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Abstract

Knotted proteins, although scarce, are crucial structural components of certain pro-
tein families, and their roles remain a topic of intense research. Capitalizing on the
vast collection of protein structure predictions offered by AlphaFold, this study compu-
tationally examines the entire UniProt database to create a robust dataset of knotted
and unknotted proteins. Utilizing this dataset, we develop a machine learning model
capable of accurately predicting the presence of knots in protein structures solely from
their amino acid sequences, with our best-performing model demonstrating a 98.5%
overall accuracy. Unveiling the sequence factors that contribute to knot formation,
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we discover that proteins predicted to be unknotted from known knotted families are
typically non-functional fragments missing a significant portion of the knot core. The
study further explores the significance of the substrate binding site in knot formation,
particularly within the SPOUT protein family. Our findings spotlight the potential
of machine learning in enhancing our understanding of protein topology and propose
further investigation into the role of knotted structures across other protein families.

Introduction

The central paradigm of structural biology is the relationship between protein sequence, the
3D structure it encodes, and biological function. The 3D structure is composed of structural
motifs found consistently in unrelated and often sequentially distinct proteins. One type of
the motifs whose role is not yet known is knotted motifs, even though they were uncovered
three decades ago.™® The knots are formed by the protein backbone, and the simplest one,
with three crossing 3;, is shown in [Figure 1}

Knots are a common part of our everyday life. In a macromolecular world, they easily
form on polymers, however, the analysis of Protein Data Bank shows, that knots are rare
in the case of proteins.® Nevertheless, entangled proteins are found in species from all su-
perkingdoms (Bacteria, Eukaryota, and Archaea alike),* and conduct numerous functions
in various parts of the cell.”® Knots are an integral structural feature of certain protein
families™ where knot forms an active site. Moreover, it is exceptionally conserved, even in
families with high sequence diversity.”? Knotted proteins have already been investigated
from different perspectives: folding,* "4 degradation, thermal or mechanical stability® and
the potential role of the knot.® However, despite broad efforts, the origin, the pattern
of amino acids responsible for the entanglement, or the role of the knot is still unknown.®
One of the main reasons for this is the amount of data being too limited for the confident
identification of correlations between potential patterns and knotting behavior.

With the update of AlphaFold (AF) database in 2022,1%47 the structure predictions for all
proteins from the UniProt database (nearly 200 million entries) became available. Therefore,
knot detection and identification entered the Big Data age. The predictive quality of AF
methods is already widely recognized as many models passed experimental confirmation. 8
Although knotted proteins account for only 1% of the structures deposited in the PDB,
recent studies suggest, that the AlphaFold performs very well here too. AlphaFold has
demonstrated accurate prediction of knots in known knotted families including homologs
with very low sequence similarity,* and new type of knots,?%#!' in particular a composite
knot (3;#31),* which existence has been experimentally confirmed afterward.™

Herein, we conducted a comprehensive review of all 200 million entries to establish the
number of proteins with knotted AlphaFold models. We identified new potentially knotted
families and focused especially on those in which different types of topology are predicted.
Overall, there are approximately 700,000 knotted proteins (with high-quality prediction —
pLDDT value above 70). We classified these proteins into 15 groups (superfamilies), in-
cluding 10 which members have experimentally determined knotted structures. However,
even though it is expected that the knot is strictly conserved in the homologous proteins,
we found that each group contains both knotted and unknotted members. Up until now,
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two types of topology have been observed only in the case of OTC/ATC family. Thus, this
data on the one hand seem surprising, on the other allows for the first time to treat knotted
and unknotted proteins with Big Data approach and ask some fundamental questions: (i)
is it possible to distinguish knotted proteins from unknotted ones based solely on amino
acid sequence, (ii) in which families the knot is fully conserved, (iii) does the sequence of a
knotted protein contain a pattern responsible for knotting?

Motivated by the significant accomplishments of large protein language models in other
fields, herein we utilize our compiled dataset to develop a machine learning model capable
of accurately predicting the presence of a knot in a protein from its sequence.

Next, to understand the performance of our machine learning model, we focus on in-
dividual families with experimentally verified knotted 3D structures. We ask whether the
existence of mixed topology within one family is accurate or if it is a matter of the quality
of AF prediction. We investigate four families: SPOUT — the biggest knotted family which
possesses 31 and 3;#3; knot structures;™ sodium/calcium exchanger integral membrane
proteins — a family of transmembrane proteins and deep 3; knot; UCH — big family with 5y
knot;** and OTC/ATC family with both knotted (deep 3; knot) and unknotted topologies*
confirmed by X-ray structures.

Finally, we apply the machine learning model to seek answers to one fundamental ques-
tion, undertaken repeatedly in the past, whether there is an amino acid sequence that is
responsible for the knotting? The answer may uncover the physical reasons behind the knot-
ting or evolution of the knotted proteins and pave the way to the design of artificial knotted
proteins. We specifically focus on the SPOUT superfamily, which holds significant poten-
tial for industrial and pharmaceutical applications, such as the design of new antimicrobial
drugs.?4

Results and discussion

Dataset creation — identification of all potentially knotted proteins
in the Uniprot database based on AlphaFold prediction

In order to investigate what percentage of proteins predicted by AF is potentially knotted,
we determined the topology of each structure with a pLDDT greater than 70. The topology
was detected using the Topoly package® with the HOMFLY-PT polynomial and with prob-
abilistic closer approach“®#? (see Methods section [Knot detection in AlphaFold database| for
details).

We found that knotted proteins occur in less than 0.35% (around 700000) of all se-
quences deposited in the Uniprot database. Using the CD-HIT clustering method, biological
and functional annotation we found that majority of sequences can be classified into 17
superfamilies, shown in the [Table 1II Those include families with well known knotted mem-
bers such as SPOUT, AdoMet synthase, Carbonic anhydrae or UCH families (9 families
listed in[Table 1);#%¥ new families with 5, knot OPT oligopeptide transporter (with already
confirmed experimentally structures); and families spotted already by others with new type
of knots e.g 63 but without experimental verification;“%*¥<% and yet new (not spotted be-
fore) families such as DUF2254 membrane (IPR018723) or DUF4253 (IPR025349). We also
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Table 1: Protein families and domains of the dataset. In parentheses are the types of
knots found in PDB structures and AlphaFold models. In the case of models, the dominant
knot types are given. In the case of knotted proteins with PDB structures, the number
of proteins with topology specified in parentheses is provided. Asterisks indicate that the
topology is uncertain due to gaps in key regions of the structures.

g famil Family /domain Family/ AlphaFold PDB
upetiamtly name domain No. No. No. Example | Example
ID knotted | unknotted | knotted | structure: | structure:
models models proteins | knotted | unknotted
tRNA (guanine-N1-)-
260689 84 luak
methyltransferase, IPR029026 8931 -
SPOUT N-terminal (31) (31) (31)
tRNA methyltransferase
TRM10-type domain IPR038459 %653 1330 (36) 4{?? -
superfamily ! ! !
von Willebrand factor, 14299 0 .
ITIH type A IPR002035 (64: 31) 209414 (65: 31) - 1ljey
. 8118 . 0
VIT domain IPR013694 (6s: 31) 6717 (65: 31) - 6fpy
Aspartate/ornithine IPR036901; 6089 5 2fg7
ATC/OTCase carbamoyltransferase IPR006131 (31) 81789 (31) (31) 1d09
Sodium/calcium 48685 . 4 3vhs
) exchanger (membrane) TPRO04837 (31) 20450 (31) (31) )
- IPR022628; )
AdoMet S“‘dez"zﬁeﬁonuw IPR002133; 4(23? %2 5846 (;)8) tg‘; -
synthase Y IPR022636 ! ! !
S-adenosylmethionine IPRO27790; 694 4 4hpv
B IPRO42544; | 226 3) 31 -
synthetase, archaea IPRO02795 1 1 1
Carbonic Alpha carbonic IPR036393 19202 487 33 Gy74 )
anhydrase (31) (31) (31)
anhydrase Delta carbonic 641
anhydrase IPR018883 (31) 111 - - -
OPT oligopeptide 21909 1 Twsr
- transporter IPROSI3 |~ 7067 (5) (59) -
. IPR032695; 3799 1* 4cak*
- Integrin alpha IPRO13649 (31) 9053 (31) (3) Tusl
tRNA-uridine . 11288
TDD acp-transferase IPRO05636 (31) 776 ) i i
16S/18S rRNA IPR007209;
acp-transferase IPR022968; 3(?))9)2 747 (32 ) 5(?))8 -
Tsr3 IPRO07177 ! ! !
Calcium-activated potassium 4888 4 3mtH
) channel BK, alpha subunit IPRO03929 (31) 3454 (31) (31) )
Ubiquitin carboxyl-terminal | IPR0O01578; 6770 8 luch
UCH hydrolase IPR036959 (52) 312 (52) (52) )
- DUF2254 (membrane) IPR0O18723 1(?))4;1 5471 - - -
1
=
. Lantibiotic dehydratase | IPR006827 2(?5?)5 2665 (321) ‘)(313‘ -
- Ribosomal protein L37/S30 | IPR010793 1(?;11)2 651 (;1) ‘E’J;l}) -
- DUF4253 IPR025349 1(24;3 494 - - -
1



https://doi.org/10.1101/2023.09.06.556468
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.06.556468; this version posted September 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

found other knotted families (not listed in Table 1), which include members with more than
3 types of knots in homologous sequences (e.g 01, 31, 51 and 59, they are deposited in the
AlphaKnot*#) | very complex knots with 9 crossings (see AlphaKnot) and with less than 700
members. Details about classification into families can be found in the Models and Methods
section.

An intriguing observation is that each family contained knotted and unknotted structures,
what was only observed in the case of ATCase/OTCase family. In this case, AF predicts
only 11% of knotted proteins. The most unexpected are cases of families where the knot was
expected to be strictly conserved such as SPOUT (7% unknotted), transmembrane proteins
(13% unknotted), or UCH (26% unknotted). Later on, we will show that in some cases we
can explain these surprising results.

The data from Table 1 presents a great deal of information that can be analyzed in a
variety of ways, however, because it includes families with knotted and unknotted members
(with high pLDDT) it presents an ideal dataset for the application of machine learning.
Moreover, we will focus on the biggest families, with not more than two types of topology, so
families with 4,, and 6; knot types have been omitted here. Data selected for ML application

are presented in

Machine learning classifies proteins as knotted or unknotted

Next, we ask if there is a machine learning model capable of solving the binary classification
of proteins into knotted and unknotted classes based solely on their amino acid sequences.
This inquiry was based on the dataset, encompassing 39412 entries, that we constructed
by determining the topology of each structure predicted by AlphaFold (further details are
outlined in the Models and Methods section). The dataset consists of knotted and unknotted
amino acid sequences from 20 different protein families with various knot types (with the
prevalence of 3; knot), the details about the number of representants from each family can
be found in [Table 1 Combining the dataset from individual protein families implies that
the dataset is diverse. Sequences within one family are typically similar to each other, but
diverse from proteins from other families and each family usually has a different biological
function. The sequences also show differences across families in features such as average
sequence length or average knot core size. During the evaluation, we thus approach the
dataset from two perspectives: the first is a Big Data approach, where we treat the data as
a whole and are testing the performance of the model on a big scale, and the second is a
more detailed analysis and interpretation of results for individual selected families.

We made the decision to train three distinct models for the task of knot detection,
where each model incorporated a progressively less complex architecture and strategy. This
approach allowed us to compare the performance of the models and select the most optimal
one. Furthermore, it enabled us to investigate whether solving the problem necessitates
the use of a large, complex model or if a simpler approach suffices. The first model was a
fine-tuned ProtBert-BFD"? network, the second was a convolutional neural network using
ProtBert-BFD embeddings as input, and the third was a simple convolutional neural network
that operated on sequences with one-hot encoded amino acids (further details can be found
in the Models and Methods section). Refer to for a summary of the dataset creation
process and model training.
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Figure 1: Scheme of the machine learning workflow. The entire approach consists of
three main steps: 1. Obtaining data from PDB (with support of Knotprot) and AlphaFold
(with support of AlphaKnot) predictions for UniProt; 2. Identifying non-trivial topology in
the protein backbone using Topoly; 3. Training a machine learning model to predict non-
trivial topology from the protein sequence.

After applying machine learning to our dataset, we found that it is possible to dis-
tinguish knotted from unknotted proteins based solely on their amino acid sequence. All
models showed robust results on the test set (accuracy above 95%), with the first model,
the fine-tuned ProtBert-BFD model, demonstrating the best overall accuracy of 98.5%. As
our dataset consists of a collection of distinct protein families, where proteins from different
families differ in various respects, assessment of models across individual families is neces-
sary. After the evaluation, we chose the first fine-tuned ProtBert-BFD model for subsequent
analysis as it displayed strong accuracies across all the different protein families (see .
We attribute the superior performance of the final model to the usage of a pre-trained protein
language model. As we can see on its visualized t-SNE embeddings in the Supplementary
Figure 1, the model already contained some information about the protein knotting status
even before fine-tuning it for the knotting task. In the following sections, we will focus on
individual protein families and delve into a qualitative examination of the chosen model.

Unknotted proteins from knotted families are fragments

Our dataset primarily consists of protein families with experimentally verified knots. How-
ever, even within these known to be knotted families, there are cases of unknotted structures.
This is quite unexpected since the only one example of a mixed topology within a single fam-
ily reported until now was the ATC/OTC family®® (which is also part of our dataset, see the
section below). Therefore, we examined such unknotted cases to determine whether they are
truly unknotted or simply a result of database inaccuracies, such as AlphaFold’s incorrect
structure prediction or fragmented sequences in UniProt.

We first analyzed the SPOUT superfamily, the largest knotted family in our dataset
with known 3D structures but only with a knot. In this case AF predicts 7% of unknotted
proteins. We examined the correctness of these structures by analyzing their homologs: each
protein was sequentially aligned with its closest knotted homolog to determine whether it
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Table 2: Evaluation of the finetuned ProtBert-BFD model on the test set. Accu-
racy, true positive rate (TPR) and true negative rate (TNR) of the model evaluated for the
whole test set and per protein family.

Protein superfamily Dataset size Unknotted part size Accuracy (%) TPR (%) TNR (%)
All 39412 19718 98.5 98.7 98.3
SPOUT 7371 550 98.9 99.5 90.9
ITTH 14263 12555 98.7 94.2 99.3
ATCase/OTCase 3799 3352 100.0 99.8 100.0
Sodium/calcium exchanger 5256 726 99.0 99.7 95.3
AdoMet synthase 1794 240 99.0 99.3 97.1
Carbonic anhydrase 1531 539 95.9 97.4 93.1
OPT Oligopeptide 2510 456 98.7 99.5 94.7
transporter

Integrin alpha 332 224 83.1 66.7 91.1
TDD 612 24 99.0 99.7 83.3
Calcium-activated potas- 127 87 89.0 97.5 85.1
sium channel BK, alpha

subunit

UCH 477 125 90.6 96.0 75.2
DUF2254 membrane 593 376 99.8 99.5 100.0
Lantibiotic dehydratase 392 286 96.4 95.3 96.9
Ribosomal protein L37/S30 147 41 85.7 100.0 48.8
DUF4253 123 53 86.2 90.0 81.1

contained a region corresponding to the knot core.

The analysis revealed that all unknotted proteins from the SPOUT superfamily have a
close homolog (with an average sequence identity of 80%) that is knotted. These proteins
are merely fragments of their homologs and lack at least part of the knot core, hence they
cannot form knots. Predominantly, they lack the C-terminal part of the knot core, but
in some instances, they also miss the N-terminal part or even the entire knotted region
(Figure 2)). These proteins would not be functional without a fully manifested knot core, as
this is an essential component of the SPOUT active site. Given that more than 75% of these
structures are annotated as fragments, we conclude that the SPOUT superfamily doesn’t
contain any unknotted functional methyltransferases.

A similar trend was observed in the UCH superfamily. In the case of this superfamily,
17.4% of the proteins in our test set are unknotted even though a strict conservation of
knot between several proteins despite their large sequence divergence has been shown.”
Investigation revealed that all unknotted proteins have a close, knotted homolog (with an
average sequence identity of 80.5%), and 92% of them are annotated as fragments .
Like in the SPOUT members, the unknotted proteins lack at least a portion of the knot core,
rendering them unknotted. Interestingly, we noticed that in some rare cases, eukaryotic
proteins may exhibit topologically distinct isoforms due to alternative splicing.!

The same results were obtained also for the family of transmembrane proteins (see
lure 4). This is the only family consisting of knotted membrane proteins (sodium/calcium
exchanger integral membrane proteins),*® and here also a stricl conservation of a knot topol-
ogy was suggested based on the available 3D structures.®? All unknotted proteins have a
close homolog that is knotted (with, on average, 79,5% sequence identity). Based on their
pairwise alignment, most of the unknotted sequences either align with a fragment starting
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Figure 2: Unknotted SPOUT proteins superposed with their knotted homologs.
Upper part: unknotted structure (magenta; UniProtKB ID: AOA418H8R5) lacking the N-
terminal part of the knot core. Lower part: unknotted structure (blue; UniProtKB ID:
AOA090WLG6S8) without the entire knot core, and unknotted structure (orange; UniPro-
tKB ID: A0A356CS99) without the C-terminal part of the knot core. All knotted ho-
mologs are shown with grey color and their knotted regions are marked (UniProtKB IDs:
A0A2XINECS, AOA09OWS61, and AOA3ZDOWG667, respectively).

before the knot core and ending on a residue inside it, or with a fragment starting inside
the knot core and ending after it. Thus, due to the lack of a knot core sequence, these
proteins cannot form the non-trivial topology. In this case, 56% of the unknotted proteins
are annotated as fragments.

Notably, all these families have experimentally verified knotted proteins, while the un-
knotted ones are based on AlphaFold’s predicted models. By examining these models, we
have shown that there are no unknotted proteins within established families of knotted pro-
teins and that their topology is conserved.

ATC/OTC — a family with both knotted and unknotted proteins

The only family currently known experimentally to possess both knotted and unknotted pro-
teins is ATC/OTC. More specifically, within this family, several subfamilies with a conserved
topology are indicated: the unknotted subfamilies include ATC, OTC and PTC, while the
knotted subfamilies involve AOTC, SOTC and YTC.B¥ To ascertain whether the proteins
with a given topology in our set belong to the appropriate subfamilies (i.e., whether the
topology of the subfamilies is conserved), we clustered their sequences and aligned them to
assign the closest homologs. This analysis showed that there are no topologically misclassi-
fied proteins from this family in our dataset — all unknotted proteins have closest homologs
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Figure 3: Unknotted UCH proteins superposed with their knotted homologs.
Upper part: unknotted structure (orange; UniProtKB ID: A0AT7S3I8ET7) lacking the C-
terminal part of the knot core. Lower part: unknotted structure (cyan; UniProtKB ID:
QO6AV7) without the N-terminal and C-terminal part of the knot core, unknotted structure
(magenta; UniProtKB ID: AOA1A7YJ99) without the N-terminal part of the knot core,
and unknotted structure (green; UniProtKB ID: AOA024WZA) with low quality part of the
knot core. All knotted homologs are shown with grey color (UniProtKB IDs: AOA078B145,
AOAG6P6PV05, AOATATXIF0O and W7FOMS6, respectively).

from unknotted subfamilies, and all knotted proteins from knotted subfamilies. Thus, our
model can accurately differentiate between topologically different members of the ATC/OTC
family.

Substrate binding site important for knot detection

In order to determine what specific regions of proteins play a role in knot formation, we as-
sessed the significance of continuous parts of the protein sequences (referred to as ”patches”)
using the model to obtain the information about their importance on the prediction. This
process is explained in detail in the Models and Methods section. To ensure the analysis
was conducted on high-quality data, we focused on the most significant patches from the
largest group of knotted proteins, the SPOUT superfamily. Given that the average knot size
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Figure 4: Unknotted membrane proteins from PF01699 family superposed with
their knotted homologs. Upper part: unknotted structure (light orange; UniProtKB
ID: AOA5KO0X7L3) without the entire knot core, unknotted structure (orange; UniProtKB
ID: AOA397TEWI1) structure lacking the C-terminal part of the knot core, and unknot-
ted structure (green; UniProtKB ID: A0A562DKV6) with low quality part of the knot
core. Lower part: unknotted structure (cyan; UniProtKB ID: A0A453N937) without the
N-terminal and C-terminal part of the knot core, unknotted structure (magenta; UniProtKB
ID: AOA378FTVO0) without the N-terminal part of the knot core, and unknotted structure
(light pink; UniProtKB ID: KIRUGS) without the entire knot core. All knotted homologs
are grey with their knot cores colored in light blue (UniProtKB IDs: V4UOP6, AOA397A8U0,
E6WVS2, A0A453N959, AOAOE1CSES, AOAOLSITHS, respectively).

10
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in these proteins is about 47 amino acids, we chose patch lengths of 10, 20, and 40 residues.

Our results indicate that longer patches, on average, hold more significance ((Table 3)).

Table 3: Percentage of proteins with a patch located in the knot core. Only patches that
have at least 50% of their length inside the knot core were calculated.

Patch size Significant Not significant

10 55% 24%
20 84% %
40 95% 2%

We started the analysis by localizing the positions of these patches in the protein se-
quences. This revealed a significant over-representation in a specific region — the knot core.
For instance, more than 80% of the patches of length 20 are found within the knotted region.
Considering that the majority of these regions contain less than 50 amino acids, and the pro-
teins are on average 250 amino acids long, this accumulation within a specific region suggests
that this region is crucial for knot formation, confirming the robustness of our method. Ad-
ditionally, regardless of their length, all patches point to the same location within the knot —
its C-terminal part (Figure 5B). Based on the multiple sequence alignment of the knot cores,
we observed that this region is the most conserved part of the knot, containing the glycine
motif responsible for substrate binding (Figure 5[C). This motif is also present in patches of
lower significance, especially those of length 10. However, the conserved glycines are not a
unique feature of knotted methyltransferases. They are also found in proteins with other
folds, such as Rossmann fold, which are unknotted.*

Discussion

In this study, we have assembled the largest dataset of knotted and unknotted proteins by
analyzing AlphaFold’s protein structure predictions using Topoly. Built upon this dataset,
we have presented a novel transformer-based machine learning model able to predict the
knotting status only from the amino acid protein sequence. The model demonstrated robust
performance across different protein families, indicating its effectiveness in predicting the
presence of knots on a large scale. However, the training scheme with balanced dataset classes
limits the model’s performance on tasks such as scanning the whole UniProt database, where
it can behave more like a sensitive sifter for potential knots requiring additional analysis.
The performance of the model outside its domain, i.e. on other protein families, is not
guaranteed, the results for one such family (ketol-acid reductoisomerases) can be found in
Supplementary Table 1.

To facilitate easy access to our model, we provide the link to the Hugging Face hub
(https://huggingface.co/roa7n/knots_protbertBFD_alphafold) containing the trained
model, along with scripts for creating the dataset, model training and interpretation (https:
//github.com/ML-Bioinfo-CEITEC/pknots_experiments).

Subsequent utilization of the proposed interpretation patching technique allowed for a
deeper analysis of individual proteins and a precise assessment of patterns associated with
the presence of knots in those proteins. The patching analysis conducted on the SPOUT
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Figure 5: Important regions in SPOUT proteins based on ML model. A. An
example of how the model’s prediction changes with respect to the patch location based on
Nepl protein (patches of length 10; UniProtKB ID: Q57977). Note the one significant drop
inside the knot core. B. Cumulative positions of the patches (with different lengths: 10, 20,
and 40 amino acids) based on the knot core alignment. C. Logo of the C-terminal part of the
knot core showing the conserved glycine motif. D. Positions of patches in a TrmD structure
(based on N-terminal domain of AlphaFold model of UniProtKB ID: B6YQ31). Colored
regions represent from the left: knotted region (rainbow) and estimate location of the ligand
(magenta); 10 (red), 20 (yellow) and 40 (green) amino acid-long patches, respectively. Black
dots show the position of the conserved glycine residues.
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protein family marked as important for knotting areas of the co-factor binding site, essential
for the family representatives’ enzymatic function. Due to the complexity of the interpreta-
tion analysis, our examination was restricted to a specific protein family, leaving room for
future investigation of additional sequence patterns in other families, thereby enhancing our
understanding of the origin of protein knots. Potential extension to the interpretation would
be the usage of different techniques able to interpret longer pieces of the sequence such as
modifying the SHAP values.=”

Another significant finding of this study is the observation that unknotted proteins in
our dataset coming from known knotted families are typically non-functional fragments.
Even though a significant portion of this data is not annotated as fragments we show in the
example of the SPOUT superfamily, UCH superfamily, and transmembrane protein family
that unknotted proteins in these families lack at least a portion of the knot core and are
thus nonfunctional. Even though the unknotted fragments are valuable and important for
the Big Data approach in the machine learning part of this paper, the incompleteness of
the crucial domain necessary for the functionality diminishes their biological significance.
Additionally, we conducted an analysis of the ATC/OTC family, which is currently the
only known family with mixed knotted and unknotted topology. Our investigation showed
that a given topology is conserved within individual subfamilies. However, we managed to
examine only a small part of the families containing proteins with knot, leaving thus space
for future investigation of other knotted protein families. Those unexplored families may
either follow the scheme of SPOUT, UCH and transmembrane proteins and be fully knotted
with unknotted proteins being only non-functional fragments, or there might exist another
family similar to ATC/OTC with both knotted and unknotted fully functional proteins.

Conclusions

Our systematic assessment and analysis of the AlphaFold database’s protein structure pre-
dictions with regard to non-trivial topologies has significantly advanced our understanding
of the diversity and conservation of knotted protein families. Using this data, we constructed
a large-scale deep learning model that successfully classifies proteins as either knotted or un-
knotted based on their amino acid sequences. The exceptional accuracy and resilience of our
model showcase its potency in discerning sequence characteristics critical for the formation
of complex topologies. This achievement not only validates the utility of deep learning tech-
niques in enriching our understanding and promoting research in computational proteomics,
but also underscores the promise of artificial intelligence in advancing scientific discovery.

Furthermore, our application of interpretive techniques has illuminated specific patterns
associated with conserved knots in SPOUT family proteins. These patterns are particularly
pronounced in the areas of the cofactor binding site, a region crucial to the enzymatic function
of these proteins. Our findings underscore the importance of this knot in maintaining protein
function and raise interesting questions about the role of knotted structures in other protein
families.

However, there remains an extensive scope for further inquiry. The search for additional
sequence patterns in other knotted protein families presents an exciting avenue for future
investigation. This will not only further enhance our understanding of the role of protein
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knots in biological functions, but will also offer a deeper insight into the profound potential
of cutting-edge artificial intelligence technologies in the field of computational proteomics.

Models and Methods

Dataset
Knot detection in AlphaFold database

With the introduction of AlphaFold version 3, which for the first time revealed predictions of
all protein structures from the UniProt database (nearly 200 million entries), knot detection
and identification entered the Big Data age. Despite the relative ease of detecting a knot in a
single structure using the Topoly Python package,?” the computational demands scale with
the data size. Therefore, to address the needs and manage the size of computations an asyn-
chronous distributed task management solution — the kafka-slurm-agent®® was implemented
earlier and for the purpose of this study significantly enhanced.

The knot detection process was divided into two stages. In the initial stage, protein
structures were grouped into batches of 4,000. Structures with a pLDDT score below 70
were discarded, and for the remaining, the HOMFLY-PT polynomial was computed using
100 random closures with a maximum of 60 crossings, as described in.?®2? This stage took
approximately two weeks, with the kafka-slurm-agent’s cluster agents distributing the batches
over three Linux clusters, collectively consisting of more than 70 nodes and approximately
2,000 cores. Approximately 700,000 structures with an unknot probability less than 0.5 were
selected for the next stage.

Stage 2 involved running the HOMFLY-PT polynomial with 500 random closures. Ad-
ditional metadata from UniProt, such as taxonomy, PFAM, and InterPro annotations, were
obtained. The position of the knot core was determined using a fast heuristic algorithm,
adapted from the one developed for the AlphaKnot database.” In light of the clusters’ un-
availability, most of this stage was computed on ten individual workstations managed by
worker-agents from the kafka-slurm-agent package. Structures with an unknot probability
remaining lower than 0.5 and the probability of a particular knot exceeding 0.4 were classified
as knotted.

This two-stage knot detection procedure was reapplied to the 9% of structures updated
in AlphaFold version 4.

Selection of protein families

Based on the resulting dataset of proteins with a detected knot in the predicted AlphaFold
structure, proteins were categorised with respect to their assigned InterPro® identifiers (de-
scribing structural domains, families and homologous superfamilies). Minimum subsets of
such collections of identifiers were then selected, i.e. the sets of the aforementioned structural
feature identifiers whose representatives further manifested a non-trivial topology, in order to
filter out redundant IDs. The dataset so obtained was then subjected to quantitative search
followed by manual verification, in which the most numerous groups (above 500 proteins)
containing examples of proteins with experimentally resolved structures possessing a knot
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(based on the KnotProt database™®3¥ and groups of proteins with either close homology
to experimentally confirmed knotted ones or new groups plausible to be knotted (as of the
significant amount of non-trivial topologies) were chosen. This ultimately produced a list of
20 different combinations of InterPro identifiers, included in [Table 1} Due to the presence of
a single domain in several different families, we found duplicate proteins in our dataset (Sup-
plementary Table 2). However, in further steps, we perform sequence clustering, eliminating
the repeated protein sequences.

For each set of InterPro identifiers, we compiled a list of UniProt identifiers for the
associated proteins. We then created a knotted dataset of protein sequences from the original
AlphaFold calculation. We also created an unknotted dataset in a similar manner using the
same collection of UniProt IDs, but we excluded the structures identified as potentially
knotted in the first stage of knot detection to ensure accurate data labeling. Most of the
data manipulation and processing were performed in-house utilizing an installation of Apache
Spark and Hadoop.

Data preprocessing

To mitigate redundancy and prevent data leakage between the training and testing datasets,
we adopted CD-HIT (Cluster Database at High Identity with Tolerance,#”) for clustering
our protein sequence data prior to the training of the machine learning model. The CD-HIT
was configured with a sequence identity threshold of 90%, ensuring sequences sharing a local
identity at or above this threshold were categorized into the same cluster. The minimum
alignment coverage for the shorter sequences was set at 90%, and the maximum sequence
length discrepancy was fixed at 80% of the length of the longer sequences. This ensured the
inclusion of only those sequences with substantial alignment coverage. Following this, we
chose a single representative sequence from each cluster.

Given the discrepancies in length distributions between knotted and unknotted protein
sequences, there was a risk that neural network models could unintentionally rely on sequence
length as a classification feature. To address this concern, the datasets were subjected
to downsampling, ensuring a balanced sequence length distribution between both protein
sequence datasets.

he final dataset comprised 98528 knotted proteins and an equivalent number of unknotted
proteins. This was subsequently randomly partitioned into training and testing datasets,
with 157644 (80%) samples designated for training and 39412 samples (20%) set aside for
testing.

Neural network models

Our primary objective was to engineer machine learning models capable of classifying knotted
proteins based solely on their amino acid sequence.

The best-performing model was based on the ProtBert-BFD model architecture,” a
derivative of the BERT language model that has been pretrained on a vast corpus of amino
acid sequences, allowing it to capture important biophysical properties of the proteins.

The model and the tokenizer were downloaded from HuggingFace Hub Rostlab/prot_bert_bfd
repository. To determine the optimal parameters for training, we performed a hyperparam-
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eter search in relation to gradient accumulation, weight decay, and learning rate.
The training set initially described was subsequently divided, with 90% of the sequences
earmarked for training and the remaining 10% used for comparing models trained with dif-
ferent sets of hyperparameters. The tuning with the best parameters resulted in a gradient
accumulation = 16, weight decay = 0, and learning rate = le-5. Given the size of
the dataset and acceptable convergence, we run only one training epoch. The model train-
ing required approximately 2.5 hours on a single A100 GPU.

In addition to fine-tuning 420 million trainable parameters of a large BERT-like neural
network model (M1), we also explored two alternate strategies: Employing protein-level
embeddings from the same model (420M fixed parameters) and training a smaller neural
network (16M trainable parameters) on top of them (M2), and training a small convolutional
neural network (M3) on a one-hot encoded sequence (10k trainable parameters). Refer to
the Supplement for a detailed description of models M2 and M3.

The models were implemented in Python using either Pytorch® (for M1, M2) or Ten-
sorFlow’s Keras?? (for M3). We leveraged the MetaCentrum computation cluster, which
featured hosted JupyterLab notebooks and A10/A40/A100 GPUs, Python 3.8, PyTorch
1.13, TensorFlow 2.11, and HuggingFace transformers 4.24. For the code and the links to
the trained models on Hugging Face hub, please visit our GitHub repository:

https://github.com/ML-Bioinfo-CEITEC/pknots_experiments

All models were assessed employing standard accuracy metrics. To examine how the
models performed across different protein families, and to ensure the models weren’t solely
recognizing a specific subset of families, we also calculated and monitored accuracy per
family, true positive rate (TPR), and true negative rate (TNR).

Interpretation with patching technique

The core problem we addressed was binary classification of proteins as either knotted or un-
knotted. The secondary aim was to identify the crutial segments of protein sequences that
largely contribute to the formation of a knot. Given the availability of the actual knot core
locations within knotted sequences, we conducted an evaluation to measure the model’s ca-
pability to not only correctly classify an input sequence, but also to pinpoint the knot core’s
location. However, conventional interpretability techniques, like Layer Integrated Gradi-
ents,*¥ have limited applicability on biological data since they can only relate to individual
input points (in our case amino acids), whereas protein folding requires the cooperation of
groups of them simultaneously. Therefore, we proposed a patching technique: we monitored
how the model’s prediction changed after replacing a continuous segment of amino acids
in the original sequence with X characters, with respect to the model’s prediction of the
original unpatched sequence. Where the X character was chosen because it is present in the
ProtBert-BFD tokenizer and it signifies an arbitrary amino acid, and the patch size was set
specifically for each protein family based on their average knot core and sequence lengths.
Our hypothesis is that if we patch a part of the sequence corresponding to the knot
core, the prediction score will drop (from knotted to unknotted), reflecting the significance
of such segment. In practical terms, if the prediction score fell below 0.5, the corresponding
patch was deemed a candidate for the knot core location. For each sequence we generated
its patched versions by moving the patch from left to right with stride 1, and then fed them
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to the model to obtain their predictions. The patch that resulted in the overall minimum
prediction score among all patched versions was chosen as the predicted knot core location.
This approach was evaluated by calculating the overlap of the minimum patch location
with the actual knot core. Supplementary Figure 2 illustrates this technique for one input
sequence.
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