with the merged data, the periplasmic scaffold map reaching
758 7.68 Å from 32,790 particles.

759 The periplasmic scaffold map was post-processed using LAFTER (71) as implemented in
760 the CCP-EM 1.6.0 software suite (72) to suppress noise and enhance signal between the
761 half-maps. The LAFTER-filtered map of the scaffold was used for docking and modelling of
762 periplasmic regions.

763 The focused refinement of the stator complex used a hybrid workflow of RELION and
764 CryoSPARC. Particles were imported into Relion and a 2D classification was run. Particles
765 from the 2D classes were selected to run a 3D classification job. The selected particles were
766 inputted into a Refine 3D job. A subtract job was run with a lathe mask masking out the
767 stators (MotA and MotB), C-ring and PflB to subtract out the stators. A 3D classification job
768 was then run with the same lathe mask around the stators. Particles were selected and
769 refined in Refine3D. The already subtracted and refined particles were then imported into
770 Cryosparc with the subtracted and refined volume from Relion as a template. A
771 homogeneous refinement job was run which provided the final map of the stators with
772 17,753 particles and 15.95 Å resolution.

773 **Subtomogram averaging**

774 Fiducial models were generated and tilt series were aligned for tomogram reconstruction
775 using the IMOD package (73). Tomo3D (74) was used to reconstruct tomograms with the
776 SIRT method. All steps were automated by in-house custom scripts.

777 Subtomogram averaging was performed using the Dynamo package (75). Motors were
778 picked in IMOD and imported into Dynamo as 'oriented particles' using an in-house script,
779 and subtomograms were extracted for averaging. For each structure, an initial model was
780 obtained by reference-free averaging of the oriented particles, with randomized Z-axis
781 rotation to alleviate missing wedge artefacts. This initial model was used for a first round of
782 alignment and averaging steps, implementing an angular search and translational shifts, with
783 cone diameter and shift limits becoming more stringent across iterations. The resulting
784 average was used as a starting model for a round of masked alignment and averaging. In
785 this round, custom alignment masks were implemented, focusing on the periplasmic and
786 inner membrane-associated parts of the motor. This excluded dominant features that would
787 otherwise drive the alignment, most prominently the outer membrane and extracellular hook.
788 17-fold rotational averaging was applied. The final $pflA_{\Delta 18-168}$ average was derived from 103
789 particles. The $\Delta pflC$ average from 101 particles, $\Delta pflD$ average from 195 particles, and the
790 $fliQ-mCherry$ average from 155 particles.

791 **Homology Modelling**

792 Homology-modelled proteins in Table 1 were modelled in their monomeric forms using the
793 SWISS-MODEL server (76,77). The sequence of each protein as it appears in *C. jejuni*
794 strain 81-176 was first run through the SignalP 6.0 server (78) and any predicted signal
795 sequences were trimmed away. The remaining 'mature' sequence was then input in
796 alignment mode, and the best scoring hit was used as a template for modelling single
797 chains. They were then assembled into appropriate multimers by aligning multiple copies of
798 each protein against the template structure. In this way, we assembled 26-meric LP-ring
799 model of FlgH and FII, an arc of 4 FliL, a hexamer of FlhA_C, and the rod and FliPQR.

800 A 34-mer of FliF did not match the FliF density in our whole-motor map. The MS-ring in *C.*
801 *jejuni* is wider, containing more FliF subunits. Extrapolating based on the diameters of FliF β -
802 collars in *Salmonella* and *C. jejuni*, the *C. jejuni* FliF ring should have approximately ~40.6
803 subunits relative to *Salmonella*'s 34. Accommodating for inaccuracies in calculations, we
804 modelled FliF β -collars of 39-44 subunits. This was implemented with Chimera scripts,
805 ensuring a constant inter-subunit spacing. All six FliF multimers were docked into the

806 appropriate density with Chimera's 'Fit in Map' function, also used to measure the correlation
807 between the map and model. Best agreement was seen in the 41- 42- and 43-mer models.

808 Having determined the FliF stoichiometry at approximately 42, we modelled its ring-building
809 motifs (RBMs) 1 and 2. As in (37), we aligned pairs of domains to corresponding domains in
810 PrgK and PrgH (PDB 5TCP, (79)) to model RBM12 in the 'inner' and 'outer' conformations,
811 respectively. I modelled the inner ring as having 23 RBM1 and RBM2 domains in the 'inner'
812 conformation. The remaining 19 RBM12 domains were modelled in the 'outer' conformation,
813 evenly spaced.

814 **De novo Modelling**

815 ColabFold (39), the community-run implementation of Deepmind's AlphaFold2 (38) was
816 used to create structural models of PflA, PflB, a dimer of PflAB, PflC, PflD, FlgP (as a
817 monomer, trimer, and heptamer), FlhA_N, FlhB, and a dimer of MotB_P (removed
818 transmembrane residues 1-67). PflA residues 16-455 and PflB residues 113-384 were used
819 to predict the structure of the PflAB dimerisation interface.

820 We assembled an FlhA_N nonamer by predicting trimers using the ColabFold AlphaFold2
821 interface (38,39). Consistent with FlhA_N forming a symmetric nonamer, the angle between
822 monomers corresponded to 40°. We iteratively aligned staggered trimers to arrive at a
823 nonamer.

824 **Flagellar motility assays**

825 WT *C. jejuni* and DAR2076 were grown from freezer stocks on MH agar containing
826 trimethoprim for 48 h in microaerobic conditions at 37 C. Strains were restreaked on MH
827 agar containing trimethoprim and grown for 16 h at 37 C in microaerobic conditions. After
828 growth, strains were resuspended from plates and diluted to an OD₆₀₀ 0.8. Strains were then
829 stabbed in MH motility agar (0.4% agar) and incubated at 37 C in microaerobic conditions for
830 30 h and assessed for migration from the point of inoculation.

831

832 **Docking and refinement**

833 Multimeric models of FliPQR-rod, FlhB, FlhA, LP-rings, and FliF models were rigidly docked
834 into the whole-motor map in UCSF ChimeraX 1.4 (80).

835 PflD, MotB, an arc of FliL, and MotA model taken from (33) were rigidly docked into the
836 LAFTER-filtered scaffold map. For regions where secondary structure was resolved, our
837 protein models were refined into the scaffold map using the ISOLDE (81) plugin in UCSF

838 Chimera X 1.4. The PflAB dimer was refined into the post-processed scaffold map in this
839 way. AlphaFold2 models of FlgP multimers showed that each subunit interacts with subunits
840 i-1 and i-2. To avoid artefacts due to this, a heptamer of FlgP was docked into the
841 innermost basal disk ring and then refined into the map. Two subunits were then removed
842 from each end, resulting in a fitted FlgP trimer. The PflC model was first separated into two
843 domains, PflC_N (residues 16-263) and PflC_C (264-364). The linker (224-263) was pivoted into
844 the appropriate density and the two domains re-merged. The resulting protein was then
845 refined into the map.

846 Six copies of the refined PflC_N structure were rigid-body docked into an asymmetric unit of
847 PflC lattice of the medial disk. In the same way, we docked the structured C-terminal domain
848 of PflC (residues 91-162) into the scaffold map.

849 **Plasmid construction and cloning in *E. coli***

850 *C. jejuni* proteins for recombinant expression in *E. coli* were cloned into the pLIC plasmid
851 backbone, which confers resistance to ampicillin and places the gene of interest under an
852 IPTG-inducible T7 promoter for high levels of controlled expression. We used WT *C. jejuni*
853 genomic DNA as template for gene amplification (extracted using the Wizard genomic DNA
854 purification kit by Promega), and the Gibson Assembly method (82) to seamlessly assemble
855 all plasmid constructs. For all constructs, primer pairs were designed to amplify 1) the pLIC
856 backbone and 2) the gene to be expressed, while also introducing a 25~30 bp
857 complementary overlap between the two fragments. The pLIC plasmid primers also
858 introduced an N-terminal hexahistidine tag. After vector linearisation and purification of PCR
859 product, it was digested with DpnI (New England Biolabs) to remove template vector.

860 The resulting linear DNA fragments were assembled using the Gibson Assembly master mix
861 (New England Biolabs). 5 µL of mix was added to 15-20 fmol of linearised vector and 4x
862 excess of insert and topped up to 10 µL with double-distilled water (ddH₂O). The tube was
863 incubated at 50°C for 15 min and kept on ice until transformation.

864 Before transformation, 30 µL of ddH₂O was added to the 10 µL reaction. 2 µL of diluted
865 Gibson mix was added to 25 µL of chemically competent *E. coli* DH5α and transformed
866 using the heat shock method (83). The entire volume of the tube was then plated onto a
867 carbenicillin-supplemented LB agar plate.

868 After confirmation by Sanger sequencing (Source Bioscience), each assembled construct
869 was isolated from the cloning strain (QIAprep Spin Miniprep Kit, QIAGEN) and transformed
870 into *E. coli* BL21(DE3) for recombinant overexpression.

871 **Protein overexpression and purification**

872 All proteins encoded on pLIC expression vectors were purified using the same protocol. A
873 small (5 mL) overnight liquid culture of *E. coli* BL21(DE3) carrying the appropriate
874 expression vector was prepared and diluted 1:50 in 1000 mL of LB medium. Shaking at
875 37°C, the culture was grown to OD600 0.4-0.6, after which protein expression was induced
876 by addition of 0.5 mM IPTG. Temperature was reduced to 18°C and protein was expressed
877 overnight.

878 Cells were harvested at 5000 rpm, 4°C for 20 min. All subsequent steps were done on ice
879 using buffers chilled to 4°C. The cell pellet was gently resuspended in ~35 mL of wash buffer
880 (50 mM Tris-HCl, 100 mM NaCl, 30 mM imidazole, pH 7.5). DNase and protease inhibitor
881 were added (cComplete Protease Inhibitor Cocktail, Roche). Cells were lysed using a LM10
882 Microfluidizer Processor cell disrupter (Analytik) at 15,000 psi. Lysate was centrifuged at
883 17,000 rpm, 4°C for 30 min to pellet debris. The resulting supernatant was filtered through a
884 0.45 µm syringe filter (Whatman).

885 A 5 mL HisTrap HP affinity chromatography nickel column (Cytiva) was first equilibrated with
886 wash buffer. Supernatant was loaded onto the column with a peristaltic pump at a flow rate
887 of 3 mL/min. The column was washed with 50 mL of wash buffer and then transferred onto a
888 Fast protein liquid chromatography system (BioRad). The column was further washed until
889 the UV trace was flat. Then, protein was eluted from the column using a high-imidazole
890 buffer (50 mM Tris-HCl, 100 mM NaCl, 500 mM imidazole, pH 7.5) at a flow of 2 mL/min
891 using 'reverse flow'.

892 The purified protein was kept at 4°C or flash-frozen in LN2 for longer-term storage before
893 characterising them by mass photometry.

894 **Analytical SEC**

895 Analytical SEC of PfIC and PfIC_N (Δ236-349) was performed with a ENrich SEC 650 column
896 (Bio-Rad), equilibrated with 1× PBS at a flow rate of 0.1 mL/min and a total sample injection
897 volume of 400 µL. The SEC column was calibrated using the Protein Standard Mix 15 – 600

898 kDa (Supelco #69385). Absorption was recorded at 280, 220 and 495nm to follow elution
899 profiles and plotted using GraphPad Prism.

900 **Protein pulldowns**

901 **Co-immunoprecipitation (coIP) of PfIA/B-3xFLAG with PfID-sfGFP, and PfIC-3xFLAG**
902 Chromosomally epitope-tagged fusions of PfIC-3xFLAG (CSS-4720) or PfIA-3xFLAG and
903 PfID-sfGFP (CSS-5714), and PfIB-3xFLAG and PfID-sfGFP (CSS-5716) were used together
904 with the untagged *C. jejuni* NCTC11168 WT (CSS-0032) and PfID-sfGFP only (CSS-4666)
905 as controls for immunoprecipitation. Co-purification of FlgP or PfID-sfGFP was investigated
906 by western blot (WB) analysis using FlgP specific antisera (21) or an anti-GFP antibody
907 (Roche #11814460001, RRID:AB_390913), respectively. In brief, strains were grown to an
908 OD₆₀₀ of 0.6 and 60 OD₆₀₀ of cells were harvested (5,000 rpm, 20 min, 4°C) and washed in
909 buffer A (20 mM Tris-HCl pH 8, 1 mM MgCl₂, 150 mM KCl, 1 mM DTT). In parallel, 1 OD₆₀₀
910 of cells was harvested as “culture” control and boiled in 1 x protein loading buffer (PL; 62.5
911 mM Tris-HCl, pH 6.8, 100 mM DTT, 10% (v/v) glycerol, 2% (w/v) SDS, 0.01% (w/v)
912 bromophenol blue; 8 min at 95°C, shaking at 1,000 rpm). Next, 60 OD₆₀₀ cell pellets were
913 lysed with a FastPrep system (MP Biomedical, matrix B, 1 x 4 m/s, 10 s) in 1 ml lysis buffer
914 [buffer A including 1 mM PMSF (phenylmethylsulfonyl fluoride, Roche), 20 U DNase I
915 (Thermo Fisher Scientific), 200 U RNase Inhibitor (moloX, Berlin) and Triton X-100 (2 µl/ml
916 lysis buffer)]. Cleared lysates (13,000 rpm, 10 min, 4°C) were incubated with 35 µl anti-
917 FLAG antibody (Sigma-Aldrich, #F1804-1MG, RRID:AB_262044) for 30 min at 4°C with
918 rotation. Before and after incubation, a 1 OD₆₀₀ aliquot was taken aside as lysate and
919 supernatant 1 samples. Lysates with anti-FLAG antibody were then incubated for additional
920 30 min (4°C, rotating) with 75 µl/sample pre-washed (3 times in buffer A) Protein A-
921 Sepharose beads (Sigma-Aldrich, #P6649). Afterwards, the supernatant/unbound fraction
922 was removed after centrifugation (15,000 x g, 1 min, 4°C; supernatant 2) and Protein A-
923 Sepharose beads with bound proteins were washed 5 times with buffer A. Elution of the
924 bound proteins was performed with boiling of the beads in 400 µl 1 x PL (8 min at 95°C,
925 1,000 rpm). Six volumes of acetone were used to precipitate eluted proteins overnight at -
926 20°C. Next, precipitated proteins were harvested by centrifugation (15,000 rpm, 1 h, 4°C),
927 air-dried and resuspended in 1 x PL. Culture, lysate, supernatants 1 & 2, wash (aliquots
928 corresponding to 0.1 OD₆₀₀) and eluate samples (corresponding to 10 OD₆₀₀) were analysed
929 by WB. Western Blots were performed as described previously (60) and probed with the
930 appropriate primary antibodies (anti-FLAG, anti-GFP (1:1,000 in 3% BSA/TBS-T)) or FlgP
931 antisera (1:20,000 in 3% BSA/TBS-T) and secondary antibodies (anti-mouse or anti-rabbit

932 IgG, HRP-conjugate (1:10,000) in 3% BSA/TBS-T; GE Healthcare, #RPN4201 and
933 #RPN4301, respectively).

934 **Mass Photometry**

935 Microscope coverslips (24 x 60 mm, Carl Roth) and CultureWell Gaskets (CW- 50R-1.0, 50-
936 3 mm diameter x 1 mm depth) were cleaned with alternating ddH₂O and 100% isopropanol
937 washes, then dried roughly with pressurised air and left to dry further overnight at room
938 temperature. Before use, gaskets were assembled onto coverslips and placed on the lens of
939 a One^{MP} mass photometer (Refeyn Ltd) with immersion oil.

940 For each measurement, a gasket was first filled with 18 µL of PBS buffer and the instrument
941 was focused. Then, 2 µL of sample was added to the droplet and rapidly mixed by pipetting.
942 Measurements were then started using AcquireMP v1.2.1 (Refeyn Ltd). For each
943 measurement, data was acquired for 60 s at 100 frames per second. Mass photometry data
944 was processed and analyzed in DiscoverMP software v.1.2.3 (Refeyn Ltd).

945 Measurements were conducted using affinity chromatography-purified proteins diluted to
946 200-800 nM, calculated from absorption at 280 nm. 2 µL of sample was added to 18 µL PBS
947 droplet and mixed. For measurements of hetero-oligomers, the different proteins were first
948 combined and mixed in a separate tube and subsequently applied to the PBS droplet. MP
949 measurements were calibrated against molecular masses of commercial NativeMarkTM
950 unstained protein standard (Thermo Fisher Scientific). 1 µL of NativeMarkTM was diluted 30-
951 fold in PBS and 2 µL of this solution was added to 18 µL PBS for measurement. Detected
952 peaks corresponded to 66 kDa, 146 kDa, 480 kDa, and 1048 kDa and were used to calibrate
953 subsequent measurements in DiscoverMP.

954 **Construction of plasmids and strains for PflA and PflB co-immunoprecipitation
955 experiments**

956 Plasmids were constructed with specific promoters for expression of FLAG-tagged proteins
957 in *C. jejuni* mutants for co-immunoprecipitation experiments. To express a C-terminal FLAG-
958 tagged PflA protein, a 206-base pair DNA fragment from *C. jejuni* 81-176 that contained the
959 promoter for *flaA* encoding the major flagellin with its start codon and an in-frame SpeI
960 restriction site followed by an in-frame BamHI restriction site was amplified by PCR. This
961 fragment was cloned into the XbaI and BamHI sites of pRY108 to result in pDAR1425.
962 Primers were then constructed to amplify DNA from codon 2 to the penultimate codon of *pflA*
963 from *C. jejuni* 81-176 with an in-frame C-terminal FLAG tag epitope and stop codon. This
964 DNA fragment was then cloned into the BamHI site of pDAR1425 so that *pflA*-FLAG was
965 expressed from the *flaA* promoter to create pDAR3417. As a control, a 229-base pair DNA

966 fragment from *C. jejuni* 81-176 that contained the promoter for *flaA* encoding the major
967 flagellin with its start codon and DNA encoding an in-frame FLAG tag epitope followed by an
968 in-frame BamHI restriction site was cloned into the XbaI and BamHI sites of pRY108 to
969 create pDAR1604. pDAR1604 and pDAR3417 were then moved into DH5a/pRK212.1 for
970 conjugation into DAR1124. Transconjugants were selected for on media with kanamycin and
971 verified to contain the correct plasmids to result in DAR3447 and DAR3477.

972 To express a C-terminal FLAG-tagged PflB protein, primers were constructed to amplify
973 DNA from codon 2 to the penultimate codon of *pflB* from *C. jejuni* 81-176 with an in-frame C-
974 terminal FLAG tag epitope and stop codon. This DNA fragment was then cloned into the
975 BamHI site of pECO102 so that *pflB*-FLAG was expressed from the cat promoter to create
976 pDAR3414. pDAR965 and pDAR3414 were then moved into DH5a/pRK212.1 for
977 conjugation into DAR981. Transconjugants were selected for on media containing
978 chloramphenicol and verified to contain the correct plasmids to result in DAR3451 and
979 DAR3479.

980 **PflA and PflB co-immunoprecipitation experiments**

981 *C. jejuni* Δ *pflA* and Δ *pflB* mutants containing plasmids to express a FLAG-tag alone or C-
982 terminal FLAG-tagged PflA or PflB proteins were grown from freezer stocks on MH agar
983 containing chloramphenicol for 48 h in microaerobic conditions at 37°C. Each strain was
984 restreaked onto two MH agar plates containing chloramphenicol and grown for 16 h at 37°C
985 in microaerobic conditions. After growth, strains were resuspended from plates in PBS and
986 centrifuged for 10 min at 6000 rpm. Each cell pellet was resuspended in 2 ml of PBS.
987 Formaldehyde was added to a final concentration of 0.1% and suspensions were gently
988 mixed for 30 min at room temperature to crosslink proteins. After crosslinking, 0.4 ml of 1 M
989 glycine was added to each sample and then suspensions were gently mixed for 10 min at
990 room temperature to quench the crosslinking reaction. Bacterial cells were collected by
991 centrifugation for 10 min at 6000 rpm. Cells were then disrupted by osmotic lysis and FLAG-
992 tagged proteins with associated interacting proteins were immunoprecipitated with α -FLAG
993 M2 affinity resin as previously described (56,84).

994 To identify potential proteins interacting with PflA and PflB, resin with immunoprecipitated
995 proteins were resuspended in SDS-loading buffer and electrophoresed on a 4-20% TGX
996 stain-free gel (Bio-Rad) for 10 min. The gel was then stained with Coomassie blue for 30 min
997 and then destained overnight. After equilibration of the gel in dH₂O for 30 min, a 1 cm region
998 of the gel containing a majority of the co-immunoprecipitated proteins was excised and diced
999 into 1 mm pieces and then submitted for analysis by LC-MS/MS. After identification of
1000 proteins that co-immunoprecipitated with the FLAG-tagged bait protein and with the resin

1001 from the FLAG-tag only sample (the negative control), a ratio for each protein was
1002 determined by dividing the abundance of each protein detected in the FLAG-tagged bait
1003 protein sample by the abundance of each protein in the negative control. The top twenty
1004 proteins with the highest ratios for co-immunoprecipitation with the FLAG-tagged bait
1005 proteins are reported. The top twenty proteins that only co-immunoprecipitated with the
1006 FLAG-tagged bait proteins and were not detected in the negative control samples are also
1007 reported with their respective raw abundance counts.

1008 Supplemental information titles and legends

1009 **Figure S1: Flowchart and resolution estimates of structure determination of the**
1010 **Campylobacter jejuni bacterial flagellar motor using in situ single particle analysis.**
1011 **(A) Simplified flowchart showing the generation of cryoEM volumes. (B) Central slice**
1012 **through the refined whole-motor structure. (C) FSC curve for B. (D) and (E) show**
1013 **slices through the volume of the refined, signal-subtracted periplasmic scaffold. (F)**
1014 **FSC curve for DE.**

1015 **Figure S2: FlgP is a modified SHS2 fold that enables oligomerisation in the basal disk.**
1016 **(A) AlphaFold2 model of FlgP (signal sequence removed, sites 1-16). The N-terminal**
1017 **unstructured linker is followed by a SHS2 domain, modified with a β -hairpin and short**
1018 **C-terminal helix. (B) AlphaFold model of FlgQ (signal sequence removed). The double**
1019 **β -hairpin resembles a two-protomer repeat of FlgP. (C) Tagging FlgQ with mCherry,**
1020 **the resulting motor is indistinguishable from WT [\(1\)](#). (D) Dodecin exemplifies the core**
1021 **SHS2 fold (PDBID: 1MOG). (E) Left: 17 FlgP trimers docked and refined into the**
1022 **scaffold map. Right: Close-up of a FlgP triplet, subunits interlocking by β -hairpin**
1023 **interactions.**

1024 **Figure S3: PfIC and PfID interact with known flagellar disk structure components. (A)**
1025 **Western blot analysis of coIP experiment of PfIC-3xFLAG. As control, untagged wild-**
1026 **type cells (WT) were used. Detected heavy (HC) and light (LC) antibody chains are**
1027 **indicated. C: culture; L: lysate. (B) Western blot analysis of coIP experiment of PfIA-**
1028 **3xFLAG, PfID-sfGFP double tagged strain. As controls, PfID-sfGFP and untagged**
1029 **wild-type (WT) cells were used. Detected heavy (HC) antibody chains are indicated. C:**
1030 **culture; L: lysate; Sn1/2: supernatant 1/2; W: wash; E: eluate. (C) Western analysis of**
1031 **coIP experiment of PfIB-3xFLAG, PfID-sfGFP double tagged strain. As controls, PfID-**
1032 **sfGFP and untagged wild-type cells were used. Detected heavy (HC) antibody chains**
1033 **are indicated. C: culture; L: lysate; Sn1/2: supernatant 1/2; W: wash; E: eluate.**

1034 **Figure S4: PfIC (a previously unknown glycoprotein) resembles HtrA lacking its**
1035 **conserved serine protease active site. (A) Top-down view of the medial disk with**
1036 **docked PfIC_N subunits. (B) Unaccounted-for density is present at N239 (red atoms) of**
1037 **every PfIC. Similar to the known glycans on PfIA, this likely corresponds to previously**
1038 **uncharacterised glycosylation. (C) The His-Asp-Ser catalytic triad in the protease**
1039 **domain of HtrA (green) is not conserved in PfIC (pink). (HtrA PDB ID 6Z05).**

1040 **Figure S5: PflC oligomerises in vitro and this interaction increases upon removal of**
1041 **its C-terminal PDZ domain. (A) Size Exclusion Chromatography of PflC (red) along**
1042 **with protein standards (grey) showing elution volume. (B) Calibration graph showing**
1043 **a dimer of PflC (red) corresponding to retention times during elution. (C) Mass**
1044 **photometry measurements of purified PflC (replicates). (D) Size Exclusion**
1045 **Chromatography of PflC_N (Δ236-349, green) along with protein standards (grey) showing**
1046 **elution volume. (E) Calibration graph of PflC_N (green) corresponding to retention times**
1047 **during elution. (F) Mass photometry measurements of purified PflC_N. Theoretical**
1048 **masses are shown in the inserts. The instrument's limit of detection is 35 kDa,**
1049 **meaning the monomer mass is larger than otherwise expected.**

1050 **Figure S6: Mass photometry shows that PflA dimerises with PflB via its N-terminal β-**
1051 **sandwich domain. (A-D) Mass photometry measurements of purified PflA and PflB**
1052 **constructs show the proteins are mainly monodisperse. There is a dimer peak present**
1053 **for the PflAΔCter construct, likely due to a reduced stability and solubility. (E-G) Mass**
1054 **photometry measurements of mixtures of PflB and PflA variants. Dimer peaks appear**
1055 **only when β-sandwich and linker domain of PflA is present. In panels E and G,**
1056 **monomer peaks of PflA and PflB are not resolved due to their similar molecular**
1057 **weights. In the bottom panel, the 54 kDa peak corresponds to PflAΔCter, and the 79**
1058 **kDa peak to PflB. Monomer peaks have a yellow background, dimer peaks red.**

1059 **Figure S7: Possible contact sites between MotB and PflAB of the periplasmic scaffold.**
1060 **(A) A region on the surface of PflB (shown in surface representation) appears likely to**
1061 **be involved in binding MotB stalk. This region corresponds to four surface-exposed**
1062 **α-helices. (B) These helices are positioned close to unaccounted density that's**
1063 **stemming from these regions and towards the PGB domain of MotB. (C) The four**
1064 **helices (marked in cyan) are at positions Y360-D382 for H1 and H2, P760-T773 for H3,**
1065 **and V791-T803 for H4. (D) A PflA helix (K307-N320) could also be involved in stator**
1066 **recruitment, here shown with side chains in stick form.**

1067 **Figure S8. Deletion of fliL has only a minor effect on motility. A representative motility**
1068 **agar plate stabbed with WT and fliL::cat demonstrates that fliL knockout has only a**
1069 **minor effect on motility.**

1070 **Figure S9: Validation of those protein chains modelled in the scaffold map to**
1071 **subnanometre resolution. (A) Map-model FSC curves for protein models refined into**
1072 **the scaffold map: FlgP, PfIA, PfIC1, and PfIC2-7, as calculated with phenix.mtriage. (B)**
1073 **Cross-correlation per residue plots of proteins docked into the map: PfIB, FlIL, MotB,**
1074 **PfID, calculated in phenix.**

1075 **Table S1: PfIA and PfIB pulldowns and mass spectrometry**

1076 **Table S2: Structural components of the *C. jejuni* flagellar motor**

1077 References

1. Johnson AD. The rewiring of transcription circuits in evolution. *Evolutionary genetics*. 2017;47: 121–127. <https://doi.org/10.1016/j.gde.2017.09.004>.
2. Bridgham JT, Carroll SM, Thornton JW. Evolution of Hormone-Receptor Complexity by Molecular Exploitation. *Science* (80-). 2006;312(5770): 97 LP – 101. <https://doi.org/10.1126/science.1123348>.
3. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. Evolution of increased complexity in a molecular machine. *Nature*. 2012;481(7381): 360–364. <https://doi.org/10.1038/nature10724>.
4. Pillai AS, Chandler SA, Liu Y, Signore AV, Cortez-Romero CR, Benesch JLP, et al. Origin of complexity in haemoglobin evolution. *Nature*. 2020;581(7809): 480–485. <https://doi.org/10.1038/s41586-020-2292-y>.
5. Schulz L, Guo Z, Zarzycki J, Steinchen W, Schuller JM, Heimerl T, et al. Evolution of increased complexity and specificity at the dawn of form I Rubiscos. *Science*. 2022;378(6616): 155–160. <https://doi.org/10.1126/science.abq1416>.
6. Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaea, flagella and cilia. *FEMS microbiology reviews*. 2020;44(3): 253–304. <https://doi.org/10.1093/femsre/fuaa006>.
7. Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, et al. Structural diversity of bacterial flagellar motors. *EMBO J*. 2011;30(14): 2972–2981. <https://doi.org/10.1038/emboj.2011.186>.
8. Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M. The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. *Mol. Microbiol*. 2006;62(4): 1170–1180. <https://doi.org/10.1111/j.1365-2958.2006.05435.x>.
9. Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. *Proc. Natl. Acad. Sci.* 2016;113(13): E1917–E1926. <https://doi.org/10.1073/pnas.1518952113>.
10. Chaban B, Coleman I, Beeby M. Evolution of higher torque in Campylobacter-Type bacterial flagellar motors. *Sci. Rep.* 2018;8(1): 1–11. <https://doi.org/10.1038/s41598-017-18115-1>.
11. Beeby M. Motility in the epsilon-proteobacteria. *Curr. Opin. Microbiol.* 2015;28: 115–121. <https://doi.org/10.1016/J.MIB.2015.09.005>.
12. Chang Y, Zhang K, Carroll BL, Zhao X, Charon NW, Norris SJ, et al. Molecular mechanism for rotational switching of the bacterial flagellar motor. *Nature Structural & Molecular Biology*. 2020;27(11): 1041–1047. <https://doi.org/10.1038/s41594-020-0497-2>.
13. Tachiyama S, Skaar R, Chang Y, Carroll BL, Muthuramalingam M, Whittier SK, et al. Composition and Biophysical Properties of the Sorting Platform Pods in the Shigella

1117 Type III Secretion System. *Frontiers in Cellular and Infection Microbiology*. 2021;11.
1118 <https://www.frontiersin.org/articles/10.3389/fcimb.2021.682635>

1119 14. Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE, Chevance FFV, et al.
1120 Molecular structure of the intact bacterial flagellar basal body. *Nature Microbiology*.
1121 2021; <https://doi.org/10.1038/s41564-021-00895-y>.

1122 15. Tan J, Zhang X, Wang X, Xu C, Chang S, Wu H, et al. Structural basis of assembly and
1123 torque transmission of the bacterial flagellar motor. *Cell*. 2021;184(10): 2665-2679.e19.
1124 <https://doi.org/10.1016/j.cell.2021.03.057>.

1125 16. Liu Y, Sigworth FJ. Automatic cryo-EM particle selection for membrane proteins in
1126 spherical liposomes. *Journal of Structural Biology*. 2014;185(3): 295–302.
1127 <https://doi.org/10.1016/j.jsb.2014.01.004>.

1128 17. Tonggu L, Wang L. Structure of the Human BK Ion Channel in Lipid Environment.
1129 *Membranes*. 2022;12(8): 758. <https://doi.org/10.3390/membranes12080758>.

1130 18. Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, et al. Common
1131 and distinct structural features of *Salmonella* injectisome and flagellar basal body.
1132 *Scientific Reports*. 2013;3(1): 3369. <https://doi.org/10.1038/srep03369>.

1133 19. Balaban M, Hendrixson DR. Polar Flagellar Biosynthesis and a Regulator of Flagellar
1134 Number Influence Spatial Parameters of Cell Division in *Campylobacter jejuni*. *PLOS
1135 Pathogens*. 2011;7(12): e1002420. <https://doi.org/10.1371/journal.ppat.1002420>.

1136 20. Butan C, Lara-Tejero M, Li W, Liu J, Galán JE. High-resolution view of the type III
1137 secretion export apparatus in situ reveals membrane remodeling and a secretion
1138 pathway. *Proceedings of the National Academy of Sciences*. 2019;116(49): 24786–
1139 24795. <https://doi.org/10.1073/pnas.1916331116>.

1140 21. Sommerlad SM, Hendrixson DR. Analysis of the roles of FlgP and FlgQ in flagellar
1141 motility of *Campylobacter jejuni*. *J. Bacteriol.* 2007;189(1): 179–186.
1142 <https://doi.org/10.1128/JB.01199-06>.

1143 22. Bieger B, Essen LO, Oesterhelt D. Crystal Structure of Halophilic Dodecin: A Novel,
1144 Dodecameric Flavin Binding Protein from *Halobacterium salinarum*. *Structure*.
1145 2003;11(4): 375–385. [https://doi.org/10.1016/S0969-2126\(03\)00048-0](https://doi.org/10.1016/S0969-2126(03)00048-0).

1146 23. Vallese F, Mishra NM, Pagliari M, Berto P, Codolo G, de Bernard M, et al. *Helicobacter
1147 pylori* antigenic Lpp20 is a structural homologue of Tipa and promotes epithelial-
1148 mesenchymal transition. *Biochimica et Biophysica Acta (BBA) - General Subjects*.
1149 2017;1861(12): 3263–3271. <https://doi.org/10.1016/j.bbagen.2017.09.017>.

1150 24. Holm L. Dali server: structural unification of protein families. *Nucleic Acids Research*.
1151 2022;50(W1): W210–W215. <https://doi.org/10.1093/nar/gkac387>.

1152 25. Zarzecka U, Grinzato A, Kandiah E, Cysewski D, Berto P, Skorko-Glonek J, et al.
1153 Functional analysis and cryo-electron microscopy of *Campylobacter jejuni* serine
1154 protease HtrA. *Gut Microbes*. 2020;12(1): 1810532.
1155 <https://doi.org/10.1080/19490976.2020.1810532>.

1156 26. Harris BZ, Lim WA. Mechanism and role of PDZ domains in signaling complex
1157 assembly. *Journal of Cell Science*. 2001;114(18): 3219.

1158 27. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and
1159 modification. *Cell Communication and Signaling*. 2010;8(1): 8.
1160 <https://doi.org/10.1186/1478-811X-8-8>.

1161 28. Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-
1162 protein interactions. *BioEssays*. 1999;21(11): 932–939.
1163 [https://doi.org/10.1002/\(SICI\)1521-1878\(199911\)21:11<932::AID-BIES5>3.0.CO;2-N](https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N).

1164 29. D'Andrea LD, Regan L. TPR proteins: the versatile helix. *Trends Biochem. Sci.*
1165 2003;28(12): 655–662. <https://doi.org/10.1016/J.TIBS.2003.10.007>.

1166 30. Gao B, Lara-Tejero M, Lefebvre M, Goodman AL, Galán JE. Novel Components of the
1167 Flagellar System in Epsilonproteobacteria. *MBio*. 2014;5(3): e01349-14.
1168 <https://doi.org/10.1128/MBIO.01349-14>.

1169 31. Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AVG, Crossett B, et al.
1170 Simultaneous glycan-peptide characterization using hydrophilic interaction

1171 chromatography and parallel fragmentation by CID, higher energy collisional
1172 dissociation, and electron transfer dissociation MS applied to the N-linked
1173 glycoproteome of *Campylobacter jejuni*. *Molecular & cellular proteomics* : MCP.
1174 2010/04/01 ed. 2011;10(2): M000031-MCP201. <https://doi.org/10.1074/mcp.M000031-MCP201>.

1175

1176 32. Tachiyama S, Chan KL, Liu X, Hathroubi S, Li W, Peterson B, et al. The flagellar motor
1177 protein FliL forms a scaffold of circumferentially positioned rings required for stator
1178 activation. *Proceedings of the National Academy of Sciences*. 2022;119(4):
1179 e2118401119. <https://doi.org/10.1073/pnas.2118401119>.

1180 33. Santiveri M, Roa-Eguíara A, Kühne C, Wadhwa N, Hu H, Berg HC, et al. Structure and
1181 Function of Stator Units of the Bacterial Flagellar Motor. *Cell*. 2020;183(1): 244-
1182 257.e16. <https://doi.org/10.1016/j.cell.2020.08.016>.

1183 34. Guo S, Xu H, Chang Y, Motaleb MA, Liu J. FliL ring enhances the function of
1184 periplasmic flagella. *Proceedings of the National Academy of Sciences*. 2022;119(11):
1185 e2117245119. <https://doi.org/10.1073/pnas.2117245119>.

1186 35. Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D. Structure of the torque ring of
1187 the flagellar motor and the molecular basis for rotational switching. *Nature*.
1188 2010;466(7309): 996–1000. <https://doi.org/10.1038/nature09300>.

1189 36. Lynch MJ, Levenson R, Kim EA, Sircar R, Blair DF, Dahlquist FW, et al. Co-Folding of
1190 a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the
1191 Bacterial Flagellar Motor. *Structure*. 2017;25(2): 317–328.
1192 <https://doi.org/10.1016/j.str.2016.12.006>.

1193 37. Takekawa N, Kawamoto A, Sakuma M, Kato T, Kojima S, Kinoshita M, et al. Two
1194 Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within
1195 the Flagellar MS-Ring. *mBio*. 2021;12(2): e03199-20.
1196 <https://doi.org/10.1128/mBio.03199-20>.

1197 38. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly
1198 accurate protein structure prediction with AlphaFold. *Nature*. 2021;596(7873): 583–589.
1199 <https://doi.org/10.1038/s41586-021-03819-2>.

1200 39. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. *ColabFold -*
1201 *Making protein folding accessible to all*. 2022 Feb [Accessed 21st March 2022]. p.
1202 2021.08.15.456425. <https://doi.org/10.1101/2021.08.15.456425>. [Accessed 21st March
1203 2022].

1204 40. Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, et al.
1205 Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment.
1206 *Proteins: Structure, Function, and Bioinformatics*. 2021;89(12): 1800–1823.
1207 <https://doi.org/10.1002/prot.26222>.

1208 41. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Molecular
1209 surface recognition: determination of geometric fit between proteins and their ligands by
1210 correlation techniques. *Proceedings of the National Academy of Sciences*. 1992;89(6):
1211 2195–2199. <https://doi.org/10.1073/pnas.89.6.2195>.

1212 42. Terashima H, Li N, Sakuma M, Koike M, Kojima S, Homma M, et al. Insight into the
1213 assembly mechanism in the supramolecular rings of the sodium-driven *Vibrio* flagellar
1214 motor from the structure of FlgT. *PNAS*. 2013;110(15): 6133–6138.
1215 <https://doi.org/10.1073/pnas.1222655110>.

1216 43. Engelhardt H, Schuster SC, Baeuerlein E. An archimedian spiral: The basal disk of the
1217 *Wolinella* flagellar motor. *Science (80-.)*. 1993;262(5136): 1046–1048.
1218 <https://doi.org/10.1126/science.8235620>.

1219 44. Skórko-Gloniek J, Wawrzynów A, Krzewski K, Kurpierz K, Lipińska B. Site-directed
1220 mutagenesis of the HtrA(DegP) serine protease, whose proteolytic activity is
1221 indispensable for *Escherichia coli* survival at elevated temperatures. *Gene*.
1222 1995;163(1): 47–52. [https://doi.org/10.1016/0378-1119\(95\)00406-V](https://doi.org/10.1016/0378-1119(95)00406-V).

1223 45. Krachler AM, Sharma A, Cauldwell A, Papadakos G, Kleanthous C. TolA Modulates the
1224 Oligomeric Status of YbgF in the Bacterial Periplasm. *Journal of Molecular Biology*.

1225 2010;403(2): 270–285. <https://doi.org/10.1016/j.jmb.2010.08.050>.

1226 46. Mandela E, Stubenrauch CJ, Ryoo D, Hwang H, Cohen EJ, Torres VL, et al. Adaptation
1227 of the periplasm to maintain spatial constraints essential for cell envelope processes
1228 and cell viability. Levin PA, Kana BD, Daley DO (eds.) *eLife*. 2022;11: e73516.
1229 <https://doi.org/10.7554/eLife.73516>.

1230 47. Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ. Cell wall elongation mode in
1231 Gram-negative bacteria is determined by peptidoglycan architecture. *Nature
1232 Communications*. 2013;4(1): 1496. <https://doi.org/10.1038/ncomms2503>.

1233 48. Nirody JA, Berry RM, Oster G. The Limiting Speed of the Bacterial Flagellar Motor.
1234 *Biophysical Journal*. 2016;111(3): 557–564. <https://doi.org/10.1016/j.bpj.2016.07.003>.

1235 49. Sato K, Nakamura S, Kudo S, Toyabe S. Evaluation of the Duty Ratio of the Bacterial
1236 Flagellar Motor by Dynamic Load Control. *Biophysical Journal*. 2019;116(10): 1952–
1237 1959. <https://doi.org/10.1016/j.bpj.2019.04.004>.

1238 50. Johnson S, Kuhlen L, Deme JC, Abrusci P, Lea SM. The Structure of an Injectisome
1239 Export Gate Demonstrates Conservation of Architecture in the Core Export Gate
1240 between Flagellar and Virulence Type III Secretion Systems. *mBio*. 2019;10(3).
1241 <https://doi.org/10.1128/mBio.00818-19>.

1242 51. Taylor WR, Matthews-Palmer TRS, Beeby M. Molecular Models for the Core
1243 Components of the Flagellar Type-III Secretion Complex. Bhattacharjya S (ed.) *PLoS
1244 One*. 2016;11(11): e0164047. <https://doi.org/10.1371/journal.pone.0164047>.

1245 52. Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, et al.
1246 Architecture of the major component of the type III secretion system export apparatus.
1247 *Nature Structural & Molecular Biology*. 2013;20(1): 99–104.
1248 <https://doi.org/10.1038/nsmb.2452>.

1249 53. Hendrixson DR, Akerley BJ, DiRita VJ. Transposon mutagenesis of *Campylobacter
1250 jejuni* identifies a bipartite energy taxis system required for motility. *Molecular
1251 Microbiology*. 2001;40(1): 214–224. <https://doi.org/10.1046/j.1365-2958.2001.02376.x>.

1252 54. Yao R, Alm RA, Trust TJ, Guerry P. Construction of new *Campylobacter* cloning
1253 vectors and a new mutational cat cassette. *Gene*. 1993;130(1): 127–130.
1254 [https://doi.org/10.1016/0378-1119\(93\)90355-7](https://doi.org/10.1016/0378-1119(93)90355-7).

1255 55. Wiesner RS, Hendrixson DR, DiRita VJ. Natural Transformation of *Campylobacter
1256 jejuni* Requires Components of a Type II Secretion System. *Journal of Bacteriology*.
1257 2003;185(18): 5408–5418. <https://doi.org/10.1128/jb.185.18.5408-5418.2003>.

1258 56. Boll JM, Hendrixson DR. A Regulatory Checkpoint during Flagellar Biogenesis in
1259 *Campylobacter jejuni* Initiates Signal Transduction To Activate Transcription of Flagellar
1260 Genes. *mBio*. 2013;4(5): 10.1128/mbio.00432-13. <https://doi.org/10.1128/mbio.00432-13>.

1262 57. Luethy PM, Huynh S, Parker CT, Hendrixson DR. Analysis of the Activity and Regulon
1263 of the Two-Component Regulatory System Composed by Cjj81176_1484 and
1264 Cjj81176_1483 of *Campylobacter jejuni*. *Journal of Bacteriology*. 2015;197(9): 1592–
1265 1605. <https://doi.org/10.1128/jb.02564-14>.

1266 58. Cohen EJ, Nakane D, Kabata Y, Hendrixson DR, Nishizaka T, Beeby M.
1267 *Campylobacter jejuni* motility integrates specialized cell shape, flagellar filament, and
1268 motor, to coordinate action of its opposed flagella. *PLOS Pathogens*. 2020;16(7):
1269 e1008620. <https://doi.org/10.1371/journal.ppat.1008620>.

1270 59. Van Vliet AHM, Wood AC, Wooldridge K, Ketley JM, Henderson J. 7.7 Genetic
1271 Manipulation of Enteric *Campylobacter* Species. In: Williams P, Ketley J, Salmon G
1272 (eds.) *Methods in Microbiology*. Academic Press; 1998. p. 407–419.
1273 [https://doi.org/10.1016/S0580-9517\(08\)70301-5](https://doi.org/10.1016/S0580-9517(08)70301-5). [Accessed 2nd November 2022].

1274 60. Dugar G, Svensson SL, Bischler T, Wäldchen S, Reinhardt R, Sauer M, et al. The
1275 CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in
1276 *Campylobacter jejuni*. *Nature Communications*. 2016;7(1): 11667.
1277 <https://doi.org/10.1038/ncomms11667>.

1278 61. Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, et al. A

1279 three-dimensional intestinal tissue model reveals factors and small regulatory RNAs
1280 important for colonization with *Campylobacter jejuni*. Gaynor EC (ed.) *PLOS Pathog.*
1281 2020;16(2): e1008304. <https://doi.org/10.1371/journal.ppat.1008304>.

1282 62. Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU, Beisel CL, et al. CRISPR RNA-
1283 Dependent Binding and Cleavage of Endogenous RNAs by the *Campylobacter jejuni*
1284 Cas9. *Molecular Cell*. 2018;69(5): 893-905.e7.
1285 <https://doi.org/10.1016/j.molcel.2018.01.032>.

1286 63. Corcoran CP, Podkaminski D, Papenfort K, Urban JH, Hinton JCD, Vogel J.
1287 Superfolder GFP reporters validate diverse new mRNA targets of the classic porin
1288 regulator, MicF RNA. *Molecular Microbiology*. 2012;84(3): 428-445.
1289 <https://doi.org/10.1111/j.1365-2958.2012.08031.x>.

1290 64. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2:
1291 anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
1292 *Nature Methods*. 2017;14(4): 331-332. <https://doi.org/10.1038/nmeth.4193>.

1293 65. Scheres SHW. RELION: Implementation of a Bayesian approach to cryo-EM structure
1294 determination. *Journal of Structural Biology*. 2012;180(3): 519-530.
1295 <https://doi.org/10.1016/j.jsb.2012.09.006>.

1296 66. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, et al. New tools
1297 for automated high-resolution cryo-EM structure determination in RELION-3. Egelman
1298 EH, Kuriyan J (eds.) *eLife*. 2018;7: e42166. <https://doi.org/10.7554/eLife.42166>.

1299 67. Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron
1300 micrographs. *J. Struct. Biol.* 2015;192(2): 216-221.
1301 <https://doi.org/10.1016/J.JSB.2015.08.008>.

1302 68. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.
1303 UCSF Chimera—A visualization system for exploratory research and analysis. *Journal*
1304 *of Computational Chemistry*. 2004;25(13): 1605-1612.
1305 <https://doi.org/10.1002/jcc.20084>.

1306 69. Goddard TD, Huang CC, Ferrin TE. Visualizing density maps with UCSF Chimera.
1307 *Journal of Structural Biology*. 2007;157(1): 281-287.
1308 <https://doi.org/10.1016/j.jsb.2006.06.010>.

1309 70. Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC. Quantitative analysis of cryo-
1310 EM density map segmentation by watershed and scale-space filtering, and fitting of
1311 structures by alignment to regions. *Journal of Structural Biology*. 2010;170(3): 427-438.
1312 <https://doi.org/10.1016/j.jsb.2010.03.007>.

1313 71. Ramlau K, Palmer CM, Aylett CHS. A Local Agreement Filtering Algorithm for
1314 Transmission EM Reconstructions. *Journal of Structural Biology*. 2019;205(1): 30-40.
1315 <https://doi.org/10.1016/j.jsb.2018.11.011>.

1316 72. Burnley T, Palmer CM, Winn M. Recent developments in the CCP-EM software suite.
1317 *Acta Crystallographica Section D: Structural Biology*. 2017;73(6): 469-477.
1318 <https://doi.org/10.1107/S2059798317007859>.

1319 73. Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-
1320 dimensional image data using IMOD. *J. Struct. Biol.* 1996;116(1): 71-76.
1321 <https://doi.org/10.1006/jsb.1996.0013>.

1322 74. Agulleiro JL, Fernandez JJ. Tomo3D 2.0 - exploitation of advanced vector eXtensions
1323 (AVX) for 3D reconstruction. *J. Struct. Biol.* 2015;189(2): 147-152.
1324 <https://doi.org/10.1016/j.jsb.2014.11.009>.

1325 75. Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H. Dynamo: A flexible, user-
1326 friendly development tool for subtomogram averaging of cryo-EM data in high-
1327 performance computing environments. *J. Struct. Biol.* 2012;178(2): 139-151.
1328 <https://doi.org/10.1016/J.JSB.2011.12.017>.

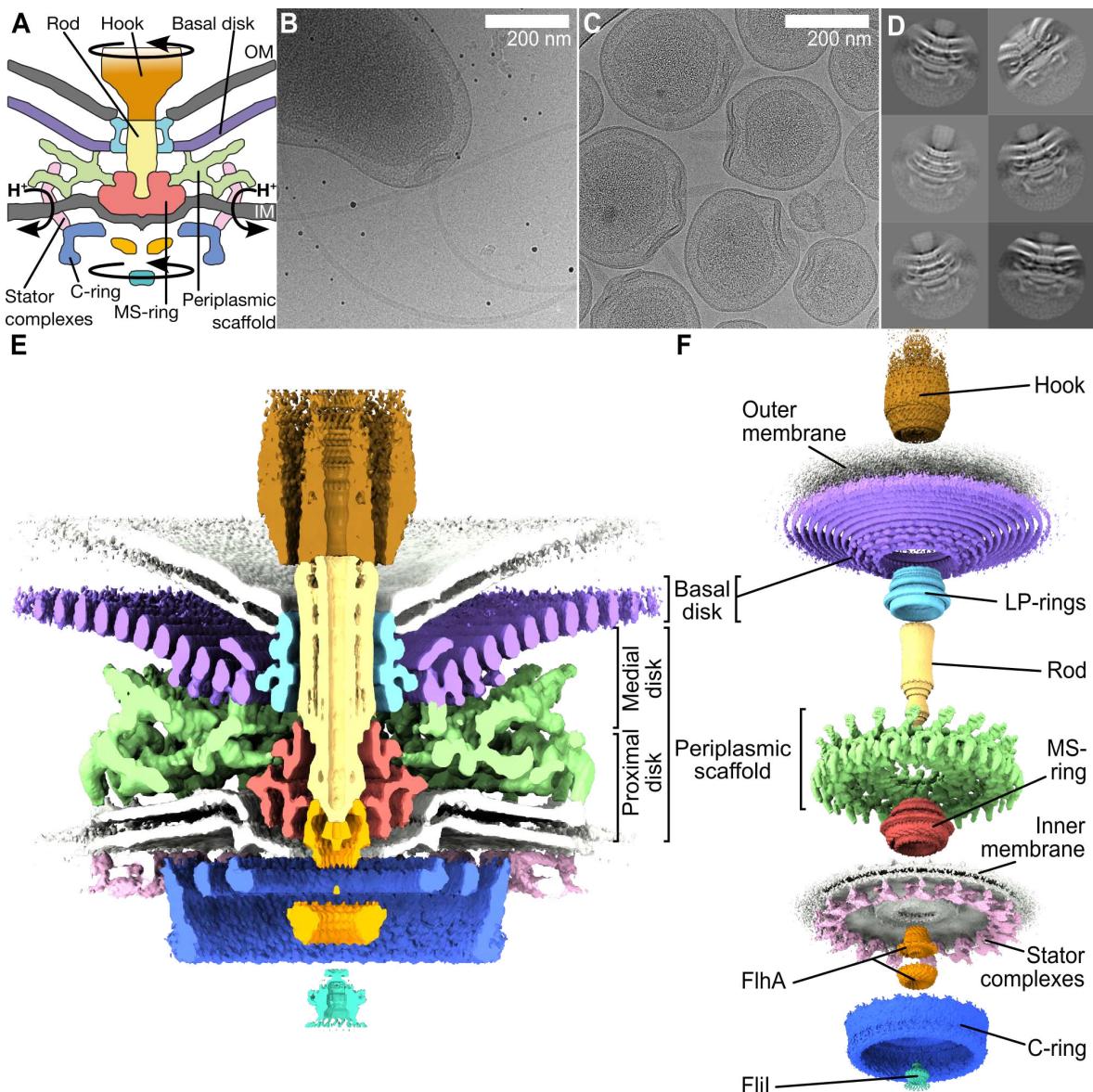
1329 76. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-
1330 MODEL: homology modelling of protein structures and complexes. *Nucleic Acids*
1331 *Research*. 2018;46(W1): W296-W303. <https://doi.org/10.1093/nar/gky427>.

1332 77. Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3—A

versatile homology modelling toolbox. *PLOS Computational Biology*. 2021;17(1): e1008667. <https://doi.org/10.1371/journal.pcbi.1008667>.

78. Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. *Nature Biotechnology*. 2022;40(7): 1023–1025. <https://doi.org/10.1038/s41587-021-01156-3>.

79. Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JRC, Majewski DD, et al. Near-atomic-resolution cryo-EM analysis of the *Salmonella* T3S injectisome basal body. *Nature*. 2016;540(7634): 597–601. <https://doi.org/10.1038/nature20576>.


80. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Science*. 2021;30(1): 70–82. <https://doi.org/10.1002/pro.3943>.

81. Croll TI. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. *Acta Crystallographica Section D: Structural Biology*. 2018;74(6): 519–530. <https://doi.org/10.1107/S2059798318002425>.

82. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods*. 2009;6(5): 343–345. <https://doi.org/10.1038/nmeth.1318>.

83. Froger A, Hall JE. Transformation of Plasmid DNA into *E. coli* Using the Heat Shock Method. *J. Vis. Exp.* 2007; e253. <https://doi.org/10.3791/253>.

84. Johnson TL, Scott ME, Sandkvist M. Mapping Critical Interactive Sites within the Periplasmic Domain of the *Vibrio cholerae* Type II Secretion Protein EpsM. *Journal of Bacteriology*. 2007;189(24): 9082–9089. <https://doi.org/10.1128/jb.01256-07>.

Figure 1.

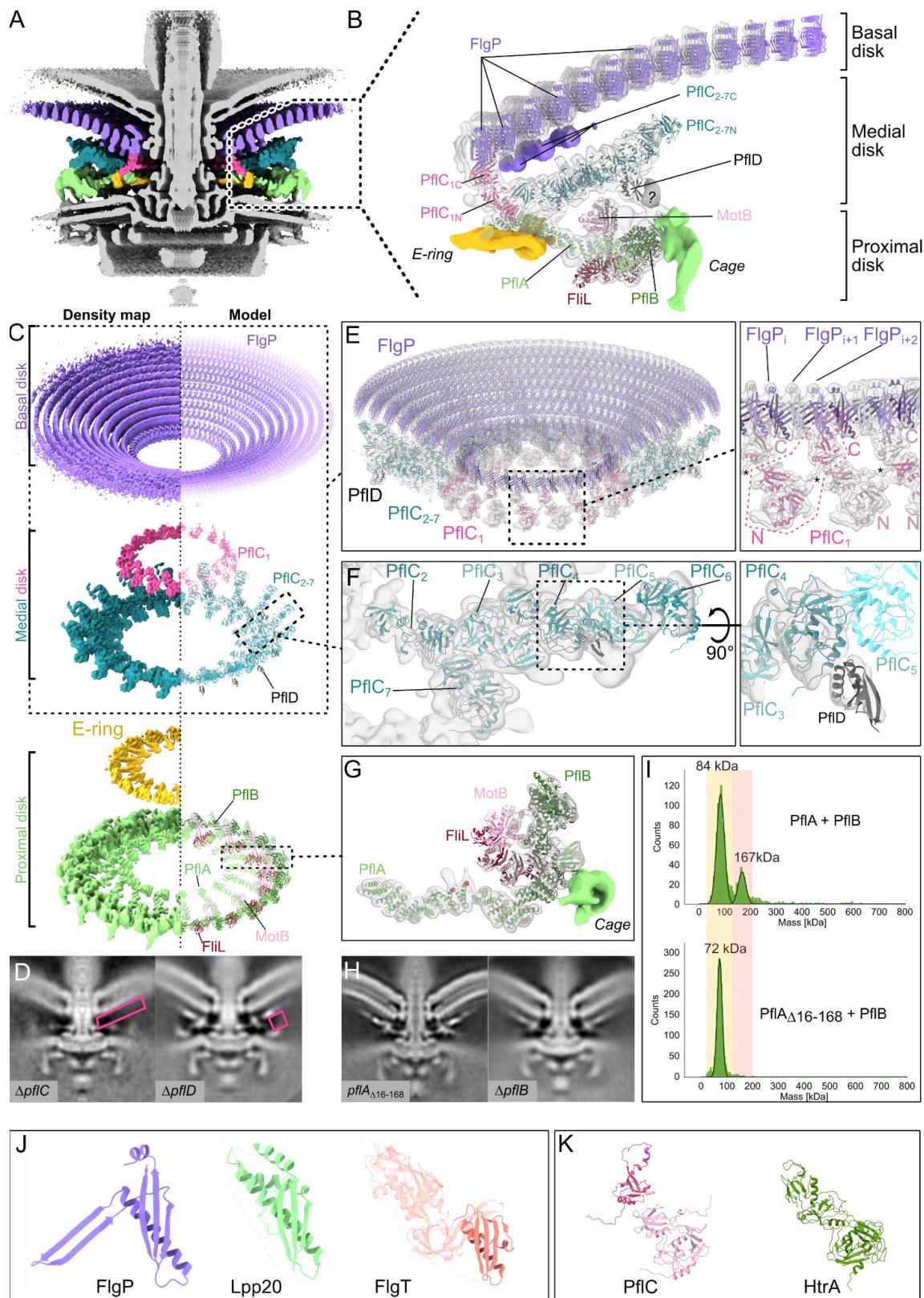


Figure 2.

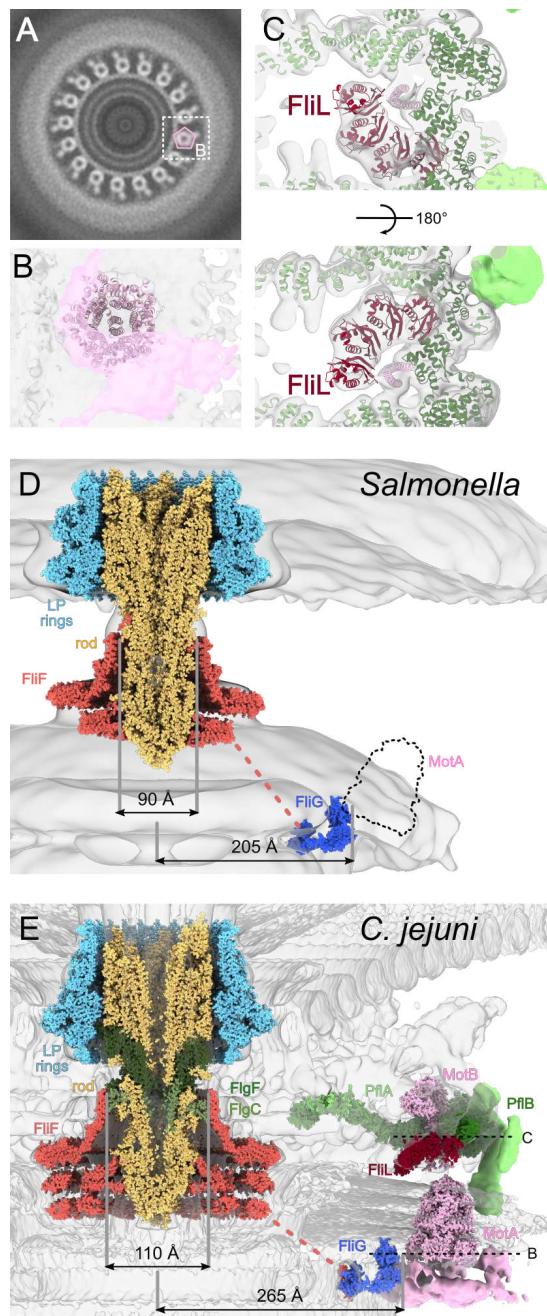


Figure 3.

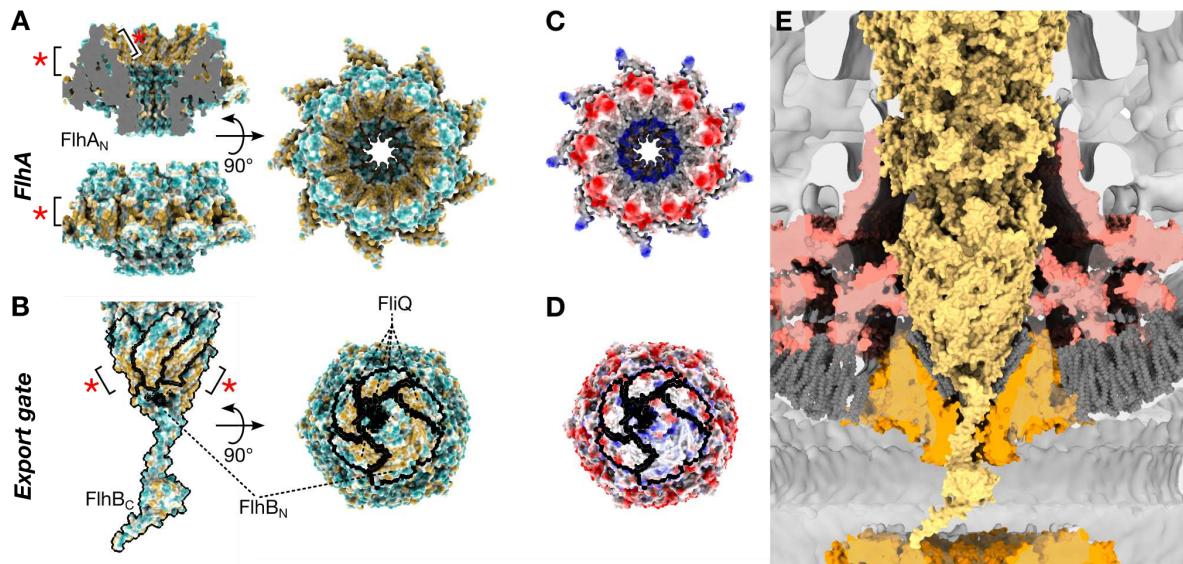


Figure 4.