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ABSTRACT

Multi-site diffusion MRI data is often acquired on different scanners and with distinct protocols. Differences in hardware
and acquisition result in data that contains site dependent information, which confounds connectome analyses aiming to
combine such multi-site data. We propose a data-driven solution that isolates site-invariant information whilst maintaining
relevant features of the connectome. We construct a latent space that is uncorrelated with the imaging site and highly
correlated with patient age and a connectome summary measure. Here, we focus on network modularity. The proposed
model is a conditional, variational autoencoder with three additional prediction tasks: one for patient age, and two for
modularity trained exclusively on data from each site. This model enables us to 1) isolate site-invariant biological features,
2) learn site context, and 3) re-inject site context and project biological features to desired site domains. We tested these
hypotheses by projecting 77 connectomes from two studies and protocols (Vanderbilt Memory and Aging Project (VMAP)
and Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) to a common site. We find that the resulting
dataset of modularity has statistically similar means (p-value <0.05) across sites. In addition, we fit a linear model to the
joint dataset and find that positive correlations between age and modularity were preserved.
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1. INTRODUCTION

Diffusion weighted imaging (DWI) is a non-invasive imaging modality that measures the propensity for water to diffuse
in a given direction specified at scan time?. With these measurements, we can reconstruct the motions water take in brain
tissue. Due to the constraining nature of axons and their bundles (axonal fasciculi), from water motion measurements we
can infer the trajectories of these nerve bundles in white matter. Tractography is the process of modelling these
trajectories®3. A method of analyzing this representation is called connectomics, which involves the construction of
graph reprsentations from tractograms and summarizing the connectivity using complex network measures*>. Complex
network measures are used to quantify structural connectivity changes in aging®, Alzheimer’s disease”®, epilepsy®?2,
traumatic brain injuries®,

There are a growing number of multi-center diffusion imaging studies that span multiple scanner manufacturers and
acquisition protocols, or “sites”. Alzheimer’s Disease Neuroimaging Initiative (ADNI)® and National Alzheimer’s
Coordinating Center (NACC)' incorporates data from multiple scanner vendors and protocols, Open Access Series of
Imaging Studies (OASIS3)*® includes multiple protocols, and Baltimore Longitudinal Study of Aging (BLSA)*® has data
from distinct scanning locations. These site specifications may introduce significant confounding differences in DWI and
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downstream connectomic analysis?®-23. Vollmar et. al illustrated confounding site differences in analysis of whole brain,
region of interest, and tract-defined microstructure from a traveling subject cohort scanned with the same scanner vendor
and protocol?*. Studies encompassing multiple vendors, models, and protocols had similar findings; these differences
result in confounded analyses and are major sources of variation®. Further derived metrics such as tractography bundles
and complex network measures suffer from these biases as well. Schilling et al. showed that fiber bundle shape and
microstructure analysis was affected by scanner manufacturer, acquisition protocol, diffusion sampling scheme,
diffusion sensitization and overall bundle processing workflow??. Joint datasets of complex network measures in Newlin
et al.® and Onicas et al.? show that modularity, global efficiency, clustering coefficient, density, characteristic path
length, small worldness, and average betweenness centrality have significant differences due to protocol and scanner
vendor. Thus, there is a clear need to account for these site biases in connectivity analyses, or “harmonize”?6-%0,

Previous work on rectifying these biases has explored non-linear harmonization in diffusion MRI, primarily at the image
level®-*, and more generally across MRI3435, These often rely on removing the predictive information with respect to
the site-variable using adversarial losses®*%, variational bounds®!, contrastive losses®, and ad hoc disentanglement
methods®. As shown in®?, these losses coincide asymptotically as penalties on the mutual information between the
learned encoding and the site variable.

We propose to apply a similar approach to removing confounding information from an estimated connectome matrix, via
variational bound of the mutual information. The model considers data from multiple sites and learns a representation
that is uninformed of those sites. The information we are extracting is a combination of effects due to protocol and study
parameters and is therefore not biologically relevant. As such, we force biological information and site information to be
disjoint, separable features. With this abstraction, biological connectome information can be projected to any domain by
exchanging learned site features. We aim to project data from all sites to one common domain to reduce hardware and
acquisition related biases and ultimately harmonize the connectome summary measures. We evaluate the proposed
method’s harmonization efficacy by comparing site-wise means and biological variability statistics across the joint
dataset.

Training Harmonization
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Figure 1. Previous research elucidated that connectomes suffer from confounding site effects. In this work we propose
a data-driven model to learn disjoint site (c) and biological features (siteless z) for BIOCARD (orange) and VMAP
(blue) (left). We then inject a prescribed site, ¢’, to the learned representations to compute harmonized connectome
modularity, Q (right).
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2. METHODS

We hypothesize that we can disentangle the connectome such that we can extract biological features that have limited or
no site information. The site information is a conglomeration of non-biological hardware, protocol, and study parameters
that should not drive analysis. We train a neural network that produces representations that are uninformative of the site
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variable. We then map this representation back to connectivity matrices conditional on a (possibly different) site variable.
We show that by manipulating that site variable at test time, we can produce connectivity matrices that at once preserve
the biologically relevant information yet also harmonize matrices (i.e., remove site biases). Our method uses multiple
latent space prediction heads alongside the main conditional reconstruction task to achieve this site-minimal-bio-maximal
representation.

2.1 Data

DWI scans from two sites were combined for joint analysis: Vanderbilt Memory and Aging Project (VMAP)% and
Biomarkers of Cognitive Decline Among Normal Individuals: the BIOCARD cohort (BIOCARD)3%. VMAP used a Philips
3T scanner at a resolution of 2 x 2 x 2 mm3. BIOCARD used a Philips 3T scanner at a resolution of 0.828 x 0.828 x 2.2
mms,

Data used in this study are split into training and testing cohorts. The training cohort is comprised of subjects 325 scans
from VMAP and 692 from BIOCARD, all free of cognitive impairment. Training data from VMAP has ages 74.1 £ 7.5
and 114 women. BIOCARD training data are ages 73.2 £ 5.8 with 410 women. The testing cohort is 77 matched subjects
(one scan from each subject), free of cognitive impairment, ages 72.9 £ 7.6, and 57% percent women. The matching was
done using pyPheWAS maximal group matching tool (version 4.1.1) %,

2.2 Diffusion Processing

The proposed model learns from connectome representations of diffusion tractography and derived from DWI1 outlined in
Section 2.1. DWI from all participants were first preprocessed to remove eddy current, motion, and echo-planar imaging
(EPI) distortions prior to any model fitting“.

We used the MRTrix default probabilistic tracking algorithm of second order integration over fiber orientation distributions
(FODs) for tractography*. We generated 10 million streamlines to build each tractogram*?, limited seeding and
termination using the five-tissue-type mask, and allowed backtracking. After, we converted the tractogram to a connectome
using the Desikan-Killany atlas*® with 84 cortical parcellations from Freesurfer®.

We use the Brain Connectivity toolbox (version-2019-03-03) to compute the quality of division of the network into
modules, known as modularity®. Modularity computed with this toolbox is the site-biased ground truth used in model
training.

2.3 Model architecture

We implemented a variational-autoencoder (VAE) with site-conditional restrictions on the latent space, z. The overall loss
function, €;,:4:, 1S the sum of four sub-component losses: connectome reconstruction (¢,....»), Site-conditional prediction
error for modularity for BIOCARD (£0qutarity (€), ¢ = 0) and VMAP (£ ,04u1arity (€), ¢ = 1), and age prediction error
(£age)- Let x be the input connectome, X the model reconstruction, a the age ground truth, @ age prediction, Q the site-
biased modularity and Q. model predicted modularity using layers sequestered for site ¢ data.

Ciotar = trecon + Tkt + Cage + Cmodutarity (€)
Lrecon = (x — £)?
Coge = (a— a)?
Q- Q:o; c=0
Q—0Qy, c=1
The KL-divergence loss limits site-information in z. We would like to remove site-specific information from a learned

representation of the connectomes, while remaining maximally relevant with respect to the modularity. Towards that end,
our component loss function can be rewritten as mutual information terms (up to constant entropic terms):

1“atotal = 1’arecon + ‘gkl + ‘gage + ‘gmodularity(c) = [(Z: C) - I(Z! Q) - [(Z: a)

Minimization of the overall implies maximization of each of the negative mutual information terms, which is
operationalized as the minimization of predictive error for the second and third term %5. Minimization of I(z, c) is achieved
using an upper bound which is based on conditional decoding:

[modularity(c) = {
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I(z,¢) < log(p(xlz,0)) — KL[q(z|x) | q(2)]

The second term in this bound is difficult to compute directly, but, as shown in Moyer et al. 2020, can be approximated
using the standard normal Gaussian in place of induced marginal q(z)%. This fits nicely with exiting VAE literature®, is
computationally tractable, and, as we show, performs well empirically for removing site information.
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Figure 2. The data are 84 by 84 adjacency matrices weighted by the number of streamlines connecting brain regions
corresponding to each matrix edge. This matrix is flattened and passed as input to the model. The reconstruction task
has three components: encoding block, latent space, and decoding block. The latent space is partially optimized for
reconstruction and used as input for prediction tasks. The prediction tasks are shallow networks that learn calculated,
unharmonized modularity of their respective site, c. Separate model layers are used for each site. To ground the latent
space with biological information, we also predict patient age. The final component contributing to the latent space is
kl-divergence loss, which conditions the latent space to have less mutual information with site.

2.4 Evaluating harmonization

Harmonization efficacy has two main components: site-invariance and preserved biological information. Site-invariance
was evaluated with t-tests for comparing means from each site. We plot modularity against age to assess if biological
trends are preserved after multi-site harmonization.

3. RESULTS
3.1 Site invariance

Using predictive layers trained exclusively on data from one site, we project data from the unseen site onto the desired
one. In Figure 3, means are statistically different in A) and after projection to site 1 in B) and site 2 in C), the joint data is
harmonized. The data shifts from one site to the other depending on which predictive head is used to generate the
modularity values (positive bias for projection to site 1, and negative bias for projection to site 2). We note that variance
increases from pre-harmonized to post-harmonized.
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Figure 3. Comparing distributions of modularity from BIOCARD (orange) and VMAP (blue) generated by A)
computing modularity using formula on raw connectome generated from tractography, B) predicting from site-
invariant latent space and trained on BIOCARD data, and C) predicting from site-invariant latent space and trained on
VMAP data. P-values correspond to t-test results comparing means of VMAP and BIOCARD distributions

3.2 Preserving biological differences

The top plots in Figure 4 are generated from a single site each (BIOCARD and VMAP, respectively) and therefore do not
suffer from any confounding site effects. Their joint, pre-harmonized plot has distinct data clouds with biased intercepts.
The data projected to solely VMAP or BIOCARD domain bridge that gap and blend the data together. The harmonization

A B
0.8 r ) 0.8 )
N x  Data
X .
> . X . X > Fit .
.5 0.7 ’XXXXXX « ¥ s - 3 E 0.7 - Confidence bounds .
EREE E = . .
-8 -g o X EEX X X .x X X
= = Xx X * xX
0.6 06 P R T
60 70 80 90 100 60 70 80 90 100
Age Age
C D E
0.8 ) 0.8 " x )X . 0.8 )

Modularity
(=]
~
X
x
X
X
XX
X
XK
OB
XXX
XX
XXX
X X
X
KX
XK X
X
X
X X
X
X XX
X
X
X
Modularity
e
~
X
X X
b3 X
X
X X X
X
X X
X X X
XX, OB X
X XK X X
X KX X
X X X
XK X XX
K
X XX XX X
XKA\XX
X
X K
X
X X
X
X
X
X
Modularity
(=]
~

X,
X
. xggi%%%xx xXX X « § § ><><g§>< %Zé XZSXX X
ggx xg %x X x5 x XXy x X xg « «
0.6 5" E X 0.6 > 0.6
X
X
60 70 80 90 100 60 70 80 90 100 60 70 80 90 10¢(
Age Age Age

Figure 4. Linear model fit to Modularity A) calculated on VMAP connectomes, B) calculated on BIOCARD
connectomes, C) calculated on joint VMAP and BIOCARD connectomes, D) predicted from latent space trained on
VMAP latent spaces, and E) predicted from latent space trained on BIOCARD latent spaces.
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method used to generate such plots preserve the positive correlation (Table 1) with age present in the linear models from
each site alone.

Table 1. Linear model coefficients with age () and R? for modularity data from each site, pre-harmonized, and predicted from
latent spaces trained exclusively on each site. Coefficients have p-values < 0.01.

Predicted from Predicted from
Calculated on
Calculated on Calculated on VMAP and latent space latent space
Data BIOCARD VMAP BIOCARD trained on trained on
connectomes connectomes BIOCARD VMAP latent
connectomes
latent spaces spaces
B 0.0012 0.0015 0.0014 0.0021 0.0031
R? 0.294 0.37 0.0831 0.076 0.224

4. CONCLUSION

We discovered that we can 1) use the conditional encoder structure to extract site from the latent space, 2) use that site-
less representation and inject new site information, and that 3) we can perform site-injections to produce harmonized
modularity. We show it is possible to disentangle site and biological information for the human connectome summary
measure, modularity.

5. DISCUSSION

Modularity is computed using the connectome and is intrinsically tied to imaging site. To completely remove all site
information would remove its semantic value. As such, we are forced to keep at least one site for context if we want to
maintain the complex network measure interpretability. Thus, the prediction heads, in being trained exclusively on one
site or other, learn the complex domain of the site with respect to modularity. The proposed model enables us to learn
and overcome the implicit bias in modularity caused by different imaging protocols. The latent space constructed here
can potentially be optimized for other complex network measures as well. However, we hypothesize that not all network
measures will be easily disentangled, and some not at all.
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