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Abstract

Efficiency of evidence accumulation (EEA), an individual’s ability to selectively gather goal-
relevant information to make adaptive choices, is thought to be a key neurocomputational
mechanism associated with cognitive functioning and transdiagnostic risk for psychopathology.
However, the neural basis of individual differences in EEA is poorly understood, especially
regarding the role of largescale brain network dynamics. We leverage data from over 5,000
participants from the Human Connectome Project and Adolescent Brain Cognitive Development
Study to demonstrate a strong association between EEA and flexible adaptation to cognitive
demand in “task-positive” frontoparietal and dorsal attention networks, which explains 36%-39%
of the variance across individuals in EEA. Notably, individuals with higher EEA displayed
divergent task-positive network activation across n-back task conditions: higher activation under
high cognitive demand (2-back) and lower activation under low demand (0-back). These findings
suggest that brain networks’ flexible adaptation to cognitive demands is a key neural
underpinning of EEA.

Introduction

Evidence accumulation models! posit that individuals complete many cognitive tasks by
gradually accumulating noisy evidence for each possible choice until evidence for one choice
reaches a critical threshold. This class of formal models has been highly successful at explaining
key features of choice response time data and is now considered one of the predominant
mathematical frameworks for modeling task performance across a wide variety of cognitive
domains in the psychological and neural sciences'™.

A growing literature has recently begun to reveal how the latent psychological mechanisms
posited by evidence accumulation models contribute to higher-order cognition and behavior.
Efficiency of evidence accumulation (EEA), or the ability to selectively accumulate goal-
relevant evidence to make adaptive choices in the context of noisy information, appears to be a
task-general process and a key underpinning of higher-order cognitive functions, including
working memory and general intelligence*°. In parallel, recent applications of these models in
clinical research have demonstrated that EEA is significantly reduced across multiple disorders,
including attention-deficit/hyperactivity disorder (ADHD)!*!3, schizophrenia'*!3, bipolar
disorder'®, and problematic substance use!’, suggesting that lower EEA is a transdiagnostic
cognitive risk factor for psychopathology!®!®,

EEA’s relevance to cognitive functioning and psychiatric disorders has led to increasing interest
in identifying its neural underpinnings. Experimental work in non-human primates has
documented ramping patterns in neural firing rates during decision-making that display
properties consistent with evidence accumulation processes>!*?* and parallel signatures have
been identified in humans using electroencephalogram (EEG)**?° and functional magnetic
resonance imaging (fMRI)*%3. Although multiple brain areas appear to be involved, converging
evidence suggests that the frontoparietal network (FPN), a group of brain regions associated with
task performance and cognitive control, plays a central role**. Outside of this experimental
literature, recent studies using disparate methodologies have found that better EEA is associated
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with activation in the inferior parietal lobe during decision-making®, greater error-related
activations in the salience network>®, and a marker of neural speed derived from several EEG
components®’. Additionally, a recent multimodal neuroimaging investigation that focused on the
dorsal portion of the FPN found evidence that white matter macrostructure within this
subnetwork and its functional coupling with premotor cortex were both related to EEA3®,

Despite the critical importance of this body of work for understanding the neural basis of EEA, a
key limitation is that each of these studies had a constrained focus on specific brain regions or
narrow subnetworks of regions. Recent research leveraging multivariate predictive modeling in
neuroimaging data has demonstrated that many cognitive and psychological variables are only
weakly associated with activity in discrete regions and are more robustly predicted by features of
largescale brain networks that are distributed across the cortex®*#!. Further, the properties of
such brain networks are far from static, and instead display dynamic adaptations and
reconfigurations to meet task demands***. Hence, although there is growing evidence that EEA
may be a key neurocomputational underpinning of cognitive and adaptive functioning, its
associations with the dynamic properties of largescale brain networks remain unclear.

In the current study, we present novel evidence that one such property shows a strong and robust
association with EEA: the degree to which “task-positive” brain networks flexibly adapt to
cognitive demand. The FPN and the dorsal attention network (DAN), another group of brain
regions associated with the top-down control of attention**, are collectively labeled “task-
positive” networks* because they reliably show increased activity in task conditions that are
cognitively demanding (i.e., difficult). As EEA is a formal measure of the ratio of task-relevant
signal to task-irrelevant noise during cognitive processing*®*’, it is conceptually linked to the
interrelated functions of the FPN, which appears to selectively facilitate goal-relevant behaviors
during task performance, and the DAN, which appears to modulate attentional resources toward
goal-relevant information.

Parametric effects of cognitive demand on activity in the FPN and DAN are reliably observable
during the commonly used n-back fMRI paradigm*®*°, in which the difficulty of the cognitive
task varies as a function of how many stimuli must be actively maintained in working memory to
make accurate choices. Previous work has shown that higher levels of difficultly on the n-back
generate neural activation maps that are more closely associated with cognitive abilities than
those generated from less difficult n-back conditions®®, suggesting that the degree to which
individuals’ brain networks respond to the demands of a given task may have important
implications for task performance. As flexible adaptation of neural systems to the demands of
external tasks has long been theorized to support efficient cognitive processing*®>!, we sought to
directly assess the degree to which demand-related changes in neural activation across the FPN
and DAN are associated with EEA.

Across two large data sets spanning different developmental periods, the Human Connectome
Project (HCP)*? and the baseline sample of 9- and 10-year-old youth from Adolescent Brain
Cognitive Development™ Study (ABCD Study®)>?, we first use multivariate predictive modeling
to demonstrate that neural response to cognitive demand during the n-back explains a substantial
portion (36%-39%) of the variance in individuals” EEA on the task. We then show that this
predictive relationship can be largely attributed to EEA’s association with demand-related
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activation patterns in the FPN and DAN. Critically, we provide novel evidence that this network
configuration shows divergent relations with EEA under different levels of cognitive demand;
although activation in task-positive networks during the difficult (2-back) condition is strongly
positively related to EEA, activation in these networks during the easy (0-back) condition is
strongly negatively related to EEA. These findings suggest that flexible adaptation to cognitive
demands across task-positive brain networks is a key neural underpinning of EEA and its
downstream consequences for cognition and behavior.

Results

1. Neural responses to cognitive demand during the n-back explain a sizable proportion of
the variance in individuals’ EEA on the task

We built multivariate models that used vertex-wise brain activation data from the n-back’s
cognitive load (2-0) contrast to predict EEA metrics during the n-back task (see Methods for
details on EEA metrics). We tested their generalizability in independent data using leave-one-
site-out cross-validation*” in ABCD and 10-fold cross-validation in HCP. All analyses were
adjusted for age, sex, race/ethnicity, and motion (framewise displacement) using the partial
correlation technique described in Methods.

Neural responses to cognitive demand explained a large proportion of the variance across all
measures of EEA in both samples (Figure 1A) and performance was consistently high across all
ABCD sites and HCP cross-validation folds (Figure 1B). Performance of the models was highest
when predicting the average of EEA across n-back load conditions, explaining 39% of the
variance in ABCD and 36% of the variance in HCP. Predictions of EEA on the 0-back (ABCD =
32%, HCP = 35%) were slightly more accurate than predictions of EEA on the 2-back condition
(ABCD = 30%, HCP = 26%)).

This general pattern indicates that neural responses to cognitive demand are strongly related to
measures of EEA across both levels of n-back load. Combined with the large observed
correlations between EEA measured on the 0- and 2-back tasks (ABCD r = 0.45, CI = 0.42-0.48,;
HCP r=0.54, CI1=0.48 — 0.59), these results are consistent with the hypothesis that EEA
reflects a domain-general latent process that drives performance across tasks of both low and
high complexity and has common neural underpinnings regardless of specific task demands'®.
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Figure 1. Relations between brain activation in the n-back cognitive load (2-0) contrast and
efficiency of evidence accumulation (EEA). A) Correlations between EEA values predicted by
the multivariate model and actual EEA values for the 0-back task, 2-back task, and the mean
across both tasks in the Adolescent Brain Cognitive Development Study (ABCD) and Human
Connectome Project (HCP) samples. The predicted values are drawn from models fit to
independent data using the leave-one-site-out and 10-fold cross-validation methods in the ABCD
and HCP samples, respectively. All values are residuals from regressions that adjusted for age,
sex, race/ethnicity, and motion covariates. B) Correlations between predicted and actual mean
EEA values in each of the 10 HCP test folds and each of the ABCD sites. For HCP, the density
plot represents the distribution of values, and the red line represents the average value. For
ABCD, the relation between correlations and sample size at each study site is displayed and the
average value is displayed in the gray portion at right along with its 95% confidence interval.
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2. Features predictive of EEA show substantial overlap with the task-positive network
regions activated in the n-back’s standard cognitive load contrast

Brain-wide consensus maps of feature weights from the models predicting EEA with activation
in the cognitive load (2-0) contrast showed a strong visual similarity to the same contrast’s
group-average activation maps (Figure 2). As expected, regions in the FPN and DAN were
heavily represented across both types of maps. Most of the prefrontal and midline regions
strongly activated by the load contrast were also heavily featured in the predictive model,
although there were some apparent differences between the maps in lateral parietal regions.
These spatial patterns were remarkably consistent across the ABCD and HCP samples.
However, one notable difference between the samples is the finding of generally lower effect
sizes in the group-average 2-0 activation map in ABCD relative to HCP, which could indicate
that while children and adults activate similar networks during high cognitive demand, activation
levels are generally lower in children compared to adults, consistent with recent findings>*.

Figure 2. Group-level cortical maps of effect sizes (Cohen’s d) from the n-back cognitive load
(2-0) contrast and feature weights (converted to Z-scores: mean = 0, SD = 1) from the models
predicting individuals’ n-back task performance with this contrast. A) Effect size map for the 2-0
contrast in the Adolescent Brain Cognitive Development Study (ABCD) sample. B) Effect size
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map for the 2-0 contrast in the Human Connectome Project (HCP) sample. C) Consensus feature
weight map for models predicting performance in the ABCD sample. D) Consensus feature
weight map for models predicting performance in the HCP sample.

3. Task-positive network activations during the 2-back and 0-back make significant
contributions to prediction of EEA

We sought to further parse out the role of specific task-positive networks, and their dynamic
changes across levels of cognitive demand, in predicting EEA. We therefore examined
associations among EEA, 0-back and 2-back activations in the DAN and FPN (averaged across
the entire networks’ Gordon parcellations), and load-related differences in DAN and FPN
activations (2-back minus 0-back) for both ABCD and HCP (Table 1). Load-related differences
(2-0) in the FPN and DAN showed the expected positive relations with EEA, consistent with the
idea that neural responses to cognitive demand in both the FPN and DAN make key
contributions to the fMRI data’s predictive associations.

ABCD  ABCD HCP HCP

r 95% CI r 95% CI
FPN 0 -27 24 29 -31 24 _37
FPN 2 17 22 3 .08 15 .02
FPN 2-0 36 39 .33 46 51 A1
DAN 0 07 -04 -09  -14  -07  -21
DAN 2 17 21 .14 .08 15 .00
DAN 2-0 22 24 .19 30 35 23

Table 1. Adolescent Brain Cognitive Development Study (ABCD) and Human Connectome
Project (HCP) correlations between efficiency of evidence accumulation (EEA) and average
measures of frontoparietal network (FPN) and dorsal attention network (DAN) activation for the
0-back, 2-back and cognitive load (2-0) contrast. All variables were adjusted for age, sex,
race/ethnicity, and motion (framewise displacement) by using multiple regression to remove
variance associated with these covariates. 95% confidence intervals, displayed in italics next to
each correlation, were estimated using a clustered bootstrapping procedure that accounted for
nesting by family and study site.

4. Task-positive network activations during the 2-back and 0-back are positively correlated
with one another but show strongly divergent relations with EEA

For both task-positive networks, there were strong positive correlations between each subject’s
activation in the 2-back condition and their activation in the 0-back condition, both in the HCP
sample (FPN r=0.64, CI1=0.60 — 0.68; DAN r=0.74, C1=0.71 — 0.77) and in the ABCD
sample (FPN »=0.24, C1=0.21 - 0.27; DAN r=0.36, CI = 0.33 — 0.38). These strong
dependencies were notable given that we observed strongly divergent relationships between
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activation in the 2-back and 0-back conditions and EEA (Table 1). More specifically, 2-back
task-positive network activation is positively related to EEA while 0-back activation is
negatively related to EEA. Figure 3 illustrates these complex interrelations by plotting each
individual’s 0-back activation levels on the x-axis against their 2-back activation levels on the y-
axis. The strong, positive relationship between 2-back and 0-back activation is shown by the
black dashed regression line. For both ABCD and HCP, and for both task-positive networks
(FPN and DAN), we observed a common pattern: individuals in the upper left-hand quadrant,
who have relatively greater activation in the 2-back and lower activation in the 0-back condition
(i.e., relative to the regression line) show the highest EEA, which is indicated both by the darker
red hue of the points as well as the mean standardized EEA scores displayed in the quadrant.
Individuals in the lower right-hand quadrant, who have relatively lower 2-back activation and
higher activation in the 0-back condition (relative to the regression line), show the lowest EEA.
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Figure 3. Visualization of dynamic relations between average task-positive network activation in
the 0-back and 2-back conditions and overall efficiency of evidence accumulation (EEA) on the
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task for the Adolescent Brain Cognitive Development Study (ABCD; left column) and Human
Connectome Project (HCP; right column) samples. All values were adjusted for age, sex,
race/ethnicity, and motion covariates and were then converted to standardized scores (Z-scores:
mean = 0, SD = 1) for interpretability. Individuals’ EEA is represented by the hue of the points,
with individuals higher in EEA having darker red hues. Activations of the frontoparietal network
(FPN) are shown in the top row while activations of the dorsal attention network (DAN) are
shown in the bottom row. Black dotted lines represent the regression line for relations between
0-back and 2-back task activations. Combined with the gray dotted lines representing the
average 0-back activation level, the regression lines form four quadrants that denote whether
individuals have higher or lower 2-back activation than would be expected given their level of (-
back activation. Bold numbers reflect the average EEA of individuals in each quadrant.

The preceding results highlight that, because of the positive dependency between activations
across different levels of demand, the absolute level of FPN and DAN activation during a given
task condition is relatively unimportant for predicting EEA. Rather, the more important factor is
the differences in activation between high demand and low demand conditions. Individuals for
whom this difference is large simultaneously exhibit higher than expected activation in the high-
demand (2-back) condition and lower than expected activation in the low-demand (0-back)
condition, which appears to be the key signature of better EEA. Consistent with this idea, the
correlation values reported in Table 1 indicate that variance in EEA explained by the 0-back and
2-back activations measured within individual load conditions is consistently lower than the
variance explained by differences in activation between the high demand and low demand
conditions (within condition: ABCD FPN = 10%; ABCD DAN = 3%; HCP FPN = 10%; HCP
DAN = 3%, difference between conditions: ABCD FPN = 13%; ABCD DAN = 5%; HCP FPN =
21%; HCP DAN = 9%).

5. EEA is associated with flexibility in the engagement of the FPN and DAN across
different levels of cognitive demand

The findings detailed above suggest that individuals with higher EEA on the n-back tend to be
those whose task-positive networks show higher activity in high-demand conditions but lower
activity in low-demand conditions. To directly investigate this possibility, we sorted individuals
in each sample into 10 bins ordered by EEA and plotted each bin’s mean FPN and DAN
activations (Figure 4). We also display regression lines for the association between bin order and
activation to illustrate the overall pattern. Across both task-positive networks and both samples,
greater EEA was associated with increases in network activity during the 2-back and
corresponding decreases in network activity during the 0-back. Put another way, individuals
with the lowest EEA engage these networks to a similar degree regardless of cognitive demands.
In contrast, individuals with the highest EEA display the greatest degree of flexible modulation
of task-positive network engagement in response to demands, exhibiting both the highest
activation in task positive networks in the 2-back and the lowest activation in the 0-back.
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Figure 4. Plots of mean frontoparietal network (FPN, top row) and mean dorsal attention
network (DAN, bottom row) activations in the 0-back and 2-back conditions for 10 bins of
individuals ranked by their mean EEA in the Adolescent Brain Cognitive Development Study
(ABCD; left column) and Human Connectome Project (HCP, right column) samples. Vertical
green lines around each point represent 95% confidence intervals while yellow lines highlight
the difference between 0-back and 2-back means. Dashed lines represent regression lines for the
relation between bin rank and each brain activation index.

6. Differences between samples suggest potential developmental changes in task-positive
network engagement

Although most brain network activation patterns and their associations with EEA were
remarkably consistent across the child ABCD sample and adult HCP sample, several key
differences alco emerged. As noted above, adults in HCP showed larger activation effects in the
2-0 contrast (despite showing similar spatial patterns of activation) than children in the ABCD
sample. Adults also exhibited a much stronger positive dependency in task-positive network
activations across high- and low-load conditions compared to children. In addition, the values
displayed in Figure 4 suggest possible developmental differences in overall levels of DAN
activation under low cognitive demands. DAN activations in the 2-back were generally positive
on average for both samples. However, ABCD participants’ 0-back DAN activations were
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negligible or negative on average whereas HCP participants’ DAN activations were consistently
positive on average. Although the methodological differences between the tasks and sampling
methods in ABCD and HCP (Methods) preclude strong conclusions about developmental
change, this pattern of results provides preliminary evidence that children do not consistently
engage the DAN on low-load conditions and that improvements in performance in adulthood
could be partially attributable to greater DAN engagement.

Discussion

A growing literature on computational evidence accumulation models suggests that EEA, the
rate at which individuals gather goal-relevant evidence to make adaptive choices, is a
foundational mechanism that drives individual differences across many cognitive functions and
has clear relevance to psychiatric disorders>®!8, Although evidence accumulation processes are
well-characterized at the level of discrete neurophysiological recordings during decision
making®!°2333  the role of largescale brain networks in supporting individual differences in EEA
remains poorly understood. The current study is the first to document a pattern of largescale
brain network dynamics that shows strong and generalizable associations with EEA across two
large, diverse samples of children and adults. We demonstrate that neural responses to cognitive
demand on the n-back can account for a large portion of the variance in EEA on the task and that
this association is largely driven by neural responses across the FPN and DAN, two “task-
positive” networks involved in the control of attention and goal-directed cognition. Crucially, we
find a divergent pattern in which individuals with higher EEA exhibit both higher activity in
task-positive networks during a difficult task condition with high cognitive demands (2-back) as
well as lower activity in these same networks during a less demanding task condition (0-back).
Although these findings are consistent with prior work suggesting that evidence accumulation
processes are supported by FPN regions**8, the current study goes beyond this work in
demonstrating a critical role for flexible adaptation of task-positive networks. That is, we
demonstrated that dynamic changes in the activity of task-positive networks across different
levels of cognitive demand, rather than these networks’ static properties, are closely linked to
EEA. Indeed, FPN and DAN activation measures drawn from only single levels of cognitive
demand showed systematically weaker associations with EEA than measures of differences in
FPN and DAN activation across high- and low-demand levels.

This set of findings naturally raises the question of how these complex network dynamics relate
to the process interpretation of EEA in the cognitive modeling framework. As EEA is a formal
index of the extent to which individuals can selectively parse goal-relevant evidence from noise
in order to make adaptive choices during behavioral tasks'®, its opposing relations with task-
positive network activity across the 0-back and 2-back conditions could reflect the modulation of
attention. Specifically, during a difficult task that requires significant attentional resources (2-
back), individuals with high EEA may allocate more attention to task-relevant features, resulting
in greater 2-back activation in networks linked to attentional control and external task
engagement. However, when the task at hand is relatively easy and does not require significant
attentional resources to perform, individuals with high EEA may re-allocate attention away from
the task at hand in order to preserve these resources, leading to decreased activation in the same
networks. These complementary processes, the allocation of attention to tasks that strongly
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require it and the efficient redistribution of attention during those do not, both arguably reflect
flexible modulation of attention in response to environmental demands.

Such an explanation is notably consistent with the established conceptualization of attentional
modulation posited in “adaptive gain” theory®'. This theory posits that the norepinephrine system
supports cognitive performance by optimizing an individuals’ trade-off between exploitation of
specific tasks and exploration of the larger environment. When task performance is not optimal,
or in other words when an individual is failing to extract the maximum amount of reward from a
task, adaptive gain theory posits that the norepinephrine system works in coordination with
prefrontal cortical areas to increase neural signal-to-noise ratios through the allocation of
attention to the task-relevant stimuli. However, when further allocation of attention to a task is
less likely to increase rewards (e.g., on a less demanding task), the same systems serve to
disengage attention from the task at hand in order to re-allocate cognitive resources to the
exploration of the environment in search of more rewarding behaviors. As EEA in cognitive
models is a formal representation of the signal-to-noise ratio in the decision process, adaptive
gain theory has been invoked to explain findings of poorer EEA in ADHD as reflecting neural
systems’ failure to flexibly modulate attention and arousal in response to external task
demands*®*’. The pattern of largescale brain network activation linked to EEA in the current
study is consistent with this explanation, as it indicates that individuals lower in EEA engage
networks involved in control of attention and external task processing to a similar degree
regardless of task difficulty, whereas those with higher EEA flexibly modulate the engagement
of these networks in response to changes in difficulty. Therefore, future work guided by adaptive
gain theory may show promise for linking these network dynamics to the functioning of the
norepinephrine system, especially given recent experimental findings indicating that
norepinephrine agonists enhance individuals’ EEA!'3-%-36,

Our findings also bear interesting connections with previous theories regarding neural correlates
of general cognitive ability. One notable connection is with a large literature that finds individual
differences in general cognitive ability are linked to conflicting patterns of neural recruitment
across several neuroimaging modalities, a pattern of findings that was reconciled in a review
proposing that these effects are moderated by cognitive demand.®’. More specifically, individuals
with higher general cognitive ability show less recruitment of neural resources in lower-demand
tasks (greater “neural efficiency’) but are also thought to recruit more resources in tasks with
high demands®’. As EEA appears to be a key driver of general cognitive ability™°, the opposing
relations between network activations at different levels of cognitive demand and EEA that are
reported in the current study are broadly consistent with this theory. Importantly, this theory
differs somewhat from the “adaptive gain” explanation detailed above; it posits that individuals
with better cognitive performance differ in two distinct processes — greater neural efficiency on
easy tasks and a separate tendency to allocate more neural resources to difficult tasks — rather
than in the single process of flexible attention modulation. The current data cannot easily
disambiguate between explanations, and future work would be necessary to do so. However, it
should be noted that these explanations are not mutually exclusive and that the two-process
explanation continues to imply greater flexibility in network modulation for individuals with
higher EEA, as it posits that they both require fewer neural resources to perform a given task
well and are also able to flexibly allocate more of these resources when more are needed.
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Our results also highlight another somewhat surprising phenomenon: despite showing strongly
opposing relations with EEA, task-positive activations in the high and low demand conditions
are themselves positively correlated with one another, especially for adults in the HCP sample.
This positive correlation may reflect a “general activation” dimension that represents individual
differences in task-positive networks’ activation during most external tasks, regardless of these
tasks’ level of demands. A key consequence of this finding is that activation in task-positive
networks within single task conditions are more weakly related to EEA compared to differences
in activation across high- and low-demand conditions. Therefore, from a practical standpoint of
maximizing prediction of EEA, and perhaps other cognitive variables, from task-related
neuroimaging data, it follows that optimal prediction may require explicit experimental
manipulations of cognitive demands in order to measure network adaptation, which the current
study suggests is the most robust predictor of EEA.

Although we focused on canonical networks derived from resting state connectivity, it is worth
pointing out that our results are relevant to the growing body of work on the “multiple demand
network” (MDN), a set of structures that shows considerable overlap with the FPN and DAN and
that appears to support cognitive performance across a wide array of tasks>®>°. The generality of
this network’s relation to task behavior has led to the suggestion that the MDN is the basis of the
common factor that explains covariance across many “executive function” tasks®*. As EEA
shows similar task-general properties and was recently demonstrated to be a strong explanation
for the common factor of executive functioning®®, future work on the MDN may be able to
determine whether EEA mediates the relation between demand-related MDN dynamics and
performance on diverse executive tasks. Our findings are also notably consistent with recent
work demonstrating that children and adults tend to activate similar brain structures in the MDN
during task performance but that children do so to a lesser degree®*.

In conclusion, the current study characterizes dynamic properties of large-scale brain networks
that show strong and replicable associations with EEA, a foundational cognitive individual
dimension derived from a well-developed cognitive modeling literature. The findings
specifically highlight individuals’ ability to flexibly engage, versus disengage, the FPN and DAN
in conditions of high, versus low, cognitive demand as a key underpinning of EEA. These
findings suggest several productive future avenues of investigation into relations among
largescale brain network dynamics, neurotransmitter systems thought to support flexible
behavior, and EEA’s downstream consequences for adaptive functioning and risk for clinical
disorders.

Methods

HCP Sample and Data Acquisition

Data for the HCP sample was taken from the HCP-1200 release *>°'. Subjects provided informed
consent, and all study procedures were approved by the Washington University Institutional
Review Board.

Subjects completed two runs of an N-back working memory task (approximately 5 minutes each,
TR=720ms, 2.0mm isotropic voxels). High resolution (0.7 mm isotropic) T1-weighted and T2-
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weighted images were also collected and used for data processing. Comprehensive details are
available elsewhere on HCP's overall neuroimaging approach %> and HCP's task fMRI
dataset®.

Following exclusions for neuroimaging and behavioral data quality (described below), a total of
883 participants (465 females; mean age = 28.6, SD age = 3.7) were included in analyses.

ABCD Sample and Data Acquisition

The ABCD Study® is a multisite longitudinal study with 11,875 children between 9 and 10 years
of age from 22 sites across the United States>>. The study conforms to the rules and procedures
of each site’s Institutional Review Board, and all participants provide informed consent (parents)
or assent (children). Data for this study are from ABCD Release 4.0.

High spatial (2.4 mm isotropic) and temporal resolution (TR=800 ms) resting state fMRI was
acquired for the emotional N-back task in two separate runs (approximately 5 minutes each).
High resolution (1 mm isotropic) T1-weighted and T2-weighted images were also collected and
used for data processing.

Following exclusions for neuroimaging and behavioral data quality (described below), a total of
4,315 participants (2,182 females; mean age = 10.0, SD age = 0.63) were included in analyses.

Neuroimaging Data Processing

Preprocessing was performed using fMRIPrep version 1.5.0%. Briefly, T1-weighted (T1w) and
T2-weighted images were run through recon-all using FreeSurfer v6.0.1. Functional data were
corrected for fieldmap distortions, rigidly coregistered to the T1, motion corrected, normalized to
standard space, and transformed to CIFTI space with 91,282 grayordinates. All preprocessed
data were visually inspected separately for the quality of the registration to the T1w image and
the quality of the normalization to MNI space.

Task models were constructed following HCP scripts. Models were constructed using FSL
(6.0.5.2) in a two-stage procedure, estimating each run, and then averaging runs. CIFTI data
were smoothed with a 2mm FWHM Gaussian using HCP Connectome Workbench (1.4.2).
Images were then high pass filtered at 0.005 Hz. Nuisance covariates in the first level models
consisted of 24 motion correction parameters (3 rotation, 3 translation, first derivatives of each,
and quadratics of original and derivatives), top 5 principal components of signal from white
matter, top 5 principal components of signal from cerebrospinal fluid, and individual regressors
for each TR that exceeded a 0.9mm framewise displacement. Task conditions modeled included
0-back and 2-back for each category of stimuli (HCP: faces, places, body parts, tools; ABCD:
happy faces, neutral faces, fearful faces, places). Linear contrasts were constructed for contrasts
of interest: 0-back, 2-back, 2-back vs 0-back.
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Individual runs were considered good if they passed visual inspection and had at least 4 minutes
of uncensored data. Subjects were only included if they had two good runs and complete task
behavioral data that met the inclusion criteria described in the section below.

EEA Estimation

EEA was estimated by fitting the diffusion decision model (DDM), a widely used evidence
accumulation model®, to data from the n-back task in both the ABCD and HCP samples using
Bayesian estimation methods implemented within the Dynamic Models of Choice (DMC)® suite
of R functions. In both samples, participants completed 80 trials in each of the two cognitive load
conditions (0-back, 2-back). Specific details of the stimuli and task parameters are described in
detail elsewhere®>3%%, At both levels of load, trials could be 1) “target” stimuli, which meet
specific criteria for being targets (e.g., in the 2-back, stimuli that were previously presented
exactly 2 spaces back), 2) “novel” stimuli, which are stimuli that have never been presented
before, 3) “lure” stimuli, which were recently presented stimuli that do not meet the specific
criteria for being targets. Lures are more difficult for participants to reject and ensure that
participants are applying the full target criteria while completing the task rather than relying on
the familiarity of stimuli, alone. The DDM included eight parameters for each level of cognitive
load (0-back/2-back): three separate drift rate (v) parameters for target, novel, and lure stimuli,
single boundary separation (@), non-decision time (¢0), non-decision time variability (sz0), and
start point (z) parameters, and a parameter for the probability of “contaminant omissions”, which
are non-responses due to causes outside of the main DDM response process (e.g., inattention)®’.
Omissions due to the task design (i.e., response cut off by the 2-second response window) were
also addressed using methods developed in prior work on addressing omissions with evidence
accumulation models®’. The two other variability parameters included in the “full” DDM (sv, sz)
were not estimated due to difficulties with accurately recovering these parameters at low
numbers of trials.

Prior to estimation, we excluded individuals’ data if they displayed accuracy rates close to
chance (<55%) or excessive rates of omissions/non-responses (>25%) in a given load condition,
both of which indicate likely disengagement from the task. We also excluded RTs <200ms as
these RTs are likely to reflect fast guesses by participants. Informative priors for parameter
estimates were generated following a procedure we previously developed®®. A hierarchical
version of the DDM was fit to an independent sample of 300 ABCD participants who had failed
neuroimaging data quality checks but not behavioral data quality checks and who were unrelated
to the ABCD participants included in the main analyses of this study. Following parameter
estimation for this independent subsample, we fit truncated normal distributions to the full
distribution of all individual-level posterior samples for each parameter. These truncated normal
distributions were then used as informative priors for model fits in the ABCD sample. For the
HCP sample, we multiplied the scale of these priors by 1.5 to make them slightly less
informative given that the adults in HCP likely display some developmental differences relative
to the prior-generation sample drawn from children in ABCD.

The DDM was then estimated under informative priors at the individual level using the
automated RUN.dmc() function that repeats the posterior sampling process until convergence is
obtained (rhat <1.1). Convergence was corroborated by visually inspecting a subset of
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individuals’ sampling chains. Model fit was assessed using posterior predictive plots®®, which
indicated that the model provided an adequate description of the behavioral data in both samples
(Supplemental Figures 1-2). Posterior medians for the drift rate (v) parameter were averaged
across the three types of stimuli (target, novel, lure) to index individuals’ EEA at each level of
cognitive load.

Multivariate Predictive Modeling

Subject level contrast images for 2-back vs 0-back were used in a cross-validated principal
components regression (PCR) predictive model*’. In brief, this method performs dimensionality
reduction on input data, fits a regression model on the resulting components, and applies this
model out of sample in a 10-fold (HCP) or leave-one-site-out (ABCD) cross-validation
framework. Nuisance covariates (age, age squared, sex, race/ethnicity, framewise displacement
estimate of motion, framewise displacement squared) are handled by calculating a cross-
validated form of partial correlation. In each training fold after the PCA is conducted to reduce
the data, K components are retained, with the optimal value for K being estimated with a nested
5-fold cross-validation within just the training data. Both the component expressions as well as
the outcome variable are regressed against nuisance variables. The betas estimated from this
model are used to residualize both the training and test data, then a linear model is fit on the
training data to predict the residualized outcome with the residualized expressions. This model is
then applied to the test data to get a predicted value, which can then be correlated with the
residualized outcome to get an out-of-sample partial correlation estimate. This is repeated for
each fold, and then the per-fold correlations are averaged across folds.

Network Activation Extractions

Average FPN and DAN activation values are calculated from the 0-back and 2-back contrast
images separately. The contrasts are averaged within each network, using the 7-network
parcellation from Yeo’’.

Relations Among Network Metrics and EEA

Following predictive modeling analyses and extractions of FPN and DAN network means, we
assessed correlation coefficients () for relations among EEA and average 0-back, 2-back, and
cognitive load contrast (2-back minus 0-back) activation values for each network. For all
analyses involving EEA and these network summary variables, nuisance covariates (age, age
squared, sex, race/ethnicity, framewise displacement estimate of motion, framewise
displacement squared) were addressed by fitting multiple regression models in which each
variable of interest was predicted by all nuisance covariates. Residuals from these models were
used in all analyses and plots except for the binned EEA plots in Figure 4, which used raw values
of all variables for interpretability. Sensitivity analyses revealed no substantive differences
between inferences drawn from raw versus covariate-residualized values (Supplemental
Materials; Supplemental Table 1; Supplemental Figure 3). A clustered bootstrapping procedure
was used to estimate 95% confidence intervals (Cls) for » while accounting for nesting of
individuals within families and ABCD sites.
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