

1 **Title:** Molecular Basis of Human Trace Amine-Associated Receptor 1 Activation

2

3 **Authors:**

4 Gregory Zilberg^{1,*}, Alexandra K. Parpounas², Audrey L. Warren², Shifan Yang³, Daniel
5 Wacker^{1,2,3,*}

6 ¹Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New
7 York 10029

8 ²Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai,
9 New York, New York 10029

10 ³Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
11 Sinai, New York, NY 10029

12 *Correspondence: greg.zilberg@icahn.mssm.edu, Daniel.wacker@mssm.edu

13

14

15

16

17

18

19

20 **Abstract:**

21 The human trace amine-associated receptor 1 (hTAAR1, hTA1) is a key regulator of
22 monoaminergic neurotransmission and the actions of psychostimulants. Despite
23 preclinical research demonstrating its tractability as a drug target, its molecular
24 mechanisms of activation remain unclear. Moreover, poorly understood
25 pharmacological differences between rodent and human TA1 complicate the translation
26 of findings from preclinical disease models into novel pharmacotherapies. To elucidate
27 hTA1's mechanisms on the molecular scale and investigate the underpinnings of its
28 divergent pharmacology from rodent orthologs, we herein report the structure of the
29 human TA1 receptor in complex with a Gαs heterotrimer. Our structure reveals shared
30 structural elements with other TAARs, as well as with its closest monoaminergic
31 ortholog, the serotonin receptor 5-HT4R. We further find that a single mutation
32 dramatically shifts the selectivity of hTA1 towards that of its rodent orthologs, and report
33 on the effects of substituting residues to those found in serotonin and dopamine
34 receptors. Strikingly, we also discover that the atypical antipsychotic medication and
35 pan-monoaminergic antagonist asenapine potently and efficaciously activates hTA1.
36 Together our studies provide detailed insight into hTA1 structure and function, contrast
37 its molecular pharmacology with that of related receptors, and uncover off-target
38 activities of monoaminergic drugs at hTA1.

39

40

41

42 **Main Text**

43 **Introduction:**

44 The human trace amine (-associated) receptor 1 (hTAAR1, hTA1) has emerged in the
45 past 15 years as a key modulator in monoaminergic neurotransmission as a rheostatic
46 feedback mechanism¹. Shortly after its initial cloning and confirmation as a high-affinity
47 receptor for the trace amines β-phenethylamine (β-PEA) and tyramine (TYR), reports of
48 μM potency of amphetamine and methamphetamine at TA1, as well as its localization in
49 several monoaminergic nuclei, suggested that it may play a key role in mediating the
50 effects of amphetamine-type psychostimulants^{2,3}. Subsequently, it was established that
51 hTA1 signaling modulates the membrane localization of monoaminergic transporters⁴,
52 and its activation suppresses spontaneous dopaminergic neuron firing⁵. Notably, this
53 receptor appears to localize primarily intracellularly and may couple to different
54 downstream effectors in different organelles⁶.

55 hTA1 has been highlighted as a potential target for treating disorders of dopaminergic
56 dysfunction such as schizophrenia and methamphetamine use disorder^{7,8}, as well as
57 metabolic disorders, cognitive impairments, and sleep related dysfunction^{7,9,10}. Several
58 pharmaceutical organizations have thus conducted drug discovery campaigns to
59 develop hTA1-focused pharmacotherapies. Initial clinical development efforts by Roche
60 were hampered by pharmacokinetic issues¹¹. Studies have also implied that the
61 translation of preclinical studies to clinical applications has been impaired by strongly
62 divergent pharmacological properties of human and rodent TA1¹². Nonetheless, the
63 hTA₁/5-HT_{1A} agonist ulotaront (SEP-363856)¹³ has recently shown promising results in
64 Phase 2 trials for the treatment of schizophrenia¹⁴, supporting the notion that hTA1 may

65 be a tractable therapeutic target¹⁵. Despite these positive developments, the molecular
66 mechanisms by which hTA1 transduces signals, however, remain poorly understood,
67 especially in comparison to the better-studied receptors for serotonin, dopamine,
68 histamine, acetylcholine, and epinephrine, with which it shares considerable homology.
69 To illuminate hTA1's molecular mechanisms and elucidate similarities and differences
70 with other TAAR members and rodent TA1 receptors on the atomic scale, we thus
71 herein report the cryoEM structure of a hTA1-Gs signaling complex. We further
72 interrogate several modulatory surfaces including hTA1's presumed orthosteric binding
73 pocket via *in vitro* pharmacological assays and mutational studies. Lastly, due to the
74 observed structural similarity to monoaminergic receptors, we also screen a small
75 library of aminergic drugs and research compounds, and identify and characterize the
76 atypical antipsychotic asenapine as a potent and efficacious hTA1 agonist.

77

78 **Results:**

79 Pharmacological Characterization of known TA₁ Ligands

80 We first measured the activity of a panel of known hTA1 agonists to validate previous
81 data and identify a suitable ligand for structural studies. To determine compound-
82 mediated hTA1 activation, we measured Gs-mediated increases in cellular cAMP levels
83 in HEK293T cells using a cAMP biosensor¹⁶ (Fig. 1A). We chose a small compound
84 panel and determined activities relative to the endogenous agonist β-PEA (pEC₅₀ = 7.09
85 ± 0.05, designated E_{max} = 100.0 ± 2.2%). The tested compounds include the
86 endogenous agonists TYR (pEC₅₀ = 6.38 ± 0.04, E_{max} = 99.0 ± 2.1% of β-PEA) and 3-

87 iodothyronamine (T₁AM; pEC₅₀ = 6.13 ± 0.04, E_{max} = 70.5 ± 1.7%), the preclinical
88 compounds Ro5256390 (pEC₅₀ = 8.27 ± 0.08, E_{max} = 103.3 ± 3.4%) and Ro5263397
89 (pEC₅₀ = 8.83 ± 0.09, E_{max} = 86.7 ± 3.1%), and the clinical candidates ulotaront (pEC₅₀
90 = 6.74 ± 0.05, E_{max} = 109.0 ± 2.7%) and ralmitaront (pEC₅₀ = 6.96 ± 0.08, E_{max} = 40.1 ±
91 1.4%) (Supplementary Table 1). Ro5256390, a previously developed hTA1-selective
92 preclinical candidate with efficacy in rodent addiction models, showed comparable
93 efficacy to that of β-PEA (Fig. 1A). Moreover, Ro5256390 showed a potency of ~5 nM in
94 our assay, validating previous findings that it is currently one of the most potent and
95 efficacious hTA1 agonists. These results also suggested the utility of Ro5256390 in
96 forming stable hTA1-Gs complexes for structural studies into hTA1's molecular
97 mechanisms and pharmacology.

98

99 Determination of a Ro5256390-bound hTA1-Gs structure

100 To elucidate the molecular architecture of hTA1 and provide insight into the receptor's
101 activation mechanisms and drug binding surfaces, we determined a cryoEM structure of
102 Ro5256390-bound human hTA1 in complex with a heterotrimeric Gs protein (Fig. 1B,
103 Supplementary Fig. 1, Supplementary Table 2). To this end, we expressed and purified
104 hTA1 from *Sf9* cells using a full-length hTA1 construct bearing the stabilizing¹⁷ mutation
105 F112^{3.41}W (Superscripts denote Ballesteros-Weinstein numbering¹⁸), as well as an N-
106 terminal b562RIL apocytochrome (BRIL)¹⁹ fusion followed by the first 25 residues of the
107 human β2-adrenergic receptor (β2AR) to increase hTA1 expression yields²⁰. Following
108 our previously established protocols, we obtained heterotrimeric Gs via co-expressing
109 Gβ1 and a Gγ2-Gαs fusion, using previously reported stabilized dominant negative

110 mutations (see methods) in G α s²¹. Ro5256390-bound receptor and G α s were purified
111 separately, and complexes were formed overnight in the presence of Nb35, which
112 stabilizes the G α s heterotrimer²².

113

114 Overall Complex Architecture

115 We obtained an initial cryoEM structure of Ro5256390-bound hTA1-G α s-Nb35 at a global
116 nominal resolution of 3.35 Å, with local resolutions as high as 3.0 Å around the ligand
117 binding pocket (Supplementary Fig. 1). At this resolution, we were able to
118 unambiguously place the compound and elucidate the ligand-binding pocket of hTA1
119 (Supplementary Fig. 2A, B). Overall, the structure of the complex is reminiscent of those
120 previously reported for other GPCR-G protein complexes, where the C-terminal helix of
121 the G α subunit extends into the receptor transducer binding site formed largely by the
122 cytoplasmic ends of transmembrane helices (TM) 2, 3, 5, 6, and 7²². However, we do
123 observe considerable flexibility in several areas of the complex, including hTA1's
124 extracellular surface and C-terminus, as well as parts of the receptor-G protein interface
125 (Supplementary Fig. 2).

126 For instance, we observed continuous and clear density for the receptor C-terminus in
127 unsharpened cryoEM maps (Fig. 1B, Supplementary Fig. 2C). Accordingly, the hTA1 C-
128 terminus interacts with G β 1, but the low resolution of this area (several attempted data
129 processing approaches failed to improve resolution) precludes both identification of
130 sidechain rotamer states in the C-terminus as well as detailed interactions between
131 hTA1 and G β 1. We thus modeled a poly-alanine chain into the low-resolution density.

132 We were, however, able to characterize the receptor's extracellular surface following
133 local refinement and 3D variability analysis that supported the modeling of several key
134 extracellular features. First, part of extracellular loop 2 (EL2) forms a 2-turn helix, which
135 stacks atop the N-terminal end of EL2 (Supplementary Fig. 2D). This loop originates
136 from TM5 and stretches across the 7 transmembrane helix (7TM) bundle, forming the
137 boundary of the ligand binding pocket (Fig. 1B). Second, we observed that the N-
138 terminus of hTA1 folds over the receptor, and forms two disulfide bridges with EL1 and
139 EL2, distinct from the single disulfide bridge between the N-terminus and EL2 found in
140 the structure of mouse TAAR9 (mTAAR9)²³ (Supplementary Fig. 3). 3D variability
141 analysis suggests two stable points of density extending from EL1 and EL2 that connect
142 more variable density that corresponds to the extension of the N-terminus emerging
143 from TM1 (Supplementary Movie 1). However, mutating C88^{EL1} to a serine had virtually
144 no effect on compound potencies, while mutating C5^{Nterm}, C13^{Nterm}, and C178^{EL2}
145 moderately reduced compound potencies (Supplementary Fig. 3, Supplementary Table
146 1), with lesser effects observed for TYR and β -PEA at all mutants but C13^{Nterm}S.
147 Conversely, mutating either C88^{EL1} or C178^{EL2} to a serine appears to only moderately
148 increase the efficacies of Ro5256390 ($121.7 \pm 19.4\%$ and $119.6 \pm 15.2\%$), Ro5263397
149 ($100.3 \pm 9.1\%$ and $105.2 \pm 13.2\%$), and ralmitaront ($77.9 \pm 15.0\%$ and $69.5 \pm 2.9\%$)
150 relative to β -PEA (Supplementary Fig. 3, Supplementary Table 1). We considered the
151 possibility that these disulfides benefit from potential redundancy with each other, as
152 well as with the conserved disulfide between EL2 and TM3, which is observed in the
153 vast majority of Class A GPCRs²⁴. However, even a C88S/C178S double mutant did not
154 dramatically impact hTA1 ligand potency (at most a 2.4-fold reduction for ulotaront),

155 suggesting that both N-terminal disulfide bridges are largely dispensable to signaling
156 mediated by β -PEA and other tested agonists. By comparison, mutation of the
157 conserved C96^{3,25} residue to a serine ablated dose-dependent cAMP accumulation,
158 indicating that these disulfides do not offer compensatory stabilization of the conserved
159 EL2-transmembrane core interface (Supplementary Fig. 3).

160 3D variability analysis further uncovered considerable motion at the G protein-receptor
161 interface, by showing variability in TM5, TM6, and the angle by which Gas' C-terminal
162 helix engages the receptor. We observe TM1 moving between H8 and TM2
163 (Supplementary Movie 2), and a corresponding motion of TM4 between TM2 and TM5
164 (Supplementary Movie 3). These motions occur in concert with a rotating motion and
165 simultaneous disordering of the cytoplasmic ends of TM5 and TM6 (Supplementary
166 Movie 4). In total, this results in a slight twisting and rocking motion around the C-
167 terminal helix of Gas (Supplementary Movie 5).

168 Lastly, we observe several patches of densities in membrane facing surfaces that likely
169 correspond to membrane components such as lipids, sterols, or buffer components
170 including detergent or cholesterol hemisuccinate. Although their identities remain
171 ambiguous, we observe a particularly strong patch of density near the cytoplasmic ends
172 of TM2 and TM4 (Supplementary Fig. 2E). As is observed in other lipid and sterol
173 binding surfaces, this interface is mostly formed by hydrophobic residues, though we
174 curiously also observe the hydrophilic residue H63^{2,44}. This residue is unique to TA₁
175 among aminergic receptors, including the entire TAAR family, and found to be a
176 hydrophobic residue such as valine, leucine, or cysteine in all other aminergic receptors.
177 To test its potential role in hTA1 function, we mutated H63^{2,44} to a leucine, and observed

178 a 2-to-5-fold increase in potency for all tested agonists except ralmitaront, whose
179 potency remained largely unchanged (Supplementary Fig. 2E). Although the detailed
180 mechanism of this substitution requires further investigation, we surmise that our
181 mutation conceivably alters interactions with observed membrane components and/or
182 potentially promotes hTA1's active state.

183

184 hTA1 Ligand Binding Site

185 Ro5256390 is bound to hTA1 in a pocket near the extracellular region of the receptor,
186 commonly termed the orthosteric binding pocket (OBP). As is conserved in aminergic
187 GPCRs, the compound interacts with the conserved aspartate D103^{3,32}, which is
188 positioned near the amine-substituted oxazoline moiety (Fig. 2A). The phenyl moiety of
189 the compound extends towards TM5, and is stabilized by hydrophobic interactions with
190 F267^{6,51} and F268^{6,52} in TM6, I104^{3,33} in TM3, as well as F186^{EL2} and V184^{EL2} in EL2.
191 Overall, the binding mode of the phenyl moiety is similar to that of β-PEA bound to
192 mTAAR9 (Supplementary Fig. 4). Strikingly, aside from D^{3,32} and Y^{7,43}, none of the
193 residues in the binding pockets of hTA1 and mTAAR9 are conserved. It is worth noting
194 that F^{6,51} and F^{6,52} have been suggested to stabilize the aromatic core moieties of
195 serotonin, dopamine, and norepinephrine, and are universally conserved across their
196 respective receptors²⁵. The finding that hTA1 is the only subtype of the human TAAR
197 family that contains both phenylalanines, therefore, further suggests a closer
198 relationship with other neurotransmitter receptors than other trace amine receptors.

199

200 General Determinants of hTA1 ligand binding

201 As expected, we found that mutation of the conserved amine-coordinating D103^{3.32} to
202 asparagine all but abolished dose-dependent responses to all ligands tested
203 (Supplementary Table 1). In our structure, Ro5256390's amino-oxazoline ring extends
204 towards the 7TM core into a crevice formed by L72^{2.53}, W264^{6.48}, Y294^{7.43}, and S107^{3.36}.
205 We probed this interaction by mutating S107 to a cysteine, a common residue at that
206 position in many monoaminergic receptors, and observed that the potency of
207 Ro5256390 (pEC50 = 6.30 ± 0.06) and Ro5263397 (pEC50 = 6.61 ± 0.06) decreased
208 by approximately 100-fold. By comparison, the potencies of β-PEA (pEC50 = 6.69 ±
209 0.06) and TYR (pEC50 = 6.73 ± 0.07) decreased less than 10-fold (Fig. 2B,
210 Supplementary Table 1). These findings highlight that a bulkier and nonpolar cysteine
211 sidechain disproportionately affects the binding of sterically demanding amino-oxazoline
212 compounds. We further mutated the conserved toggle switch W264^{6.48}, which strongly
213 and indiscriminately decreased the potency of all ligands tested by at least 10-fold,
214 notably decreasing the potency of Ro5263397 by more than 1000-fold (pEC₅₀ = 5.78 ±
215 0.06). Lastly, we mutated the residue R83^{2.64}, as this arginine is conserved across all
216 hTAARs and extends into the binding pocket. A R83^{2.64}H mutation dramatically affected
217 the activities of most tested compounds to a point where potencies could no longer be
218 accurately determined for TYR, T₁AM and ralmitaront (Fig. 2B). While R83^{2.64}H did not
219 appear to affect potencies of Ro5256390 and Ro5263397, it strongly reduced their
220 efficacies.

221

222

223 Structural Similarity to other hTAARs

224 Studies have shown that there are considerable functional and pharmacological
225 differences between hTA1 and TA1 in rats (rTA1) or mice (mTA1)¹². For instance, TYR
226 has been reported to be ~30 times more potent at rTA1 than hTA1, and the antagonist
227 EPPTB was shown to have an affinity of ~1 nM at mTA1 but does not appear to bind
228 hTA1²⁶. Inversely, the recently reported TA1 antagonist RTI-7470-44 has an IC₅₀ of
229 about 8 nM at hTA1 but shows ~90-fold and ~140-fold reduced potencies at rTA1 and
230 mTA1, respectively²⁷. This species-level differentiation of binding pocket topology
231 impacts signaling by endogenous ligands, as the thyroid hormone derivative T₁AM has
232 been reported as a nanomolar affinity full agonist at rTA1 (and to a lesser extent also at
233 mTA1), while it is a weak partial agonist at hTA1²⁸. Sequence analysis reveals that
234 hTA1 exhibits 83% and 82% similarity to rTA1 and mTA1, respectively, and our
235 structural comparison shows that species differences are found in virtually all helices
236 and domains of hTA1 (Fig. 3A, Supplementary Fig. 5). Although overall species
237 differences can potentially also account for divergent receptor trafficking, transducer
238 binding, and allosteric coupling between ligand and transducer binding sites, we wanted
239 to investigate the impact of ligand binding site differences on the pharmacological
240 properties of hTA1 agonists.

241 Across species, several studies have noted drastic pharmacological differences
242 between human and rodent TA1. In fact, the endogenous agonist tryptamine shows
243 over 50-fold higher potency at rTA1 compared to hTA1, and several potent psychedelics
244 reportedly have more than 1000-fold selectivity for rTA1 over hTA1¹². Although rTA1 and
245 mTA1 share F^{6.51} and F^{6.52} with hTA1, we observe considerable differences across the

246 ligand binding pockets that more than likely contribute to the drastic species differences
247 described above (Fig. 3A, 3B). Out of the 17 residues within 5 Å of Ro5256390, three
248 are different in mTA₁, and four are different in rTA₁ (Fig. 3A). Perhaps the most
249 apparent differences between human and rodent TA₁ are found at positions 7.39, 5.42,
250 and 45.52 (EL2). These residues have long been known to form direct ligand
251 interactions in other aminergic receptors²⁹.

252 First, I290^{7.39}, which is a tyrosine in mTA₁ and an asparagine in rTA₁, was previously
253 identified as a key factor responsible for species differences in responsiveness to
254 T₁AM³⁰, although this work did not assess hTA1 residues. Mutation of I290^{7.39} to the
255 tyrosine found in mice resulted in a dramatic decrease in the signal range of our assay.
256 This suggests that I290^{7.39} may be part of a motif required for efficient receptor folding
257 or trafficking, or that other structural changes in the binding pocket are needed to better
258 accommodate the bulk of tyrosine. However, we were still able to determine increased
259 potencies for Ro5256390 ($pEC_{50} = 8.42 \pm 0.07$), Ro5263397 ($pEC_{50} = 9.16 \pm 0.17$), and
260 particularly ulotaront ($pEC_{50} = 7.52 \pm 0.10$), while the potencies of β-PEA ($pEC_{50} = 6.43$
261 ± 0.06) and TYR ($pEC_{50} = 5.71 \pm 0.06$) decreased (Figure 3B, Supplementary Fig. 5,
262 Supplementary Table 1). Conversely, mutation of I290^{7.39} to an asparagine as in rTA1
263 did not impact the signal range, but instead further increased the potency of ulotaront
264 ($pEC_{50} = 8.85 \pm 0.08$) by over 100-fold. T₁AM's potency ($pEC_{50} = 6.86 \pm 0.07$) increased
265 by about 5-fold, whereas the potencies of β-PEA ($pEC_{50} = 7.26 \pm 0.06$) and TYR (pEC_{50}
266 $= 6.31 \pm 0.03$) were largely unchanged.

267 T194^{5.42} is another residue specific to hTA1, as mTA1 and rTA1 both contain an alanine
268 at this position. This is a particularly drastic difference, as the polar residue of 5.42

269 found in dopamine and norepinephrine receptors has been implicated in directly
270 interfacing with one of the hydroxyl groups in the catechols of dopamine³¹ and
271 norepinephrine³². Unexpectedly, a T194^{5.42}A mutation increases TYR's potency by over
272 10-fold (Fig. 3B). This suggests that TYR does not form a hydrogen bond with T194^{5.42}
273 that contributes to its potency and instead benefits from a substitution to a sterically
274 smaller alanine as found in rodent TA1s. By contrast, T194^{5.42}A reduces the potencies
275 of Ro5263397 ($pEC_{50} = 7.32 \pm 0.06$) and Ro5256390 ($pEC_{50} = 7.62 \pm 0.06$) by over 30-
276 fold and over 5-fold, respectively, which is surprising given that Ro5256390 is located
277 ~5 Å from the T194^{5.42} sidechain, and Ro5263397's smaller size suggests an even
278 greater distance. The T194^{5.42}A mutation also increases the efficacy of all compounds
279 relative to β -PEA's, which is most pronounced for ulotaront ($Emax = 140.8 \pm 4.8\%$ of β -
280 PEA), whose efficacy substantially increases compared to β -PEA's. It should be noted,
281 however, that ulotaront's potency ($pEC_{50} = 5.86 \pm 0.04$) at the same time decreases
282 nearly 8-fold (Figure 3B, Supplementary Fig. 5, Supplementary Table 1).

283 Lastly, V184^{45.52} in EL2, which is a key residue in aminergic receptors that has been
284 implicated in ligand kinetics^{33,34} and biased signaling^{34,35}, is a proline in both mTA1 and
285 rTA1. Our structure reveals direct hydrophobic contacts between V184^{45.52} and
286 Ro5256390, and a substitution with proline likely affects ligand interactions and changes
287 the EL2 backbone due to the structural constraints of this residue. Specifically, we find
288 that a V184^{45.52}P mutation selectively reduces the potencies of β -PEA ($pEC_{50} = 6.49 \pm$
289 0.15), TYR ($pEC_{50} = 5.83 \pm 0.17$), and ralmitaront ($pEC_{50} = 6.56 \pm 0.06$) by 3-, 4-, and
290 2.5-fold, respectively, while not significantly affecting the potencies of the other tested
291 compounds.

292 Structural similarity to neurotransmitter receptors

293 TAARs as a group are frequently categorized as olfactory receptors due to their role in
294 odorant perception^{36,37}, while hTA1, which is not expressed in the olfactory epithelium³⁸,
295 is often mentioned alongside neurotransmitter receptors such as serotonin and
296 dopamine receptors³⁹. We thus performed structure and sequence analysis to uncover
297 similarities with aminergic neurotransmitter receptors (Fig. 4A). Phylogenetic analysis
298 using the GPCRdb tool⁴⁰ shows hTA1's high sequence similarity and identity with
299 serotonin, dopamine, histamine, adrenaline, and – to a lesser extent – muscarinic
300 acetylcholine receptors (Fig 4A). This analysis identifies the 5-HT4 serotonin receptor
301 (5-HT4R) and D1 dopamine receptor (DRD1) as the closest related aminergic GPCRs.
302 hTA1 exhibits 45%/29% sequence similarity/identity with 5-HT4R, and even 58%/39%
303 sequence similarity/identity if only structurally conserved residue positions are
304 considered. Strikingly, these percentages are similar to those obtained when hTA1 is
305 compared to other human TAARs, and hTA1's structurally conserved regions appear as
306 similar to 5-HT4R's as they are to hTAAR8's (Supplementary Fig. 6).

307 Having determined the structure of hTA1, we next wanted to investigate whether this
308 observed sequence similarity with other aminergic receptors extends to structural
309 similarity. hTA1's structure appears most similar to that of 5-HT4R, validating our
310 findings from sequence analysis (Fig. 4B). As is the case for the herein reported hTA1-
311 Gs complex structure, 5-HT4R's structure was determined in complex with a Gs
312 heterotrimer⁴¹, facilitating structural comparison. Structural alignment shows an RMSD
313 of 0.613 Å when both receptor-G protein complex structures are compared, and 0.941 Å
314 when only the receptors are aligned. As observed for hTA1, 5-HT4R features a 2-turn

315 helix located above the N-terminus of EL2, although the functional significance of this
316 structural motif remains unidentified.

317 Regarding the OBP, the 17 residues that comprise the Ro5256390 binding pocket of
318 hTA1 show higher similarity to 5-HT2R, 5-HT7R, as well as DRD1 and DRD5 dopamine
319 receptors than to other hTAARs (Supplementary Fig. 6). hTA1's reduced affinity for
320 monoaminergic neurotransmitters^{2,3} is thus less likely solely due to the lack of direct
321 contacts within the ligand binding pocket. We propose instead that subtle remodeling of
322 the ligand binding pocket, as well as greater changes in the surrounding residue
323 environment, might alter key transition states that would otherwise enable high affinity
324 neurotransmitter binding. We therefore interrogated compound interactions with TM5
325 and TM6 residues, which are critical for activation of aminergic receptors.

326 We first noted that a major difference in the proximity of the hTA1 OBP compared to
327 other aminergic receptors is how F195^{5,43} orients in the space between TM5 and TM6
328 and interacts with F268^{6,51} (Fig. 5A). Previous reports suggested that a conserved pair
329 of polar residues in dopamine and serotonin receptors located at 5.43 and 6.55 form an
330 interhelical hydrogen bond that may be key for high-affinity recognition of the hydroxyl
331 group of their respective ligands⁴². Indeed, mutation of F195^{5,43} to a threonine increased
332 the potencies of TYR ($pEC_{50} = 7.80 \pm 0.19$) and β -PEA ($pEC_{50} = 7.63 \pm 0.07$),
333 representing a ~20-fold increase for TYR and a ~3.5-fold increase for β -PEA (Fig. 5B,
334 Supplementary Table 1). The stronger increase in TYR's potency compared to β -PEA's
335 conceivably further supports the importance of this polar interaction in coordinating
336 ligand hydroxyl groups oriented toward TM6. Conversely, mutating T271^{6,55} to an
337 alanine reduces the potency of all compounds tested, with both β -PEA's ($pEC_{50} = 6.15$

338 ± 0.08) and TYR's ($pEC_{50} = 5.31 \pm 0.20$) potency decreasing by at least 10-fold (Fig.
339 5B). Mutating T271^{6.55} to an asparagine, on the other hand, disproportionately affected
340 the potency of β -PEA ($pEC_{50} = 6.43 \pm 0.06$) relative to TYR ($pEC_{50} = 6.06 \pm 0.04$). The
341 T271^{6.55}N mutation strongly on the other hand increased the efficacy of both T₁AM
342 (Emax = 119.8 $\pm 2.1\%$ of β -PEA) and ralmitaront (Emax = 87.4 $\pm 1.5\%$ of β -PEA)
343 relative to β -PEA, with negligible effects on compound potency (Fig 5B, Supplementary
344 Table 1). It is thus conceivable that T₁AM and ralmitaront form hydrogen bonds with the
345 T271^{6.55}N sidechain, as this structurally conserved residue has been shown to form
346 similar drug interactions in other receptors⁴³.

347

348 Discovery of asenapine as a potent TA1 agonist

349 Due to hTA1's structural similarity to other aminergic receptors such as 5-HT4R,
350 especially in its OBP, we reasoned that known aminergic drugs and research
351 compounds likely have undiscovered off-target activities at hTA1. To uncover such
352 activities and provide further insight into the receptor's structural and pharmacological
353 similarity to other neurotransmitter receptors, we screened a library of 89 select
354 aminergic compounds (Fig. 6A). cAMP accumulation studies using 10 μ M of compound
355 revealed hTA1 activation by 16 compounds, defined by at least a 4-fold (log2-fold
356 change of 2) increase of signal over DMSO-treated controls. These compounds
357 included the monoamines serotonin, epinephrine, and histamine, which have all
358 previously been reported to be weak μ M-potency compounds at hTA1², as well as the
359 positive control β -PEA. Additionally, we observed activity for the ergoline compounds
360 ergotamine, lisuride, LSD, and pergolide, which have previously been reported to be

361 agonists of the rTA1 ortholog, although their potencies have not been reported³.

362 Unexpectedly, we further observed hTA1 activation by quinpirole, quipazine,

363 oxymetazoline, WAY161503, Ro600175, lorcaserin, and asenapine. To validate these

364 findings, we next performed concentration response experiments. These experiments

365 revealed that most compounds identified in the screen have very low (>10 μ M EC₅₀)

366 potency at hTA1 with the notable exception of asenapine (Supplementary Fig. 7A).

367 Asenapine is an atypical antipsychotic, which has broadly been characterized as a

368 potent antagonist with pan-aminergic activity at various serotonin, dopamine, histamine,

369 and adrenergic receptors⁴⁴, though it has been reported as a partial agonist at 5-

370 HT1AR⁴⁵. Surprisingly, at hTA1 asenapine is nearly as efficacious as β -PEA (E_{max} =

371 88.7 \pm 2.3% of β -PEA) exhibiting nanomolar potency (pEC₅₀ = 6.56 \pm 0.01) (Fig. 6A).

372 Asenapine is thus a more potent agonist than the endogenous agonist T₁AM, with

373 similar activity to TYR and only slightly reduced potency compared to β -PEA.

374 We next performed structure-activity relationship (SAR) studies to further characterize

375 asenapine potency and efficacy, focusing on the previously highlighted residues (Fig.

376 6B, Supplementary Fig. 7B). Only two mutations, F195^{5.43}T (pEC₅₀ = 7.11 \pm 0.05) and

377 H63^{2.44}L (pEC₅₀ = 7.09 \pm 0.28) noticeably increased asenapine's potency by

378 approximately 3-fold each. Most mutations appear to decrease asenapine potency,

379 including the toggle switch, as well as the OBP residue substitutions T271^{6.55}A (pEC₅₀ =

380 5.94 \pm 0.05) and I290^{7.39}N (pEC₅₀ = 6.00 \pm 0.14). Mutation of the latter two residues

381 likely abolishes hydrophobic contacts that contribute to the drug's potency. This

382 hypothesis is further supported by the observed increased efficacy in response to a

383 T271^{6.55}N mutation (E_{max} = 121.9 \pm 21.1%) that potentially strengthens such

384 interactions, while the severely reduced efficacy at the I290^{7.39}Y mutant ($E_{max} = 51.1 \pm$
385 4.4%) indicates that the steric bulk of the sidechain decreases asenapine's ability to
386 activate hTA1.

387 These data show that asenapine's agonism relies on structural contacts within the OBP
388 and thus validate that its distinct scaffold binds to the same site as previously reported
389 hTA1 agonists. Moreover, asenapine's increase in potency when F195^{5.43} is mutated to
390 a threonine is in line with its potent activity at serotonin and dopamine receptors, which
391 all exhibit serines or threonines at position 5.43. Taken together, these findings further
392 highlight the close functional relationship between hTA1 and monoaminergic
393 neurotransmitter receptors, while uncovering key features that are unique to hTA1.

394

395 **Discussion**

396 Herein we report the hTA1-Gs complex cryoEM structure together with functional and
397 mutational studies, and uncover unique receptor features that differentiate it from its
398 fellow TAAR family members and rodent orthologs³⁹ and illustrate its similarity to
399 monoaminergic neurotransmitter receptors such as 5-HT4R.

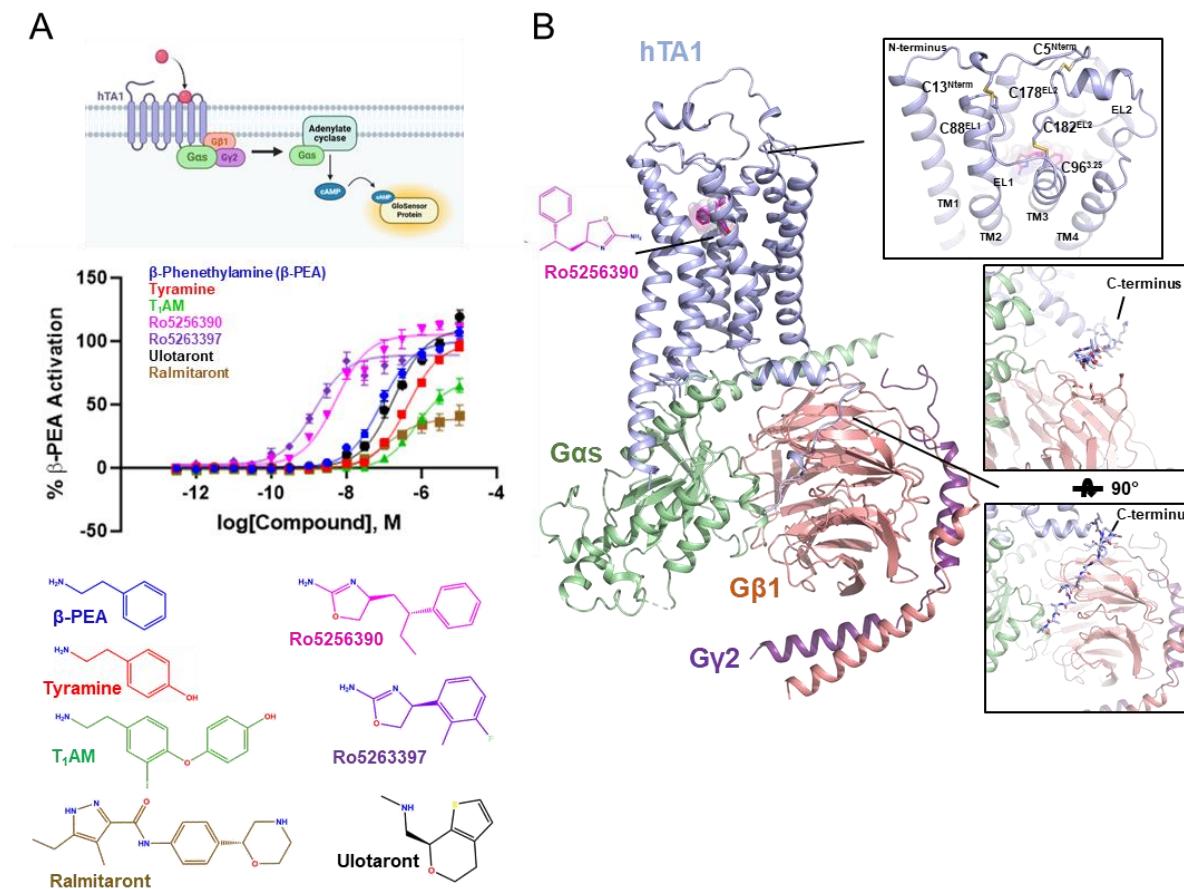
400 hTA1 exhibits a unique extracellular surface in which cysteine disulfide bonds connect
401 the N-terminus to EL1 and EL2, which involves a C-(X₆₋₇)-C motif that is observed in the
402 N-terminal sequences of all members of the hTAAR family. Unlike mTAAR4, mTAAR5,
403 mTAAR8c and mTAAR9, however, disrupting these bonds in hTA1 does not appear to
404 substantially impact receptor signaling for any ligand tested herein²³. In fact, mTA1 and
405 rTA1 even lack the equivalent of C13^{N-term}, which connects to C88^{EL1} in hTA1. Taken

406 together, these data suggest that hTA1 fundamentally differs from its TAAR family
407 members in not needing these disulfides to transduce signals, and even displays
408 considerable structural divergence from its rodent orthologs. These findings add an
409 additional dimension to previous pharmacological studies that uncovered surprisingly
410 different ligand affinities at rTA1, mTA1, and hTA1^{28,30}. To provide a structural context
411 for these observations, we investigated the molecular underpinnings of these
412 differences combining structural analysis and site-directed mutagenesis. Much of the
413 preference for TYR in TA₁ rodent orthologs appears to be attributable to an alanine in
414 position 5.42 of rTA1 and mTA1 compared to a threonine in hTA1. This finding is
415 counterintuitive when considering that studies of dopamine and norepinephrine
416 receptors highlight the importance of hydrogen bonds with polar residues at 5.42 for the
417 activity of the endogenous ligands^{31,32,46,47}. This suggests that hTA1 and its rodent
418 orthologs may have a different network of hydrogen bonding necessary for ligand-
419 stabilized signal transduction. This is further supported by introducing a threonine at
420 position 5.43 of hTA1 that increases TYR's potency 26-fold, whereas a S^{5.43}A mutation
421 in DRD4 only lowered dopamine potency by 7-fold³¹. In contrast, the substantial change
422 of I290^{7.39} to rodent-equivalent polar residues appeared to either weaken (Y^{7.39} in
423 mTA1) or otherwise not affect (N^{7.39} in rTA1) TYR potency relative to β-PEA. In the latter
424 case, the substitution of an asparagine also substantially increased T₁AM potency,
425 which, in tandem with T194^{5.42}A, likely contributes to the exceptionally high potency of
426 this hormone at rTA1 relative to hTA1. Strikingly, previous studies reported that a single
427 amino acid difference in the same position 7.39 is responsible for analogous
428 pharmacological variation between human and rodent 5-HT1BR⁴⁸. In the case of 5-

429 HT1BR, several beta-blockers selectively antagonize rodent orthologs but not human 5-
430 HT1BR, with clear implications for the study of preclinical models for both receptor
431 pharmacology and drug development^{48,49}. The herein reported molecular insight thus
432 further highlights that the poor pharmacological and mechanistic similarity of human and
433 rodent TA1 requires extensive validation to extrapolate findings from one species to
434 another.

435 As our work uncovers surprising differences to other TAARs and particularly rodent TA1
436 receptors, we observe surprising similarities to neurotransmitter receptors such as
437 serotonin receptors. Not only do we observe a similar receptor architecture compared to
438 5-HT4R, but the hTA1 binding pocket architecture and residue composition display key
439 features observed in several neurotransmitter receptors. These, for instance, include a
440 conserved ionic bond between ligand and D^{3.32}, EL2 as a boundary of the pocket, and
441 key phenylalanines that stabilize the aromatic moiety of Ro5256390, which is likely also
442 a feature of binding to the chemically related β-PEA. None of the other TAAR family
443 members features both phenylalanines, though it should be noted that they do not
444 appear to be necessary for β-PEA binding according to the recently published structure
445 of mTAAR9²³. Further work will thus have to be done to assess the necessity of these
446 residues in ligand binding and signal transduction in hTA1.

447 In addition to these structural features, a screen uncovered agonist activity of several
448 aminergic compounds at hTA1, including potent efficacy of asenapine, a drug reported
449 to primarily target and antagonize monoaminergic neurotransmitter receptors. While we
450 were not surprised to find that the non-selective monoaminergic drug asenapine is able
451 to bind hTA1 based on the structure of the receptor's orthosteric binding pocket, its


452 potent and efficacious agonism was unexpected. Asenapine has reported, albeit low,
453 agonist efficacy at 5-HT_{1A}R⁴⁵, providing pharmacological evidence for the receptor's
454 close structural and functional relationship with serotonin receptors. These findings
455 further underscore pharmacological overlap between hTA1 and 5-HT_{1A}R in light of the
456 promising clinical performance of ulotaront - a reported dual hTA1/5-HT_{1A}R agonist. It is,
457 however, difficult to attribute any particular dimension of asenapine's reported
458 physiological effects to hTA1 activation, as the drug likely derives *in vivo* efficacy from
459 its polypharmacology at various aminergic receptors^{50,51}. Nonetheless, the reported
460 therapeutic effects of the hTA1 agonist and antipsychotic ulotaront in clinical trials
461 suggests that hTA1-mediated effects of asenapine could contribute to its clinical
462 efficacy. This is particularly likely as studies showing strong brain accumulation⁵²
463 suggest that asenapine reaches sufficient concentrations to stimulate hTA1 activation *in*
464 *vivo*.

465 Taken together, our functional and structural data provide insight into the molecular
466 mechanisms of hTA1 and uncover critical determinants of ligand selectivity and efficacy.
467 We further elucidate similarities and differences to fellow members of the TAAR family,
468 rodent orthologs, and monoaminergic neurotransmitter receptors, and identify potent
469 and efficacious hTA1 agonism by the antipsychotic asenapine. The herein presented
470 work should thus launch investigations into asenapine's hTA1-related physiology, as
471 well as facilitate the development of hTA1 probes with improved species- and subtype-
472 selectivity, including such that are based on the asenapine scaffold.

473

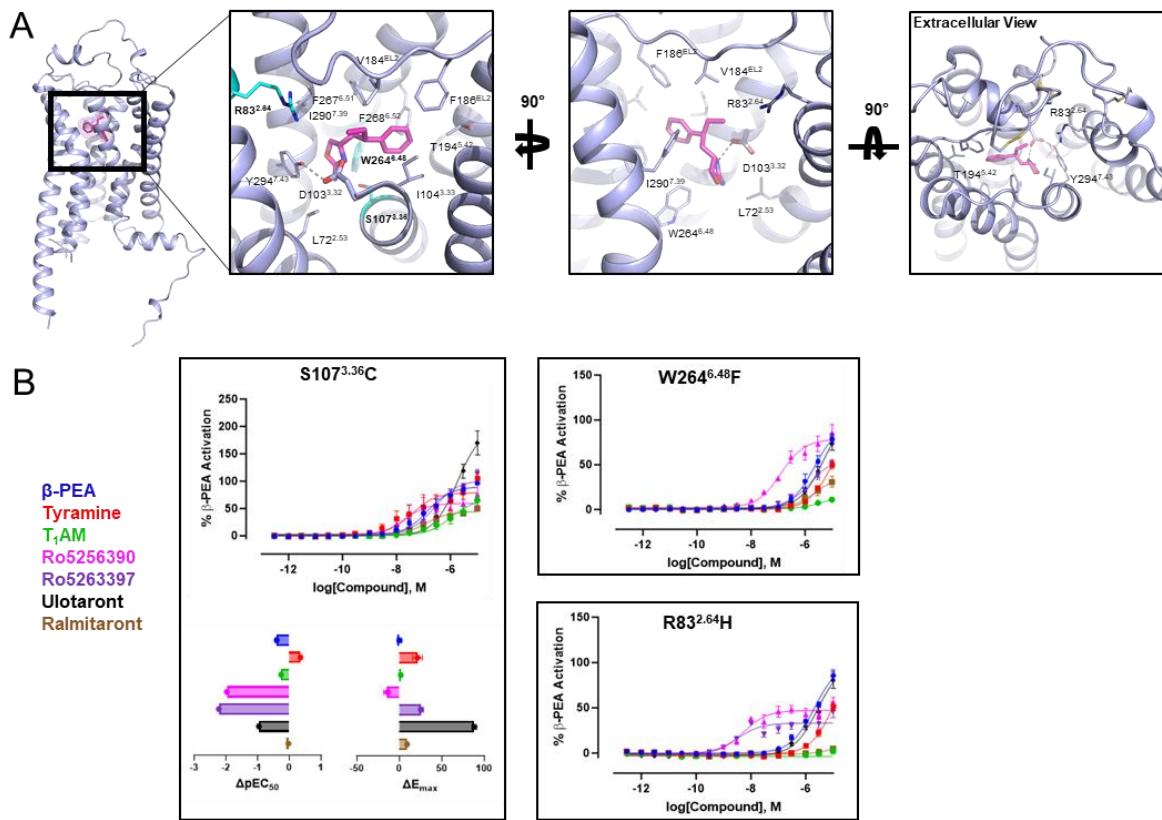
474

475 **Figures**

476 **Fig. 1 | Pharmacological and Structural Characterization of the hTA1-Gs complex.**
477 **A**, Schematic diagram of the GloSensor cAMP accumulation assay used in this study
478 (top), hTA1 activation in transfected HEK293T cells mediated by a panel of agonists
479 (middle), and chemical structures of hTA1 agonists. Data represent mean \pm SEM of
480 three biological replicates. See supplementary table 1 for fitted parameter values. **B**,
481 cartoon view of the Ro5256390-bound hTA1-Gs complex cryo-EM structure. Nb35 has
482 been removed for clarity. Zoom-ins highlight extracellular surface with disulfide bridges
483 and views of the receptor C-terminus. Light blue, hTA1; Ro5256390, magenta; Gαs,
484 green; Gβ1, salmon; Gγ2, purple.

485

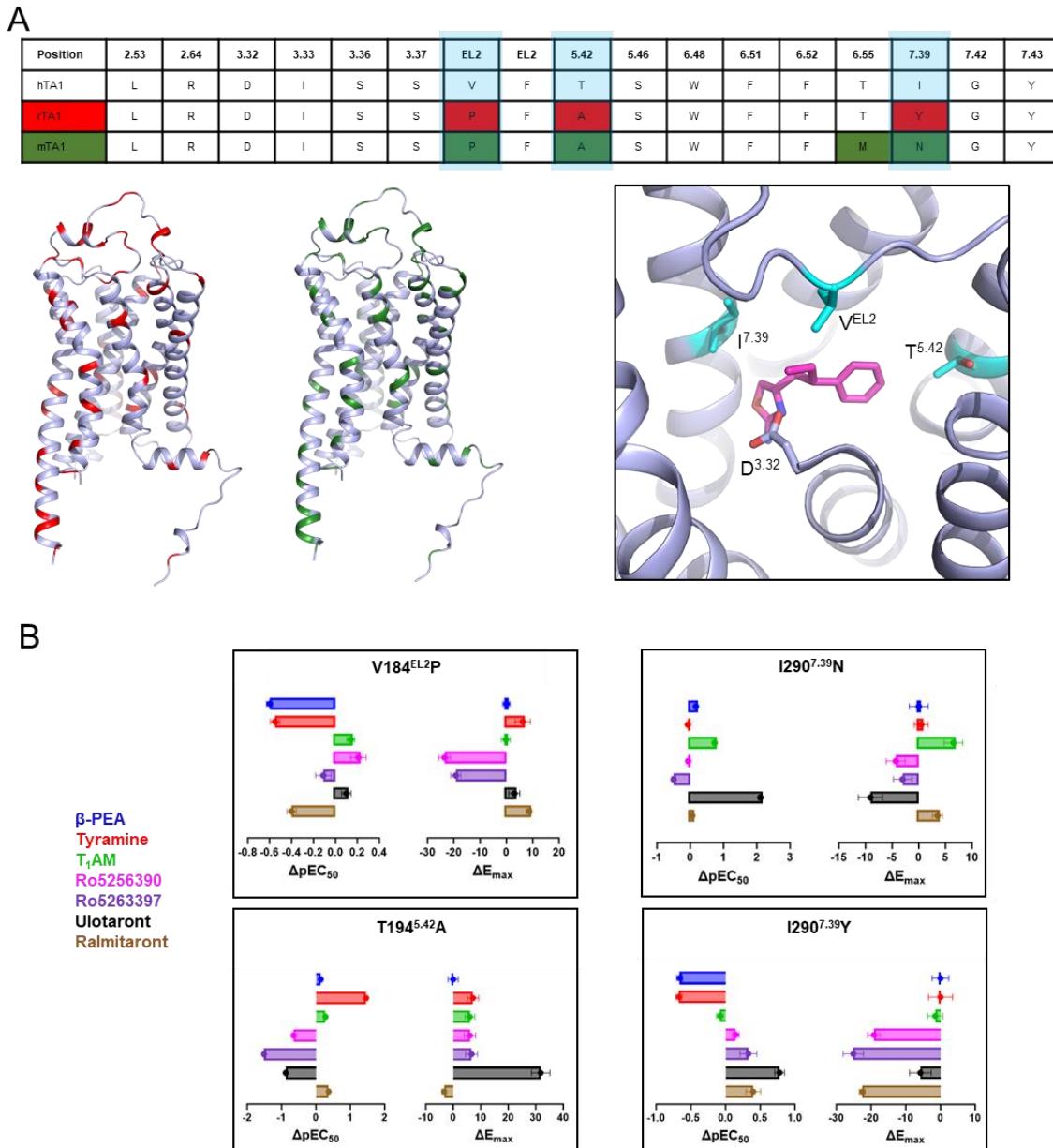
486


487

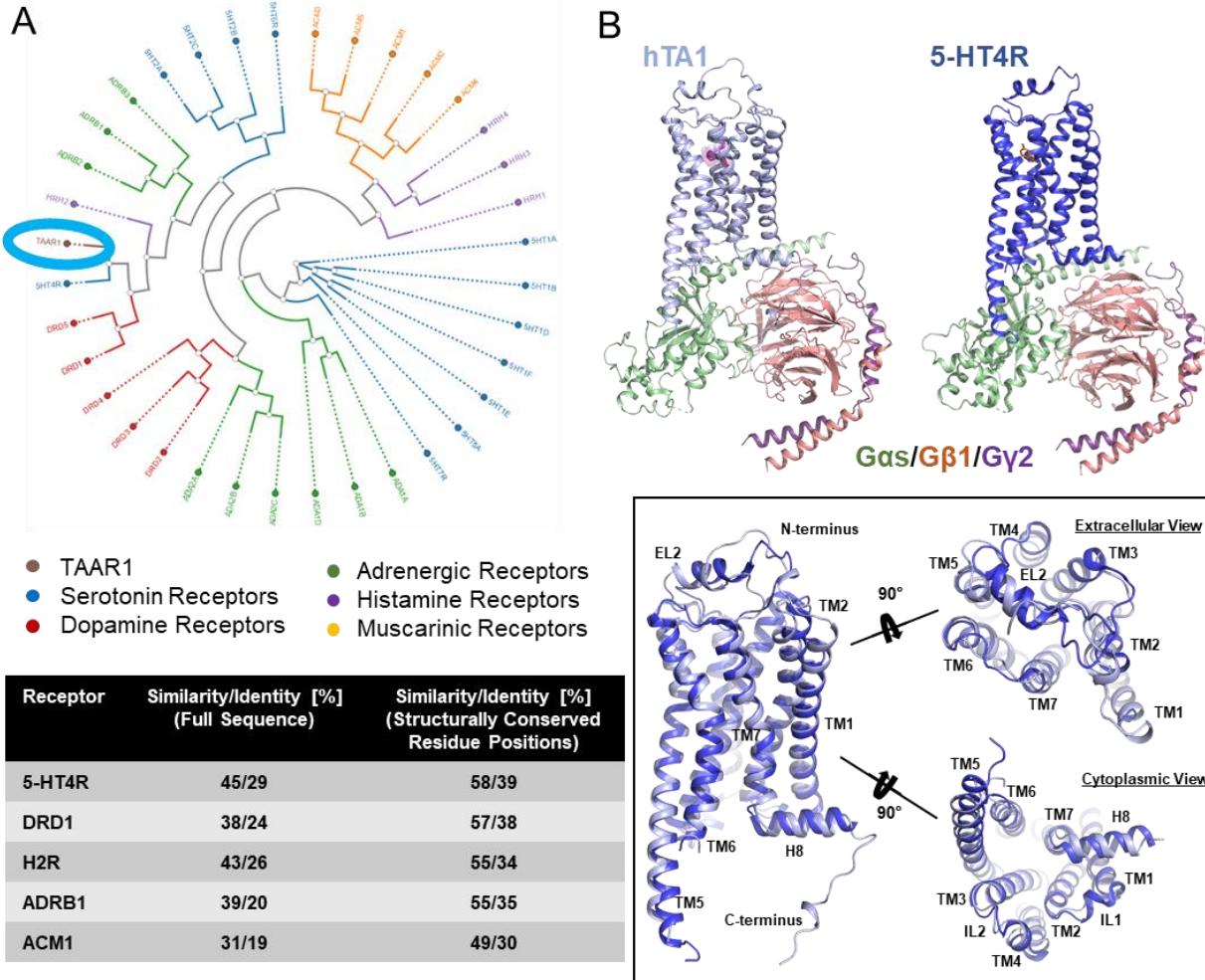
488

489

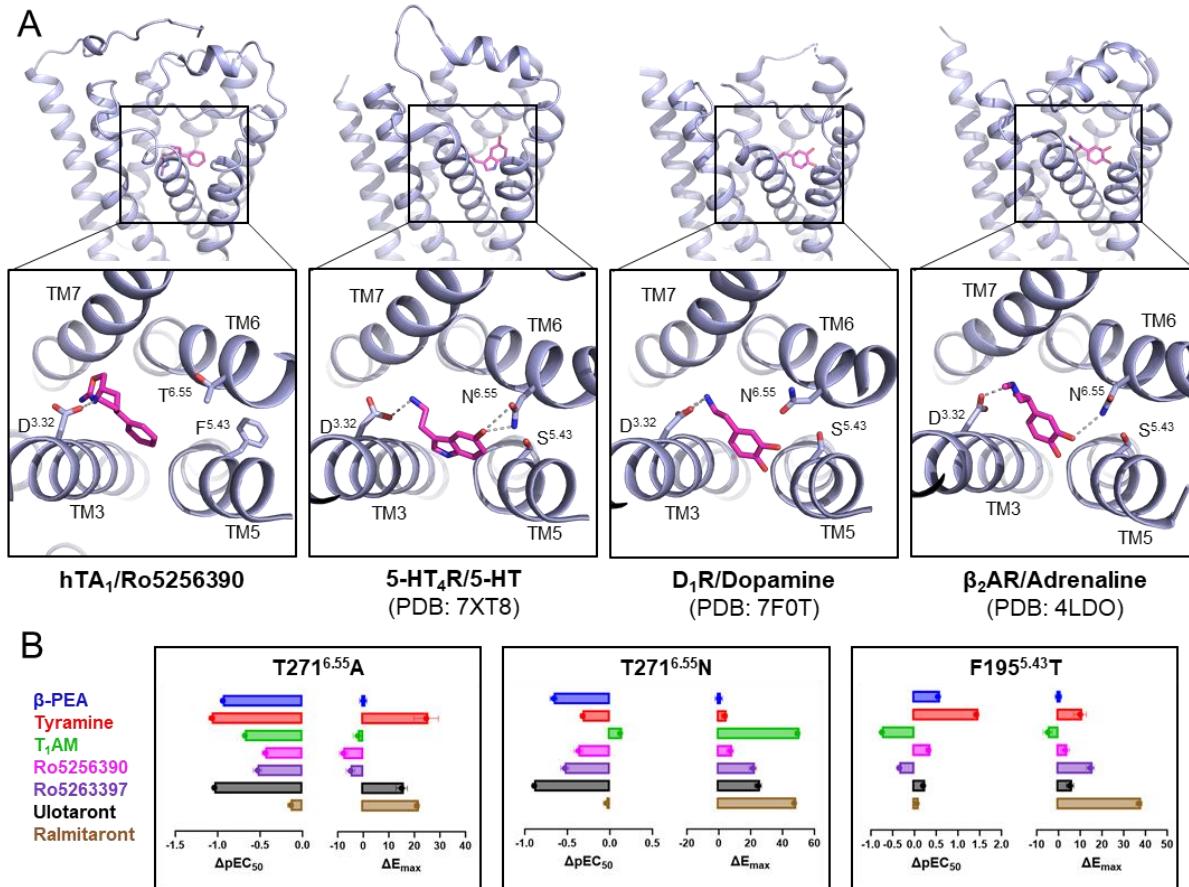
490


491

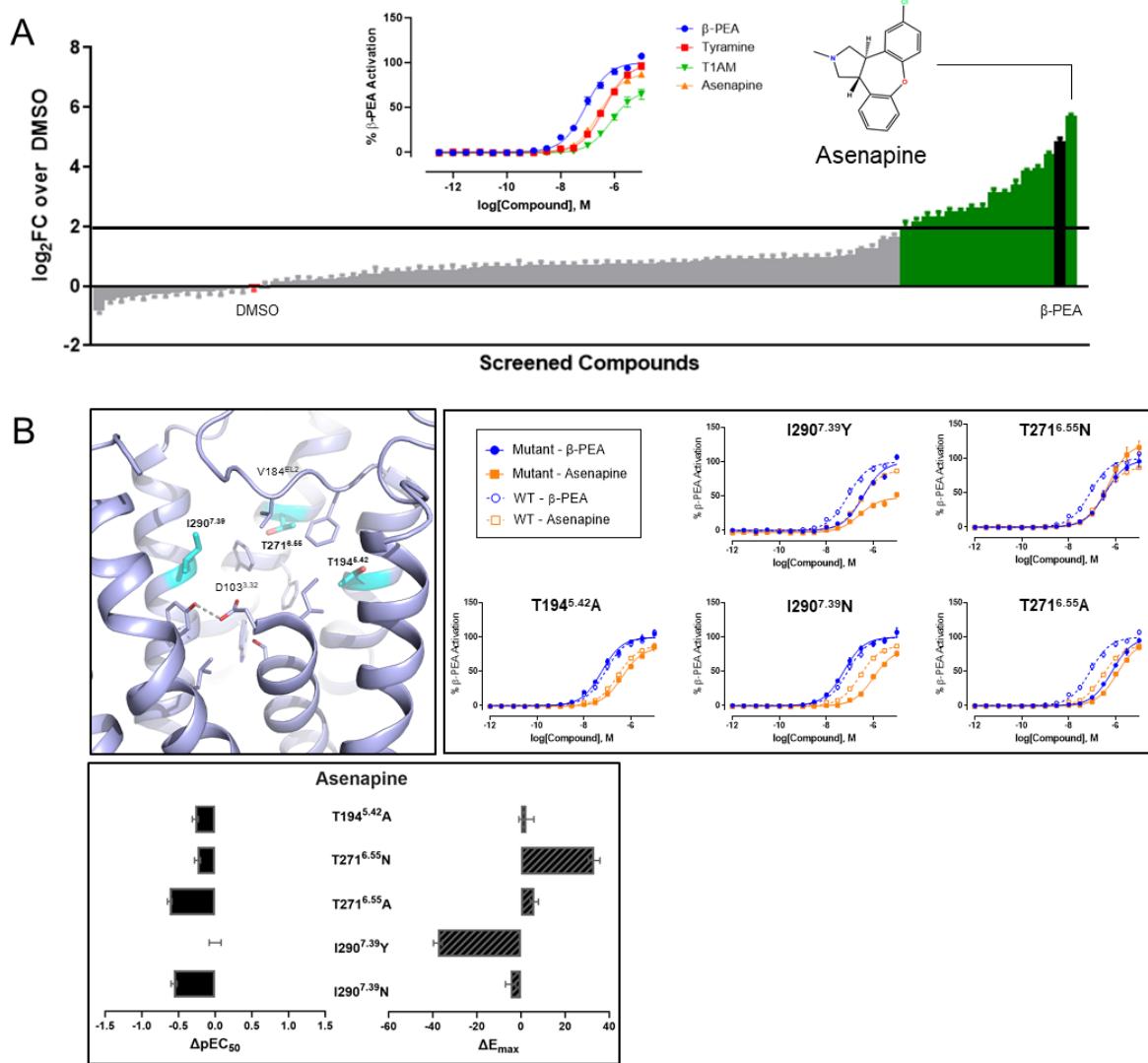
492


493 **Fig. 2 | Features of the Ro5256390-bound orthosteric binding pocket of hTA1. A,**
494 The orthosteric binding pocket (OBP) of hTA1 and key residues are shown from three
495 angles, with residues chosen for mutagenic study highlighted in cyan (left panel). Grey
496 dashed lines denote an ionic interaction between Ro5256390 and the receptor. Light
497 blue, hTA1; Ro5256390, magenta. **B**, Effects of distinct mutations of the potency and
498 efficacy of hTA1 agonists. Data are shown both as full concentration response curves
499 and as differences between mutant and wild type receptor with potencies determined as
500 pEC50s and efficacies measured as Emax. Data represent mean \pm SEM of two
501 biological replicates. See supplementary table 1 for fitted parameter values.

502


503

504 **Fig. 3 | Species differences between human and rodent TA1. A,** Sequence
 505 alignment of residues in conserved positions within the OBP of TA1 (top), with
 506 highlighted differences between hTA1 and rTA1 (red) or mTA1 (green). Locations of
 507 residue differences between hTA1 and rTA1 (red) or mTA1 (green) are further
 508 highlighted on the structure of hTA1. Different residues in the OBP of hTA1, rTA1, and
 509 mTA1 are shown in cyan. D^{3.32} is highlighted for spatial reference and Ro5256390 is
 510 shown in magenta. **B,** Effects of species-related mutations in the OBP on the potency
 511 and efficacy hTA1 agonists. Data are expressed as differences between mutant and
 512 wild type receptor with potencies determined as pEC50s and efficacies measured as
 513 Emax. Data represent mean \pm SEM of two biological replicates. See supplementary
 514 table 1 for fitted parameter values.


515

516 **Fig. 4 | Structural similarity to aminergic neurotransmitter receptors. A,**
517 Phylogenetic analysis of the structurally conserved residues of human aminergic
518 receptors using the GPCRdb tool (Top). hTA1 is circled in blue for orientation.
519 Sequence similarity and identity calculated for complete receptor sequences or only
520 structurally conserved positions (bottom). **B**, Structural comparison of the hTA1-Gs and
521 h5-HT4R-Gs (PDB: 7XT8) complexes and superposition of the receptors shown from
522 different angles. Light blue, hTA1; dark blue, 5-HT4R; Ro5256390, magenta; orange,
523 serotonin; Gαs, green; Gβ1, salmon; Gγ2, purple.

524

525 **Fig. 5 | Binding pocket similarities between hTA1 and aminergic neurotransmitter**
526 **receptors.** **A**, Side-by-side comparison of the OBP in Ro5256390-bound hTA1, the
527 serotonin-bound 5-HT4R (PDB: 7XT8)⁴¹, the dopamine-bound DRD1 (PDB: 7F0T)⁴⁶,
528 and the norepinephrine-bound β2AR (PDB: 4LDO)⁵³. Key residues are shown as sticks,
529 grey dashed lines represent ionic bonds between the conserved D^{3.32} residue and the
530 aminergic ligands. **B**, Effects of OBP mutations on the activities of hTA1 agonists. Data
531 are expressed as differences between mutant and wild type receptor with potencies
532 determined as pEC₅₀s and efficacies measured as E_{max}. Data represent mean ± SEM
533 of two biological replicates. See supplementary table 1 for fitted parameter values.

534

535 **Fig. 6 | Identification of off-target activity of aminergic neurotransmitter**
 536 **compounds at hTA1. A**, Plot of compound activities at hTA1 at 10 μ M concentration
 537 expressed as log₂-fold change (log₂FC) over DMSO control. Screen was performed once
 538 in quadruplicate. Data represent mean \pm SEM. Insert shows chemical structure of
 539 asenapine, and concentration response experiment assessing potency and efficacy of
 540 asenapine. Data represent mean \pm SEM of three biological replicates. **B**, SAR studies
 541 testing the effect of OBP mutations on the hTA1 activity of asenapine. Data are shown as
 542 full concentration response curves and difference between mutant and wild type receptor
 543 with potencies determined as pEC50s and efficacies measured as Emax. Data represent
 544 mean \pm SEM of two biological replicates. See supplementary table 1 for fitted parameter
 545 values.

546

547

548 **Methods**

549 **Constructs and Expression**

550 Structural studies reported herein were performed with human hTA1 (UniProtKB
551 Q96RJ0) modified with a F112³⁻⁴¹W mutation¹⁷ and cloned into a modified pFastBac
552 vector. This vector included a decorated N-terminus consisting of a cleavable HA-signal
553 sequence followed by a FLAG-tag, a 10xHis tag, a TEV protease site, BRIL, and the
554 first 25 residues of β2AR to increase expression levels.

555 Heterotrimeric G protein was expressed from a single pDualBac virus following previous
556 construct design³³. In brief, N-terminally 6xHis-tagged human Gβ1 was cloned under
557 control of a polyhedrin promoter, while a Gγ2-Gαs fusion construct was cloned under
558 control of a P10 promoter. Gγ2 and Gαs were fused with a GSAGSAGSA linker. Gαs
559 was further modified to include the mutations N271K, K274D, R280K, T284D, I285T,
560 G226A, and A366S to stabilize its receptor-engaged state. Nanobody 35 (Nb35)²² was
561 cloned into a pFastBac vector with a gp67 secretion tag. Protein expression was carried
562 out in *Spodoptera Frugiperda* cells (*Sf9*, Expression Systems) using the Bac-to-Bac
563 Baculovirus expression system (Invitrogen), for which bacmid DNA was generated in
564 DH10Bac cells (Invitrogen). Initial P0 virus was obtained by addition of ~3 µg
565 recombinant bacmid DNA mixed with 3 µl FuGENE HD Transfection reagent (Promega)
566 in 100 µl Sf900 II media (Invitrogen) to *Sf9* cells plated in SF900 II media in wells of a
567 12-well plate. After 5 days at 27 °C, the supernatant was harvested as viral stock, and
568 high-titer recombinant P1 baculovirus (>10⁹ viral particles per ml) was generated by
569 adding P0 to 50 ml of ~3 x10⁶ cells/ml and incubating cells at 27 °C for 3 days.
570 Approximate titers were estimated by flow cytometric analysis staining P1 infected cells

571 with gp64-PE antibody (Expression Systems). All protein for this study, including hTA1,
572 Gs heterotrimer and Nb35 were expressed separately by infection of *Sf9* cells at a cell
573 density of $\sim 2.5 \times 10^6$ cells/ml with P1 virus. After 48 hr of shaking at 27 °C, cells
574 expressing either receptor or G protein were harvested by centrifugation at 48 h post-
575 infection and pellets were stored at -80 °C until use. Cells expressing Nb35 were
576 shaken for 72 hours at 27 °C, and supernatant was harvested by centrifugation and
577 subsequent disposal of the pellet, and prepared for immediate purification described
578 below.

579

580 **Nb35 purification**

581 To purify Nb35, insect cell media supernatant was treated in sequence with Tris pH 8.0
582 (to a final concentration of 50 mM), CaCl_2 (final concentration of 5 mM), and CoCl_2 (final
583 concentration of 1 mM), and stirred at room temperature for 1 hour to precipitate media
584 components. Precipitate was allowed to sediment and further removed by filtration with
585 a 0.22 µm PES Bottle Top Filter (Fisher). The final supernatant was supplemented with
586 a final concentration of 10 mM imidazole and stirred with HisPur Ni-NTA Resin (Thermo
587 Scientific) overnight at 4 °C. Protein-bound Ni-NTA resin was removed from supernatant
588 by gradually removing solution from the top after sedimentation, and packed into a
589 plastic flow column. Resin was subsequently washed with 10 column volumes (cv) of 20
590 mM HEPES pH 7.5, 500 mM NaCl, 10 mM imidazole, 10% glycerol. Further washing
591 was done with 15 cv of 20 mM HEPES pH 7.5, 100 mM NaCl, 10% glycerol. Protein
592 was eluted from the resin with 20 mM HEPES pH 7.5, 100 mM NaCl, 300 mM
593 imidazole, 10% glycerol. The eluent was concentrated using Vivaspin 6 Centrifugal

594 Concentrators (Sartorius). Imidazole was removed from the concentrated eluent using
595 PD MiniTrap Sample Preparation Columns (Cytiva) according to the manufacturer
596 protocol. Desalted protein was concentrated, flash frozen, and stored at -80 °C.

597

598 **G protein purification**

599 For G protein purification, insect cells were dounce homogenized in a lysis buffer
600 consisting of 20 mM HEPES, pH 7.5, 100 mM NaCl, 1mM MgCl₂, 0.01 mM guanosine
601 diphosphate (GDP), 10% glycerol, 5 mM β-mercaptoethanol, 30 mM imidazole, 0.2%
602 Triton X-100, and home-made protease inhibitor cocktail (500 μM AEBSF, 1 μM E-64, 1
603 μM Leupeptin, 150 nM Aprotinin). The cytoplasmic and membrane fractions were
604 separated by centrifugation at 50,000 x G for 20 min. The resulting supernatant was
605 subjected to an additional centrifugation at 200,000 x G for 45 min to further clarify
606 supernatant. The final supernatant was bound to HisPur Ni-NTA Resin (Thermo
607 Scientific) overnight at 4 °C. Protein-bound Ni-NTA resin was washed with 20 cv of lysis
608 buffer lacking 0.2% Triton X-100, followed by 20 cv lysis buffer lacking 0.2% Triton X-
609 100 and 30 mM imidazole. Protein was eluted from the resin with lysis buffer lacking
610 Triton X-100 and supplemented with 300 mM imidazole. Eluent from the first two elution
611 fractions after the elimination of dead volume were concentrated using Vivaspin 6
612 Centrifugal Concentrators (Sartorius). Imidazole was removed from the concentrated
613 eluent using PD MiniTrap Sample Preparation Columns (Cytiva) according to the
614 manufacturer protocol. Eluted and desalted protein was injected onto a Superdex 200
615 Increase (Cytiva) size exclusion chromatography column equilibrated in 20 mM HEPES,
616 pH 7.5, 100 mM NaCl, 1mM MgCl₂, 0.01 mM guanosine diphosphate (GDP), 10%

617 glycerol, 5 mM β -mercaptoethanol, and peak fractions containing intact heterotrimer
618 were collected. Pooled fractions were concentrated, flash frozen and stored at -80 °C.

619

620 **hTA1–Gs complex formation and purification**

621 For hTA1 purification, insect cells were disrupted by thawing frozen cell pellets in a
622 hypotonic buffer containing 10 mM HEPES pH 7.5, 10 mM MgCl₂, 20 mM KCl and
623 home-made protease inhibitor cocktail, and collected as a pellet following centrifugation
624 at 50,000 x G. Total cellular membranes were homogenized and centrifuged twice in a
625 high osmotic buffer containing 1 M NaCl, 10 mM HEPES pH 7.5, 10 mM MgCl₂, 20 mM
626 KCl and home-made protease inhibitor cocktail. Purified membranes were directly flash-
627 frozen in liquid nitrogen and stored at -80°C until further use.

628 To form Ro5256390-bound hTA1-Gs complex, membranes were first suspended in
629 buffer containing 10 mM HEPES pH 7.5, 10 mM MgCl₂, 20 mM KCl, 150 mM NaCl,
630 home-made protease inhibitor cocktail, and 20 μ M Ro5256390 (Sigma). Complexation
631 was initiated by addition of an excess of Gs heterotrimer and agitating at room
632 temperature for an hour. Subsequently, apyrase (NEB) was added to a final
633 concentration of 25 mU/mL, and mixture was further agitated at room temperature for
634 another hour. The mixture was transferred to 4 °C and allowed to equilibrate for 20
635 minutes before solubilization was initiated by addition of a final concentration of 1%
636 (w/v) n-dodecyl- β -D-maltopyranoside (DDM, Anatrace), 0.2% (w/v) cholestryl
637 hemisuccinate (CHS, Anatrace), and home-made protease inhibitor cocktail for 2 hr at 4
638 °C. Unsolubilized material was then removed by centrifugation at 200,000 x G for 30

639 min, and imidazole was added to the supernatant to a final concentration of 20 mM.

640 Proteins were bound to TALON SuperFlow IMAC resin (Takara) overnight. Protein-

641 bound TALON resin was washed with 15 cv of wash buffer I (25 mM HEPES, pH 7.5,

642 150 mM NaCl, 0.1% (w/v) DDM, 0.02% (w/v) CHS, 20 mM imidazole, 10% (v/v)

643 glycerol, 10 μ M drug). The detergent was then gradually exchanged for Lauryl Maltose

644 Neopentyl Glycol (LMNG) by washing with 10 cv wash buffer I supplemented with 1%

645 LMNG, followed by another 20 cv with 0.1% LMNG. Successive washes steps using 15

646 cv each were performed with wash buffer II (25 mM HEPES, pH 7.5, 150 mM NaCl,

647 0.05% (w/v) LMNG, 0.01% (w/v) CHS) and wash buffer III (20 mM HEPES, pH 7.5, 100

648 mM NaCl, 0.01% (w/v) LMNG, 0.002% (w/v) CHS). Complexes were eluted with 20 mM

649 HEPES, pH 7.5, 100 mM NaCl, 0.01% (w/v) LMNG, 0.002% (w/v) CHS, 10 μ M

650 Ro5256390 and 250 mM imidazole. The eluted complex was concentrated using

651 Vivaspin 6 Centrifugal Concentrators (Sartorius), and imidazole was removed from the

652 protein solution by applying the sample to a PD MiniTrap Sample Column (Cytiva)

653 according to the manufacturer protocol. Desalting complex was stored overnight at 4 °C.

654 The next day, samples were concentrated and purified over a Superdex 200 Increase

655 size exclusion column (Cytiva) equilibrated in 20 mM HEPES, pH 7.5, 100 mM NaCl,

656 0.00075%(w/v) LMNG, 0.0002% (w/v) CHS, 0.00025% GDN, and 5 μ M Ro5256390.

657 Peak fractions were pooled, concentrated to ~1.5 mg/ml, and immediately used to

658 prepare grids for cryo-EM data collection.

659

660

661 **Receptor-G protein grid preparation**

662 To prepare cryo-EM grids for imaging, 3 μ l of the samples were applied to glow-
663 discharged holey carbon EM grids (Quantifoil 300 copper mesh, R1.2/1.3) in an EM-
664 GP2 plunge freezer (Leica). EM-GP2 chamber was set to 95% humidity at 12°C.
665 Sample-coated grids were blotted for 3 to 3.3 seconds before plunge-freezing into liquid
666 ethane and stored in liquid nitrogen for data collection.

667

668 **Cryo-EM Data collection and Processing**

669 All automatic data collection was performed on a FEI Titan Krios instrument equipped
670 with a Gatan K3 direct electron detector operated by the Simons Electron Microscopy
671 Center in the New York Structural Biology Center (New York, New York). The
672 microscope was operated at 300 kV accelerating voltage, at a nominal magnification of
673 64,000x corresponding to a pixel sizes of 1.069 \AA . 7,618 movies were obtained at a
674 dose rate of 26.94 electrons per \AA^2 per second with a defocus ranging from -0.5 to -1.8
675 μm . The total exposure time was 2 s and intermediate frames were recorded in 0.05 s
676 intervals, resulting in an accumulated dose of 53.88 electrons per \AA^2 and a total of 40
677 frames per micrograph.

678 Movies were motion-corrected using MotionCor2⁵⁴ and imported into cryoSPARC⁵⁵ for
679 further processing. CTFs were estimated using patchCTF in cryoSPARC. An initial
680 model was produced from a subset of micrographs using blob picking, followed by
681 extraction, 2D classification, selection of key classes, and generation of a model *ab*
682 *initio*. Subsequent models were produced from a curated micrograph set using particles

683 found by template picking using the initial model. Particles were extracted, subjected to
684 2D classification, and a final particle stack was obtained by iterative rounds of 3D
685 classification generating several bad models from rejected particles as a sink in
686 subsequent heterogeneous refinement runs. A final round of 3D classification resulted
687 in 3 separate but very similar classes that were combined to increase resolution. The
688 composite 3-class map was further refined with NU-refinement, and the particle stack
689 was subjected to 3D variability analysis into 3 components of 20 classes, which were
690 examined manually. One component produced more marked changes in motion than
691 the other two and was used to make movies in ChimeraX⁵⁶ with a volume morph
692 function with 30 frame intermediates. The complex structure was built in Coot⁵⁷ and
693 further refined using PHENIX⁵⁸ and ServalCat⁵⁹. In total, we were able to confidently
694 model residues for hTA1 in the transmembrane core and loops EL1, EL3, IL1, and IL2
695 (Ser19^{N-term} to Ala168, Cys178^{EL2} to Lys230^{5.78}, and Ser244^{6.28} to Gly321^{C-term}). As
696 discussed, the C-terminus, a large portion of EL2, and the N-terminus showed
697 considerable flexibility that prevented us from modeling individual residues, and these
698 were represented as polyalanine chains. In an attempt to further resolve the N-terminus-
699 EL2 interface, local refinement was performed using a mask that kept hTA1 and the C-
700 terminal helix of Gas, and eliminated the remainder of Gas, as well as G β 1, G γ 2, and
701 Nb35. This resulted in a modest increase in local resolution of portions of the
702 transmembrane core, but did not substantially alter the resolution of the extracellular
703 region. However, the resulting density for the more extracellular region of EL2
704 resembled a helical assembly. We therefore opted to model that portion of the
705 polyalanine chain as a 2-turn helix, in keeping with the published structures of mTAAR9

706 and 5-HT4R, and the AlphaFold predicted model of hTA1. The C-terminus was
707 extended from Helix 8 as a polyalanine chain to the end of the continuous density
708 observed in our unsharpened maps. The density of the G protein heterotrimer enabled
709 the modeling of residues 9-61, 205-255, and 263-394 of Gas, residues 3-340 of G β 1,
710 residues 6-62 of G γ 2, and residues 1-128 of Nb35. The final model was validated in
711 PHENIX before being imported into PyMOL⁶⁰ for generating figures shown in the
712 manuscript.

713

714 **cAMP Accumulation Assays**

715 hTA1 activity was measured via cAMP accumulation assays using the cAMP
716 GloSensor (Promega) and essentially done as previously described⁶¹. Dulbecco's
717 Modified Eagle Medium (DMEM) media (Gibco) was used for cell culture of the
718 HEK239T cells (ATCC) used in GloSensor assays reported in this paper. DMEM with
719 10% v/v Fetal Bovine Serum (FBS) and 1% v/v penicillin-streptomycin (P/S) was used
720 for regular cell maintenance and passage. Cells were incubated in a humid 37°
721 incubator with 5% CO₂. Cells were approximately 70% confluent at the time of
722 transfection. In preparation for transfection, 10% FBS DMEM was replaced with DMEM
723 containing 1% v/v dialyzed FBS (dFBS) and 1% P/S. Cells were allowed to incubate for
724 a minimum of one hour prior to transfection at 37°. Cells were then transfected with
725 hTA1 and GloSensor DNA in a 1:1 ratio using polyethyleneimine (PEI). Wild type and
726 mutant hTA1 were cloned into a pcDNA3 vector introducing an N-terminal HA signal
727 sequence followed by a FLAG tag. The transfection mixture was prepared in Opti-MEM

728 media with a ratio of 2 μ L of PEI (Alfa Aesar, 1mg/mL) per 1 μ g of DNA. Transfection
729 mixes were incubated for 20 minutes before being added dropwise to cells.

730 On the day following transfection, cells were plated into white, clear bottom 384-
731 well assay plates (Greiner Bio-One) coated with poly-lysine (25 mg/ml). Cells were
732 plated at approximately 20,000 cells per well in 40 μ L of 1% dFBS DMEM media. The
733 following day, media was exchanged for 30 μ L of drug buffer (20 mM HEPES pH 7.5, 1
734 x Hank's Balanced Salt Solution (HBSS, Gibco), 0.1% w/v Bovine Serum Albumin
735 (BSA) and 0.01% w/v ascorbic acid) supplemented with 1.2 mM D-Luciferin (Gold Bio).
736 Cells were incubated in the D-Luciferin solution for a minimum of one hour at 37°C
737 before the addition of compounds of interest.

738 All drugs used in this study were dissolved into dimethyl sulfoxide (DMSO) and
739 diluted to 1 mM stocks stored at -20 °C. These compound stocks were serially diluted in
740 drug buffer at 3x final concentration, and 15 μ L of each solution was added to each well
741 of the assay plate.

742 After the addition of compound, cells were incubated in the dark at room
743 temperature for 30 minutes before being read in a Perkin Elmer Trilux Microbeta.
744 Luminescent counts per second (LCPS) were reported and then plotted as a function of
745 drug concentration and analyzed in a non-linear regression analysis of log(agonist)
746 versus response in GraphPad Prism 8.0. Compound efficacies were normalized to the
747 maximum activity of the endogenous agonist β -PEA.

748

749

750 **Sequence Analysis**

751 Phylogenetic analysis, sequence alignments, and calculations of sequence similarities
752 and sequence identities were all performed using tools of the GPCRdb⁴⁰.

753

754 **Acknowledgments**

755 This work was supported by NIH grant GM133504, an Edward Mallinckrodt, Jr.
756 Foundation Grant, a McKnight Foundation Scholars Award, an Irma T. Hirsch/Monique
757 Weill-Caulier Trust Research Award (all to D.W.), an NIH F31 MH132317 (A.L.W), and
758 T32 Training Grant GM062754 and DA053558 (A.L.W and G.Z.). Some of this work was
759 performed at the National Center for cryo-EM Access and Training (NCCAT) and the
760 Simons Electron Microscopy Center located at the New York Structural Biology Center,
761 supported by the NIH Common Fund Transformative High Resolution Cryo-Electron
762 Microscopy program (U24 GM129539,) and by grants from the Simons Foundation
763 (SF349247) and NY State Assembly. We further acknowledge cryo-EM resources at the
764 National Resource for Automated Molecular Microscopy located at the New York
765 Structural Biology Center, supported by grants from the Simons Foundation
766 (SF349247), NYSTAR, and the NIH National Institute of General Medical Sciences
767 (GM103310) with additional support from Agouron Institute (F00316) and NIH
768 (OD019994).

769

770

771 **Author Contributions**

772 G.Z initiated the project. G.Z. designed experiments, expressed and purified protein,
773 prepared grids, collected data, refined structures, performed signaling assays, and
774 wrote the manuscript. A.K.P. performed signaling assays with help from S.Y. A.L.W.
775 assisted with data refinement and signaling assays, and edited the manuscript. D.W.
776 designed experiments, analyzed the data, supervised the project, and wrote the
777 manuscript.

778

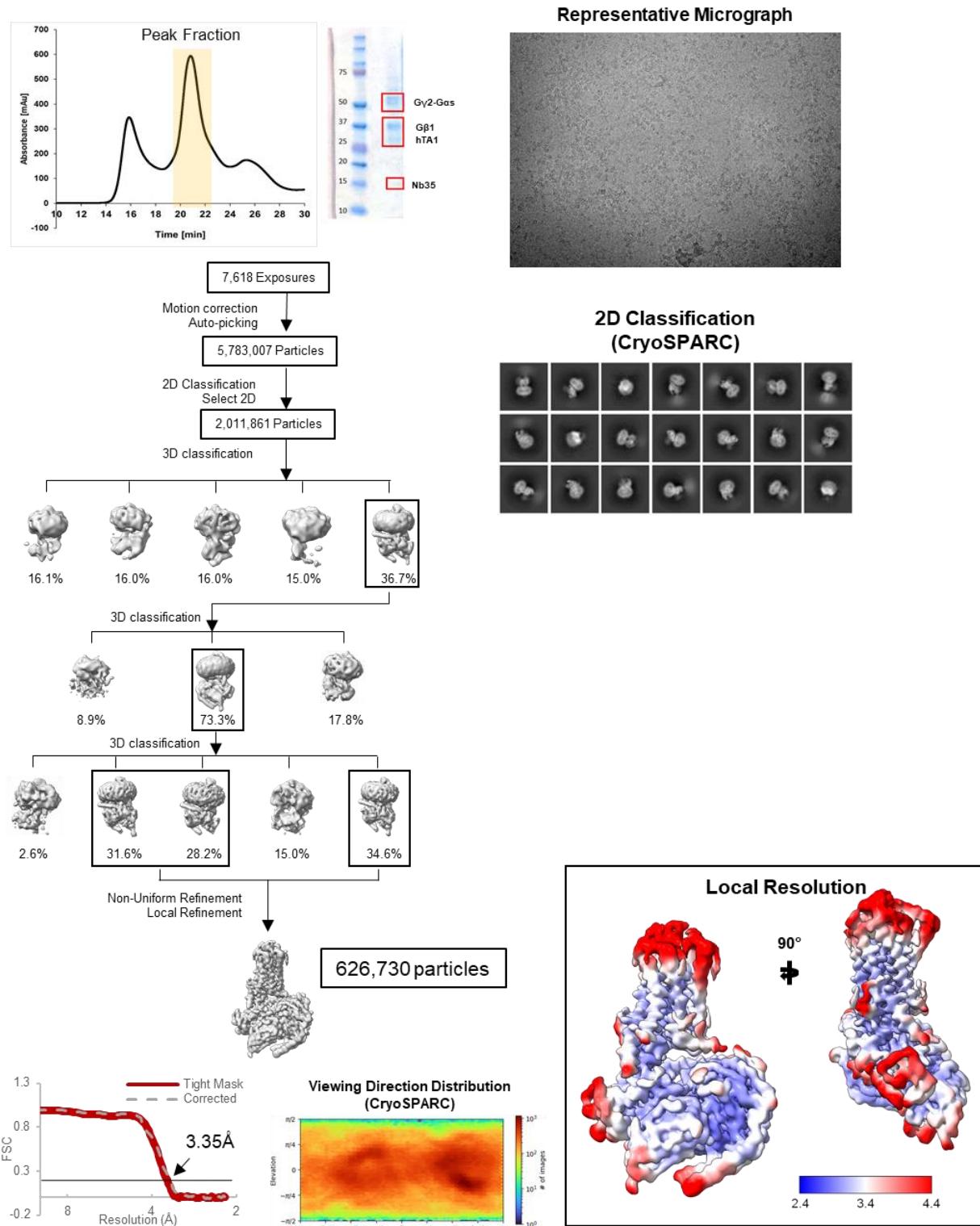
779 **Author Information**

780 Correspondence and requests for materials should be addressed to
781 daniel.wacker@mssm.edu.

782

783 **Competing Interests**

784 The authors declare no competing interests


785

786 **Data availability:** Density maps and structure coordinates of Ro5256390/hTA1-Gas-
787 G β 1-G γ 2/Nb35 have been deposited in the Electron Microscopy Data Bank (EMDB-
788 XXXXX) and the PDB (PDB ID: XXXX)

789

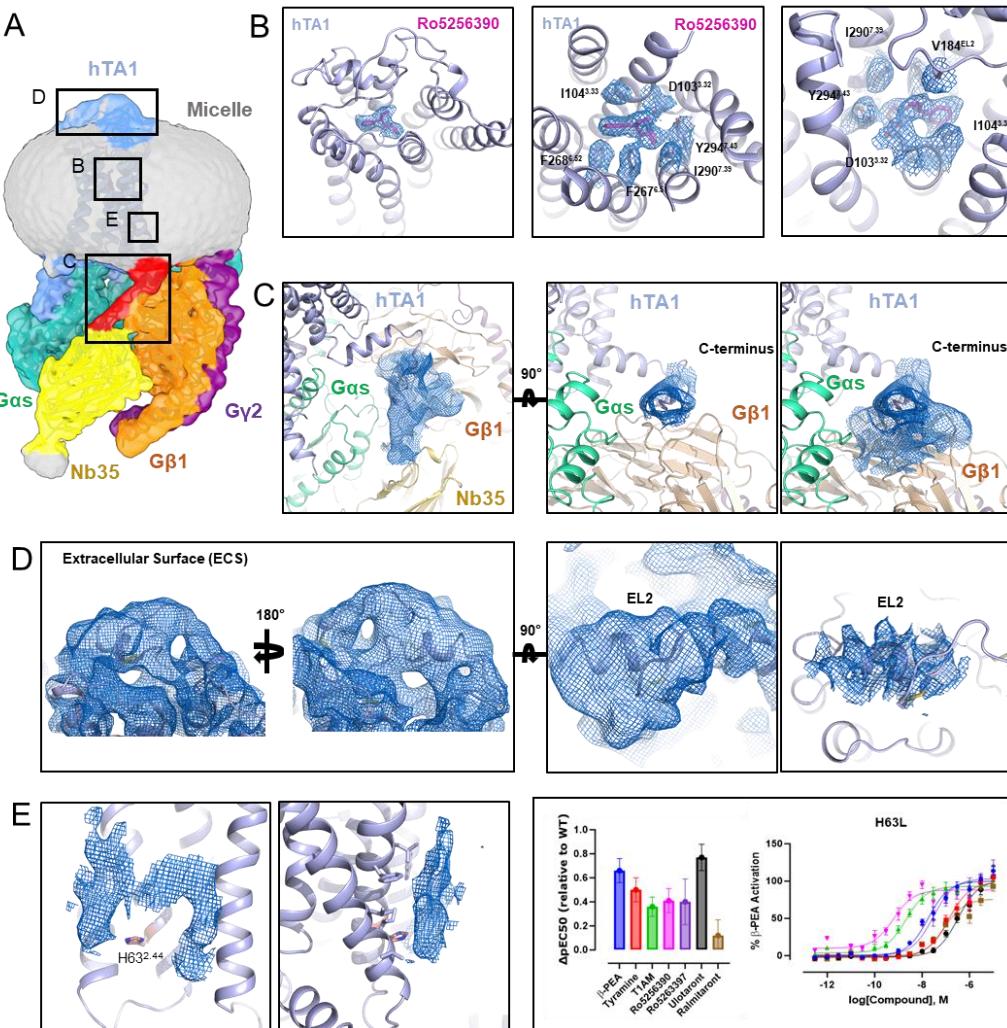
790

791 **Supplementary Figures**

792

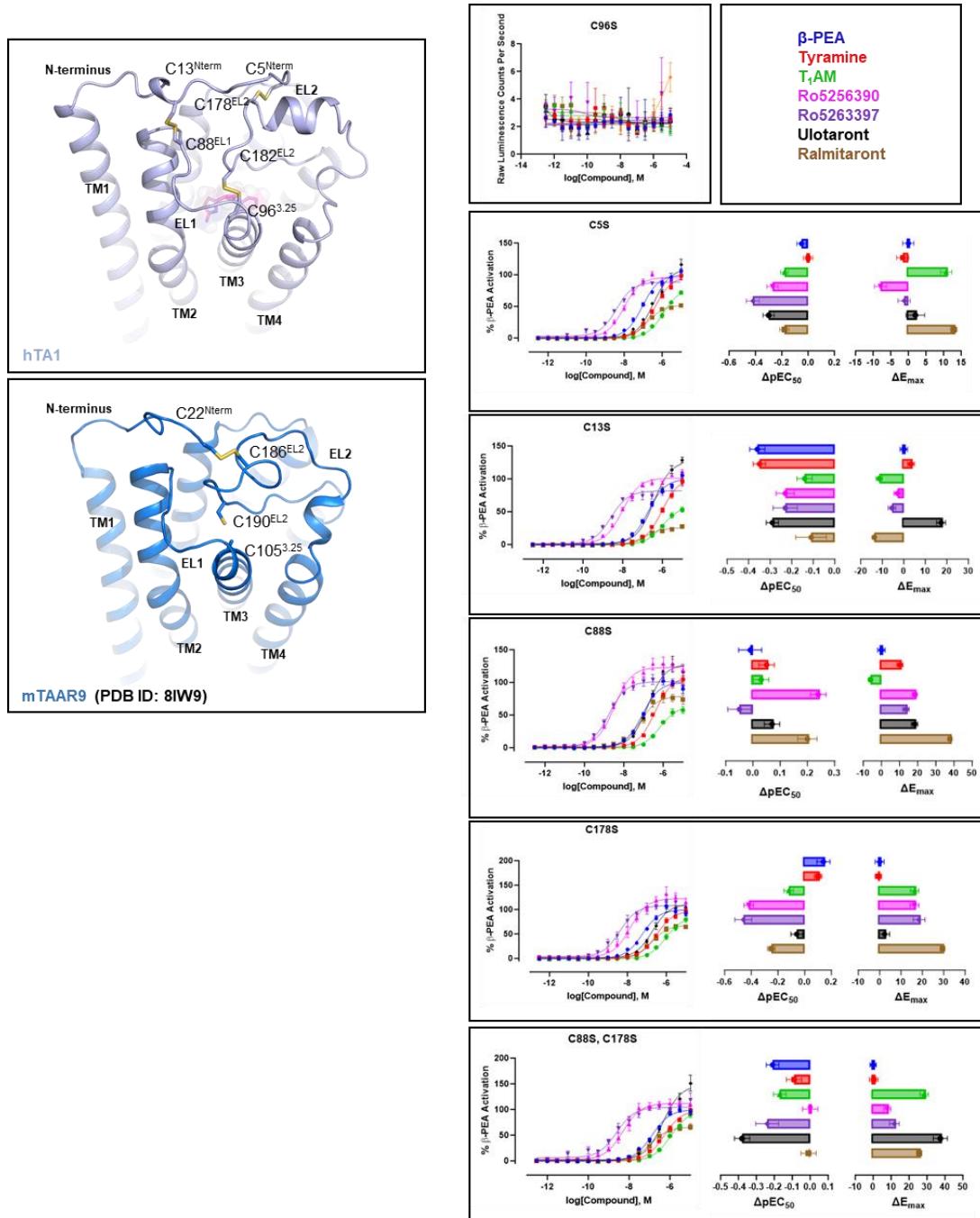
793 **Supplementary Fig. 1 | Purification, and cryo-EM structure determination of the**
794 **Ro5256390-bound hTA1-Gs-Nb35 complex. A, Analytical size exclusion**

795 chromatogram and SDS-PAGE show monodisperse and pure hTA1-Gs-Nb35 complex.
796 Data were collected on 300 keV Krios, a representative micrograph is shown, and data
797 were processed in cryoSPARC v4.1.2.: Particles were picked from motion corrected
798 micrographs, subjected to 2D classification (representative classes are shown), followed
799 by ab initio model building and 3D classification. After multiple rounds of 3D
800 classification, the final particle stack was subjected to non-uniform refinement and local
801 refinement. A final map was obtained with GS-FSC indicating a resolution of 3.35 Å
802 applying the 0.143 cutoff. Viewing direction distribution analysis (cryoSPARC) indicates
803 sufficient coverage. An initial model was built in PHENIX, and then further refined in
804 ServalCat for the generation of final maps and coordinates. Calculations in cryoSPARC
805 indicate local resolutions of up to 3 Å around the compound binding site. Viewing
806 direction analysis indicates isotropic distribution of views in final particle stack.

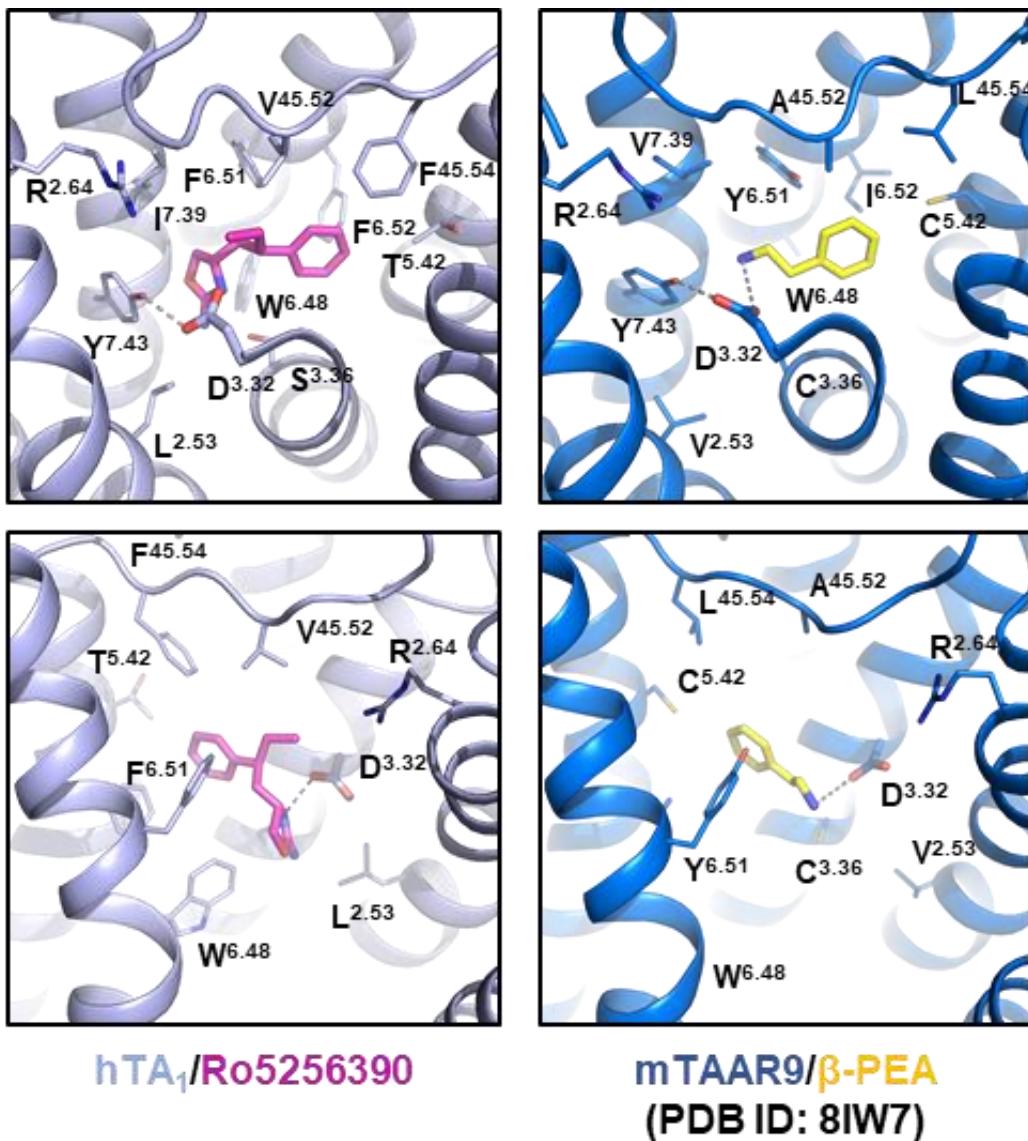

807

808

809


810

811


812

813 **Supplementary Fig. 2 | Representative Cryo-EM densities of Ro5256390-bound**
 814 **hTA1-Gs-Nb35 complex. A**, Unsharpened cryo-EM density of the Ro5256390-bound
 815 hTA1-Gs-Nb35 complex, colored by element and featuring inlays demonstrating the
 816 relative location of subsequent local density figures B-E. hTA1, light blue; C-terminus of
 817 hTA1, red; Ro5256390, magenta; G α s, green; G β 1, orange; G γ 2, purple, Nb35, yellow,
 818 detergent micelle, grey. **B**, Sharpened cryo-EM density of the ligand Ro5256390 and
 819 nearby residues within the OBP shown as blue mesh at a contour level of 6σ . **C**,
 820 Unsharpened cryo-EM density of the C-terminal tail of hTA1 packing against G β 1
 821 shown as blue mesh at a contour level of 4σ . **D**, Unsharpened cryo-EM density and
 822 sharpened cryo-EM density (right panel) of the hTA1 extracellular surface shown as
 823 blue mesh at a contour level of 6σ and 4σ , respectively. **E**, (Left, middle) Sharpened
 824 cryo-EM density of the TM1/2/4 interface shown as blue mesh at a contour level of 3σ ,
 825 with H63^{2.44} shown as salmon colored sticks next to multiple undefined densities
 826 corresponding to membrane/micelle components. (Right) Effects of the H63^{2.44}L
 827 mutation on the activities of hTA1 agonists. Data are shown both as full concentration
 828 response curves and as differences between mutant and wild type receptor potencies
 829 determined as pEC50s. Data represent mean \pm SEM of two biological replicates. See
 830 supplementary table 1 for fitted parameter values.

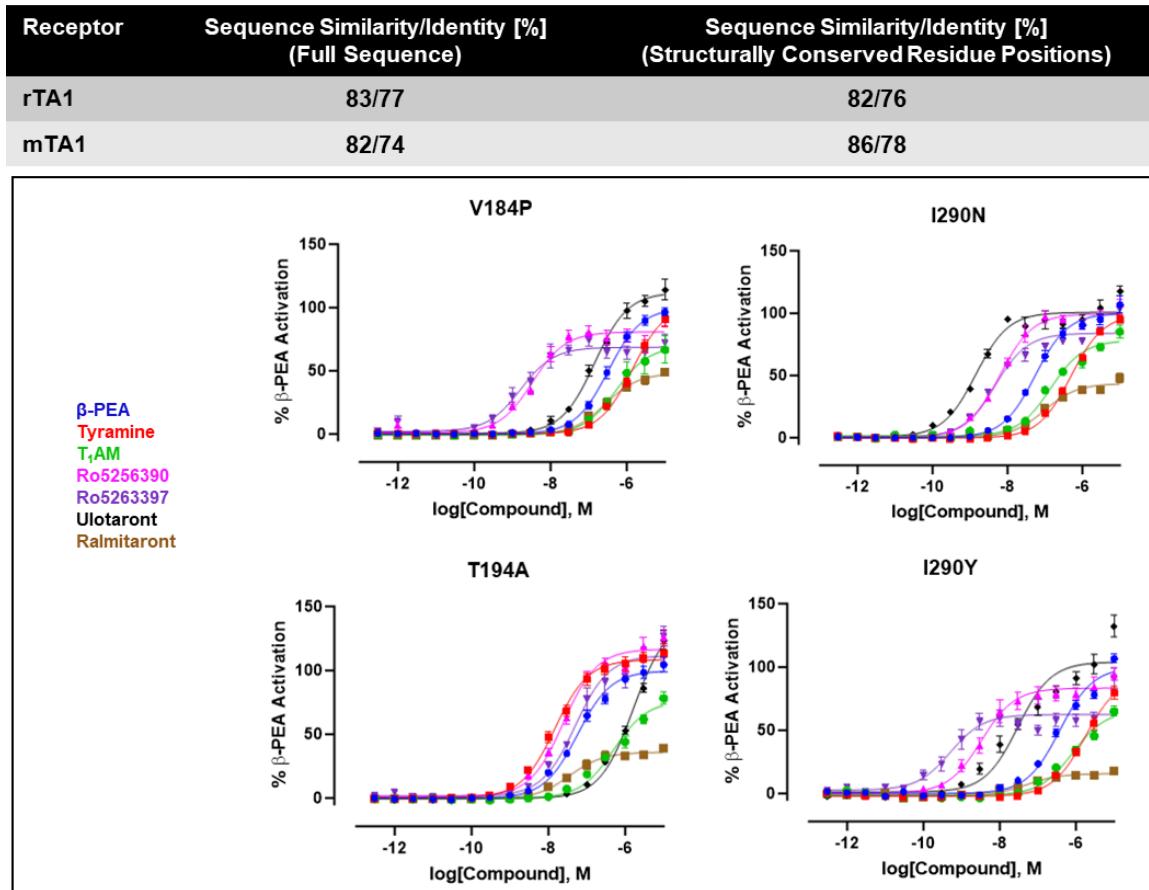
831

832 **Supplementary Fig. 3 | Importance of the extracellular disulfide network for**
833 **activities of hTA1 agonists.** Zoom-in on the extracellular disulfide network of hTA1
834 (light blue) and mTAAR9 (PDB ID: 8IW9, marine blue) with key cysteines shown as
835 sticks (left). Effects of cysteine mutations on the activities of hTA1 agonists (right). Data
836 are shown both as full concentration response curves and as differences between
837 mutant and wild type receptor with potencies determined as pEC50s and efficacies
838 measured as Emax. Data represent mean \pm SEM of two biological replicates. See
839 supplementary table 1 for fitted parameter values.

840

841 **Supplementary Fig. 4 | Role of key OBP residues in the activities of hTA1**
842 **agonists.** Zoom-in on OBP of hTA1 (light blue) and mTAAR9 (PDB ID: 8IW7, marine
843 blue) with key residues shown as sticks (left). Two angles are shown and grey dashes
844 indicate ionic bonds between the conserved residue D3.32 and the agonists Ro5256390
845 (magenta) and β-PEA (yellow).

846


847

848

849

850

851

852

853 **Supplementary Fig. 5 | Impact of species differences on the activities of TA1**
854 **agonists.** Calculation of sequence similarity and identity for both complete receptor
855 sequences or only structurally conserved positions between human and rodent TA1
856 (top). Effects of species-related residue substitutions on the activities of TA1 agonists
857 (bottom). Data are shown as full concentration response curves and represent mean \pm
858 SEM of two biological replicates. See supplementary table 1 for fitted parameter values.

859

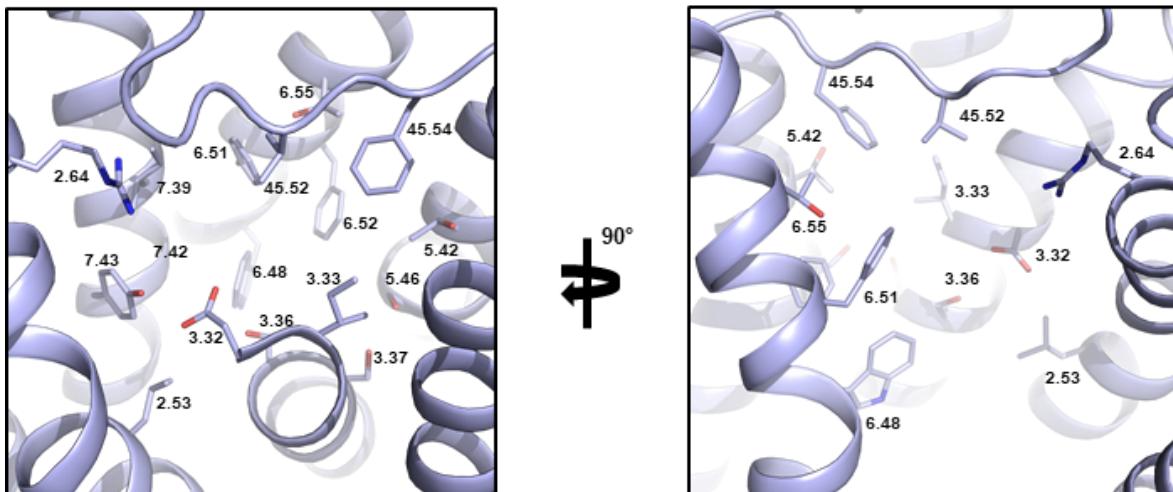
860

861

862

863

864

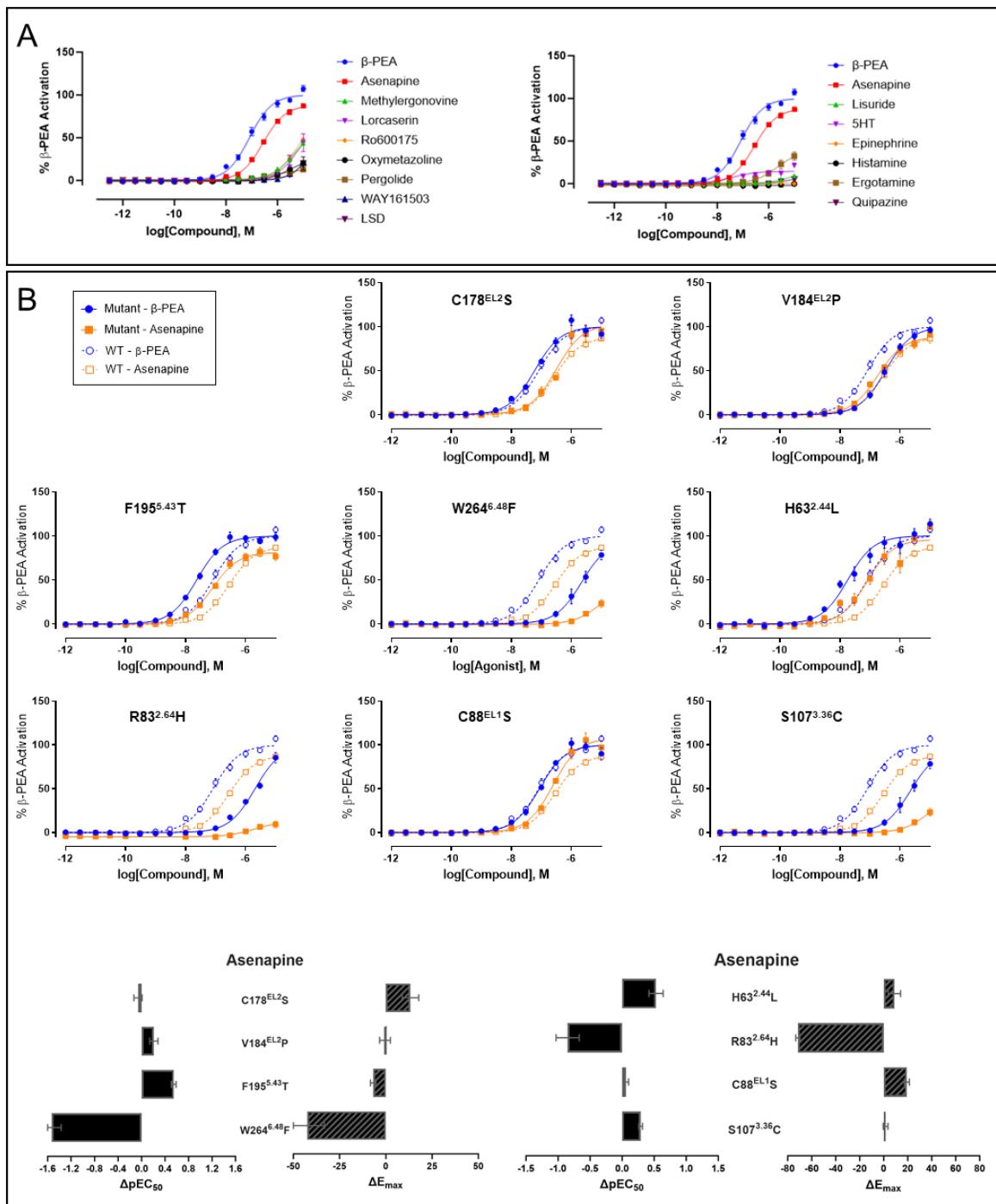

865

866

867

868

Receptor	Sequence Similarity/Identity [%] (Full Sequence)	Sequence Similarity/Identity [%] (Structurally Conserved Residue Positions)
hTAAR2	56/42	69/53
hTAAR3	60/44	68/50
hTAAR5	51/33	59/41
hTAAR6	54/36	63/43
hTAAR8	49/32	58/39
hTAAR9	54/38	61/43



Position	2.53	2.64	3.32	3.33	3.36	3.37	EL2 ⁴¹⁻⁵²	EL2 ⁴³⁻⁵⁴	5.42	5.46	6.48	6.51	6.52	6.55	7.39	7.42	7.43
hTA1	L	R	D	I	S	S	V	F	T	S	W	F	F	T	I	G	Y
h5-HT7R	V	T	D	V	C	T	I	Q	S	A	W	F	F	S	L	G	Y
h5-HT2AR	L	T	D	V	S	T	V	D	G	S	W	F	F	N	T	G	Y
h5-HT2BR	V	T	D	V	S	T	L	K	G	A	W	F	F	N	I	A	Y
h5-HT2CR	V	A	D	V	S	T	T	D	G	A	W	F	F	N	C	A	Y
hDRD1	V	A	D	I	S	T	S	L	S	S	W	F	F	N	V	G	W
hDRD5	V	A	D	I	S	T	S	L	S	S	W	F	F	N	V	G	W
h5-HT5AR	V	H	D	V	C	T	L	R	S	A	W	F	F	E	V	R	Y
hTAAR2	L	R	D	L	S	I	V	F	L	G	W	C	F	I	T	G	Y
hTAAR6	V	R	D	V	C	Y	T	V	T	S	W	Y	S	S	C	A	Y
hTAAR5	L	R	D	T	C	L	L	L	L	W	F	T	T	I	A	Y	

869

870 **Supplementary Fig. 6 | Similarities in the OBPs of hTA1, hTAARs, and human**
871 **aminergic neurotransmitter receptors.** Calculation of sequence similarity and identity
872 for both complete receptor sequences or only structurally conserved positions between
873 hTA1 and the other members of the human TAAR family (top). Location of structurally
874 conserved residue positions in the OBP of hTA1 (middle). Sequence alignment of
875 corresponding structurally conserved positions residues (bottom). Most similar
876 sequences are shown and ranked according to analysis done with tools of the GPCRdb.

877

878

879 **Supplementary Fig. 7 | Off-target hTA1 activities of aminergic compounds and**
 880 **SAR studies of asenapine at hTA1. A**, Concentration response curves of top hits
 881 obtained from screening aminergic compound library for hTA1 activities. Data represent
 882 mean \pm SEM of two biological replicates. **B**, Effects of OBP mutations on the activity of
 883 asenapine at hTA1. Data are shown both as full concentration response curves and as
 884 differences between mutant and wild type receptor with potencies determined as
 885 pEC50s and efficacies measured as Emax. Data represent mean \pm SEM of two
 886 biological replicates. See supplementary table 1 for fitted parameter values.

hTA1 Construct	β-PEA		TYR		T1AM		Ro5256390		Ro5263397		Ulotaront		Ralmitorant		Asenapine	
	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)	pEC50 ± SEM	Emax ± SEM (%)
	WT	7.09 ± 0.05	100 ± 2.26	6.38 ± 0.04	98.98 ± 2.09	6.13 ± 0.04	70.45 ± 1.69	8.27 ± 0.08	103.3 ± 3.35	8.83 ± 0.09	86.7 ± 3.08	6.74 ± 0.05	109.03 ± 2.66	6.96 ± 0.08	40.11 ± 1.38	6.56 ± 0.03
C5S	7.04 ± 0.05	100 ± 2.22	6.38 ± 0.05	97.41 ± 2.44	5.95 ± 0.04	81.19 ± 2.3	8.00 ± 0.06	95.38 ± 2.44	8.41 ± 0.07	85.5 ± 2.46	6.44 ± 0.06	111.01 ± 3.75	6.78 ± 0.05	53.02 ± 1.29	6.58 ± 0.05	83.24 ± 2.18
C13S	6.73 ± 0.05	100 ± 2.41	6.03 ± 0.04	102.3 ± 2.27	5.99 ± 0.05	59.02 ± 1.98	8.04 ± 0.06	100.38 ± 2.24	8.60 ± 0.08	81.23 ± 2.51	6.45 ± 0.04	126.36 ± 2.91	6.85 ± 0.1	26.36 ± 1.22	6.49 ± 0.05	77.11 ± 2.00
C88S	7.08 ± 0.06	100 ± 2.93	6.43 ± 0.04	109.25 ± 2.35	6.16 ± 0.04	64.41 ± 1.51	8.51 ± 0.04	121.71 ± 1.75	8.78 ± 0.06	100.25 ± 2.51	6.81 ± 0.04	127.32 ± 2.47	7.16 ± 0.05	77.92 ± 1.68	6.62 ± 0.04	108.00 ± 2.07
C96S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C178S	7.23 ± 0.07	100 ± 2.97	6.48 ± 0.04	98.36 ± 2.12	6.01 ± 0.05	86.82 ± 2.69	7.85 ± 0.05	119.57 ± 2.87	8.37 ± 0.09	105.17 ± 3.92	6.68 ± 0.06	111.31 ± 3.37	6.71 ± 0.04	69.54 ± 1.45	6.50 ± 0.07	102.03 ± 4.5
C88S/ C178S	6.88 ± 0.05	100 ± 2.48	6.29 ± 0.06	99.35 ± 3.38	5.96 ± 0.05	98.9 ± 3.23	8.27 ± 0.06	111.12 ± 2.77	8.59 ± 0.09	98.55 ± 3.8	6.36 ± 0.06	146.47 ± 5.54	6.95 ± 0.06	65.82 ± 1.9	6.69 ± 0.08	86.32 ± 3.5
H63L	7.75 ± 0.1	100 ± 4.24	6.88 ± 0.1	99.09 ± 4.86	6.49 ± 0.08	102.88 ± 4.36	8.68 ± 0.1	89.39 ± 3.78	9.23 ± 0.19	78.5 ± 6.04	7.51 ± 0.11	102.61 ± 5.13	7.08 ± 0.13	78.78 ± 4.66	7.09 ± 0.11	97.7 ± 5.08
R83H	5.69 ± 0.07	100 ± 5.46	4.5 ± 1.31	533.44 ± 2814.37	7.93 ± 0.33	6.95 ± 5.4	8.28 ± 0.11	48.56 ± 2.05	8.50 ± 0.15	33.86 ± 2.02	5.56 ± 0.08	102.49 ± 6.22	8.79 ± 0.4	2.51 ± 1.04	5.71 ± 0.18	17.15 ± 1.77
D103N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
W264F	5.60 ± 0.06	100 ± 4.75	4.99 ± 0.08	100.51 ± 11.3	4.95 ± 0.97	28.7 ± 73.91	6.90 ± 0.09	76.56 ± 3.09	5.78 ± 0.06	57.37 ± 2.66	5.28 ± 0.06	110.15 ± 7.53	5.45 ± 0.11	40.13 ± 4.25	5.03 ± 0.16	46.21 ± 9.35
S107C	6.69 ± 0.06	100 ± 3.55	6.73 ± 0.07	120.36 ± 7.86	5.87 ± 0.05	72.05 ± 2.42	6.30 ± 0.06	88.84 ± 5.54	6.61 ± 0.06	112.19 ± 3.95	5.78 ± 0.04	197.21 ± 3.93	6.93 ± 0.05	49.2 ± 1.32	6.21 ± 0.03	98.45 ± 2.01
V184P	6.49 ± 0.04	100 ± 1.96	5.83 ± 0.06	105.2 ± 4.14	6.27 ± 0.05	70.26 ± 2.36	8.48 ± 0.1	79.83 ± 3.2	8.72 ± 0.1	67.49 ± 2.73	6.84 ± 0.06	112.04 ± 2.99	6.56 ± 0.06	48.73 ± 1.42	6.77 ± 0.07	88.26 ± 2.9
T194A	7.23 ± 0.06	100 ± 2.60	7.84 ± 0.06	106.16 ± 2.7	6.41 ± 0.05	76.53 ± 2.79	7.62 ± 0.06	109.39 ± 3.02	7.32 ± 0.06	93.40 ± 2.02	5.86 ± 0.05	140.84 ± 4.79	7.33 ± 0.05	36.78 ± 4.79	6.34 ± 0.04	86.25 ± 1.85
I290N	7.26 ± 0.06	100 ± 2.5	6.31 ± 0.03	99.42 ± 1.86	6.86 ± 0.07	76.97 ± 2.46	8.21 ± 0.06	98.98 ± 2.52	8.33 ± 0.07	83.69 ± 2.47	8.85 ± 0.08	99.97 ± 3.21	7.02 ± 0.06	43.63 ± 1.34	6.00 ± 0.04	84.02 ± 2.35
I290Y	6.43 ± 0.06	100 ± 3.37	5.71 ± 0.06	98.99 ± 4.9	6.05 ± 0.07	68.94 ± 3.09	8.42 ± 0.07	84.11 ± 2.47	9.16 ± 0.17	61.58 ± 4.14	7.52 ± 0.1	103.23 ± 4.43	7.36 ± 0.15	17.57 ± 1.21	6.56 ± 0.08	51.07 ± 2.01
F195T	7.63 ± 0.05	100 ± 2.06	7.80 ± 0.08	108.96 ± 4.05	5.38 ± 0.05	65.51 ± 3.02	8.59 ± 0.07	106.38 ± 2.87	8.48 ± 0.06	101.4 ± 2.56	6.94 ± 0.05	114.35 ± 2.46	7.01 ± 0.06	77.17 ± 2.03	7.11 ± 0.04	81.88 ± 1.48
T271A	6.15 ± 0.03	100 ± 2.03	5.31 ± 0.05	123.62 ± 6.78	5.45 ± 0.03	68.29 ± 2.54	7.83 ± 0.05	95.49 ± 2.13	8.30 ± 0.07	81.70 ± 2.36	5.70 ± 0.03	124.08 ± 3.13	6.82 ± 0.05	61.08 ± 1.35	5.94 ± 0.03	94.79 ± 1.84
T271N	6.43 ± 0.06	100 ± 3.3	6.06 ± 0.04	102.55 ± 2.62	6.25 ± 0.03	119.8 ± 2.14	7.90 ± 0.07	110.48 ± 3.07	8.30 ± 0.07	108.08 ± 3.27	5.85 ± 0.03	133.69 ± 3.02	6.92 ± 0.05	87.44 ± 1.53	6.32 ± 0.04	121.93 ± 2.56

887

888 **Supplementary Table 1 | Efficacies and potencies of compounds at wildtype and**
 889 **mutant hTA1.** ND (not determined) indicates that mutations abolished signaling. Data
 890 represent mean pEC50 ± SEM or mean Emax ± SEM normalized to β-PEA of two
 891 biological replicates for all mutants and three biological replicates for wt hTA1.

892

893

894

895

896

897

898

899

900

901

	Ro5256390/ hTA1-Gs-Nb35 (EMD-XXXXXX) (PDB XXXX)
Data collection and processing	
Magnification	64,000
Voltage (kV)	300
Electron exposure (e ⁻ /Å ²)	53.88
Defocus range (μm)	-0.5 to -1.8
Pixel size (Å)	1.069
Symmetry imposed	C1
Initial particle images (no.)	6,413,421
Final particle images (no.)	626,730
Map resolution (Å)	3.35
FSC threshold	0.143
Map sharpening B-factor (Å ²)	-160.3
Local Resolution Range (Å)	2.8 – 16.4
Refinement	
Model composition	
Non-hydrogen atoms	8417
Protein residues	1075
Ligand atoms	34
R.m.s. deviations	
Bond lengths (Å)	0.005
Bond angles (°)	0.671
Validation	
Clashscore	6.45
Poor rotamers (%)	0.49
Ramachandran plot	
Favored (%)	92.35
Allowed (%)	7.65
Disallowed (%)	0

902

903 **Supplementary Table 2 | Cryo-EM data collection, refinement and validation**
904 **statistics.**

905

906

907 **Supplementary Movie 1 | 3D variability analysis of the Ro5256390-bound hTA1-**
908 **Gs-Nb35 complex reveals flexibility at receptor the N-terminus.**

909

910 **Supplementary Movie 2 | 3D variability analysis of the Ro5256390-bound hTA1-**
911 **Gs-Nb35 complex reveals movements of receptor TM1.**

912

913 **Supplementary Movie 3 | 3D variability analysis of the Ro5256390-bound hTA1-**
914 **Gs-Nb35 complex reveals movements of receptor TM4.**

915

916 **Supplementary Movie 4 | 3D variability analysis of the Ro5256390-bound hTA1-**
917 **Gs-Nb35 complex reveals flexibility at the intracellular tips of TM5 and TM6.**

918

919 **Supplementary Movie 5 | 3D variability analysis of the Ro5256390-bound hTA1-**
920 **Gs-Nb35 complex reveals twisting motion of the receptor TM bundle.**

921

922 **References**

- 923 1 Rutigliano, G., Accorroni, A. & Zucchi, R. The Case for TAAR1 as a Modulator of Central Nervous
924 System Function. *Front Pharmacol* **8**, 987, doi:10.3389/fphar.2017.00987 (2017).
- 925 2 Borowsky, B. *et al.* Trace amines: identification of a family of mammalian G protein-coupled
926 receptors. *Proc Natl Acad Sci U S A* **98**, 8966-8971, doi:10.1073/pnas.151105198 (2001).
- 927 3 Bunzow, J. R. *et al.* Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid
928 diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat
929 trace amine receptor. *Mol Pharmacol* **60**, 1181-1188, doi:10.1124/mol.60.6.1181 (2001).
- 930 4 Xie, Z. & Miller, G. M. Trace amine-associated receptor 1 as a monoaminergic modulator in
931 brain. *Biochem Pharmacol* **78**, 1095-1104, doi:10.1016/j.bcp.2009.05.031 (2009).
- 932 5 Bradaia, A. *et al.* The selective antagonist EPPTB reveals TAAR1-mediated regulatory
933 mechanisms in dopaminergic neurons of the mesolimbic system. *Proc Natl Acad Sci U S A* **106**,
934 20081-20086, doi:10.1073/pnas.0906522106 (2009).
- 935 6 Underhill, S. M. *et al.* Amphetamines signal through intracellular TAAR1 receptors coupled to
936 Galphai(13) and Galphai(S) in discrete subcellular domains. *Mol Psychiatry* **26**, 1208-1223,
937 doi:10.1038/s41380-019-0469-2 (2021).
- 938 7 Revel, F. G. *et al.* A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and
939 antidepressant-like activity, improve cognition and control body weight. *Mol Psychiatry* **18**, 543-
940 556, doi:10.1038/mp.2012.57 (2013).
- 941 8 Pei, Y., Asif-Malik, A., Hoener, M. & Canales, J. J. A partial trace amine-associated receptor 1
942 agonist exhibits properties consistent with a methamphetamine substitution treatment. *Addict
943 Biol* **22**, 1246-1256, doi:10.1111/adb.12410 (2017).

944 9 Berry, M. D., Gainetdinov, R. R., Hoener, M. C. & Shahid, M. Pharmacology of human trace
945 amine-associated receptors: Therapeutic opportunities and challenges. *Pharmacol Ther* **180**,
946 161-180, doi:10.1016/j.pharmthera.2017.07.002 (2017).

947 10 Revel, F. G. *et al.* Trace amine-associated receptor 1 partial agonism reveals novel paradigm for
948 neuropsychiatric therapeutics. *Biol Psychiatry* **72**, 934-942, doi:10.1016/j.biopsych.2012.05.014
949 (2012).

950 11 Fowler, S. *et al.* A UGT2B10 splicing polymorphism common in african populations may greatly
951 increase drug exposure. *J Pharmacol Exp Ther* **352**, 358-367, doi:10.1124/jpet.114.220194
952 (2015).

953 12 Simmler, L. D., Buchy, D., Chaboz, S., Hoener, M. C. & Liechti, M. E. In Vitro Characterization of
954 Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1. *J
955 Pharmacol Exp Ther* **357**, 134-144, doi:10.1124/jpet.115.229765 (2016).

956 13 Dedic, N. *et al.* SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D(2) Receptor
957 Mechanism of Action. *J Pharmacol Exp Ther* **371**, 1-14, doi:10.1124/jpet.119.260281 (2019).

958 14 Le, G. H. *et al.* Efficacy, safety, and tolerability of ulotaront (SEP-363856, a trace amine-
959 associated receptor 1 agonist) for the treatment of schizophrenia and other mental disorders: a
960 systematic review of preclinical and clinical trials. *Expert Opin Investig Drugs* **32**, 401-415,
961 doi:10.1080/13543784.2023.2206559 (2023).

962 15 Correll, C. U. *et al.* Safety and effectiveness of ulotaront (SEP-363856) in schizophrenia: results
963 of a 6-month, open-label extension study. *NPJ Schizophr* **7**, 63, doi:10.1038/s41537-021-00190-z
964 (2021).

965 16 Wang, C. *et al.* Structural basis for molecular recognition at serotonin receptors. *Science* **340**,
966 610-614, doi:10.1126/science.1232807 (2013).

967 17 Roth, C. B., Hanson, M. A. & Stevens, R. C. Stabilization of the human beta2-adrenergic receptor
968 TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR
969 structure. *J Mol Biol* **376**, 1305-1319, doi:10.1016/j.jmb.2007.12.028 (2008).

970 18 Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional
971 models and computational probing of structure-function relations in G protein-coupled
972 receptors. *Methods in Neurosciences* **25**, 366-428 (1995).

973 19 Che, T. *et al.* Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.
974 *Cell* **172**, 55-67 e15, doi:10.1016/j.cell.2017.12.011 (2018).

975 20 Barak, L. S. *et al.* Pharmacological characterization of membrane-expressed human trace amine-
976 associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP biosensor.
977 *Mol Pharmacol* **74**, 585-594, doi:10.1124/mol.108.048884 (2008).

978 21 Berlot, C. H. A highly effective dominant negative alpha s construct containing mutations that
979 affect distinct functions inhibits multiple Gs-coupled receptor signaling pathways. *J Biol Chem*
980 **277**, 21080-21085, doi:10.1074/jbc.M201330200 (2002).

981 22 Rasmussen, S. G. *et al.* Crystal structure of the beta2 adrenergic receptor-Gs protein complex.
982 *Nature* **477**, 549-555, doi:10.1038/nature10361 (2011).

983 23 Guo, L. *et al.* Structural basis of amine odorant perception by a mammal olfactory receptor.
984 *Nature* **618**, 193-200, doi:10.1038/s41586-023-06106-4 (2023).

985 24 Venkatakrishnan, A. J. *et al.* Molecular signatures of G-protein-coupled receptors. *Nature* **494**,
986 185-194, doi:10.1038/nature11896 (2013).

987 25 Michino, M. *et al.* What can crystal structures of aminergic receptors tell us about designing
988 subtype-selective ligands? *Pharmacol Rev* **67**, 198-213, doi:10.1124/pr.114.009944 (2015).

989 26 Stalder, H., Hoener, M. C. & Norcross, R. D. Selective antagonists of mouse trace amine-
990 associated receptor 1 (mTAAR1): discovery of EPPTB (RO5212773). *Bioorg Med Chem Lett* **21**,
991 1227-1231, doi:10.1016/j.bmcl.2010.12.075 (2011).

992 27 Decker, A. M. *et al.* Identification of a Potent Human Trace Amine-Associated Receptor 1
993 Antagonist. *ACS Chem Neurosci* **13**, 1082-1095, doi:10.1021/acschemneuro.2c00086 (2022).
994 28 Wainscott, D. B. *et al.* Pharmacologic characterization of the cloned human trace amine-
995 associated receptor1 (TAAR1) and evidence for species differences with the rat TAAR1. *J
996 Pharmacol Exp Ther* **320**, 475-485, doi:10.1124/jpet.106.112532 (2007).
997 29 van Rhee, A. M. & Jacobson, K. A. Molecular Architecture of G Protein-Coupled Receptors. *Drug
998 Dev Res* **37**, 1-38, doi:10.1002/(SICI)1098-2299(199601)37:1<1::AID-DDR1>3.0.CO;2-S (1996).
999 30 Tan, E. S. *et al.* The molecular basis of species-specific ligand activation of trace amine-
1000 associated receptor 1 (TAAR(1)). *ACS Chem Biol* **4**, 209-220, doi:10.1021/cb800304d (2009).
1001 31 Cummings, D. F., Erickson, S. S., Goetz, A. & Schetz, J. A. Transmembrane segment five serines of
1002 the D4 dopamine receptor uniquely influence the interactions of dopamine, norepinephrine,
1003 and Ro10-4548. *J Pharmacol Exp Ther* **333**, 682-695, doi:10.1124/jpet.109.164962 (2010).
1004 32 Liapakis, G. *et al.* The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and
1005 activation of the beta 2-adrenergic receptor. *J Biol Chem* **275**, 37779-37788,
1006 doi:10.1074/jbc.M002092200 (2000).
1007 33 Kim, K. *et al.* Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. *Cell*
1008 **182**, 1574-1588 e1519, doi:10.1016/j.cell.2020.08.024 (2020).
1009 34 Wacker, D. *et al.* Crystal Structure of an LSD-Bound Human Serotonin Receptor. *Cell* **168**, 377-
1010 389 e312, doi:10.1016/j.cell.2016.12.033 (2017).
1011 35 McCorvy, J. D. *et al.* Structure-inspired design of beta-arrestin-biased ligands for aminergic
1012 GPCRs. *Nat Chem Biol* **14**, 126-134, doi:10.1038/nchembio.2527 (2018).
1013 36 Dewan, A. Olfactory signaling via trace amine-associated receptors. *Cell Tissue Res* **383**, 395-407,
1014 doi:10.1007/s00441-020-03331-5 (2021).
1015 37 Ferrero, D. M. *et al.* Agonists for 13 trace amine-associated receptors provide insight into the
1016 molecular basis of odor selectivity. *ACS Chem Biol* **7**, 1184-1189, doi:10.1021/cb300111e (2012).
1017 38 Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory
1018 epithelium. *Nature* **442**, 645-650, doi:10.1038/nature05066 (2006).
1019 39 Grandy, D. K. Trace amine-associated receptor 1-Family archetype or iconoclast? *Pharmacol
1020 Ther* **116**, 355-390, doi:10.1016/j.pharmthera.2007.06.007 (2007).
1021 40 Kooistra, A. J. *et al.* GPCRdb in 2021: integrating GPCR sequence, structure and function. *Nucleic
1022 Acids Res* **49**, D335-D343, doi:10.1093/nar/gkaa1080 (2021).
1023 41 Huang, S. *et al.* GPCRs steer G(i) and G(s) selectivity via TM5-TM6 switches as revealed by
1024 structures of serotonin receptors. *Mol Cell* **82**, 2681-2695 e2686,
1025 doi:10.1016/j.molcel.2022.05.031 (2022).
1026 42 McCorvy, J. D. & Roth, B. L. Structure and function of serotonin G protein-coupled receptors.
1027 *Pharmacol Ther* **150**, 129-142, doi:10.1016/j.pharmthera.2015.01.009 (2015).
1028 43 Wacker, D. *et al.* Conserved binding mode of human beta2 adrenergic receptor inverse agonists
1029 and antagonist revealed by X-ray crystallography. *J Am Chem Soc* **132**, 11443-11445,
1030 doi:10.1021/ja105108q (2010).
1031 44 Shahid, M., Walker, G. B., Zorn, S. H. & Wong, E. H. Asenapine: a novel psychopharmacologic
1032 agent with a unique human receptor signature. *J Psychopharmacol* **23**, 65-73,
1033 doi:10.1177/0269881107082944 (2009).
1034 45 Ghanbari, R., El Mansari, M., Shahid, M. & Blier, P. Electrophysiological characterization of the
1035 effects of asenapine at 5-HT(1A), 5-HT(2A), alpha(2)-adrenergic and D(2) receptors in the rat
1036 brain. *Eur Neuropsychopharmacol* **19**, 177-187, doi:10.1016/j.euroneuro.2008.11.001 (2009).
1037 46 Teng, X. *et al.* Structural insights into G protein activation by D1 dopamine receptor. *Sci Adv* **8**,
1038 eabo4158, doi:10.1126/sciadv.abo4158 (2022).

1039 47 Xiao, P. *et al.* Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. *Cell*
1040 47 **184**, 943-956 e918, doi:10.1016/j.cell.2021.01.028 (2021).

1041 48 Oksenberg, D. *et al.* A single amino-acid difference confers major pharmacological variation
1042 48 between human and rodent 5-HT1B receptors. *Nature* **360**, 161-163, doi:10.1038/360161a0
1043 48 (1992).

1044 49 Barnes, N. M. *et al.* International Union of Basic and Clinical Pharmacology. CX. Classification of
1045 49 Receptors for 5-hydroxytryptamine; Pharmacology and Function. *Pharmacol Rev* **73**, 310-520,
1046 49 doi:10.1124/pr.118.015552 (2021).

1047 50 Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-
1048 50 selective drugs for mood disorders and schizophrenia. *Nat Rev Drug Discov* **3**, 353-359,
1049 50 doi:10.1038/nrd1346 (2004).

1050 51 McIntyre, R. S. Pharmacology and efficacy of asenapine for manic and mixed states in adults
1051 51 with bipolar disorder. *Expert Rev Neurother* **10**, 645-649, doi:10.1586/ern.10.49 (2010).

1052 52 Chalecka-Franaszek, E. ASENAPINE: PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION.
1053 52 *Food and Drug Administration Center for Drug Evaluation and Research* (2009).

1054 53 Ring, A. M. *et al.* Adrenaline-activated structure of beta2-adrenoceptor stabilized by an
1055 53 engineered nanobody. *Nature* **502**, 575-579, doi:10.1038/nature12572 (2013).

1056 54 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved
1057 54 cryo-electron microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).

1058 55 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
1059 55 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
1060 55 doi:10.1038/nmeth.4169 (2017).

1061 56 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and
1062 56 developers. *Protein Sci* **30**, 70-82, doi:10.1002/pro.3943 (2021).

1063 57 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta*
1064 57 *Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493 (2010).

1065 58 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons and
1066 58 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877,
1067 58 doi:10.1107/S2059798319011471 (2019).

1068 59 Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure
1069 59 refinement and map calculation using Servalcat. *Acta Crystallogr D Struct Biol* **77**, 1282-1291,
1070 59 doi:10.1107/S2059798321009475 (2021).

1071 60 The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC).

1072 61 Wacker, D. *et al.* Structural features for functional selectivity at serotonin receptors. *Science*
1073 61 **340**, 615-619, doi:10.1126/science.1232808 (2013).

1074