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ABSTRACT  

Multi-site diffusion MRI data is often acquired on different scanners and with distinct protocols. Differences in hardware 

and acquisition result in data that contains site dependent information, which confounds connectome analyses aiming to 

combine such multi-site data. We propose a data-driven solution that isolates site-invariant information whilst maintaining 

relevant features of the connectome. We construct a latent space that is uncorrelated with the imaging site and highly 

correlated with patient age and a connectome summary measure. Here, we focus on network modularity. The proposed 

model is a conditional, variational autoencoder with three additional prediction tasks: one for patient age, and two for 

modularity trained exclusively on data from each site. This model enables us to 1) isolate site-invariant biological features, 

2) learn site context, and 3) re-inject site context and project biological features to desired site domains. We tested these 

hypotheses by projecting 77 connectomes from two studies and protocols (Vanderbilt Memory and Aging Project (VMAP) 

and Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) to a common site. We find that the resulting 

dataset of modularity has statistically similar means (p-value <0.05) across sites. In addition, we fit a linear model to the 

joint dataset and find that positive correlations between age and modularity were preserved. 
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1. INTRODUCTION  

Diffusion weighted imaging (DWI) is a non-invasive imaging modality that measures the propensity for water to diffuse 

in a given direction specified at scan time1. With these measurements, we can reconstruct the motions water take in brain 

tissue. Due to the constraining nature of axons and their bundles (axonal fasciculi), from water motion measurements we 

can infer the trajectories of these nerve bundles in white matter. Tractography is the process of modelling these 

trajectories2,3. A method of analyzing this representation is called connectomics, which involves the construction of 

graph reprsentations from tractograms and summarizing the connectivity using complex network measures4,5. Complex 

network measures are used to quantify structural connectivity changes in aging6, Alzheimer’s disease7,8, epilepsy9–12, 

traumatic brain injuries13–15.  

There are a growing number of multi-center diffusion imaging studies that span multiple scanner manufacturers and 

acquisition protocols, or “sites”. Alzheimer’s Disease Neuroimaging Initiative (ADNI)16 and National Alzheimer’s 

Coordinating Center (NACC)17 incorporates data from multiple scanner vendors and protocols, Open Access Series of 

Imaging Studies (OASIS3)18 includes multiple protocols, and Baltimore Longitudinal Study of Aging (BLSA)19 has data 

from distinct scanning locations. These site specifications may introduce significant confounding differences in DWI and 
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downstream connectomic analysis20–23. Vollmar et. al illustrated confounding site differences in analysis of whole brain, 

region of interest, and tract-defined microstructure from a traveling subject cohort scanned with the same scanner vendor 

and protocol24. Studies encompassing multiple vendors, models, and protocols had similar findings; these differences 

result in confounded analyses and are major sources of variation20. Further derived metrics such as tractography bundles 

and complex network measures suffer from these biases as well. Schilling et al. showed that fiber bundle shape and 

microstructure analysis was affected by scanner manufacturer, acquisition protocol, diffusion sampling scheme, 

diffusion sensitization and overall bundle processing workflow22. Joint datasets of complex network measures in Newlin 

et al.23 and Onicas et al.25 show that modularity, global efficiency, clustering coefficient, density, characteristic path 

length, small worldness, and average betweenness centrality have significant differences due to protocol and scanner 

vendor. Thus, there is a clear need to account for these site biases in connectivity analyses, or “harmonize”26–30.  

Previous work on rectifying these biases has explored non-linear harmonization in diffusion MRI, primarily at the image 

level31–33, and more generally across MRI34,35. These often rely on removing the predictive information with respect to 

the site-variable using adversarial losses33,34, variational bounds31, contrastive losses36, and ad hoc disentanglement 

methods35.  As shown in32, these losses coincide asymptotically as penalties on the mutual information between the 

learned encoding and the site variable. 

We propose to apply a similar approach to removing confounding information from an estimated connectome matrix, via 

variational bound of the mutual information. The model considers data from multiple sites and learns a representation 

that is uninformed of those sites. The information we are extracting is a combination of effects due to protocol and study 

parameters and is therefore not biologically relevant. As such, we force biological information and site information to be 

disjoint, separable features. With this abstraction, biological connectome information can be projected to any domain by 

exchanging learned site features. We aim to project data from all sites to one common domain to reduce hardware and 

acquisition related biases and ultimately harmonize the connectome summary measures. We evaluate the proposed 

method’s harmonization efficacy by comparing site-wise means and biological variability statistics across the joint 

dataset.  

2. METHODS 

We hypothesize that we can disentangle the connectome such that we can extract biological features that have limited or 

no site information. The site information is a conglomeration of non-biological hardware, protocol, and study parameters 

that should not drive analysis. We train a neural network that produces representations that are uninformative of the site 

 
 

Figure 1. Previous research elucidated that connectomes suffer from confounding site effects. In this work we propose 

a data-driven model to learn disjoint site (c) and biological features (siteless z) for BIOCARD (orange) and VMAP 

(blue) (left). We then inject a prescribed site, c’, to the learned representations to compute harmonized connectome 

modularity, Q (right).  
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variable. We then map this representation back to connectivity matrices conditional on a (possibly different) site variable. 

We show that by manipulating that site variable at test time, we can produce connectivity matrices that at once preserve 

the biologically relevant information yet also harmonize matrices (i.e., remove site biases). Our method uses multiple 

latent space prediction heads alongside the main conditional reconstruction task to achieve this site-minimal-bio-maximal 

representation.  

  

2.1 Data 

DWI scans from two sites were combined for joint analysis: Vanderbilt Memory and Aging Project (VMAP)37 and 

Biomarkers of Cognitive Decline Among Normal Individuals: the BIOCARD cohort (BIOCARD)38. VMAP used a Philips 

3T scanner at a resolution of 2 x 2 x 2 mm3. BIOCARD used a Philips 3T scanner at a resolution of 0.828 x 0.828 x 2.2 

mm3. 

Data used in this study are split into training and testing cohorts. The training cohort is comprised of subjects 325 scans 

from VMAP and 692 from BIOCARD, all free of cognitive impairment. Training data from VMAP has ages 74.1 ± 7.5 

and 114 women. BIOCARD training data are ages 73.2 ± 5.8 with 410 women. The testing cohort is 77 matched subjects 

(one scan from each subject), free of cognitive impairment, ages 72.9 ± 7.6, and 57% percent women. The matching was 

done using pyPheWAS maximal group matching tool (version 4.1.1) 39.  

2.2 Diffusion Processing 

The proposed model learns from connectome representations of diffusion tractography and derived from DWI outlined in 

Section 2.1. DWI from all participants were first preprocessed to remove eddy current, motion, and echo-planar imaging 

(EPI) distortions prior to any model fitting40.  

We used the MRTrix default probabilistic tracking algorithm of second order integration over fiber orientation distributions 

(FODs) for tractography41. We generated 10 million streamlines to build each tractogram42, limited seeding and 

termination using the five-tissue-type mask, and allowed backtracking. After, we converted the tractogram to a connectome 

using the Desikan-Killany atlas43 with 84 cortical parcellations from Freesurfer44.  

We use the Brain Connectivity toolbox (version-2019-03-03) to compute the quality of division of the network into 

modules, known as modularity5. Modularity computed with this toolbox is the site-biased ground truth used in model 

training.  

2.3 Model architecture  

We implemented a variational-autoencoder (VAE) with site-conditional restrictions on the latent space, 𝑧. The overall loss 

function, ℓ𝑡𝑜𝑡𝑎𝑙, is the sum of four sub-component losses: connectome reconstruction (ℓ𝑟𝑒𝑐𝑜𝑛), site-conditional prediction 

error for modularity for BIOCARD (ℓ𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑐), 𝑐 = 0) and VMAP (ℓ𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑐), 𝑐 = 1), and age prediction error 

(ℓ𝑎𝑔𝑒). Let 𝑥 be the input connectome, 𝑥̂ the model reconstruction, 𝑎 the age ground truth, 𝑎̂ age prediction, 𝑄 the site-

biased modularity and 𝑄𝑐̂ model predicted modularity using layers sequestered for site 𝑐 data.  

ℓ𝑡𝑜𝑡𝑎𝑙 = ℓ𝑟𝑒𝑐𝑜𝑛 + ℓ𝑘𝑙 + ℓ𝑎𝑔𝑒 + ℓ𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑐) 

ℓ𝑟𝑒𝑐𝑜𝑛 = (𝑥 − 𝑥̂)2 

ℓ𝑎𝑔𝑒 = (𝑎 − 𝑎̂)2 

ℓ𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑐) = {
𝑄 − 𝑄̂0, 𝑐 = 0

𝑄 − 𝑄̂1, 𝑐 = 1
  

The KL-divergence loss limits site-information in 𝑧. We would like to remove site-specific information from a learned 

representation of the connectomes, while remaining maximally relevant with respect to the modularity. Towards that end, 

our component loss function can be rewritten as mutual information terms (up to constant entropic terms): 

ℓ𝑡𝑜𝑡𝑎𝑙 = ℓ𝑟𝑒𝑐𝑜𝑛 + ℓ𝑘𝑙 + ℓ𝑎𝑔𝑒 + ℓ𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑐)  =  𝐼(𝑧, 𝑐)  −  𝐼(𝑧, 𝑄)  −  𝐼(𝑧, 𝑎) 

Minimization of the overall implies maximization of each of the negative mutual information terms, which is 

operationalized as the minimization of predictive error for the second and third term  45. Minimization of 𝐼(𝑧, 𝑐) is achieved 

using an upper bound which is based on conditional decoding:  
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𝐼(𝑧, 𝑐) ≤  𝑙𝑜𝑔( 𝑝(𝑥|𝑧, 𝑐))  −  𝐾𝐿[𝑞(𝑧|𝑥) | 𝑞(𝑧)] 

The second term in this bound is difficult to compute directly, but, as shown in Moyer et al. 2020, can be approximated 

using the standard normal Gaussian in place of induced marginal 𝑞(𝑧)31. This fits nicely with exiting VAE literature46, is 

computationally tractable, and, as we show, performs well empirically for removing site information.  

2.4 Evaluating harmonization 

Harmonization efficacy has two main components: site-invariance and preserved biological information. Site-invariance 

was evaluated with t-tests for comparing means from each site. We plot modularity against age to assess if biological 

trends are preserved after multi-site harmonization. 

3. RESULTS 

3.1 Site invariance 

Using predictive layers trained exclusively on data from one site, we project data from the unseen site onto the desired 

one. In Figure 3, means are statistically different in A) and after projection to site 1 in B) and site 2 in C), the joint data is 

harmonized. The data shifts from one site to the other depending on which predictive head is used to generate the 

modularity values (positive bias for projection to site 1, and negative bias for projection to site 2). We note that variance 

increases from pre-harmonized to post-harmonized.   

 

Figure 2. The data are 84 by 84 adjacency matrices weighted by the number of streamlines connecting brain regions 

corresponding to each matrix edge. This matrix is flattened and passed as input to the model. The reconstruction task 

has three components: encoding block, latent space, and decoding block. The latent space is partially optimized for 

reconstruction and used as input for prediction tasks. The prediction tasks are shallow networks that learn calculated, 

unharmonized modularity of their respective site, 𝑐. Separate model layers are used for each site. To ground the latent 

space with biological information, we also predict patient age. The final component contributing to the latent space is 

kl-divergence loss, which conditions the latent space to have less mutual information with site.  
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3.2 Preserving biological differences 

The top plots in Figure 4 are generated from a single site each (BIOCARD and VMAP, respectively) and therefore do not 

suffer from any confounding site effects. Their joint, pre-harmonized plot has distinct data clouds with biased intercepts. 

The data projected to solely VMAP or BIOCARD domain bridge that gap and blend the data together. The harmonization 

 
Figure 3. Comparing distributions of modularity from BIOCARD (orange) and VMAP (blue) generated by A) 

computing modularity using formula on raw connectome generated from tractography, B) predicting from site-

invariant latent space and trained on BIOCARD data, and C) predicting from site-invariant latent space and trained on 

VMAP data. P-values correspond to t-test results comparing means of VMAP and BIOCARD distributions 

 

 

 

 

Figure 4. Linear model fit to Modularity A) calculated on VMAP connectomes, B) calculated on BIOCARD 

connectomes, C) calculated on joint VMAP and BIOCARD connectomes, D) predicted from latent space trained on 

VMAP latent spaces, and E) predicted from latent space trained on BIOCARD latent spaces. 
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method used to generate such plots preserve the positive correlation (Table 1) with age present in the linear models from 

each site alone.  

Table 1. Linear model coefficients with age (𝛽) and 𝑅2 for modularity data from each site, pre-harmonized, and predicted from 

latent spaces trained exclusively on each site. Coefficients have p-values < 0.01. 

Data 

Calculated on 

BIOCARD 

connectomes 

Calculated on 

VMAP 

connectomes 

Calculated on 

VMAP and 

BIOCARD 

connectomes 

Predicted from 

latent space 

trained on 

BIOCARD 

latent spaces 

Predicted from 

latent space 

trained on 

VMAP latent 

spaces 

𝜷 0.0012 0.0015 0.0014 0.0021 0.0031 

𝑹𝟐 0.294 0.37 0.0831 0.076 0.224 

 

4. CONCLUSION 

We discovered that we can 1) use the conditional encoder structure to extract site from the latent space, 2) use that site-

less representation and inject new site information, and that 3) we can perform site-injections to produce harmonized 

modularity. We show it is possible to disentangle site and biological information for the human connectome summary 

measure, modularity.  

5. DISCUSSION 

Modularity is computed using the connectome and is intrinsically tied to imaging site. To completely remove all site 

information would remove its semantic value. As such, we are forced to keep at least one site for context if we want to 

maintain the complex network measure interpretability. Thus, the prediction heads, in being trained exclusively on one 

site or other, learn the complex domain of the site with respect to modularity. The proposed model enables us to learn 

and overcome the implicit bias in modularity caused by different imaging protocols. The latent space constructed here 

can potentially be optimized for other complex network measures as well. However, we hypothesize that not all network 

measures will be easily disentangled, and some not at all.  
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