

1 **Colonization of larval zebrafish (*Danio rerio*) with adherent-invasive *Escherichia coli***
2 **prevents recovery of the intestinal mucosa from drug-induced colitis**

3

4 Erika Flores^{1,2}, Soumita Dutta², Rachel Bosserman^{2,3}, Ambro van Hoof^{1,2}, and Anne-Marie
5 Krachler^{1,2,*}

6

7 ¹Microbiology and Infectious Diseases Program, University of Texas MD Anderson Cancer
8 Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA

9

10 ²Department of Microbiology and Molecular Genetics, The University of Texas Health Science
11 Center at Houston, Houston, TX, USA

12

13 ³Current address: Washington University, St. Louis, MO, USA

14

15 *Corresponding author: Anne.Marie.Krachler@uth.tmc.edu

16

17 **ABSTRACT**

18 Inflammatory bowel disease (IBD) is a broad term for a range of chronic intestinal disorders,
19 including Crohn's disease and ulcerative colitis. The global prevalence of IBD is rising, with over
20 one million patients affected in the US alone. Adherent-invasive *E. coli* (AIEC) is a pathobiont
21 frequently found in IBD biopsies. AIEC adhere to and invade epithelial cells, and can survive
22 inside phagocytes *in vitro*. However, how AIEC contribute to IBD *in vivo* remains unclear. Here,
23 we established a larval zebrafish (*Danio rerio*) model to study the interplay between pre-existing
24 intestinal inflammation and AIEC colonization of the gut. We used the pro-inflammatory drug
25 dextran sulfate sodium (DSS) to induce colitis. This was followed by food-borne infection of
26 larvae with AIEC using the protozoan *Paramecium caudatum*, a natural prey, as a vehicle.
27 We show that AIEC more robustly colonizes the zebrafish gut, and persists for longer, compared
28 to non-pathogenic *E. coli*. In addition, DSS induced colitis increases both bacterial burden and
29 persistence in the larval gut. We benchmark our model against existing rodent models using two
30 mutants deficient in the known AIEC virulence factors FimH and IbeA, which have virulence
31 defects in both rodent and the larval zebrafish model. Finally, we show that AIEC colonization
32 exacerbates DSS induced colitis and prevents recovery from inflammation. In conclusion, we
33 established a high-throughput, genetically tractable model to study AIEC–host interactions in the
34 context of chronic inflammation.

35

36 **IMPORTANCE**

37 Although inflammatory bowel diseases are on the rise, a lot remains to be learned about the link
38 between IBD severity and the underlying cause. Although host genetics, microbiome, and
39 environmental factors have all been shown to correlate with the development of IBD, cause and
40 effect are difficult to disentangle in this context. For example, AIEC is a known pathobiont found
41 in IBD patients, but it remains unclear if gut inflammation during IBD facilitates colonization with
42 AIEC, or if AIEC colonization makes the host more susceptible towards pro-inflammatory stimuli.
43 To develop successful therapeutics, it is critical to understand the mechanisms that contribute to
44 AIEC infections in a susceptible host. Here, we show that the larval zebrafish model recapitulates
45 key features of AIEC infections in other animal models, and can be utilized to address these gaps
46 in knowledge.

47

48 **INTRODUCTION**

49 Inflammatory bowel disease (IBD) is a broad term for chronic gastrointestinal disorders, including
50 Crohn's disease (CD) and ulcerative colitis (UC). IBD is a major issue in industrialized nations
51 and the number of cases in low-incidence areas is expected to keep rising (1, 2). Although the
52 exact cause of IBD is unknown, host genetics, environmental factors, and the gut microbiota are
53 all known disease modifiers (2).

54 Adherent-invasive *E. coli* (AIEC) is a bacterial pathobiont that colonizes the gut of both
55 healthy subjects and IBD patients, but has a higher incidence in the deceased mucosae of patients
56 with CD (21-63%) and UC (0-35.7%) (3-5). AIEC adhere to and invade intestinal epithelial cells,
57 and survive inside macrophages without inducing host cell death *in vitro*, but how exactly they
58 contribute to IBD is not well understood (6). It is thought that AIEC modify the pro-inflammatory
59 environment, or inflammation facilitates AIEC colonization, because they are often isolated from
60 lesions in patients with chronic CD as opposed to those in remission (3, 7).

61 Current animal models of AIEC include mice that express the human carcinoembryonic
62 antigen-related cell adhesion molecule 6 (CEACAM6) receptor (CEABAC10 mice), conventional
63 mice treated with broad-spectrum antibiotics, mice treated with colitis inducing agents (dextran
64 sulfate sodium (DSS) and 2,4,6-trinitro-benzene sulfonic acid), and mice that are genetically
65 susceptible to spontaneous colitis (8, 9). Although mice are powerful model organisms, they have
66 some limitations that include: expensive care, long development periods, and laborious genetic
67 manipulation. Furthermore, the scope of intravital imaging, particularly across multiple time points
68 in mice is limited, and consequently observation of bacterial invasion, bacteria – phagocyte
69 interactions and pathophysiological changes often require euthanasia. To address the above
70 mentioned gaps in knowledge, we need an animal model that allows dynamic high throughput
71 analyses and allows us to study bacteria – host cell interactions in live animals.

72 The larval zebrafish (*Danio rerio*) has emerged as a powerful tool to study bacterial
73 gastrointestinal infections because the gastrointestinal tract of larval zebrafish is physiologically
74 and functionally similar to the human intestine (10-12). Other benefits that make zebrafish an
75 effective high-throughput model organism include high fecundity, genetic tractability, and optical
76 transparency throughout development into early adulthood (10). Recent studies have shown that
77 larval zebrafish may be used to identify novel anti-inflammatory therapeutics for IBD, and that

78 zebrafish harbor several known IBD susceptibility genes (13-15). A recent adult zebrafish model
79 demonstrated beneficial effects of a probiotic *E. coli* strain on AIEC colonization (16).

80 Here, we set out to establish a model that combines a drug-inducible DSS colitis model
81 (17) and food-borne colonization with AIEC, to investigate the interplay between host
82 inflammation and AIEC colonization. We use the protozoan *Paramecium caudatum*, a natural
83 prey of larval zebrafish, as a vehicle to deliver AIEC to the larval intestine, as we have previously
84 described for other enteric pathogens (18, 19).

85 We benchmark this model using mutants of two AIEC virulence factors, FimH and IbeA,
86 with known virulence deficiencies in rodent models (20, 21). We show that deletion of the type 1
87 pili gene (*fimH*) and the gene encoding the invasion of the brain endothelium protein A (*ibeA*)
88 results in decreased AIEC burden, neutrophil recruitment, and epithelial damage. We also show
89 that IbeA contributes to AIEC invasion *in vivo*. Finally, we demonstrate that colonization with
90 AIEC hampers recovery of the intestinal epithelium from damages sustained through colitis.

91

92 RESULTS

93 **Adherent-invasive *E. coli* LF82 colonizes the larval zebrafish intestine better than non- 94 pathogenic *E. coli* MG1655**

95 We have previously established the protozoan *P. caudatum*, a natural prey of larval
96 zebrafish, as a vehicle for zebrafish infection with enteric pathogens and non-pathogenic *E. coli*
97 (18, 22-24). Internalization of bacteria by *P. caudatum* and subsequent ingestion of bacteria-loaded
98 paramecia by larvae allows for delivery of a higher bacterial dosage compared to bath immersion,
99 which is commonly used in other zebrafish infection models including the adult zebrafish AIEC
100 model (16, 22, 25). The uptake of bacteria-loaded paramecia by larvae is followed by digestion of
101 the paramecia in the anterior gut and the subsequent release of bacteria into the intestine (19).

102 Initially, we investigated the degradation and half-life of AIEC strain LF82 following
103 uptake into *P. caudatum* vacuoles. The uptake of AIEC by paramecia occurred rapidly, with an
104 average burden of 339 CFUs per paramecia quantified minutes after the introduction of AIEC
105 (**Fig.1A**). This is in accordance with other studies that show paramecia engulf their target within
106 seconds to minutes (22, 26). The half-life τ of AIEC LF82 inside of paramecia was approximately
107 2.1 hours (**Fig.1A**) and was used to determine the bacterial dosage consumed by larvae following
108 a two hour incubation with AIEC-loaded paramecia, as done previously (18). The half-life of AIEC

109 in paramecia was similar to that reported for EHEC (22), so bacteria and *P. caudatum*
110 concentrations were kept as described previously.

111 Next, we quantified the bacterial burden of AIEC LF82 in zebrafish over 30 hpi, and used
112 the non-pathogenic *E. coli* strain MG1655 as a control. Tissues from infected fish were
113 homogenized and plated on CHROMagar™ O157, which allowed us to distinguish AIEC LF82
114 (steel-blue colonies) from *E. coli* strain MG1655 (mauve), and the larva's endogenous microbiota
115 (white, **Fig. 1B**). Following food-borne delivery, AIEC and MG1655 were taken up by the larvae
116 at similar concentrations (**Fig. 1C**, 2 hpi). At later time points (6-30 hpi) AIEC formed a
117 significantly higher burden within fish than non-pathogenic *E. coli* MG1655 (**Fig. 1C**). The
118 number of MG1655 colonized samples with a bacterial burden below the detection limit increased
119 after 6 hpi, and by 24 hpi, no MG1655 was detected in any of the fish (**Fig. 1C**). To get a better
120 representation of the difference in persistence between LF82 and MG1655, the bacterial
121 persistence was quantified as the percentage of fish that contained a burden of AIEC or MG1655
122 above the detection limit (≥ 10 CFU/fish). Although bacterial persistence decreased over time for
123 both strains, AIEC LF82 was more persistent than non-pathogenic *E. coli* MG1655 (**Fig. 1D**).
124 Neither colonization with MG1655 or LF82 caused any mortality throughout the experimental
125 time course (**Fig. S1**).

126 We visualized the site of bacterial colonization within the zebrafish larvae using
127 fluorescent AIEC LF82::mCherry and MG1655::mCherry strains. At 2 hpi, both strains were
128 visible in the foregut lumen, and attached to the midgut epithelium (**Fig. 1Ei**). The localization of
129 *E. coli* relative to the intestinal epithelium was assessed using a nuclear stain and phalloidin to
130 outline the epithelium (**Fig. 1Eii-Evii**). High resolution fluorescence microscopy of the midgut
131 revealed that individual AIEC and MG1655 cells localized both along the epithelial surface and
132 inside the epithelium (**Fig. 1Eii, Ev**). By 24 hpi, luminal bacteria were no longer observed, and
133 the burden of MG1655 had decreased (**Fig. 1Eiii**), while the LF82 burden had increased, with
134 more invasion visible (**Fig. 1Evi**). At 30 hpi, MG1655 was no longer visible (**Fig. 1Eiv**), while
135 AIEC LF82 was still observed within the epithelium (**Fig. 1Evii**). Taken together, these
136 experiments showed that AIEC forms a higher burden and persists in the larval gut for longer than
137 non-pathogenic *E. coli*, most likely by invading the intestinal epithelium.

138

139 **Larval immersion in 0.5% DSS recapitulates key morphological and pro-inflammatory
140 features of previously described DSS colitis models**

141 Although AIEC is found in gastrointestinal biopsies from healthy hosts, it is more prevalent
142 in hosts experiencing chronic inflammation, such as patients suffering from IBD (27-29).

143 To address whether pre-existing inflammation affects the colonization and persistence of
144 AIEC, we expanded the larval model to include drug-induced colitis. DSS is a chemical agent that
145 induces colitis in rodent and zebrafish models. Previous studies showed that DSS causes
146 enterocolitis in larval zebrafish, with pathologies similar to those of chronic colitis in rodents (17,
147 30-32).

148 To replicate previously described DSS colitis models, we tested different DSS
149 concentrations and assessed larval survival, development, and inflammation (**Fig. 2, Fig. S2, and**
150 **Fig. 3**). The goal was to find a DSS dosing regimen that would induce a robust pro-inflammatory
151 response without causing excessive mortality. Based on the experimental parameters previously
152 described by Oehlers et al. 2012 (17), we immersed larval zebrafish in E3 media containing 0.25-
153 0.75% DSS from 3 to 6 dpf, replacing the solution daily (**Fig. 2A**). Over the course of 4 to 10 dpf
154 (7 days post DSS treatment), the percent survival of larvae administered 0.5% DSS decreased to
155 48% in comparison to untreated controls (**Fig. 2B**). The survival of DSS-treated and untreated
156 larvae was similar at 4 and 5 dpf (1- and 2- days post treatment), however changes in the survival
157 rate were observed at 6 dpf (3 days post treatment) (**Fig. 2B**). We observed that larval survival
158 stabilized 3 days after the DSS was removed, and no additional mortality was observed from 7 to
159 10 dpf. In comparison, larvae administered 0.25% DSS had a 100% survival rate and those
160 administered 0.75% DSS did not survive past 6 dpf (3 days post DSS exposure), (**Fig. S2A**).
161 Consequently, we further assessed the development and inflammatory responses of larval fish
162 treated with 0.5% DSS.

163 Prolonged treatment with 0.5% DSS led to abnormal swim bladder development over time
164 (**Fig. 2C, E**), and slightly stunted the elongation of the larval gut and overall body length (**Fig. 2D,**
165 **E and Fig. S2B, C**). Analysis of the gut to whole body ratio of untreated and DSS treated larvae
166 suggested that DSS did not disproportionately affect gut development, but rather than shorter gut
167 length was a consequence of overall shorter body length, since there was no significant difference
168 in slope between untreated and DSS larvae (**Fig. 2D**). H&E staining and histology of paraffin
169 embedded, sectioned larvae revealed normal morphology of the anterior, mid-, and posterior gut

170 of untreated larvae (**Fig. 3A**). The intestinal epithelium was intact, with intestinal folds visible in
171 the anterior gut, and mucus-producing goblet cells in the midgut epithelium (**Fig. 3Ai-iii**). In
172 contrast, the epithelium was disrupted in DSS-treated larvae, with visible fraying, corrosion of
173 intestinal folds, and epithelial detachment from the basement membrane in all three gut segments
174 (**Fig. 3Aiv-vi**).

175 Next, we studied phagocyte recruitment during DSS colitis using transgenic larvae
176 containing fluorescent neutrophils (*Tg(mpo::egfp)*) and macrophages (*Tg(mpeg1::egfp)*),
177 respectively. Neutrophils are used as readouts of intestinal inflammation because they are the first
178 responders to injuries and infections (33-36). Macrophages are also involved in the tissue repair
179 and clearance of spent neutrophils, but appear at later times points (37). Live imaging of 6 to 7 dpf
180 larvae allowed us to quantitate the number of neutrophils infiltrating the intestine. We observed
181 that neutrophil recruitment to the intestine was significantly increased in DSS-treated versus
182 untreated larvae at both 6 and 7 dpf (3 and 4 days of DSS treatment, respectively), (**Fig. 3B, C**).
183 In contrast, there was no change in the number of macrophages infiltrating the gut in untreated
184 versus DSS-treated fish (**Fig. S3**). To further evaluate pro-inflammatory signaling, we quantified
185 the expression of the key pro-inflammatory markers interleukin 8 (*cxcl8*), interleukin-1- β (*il1b*),
186 matrix metallopeptidase 9 (*mmp9*), and tumor necrosis factor-alpha (*tnfa*) at 6 and 7 dpf (3 and 4
187 days of DSS treatment, respectively). At 6 dpf, the relative expression of *cxcl8*, *il1b*, and *mmp9*
188 was significantly increased in DSS-treated larvae compared to untreated controls, whereas *tnfa*
189 expression remained constant (**Fig. 3D**). By 7 dpf the relative expression of *cxcl8*, *il1b* and *tnfa*
190 was similar in DSS-treated and untreated fish, whereas *mmp9* expression remained elevated (**Fig.**
191 **3E**). Taken together, these data recapitulate key morphological and pro-inflammatory features of
192 previously described DSS colitis models, and support our methodology of immersing larvae in
193 0.5% DSS from 3 to 6 dpf to induce chronic inflammation prior to introducing bacteria.
194

195 **196 Pre-existing DSS colitis enhances AIEC LF82 colonization, persistence, and invasion of the
gut epithelium**

197 Next, we asked whether DSS induced colitis would affect the outcome of subsequent
198 colonization by AIEC (or the non-pathogenic MG1655 strain as a control). Following the 3-day
199 DSS exposure, we introduced AIEC LF82 to larval zebrafish via food-borne infection (**Fig. 4A**).
200 Larvae that had become moribund or had a deflated swim bladder following the initial DSS

201 treatment were excluded from subsequent infection experiments. At 2 hpi, the AIEC burden in
202 DSS colitis fish was similar to the AIEC burden in untreated fish (**Fig. 4B**). However, the burden
203 of AIEC in DSS-treated larvae was higher than that of the untreated controls at 6 and 12 to 48 hpi
204 (**Fig. 4B**). Further, the persistence of LF82 in DSS-treated larvae was significantly higher
205 compared to untreated fish (**Fig. 4C**). Together, these data suggest that pre-existing inflammation
206 enhances the burden and persistence of LF82 in the intestine of larval zebrafish. These results are
207 also in accordance with those of published murine studies that show that AIEC persists longer in
208 mice with IBD compared to healthy controls (38-40).

209 To investigate whether pre-existing inflammation enhances bacterial colonization in
210 general, or specifically for AIEC, the colonization patterns of MG1655 in DSS-treated larvae were
211 also assessed. The burden and persistence of LF82 were significantly higher than those of MG1655
212 in DSS-treated fish at 2, 6, 24 and 48 hpi (**Fig. S4A, B**). These results demonstrate that pre-existing
213 colitis enhances the burden of both AIEC and non-pathogenic *E. coli*, and that AIEC LF82 still
214 colonized and persisted better compared to non-pathogenic *E. coli* in fish with colitis.

215 Colitis damages the mucosal barrier and enhances intestinal permeability, allowing for
216 increased bacterial invasion (17, 41, 42). Therefore, we asked whether pre-existing colitis would
217 affect AIEC invasion in our model. DSS-treated and untreated larvae were infected with LF82,
218 euthanized at 2, 24, and 48 hpi, and laminin and DAPI stained to assess the localization of
219 LF82::mCherry relative to the intestinal lumen, epithelium, and underlying vasculature (**Fig. 4D**).
220 At 2 hpi, LF82 cells were present within the epithelium of untreated and DSS-treated zebrafish,
221 and had begun to invade the underlying vasculature in DSS-treated but not in control fish (**Fig.**
222 **4Di, 4Div, Fig. 4E**). At 24 hpi, individual bacterial cells remained visible in untreated larvae,
223 whereas large bacterial aggregates were observed within the epithelium of DSS-treated fish (**Fig.**
224 **4Dii, 4Dv**), and increased bacterial invasion of the underlying vasculature was measured in DSS
225 fish, but not untreated controls (**Fig. 4E**). By 48 hpi the AIEC burden within the epithelium had
226 lowered (**Fig. 4Diii, 4Dvi**), but invasion of the vasculature in DSS treated fish was further elevated
227 (**Fig. 4E**). Together, these data suggest that pre-existing colitis facilitates bacterial colonization
228 and persistence, and exacerbates invasion of the bloodstream by AIEC.

229

230 **AIEC LF82 exacerbates intestinal inflammation in DSS-treated larvae**

231 Murine studies show that colonization of AIEC LF82 exacerbates intestinal inflammation
232 in DSS-treated animals and causes an immunopathology similar to that observed in IBD patients
233 (40, 43, 44). Thus, we investigated whether AIEC could exacerbate inflammation in larvae with
234 pre-existing DSS colitis. Untreated and DSS-treated larvae fed the paramecia vehicle only
235 (uninfected) were used as controls and compared to AIEC-infected fish (**Fig. 5**). The midgut of
236 untreated fish colonized with LF82 contained an increased number of mucus secreting goblet cells
237 at 2, 24, and 48 hpi compared to control fish (**Fig. 5A** vs **B**, cells containing clear/light blue mucus
238 droplets) (45). Increased goblet cells were also observed in the posterior gut of untreated larvae
239 infected with LF82 from 2 to 48 hpi (**Fig. S5F**).

240 Following DSS treatment, we observed corrosion of intestinal folds in the midgut ((**Fig.**
241 **5Ci**) and anterior gut (**Fig. S5C**) at 6 dpf (3 days post-DSS treatment). In uninfected fish, these
242 folds were partially restored at 7 and 8 dpf (1-2 days after DSS treatment had stopped, **Fig. 5Cii-**
243 **iii, Fig. S5C**), suggesting that the damaged intestinal epithelium can recover from colitis.

244 In contrast, DSS-treated larvae infected with LF82 were unable to fully recover from colitis
245 by 48 hpi, since the anterior and midgut did not recover the original intestinal fold architecture and
246 exhibited a thinner epithelial cell layer compared to DSS-treated larvae that were not infected (**Fig.**
247 **5D** vs **C**, **Fig. S5D** vs **C**). LF82 colonization did not disrupt intestinal folds in the absence of DSS
248 colitis (**Fig. 5B** and **Fig. S5B**). Together, these data suggest that AIEC LF82 alters the architecture
249 of the intestine of larvae, in untreated fish LF82 increases goblet cell number, and in DSS-exposed
250 fish it prevents epithelial healing. The increased presence of mucin-producing goblet cells may
251 indicate a host-defense response to fight off bacterial infections whereas flattening of the intestinal
252 villi may be due to inflammation (46).

253 To further examine the effect of LF82 on inflammation, neutrophil recruitment was
254 assessed, and induction of inflammatory markers was quantified using qRT-PCR. In untreated fish,
255 AIEC colonization did not affect neutrophil recruitment to the gut (**Fig. 5E**, **F**). Similarly, in
256 uninfected fish, neutrophil recruitment to the intestine was unchanged following DSS treatment
257 (**Fig. 5E**, **F**). In contrast, DSS treatment and subsequent AIEC colonization had an additive effect
258 and increased neutrophil recruitment (**Fig. 5E**, **F**). Macrophage recruitment to the intestine was
259 not significantly affected either by DSS treatment or AIEC (**Fig. S6**). Expression of inflammatory
260 markers *cxcl8*, *il1b*, and *mmp9* was slightly elevated following DSS treatment alone, and

261 significantly increased in DSS colitis fish colonized with AIEC (**Fig. 5G**). Comparison of marker
262 expression following AIEC colonization of untreated or DSS colitis fish further showed that DSS
263 colitis and AIEC infection have an additive effect on pro-inflammatory signaling (**Fig. S7**).

264 The observed increase in epithelial damage and pro-inflammatory response following
265 LF82 infection in DSS colitis fish may contribute to the increase in mortality of DSS-treated larvae
266 infected with AIEC LF82, relative to DSS alone or DSS larvae fed paramecia only (**Fig. 5H**).
267 Together these data suggest that AIEC colonization in healthy fish causes little epithelial damage
268 and inflammation, but exacerbates inflammation and tissue damage in hosts with pre-existing
269 colitis.

270

271 **FimH and IbeA contribute to AIEC virulence in larval zebrafish**

272 Next, we investigated whether the larval zebrafish model is suitable for the characterization
273 and/or identification of virulence factors involved in *in vivo* infections by characterizing the
274 phenotypes of two known AIEC virulence factors, FimH and IbeA, as a benchmark. FimH is the
275 terminal subunit of type I pili and binds collagen type I and type IV, laminin, fibronectin, and
276 mannosylated glycoproteins (47). FimH of AIEC LF82 adheres to the human CEACAM6 receptor
277 that is abnormally expressed in the ileum of CD patients and expressed in transgenic CEABAC10
278 mice (8, 21). It is hypothesized that the presence of CEACAM6 receptors in a host promotes the
279 colonization of AIEC and indirectly contributes to intestinal inflammation, since binding of AIEC
280 to CEACAM6 through FimH triggers intestinal inflammation in CEABAC10 mice (48). IbeA is
281 an invasin and outer membrane protein conserved in the *E. coli* phylogenetic group B2, which
282 includes avian pathogenic *E. coli*, newborn meningitis-causing *E. coli*, and AIEC strains
283 NRG857C and LF82 (20). BLAST analyses show that the IbeA protein in these pathogenic *E. coli*
284 strains are 100% identical (data not shown). IbeA binds to vimentin found in macrophages,
285 fibroblasts, and endothelial cells, and mediates the invasion of Caco-2 and M-like cells by AIEC
286 strain NRG857c (20).

287 To investigate whether FimH and IbeA play a role in the colonization and invasion of AIEC
288 LF82 in zebrafish larvae, these genes were deleted from the parent strain and complemented by
289 inserting *fimH* or *ibeA* with their endogenous promoters into the chromosome. Deletion and
290 complementation of either gene did not affect the overall growth of AIEC LF82 (**Fig. S8**). There

291 were no fortuitous mutations identified in the deletion and complement strains, which were
292 subjected to whole genome sequencing.

293 Deletion of *fimH* but not of *ibeA* significantly increased larval survival, and the defect was
294 restored in the LF82 Δ *fimH*:*fimH* complementation strain (**Fig. 6A, B**). *FimH* and *ibeA* deletion
295 and complementation strains were taken up into the larval gut at similar levels than the wild type
296 strain (**Fig. 6C, D**, 0 hpi). Interestingly, deletion of either *fimH* or *ibeA* initially increased AIEC
297 colonization, but led to a colonization defect at 48 hpi. Complementation of *fimH* and *ibeA* restored
298 wild type colonization levels (**Fig. 6C, D**). Bacterial persistence was unaffected by *fimH* deletion
299 (**Fig. 6E**), but decreased upon deletion of *ibeA* (**Fig. 6F**). Next, we asked whether the deletion of
300 *fimH* or *ibeA* affected the invasion of the epithelium by AIEC. Infected larvae were euthanized,
301 fixed, and stained with anti-laminin and DAPI to visualize the localization of LF82 Δ *fimH*:*mcherry*
302 and LF82 Δ *ibeA*:*mcherry* and complementation strains over the course of 48 hpi. Deletion of either
303 *fimH* or *ibeA* caused a transient increase in bacterial burden at 2 hpi (**Fig. 7A-Ei**), followed by
304 significantly decreased colonization at 24-48 hpi, (**Fig. 7A-Eii and iii**) consistent with the CFU
305 burden data (**Fig. 6C, D**). Interestingly, while the *fimH* mutant was still able to invade the
306 epithelium, the *ibeA* mutant mainly colonized and formed aggregates at the epithelial surface (**Fig.**
307 **7D**). Complementation of *fimH* and *ibeA* restored wild type adherence and invasion (**Fig. 7C, E**).
308 These data suggest that FimH and IbeA both contribute to aspects of pathogenesis, but play distinct
309 roles in bacterial adherence and invasion.

310

311 **FimH and IbeA contribute to pro-inflammatory response during AIEC colonization and**
312 **prevent epithelial recovery from colitis**

313 Since both FimH and IbeA are bacterial surface proteins, we next asked if they contribute
314 to the pro-inflammatory response to AIEC colonization in DSS colitis fish. Histology of midgut
315 sections from infected DSS colitis fish showed that colonization with wild type or
316 complementation strains prevented recovery from DSS colitis, and corrosion of intestinal folds
317 persisted even 2 days after DSS treatment had been discontinued (**Fig. 8A**, 24-48 hpi). In contrast,
318 healthy epithelial morphology was restored following infection with either *fimH* or *ibeA* deletion
319 strains (**Fig. 8B, D**). Lastly, we studied how FimH and IbeA contribute to AIEC immunogenicity,
320 by quantifying neutrophil recruitment to the gut. Fish infected with LF82 WT recruited more
321 neutrophils to the intestine compared to either uninfected, paramecia-fed fish, or fish harboring

322 LF82 Δ fimH and LF82 Δ ibeA (**Fig. 8F**). Complementation of *fimH* resulted in increased neutrophil
323 recruitment similar to or in the case of *ibeA*, more neutrophil recruitment than wild type infection.

324 Taken together, these data suggest that both FimH and IbeA contribute to pro-inflammatory
325 signaling in response to AIEC infection, and contribute to attenuation of epithelial recovery in
326 DSS colitis fish.

327

328 **DISCUSSION**

329 In this study, we present the larval zebrafish as a model to study the interplay between host
330 inflammatory responses and AIEC colonization. During the initial hours post infection, AIEC is
331 observed colonizing the foregut and the midgut, however over the course of infection, AIEC shows
332 a preference for colonizing the midgut of larvae, similar to EHEC (22). This region of the intestine
333 contains absorptive enterocytes, mucin secreting goblet cells, and M-like cells, all of which are
334 also found in the mammalian small intestine (49). Accordingly, AIEC predominantly colonizes
335 the mammalian small intestine compared to the colon of IBD patients (3, 50-52).

336 By combining a previously published DSS colitis model (17) with food-borne AIEC
337 infection in larval zebrafish, we were able to analyze host-microbe interactions in a dynamic
338 fashion, using intravital and high-resolution imaging of live and euthanized larvae. We observed
339 that AIEC LF82 colonizes better than non-pathogenic *E. coli* in hosts with and without pre-existing
340 intestinal inflammation, which is in accordance with observations reported in murine studies (38).
341 To date it is still unknown whether the colonization of AIEC in a susceptible host triggers the onset
342 of intestinal inflammation or if inflammation presents a favorable environment for the AIEC
343 pathotype. Our data suggest that AIEC persist and promote inflammation in healthy hosts, but is
344 particularly adapted to colonize and persist in hosts with ongoing colitis. The data also suggests
345 that, while uninfected hosts can recover from colitis after removal of pro-inflammatory stimuli
346 (here, DSS), tissue repair and healing are impaired in hosts colonized with AIEC.

347 There are a few differences between rodent and zebrafish models of AIEC. Although both
348 mice and larval zebrafish have an endogenous microbiota, the rodent microbiome renders mice
349 highly colonization resistant, and AIEC models involve antibiotic treatment to remove much of
350 the endogenous microbiome to allow for AIEC colonization. In contrast, larval zebrafish do not
351 need to be treated with antibiotics to remove the endogenous microbiome, and a single dose of
352 10^4 - 10^5 CFUs of AIEC consumed through food-borne infection is sufficient to promote bacterial

353 colonization. Mice are usually challenged with 10^8 - 10^9 CFUs of AIEC through oral gavage daily
354 for 3 or 15 days, making them more labor intensive (8, 39, 53). The existing zebrafish model of
355 AIEC infection only requires bath immersion, but adult zebrafish are required to achieve robust
356 colonization (16). Here, we found that AIEC colonization causes increased mortality in DSS
357 colitis fish, compared to unfed or paramecia fed DSS treated fish (**Fig. 5H**). This is consistent with
358 mouse studies, where AIEC LF82, but not *E. coli* strain K 12, decreases the survival of CEBAC10
359 and DSS-treated beginning at 2 dpi, and by 7 dpi the survival rate of the host is 20% (8).

360 We found that AIEC LF82 exacerbates intestinal inflammation in hosts with pre-existing
361 inflammation. This is supported by an increase in neutrophil recruitment to the intestine, the
362 inability of the mid-intestine to heal while colonized with AIEC, and the increased relative
363 expression of the genes encoding the pro-inflammatory markers *cxcl8*, *il1b*, and *mmp9*. *Cxcl8* is
364 primarily associated with the activation and mobilization of neutrophils, whereas *Tnf α* and *Il-1 β*
365 are involved in signaling pathways that regulate apoptosis and cell survival (54). *Mmp9* degrades
366 the extracellular matrix during inflammation and through this process activates cytokines that
367 mediate tissue and wound healing (55), however its activation can also contribute to intestinal
368 damage during IBD (56).

369 To investigate whether *fimH* and *ibeA* are important for the colonization of AIEC in the
370 zebrafish intestine, these 2 genes were deleted from the parent strain. These two genes have been
371 previously characterized *in vivo* and *in vitro*, and thus we reasoned that characterizing their
372 phenotypes would allow us to benchmark our model against published *in vivo* and *in vitro* AIEC
373 models. Prior studies show that the burden of AIEC LF82 Δ *fimH* is significantly decreased at 2 and
374 10 dpi in two different mouse models that express mammalian CEACAM6 in the intestine (8, 57).
375 Deletion of *ibeA* did not impact the burden of AIEC strain NRG857c in mice, although it did
376 contribute to invasion and intracellular survival *in vitro* (20). In the larval zebrafish model, deletion
377 of either *fimH* or *ibeA* transiently caused a higher bacterial burden early during infection, but
378 decreased bacterial burden at later time points (Fig. 6, 7). A possible reason is that LF82 express
379 additional virulence factors involved in adhesion, including OmpA, OmpC, long polar fimbriae,
380 and the lipoprotein NlpI (58-62). Alternatively, the transient increase in burden could be due to an
381 altered immune response, since both FimH and IbeA are involved in neutrophil recruitment and
382 pro-inflammatory signaling in our model (**Fig. 8**). It is possible that *fimH* or *ibeA* deletion cause a
383 defect in bacterial clearance early during infection, and adhesion and invasion defects during later

384 time points. In addition to their immunogenicity, FimH and IbeA both played a role in sustaining
385 epithelial damage and prevention of healing in DSS colitis fish. It is likely that their role in pro-
386 inflammatory signaling and in blocking tissue recovery are linked. Our findings are in line with
387 other studies that show that the colonic epithelium of mice infected with LF82 Δ fimH and
388 NRG857c Δ ibeA appears less corroded than that of mice infected with the parent strains (8, 20).

389 Recently published work established adult zebrafish as a model of AIEC infection and
390 showed that adult zebrafish produce S100A-10b, a protein homologous to calprotectin, in response
391 to intestinal inflammation caused by LF82 (16). This recent study further supports the observation
392 that AIEC induce inflammation in zebrafish. The decision to use adult or larval zebrafish to study
393 AIEC depends on the type of readouts required to address a question of interest. In contrast to
394 larvae, adult zebrafish are not transparent, which hinders dynamic imaging of single cells.
395 However, in contrast to larvae adult fish have a functional adaptive immune system, which allows
396 studies on this aspect of host-microbe interactions.

397 The reason why AIEC colonizes hosts with pre-existing inflammation more efficiently than
398 untreated fish is not well understood, but there are several potential explanations for this
399 observation. First, DSS damages the intestinal barrier and facilitates the adhesion and invasion of
400 AIEC, which results in bacterial localization closer to the epithelial basement membrane (**Fig. 4**
401 **Dvi**). As a result, the bacteria are farther away from the lumen and fail to be cleared out by
402 peristaltic contractions (63). Within the basement membrane, fibronectin, collagen types IV, VII
403 and XVIII, and laminin are abundant, and these host proteins are all known to bind several bacterial
404 adhesins (64). A second reason may be that DSS changes the composition of the intestinal
405 microbiota that may otherwise limit AIEC colonization. Studies show that the administration of
406 the colitis inducing drug 2,4,6-trinitro-benzene sulfonic acid to larval zebrafish changes the
407 proportion of species belonging to the Proteobacteria and Firmicutes phyla (65). Third, intestinal
408 inflammation may cause the overexpression of a receptor important for binding of AIEC. *In vitro*
409 studies suggest that AIEC can increase the expression of host adhesin receptors. For example, the
410 binding of LF82 through FimH to CEACAM6 induces blebbing of apoptotic cell-derived
411 membranous vesicles, which exposes oligomannosidic glycans that serve as AIEC binding sites
412 (66). Moreover, the expression of CEACAM6 is increased by TNF α and IFN- γ following AIEC
413 infections (67). CEACAM receptors are cell-surface glycoproteins expressed in epithelial,
414 endothelial, and myeloid cells (8) (68). To date, twelve human CEACAM receptors have been

415 identified and fully characterized (68). In contrast, ten putative CEACAM receptors have been
416 identified in the zebrafish genome and only one CEACAM protein (CEACAMz1) has been
417 characterized. CEACAMz1 is predominantly expressed in gills and to a lesser extent in the
418 intestine (69). Interestingly, mammalian CEACAM6 is also expressed in the alveolar and airway
419 epithelial cells of the lungs under homeostatic conditions and is highly expressed in the gut only
420 during intestinal disease (70). Furthermore, larval zebrafish express a CEACAM6-like protein
421 (encoded by the *zgc:198329* gene) in the intestine that is 29% identical to human CEACAM6 (71).
422 Future studies are required to investigate to what extent CEACAM proteins are involved in the
423 binding of AIEC in the zebrafish intestine.

424 We propose that this model may be used identify a common AIEC molecular genetic
425 signature in genotypically diverse strains and to provide a means to develop diagnostics and
426 alternative therapeutics for IBD patients. It has been argued that a plausible reason that such
427 molecular markers have not yet been discovered arises from the limitations of currently used
428 infection models and *in vitro* models to classify *E. coli* strains as AIEC (72, 73). Previous attempts
429 to identify molecular markers of AIEC have relied on *in vitro* systems to quantify adhesion,
430 invasion, and replication inside of infected cells, since there are no widely conserved genetic
431 features, such as the LEE pathogenicity islands in EHEC/EPEC, or certain toxins, such as in the
432 case of STEC (Shiga-like toxins) and ETEC (LT/ST enterotoxins). However, it is plausible that
433 there may be genes essential for AIEC *in vivo* colonization that are not expressed in a simplified
434 *in vitro* model, or are disproportionately important in facilitating colonization only in hosts with
435 pre-existing inflammation. Comparative transcriptomic studies show that the pathogenicity of
436 AIEC changes when AIEC cells are grown *in vitro* and in the presence of host factors (50, 73, 74).
437 Whether or not AIEC contain specific molecular signatures is not currently known but it has been
438 proposed that there are undiscovered AIEC-specific genes that are not commonly found in non-
439 pathogenic *E. coli* strains that are yet to be identified (75). These are hypotheses that may be
440 addressed using transposon mutagenesis and high-throughput assays in larval zebrafish. We also
441 propose that larval zebrafish may facilitate the screening of drugs that target AIEC. Positive results
442 regarding microbial virulence factors, host factors contributing to disease progression, and initial
443 drug candidates in larval zebrafish, may then be further evaluated in mammals. We expect this to
444 present a cost-effective way to identify novel genes that link AIEC with the development or
445 progression of IBD.

446

447 **MATERIALS AND METHODS**

448

449 **Ethics Statement**

450 Zebrafish care, breeding, and experiments described here are in accordance with the Guide
451 for the Care and Use of Laboratory Animals have been approved by the Institutional Animal
452 Welfare Committee of the University of Texas Health Science Center, Houston, and protocol
453 number AWC-22-0088.

454

455 **Zebrafish maintenance and breeding**

456 The zebrafish lines used in this study were wild-type (AB) and transgenic lines
457 Tg(*mpo::egfp*) (76) and Tg(*mpeg1::egfp*) (77) which express EGFP in neutrophils and
458 macrophages, respectively. Adult fish were kept in a recirculating tank system at the University of
459 Texas Health Science Center at Houston Laboratory Animal Medicine and Care on a 14:10 h light:
460 dark cycle at pH 7.5 and 28 °C. Eggs were obtained from natural spawning of adult fish. Fertilized
461 embryos were bleached for 30 sec. in 0.05% sodium hypochlorite solution (stock 4.00-4.99%,
462 Sigma-Aldrich) and kept at 30 °C on a 14:10 h light:dark cycle at pH 7.4. Embryos were raised in
463 petri dishes containing E3 buffer (10 mM HEPES, 5 mM NaCl, 0.17 mM KCl, 0.4 mM CaCl₂,
464 0.67 mM MgSO₄, pH 7.4). The 1X E3 medium was prepared with 10mM HEPES to neutralize the
465 acidic (pH 3) solution that arose after dissolving DSS in standard E3 buffer. Larvae that were
466 maintained past 6 days post fertilization (dpf) were fed GEMMA Micro 75 (Skretting) until
467 euthanized. The larvae were maintained in 150 mm diameter petri dish containing 90 mL of E3
468 medium.

469

470 **Bacterial strains and growth conditions**

471 The bacterial strains and plasmids used in this study are listed in Table 1. All strains were
472 grown at 37°C in Luria-Bertani (LB) broth or on LB agar plates, with ampicillin (200 µg/ml),
473 kanamycin (50 µg/ml), chloramphenicol (35 µg/ml), tetracycline (10 µg/ml), or gentamycin (15
474 µg/ml), when required.

475 The LF82 deletion strains were generated using recombineering, as previously
476 described (78). Briefly, constructs were generated by amplifying a kanamycin cassette from the
477 plasmid pDOC-K using oligonucleotide pairs that contain at least 45 bp of homology to the DNA

478 immediately upstream and downstream of the target genes (Table 2). The amplified fragment was
479 inserted into the plasmid pDOC-C, and the construct sequence was verified by sequencing (Azena
480 Life Sciences). The constructed pDOC-C deletion plasmid and the recombineering plasmid
481 pACBSCE were co-transformed into LF82 via electroporation and plated on LB agar containing
482 chloramphenicol, ampicillin, and kanamycin. Selected colonies were grown in LB broth
483 containing 0.5% glucose for 2 h and then induced with 0.5% arabinose for 4 h. The cells were then
484 collected by centrifugation, and spotted on LB plates without NaCl, but containing 5% sucrose
485 and kanamycin. Sucrose insensitive and kanamycin resistant recombinant colonies were
486 transferred to LB chloramphenicol plates to confirm loss of the pACBSCE plasmid. Loss of the
487 pDOC-C plasmid was confirmed with pDOC-specific oligonucleotides. Gene deletion was
488 assessed by PCR using primers listed in Table 3.

489 The complementation strains were constructed by insertion of the gene of interest and its
490 endogenous promoter into the respective deletion strains using a Tn7 based vector system (79).
491 Briefly, the genes were cloned in pGp-Tn7-Gm, and then introduced in DH5 α - λ pir strain by
492 electroporation to construct pGp-Tn7-fimH and pGp-Tn7-ibeA vectors. Positive clones were
493 checked by colony PCR and confirmed by Sanger sequencing. The pGp-Tn7-fimH and pGp-Tn7-
494 ibeA vectors were electroporated into LF82 Δ fimH and LF82 Δ ibeA harboring the Tn7-transposase
495 encoding, temperature-sensitive plasmid pSTNSK-Cm. The cells were spread on LB plates
496 containing gentamycin and chloramphenicol, and then incubated at 30 °C for 20 hours. Selected
497 colonies were further streaked on LB agar plates without antibiotics, and incubated at 42 °C for 20
498 hours to promote the loss of plasmid pSTNSK-Cm. The colonies were passaged 4-5 times on LB
499 agar plates (no antibiotic), incubated at 37 °C, and screened for resistance to gentamycin and
500 sensitivity to chloramphenicol.

501 The deletion of *ibeA* or *fimH* and their integration at the attTn7 site was confirmed by PCR
502 (Table 4) and whole genome sequencing. Genomic DNA was isolated using DNeasy Blood and
503 Tissue kit (QIAGEN, catalog no. 69504) and analyzed by Nanopore sequencing (Plasmidsaurus).
504 Plasmidsaurus also generated a complete genome assembly and annotation. Inspection of those
505 genome assemblies showed that the intended mutations were present in the appropriate strains and
506 that the complementation constructs were correctly integrated at the expected loci. To rule out the
507 possibility that fortuitous mutations were introduced during strain construction, two bioinformatic
508 approaches were used. First, we used Snippy (<https://github.com/tseemann/snippy>) to compare the

509 nanopore reads to the reference genome (composed of the chromosome
510 https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_021398935.1/ and plasmid
511 https://www.ncbi.nlm.nih.gov/nuccore/NC_011917.1/). Second, we mapped the nanopore reads to
512 the same reference genome using Minimap2, and then used FreeBayes to identify possible single
513 nucleotide polymorphisms (SNPs). The candidate SNPs identified by either approach were
514 analyzed by inspecting the alignments with IGV
515 (<https://software.broadinstitute.org/software/igv/download>). This showed that there were no
516 fortuitous mutations that were introduced during strain construction. The *E. coli* strains were
517 electroporated with the mCherry-expressing pME6032 plasmid, to visualize the bacteria inside of
518 the zebrafish intestine.

519

520 **Burden of *E. coli* inside of paramecia and larval zebrafish infections**

521 Paramecia were propagated one day prior to the infection experiment and every 2 weeks
522 to maintain live cultures. Loading of paramecia with AIEC LF82 and MG1655 was conducted as
523 described previously (18). On the day of the experiment, paramecia were co-cultured with either
524 AIEC LF82 or MG1655, and the amount of *E. coli* inside of the paramecia was assessed by lysing
525 the paramecia with 1% Triton X-100 followed by colony forming unit (CFU) dilutions and plating,
526 as previously described (18).

527 The number of *E. coli*-loaded paramecia were counted using an automated cell counter
528 (Life Technologies Countess II) and a final concentration of 2×10^5 paramecia/mL in E3 medium
529 was used to feed *E. coli* to the larvae for 2 h at 30 °C in a 6-well sterile plate.

530

531 ***E. coli* burden and persistence in larvae**

532 The *E. coli* burden in zebrafish larvae was assessed starting two hours post infection (hpi).
533 Briefly, the larvae were anesthetized in the E3 medium with 0.16 mg/mL tricaine, and washed six
534 times to remove excess paramecia. Infected zebrafish larvae were euthanized with 1.6 mg/mL of
535 tricaine. The euthanized larvae were then incubated with 100 µL of a 1 mg/mL filter-sterilized
536 pronase solution, vortexed, and placed at 37 °C for 6 minutes. The larvae were then homogenized
537 by repeated passage through a 31-gauge needle attached to a 1 mL syringe. In all cases, the samples
538 were serially diluted, and 5 µL of each dilution was plated on CHROMagar™ O157 plates (Drg
539 International Inc). The plates were incubated at 30 °C for 24 h, and then at room temperature for

540 an additional 24 h to permit full growth of colonies. The number of dark steel-blue (AIEC) and
541 mauve (MG1655) colonies were assessed afterwards. Data were analyzed with the GraphPad
542 Prism software, version 9.

543

544 **DSS administration and survival analysis of DSS-treated larvae**

545 Colitis grade dextran sulfate sodium (DSS) (36,000-50,000 MW, MP Biomedical) was
546 used to induce enterocolitis as previously described by others (17). At 3 dpf, 120 larvae were
547 anesthetized with 0.16 mg/mL of tricaine and transferred to a 150 mm diameter petri dish
548 containing 90 mL of freshly prepared 0.5% (w/v) DSS dissolved in E3 medium. The DSS treatment
549 was followed for 3 consecutive days. Survival or death was assessed daily by observing the
550 presence or absence of a heartbeat on anaesthetized larvae using an Olympus SZX10
551 stereomicroscope. Dead larvae were removed, and the survivors were transferred to a new petri
552 dish in DSS containing E3 medium every day following assessment.

553

554 **Measurement of intestinal and body length, and swim bladder assessment**

555 All larvae were imaged on an Olympus SZX10 stereomicroscope at 1.6 X magnification.
556 Fish were anesthetized in 0.16 mg/mL tricaine and embedded in 1% low melting agarose (LMA).
557 ImageJ was used for image analysis to assess whole body and intestinal length. The length of the
558 intestine was measured from the beginning of the bulb to the end of the cloaca, and the total body
559 length was determined from the mouth to the tip of the tail. The presence of a swim bladder was
560 visualized under the stereomicroscope on anesthetized larvae. The data were analyzed using
561 GraphPad Prism.

562

563 **Histological analysis**

564 Zebrafish larvae were fixed in 4% formaldehyde diluted in PBS and incubated overnight
565 (O/N) at 4 °C. Larvae were processed for histological analyses by the UT-Health Core
566 Histopathology Lab. Briefly, larvae were embedded in paraffin, sectioned along the sagittal plane
567 at 2 µm, and stained with hematoxylin and eosin (H&E). Imaging was performed on an AmScope
568 microscope with a MU1003 camera and the AmScope software version x64, 3.7.11443.20180326.

569

570 **Neutrophil and macrophage recruitment**

571 Zebrafish larvae were anesthetized, embedded in 1% LMA in a 6-well glass bottom plate,
572 and imaged on an Olympus Fluoview FV3000 confocal microscope for 3-21 hpi. A Z-stack of 190
573 images of 2 μ m slices was analyzed with Fluoview FV3S-SW. The images were then imported
574 into the Imaris software, version 9.7.2, which was used to quantify the number of intestinal GFP-
575 expressing neutrophils or macrophages over the course of 3 to 21 hpi.

576

577 **Immunofluorescence**

578 Larvae were euthanized and placed in a 4% formaldehyde solution O/N at 4°C. Then the
579 larvae were washed twice with 1X PBS, permeabilized in acetone for 15 minutes at -20°C, and
580 incubated in PBDT blocking solution [PBS, 1% BSA, 1% DMSO, and 0.5% Triton-X100] O/N.
581 The larvae were then incubated with anti- α -laminin at a 1:25 dilution (Sigma-Aldrich, L9393) O/N
582 at 4 °C. The following day, the samples were washed and incubated with goat anti-rabbit IgG
583 Alexa Flour 488 using a 1:250 dilution (Thermo Fisher Scientific, A27034) and 1 μ M/mL 4',6-
584 diamidino-2-phenylindole (DAPI) O/N at 4 °C. The samples were then washed for 30 minutes, 3
585 times with a washing solution (1X PBS, 0.1 % Tween-20, and 0.1 % Triton X-100). Some larvae
586 were stained with phalloidin (300 units/mL) and 1 μ M/mL DAPI. Samples were imaged on a
587 confocal microscope (Olympus Fluoview FV3000 confocal microscope at 60 X magnification)
588 and images were transferred to cellSENS version 2.3 for deconvolution with five iterations.

589 **Quantification of bacteria inside of epithelium**

590 Bacteria inside of the intestinal epithelium were quantified on deconvoluted images taken
591 after immunofluorescence imaging. ImageJ was used to quantify the fluorescent signal of the
592 mCherry channel (representing bacteria) (80). The data were plotted using Graphpad Prism and
593 significance was determined using a Mann-Whitney U test.

594

595 **RNA isolation, reverse transcription, and quantitative PCR**

596 RNA was isolated from 15 zebrafish larvae for each condition. Briefly untreated or DSS-
597 treated larvae, fed or unfed paramecia, were euthanized, homogenized in TRIzol reagent (Thermo
598 Fisher, 15596026) using a disposable pellet pestle (Fisher Scientific, 12-141-364) and RNA was
599 extracted using a standard protocol (81). Isolated RNA was treated with RNase-free DNase

600 (Qiagen) and cleaned and concentrated using a Zymo Research RNA clean & Concentrator Kit.
601 Removal of DNA contamination was verified by PCR using purified RNA as template.

602 Reverse transcription was carried out using oligo (dT) primers and the SuperScript™ IV
603 First-Strand cDNA Synthesis Reaction system. The concentration of the cDNA was measured
604 using a Nanodrop-spectrophotometer and 45 ng of cDNA was used for each reaction. cDNAs and
605 primers (listed in Table 4) were mixed with Luna Universal qPCR Master mix (New England
606 Biolabs) and amplification was carried out in duplicate in a CFX96 Real-Time System C1000
607 Touch Thermal Cycler (Bio-Rad, Hercules, CA, United States). The *elfα* and *rpl13* genes were
608 used as internal controls, and the relative fold-change for each gene of interest was expressed in $2^{-\Delta\Delta CT}$,
609 where $\Delta\Delta CT = [(CT \text{ gene of interest}-CT \text{ internal control}) \text{ one condition} - (CT \text{ gene of}$
610 $\text{interest}-CT \text{ internal control}) \text{ another condition}$ (82). For DSS experiments, the DSS data were
611 normalized to the untreated group, whereas in the infection experiments the data were normalized
612 to controls fed paramecia without added bacteria.

613

614 **ACKNOWLEDGEMENTS**

615 We thank Alfredo Torres (UTMB) for sharing with us the AIEC LF82 strain and Peter Rady
616 (UTHealth Houston) for microscope use to image the histology slides. We also thank Melissa
617 Stephens and Michelle Nguyen from the UTHealth Histology Core for staining and sectioning the
618 paraffin embedded larvae. This work was supported by National Institutes of Health grant
619 R01AI132354 to AMK, and bioinformatic analysis of whole genome sequencing was supported
620 by National Institutes of Health grant R35GM141710 to AvH.

621 **REFERENCES**

622

623 1. Kaplan GG. The global burden of IBD: from 2015 to 2025. *Nat Rev Gastroenterol*
624 *Hepatol.* 2015;12(12):720-7. Epub 20150901. doi: 10.1038/nrgastro.2015.150. PubMed PMID:
625 26323879.

626 2. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence,
627 and environmental influences. *Gastroenterology.* 2004;126(6):1504-17. doi:
628 10.1053/j.gastro.2004.01.063. PubMed PMID: 15168363.

629 3. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, et al. High
630 prevalence of adherent-invasive *Escherichia coli* associated with ileal mucosa in Crohn's disease.
631 *Gastroenterology.* 2004;127(2):412-21. doi: 10.1053/j.gastro.2004.04.061. PubMed PMID:
632 15300573.

633 4. Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, et
634 al. Presence of adherent *Escherichia coli* strains in ileal mucosa of patients with Crohn's disease.
635 *Gastroenterology.* 1998;115(6):1405-13. doi: 10.1016/s0016-5085(98)70019-8. PubMed PMID:
636 9834268.

637 5. Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, et al. Adherent-invasive. *Gut.*
638 2018;67(3):574-87. Epub 20171115. doi: 10.1136/gutjnl-2017-314903. PubMed PMID:
639 29141957.

640 6. Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A.
641 Adherent invasive *Escherichia coli* strains from patients with Crohn's disease survive and
642 replicate within macrophages without inducing host cell death. *Infect Immun.* 2001;69(9):5529-
643 37. doi: 10.1128/IAI.69.9.5529-5537.2001. PubMed PMID: 11500426; PubMed Central
644 PMCID: PMCPMC98666.

645 7. Buisson A, Sokol H, Hammoudi N, Nancey S, Treton X, Nachury M, et al. Role of
646 adherent and invasive. *Gut.* 2023;72(1):39-48. Epub 20220331. doi: 10.1136/gutjnl-2021-
647 325971. PubMed PMID: 35361684.

648 8. Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan CH, Stanners CP, et al. Crohn's
649 disease adherent-invasive *Escherichia coli* colonize and induce strong gut inflammation in
650 transgenic mice expressing human CEACAM. *J Exp Med.* 2009;206(10):2179-89. Epub
651 20090908. doi: 10.1084/jem.20090741. PubMed PMID: 19737864; PubMed Central PMCID:
652 PMCPMC2757893.

653 9. Li J, Dejanovic D, Zangara MT, Chandra J, McDonald C, Rieder F. Mouse Models of
654 Intestinal Fibrosis. *Methods Mol Biol.* 2021;2299:385-403. doi: 10.1007/978-1-0716-1382-5_26.
655 PubMed PMID: 34028756; PubMed Central PMCID: PMCPMC8844945.

656 10. Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a
657 model for gastrointestinal tract-microbe interactions. *Cell Microbiol.* 2020;22(3):e13152. Epub
658 20200107. doi: 10.1111/cmi.13152. PubMed PMID: 31872937; PubMed Central PMCID:
659 PMCPMC7015812.

660 11. Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, Appel B, et al. Formation
661 of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. *Dev Biol.*
662 2005;286(1):114-35. doi: 10.1016/j.ydbio.2005.07.013. PubMed PMID: 16125164.

663 12. Pack M, Solnica-Krezel L, Malicki J, Neuhauss SC, Schier AF, Stemple DL, et al.
664 Mutations affecting development of zebrafish digestive organs. *Development* (Cambridge,
665 England). 1996;123:321-8. Epub 1996/12/01. doi: 10.1242/dev.123.1.321. PubMed PMID:
666 9007252.

667 13. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish
668 reference genome sequence and its relationship to the human genome. *Nature*.
669 2013;496(7446):498-503. Epub 20130417. doi: 10.1038/nature12111. PubMed PMID:
670 23594743; PubMed Central PMCID: PMCPMC3703927.

671 14. Oehlers SH, Flores MV, Hall CJ, Swift S, Crosier KE, Crosier PS. The inflammatory
672 bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles
673 in zebrafish. *Dis Model Mech*. 2011;4(6):832-41. Epub 20110704. doi: 10.1242/dmm.006122.
674 PubMed PMID: 21729873; PubMed Central PMCID: PMCPMC3209652.

675 15. Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F, Jun S, et al. Application of
676 Zebrafish Models in Inflammatory Bowel Disease. *Front Immunol*. 2017;8:501. Epub 20170503.
677 doi: 10.3389/fimmu.2017.00501. PubMed PMID: 28515725; PubMed Central PMCID:
678 PMCPMC5413514.

679 16. Nag D, Farr D, Raychaudhuri S, Withey JH. An adult zebrafish model for adherent-
680 invasive. *iScience*. 2022;25(7):104572. Epub 20220609. doi: 10.1016/j.isci.2022.104572.
681 PubMed PMID: 35769878; PubMed Central PMCID: PMCPMC9234234.

682 17. Oehlers SH, Flores MV, Hall CJ, Okuda KS, Sison JO, Crosier KE, et al. Chemically
683 induced intestinal damage models in zebrafish larvae. *Zebrafish*. 2013;10(2):184-93. Epub
684 20130228. doi: 10.1089/zeb.2012.0824. PubMed PMID: 23448252.

685 18. Flores E, Thompson L, Sirisaengtaksin N, Nguyen AT, Ballard A, Krachler AM. Using
686 the Protozoan *Paramecium caudatum* as a Vehicle for Food-borne Infections in Zebrafish
687 Larvae. *J Vis Exp*. 2019;(143). Epub 20190107. doi: 10.3791/58949. PubMed PMID: 30663701;
688 PubMed Central PMCID: PMCPMC8376190.

689 19. Stones DH, Fehr AGJ, Thompson L, Rocha J, Perez-Soto N, Madhavan VTP, et al.
690 Zebrafish (*Danio rerio*) as a Vertebrate Model Host To Study Colonization, Pathogenesis, and
691 Transmission of Foodborne *Escherichia coli* O157. *mSphere*. 2017;2(5). Epub 2017/09/30. doi:
692 10.1128/mSphereDirect.00365-17. PubMed PMID: 28959735; PubMed Central PMCID:
693 PMCPMC5607324.

694 20. Cieza RJ, Hu J, Ross BN, Sbrana E, Torres AG. The IbeA invasin of adherent-invasive
695 *Escherichia coli* mediates interaction with intestinal epithelia and macrophages. *Infect Immun*.
696 2015;83(5):1904-18. Epub 20150223. doi: 10.1128/IAI.03003-14. PubMed PMID: 25712929;
697 PubMed Central PMCID: PMCPMC4399045.

698 21. Dreux N, Denizot J, Martinez-Medina M, Mellmann A, Billig M, Kisiela D, et al. Point
699 mutations in FimH adhesin of Crohn's disease-associated adherent-invasive *Escherichia coli*
700 enhance intestinal inflammatory response. *PLoS Pathog*. 2013;9(1):e1003141. Epub 20130124.
701 doi: 10.1371/journal.ppat.1003141. PubMed PMID: 23358328; PubMed Central PMCID:
702 PMCPMC3554634.

703 22. Stones DH, Fehr AGJ, Thompson L, Rocha J, Perez-Soto N, Madhavan VTP, et al.
704 Zebrafish (*mSphere*. 2017;2(5). Epub 20170920. doi: 10.1128/mSphereDirect.00365-17.
705 PubMed PMID: 28959735; PubMed Central PMCID: PMCPMC5607324.

706 23. Manneh-Roussel J, Haycocks JRJ, Magán A, Perez-Soto N, Voelz K, Camilli A, et al.
707 cAMP Receptor Protein Controls *Vibrio cholerae* Gene Expression in Response to Host
708 Colonization. *mBio*. 2018;9(4). Epub 2018/07/12. doi: 10.1128/mBio.00966-18. PubMed PMID:
709 29991587; PubMed Central PMCID: PMCPMC6050953.

710 24. Fan Y, Thompson L, Lyu Z, Cameron TA, De Lay NR, Krachler AM, et al. Optimal
711 translational fidelity is critical for *Salmonella* virulence and host interactions. *Nucleic acids*

712 research. 2019;47(10):5356-67. Epub 2019/04/04. doi: 10.1093/nar/gkz229. PubMed PMID:
713 30941426; PubMed Central PMCID: PMCPMC6547416.

714 25. Saraceni PR, Romero A, Figueras A, Novoa B. Establishment of Infection Models in
715 Zebrafish Larvae (*Danio rerio*) to Study the Pathogenesis of *Aeromonas hydrophila*. *Front*
716 *Microbiol*. 2016;7:1219. Epub 20160804. doi: 10.3389/fmicb.2016.01219. PubMed PMID:
717 27540375; PubMed Central PMCID: PMCPMC4972827.

718 26. Patterson BW, Abraham AO, MacIver MA, McLean DL. Visually guided gradation of
719 prey capture movements in larval zebrafish. *J Exp Biol*. 2013;216(Pt 16):3071-83. Epub
720 20130425. doi: 10.1242/jeb.087742. PubMed PMID: 23619412; PubMed Central PMCID:
721 PMCPMC4074221.

722 27. Negroni A, Costanzo M, Vitali R, Superti F, Bertuccini L, Tinari A, et al.
723 Characterization of adherent-invasive *Escherichia coli* isolated from pediatric patients with
724 inflammatory bowel disease. *Inflamm Bowel Dis*. 2012;18(5):913-24. Epub 20111012. doi:
725 10.1002/ibd.21899. PubMed PMID: 21994005.

726 28. Meconi S, Vercellone A, Levillain F, Payré B, Al Saati T, Capilla F, et al. Adherent-
727 invasive *Escherichia coli* isolated from Crohn's disease patients induce granulomas in vitro. *Cell*
728 *Microbiol*. 2007;9(5):1252-61. Epub 20070111. doi: 10.1111/j.1462-5822.2006.00868.x.
729 PubMed PMID: 17223928.

730 29. Mazzarella G, Perna A, Marano A, Lucariello A, Rotondi Aufiero V, Sorrentino A, et al.
731 Pathogenic Role of Associated Adherent-Invasive *Escherichia coli* in Crohn's Disease. *J Cell*
732 *Physiol*. 2017;232(10):2860-8. Epub 20170515. doi: 10.1002/jcp.25717. PubMed PMID:
733 27925192.

734 30. Oehlers SH, Flores MV, Hall CJ, Crosier KE, Crosier PS. Retinoic acid suppresses
735 intestinal mucus production and exacerbates experimental enterocolitis. *Dis Model Mech*.
736 2012;5(4):457-67. Epub 20120419. doi: 10.1242/dmm.009365. PubMed PMID: 22563081;
737 PubMed Central PMCID: PMCPMC3380709.

738 31. Di Paola D, Natale S, Iaria C, Cordaro M, Crupi R, Siracusa R, et al. Intestinal Disorder
739 in Zebrafish Larvae (*Life* (Basel)). 2022;12(1). Epub 20220116. doi: 10.3390/life12010125.
740 PubMed PMID: 35054518; PubMed Central PMCID: PMCPMC8778351.

741 32. Chuang LS, Morrison J, Hsu NY, Labrias PR, Nayar S, Chen E, et al. Zebrafish modeling
742 of intestinal injury, bacterial exposures and medications defines epithelial. *Dis Model Mech*.
743 2019;12(8). Epub 20190813. doi: 10.1242/dmm.037432. PubMed PMID: 31337664; PubMed
744 Central PMCID: PMCPMC6737949.

745 33. d'Alençon CA, Peña OA, Wittmann C, Gallardo VE, Jones RA, Loosli F, et al. A high-
746 throughput chemically induced inflammation assay in zebrafish. *BMC Biol*. 2010;8:151. Epub
747 20101222. doi: 10.1186/1741-7007-8-151. PubMed PMID: 21176202; PubMed Central PMCID:
748 PMCPMC3022775.

749 34. Oehlers SH, Flores MV, Okuda KS, Hall CJ, Crosier KE, Crosier PS. A chemical
750 enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to
751 pharmacological agents. *Dev Dyn*. 2011;240(1):288-98. doi: 10.1002/dvdy.22519. PubMed
752 PMID: 21181946.

753 35. Hall C, Flores MV, Crosier K, Crosier P. Live cell imaging of zebrafish leukocytes.
754 *Methods Mol Biol*. 2009;546:255-71. doi: 10.1007/978-1-60327-977-2_16. PubMed PMID:
755 19378109.

756 36. Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. *Trends Immunol.* 2015;36(9):547-55. Epub 20150818. doi: 10.1016/j.it.2015.07.007. PubMed PMID: 26297103; PubMed Central PMCID: PMCPMC4567503.

759 37. Fujiwara N, Kobayashi K. Macrophages in inflammation. *Curr Drug Targets Inflamm Allergy.* 2005;4(3):281-6. doi: 10.2174/1568010054022024. PubMed PMID: 16101534.

761 38. Bretin A, Lucas C, Larabi A, Dalmasso G, Billard E, Barnich N, et al. AIEC infection triggers modification of gut microbiota composition in genetically predisposed mice, contributing to intestinal inflammation. *Sci Rep.* 2018;8(1):12301. Epub 20180817. doi: 10.1038/s41598-018-30055-y. PubMed PMID: 30120269; PubMed Central PMCID: PMCPMC6098085.

766 39. Carvalho FA, Barnich N, Sauvanet P, Darcha C, Gelot A, Darfeuille-Michaud A. Crohn's disease-associated *Escherichia coli* LF82 aggravates colitis in injured mouse colon via signaling by flagellin. *Inflamm Bowel Dis.* 2008;14(8):1051-60. doi: 10.1002/ibd.20423. PubMed PMID: 18338780.

770 40. Imai J, Kitamoto S, Sugihara K, Nagao-Kitamoto H, Hayashi A, Morhardt TL, et al. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. *Mucosal Immunol.* 2019;12(3):632-43. Epub 20190211. doi: 10.1038/s41385-019-0138-4. PubMed PMID: 30742042; PubMed Central PMCID: PMCPMC6462251.

774 41. Laroui H, Ingersoll SA, Liu HC, Baker MT, Ayyadurai S, Charania MA, et al. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. *PLoS One.* 2012;7(3):e32084. Epub 20120309. doi: 10.1371/journal.pone.0032084. PubMed PMID: 22427817; PubMed Central PMCID: PMCPMC3302894.

779 42. Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. *Korean J Physiol Pharmacol.* 2014;18(4):279-88. Epub 20140813. doi: 10.4196/kjpp.2014.18.4.279. PubMed PMID: 25177159; PubMed Central PMCID: PMCPMC4146629.

783 43. Hayashi Y, Nakase H. The Molecular Mechanisms of Intestinal Inflammation and Fibrosis in Crohn's Disease. *Front Physiol.* 2022;13:845078. Epub 20220211. doi: 10.3389/fphys.2022.845078. PubMed PMID: 35222098; PubMed Central PMCID: PMCPMC8874128.

787 44. Viladomiu M, Metz ML, Lima SF, Jin WB, Chou L, Guo CJ, et al. Adherent-invasive *E. coli* metabolism of propanediol in Crohn's disease regulates phagocytes to drive intestinal inflammation. *Cell Host Microbe.* 2021;29(4):607-19.e8. Epub 20210203. doi: 10.1016/j.chom.2021.01.002. PubMed PMID: 33539767; PubMed Central PMCID: PMCPMC8049981.

792 45. Erben U, Lodenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. *Int J Clin Exp Pathol.* 2014;7(8):4557-76. Epub 20140715. PubMed PMID: 25197329; PubMed Central PMCID: PMCPMC4152019.

796 46. Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. *World J Gastroenterol.* 2014;20(5):1165-79. doi: 10.3748/wjg.v20.i5.1165. PubMed PMID: 24574793; PubMed Central PMCID: PMCPMC3921501.

799 47. Sokurenko EV, Courtney HS, Maslow J, Siitonen A, Hasty DL. Quantitative differences in adhesiveness of type 1 fimbriated *Escherichia coli* due to structural differences in fimH genes.

801 J Bacteriol. 1995;177(13):3680-6. doi: 10.1128/jb.177.13.3680-3686.1995. PubMed PMID: 7601831; PubMed Central PMCID: PMCPMC177083.

802 48. Martinez-Medina M, Denizot J, Dreux N, Robin F, Billard E, Bonnet R, et al. Western diet induces dysbiosis with increased *E. coli* in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. *Gut*. 2014;63(1):116-24. Epub 20130418. doi: 10.1136/gutjnl-2012-304119. PubMed PMID: 23598352.

803 49. Wallace KN, Akhter S, Smith EM, Lorent K, Pack M. Intestinal growth and differentiation in zebrafish. *Mech Dev*. 2005;122(2):157-73. doi: 10.1016/j.mod.2004.10.009. PubMed PMID: 15652704.

804 50. Zhang Y, Rowehl L, Krumsiek JM, Orner EP, Shaikh N, Tarr PI, et al. Identification of Candidate Adherent-Invasive *E. coli* Signature Transcripts by Genomic/Transcriptomic Analysis. *PLoS One*. 2015;10(6):e0130902. Epub 20150630. doi: 10.1371/journal.pone.0130902. PubMed PMID: 26125937; PubMed Central PMCID: PMCPMC4509574.

805 51. Conte MP, Longhi C, Marazzato M, Conte AL, Aleandri M, Lepanto MS, et al. Adherent-invasive *Escherichia coli* (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. *BMC Res Notes*. 2014;7:748. Epub 20141022. doi: 10.1186/1756-0500-7-748. PubMed PMID: 25338542; PubMed Central PMCID: PMCPMC4210564.

806 52. López-Siles M, Camprubí-Font C, Gómez Del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, et al. Prevalence, Abundance, and Virulence of Adherent-Invasive. *Front Immunol*. 2022;13:748839. Epub 20220310. doi: 10.3389/fimmu.2022.748839. PubMed PMID: 35359974; PubMed Central PMCID: PMCPMC8960851.

807 53. Low D, Tran HT, Lee IA, Dreux N, Kamba A, Reinecker HC, et al. Chitin-binding domains of *Escherichia coli* ChiA mediate interactions with intestinal epithelial cells in mice with colitis. *Gastroenterology*. 2013;145(3):602-12.e9. Epub 20130516. doi: 10.1053/j.gastro.2013.05.017. PubMed PMID: 23684751; PubMed Central PMCID: PMCPMC3755095.

808 54. Osawa Y, Nagaki M, Banno Y, Brenner DA, Asano T, Nozawa Y, et al. Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes. *Infect Immun*. 2002;70(11):6294-301. doi: 10.1128/IAI.70.11.6294-6301.2002. PubMed PMID: 12379708; PubMed Central PMCID: PMCPMC130316.

809 55. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. *Physiology (Bethesda)*. 2013;28(6):391-403. doi: 10.1152/physiol.00029.2013. PubMed PMID: 24186934; PubMed Central PMCID: PMCPMC3858212.

810 56. Al-Sadi R, Engers J, Haque M, King S, Al-Omari D, Ma TY. Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF- κ B activation. *PLoS One*. 2021;16(4):e0249544. Epub 2021/04/08. doi: 10.1371/journal.pone.0249544. PubMed PMID: 33826658; PubMed Central PMCID: PMCPMC8026081.

811 57. Sivignon A, Chervy M, Chevarin C, Ragot E, Billard E, Denizot J, et al. An adherent-invasive *Escherichia coli*-colonized mouse model to evaluate microbiota-targeting strategies in Crohn's disease. *Dis Model Mech*. 2022;15(10). Epub 20221024. doi: 10.1242/dmm.049707. PubMed PMID: 36172858; PubMed Central PMCID: PMCPMC9637268.

812 58. Rolhion N, Barnich N, Claret L, Darfeuille-Michaud A. Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated adherent-invasive

847 Escherichia coli strain LF82 with the *yfgL* gene deleted. *J Bacteriol.* 2005;187(7):2286-96. doi:
848 10.1128/JB.187.7.2286-2296.2005. PubMed PMID: 15774871; PubMed Central PMCID:
849 PMCPMC1065249.

850 59. Chassaing B, Rolhion N, de Vallée A, Salim SY, Prorok-Hamon M, Neut C, et al. Crohn
851 disease--associated adherent-invasive *E. coli* bacteria target mouse and human Peyer's patches
852 via long polar fimbriae. *J Clin Invest.* 2011;121(3):966-75. Epub 20110221. doi:
853 10.1172/JCI44632. PubMed PMID: 21339647; PubMed Central PMCID: PMCPMC3049390.

854 60. Keita Å, Alkaissi LY, Holm EB, Heil SDS, Chassaing B, Darfeuille-Michaud A, et al.
855 Enhanced *E. coli* LF82 Translocation through the Follicle-associated Epithelium in Crohn's
856 Disease is Dependent on Long Polar Fimbriae and CEACAM6 expression, and Increases
857 Paracellular Permeability. *J Crohns Colitis.* 2020;14(2):216-29. doi: 10.1093/ecco-jcc/jjz144.
858 PubMed PMID: 31393983; PubMed Central PMCID: PMCPMC7008151.

859 61. Rolhion N, Carvalho FA, Darfeuille-Michaud A. OmpC and the sigma(E) regulatory
860 pathway are involved in adhesion and invasion of the Crohn's disease-associated Escherichia coli
861 strain LF82. *Mol Microbiol.* 2007;63(6):1684-700. doi: 10.1111/j.1365-2958.2007.05638.x.
862 PubMed PMID: 17367388.

863 62. Barnich N, Bringer MA, Claret L, Darfeuille-Michaud A. Involvement of lipoprotein
864 NlpI in the virulence of adherent invasive Escherichia coli strain LF82 isolated from a patient
865 with Crohn's disease. *Infect Immun.* 2004;72(5):2484-93. doi: 10.1128/IAI.72.5.2484-
866 2493.2004. PubMed PMID: 15102755; PubMed Central PMCID: PMCPMC387872.

867 63. Cremer J, Segota I, Yang CY, Arnoldini M, Sauls JT, Zhang Z, et al. Effect of flow and
868 peristaltic mixing on bacterial growth in a gut-like channel. *Proc Natl Acad Sci U S A.*
869 2016;113(41):11414-9. Epub 20160928. doi: 10.1073/pnas.1601306113. PubMed PMID:
870 27681630; PubMed Central PMCID: PMCPMC5068270.

871 64. Steukers L, Glorieux S, Vandekerckhove AP, Favoreel HW, Nauwynck HJ. Diverse
872 microbial interactions with the basement membrane barrier. *Trends Microbiol.* 2012;20(3):147-
873 55. Epub 20120131. doi: 10.1016/j.tim.2012.01.001. PubMed PMID: 22300759; PubMed
874 Central PMCID: PMCPMC7127156.

875 65. He Q, Wang L, Wang F, Wang C, Tang C, Li Q, et al. Microbial fingerprinting detects
876 intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis. *BMC
877 Microbiology.* 2013;13(1):289. doi: 10.1186/1471-2180-13-289.

878 66. Dumych T, Yamakawa N, Sivignon A, Garenaux E, Robakiewicz S, Coddeville B, et al.
879 Oligomannose-Rich Membranes of Dying Intestinal Epithelial Cells Promote Host Colonization
880 by Adherent-Invasive. *Front Microbiol.* 2018;9:742. Epub 20180418. doi:
881 10.3389/fmicb.2018.00742. PubMed PMID: 29720971; PubMed Central PMCID:
882 PMCPMC5915571.

883 67. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, et al. CEACAM6
884 acts as a receptor for adherent-invasive *E. coli*, supporting ileal mucosa colonization in Crohn
885 disease. *J Clin Invest.* 2007;117(6):1566-74. Epub 20070524. doi: 10.1172/JCI30504. PubMed
886 PMID: 17525800; PubMed Central PMCID: PMCPMC1868786.

887 68. Hammarström S. The carcinoembryonic antigen (CEA) family: structures, suggested
888 functions and expression in normal and malignant tissues. *Seminars in cancer biology.*
889 1999;9(2):67-81. Epub 1999/04/15. doi: 10.1006/scbi.1998.0119. PubMed PMID: 10202129.

890 69. Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, et al.
891 Characterization of a member of the CEACAM protein family as a novel marker of proton
892 pump-rich ionocytes on the zebrafish epidermis. *PLoS One.* 2021;16(7):e0254533. Epub

893 20210712. doi: 10.1371/journal.pone.0254533. PubMed PMID: 34252160; PubMed Central
894 PMCID: PMCPMC8274849.

895 70. Chapin C, Bailey NA, Gonzales LW, Lee JW, Gonzalez RF, Ballard PL. Distribution and
896 surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung. *Am J*
897 *Physiol Lung Cell Mol Physiol*. 2012;302(2):L216-25. Epub 20111028. doi:
898 10.1152/ajplung.00055.2011. PubMed PMID: 22037359; PubMed Central PMCID:
899 PMCPMC3349363.

900 71. ZFIN. zgc:198329 2023. Available from: <https://zfin.org/ZDB-GENE-080226-6#summary>.

901 72. Camprubí-Font C, Martinez-Medina M. Why the discovery of adherent-invasive. *World J*
902 *Biol Chem*. 2020;11(1):1-13. doi: 10.4331/wjbc.v11.i1.1. PubMed PMID: 32405343; PubMed
903 Central PMCID: PMCPMC7205867.

904 73. Saitz W, Montero DA, Pardo M, Araya D, De la Fuente M, Hermoso MA, et al. Characterization of Adherent-Invasive *Escherichia coli* (AIEC) Outer Membrane Proteins
905 Provides Potential Molecular Markers to Screen Putative AIEC Strains. *Int J Mol Sci*.
906 2022;23(16). Epub 2022/08/27. doi: 10.3390/ijms23169005. PubMed PMID: 36012279;
907 PubMed Central PMCID: PMCPMC9409007.

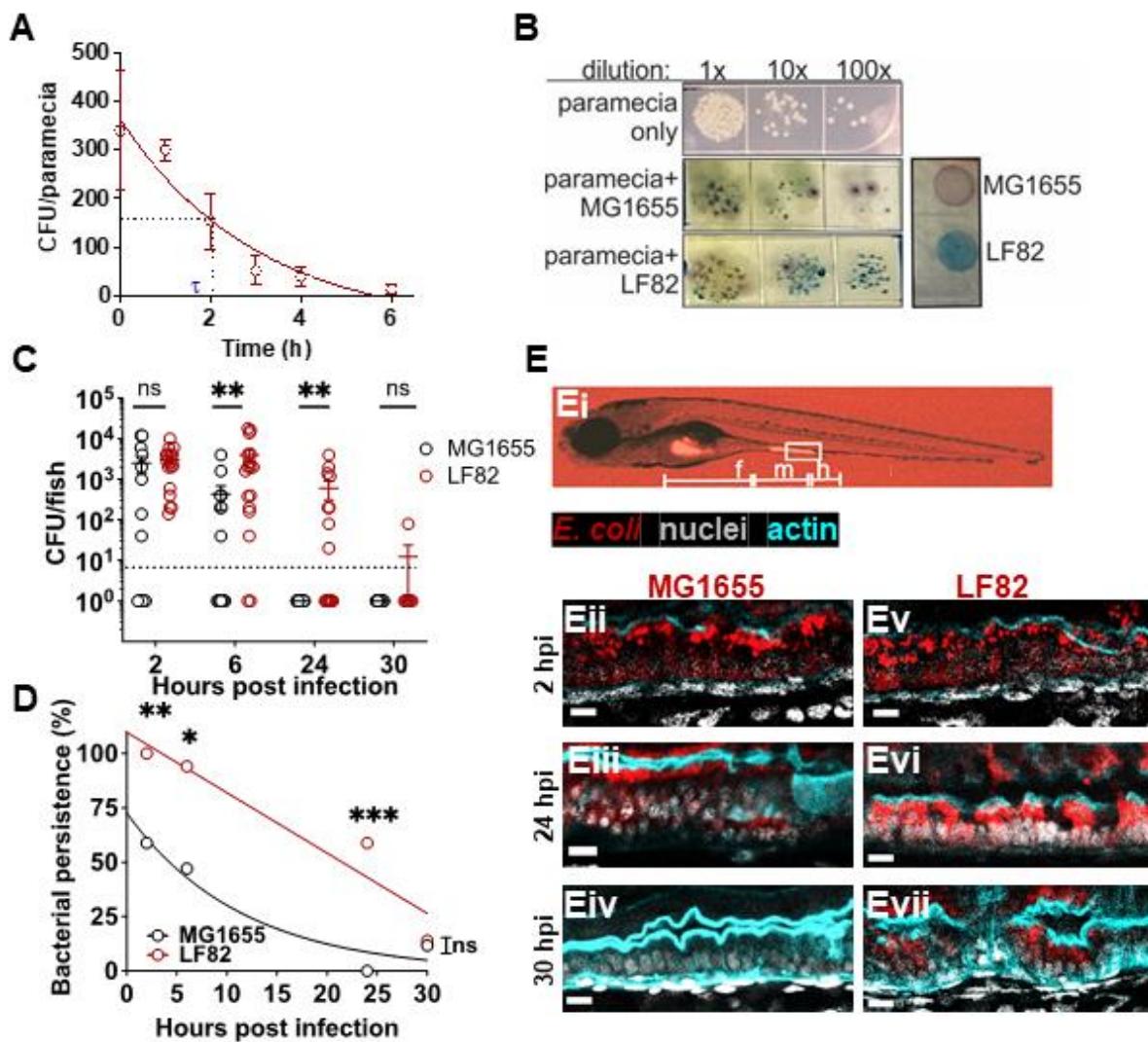
908 74. Delmas J, Gibold L, Faïs T, Batista S, Leremboure M, Sinel C, et al. Metabolic
909 adaptation of adherent-invasive *Escherichia coli* to exposure to bile salts. *Sci Rep*.
910 2019;9(1):2175. Epub 20190218. doi: 10.1038/s41598-019-38628-1. PubMed PMID: 30778122;
911 PubMed Central PMCID: PMCPMC6379400.

912 75. Bustamante P, Vidal R. Repertoire and Diversity of Toxin - Antitoxin Systems of Crohn's
913 Disease-Associated Adherent-Invasive *Escherichia coli*. New Insight of This Emergent *E. coli*
914 Pathotype. *Front Microbiol*. 2020;11:807. Epub 2020/06/02. doi: 10.3389/fmicb.2020.00807.
915 PubMed PMID: 32477289; PubMed Central PMCID: PMCPMC7232551.

916 76. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A
917 transgenic zebrafish model of neutrophilic inflammation. *Blood*. 2006;108(13):3976-8. Epub
918 20060822. doi: 10.1182/blood-2006-05-024075. PubMed PMID: 16926288.

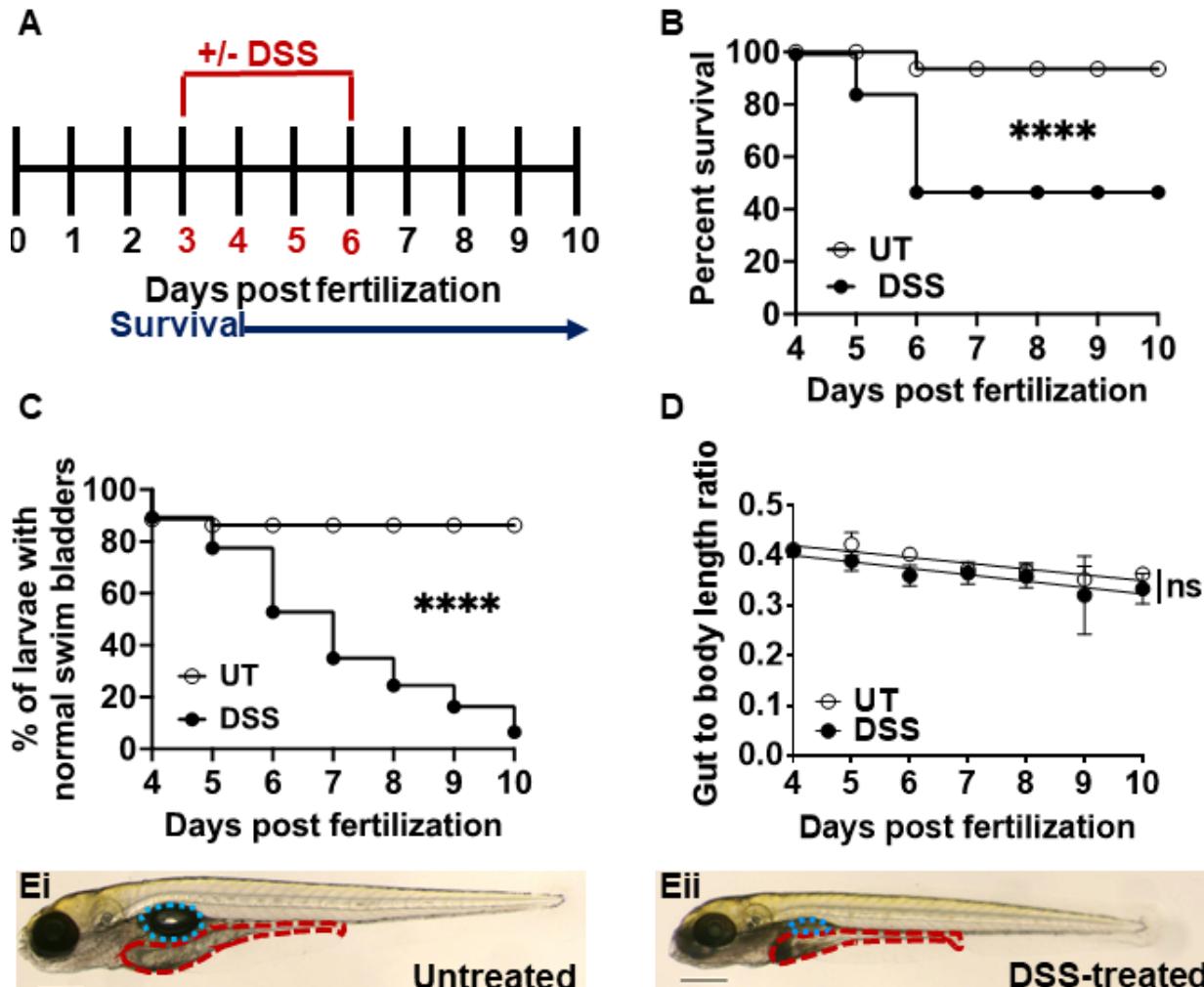
919 77. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter
920 transgenes direct macrophage-lineage expression in zebrafish. *Blood*. 2011;117(4):e49-56. Epub
921 20101117. doi: 10.1182/blood-2010-10-314120. PubMed PMID: 21084707; PubMed Central
922 PMCID: PMCPMC3056479.

923 78. Lee DJ, Bingle LE, Heurlier K, Pallen MJ, Penn CW, Busby SJ, et al. Gene doctoring: a
924 method for recombineering in laboratory and pathogenic *Escherichia coli* strains. *BMC*
925 *Microbiol*. 2009;9:252. Epub 20091209. doi: 10.1186/1471-2180-9-252. PubMed PMID:
926 20003185; PubMed Central PMCID: PMCPMC2796669.


927 79. Crépin S, Harel J, Dozois CM. Chromosomal complementation using *Tn7* transposon
928 vectors in Enterobacteriaceae. *Appl Environ Microbiol*. 2012;78(17):6001-8. Epub 20120615.
929 doi: 10.1128/AEM.00986-12. PubMed PMID: 22706059; PubMed Central PMCID:
930 PMCPMC3416591.

931 80. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image
932 analysis. *Nat Methods*. 2012;9(7):671-5. doi: 10.1038/nmeth.2089. PubMed PMID: 22930834;
933 PubMed Central PMCID: PMCPMC5554542.

934 81. Peterson SM, Freeman JL. RNA isolation from embryonic zebrafish and cDNA synthesis
935 for gene expression analysis. *J Vis Exp*. 2009;(30). Epub 20090807. doi: 10.3791/1470. PubMed
936 PMID: 19684565; PubMed Central PMCID: PMCPMC3152201.


939 82. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method.
940
941

942 **FIGURES AND TABLES**

943

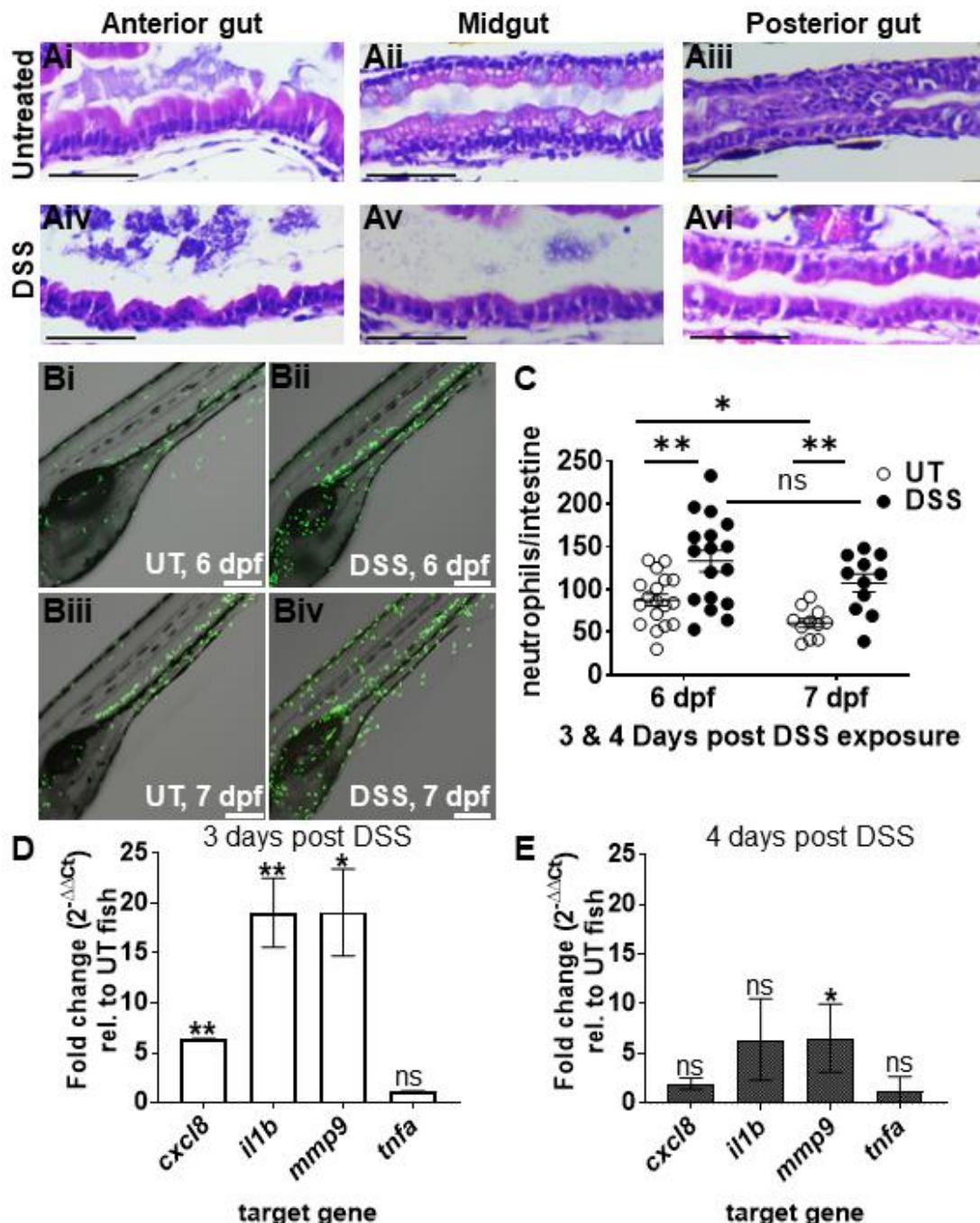
944 **Figure 1. AIEC LF82 colonizes the larval zebrafish intestine better than MG1655.** (A) AIEC-
945 loaded paramecia sampled from 0-6 hours post incubation, and CFU/paramecia was calculated.
946 AIEC half-life (τ) in paramecia is 2.1 hours. Data are means \pm SEM, n=3. (B) Bacterial colonies
947 from tissue homogenates grown on CHROMagarTM O157. The zebrafish microbiota (white
948 colonies) can be distinguished from AIEC LF82 (dark blue colonies), and *E. coli* MG1655 (mauve
949 colonies). (C) Quantification of LF82 and MG1655 CFUs/fish. Fish with CFU below the detection
950 limit (10 CFU/fish, dashed line) were annotated as 1 CFU. Data are from individual fish (n=14),
951 and means \pm SEM. (D) Bacterial persistence is the percentage of fish with a burden above the
952 detection limit; n = 14. Non-linear regression, first order decay, ROUT outlier test with Q=0.2%,
953 Paired t-test and Wilcoxon test. *, P \leq 0.05; **, P \leq 0.01; ***, P \leq 0.001, ns, not significant. (E)
954 Images of larvae colonized with *E. coli* (red), (Ei) whole larva at 10x magnification with intestinal
955 segments (foregut (f), midgut (m), hindgut (h)) marked. Sagittal views of the midgut of larvae
956 colonized with MG1655 (Eii-iv) and LF82 (Ev-vii) at 2, 24, and 30 hpi. Scale bars = 100 um, *E.*
957 *coli* (red), phalloidin (cyan, cell outline), nuclei (DAPI, white), images are representative of n = 3;

960 **Figure 2. Larval zebrafish treated with 0.5% DSS have decreased survival and intestinal**
961 **growth rates. (A)** Schematic outlining timeline of DSS administration (red, 3-6 dpf) and survival

962 experiments (blue, 1-7 days post exposure). **(B)** Survival of larvae administered 0.5% DSS (black

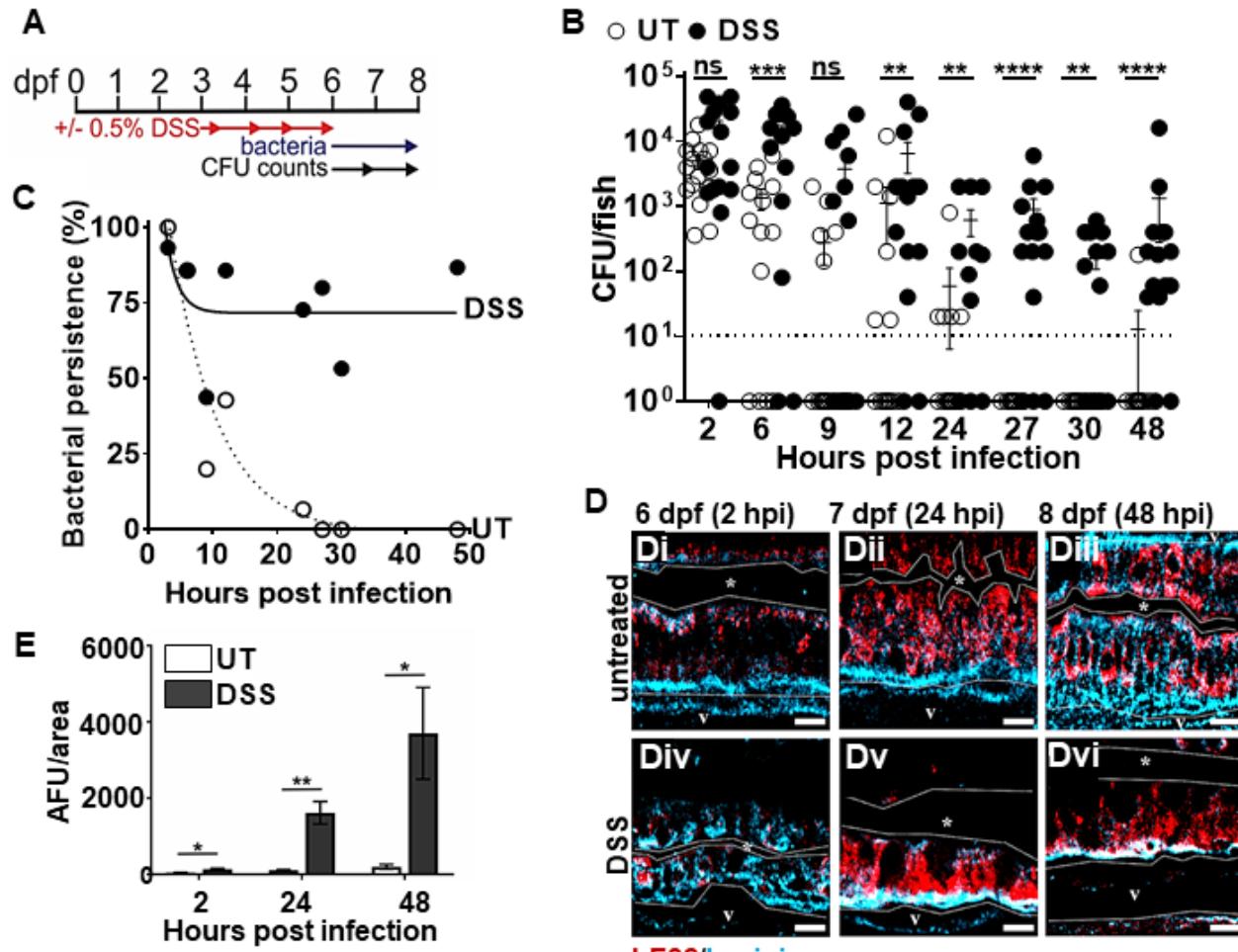
963 circles) relative to untreated (UT) controls (empty circles). Data was analyzed using a Kaplan-

964 Meier plot and Mantel-Cox test; ****=<0.0001, n=20. **(C)** Quantification of swim bladder defects


965 in UT or DSS-treated larvae. Group differences were analyzed using Mantel-Cox test; ****, P ≤

966 0.0001. n=20 **(D)** Gut to body length ratio was analyzed by linear regression; ns = not statistically

967 significant. Data are means ± SEM from n=20; **(E)** Representative images of untreated (**Ei**) and


968 DSS-treated (**Eii**) larvae at 6 dpf (3 days post DSS exposure), with the swim bladder (teal) and the

969 intestine (red) outlined. Scale bar = 0.3 mm;

970
971

972 **Figure 3. DSS causes intestinal epithelial damage and inflammation consistent with colitis.**
973 **(A)** Representative H&E stained longitudinal sections ($n=4$) of the anterior, mid, and posterior
974 intestine from untreated (**Ai-iii**) and DSS-treated (**Aiv-vi**) larvae at 6 dpf; Scale bars = 50 μ m. **(B)**
975 Representative confocal images of live *Tg(mpo::egfp)* larvae at 6 and 7 dpf; neutrophils (green);
976 Larvae were imaged for 18 h (3-20 hpi). Scale bars = 200 μ m. **(C)** Quantification of neutrophils
977 in the intestine at 6 and 7 dpf (3&4 days post DSS treatment); Unpaired two-tailed t-test, $n \geq 11$,
978 **(D)** qRT-PCR analyses of *cxcl8*, *il1b*, *mmp9*, and *tnfa* in DSS-treated larvae relative to untreated
979 controls at 6 dpf and **(E)** 7 dpf; $n=3$. Unpaired two-tailed t-test. Mean \pm SEM, *, $P \leq 0.05$; **, $P \leq$
980 0.01.

Figure 4. Pre-existing inflammation enhances the colonization, persistence, and invasion of AIEC LF82. (A) Timeline of DSS administration, infection of larvae, and sampling for CFU counts. (B) Quantification of LF82 CFUs per larvae with and without DSS treatment, $n \geq 17$; fish with CFU below the detection limit (10 CFU/fish, dashed line) were annotated as 1 CFU. (C) Bacterial persistence (% fish with a burden of AIEC above the detection limit); Non-linear regression first order decay, ROUT outlier test with $Q=0.2\%$. (D) LF82 (red) in the mid-intestine of UT (Di-iii) and DSS-treated (Div-vi) larvae relative to the basement membrane (blue) from 2 to 48 hpi or 6-8 dpf. The dotted white line outlines the intestinal epithelium and separates it from the lumen, indicated by *, and the blood vessel below the basement membrane (v). Scale bars = 10 μ m. (E) Quantification of red fluorescence intensity (AFU) (representing AIEC) in the vasculature (v) at 2, 24, and 48 hpi, $n = 6$; *, $P \leq 0.05$; **, $P \leq 0.01$; ***, $P \leq 0.001$; ****, $P \leq 0.0001$; ns, not statistically significant.

981

982

983

984

985

986

987

988

989

990

991

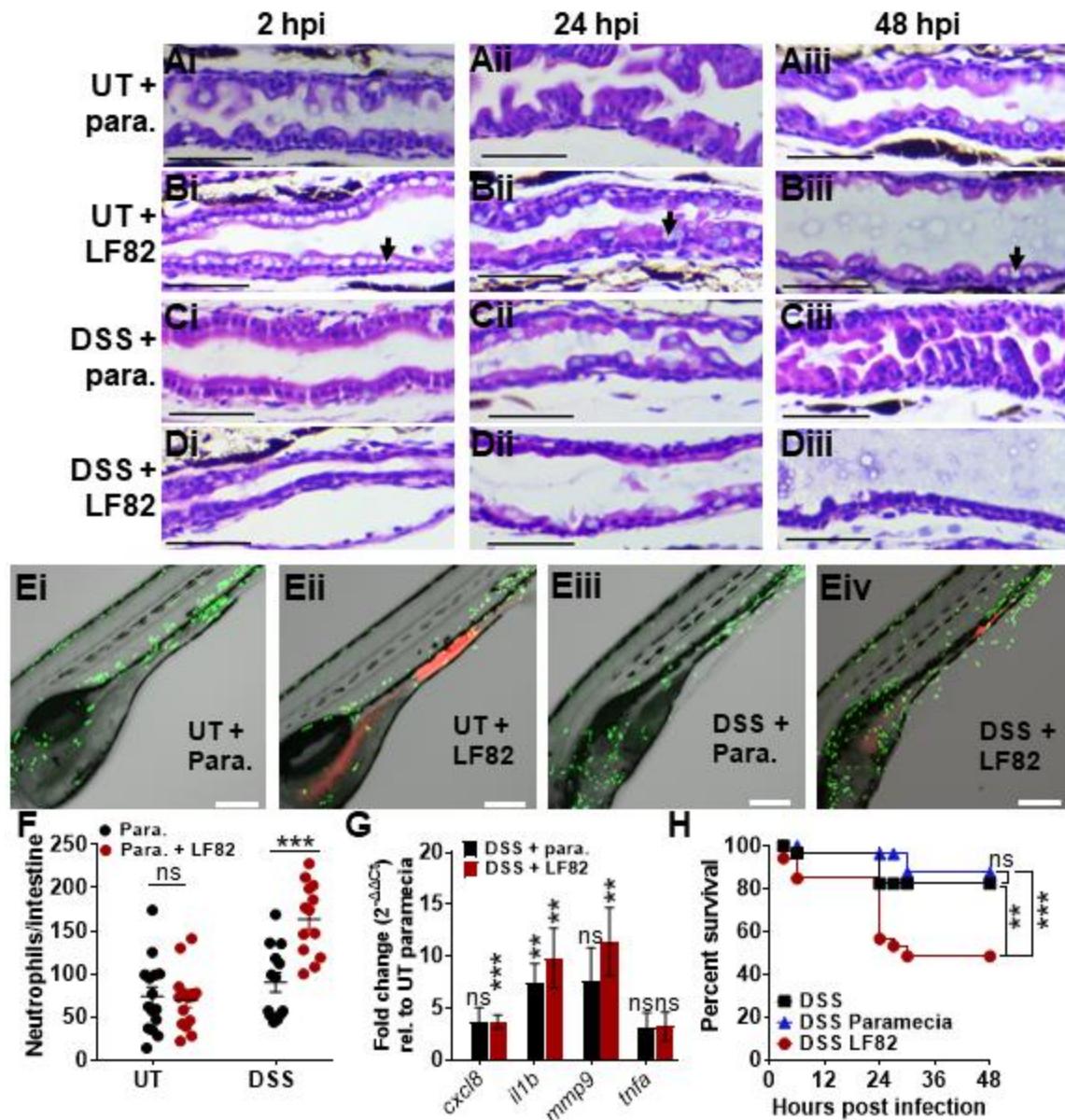
992

993

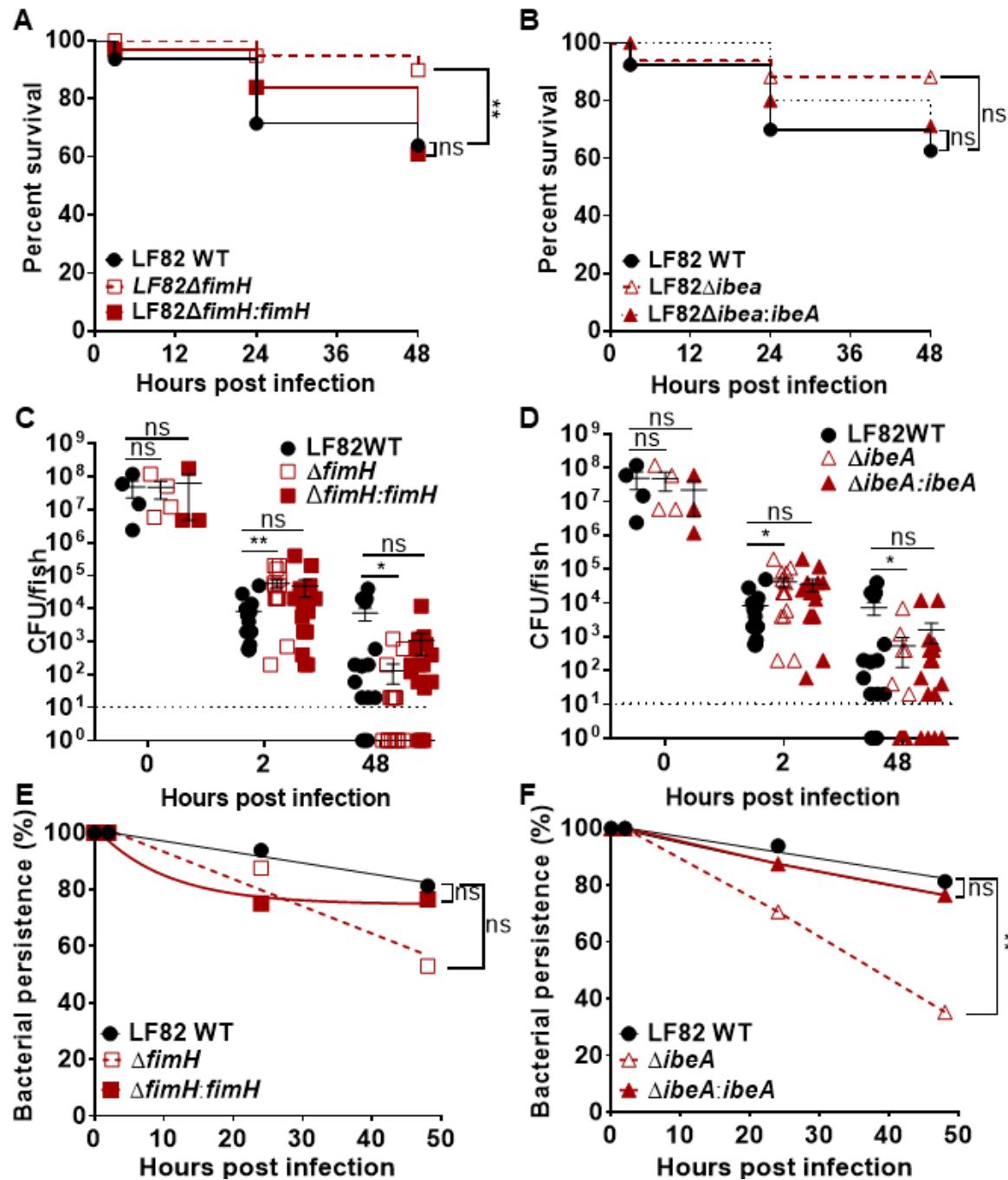
994

995

996

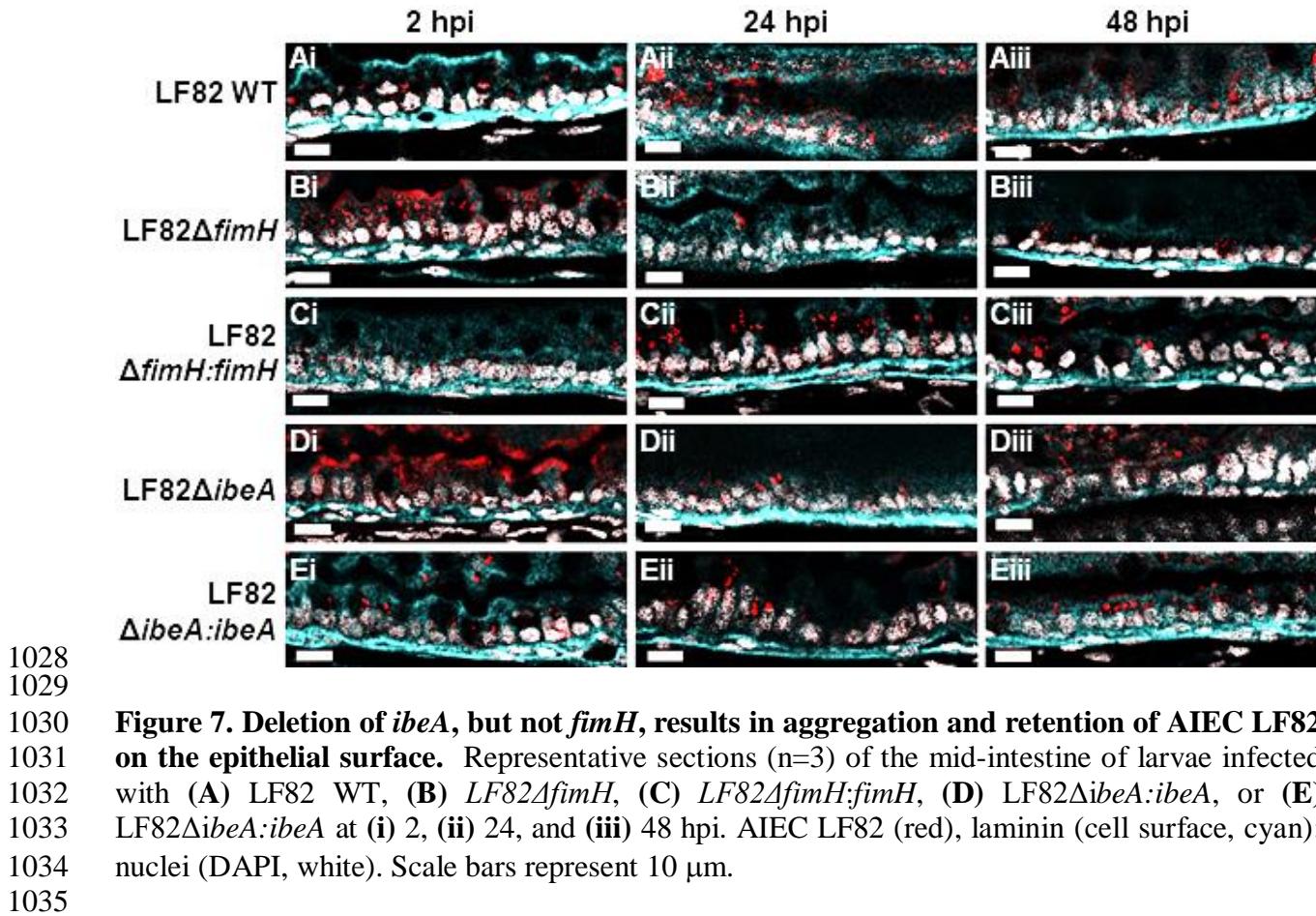

997

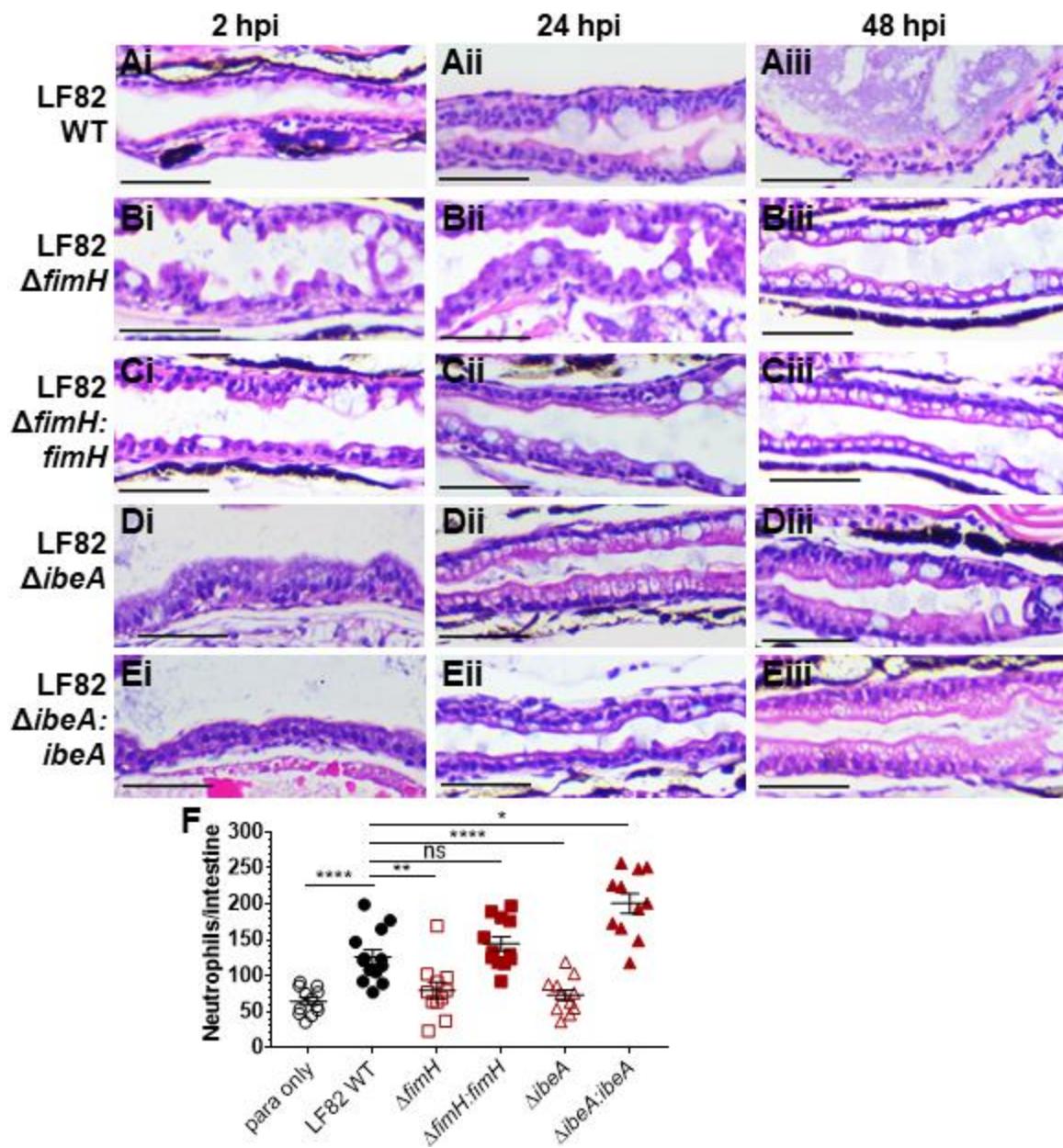
998


999

1000

1001




1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

Figure 6. Effects of *fimH* and *ibeA* deletion on survival, burden, and AIEC persistence in larvae. Survival of larvae infected with (A) LF82 wild-type (WT), LF82Δ*fimH*, LF82Δ*fimH:fimH* or (B) LF82, LF82Δ*ibeA*, LF82Δ*ibeA:ibeA* at 2, 24, and 48 hpi. Kaplan-Meier and Mantel-Cox test, followed by a Bonferroni correction test, n=20. Quantification of bacterial burden and persistence of (C, E) LF82, LF82Δ*fimH*, LF82Δ*fimH:fimH*, or (D, F) LF82Δ*ibeA*, and LF82Δ*ibeA:ibeA* in DSS-treated larvae from 2-48 hpi. Fish with CFU below the detection limit (10 CFU/fish, dashed line) were annotated as 1 CFU. Significance of difference in burden was analyzed using a Kruskal-Wallis test, n ≥ 16. Bacterial persistence (percent of fish with a burden of AIEC above the detection limit) was analyzed using a log-rank test. Non-linear regression, first order decay graph used to model bacterial persistence. *, P ≤ 0.05; **, P ≤ 0.01; ns, not significant;

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

Figure 8. Deletion of *fimH* and *ibeA* in AIEC LF82 results in decreased tissue damage and neutrophil recruitment to the intestine compared to LF82. H&E longitudinal sections of the mid-intestine of larvae infected with (A) LF82 WT, (B) LF82 Δ fimH, (C) LF82 Δ fimH:fimH, (D) LF82 Δ ibeA, and (E) LF82 Δ ibeA:ibeA at 2 (i), 24 (ii), and 48 (iii) hpi. Representative images for n= 3. Scale bars = 50 μ m (F) Quantification of neutrophils per intestine for DSS-treated fish infected with above mentioned LF82 strains or paramecia only control. Kruskal-Wallis test. n \geq 11. *, P \leq 0.05; **, P \leq 0.001; ****P \leq 0.0001; ns, not significant.

1046 **Table 1. Bacterial strains and plasmids**

Bacterial Strains	Relevant Characteristic(s)	Sources/References
<i>E. coli</i> MG1655	Non-pathogenic lab <i>E. coli</i>	
AIEC LF82	Adherent-invasive <i>E. coli</i> , parent strain	Torres lab, UTMB
LF82 Δ fimH	LF82 derivative, fimH deletion	This study
LF82 Δ ibeA	LF82 derivative, ibeA deletion	This study
LF82 Δ fimH:fimH	LF82 derivative, fimH complementation	This study
LF82 Δ ibeA:ibeA	LF82 derivative, ibeA complementation	This study
<i>E. coli</i> DH5 α	Used for cloning experiments	
<i>E. coli</i> DH5 α λ pir	Used for complementation	(79)
Plasmids		
pDOC-C	Cloning vector	(78)
pDOC-K	Carries the kanamycin cassette	
pACBSCE	recombineering plasmid, encodes the I-SceI and the λ -Red proteins	
pME6032:mcherry	Encodes mCherry protein	
pSTNSK-Cm	Tn7 transposase expression vector	(79)
pGpTn7	Cloning vector	

1047

1048

1049 **Table 2. List of primers used to amplify the pDOC-K plasmid with 45 base pair homology**
 1050 **(bold) to the DNA upstream and downstream of *ibeA* and *fimH*.** The restriction site is in red
 1051 and the region homologous to the kanamycin cassette is in green.

Gene	Forward primer sequence (5-3)	Reverse primer sequence (5-3)
<i>ibeA</i>	CG GAATT C GCGCGGGGGATTGTTTA CTCAATTATTGAATA CGGAGATAAAG TATGGAA GACCGGTCAATTGGCTGG AG	GGCTAGC GCGCGACATAAAA CTGGGT TTTTCTCTCATAA CTTATTCCCTGTTAA AA AATATCCTCCTTAGTTCCATTCCGAA GTTC
<i>fimH</i>	CG GAATT C TTAGCATCACCTATA ACCT ACAGCTGAAC CCGAAGAGATGATTG TAATGAAA GACCGGTCAATTGGCTG GAG	GGCTAGC TCAGGTAATATTGCGTAC CT GCATTAGCAATGCCCTGTGATTCTTAT TGAATATCCTCCTTAGTTCC

1052

1053 **Table 3. List of primers used to verify deletion mutants.**

Strain	Forward primer sequence (5-3)	Reverse primer sequence (5-3)
LF82 Δ <i>fimH</i>	CAACCAAAACAGTTCAGG TGG	GCTGATTATTAGCATGGTAGCG
LF82 Δ <i>ibeA</i>	GGCAAAGAGAGATGATCT CCTT	CCCATAACACCGATGCCAATA

1054

1055 **Table 4. List of primers used to analyze the integration of the Tn7 transposon system at the**
 1056 **attTn7 site located downstream of the *glmS* gene.**

Strain	Forward primer sequence (5-3)	Reverse primer sequence (5-3)
LF82 complementation strain	TGG CTT ACC ACG TTG CGC TG	CAT ACA CCG GCG CAG GGA AG

1057 **Table 5. List of primers used to analyze the transcription of pro-inflammatory genes and**
1058 **housekeeping genes.**

Gene	Forward Primer Sequence (5-3)	Reverse Primer Sequence (5-3)
<i>rpl13</i>	TCTGGAGGACTGTAAGAGGTATGC	AGACGCACAATCTTGAGAGCAG
<i>il1b</i>	ATCAAACCCAATCCACAGAGT	GGCACTGAAGACACCACGTT
<i>cxcl8</i>	TGTTTCCTGGCATTCTGACC	TTTACAGTGTGGGCTTGGAGGG
<i>mmp9</i>	CATTAAGATGCCCTGATGTATCCC	AGTGGTGGTCCGTGGTTGAG
<i>tnfa</i>	GTTCATCAGACAACCGTGGCCA	GATGTTCTCTGTTGGTTCTGAC

1059