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Abstract 

Recent advances in high-throughput measurement technologies have enabled the 
analysis of molecular perturbations associated with disease phenotypes at the multi-omic 
level. Such perturbations can range in scale from fluctuations of individual molecules to 
entire biological pathways. Data-driven clustering algorithms have long been used to 
group interactions into interpretable functional modules; however, these modules are 
typically constrained to a fixed size or statistical cutoff. Furthermore, modules are often 
analyzed independently of their broader biological context. Consequently, such clustering 
approaches limit the ability to explore functional module associations with disease 
phenotypes across multiple scales. Here, we introduce AutoFocus, a data-driven method 
that hierarchically organizes biomolecules and tests for phenotype enrichment at every 
level within the hierarchy. As a result, the method allows disease-associated modules to 
emerge at any scale. We evaluated this approach using two datasets: First, we explored 
associations of biomolecules from the multi-omic QMDiab dataset (n = 388) with the well-
characterized type 2 diabetes phenotype. Secondly, we utilized the ROS/MAP 
Alzheimer’s disease dataset (n = 500), consisting of high-throughput measurements of 
brain tissue to explore modules associated with multiple Alzheimer's Disease-related 
phenotypes. Our method identifies modules that are multi-omic, span multiple pathways, 
and vary in size. We provide an interactive tool to explore this hierarchy at different levels 
and probe enriched modules, empowering users to examine the full hierarchy, delve into 
biomolecular drivers of disease phenotype within a module, and incorporate functional 
annotations. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2023. ; https://doi.org/10.1101/2023.09.06.556542doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556542
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction 

The increasing availability of high-throughput measurement technologies has led to the 
generation of a large number of multi-omics datasets, providing molecular snapshots of 
biological systems at all -omic levels of regulation1,2. Such multi-omic datasets can be 
explored to infer molecular interactions3–5, or in the context of disease, to identify 
perturbations for a deeper understanding of pathophysiological mechanisms6–8. To this 
end, various computational methods have been developed to cluster multi-omic 
biomolecules into easier-to-interpret functional modules that attempt to describe 
alterations caused by a disease in a biological system5,9–13. 

Functional modules generally consist of interacting biomolecules that are coordinated, 
coregulated, or otherwise involved in the same biological process14,15. Grouping 
molecules into such functional modules can often be achieved using existing functional 
annotations available in large databases comprised of experimentally derived 
interactions16,17. However, these types of annotations are constrained by research bias 
and are limited between -omic layers, for example those between metabolomics and 
transcriptomics18,19. Thus, while experimentally validated annotations promise to create 
well-supported functional modules, the lack of exhaustive annotations in a high-
throughput context is often a severe limitation. Data-driven methods that infer interactions 
between biomolecules directly from the data are often a compelling alternative. Such 
methods include k-means clustering, hierarchical clustering, network approaches, 
principal component analysis (PCA), or other matrix factorization approaches12,20–23.  

A significant challenge for these data-driven methods which statistically identify modules 
is determining the appropriate scale of a biological process that should be deemed a 
module. For instance, the catabolism of carbon units of cells can be studied at various 
levels, such as single-molecule level (glucose or pyruvate), pathway level (glycolysis), or 
functional pathway group level (central carbon metabolism, Figure 1a)24. This exemplifies 
the concept that functional modules are not necessarily distinct processes, and that 
different hierarchical levels of super- and sub-modules exist25,26. In addition, previous 
work by our group has shown that phenotypes can impact biological system at a variety 
of levels;  certain phenotypes, for example related to specific pathological perturbations, 
manifest at the level of a few molecules, while others, like sex effects, impact entire 
pathways or pathway groups12,27.  

Despite the biological relevance of such hierarchies, current module identification 
algorithms are not designed to produce data-driven modules that can explore biological 
processes at multiple scales. Existing algorithms apply restrictive parameters, such as p-
value cutoffs, network connectivity metrics, or desired module size, to demarcate modules 
at a fixed level, which are then further explored as standalone processes, disconnected 
from the larger biological context10,11,28–30. Thus, when analyzing the effects of a disease-
phenotype on these modules, fixed-scale approaches do not reveal how a phenotype 
impacts different granularity levels within a module (e.g., single molecule versus pathway 
levels), and cannot determine how impacted modules relate to one another in the larger 
biological system. Further, fixed-scale modules restrict all phenotype associations to a 
single level, failing to capture the variety of scales that may exist among diverse 
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phenotypes. 

We here address the issue of identifying multi-level modules and allowing phenotype 
association to manifest at any scale by designing an interactive and adaptive hierarchical 
clustering and phenotype association approach. We introduce a new method, AutoFocus, 
that hierarchically structures molecular datasets, overlays phenotype association onto the 
hierarchy, and performs enrichment analysis to annotate functional modules within this 
system. The method is accompanied by an interactive application that allows a user to 
explore the hierarchy created by their data and provides functional insights through 
module annotation and the identification of module members driving phenotype 
association (Figure 1). We then apply our method to two independent datasets to validate 
its ability to capture known disease signal and explore new findings: Type 2 Diabetes in 
The Qatar Metabolomics Study on Diabetes (QMDiab, n = 388)2, which contains 12 multi-
omic datasets including metabolomics, proteomics, and glycomics; and the Alzheimer’s 
Disease in the Religious Orders Study/Memory and Aging Project (ROS/MAP, n = 500)31, 
which includes a metabolomics and proteomics platform and multiple clinical phenotypes. 
Finally, we show how our method can easily integrate other hierarchical clustering 
methods into its analysis pipeline, such as the popular WGCNA clustering method10. 
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2 Results 

Figure 1. AutoFocus Method Overview. a) Conceptual depiction of applying “focus” to the biological 

process of carbon metabolism at different hierarchical levels. b) Multiple molecular datasets with 

biomolecules from the same n samples are concatenated into a single matrix, accompanied by sample 

phenotype information, p. c) Spearman correlations between molecules are calculated to generate a 

correlation matrix, d) Correlation coefficients are converted to distances to create a hierarchical tree of 

biomolecules, e) Biomolecules are univariately correlated with the phenotype of interest and filtered for 

statistical significance, f) Enrichment “peaks” are detected by performing an enrichment analysis of the 

“leaves” descending from each internal node, i.e., the number of significantly correlated molecules in the 

respective cluster. g) Functional annotation and module driver analysis is performed on each enriched 

module. 
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2.1 Description of AutoFocus Framework 

The AutoFocus tool enables fast clustering and phenotype association of multiple omics 
datasets, accompanied by an intuitive, interactive application for result exploration. 
Matched-sample omics datasets from any specimen, body fluid, or platform, are 
combined and pairwise correlated (Figure 1b-c). These correlations are transformed into 
a distance metric that is used to structure all molecules into a single dependency tree 
based on well-established hierarchical clustering (Figure 1d). Univariate associations of 
each molecule with a desired phenotype of interest are calculated, and significantly 
associated molecules, which are the “leaves” of the tree, are annotated at the bottom of 
the diagram (Figure 1d-f).  

The tree is then scanned from top to bottom. For each internal node of the tree, the leaves 
descending from that node create a cluster (see highlighted parts of Figure 1f). An 
enrichment analysis of significant hits is performed on the molecules within that cluster. 
If a user-defined enrichment threshold is reached, that internal node is labeled as an 
“enrichment peak” (Figure 1f). Finally, functional annotation is performed on the modules 
associated with each peak along with a phenotype “driver” analysis (Figure 1g). Drivers 
are defined as module members sharing a direct, unconfounded correlation edge with the 
disease phenotype based on a mixed-distribution graphical model.  

All AutoFocus functionalities are available as an R package at 
https://github.com/krumsieklab/autofocus. As input, the method accepts Excel sheets of 
measurements from multiple omics datasets along with dataset-specific molecular 
annotations and sample-specific annotations, including phenotype(s) of interest and 
covariate information. Accompanying the workflow in Figure 1 is an interactive Shiny 
application that allows a user to set an enrichment threshold and easily explore the 
resulting functional modules. 
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2.2 Intra- and inter-dataset relationships in the 12-dataset multi-omics 
QMDiab study 

As all data-driven clustering methods depend on the similarity relationships between the 
measured variables, we first explored the correlation structure of a dataset with various 
omics layers to get an overview of the highly complex underlying statistical structures. 
The QMDiab dataset consists of 5,135 biomolecules from 8 metabolomics datasets 
(5 different platforms performed on plasma, 2 on urine, and 1 on saliva), 3 blood 
glycomics datasets, and 1 blood proteomics dataset (Table 1). These 12 datasets were 
combined and the pairwise biomolecule correlations were calculated. A systemic 
correlation bias was detected across the various assays: Intra-dataset correlations were 
systematically higher than inter-dataset correlations (Figure 2a). This bias persisted even 
in instances where the same molecule was measured on different platforms. For example, 
when analyzing two specific molecules, valine and leucine, measured on two almost 
identical plasma metabolomics platforms, we observed that valine had a higher 
correlation with leucine measured on the same platform than its correlation with itself 
measured on a different platform (Figure 2b). As a consequence of this bias, molecules 
from the same dataset tended to be in close proximity in a hierarchical structure 
(Figure 2c). This poses a problem when using correlation networks to statistically extract 
interactions between these molecules, a common approach to inferring biological 
relationships. We systematically probed the QMDiab correlation network for the optimal 
statistical cutoff to create a network whose edge set best models ground truth 
interactions. We found that this optimal cutoff differs between ground truth annotations 
for intra-dataset edges (metabolite pathways) and ground truth annotations for inter-
dataset edges (KEGG and Recon3D-based gene-metabolite edges, Supplementary 
Figure 1)32. This indicates the inability of a single statistical cutoff to recover biologically 
relevant interactions in a multi-dataset context.  

Notably, this observation of higher correlations within the same omics layers appears to 
be a natural feature of multi-omics datasets. Neither AutoFocus, nor any other clustering-
based method can sufficiently remove this bias, as all clustering methods rely on the 
associations between measured molecules. However, unlike existing methods, the 
hierarchical framework of AutoFocus does not apply a fixed statistical cutoff to 
correlations between analytes, allowing any intra- and inter- dataset relationships to 
naturally emerge from the data structure. As the AutoFocus method evaluates clusters at 
every internal node of a hierarchy, clusters formed by nodes closer to the root of the tree 
will encompass molecules spanning different -omics, fluids, and datasets whose 
relationships would have been excluded when using statistical significance-based cutoffs 
(Fig 1c). The resulting clusters are more representative of multi-omic, multi-fluidic, and 
multi-dataset biological interactions as compared to cutoff-dependent clustering methods. 
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Dataset Omic Type Sample 
Type 

Platform Method # of 
Analytes 

QMDiab  
(n = 410) 

Metabolomics Plasma Metabolon (HD2) UHPLC/GC-MS/MS 466 

Plasma Metabolon (HD4) UHPLC/GC-MS/MS 843 

Plasma Nightingale NMR 224 

Plasma Biocrates p150 FIA-MS/MS 161 

Saliva Metabolon UHPLC/GC-MS/MS 251 

Urine Metabolon UHPLC/GC-MS/MS 695 

Urine Chenomx NMR 32 

Proteomics Plasma SOMAscan SOMAmer + DNA 
microarray 

1141 

Lipidomics Plasma Metabolon 
(Lipidyzer) 

LC-MS 1133 

Glycomics Plasma Genos IgG 39 

Plasma Genos Total N-glycans 60 

Plasma Leiden University IgA 90 

ROS/MAP 
(n= 500) 

Metabolomics Brain Tissue Metabolon UHPLC/GC-MS/MS 667 

Proteomics Brain Tissue ACQUITY UPLC + 
TSQ-Vantage MS 

UHPLC-MS/MS 7,526 

Table 1. Overview of -omic types, sample types, platforms, collection methods, and analyte 

count for the QMDiab and ROS/MAP datasets. 
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Figure 2. Correlation Values Within and Across Datasets. a) Proportion of significant correlations 
between biomolecules within and across datasets. For every dataset, the proportion of significant 
correlation coefficients within each dataset is substantially larger than across datasets. Consequently, 
statistical methods that depend on correlations will be biased towards intra-dataset interactions in a multi-
omics setting. b) Example correlations between two molecules measured on the sample blood samples 
using two similar metabolomics platforms, Metabolon Plasma HD2 and Metabolon Plasma HD4. Valine on 
the HD2 platform correlated stronger with Leucine measured on the same platform than with Valine on the 
HD4 platform. This further illustrates the tendency for stronger correlations within a dataset than between 
datasets. c) Dataset distribution in the correlation-based hierarchical structure formed on the QMDiab 
dataset. Strong intra-dataset correlations can be seen for lipids (brown) and to a lesser extent for 
proteomics (light green), as these two datasets have dense regions where they segregate from the other -
omics datasets which are otherwise thought to be well integrated. 
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2.3 AutoFocus analysis on QMDiab reveals impact of Type 2 Diabetes at 
multiple levels of molecular interactions 

Systems-level Analysis of Type 2 Diabetes. The phenotype of interest used for this 
analysis was Type 2 Diabetes (T2D) diagnosis. After correcting for age, sex, and BMI, 
188 of the 5,135 molecules were found to be significantly associated with Type 2 Diabetes 
(p < 0.05, Bonferroni adjusted), covering 10 of the 12 omics datasets. The IgG and IgA 
glycomics datasets showed no significant associations with T2D. We observed a broad 
distribution of signal across the hierarchical tree (Figure 3a), suggesting a system wide 
T2D effect across omics and body fluids. Certain regions of the tree had substantially 
denser distributions of significantly associated biomolecules, suggesting hotspots of T2D 
perturbation.  

Type 2 Diabetes Modules. To identify T2D modules for the QMDiab dataset, we applied 
a “majority vote” enrichment threshold of 0.5, where at least 50% of a cluster’s members 
must be significantly associated with T2D for it to be designated as a T2D module. The 
AutoFocus method identified 21 modules, ranging in size from 2 to 192 biomolecules 
(Supplementary Figure 1 and Supplementary Table 1). In addition, there were 33 
single-molecule modules, identified as T2D-associated molecules that did not belong to 
any of the 21 modules. The identified T2D modules substantially ranged in scale 
(Figure 3a), from very high correlation near the leaves at tree height 0 to low correlations 
near the root at tree height 1. This shows that Type 2 Diabetes manifests at various levels 
of the biological hierarchy, from closely connected molecules to larger pathways. 

As expected, most of the smaller, highly correlated modules tended to contain molecules 
from only one dataset, due to the aforementioned within-dataset correlation biases, most 
notably within the lipidomic and proteomics datasets. However, AutoFocus identified six 
T2D modules that contained molecules from multiple omics or fluids (Supplementary 
Figure 1). The smaller of these modules included molecules that were measured multiple 
times but on different platforms, e.g., one module which was made up of pyroglutamine 
measured on the Metabolon HD2 and HD4 platforms. The largest module with 192 
molecules (Figure 3a), comprising of the bulk of the T2D-associated analytes in the 
QMDiab dataset, brought together molecules from both metabolomic and proteomic 
datasets and all three body fluids in QMDiab (Figure 3b).  

This 192-analyte module contained two sub-modules, each with substantially different 
functional components. The larger, right-hand “child” tree (Figure 3a, pink) contained 
molecules involved in energy metabolism, including various carbohydrates, such as 
mannose, glucose, and 1,5-anhydroglucitol, which are known biomarkers of diabetes33,34, 
as well as TCA cycle metabolites like pyruvate and lactate in plasma. In addition, this 
module showed significant changes in the abundance of ketone bodies acetoacetate and 
3-hydroxybutyrate in urine, supporting the prevalence of ketosis and ketone body 
secretion in T2D patients35.  

The left sub-tree (Figure 3a, yellow) in this module contained biomolecules related to 
bone growth, mineralization, and degradation, as well as some chemokines and 
endothelial cell proteins. The bone degradation molecules included the proteins 
Osteomodulin (OMD), Integrin-binding sialoprotein (IBSP), and C-type lectin domain 
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protein (Clec11A) and the metabolite prolylhydroxyproline in both plasma and urine36–39. 
Osteoporesis has a well-documented relationship to T2D, and although the mechanisms 
are not established, hypotheses for the link include inflammation and microangiopathy40. 
The presence of chemokines Stromal cell-derived factor 1 (CXCL12) and C-C motif 
chemokine 22 (CCL22), as well as Endothelial cell-specific molecule 1 (ESM1) in this 
sub-module presented potential osteoporosis links to inflammation and microangiopathy, 
respectively.  

Type 2 Diabetes Module Driver Analysis. We further analyzed this module using a mixed 
graphical model (MGM) approach, which allowed us to differentiate direct correlations 
between biomolecules and T2D from indirect, statistically confounded correlations. We 
identified and labeled as drivers those molecules that had a direct correlation with T2D 
diagnosis, signified by sharing an edge in the MGM network. The MGM identified 5 
biomolecules showing direct correlations with T2D, including CXCL12 and ornithine in 
urine, 1,5-anhydroglucitol in saliva, as well as 2 unknown urine metabolites (Figure 3c). 
The variety of drivers likely reflects the multiple functional components associated with 
T2D (such as hyperglycemia and inflammation). 

Taken together, the AutoFocus analysis on this large T2D dataset showed the benefits of 
exploring multi-omics datasets with a hierarchical algorithm: First, AutoFocus was able to 
cluster and draw links between multiple omics and fluids into functional modules in T2D 
at a variety of scales within the hierarchy. Second, the granularity of the hierarchical 
structure allowed us to explore the functional sub-modules of an identified enrichment 
peak separately and in detail. For the largest QMDiab cluster associated with T2D, we 
were able to identify that one sub-module was enriched for energy metabolism molecules 
and the other for bone growth and degradation, while the peak annotations showed us 
how these two processes interacted together at a larger biological scale. Finally, mixed 
graphical models allowed us to perform a driver analysis on each module, indicating 
which molecules had direct statistical links to the T2D phenotype in each module, and 
which ones were confounded correlations. 
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Figure 3. AutoFocus on the QMDiab dataset. The dataset included a total of 388 samples and 5,135 
biomolecules from 12 datasets: 5 metabolomics platforms on plasma, 2 on urine, and 1 on saliva, 3 blood 
glycomics datasets and 1 blood proteomics dataset. a) View of the full hierarchical structure created from 
the QMDiab dataset. Magenta circles at the bottom of the tree indicate significant molecules, circles within 
the tree indicate modules that passed the enrichment threshold. Significant molecules were dispersed 
throughout the leaves of the tree and enriched modules were scattered throughout the hierarchy at a wide 
range of heights. The high-density region of significant molecules towards the right corresponds to the 
largest enriched module at the highest height. Below is a zoomed view of this module, with the left sub-tree 
in yellow and the right sub-tree in pink. b) Pie charts of the dataset and pathway makeup of the two largest 
modules along with their size and significant-node enrichment fraction. Pathway annotations were only 
available for the metabolites measured by Metabolon. c) Confounder-corrected mixed graphical model of 
the molecules in the largest module with phenotype. At the bottom, a zoomed-in view of nodes with edges 
to the Type 2 Diabetes phenotype which include 1,5-AG in saliva, ornithine in urine, and the CXCL12 
protein, along with the confounder age and 2 unknown molecules. As these molecules are directly 
connected to the T2D phenotype, we mark them as statistical “drivers” of the disease in this module. 
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2.4 AutoFocus on ROS/MAP dataset shows Alzheimer’s disease phenotype 
impact at different levels of the biological hierarchy  

As another use case, AutoFocus was applied to an Alzheimer’s disease (AD) dataset of 
brain samples from the Religious Order Study (ROS) and Rush Memory and Aging 
Project (MAP) cohorts31. This dataset consisted of 8,193 biomolecules from one 
metabolomics and one proteomics platform, both performed on brain tissue from post-
mortem samples (Table 1). For this analysis, we examined the association between the 
biomolecules and two clinical AD phenotypes simultaneously: 1) Neurofibrillary tangles 
(NFT), defined by the immunohistochemistry-based overall paired helical filament tau 
tangles load from post-mortem pathology, and 2) cognitive decline (CD), defined by the 
rate of change in global cognition over lifetime. These phenotypes were chosen because 
they represent two distinct effects of AD, molecular and cognitive. 

Systems-level Analysis of AD phenotypes. Of the 8,193 molecules in the ROS/MAP 
dataset, 887 molecules significantly associated with NFT and 763 molecules significantly 
associated with CD (p < 0.05, adjusted p-values). All statistical models were corrected for 
age at death, sex, BMI, post-mortem interval, years of education, and APOE genotype. 
To maintain consistency with previous studies published on the ROS/MAP dataset41, the 
FDR p-value correction method was used instead of Bonferroni, leading to a dense 
distribution of significant hits across the tree (Figure 4a). Both phenotypes had robust 
metabolic associations, as metabolites made up 20% and 26% of significant hits in NFT 
and CD, respectively, even though metabolites only made up 8.14% of the underlying 
dataset. There were 358 overlapping molecules significantly associated with both 
phenotypes. 

AD Modules. A total of 170 modules were identified with a “majority vote” enrichment 
threshold of 0.5, with 81 modules unique to the NFT phenotype, 82 unique to the CD 
phenotype, and 7 modules associated with both phenotypes. There were 462 single-
molecule modules that did not belong to any of the 170 modules. The multi-molecule 
modules ranged in size from 2 to 165 biomolecules (Supplementary Figure 2, 
Supplementary Table 2). Similar to the QMDiab dataset, modules associated with both 
phenotypes ranged drastically in tree height across the tree, from 0 to 0.85 (Figure 4a).  

An interesting feature arising from applying AutoFocus on two phenotypes was the 
nesting of enrichment peaks, where the peak of one phenotype was a descendant of a 
peak of the other. As the NFT and CD phenotypes had a large overlap of significantly 
associated molecules, their enriched modules tended to occupy similar regions of the 
tree. Despite this considerable overlap, only 7 internal nodes were identified as 
enrichment peaks for both phenotypes (Figure 4a, orange nodes). For all other regions 
of the hierarchy where both phenotypes had overlapping significant hits, modules 
enriched for one phenotype contained descendent sub-modules enriched for the other 
phenotype (Figure 4b-c). This nesting highlights how different phenotypes within a single 
disease can manifest at different scales of biological processes, where cognitive decline 
may be associated with a biological process at a higher level than neurofibrillary tangles 
pathology, and vice versa. 

The ROS/MAP hierarchical structure was strongly affected by the dataset correlation bias 
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as metabolites were condensed within the tree, leading to only 6 of the 170 modules being 
multi-omic (Figure 4a, Supplementary Table 2). Within the dense metabolomic region 
of the ROS/MAP hierarchy, CD had more significant metabolite associations, which 
resulted in a higher enrichment peak (larger cluster) than the NFT phenotype. This 44-
metabolite module was enriched for antioxidants and lipid peroxidation metabolites42,43, 
indicating that CD interacts with oxidative stress metabolism at a higher biological scale 
than NFT (Figure 4b, Supplementary Table 2).  

Of the 6 multi-omic modules was the largest module in the tree, which significantly 
associated with the NFT phenotype (Figure 4c). This module contained proteins and 
metabolites involved in a variety of processes; one sub-module showed multi-omic 
dysregulation of arginine flux, degradation, and metabolism44–47, one sub-module 
contained proteins associated with inflammatory mediator TNF-⍺48–50, while an adjacent 
sub-module contained glycosylation proteins51. In contrast, the CD phenotype had 
enrichment peaks for the NFT sub-modules involved in arginine metabolism and 
inflammation, but not for the region associated with protein glycosylation. This indicates 
that protein glycosylation has an NFT-specific association, and thus the NFT phenotype 
is associated at a higher level in the biological hierarchy for this process than the CD 
phenotype. 

One of the 7 modules identified for both phenotypes was a proteomic module combining 
two functionally distinct sub-modules. The left child (Figure 4d, yellow) contained proteins 
largely involved in mitochondrial processes including mitochondrial membrane trafficking 
52,53 and mitochondrial gene expression54. The right child (Figure 4d, pink) was enriched 
for proteins related to synaptic vesicle exocytosis and inhibitory neurotransmission 55–59. 
As this was a module where both phenotypes were enriched at the same level, these 
processes do not seem to be specific to either phenotype. 

In summary, overlaying these two phenotypes on the ROS/MAP hierarchy demonstrated 
the difference in biological manifestation of cognitive decline and tau neurofibrillary 
tangles in Alzheimer’s disease. These differences highlight phenotype-specific 
processes, while modules equally enriched for both phenotypes indicate more universal 
disease processes that may not be attributable to a single phenotype. 
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Figure 4. Results of running the AutoFocus method on the ROS/MAP dataset. The dataset included 
a total of 500 samples, which contained 8,193 biomolecules from a metabolomics platform a proteomics 
platform performed on post-mortem brain tissue. a) View of the full hierarchical structure created from the 
ROS/MAP dataset with two phenotypes annotated and dataset distribution below. Magenta circles 
represent the neurofibrillary tangles phenotype, green circles represent cognitive decline, and orange 
circles are overlaps between the two. Significant molecules are dispersed densely throughout the tree and 
enriched modules are scattered throughout the hierarchy at a large range of heights. b) Zoomed-in view of 
a metabolomics module enriched for significant hits associated with cognitive decline. This module 
contained metabolites related to oxidative stress and lipid peroxidation. c) Zoomed in view of the largest 
module found in the dataset which was enriched for metabolites and proteins significantly associated with 
neurofibrillary tangles. d) Zoomed-in view of the largest module enriched for both phenotypes with the left 
sub-tree (yellow) enriched for mitochondrial proteins and the right sub-tree (pink) enriched for proteins 
related to synaptic vesicle exocytosis and inhibitory neurotransmission.  

 

2.5 Integration with WGCNA Clustering 

While the AutoFocus tool builds hierarchical trees using standard agglomerative 
hierarchical clustering from pairwise correlations (see Methods 3.3.1), the framework is 
applicable to any input tree structure. For example, one of the most widely used clustering 
methods for omics data, weighted gene co-expression network analysis (WGCNA), 
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derives a hierarchical structure using a “topological overlap matrix” (TOM) of a co-
expression network10. WGCNA trees can be directly integrated into the AutoFocus 
framework. 

To investigate how a clustering method can affect AutoFocus cluster analysis, the 
QMDiab dataset was rerun using WGCNA’s TOM-based hierarchical structure 
(Supplementary Figure 3). Briefly, while the TOM-based hierarchy produced a very 
different cluster structure from the correlation-based clustering method, AutoFocus was 
still able to identify widespread T2D perturbations of energy metabolism with the new 
hierarchy, similar to those found in the initial analysis. The dataset correlation bias 
persisted in the WGCNA hierarchy, although while this manifested the most strikingly in 
the lipidomics dataset in the correlation-based hierarchy (Fig 2c), the proteomics dataset 
was highly segregated in the TOM-based tree (Supplementary Figure 2a). As the bone 
degradation pathway identified in the initial analysis was highly driven by dysregulation of 
proteins, this process was not recaptured in the TOM hierarchy. Overall, the TOM-based 
hierarchy was able to recapture only a portion of the key T2D-affected processes 
identified by the correlation-based hierarchy. 

3 Discussion 

The AutoFocus method provides a novel computational approach for identifying disease-
perturbed, multi-omic modules of biomolecules at various resolutions of biological 
hierarchy. By testing for enrichment at each internal node in a hierarchical tree, 
AutoFocus allows relationships between molecules across all platforms, fluids, and omics 
to be analyzed in the context of phenotypic perturbations. The identified modules are 
better able to model multi-omic, multi-fluidic, and multi-dataset biological interactions as 
compared to clustering methods which rely on modules defined at a fixed level and 
explored as standalone processes. The hierarchical framework allows for the exploration 
of one or more phenotypes at fine granularity or at a larger, zoomed-out scale. 
Furthermore, the method’s implementation in an interactive application makes navigation 
of the complex biological structure, and the modules within, easy and intuitive. 

We applied AutoFocus to two multi-omic datasets, QMDiab and ROS/MAP. For both 
datasets, AutoFocus was able to find a multitude of disease-associated modules at 
various levels of correlation. For the type 2 diabetes (T2D) phenotype in QMDiab, 
AutoFocus was able to detect multi-omic modules enriched for known T2D associated 
processes, such as energy metabolism pathways and bone degradation, distinguishing 
them as separate but related processes. We were able to integrate the TOM-based 
hierarchical structure of the WGCNA method into AutoFocus to identify discrepancies in 
the module results stemming from the underlying hierarchy.  Applying AutoFocus to the 
ROS/MAP Alzheimer’s disease dataset with multiple phenotypes, we were able to 
distinguish the different scales at which two different pathophenotypes associated with 
dysregulated processes within a single disease. Without the hierarchical perspective and 
tool allowing us to explore multiple levels within our dataset, neither of these findings 
would have been possible.  

The main limitation of the AutoFocus method is the multi-omic dataset correlation bias in 
which intra-dataset correlations are systematically higher than inter-dataset correlations. 
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This bias affects the hierarchical structure between the molecules, and therefore the 
modules identified by the AutoFocus algorithm will be more likely to contain relationships 
within one dataset than cross-dataset interactions. Notably however, this bias will affect 
any method that uses statistical similarity measures between molecules. By testing 
clusters at all levels of the hierarchy rather than cutting clusters into disparate groups that 
potentially sever ties between datasets, the AutoFocus design increases the likelihood of 
identifying multi-omic modules if they exist. 

In conclusion, AutoFocus is a new approach to detect modules in complex, multi-omics 
data at any scale of association. It allows for multiple phenotype comparison and comes 
with an interactive Shiny app for result exploration. Our results show that AutoFocus is 
effective at identifying interactions between biological systems and disease perturbations 
and can distinguish molecular modules affected by different phenotypes in complex 
disease. 

4 Methods 

4.1 Datasets 

The QMDiab study was conducted at the Dermatology Department of Hamad Medical 
Corporation (HMC) in Doha, Qatar. The study population was predominantly of Arab, 
South Asian, and Filipino descent, with participants falling between the ages of 23 and 
71. Data was collected between February and June of 2012; collection and sampling 
methods have been previously described elsewhere60.  The study was approved by the 
Institutional Review Boards of HMC and Weill Cornell Medicine-Qatar (WCM-Q). Written 
informed consent was obtained from all participants. For the analysis described in this 
paper, we included data from 388 subjects (192 females, 196 males; 195 diabetic, 193 
non-diabetic). 

The Religious Order Study (ROS) and Rush Memory and Aging Project (MAP) are two 
studies conducted by the Rush Alzheimer’s Disease Center. ROS started recruiting 
individuals from religious communities across the United States in 1994, and MAP started 
recruiting individuals from a wide range of backgrounds and socio-economic statuses 
from Northeastern Illinois in 1997. Data collection and sampling methods have been 
previously described elsewhere41. For this study, data from post-mortem tissue of 500 
subjects was included (352 females, 148 males; 220 with Alzheimer’s Disease, 119 with 
mild cognitive impairment, 153 with no cognitive impairment, 8 with other forms of 
dementia). Both cohorts were approved by an institutional review board of Rush 
University Medical center. All participants provided informed consent, an Anatomic Gift 
Act, and a repository consent to allow their data and biospecimens to be shared. 

4.2 Multi-omic measurements 

4.2.1 QMDiab 

Plasma metabolomic profiling was performed by running plasma samples through 5 
separate platforms: 1) The Metabolon Inc. HD2 platform, which uses non-targeted 
ultrahigh-performance liquid chromatography (UHPLC) and gas chromatography (GC) 
separation coupled with mass spectrometry (MS/MS)61. This yielded 466 measured 
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metabolites. 2) The Metabolon UHPLC-MS/MS and GC-MS/MS HD4 platform (843 
metabolites). 3) The Metabolon LipidyzerTM platform, which resolved fatty acid side chains 
(1,133 lipids)62. 4) The Biocrates Life Sciences AG AbsoluteIDQTM p150 metabolomics 
kit, which used targeted flow injection analysis tandem mass spectrometry (FIA-MS/MS) 
from (161 molecules)63. 5) The targeted Nuclear Magnetic Resonance (NMR) platform of 
Nightingale Ltd. (224 metabolites)64. 

Urine metabolomic profiling was performed through non-targeted ultrahigh-performance 
liquid chromatography and gas chromatography separation, coupled with mass 
spectrometry on the Metabolon Inc. HD2 platform (695 metabolites) and the targeted 
proton Nuclear Magnetic Resonance (1H NMR) platform of Chenomx, Inc. (32 
metabolites)65.  

Saliva metabolomic profiling was performed through non-targeted ultrahigh-performance 
liquid chromatography and gas chromatography separation, coupled with mass 
spectrometry on the Metabolon Inc. platform (251 metabolites).  

Glycomics profiling was performed on 3 separate platforms; 356 plasma samples were 
sent to Genos, Ltd. (Zagreb, Croatia) for the analysis of total plasma N-glycosylation using 
ultra-performance liquid chromatography (UPLC) and IgG Fc N-glycosylation using liquid 
chromatography mass spectrometry 18lycol-profiling66 (39 and 60 measured glycans, 
respectively). IgA glycomics measurements were collected at Leiden University Medical 
Center using UPLC coupled to a quadrupole-TOF-MS, resulting in 90 measured IgA 
molecules as previously described (Dotz et al., 2021, Momcilovic et al,2020).   

Plasma proteomics profiling was performed on 356 samples at the WCM-Q proteomics 
core, using the SOMAscan assay (version 1.1) protocols and instrumentation provided 
and certified by SomaLogic Inc. (Boulder, CO)67 (1,141 proteins).  

4.2.2 ROS/MAP 
For 500 of the brain tissue samples of the ROS/MAP cohort, brain metabolomic profiling 
was performed through non-targeted ultrahigh-performance liquid chromatography and 
gas chromatography separation, coupled with mass spectrometry on the Metabolon Inc. 
platform (667 metabolites)41. Brain proteomic profiles were collected on 265 ROS/MAP 
samples using tandem mass tag (TMT)-MS and downloaded from the AMP-AD 
Knowledge Portal (https://adknowledgeportal.synapse.org, 7,526 proteins), details of 
data collection and processing have been previously described68. 

4.3 Data preprocessing 

QMDiab. For each dataset, samples with more than 20% missing molecules and 
molecules with more than 10% missing samples were removed. Molecular abundance 
levels were then probabilistic quotient normalized to correct for sample-wise variation69 
and log-transformed. Data was then scaled, and all outliers with abundance levels above 

𝑞 = 𝑎𝑏𝑠(𝑞𝑛𝑜𝑟𝑚 [
0.0125

𝑛
]),  with n representing the number of samples, were set to missing. 

Missing values were imputed using a k-nearest neighbors (k-nn) imputation method70. All 
data preprocessing was performed with the maplet R package71.  

ROS/MAP. The ROS/MAP preprocessing steps have been outlined in Batra et al.41 and 
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Johnson et al68. Briefly, metabolites with over 25% missing values were filtered out, 
samples were quotient-normalized and subsequently log-transformed. Outlier samples 
were removed using the local outlier factor method and abundance level outliers were set 
to NA. Missing values were imputed with a k-nn algorithm. Proteins were log2-transformed 

and corrected for batch effects using ‘median polish’ approach. Missing values and 
outliers were treated with same approach as the metabolomics data. Duplicated proteins 
with same Uniprot IDs were averaged.  

After pre-processing the individual dataset, the data matrices were concatenated into a 
final data matrix. For the QMDiab dataset, this final data matrix consisted of 388 samples 
and 5,135 analytes, and for the ROS/MAP dataset, this final data matrix consisted of 500 
samples and 8,193 analytes. 

4.4 AutoFocus Method 

Hierarchical Clustering. Once all datasets were preprocessed and concatenated 
(Figure 1a), the data matrix was hierarchically clustered. The distance metric between 
two analytes was derived as one minus the absolute value of their Spearman correlation 
value such that the stronger the correlation (either positive or negative), the closer the 
analytes were in the hierarchy. This distance matrix was transformed into a hierarchical 
structure using the  average-linkage  method, which has  been  shown to maximize the 
cophenetic correlation between a hierarchical structure and its correlation-based distance 
matrix as compared to other common linkage methods72 (Figure 1c). On the hierarchical 
tree, “leaf” nodes represented biomolecules. Internal nodes represented the root of all 
their leaf descendants; therefore, a cluster was defined at each internal node. Each 
internal node also had a right and left child, which could be either a leaf or another internal 
node. 

Univariate Analysis. All measured molecules were associated with a phenotype of 
interest, p, using a linear model with added confounding terms to correct for applicable 
covariates (e.g., age, sex, BMI). P-values from this linear model were used to determine 
molecule significance after adjustment for multiple hypothesis testing. 

Enrichment “Peak” Calculation. To find phenotype association enrichment among 
clusters of the hierarchical tree, the internal nodes of the hierarchy were scanned from 
top to bottom. At each internal node, the set of leaves descending from that internal node 
was considered; if the proportion of these leaves that were significantly associated with 
the phenotype of interest surpassed a user-defined enrichment threshold, this internal 
node was labeled as an enrichment “peak”. Once a cluster was found at which this 
enrichment point was met, the scanning stopped for its descendants as we reached the 
highest level at which disease signal was detected at the desired enrichment threshold.  

This process sometimes resulted in “piggy-backers”, defined as peaks that reached the 
enrichment only due to one child reaching the enrichment threshold, and the joining of 
the two children diluted the signal (reduced the fraction of significant molecules in the 
cluster). Once all peaks had been identified in the hierarchy, each peak was assessed for 
the individual contributions from either child. A peak whose signal could be attributed to 
a single child was removed (details in Supplementary Figure 4), the child node that 
meets enrichment was labeled as a peak instead, and the other child that did not meet 
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the threshold continued to be scanned. This iterative process continued until all piggy-
backers were removed (Supplementary Figure 4). 

Cluster Driver Analysis. Once enrichment peaks were identified, an additional analysis 
was performed on molecules within the biological cluster descending from each peak to 
identify potential drivers of the disease signal. While a significant univariate association 
indicated a biological link between a molecule and a phenotype, this effect could have 
been indirect, meaning the association was relayed through an intermediate variable that 
was directly associated with the phenotype. Therefore, a driver analysis was performed 
to identify which molecules had a direct effect.  

To this end, the data matrix consisting of abundance data from the molecules descending 
from the enriched peak was combined with the phenotype vector and all covariates and 
used to build a mixed graphical model using the mgm package in R73. Graphical models 
use conditional dependency estimates between molecules, covariates, and disease 
diagnosis to extract direct correlations and to exclude indirect effects through 
confounding. Mixed graphical models in particular are capable of generating the 
conditional independence structure of many underlying distributions, including Gaussian, 
Poisson, and categorical 74. 

For our application, molecules and/or covariates were labeled as drivers of a disease 
phenotype if they shared an edge with the disease phenotype in the resulting MGM graph, 
as they shared a direct correlation with the phenotype. 

AutoFocus code and interactive tool. The AutoFocus method is accompanied by an 
interface developed using the Shiny app environment75 under R version 4.2.2. The code 
for the app is freely available as a GitHub at https://github.com/krumsieklab/autofocus.  

 

4.5 Runtime performance 

Running the AutoFocus method can be parallelized over multiple CPUs to reduce 
computation time for large datasets. Generating the results of the ROS/MAP dataset with 
8,193 molecules and two phenotypes took 4.5 hours on a single 2.7 GHz Quad-Core Intel 
Core i7 CPU, with most of this time spent creating the MGMs for each cluster.  

Data availability 

The preprocessed, concatenated QMDiab dataset used in this paper can be found at 

https://doi.org/10.6084/m9.figshare.23934933.v1. 

The ROS/MAP data used in this paper can be obtained from two sources: (1) 

Metabolomics and proteomics data for the ROS/MAP cohort are available via the AD 

Knowledge Portal (https://adknowledgeportal.org). The AD Knowledge Portal is a 

platform for accessing data, analyses, and tools generated by the Accelerating Medicines 

Partnership (AMP-AD) Target Discovery Program and other National Institute on Aging 

(NIA)-supported programs to enable open-science practices and accelerate translational 

learning. The data, analyses, and tools are shared early in the research cycle without a 
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publication embargo on secondary use. Data is available for general research use 

according to the following requirements for data access and data attribution 

(https://adknowledgeportal.org/DataAccess/Instructions). For access to content 

described in this manuscript see: http://doi.org/10.7303/syn26401311. (2) The full 

complement of clinical and demographic data for the ROS/MAP cohort are available via 

the Rush AD Center Resource Sharing Hub and can be requested at 

https://www.radc.rush.edu. 

Code availability  

Codes used in this study are available at the GitHub repository 
https://github.com/krumsieklab/autofocus. 
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