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Abstract 
 
Efficiency of evidence accumulation (EEA), an individual’s ability to selectively gather goal-
relevant information to make adaptive choices, is thought to be a key neurocomputational 
mechanism associated with cognitive functioning and transdiagnostic risk for psychopathology. 
However, the neural basis of individual differences in EEA is poorly understood, especially 
regarding the role of largescale brain network dynamics. We leverage data from over 5,000 
participants from the Human Connectome Project and Adolescent Brain Cognitive Development 
Study to demonstrate a strong association between EEA and flexible adaptation to cognitive 
demand in “task-positive” frontoparietal and dorsal attention networks, which explains 36%-39% 
of the variance across individuals in EEA. Notably, individuals with higher EEA displayed 
divergent task-positive network activation across n-back task conditions: higher activation under 
high cognitive demand (2-back) and lower activation under low demand (0-back). These findings 
suggest that brain networks’ flexible adaptation to cognitive demands is a key neural 
underpinning of EEA. 
 
Introduction 
 
Evidence accumulation models1 posit that individuals complete many cognitive tasks by 
gradually accumulating noisy evidence for each possible choice until evidence for one choice 
reaches a critical threshold. This class of formal models has been highly successful at explaining 
key features of choice response time data and is now considered one of the predominant 
mathematical frameworks for modeling task performance across a wide variety of cognitive 
domains in the psychological and neural sciences1–3.  
 
A growing literature has recently begun to reveal how the latent psychological mechanisms 
posited by evidence accumulation models contribute to higher-order cognition and behavior.  
Efficiency of evidence accumulation (EEA), or the ability to selectively accumulate goal-
relevant evidence to make adaptive choices in the context of noisy information, appears to be a 
task-general process and a key underpinning of higher-order cognitive functions, including 
working memory and general intelligence4–9. In parallel, recent applications of these models in 
clinical research have demonstrated that EEA is significantly reduced across multiple disorders, 
including attention-deficit/hyperactivity disorder (ADHD)10–13, schizophrenia14,15, bipolar 
disorder16, and problematic substance use17, suggesting that lower EEA is a transdiagnostic 
cognitive risk factor for psychopathology16,18.  
 
EEA’s relevance to cognitive functioning and psychiatric disorders has led to increasing interest 
in identifying its neural underpinnings. Experimental work in non-human primates has 
documented ramping patterns in neural firing rates during decision-making that display 
properties consistent with evidence accumulation processes2,19–23 and parallel signatures have 
been identified in humans using electroencephalogram (EEG)24–29 and functional magnetic 
resonance imaging (fMRI)30–33. Although multiple brain areas appear to be involved, converging 
evidence suggests that the frontoparietal network (FPN), a group of brain regions associated with 
task performance and cognitive control, plays a central role34. Outside of this experimental 
literature, recent studies using disparate methodologies have found that better EEA is associated 
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with activation in the inferior parietal lobe during decision-making35, greater error-related 
activations in the salience network36, and a marker of neural speed derived from several EEG 
components37. Additionally, a recent multimodal neuroimaging investigation that focused on the 
dorsal portion of the FPN found evidence that white matter macrostructure within this 
subnetwork and its functional coupling with premotor cortex were both related to EEA38.  
 
Despite the critical importance of this body of work for understanding the neural basis of EEA, a 
key limitation is that each of these studies had a constrained focus on specific brain regions or 
narrow subnetworks of regions. Recent research leveraging multivariate predictive modeling in 
neuroimaging data has demonstrated that many cognitive and psychological variables are only 
weakly associated with activity in discrete regions and are more robustly predicted by features of 
largescale brain networks that are distributed across the cortex39–41. Further, the properties of 
such brain networks are far from static, and instead display dynamic adaptations and 
reconfigurations to meet task demands42,43. Hence, although there is growing evidence that EEA 
may be a key neurocomputational underpinning of cognitive and adaptive functioning, its 
associations with the dynamic properties of largescale brain networks remain unclear. 
 
In the current study, we present novel evidence that one such property shows a strong and robust 
association with EEA: the degree to which “task-positive” brain networks flexibly adapt to 
cognitive demand. The FPN and the dorsal attention network (DAN), another group of brain 
regions associated with the top-down control of attention44, are collectively labeled “task-
positive” networks45 because they reliably show increased activity in task conditions that are 
cognitively demanding (i.e., difficult). As EEA is a formal measure of the ratio of task-relevant 
signal to task-irrelevant noise during cognitive processing46,47, it is conceptually linked to the  
interrelated functions of the FPN, which appears to selectively facilitate goal-relevant behaviors 
during task performance, and the DAN, which appears to modulate attentional resources toward 
goal-relevant information. 
 
Parametric effects of cognitive demand on activity in the FPN and DAN are reliably observable 
during the commonly used n-back fMRI paradigm48,49, in which the difficulty of the cognitive 
task varies as a function of how many stimuli must be actively maintained in working memory to 
make accurate choices. Previous work has shown that higher levels of difficultly on the n-back 
generate neural activation maps that are more closely associated with cognitive abilities than 
those generated from less difficult n-back conditions50, suggesting that the degree to which 
individuals’ brain networks respond to the demands of a given task may have important 
implications for task performance. As flexible adaptation of neural systems to the demands of 
external tasks has long been theorized to support efficient cognitive processing46,51, we sought to 
directly assess the degree to which demand-related changes in neural activation across the FPN 
and DAN are associated with EEA.  
 
Across two large data sets spanning different developmental periods, the Human Connectome 
Project (HCP)52 and the baseline sample of 9- and 10-year-old youth from Adolescent Brain 
Cognitive DevelopmentSM Study (ABCD Study)53, we first use multivariate predictive modeling 
to demonstrate that neural response to cognitive demand during the n-back explains a substantial 
portion (36%-39%) of the variance in individuals’ EEA on the task. We then show that this 
predictive relationship can be largely attributed to EEA’s association with demand-related 
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activation patterns in the FPN and DAN. Critically, we provide novel evidence that this network 
configuration shows divergent relations with EEA under different levels of cognitive demand; 
although activation in task-positive networks during the difficult (2-back) condition is strongly 
positively related to EEA, activation in these networks during the easy (0-back) condition is 
strongly negatively related to EEA. These findings suggest that flexible adaptation to cognitive 
demands across task-positive brain networks is a key neural underpinning of EEA and its 
downstream consequences for cognition and behavior.  
 
Results 
 
1. Neural responses to cognitive demand during the n-back explain a sizable proportion of 
the variance in individuals’ EEA on the task 
 
We built multivariate models that used vertex-wise brain activation data from the n-back’s 
cognitive load (2-0) contrast to predict EEA metrics during the n-back task (see Methods for 
details on EEA metrics). We tested their generalizability in independent data using leave-one-
site-out cross-validation40 in ABCD and 10-fold cross-validation in HCP. All analyses were 
adjusted for age, sex, race/ethnicity, and motion (framewise displacement) using the partial 
correlation technique described in Methods.  
 
Neural responses to cognitive demand explained a large proportion of the variance across all 
measures of EEA in both samples (Figure 1A) and performance was consistently high across all 
ABCD sites and HCP cross-validation folds (Figure 1B). Performance of the models was highest 
when predicting the average of EEA across n-back load conditions, explaining 39% of the 
variance in ABCD and 36% of the variance in HCP. Predictions of EEA on the 0-back (ABCD = 
32%, HCP = 35%) were slightly more accurate than predictions of EEA on the 2-back condition 
(ABCD = 30%, HCP = 26%).  
 
This general pattern indicates that neural responses to cognitive demand are strongly related to 
measures of EEA across both levels of n-back load. Combined with the large observed 
correlations between EEA measured on the 0- and 2-back tasks (ABCD r = 0.45, CI = 0.42-0.48; 
HCP r = 0.54, CI = 0.48 – 0.59), these results are consistent with the hypothesis that EEA 
reflects a domain-general latent process that drives performance across tasks of both low and 
high complexity and has common neural underpinnings regardless of specific task demands18. 
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Figure 1. Relations between brain activation in the n-back cognitive load (2-0) contrast and 
efficiency of evidence accumulation (EEA). A) Correlations between EEA values predicted by 
the multivariate model and actual EEA values for the 0-back task, 2-back task, and the mean 
across both tasks in the Adolescent Brain Cognitive Development Study (ABCD) and Human 
Connectome Project (HCP) samples. The predicted values are drawn from models fit to 
independent data using the leave-one-site-out and 10-fold cross-validation methods in the ABCD 
and HCP samples, respectively. All values are residuals from regressions that adjusted for age, 
sex, race/ethnicity, and motion covariates. B) Correlations between predicted and actual mean 
EEA values in each of the 10 HCP test folds and each of the ABCD sites. For HCP, the density 
plot represents the distribution of values, and the red line represents the average value. For 
ABCD, the relation between correlations and sample size at each study site is displayed and the 
average value is displayed in the gray portion at right along with its 95% confidence interval.  
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2. Features predictive of EEA show substantial overlap with the task-positive network 
regions activated in the n-back’s standard cognitive load contrast 
 
Brain-wide consensus maps of feature weights from the models predicting EEA with activation 
in the cognitive load (2-0) contrast showed a strong visual similarity to the same contrast’s 
group-average activation maps (Figure 2). As expected, regions in the FPN and DAN were 
heavily represented across both types of maps. Most of the prefrontal and midline regions 
strongly activated by the load contrast were also heavily featured in the predictive model, 
although there were some apparent differences between the maps in lateral parietal regions. 
These spatial patterns were remarkably consistent across the ABCD and HCP samples.  
However, one notable difference between the samples is the finding of generally lower effect 
sizes in the group-average 2-0 activation map in ABCD relative to HCP, which could indicate 
that while children and adults activate similar networks during high cognitive demand, activation 
levels are generally lower in children compared to adults, consistent with recent findings54. 
 
 

 
 
Figure 2. Group-level cortical maps of effect sizes (Cohen’s d) from the n-back cognitive load 
(2-0) contrast and feature weights (converted to Z-scores: mean = 0, SD = 1) from the models 
predicting individuals’ n-back task performance with this contrast. A) Effect size map for the 2-0 
contrast in the Adolescent Brain Cognitive Development Study (ABCD) sample. B) Effect size 
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map for the 2-0 contrast in the Human Connectome Project (HCP) sample. C) Consensus feature 
weight map for models predicting performance in the ABCD sample. D) Consensus feature 
weight map for models predicting performance in the HCP sample. 
 
 
3. Task-positive network activations during the 2-back and 0-back make significant 
contributions to prediction of EEA 
 
We sought to further parse out the role of specific task-positive networks, and their dynamic 
changes across levels of cognitive demand, in predicting EEA. We therefore examined 
associations among EEA, 0-back and 2-back activations in the DAN and FPN (averaged across 
the entire networks’ Gordon parcellations), and load-related differences in DAN and FPN 
activations (2-back minus 0-back) for both ABCD and HCP (Table 1). Load-related differences 
(2-0) in the FPN and DAN showed the expected positive relations with EEA, consistent with the 
idea that neural responses to cognitive demand in both the FPN and DAN make key 
contributions to the fMRI data’s predictive associations.  
 
 

  ABCD 
 r 

ABCD 
95% CI 

HCP 
 r 

HCP 
95% CI 

FPN 0 -.27 -.24 -.29 -.31 -.24 -.37 
FPN 2 .17 .22 .13 .08 .15 .02 
FPN 2-0 .36 .39 .33 .46 .51 .41 
DAN 0 -.07 -.04 -.09 -.14 -.07 -.21 
DAN 2 .17 .21 .14 .08 .15 .00 
DAN 2-0 .22 .24 .19 .30 .35 .23 

Table 1. Adolescent Brain Cognitive Development Study (ABCD) and Human Connectome 
Project (HCP) correlations between efficiency of evidence accumulation (EEA) and average 
measures of frontoparietal network (FPN) and dorsal attention network (DAN) activation for the 
0-back, 2-back and cognitive load (2-0) contrast. All variables were adjusted for age, sex, 
race/ethnicity, and motion (framewise displacement) by using multiple regression to remove 
variance associated with these covariates. 95% confidence intervals, displayed in italics next to 
each correlation, were estimated using a clustered bootstrapping procedure that accounted for 
nesting by family and study site.  
 
 
4. Task-positive network activations during the 2-back and 0-back are positively correlated 
with one another but show strongly divergent relations with EEA 
 
For both task-positive networks, there were strong positive correlations between each subject’s 
activation in the 2-back condition and their activation in the 0-back condition, both in the HCP 
sample (FPN r = 0.64, CI = 0.60 – 0.68; DAN r = 0.74, CI = 0.71 – 0.77) and in the ABCD 
sample (FPN r = 0.24, CI = 0.21 – 0.27; DAN r = 0.36, CI = 0.33 – 0.38). These strong 
dependencies were notable given that we observed strongly divergent relationships between 
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activation in the 2-back and 0-back conditions and EEA (Table 1). More specifically, 2-back 
task-positive network activation is positively related to EEA while 0-back activation is 
negatively related to EEA. Figure 3 illustrates these complex interrelations by plotting each 
individual’s 0-back activation levels on the x-axis against their 2-back activation levels on the y-
axis. The strong, positive relationship between 2-back and 0-back activation is shown by the 
black dashed regression line. For both ABCD and HCP, and for both task-positive networks 
(FPN and DAN), we observed a common pattern: individuals in the upper left-hand quadrant, 
who have relatively greater activation in the 2-back and lower activation in the 0-back condition 
(i.e., relative to the regression line) show the highest EEA, which is indicated both by the darker 
red hue of the points as well as the mean standardized EEA scores displayed in the quadrant. 
Individuals in the lower right-hand quadrant, who have relatively lower 2-back activation and 
higher activation in the 0-back condition (relative to the regression line), show the lowest EEA.  
 

 
Figure 3. Visualization of dynamic relations between average task-positive network activation in 
the 0-back and 2-back conditions and overall efficiency of evidence accumulation (EEA) on the  
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task for the Adolescent Brain Cognitive Development Study (ABCD; left column) and Human 
Connectome Project (HCP; right column) samples. All values were adjusted for age, sex, 
race/ethnicity, and motion covariates and were then converted to standardized scores (Z-scores: 
mean = 0, SD = 1) for interpretability. Individuals’ EEA is represented by the hue of the points, 
with individuals higher in EEA having darker red hues. Activations of the frontoparietal network 
(FPN) are shown in the top row while activations of the dorsal attention network (DAN) are 
shown in the bottom row. Black dotted lines represent the regression line for relations between 
0-back and 2-back task activations. Combined with the gray dotted lines representing the 
average 0-back activation level, the regression lines form four quadrants that denote whether 
individuals have higher or lower 2-back activation than would be expected given their level of 0-
back activation. Bold numbers reflect the average EEA of individuals in each quadrant.  
 
The preceding results highlight that, because of the positive dependency between activations 
across different levels of demand, the absolute level of FPN and DAN activation during a given 
task condition is relatively unimportant for predicting EEA. Rather, the more important factor is 
the differences in activation between high demand and low demand conditions. Individuals for 
whom this difference is large simultaneously exhibit higher than expected activation in the high-
demand (2-back) condition and lower than expected activation in the low-demand (0-back) 
condition, which appears to be the key signature of better EEA. Consistent with this idea, the 
correlation values reported in Table 1 indicate that variance in EEA explained by the 0-back and 
2-back activations measured within individual load conditions is consistently lower than the 
variance explained by differences in activation between the high demand and low demand 
conditions (within condition: ABCD FPN = 10%; ABCD DAN = 3%; HCP FPN = 10%; HCP 
DAN = 3%; difference between conditions: ABCD FPN = 13%; ABCD DAN = 5%; HCP FPN = 
21%; HCP DAN = 9%).  
 
5. EEA is associated with flexibility in the engagement of the FPN and DAN across 
different levels of cognitive demand 
 
The findings detailed above suggest that individuals with higher EEA on the n-back tend to be 
those whose task-positive networks show higher activity in high-demand conditions but lower 
activity in low-demand conditions. To directly investigate this possibility, we sorted individuals 
in each sample into 10 bins ordered by EEA and plotted each bin’s mean FPN and DAN 
activations (Figure 4). We also display regression lines for the association between bin order and 
activation to illustrate the overall pattern. Across both task-positive networks and both samples, 
greater EEA was associated with increases in network activity during the 2-back and 
corresponding decreases in network activity during the 0-back.  Put another way, individuals 
with the lowest EEA engage these networks to a similar degree regardless of cognitive demands. 
In contrast, individuals with the highest EEA display the greatest degree of flexible modulation 
of task-positive network engagement in response to demands, exhibiting both the highest 
activation in task positive networks in the 2-back and the lowest activation in the 0-back.  
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Figure 4. Plots of mean frontoparietal network (FPN; top row) and mean dorsal attention 
network (DAN; bottom row) activations in the 0-back and 2-back conditions for 10 bins of 
individuals ranked by their mean EEA in the Adolescent Brain Cognitive Development Study 
(ABCD; left column) and Human Connectome Project (HCP; right column) samples. Vertical 
green lines around each point represent 95% confidence intervals while yellow lines highlight 
the difference between 0-back and 2-back means. Dashed lines represent regression lines for the 
relation between bin rank and each brain activation index. 
 
6. Differences between samples suggest potential developmental changes in task-positive 
network engagement 
 
Although most brain network activation patterns and their associations with EEA were 
remarkably consistent across the child ABCD sample and adult HCP sample, several key 
differences alco emerged. As noted above, adults in HCP showed larger activation effects in the 
2-0 contrast (despite showing similar spatial patterns of activation) than children in the ABCD 
sample. Adults also exhibited a much stronger positive dependency in task-positive network 
activations across high- and low-load conditions compared to children. In addition, the values 
displayed in Figure 4 suggest possible developmental differences in overall levels of DAN 
activation under low cognitive demands. DAN activations in the 2-back were generally positive 
on average for both samples. However, ABCD participants’ 0-back DAN activations were 
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negligible or negative on average whereas HCP participants’ DAN activations were consistently 
positive on average. Although the methodological differences between the tasks and sampling 
methods in ABCD and HCP (Methods) preclude strong conclusions about developmental 
change, this pattern of results provides preliminary evidence that children do not consistently 
engage the DAN on low-load conditions and that improvements in performance in adulthood 
could be partially attributable to greater DAN engagement.  
 
Discussion 
 
A growing literature on computational evidence accumulation models suggests that EEA, the 
rate at which individuals gather goal-relevant evidence to make adaptive choices, is a 
foundational mechanism that drives individual differences across many cognitive functions and 
has clear relevance to psychiatric disorders5,6,18. Although evidence accumulation processes are 
well-characterized at the level of discrete neurophysiological recordings during decision 
making2,19–23,55, the role of largescale brain networks in supporting individual differences in EEA 
remains poorly understood. The current study is the first to document a pattern of largescale 
brain network dynamics that shows strong and generalizable associations with EEA across two 
large, diverse samples of children and adults. We demonstrate that neural responses to cognitive 
demand on the n-back can account for a large portion of the variance in EEA on the task and that 
this association is largely driven by neural responses across the FPN and DAN, two “task-
positive” networks involved in the control of attention and goal-directed cognition. Crucially, we 
find a divergent pattern in which individuals with higher EEA exhibit both higher activity in 
task-positive networks during a difficult task condition with high cognitive demands (2-back) as 
well as lower activity in these same networks during a less demanding task condition (0-back). 
Although these findings are consistent with prior work suggesting that evidence accumulation 
processes are supported by FPN regions34,38, the current study goes beyond this work in 
demonstrating a critical role for flexible adaptation of task-positive networks. That is, we 
demonstrated that dynamic changes in the activity of task-positive networks across different 
levels of cognitive demand, rather than these networks’ static properties, are closely linked to 
EEA. Indeed, FPN and DAN activation measures drawn from only single levels of cognitive 
demand showed systematically weaker associations with EEA than measures of differences in 
FPN and DAN activation across high- and low-demand levels.  
 
This set of findings naturally raises the question of how these complex network dynamics relate 
to the process interpretation of EEA in the cognitive modeling framework. As EEA is a formal 
index of the extent to which individuals can selectively parse goal-relevant evidence from noise 
in order to make adaptive choices during behavioral tasks18, its opposing relations with task-
positive network activity across the 0-back and 2-back conditions could reflect the modulation of 
attention. Specifically, during a difficult task that requires significant attentional resources (2-
back), individuals with high EEA may allocate more attention to task-relevant features, resulting 
in greater 2-back activation in networks linked to attentional control and external task 
engagement. However, when the task at hand is relatively easy and does not require significant 
attentional resources to perform, individuals with high EEA may re-allocate attention away from 
the task at hand in order to preserve these resources, leading to decreased activation in the same 
networks. These complementary processes, the allocation of attention to tasks that strongly 
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require it and the efficient redistribution of attention during those do not, both arguably reflect 
flexible modulation of attention in response to environmental demands. 
 
Such an explanation is notably consistent with the established conceptualization of attentional 
modulation posited in “adaptive gain” theory51. This theory posits that the norepinephrine system 
supports cognitive performance by optimizing an individuals’ trade-off between exploitation of 
specific tasks and exploration of the larger environment. When task performance is not optimal, 
or in other words when an individual is failing to extract the maximum amount of reward from a 
task, adaptive gain theory posits that the norepinephrine system works in coordination with 
prefrontal cortical areas to increase neural signal-to-noise ratios through the allocation of 
attention to the task-relevant stimuli. However, when further allocation of attention to a task is 
less likely to increase rewards (e.g., on a less demanding task), the same systems serve to 
disengage attention from the task at hand in order to re-allocate cognitive resources to the 
exploration of the environment in search of more rewarding behaviors. As EEA in cognitive 
models is a formal representation of the signal-to-noise ratio in the decision process, adaptive 
gain theory has been invoked to explain findings of poorer EEA in ADHD as reflecting neural 
systems’ failure to flexibly modulate attention and arousal in response to external task 
demands46,47. The pattern of largescale brain network activation linked to EEA in the current 
study is consistent with this explanation, as it indicates that individuals lower in EEA engage 
networks involved in control of attention and external task processing to a similar degree 
regardless of task difficulty, whereas those with higher EEA flexibly modulate the engagement 
of these networks in response to changes in difficulty. Therefore, future work guided by adaptive 
gain theory may show promise for linking these network dynamics to the functioning of the 
norepinephrine system, especially given recent experimental findings indicating that 
norepinephrine agonists enhance individuals’ EEA13,29,56. 
 
Our findings also bear interesting connections with previous theories regarding neural correlates 
of general cognitive ability. One notable connection is with a large literature that finds individual 
differences in general cognitive ability are linked to conflicting patterns of neural recruitment 
across several neuroimaging modalities, a pattern of findings that was reconciled in a review 
proposing that these effects are moderated by cognitive demand.57. More specifically, individuals 
with higher general cognitive ability show less recruitment of neural resources in lower-demand 
tasks (greater “neural efficiency”)  but are also thought to recruit more resources in tasks with 
high demands57. As EEA appears to be a key driver of general cognitive ability5,6, the opposing 
relations between network activations at different levels of cognitive demand and EEA that are 
reported in the current study are broadly consistent with this theory. Importantly, this theory 
differs somewhat from the “adaptive gain” explanation detailed above; it posits that individuals 
with better cognitive performance differ in two distinct processes – greater neural efficiency on 
easy tasks and a separate tendency to allocate more neural resources to difficult tasks – rather 
than in the single process of flexible attention modulation. The current data cannot easily 
disambiguate between explanations, and future work would be necessary to do so. However, it 
should be noted that these explanations are not mutually exclusive and that the two-process 
explanation continues to imply greater flexibility in network modulation for individuals with 
higher EEA, as it posits that they both require fewer neural resources to perform a given task 
well and are also able to flexibly allocate more of these resources when more are needed. 
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Our results also highlight another somewhat surprising phenomenon: despite showing strongly 
opposing relations with EEA, task-positive activations in the high and low demand conditions 
are themselves positively correlated with one another, especially for adults in the HCP sample. 
This positive correlation may reflect a “general activation” dimension that represents individual 
differences in task-positive networks’ activation during most external tasks, regardless of these 
tasks’ level of demands. A key consequence of this finding is that activation in task-positive 
networks within single task conditions are more weakly related to EEA compared to differences 
in activation across high- and low-demand conditions. Therefore, from a practical standpoint of 
maximizing prediction of EEA, and perhaps other cognitive variables, from task-related 
neuroimaging data, it follows that optimal prediction may require explicit experimental 
manipulations of cognitive demands in order to measure network adaptation, which the current 
study suggests is the most robust predictor of EEA. 
 
Although we focused on canonical networks derived from resting state connectivity, it is worth 
pointing out that our results are relevant to the growing body of work on the “multiple demand 
network” (MDN), a set of structures that shows considerable overlap with the FPN and DAN and 
that appears to support cognitive performance across a wide array of tasks58,59. The generality of 
this network’s relation to task behavior has led to the suggestion that the MDN is the basis of the 
common factor that explains covariance across many “executive function” tasks54. As EEA 
shows similar task-general properties and was recently demonstrated to be a strong explanation 
for the common factor of executive functioning60, future work on the MDN may be able to 
determine whether EEA mediates the relation between demand-related MDN dynamics and 
performance on diverse executive tasks. Our findings are also notably consistent with recent 
work demonstrating that children and adults tend to activate similar brain structures in the MDN 
during task performance but that children do so to a lesser degree54. 
 

In conclusion, the current study characterizes dynamic properties of large-scale brain networks 
that show strong and replicable associations with EEA, a foundational cognitive individual 
dimension derived from a well-developed cognitive modeling literature. The findings 
specifically highlight individuals’ ability to flexibly engage, versus disengage, the FPN and DAN 
in conditions of high, versus low, cognitive demand as a key underpinning of EEA. These 
findings suggest several productive future avenues of investigation into relations among 
largescale brain network dynamics, neurotransmitter systems thought to support flexible 
behavior, and EEA’s downstream consequences for adaptive functioning and risk for clinical 
disorders.  
 
Methods 
 
HCP Sample and Data Acquisition 
 
Data for the HCP sample was taken from the HCP-1200 release 52,61. Subjects provided informed 
consent, and all study procedures were approved by the Washington University Institutional 
Review Board.  

Subjects completed two runs of an N-back working memory task (approximately 5 minutes each, 
TR=720ms, 2.0mm isotropic voxels). High resolution (0.7 mm isotropic) T1-weighted and T2-
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weighted images were also collected and used for data processing. Comprehensive details are 
available elsewhere on HCP's overall neuroimaging approach 52,62 and HCP's task fMRI 
dataset63.  

Following exclusions for neuroimaging and behavioral data quality (described below), a total of 
883 participants (465 females; mean age = 28.6, SD age = 3.7) were included in analyses. 

 
ABCD Sample and Data Acquisition 
 
The ABCD Study is a multisite longitudinal study with 11,875 children between 9 and 10 years 
of age from 22 sites across the United States53. The study conforms to the rules and procedures 
of each site’s Institutional Review Board, and all participants provide informed consent (parents) 
or assent (children). Data for this study are from ABCD Release 4.0. 

High spatial (2.4 mm isotropic) and temporal resolution (TR=800 ms) resting state fMRI was 
acquired for the emotional N-back task in two separate runs (approximately 5 minutes each). 
High resolution (1 mm isotropic) T1-weighted and T2-weighted images were also collected and 
used for data processing.  

Following exclusions for neuroimaging and behavioral data quality (described below), a total of 
4,315 participants (2,182 females; mean age = 10.0, SD age = 0.63) were included in analyses. 

 

Neuroimaging Data Processing 
 
Preprocessing was performed using fMRIPrep version 1.5.064. Briefly, T1-weighted (T1w) and 
T2-weighted images were run through recon-all using FreeSurfer v6.0.1. Functional data were 
corrected for fieldmap distortions, rigidly coregistered to the T1, motion corrected, normalized to 
standard space, and transformed to CIFTI space with 91,282 grayordinates. All preprocessed 
data were visually inspected separately for the quality of the registration to the T1w image and 
the quality of the normalization to MNI space.  

Task models were constructed following HCP scripts. Models were constructed using FSL 
(6.0.5.2) in a two-stage procedure, estimating each run, and then averaging runs. CIFTI data 
were smoothed with a 2mm FWHM Gaussian using HCP Connectome Workbench (1.4.2). 
Images were then high pass filtered at 0.005 Hz. Nuisance covariates in the first level models 
consisted of 24 motion correction parameters (3 rotation, 3 translation, first derivatives of each, 
and quadratics of original and derivatives), top 5 principal components of signal from white 
matter, top 5 principal components of signal from cerebrospinal fluid, and individual regressors 
for each TR that exceeded a 0.9mm framewise displacement. Task conditions modeled included 
0-back and 2-back for each category of stimuli (HCP: faces, places, body parts, tools; ABCD: 
happy faces, neutral faces, fearful faces, places). Linear contrasts were constructed for contrasts 
of interest: 0-back, 2-back, 2-back vs 0-back. 
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Individual runs were considered good if they passed visual inspection and had at least 4 minutes 
of uncensored data. Subjects were only included if they had two good runs and complete task 
behavioral data that met the inclusion criteria described in the section below.   

 
EEA Estimation 
 
EEA was estimated by fitting the diffusion decision model (DDM), a widely used evidence 
accumulation model65, to data from the n-back task in both the ABCD and HCP samples using 
Bayesian estimation methods implemented within the Dynamic Models of Choice (DMC)66 suite 
of R functions. In both samples, participants completed 80 trials in each of the two cognitive load 
conditions (0-back, 2-back). Specific details of the stimuli and task parameters are described in 
detail elsewhere52,53,63. At both levels of load, trials could be 1) “target” stimuli, which meet 
specific criteria for being targets (e.g., in the 2-back, stimuli that were previously presented 
exactly 2 spaces back), 2) “novel” stimuli, which are stimuli that have never been presented 
before, 3) “lure” stimuli, which were recently presented stimuli that do not meet the specific 
criteria for being targets. Lures are more difficult for participants to reject and ensure that 
participants are applying the full target criteria while completing the task rather than relying on 
the familiarity of stimuli, alone. The DDM included eight parameters for each level of cognitive 
load (0-back/2-back): three separate drift rate (v) parameters for target, novel, and lure stimuli, 
single boundary separation (a), non-decision time (t0), non-decision time variability (st0), and 
start point (z) parameters, and a parameter for the probability of “contaminant omissions”, which 
are non-responses due to causes outside of the main DDM response process (e.g., inattention)67. 
Omissions due to the task design (i.e., response cut off by the 2-second response window) were 
also addressed using methods developed in prior work on addressing omissions with evidence 
accumulation models67. The two other variability parameters included in the “full” DDM (sv, sz) 
were not estimated due to difficulties with accurately recovering these parameters at low 
numbers of trials.  
 
Prior to estimation, we excluded individuals’ data if they displayed accuracy rates close to 
chance (<55%) or excessive rates of omissions/non-responses (>25%) in a given load condition, 
both of which indicate likely disengagement from the task. We also excluded RTs <200ms as 
these RTs are likely to reflect fast guesses by participants. Informative priors for parameter 
estimates were generated following a procedure we previously developed68. A hierarchical 
version of the DDM was fit to an independent sample of 300 ABCD participants who had failed 
neuroimaging data quality checks but not behavioral data quality checks and who were unrelated 
to the ABCD participants included in the main analyses of this study. Following parameter 
estimation for this independent subsample, we fit truncated normal distributions to the full 
distribution of all individual-level posterior samples for each parameter. These truncated normal 
distributions were then used as informative priors for model fits in the ABCD sample. For the 
HCP sample, we multiplied the scale of these priors by 1.5 to make them slightly less 
informative given that the adults in HCP likely display some developmental differences relative 
to the prior-generation sample drawn from children in ABCD.  
 
The DDM was then estimated under informative priors at the individual level using the 
automated RUN.dmc() function that repeats the posterior sampling process until convergence is 
obtained (rhat <1.1). Convergence was corroborated by visually inspecting a subset of 
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individuals’ sampling chains. Model fit was assessed using posterior predictive plots69, which 
indicated that the model provided an adequate description of the behavioral data in both samples 
(Supplemental Figures 1-2). Posterior medians for the drift rate (v) parameter were averaged 
across the three types of stimuli (target, novel, lure) to index individuals’ EEA at each level of 
cognitive load. 
 
Multivariate Predictive Modeling 
 
Subject level contrast images for 2-back vs 0-back were used in a cross-validated principal 
components regression (PCR) predictive model40. In brief, this method performs dimensionality 
reduction on input data, fits a regression model on the resulting components, and applies this 
model out of sample in a 10-fold (HCP) or leave-one-site-out (ABCD) cross-validation 
framework. Nuisance covariates (age, age squared, sex, race/ethnicity, framewise displacement 
estimate of motion, framewise displacement squared) are handled by calculating a cross-
validated form of partial correlation. In each training fold after the PCA is conducted to reduce 
the data, K components are retained, with the optimal value for K being estimated with a nested 
5-fold cross-validation within just the training data. Both the component expressions as well as 
the outcome variable are regressed against nuisance variables. The betas estimated from this 
model are used to residualize both the training and test data, then a linear model is fit on the 
training data to predict the residualized outcome with the residualized expressions. This model is 
then applied to the test data to get a predicted value, which can then be correlated with the 
residualized outcome to get an out-of-sample partial correlation estimate. This is repeated for 
each fold, and then the per-fold correlations are averaged across folds.  

 
Network Activation Extractions 
 
Average FPN and DAN activation values are calculated from the 0-back and 2-back contrast 
images separately. The contrasts are averaged within each network, using the 7-network 
parcellation from Yeo70. 
 
Relations Among Network Metrics and EEA 
 
Following predictive modeling analyses and extractions of FPN and DAN network means, we 
assessed correlation coefficients (r) for relations among EEA and average 0-back, 2-back, and 
cognitive load contrast (2-back minus 0-back) activation values for each network. For all 
analyses involving EEA and these network summary variables, nuisance covariates (age, age 
squared, sex, race/ethnicity, framewise displacement estimate of motion, framewise 
displacement squared) were addressed by fitting multiple regression models in which each 
variable of interest was predicted by all nuisance covariates. Residuals from these models were 
used in all analyses and plots except for the binned EEA plots in Figure 4, which used raw values 
of all variables for interpretability. Sensitivity analyses revealed no substantive differences 
between inferences drawn from raw versus covariate-residualized values (Supplemental 
Materials; Supplemental Table 1; Supplemental Figure 3). A clustered bootstrapping procedure 
was used to estimate 95% confidence intervals (CIs) for r while accounting for nesting of 
individuals within families and ABCD sites.  
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