

1 Title: Phosphatidylserine clustering by membrane

2 receptors triggers LC3-associated phagocytosis

3

4 **Authors:** Emilio Boada-Romero, Clifford S. Guy, Gustavo Palacios, Luigi Mari, Zhenrui Li,

5 Douglas R. Green*

6

7 **Affiliations:**

8 Department of Immunology, St. Jude Children's Research Hospital; Memphis, TN 38105, USA.

9 * Correspondence: douglas.green@stjude.org

10

11 **LC3-associated phagocytosis (LAP) represents a non-canonical function of autophagy**
12 **proteins in which ATG8 family proteins (LC3 and GABARAP proteins) are lipidated onto**
13 **single-membrane phagosomes as particles are engulfed by phagocytic cells¹⁻⁴. LAP plays**
14 **roles in innate immunity⁵, inflammation and anti-cancer⁶ responses and is initiated upon**
15 **phagocytosis of particles that stimulate Toll-like receptors (TLR), Fc-receptors, and upon**
16 **engulfment of dying cells⁶. However, how this molecular route is initiated remains elusive.**
17 **Here we report that receptors that engage LAP enrich phosphatidylserine (PS) in the**
18 **phagosome membrane via membrane-proximal domains that are necessary and sufficient**
19 **for LAP to proceed. Subsequently, PS recruits the Rubicon-containing PI3-kinase complex**
20 **to initiate the enzymatic cascade leading to LAP. Manipulation of plasma membrane PS**
21 **content, PS-binding by Rubicon, or the PS-clustering domains of receptors prevents LAP**
22 **and phagosome maturation. We found that pharmacologic inhibition of PS clustering**
23 **promotes the ability of dendritic cells to induce anti-cancer responses to engulfed tumor cells.**
24 **Therefore, the initiation of LAP represents a novel mechanism of PS-mediated signal**
25 **transduction upon ligation of surface receptors.**

26

27 Main Text:

28 The process of phagocytosis, in which specialized cells such as macrophages engulf dead cells
29 and/or pathogens, plays important roles in host defense, wound repair, and tissue homeostasis ^{1,3}.
30 This process depends on actin remodeling at the plasma membrane to form phagocytic “cups” that
31 then seal to form phagosomes. These phagosomes mature through fusion with lysosomes to digest
32 their cargo. LC3-associated phagocytosis (LAP) promotes phagosome maturation ⁵, important for
33 innate defense against microbes ^{7,8}, and its disruption promotes anti-cancer immunity ⁶. LAP
34 utilizes components of the macro-autophagy (henceforth, autophagy) pathway to lipidate ATG8
35 family proteins onto the phagosome membrane, facilitating fusion with lysosomes ^{1,3}. The process
36 depends on the class III PI3-kinase VPS34 complex, and on the ligase machinery composed of
37 ATG7, ATG3, and the complex of ATG16L and ATG5-12. Unlike autophagy, LAP functions
38 independently of the ULK1/2 serine kinase complex and requires the protein Rubicon ⁶. LAP is
39 initiated by engagement of cell surface Toll-like receptors (TLR) (including TLR1,2, TLR2,6, and
40 TLR4), Fc-receptors, and receptors for dying cells ^{1,3}, but the common signals shared by these
41 receptors that function to initiate LAP are unknown.

42

43 During phagocytosis, the phospholipid phosphatidylserine (PS) concentrates in the cytosol-facing
44 leaflet of the phagosome membrane ⁹ where it promotes binding of the kinase c-Src ^{10,11}. We
45 therefore considered that PS might also directly recruit the LAP machinery. We first asked whether
46 signals that engage LAP preferentially enrich PS in the resultant phagosome. Beads coupled with
47 the TLR2 ligand Pam3csk4 (Pam3, Pam3-beads) but not Biotin (control-beads) induce LAP ⁵, and
48 therefore we purified phagosomes containing either cargo from immortalized bone marrow-
49 derived macrophages (iBMDM) and performed lipidomic analysis. Principle component analysis

50 revealed distinct profiles of lipids in phagosomes containing Pam3-coated beads (Pam3-phag)
51 versus control, Biotin-coated beads (control-phag) (Fig. 1a, Extended Data Fig. 1a). Among the
52 major lipid species, PS was enriched in Pam3-phag (Fig. 1b), an effect not accounted for by net
53 increased PS (Extended Data Fig. 1b). To explore this in living cells, we expressed a fluorescent
54 probe containing the C2 domain of Lactadherin (Venus-Lact-C2), which specifically binds PS ⁹,
55 in RAW264.7 cells. Concordant with the lipidomic results, we observed recruitment of the probe
56 to phagosomes containing Pam3- beads and IgG-coupled beads, (IgG-beads) but not control, BSA-
57 coupled beads (Fig. 1c, Extended Data Fig. 1c). Similar results were obtained with another PS-
58 binding probe based on the C2 domain of the clotting factor VIII (Venus-FVIII-C2) (Fig. 1d) ¹².
59 These results therefore suggest that the enrichment of PS in phagosomes depends on specific
60 signals induced by the engulfed cargo.

61
62 Because Pam3 signals via TLR2 ¹³, we next asked if TLR2 is required for PS enrichment in
63 response to this ligand. We generated TLR2-deficient iBMDM cells, exposed them to Pam3-beads,
64 isolated phagosomes containing these beads, and performed lipidomic analysis. The presence or
65 absence of TLR2 had no effect on cellular levels of PS (Extended Data Fig. 1d), but PS in the
66 phagosomes of TLR2-deficient iBMDM was reduced as compared to phagosomes of WT iBMDM
67 (Fig. 1e).

68
69 We noticed several positively charged residues (K, lysine; R, arginine) in the intracellular domain
70 of TLR2 (TLR2-ID) near the transmembrane region and proximal to the TIR signaling domain
71 (Fig. 1f) and speculated that these might interact with negatively charged PS. We therefore
72 reconstituted TLR2-deficient RAW264.7 cells with wild-type TLR2 or TLR2 mutated at these five

73 basic residues to acidic amino acids ($^{628}\text{KRKP}\text{KK}^{633}$ to $^{628}\text{EDEPEE}^{633}$; TLR2^{ACID}) (Extended Data
74 Fig. 2a). After engulfment of Pam3-beads we assessed PS enrichment in the phagosome and found
75 that the wild-type, but not the TLR2^{ACID} mutant, induced binding of the Venus-Lact-C2 probe to
76 phagosomes (Fig. 1g,h), indicating that these basic residues (“basic patch”) are necessary for PS
77 enrichment. We then deleted the entire TIR region with or without mutation of the basic patch and
78 observed that even in the absence of the signaling domain, the basic patch of the TLR2-ID was
79 necessary and sufficient for enrichment of PS, as assessed by binding of the PS probe (Fig. 1g,h).
80 We further investigated this by making use of two previously reported mutations in TLR2. P631H
81 corresponds to the human SNP rs5743704, that lies within the basic patch ($^{628}\text{KRKP}\text{KK}^{633}$) and is
82 associated with reduced TLR2 signaling ^{14,15}. P681H specifically reduces MyD88 signaling ¹⁶.
83 Reconstitution of TLR2-deficient RAW264.7 with these TLR2 mutants (TLR2^{P631H}, TLR2^{P681H};
84 Extended Data Fig. 2a) did not affect PS enrichment (Fig. 1g,h). Therefore, TLR2-triggered PS
85 enrichment in the phagosome appears to be independent of canonical MyD88 signaling, consistent
86 with observations that the induction of LAP by TLR2 engagement is independent of MyD88 ⁵.
87 LAP is not induced by Pam3-beads in TLR2-deficient cells ⁵, and we confirmed that while
88 reconstitution of wild-type TLR2 restored recruitment of Venus-LC3B to phagosomes (Fig. 1i,j),
89 TLR2^{ACID} failed to restore LAP in these cells, regardless of the presence or absence of the TIR
90 signaling domain (Fig. 1i,j). Therefore, the requirements for PS enrichment and LAP induction
91 appear to be the same.

92
93 We then asked if the intracellular domain of TLR2 (TLR2-ID, residues 609-784) interacts with
94 PS. Recombinant TLR2-ID strongly bound immobilized PS and Cardiolipin compared with other
95 lipids (Extended Data Fig. 2b,c). Furthermore, PS-coated beads precipitated the wild-type TLR2-

96 ID (Fig. 2a), but mutation of the basic patch to alanine (Ala) or to acidic residues (D/E, Acid)
97 abrogated PS binding (Fig. 2a). We then generated planar glass-supported lipid bilayers to be
98 assayed by confocal microscopy. The lipid mixture resembled the lipid composition of the plasma
99 membrane (see methods), and it included a fluorescently-labelled PS (TOP-FluorPS) and a nickel-
100 containing lipid to favor proper orientation of N-terminal His-tagged recombinant proteins. After
101 addition of His6X-TLR2-ID-FLAG to the lipid bilayer, we observed clustering of PS that was
102 prevented by mutation of the basic patch or by addition of an anti-FLAG antibody (Fig. 2b,c).
103 Taken together, it is likely that the clustering of PS by the basic patch of TLR2 contributes to the
104 TLR2-dependent enrichment of PS in phagosomes containing Pam3-beads.

105

106 Next, we expanded our investigations to include receptors other than TLRs whose cargoes are also
107 known to induce LAP, such as CD16, a component of the Fc receptor (FcR) that binds IgG¹⁷, and
108 Tim4 that binds dead and dying cells⁶. IgG-coated beads induced enrichment of PS in the
109 phagosome, as assessed by Venus-Lact-C2 recruitment (Fig. 1c,d, Extended Data Fig. 1c) and by
110 lipidomics of isolated phagosomes (Extended Data Fig. 3a). Additionally, we generated N-
111 terminal His-tagged intracellular regions of the CD16 subunit of FcR and of Tim4 coupled to biotin
112 at the C-terminus (Extended Data Fig. 3b-d), and both peptides induced PS clustering in lipid
113 bilayers that was disrupted by subsequent addition of streptavidin (Fig. 2d, Extended Data Fig.
114 3e). Like TLR2-ID, these peptides contain conserved basic patches despite a lack of sequence
115 conservation between murine and human homologues (Extended Data Fig. 3c,f-g). We mutated
116 these basic residues (lysine, K; arginine, R; and histidine, H), to acidic (aspartic acid, D; glutamic
117 acid, E) and found that several of these (or all together) abrogated PS clustering (Fig. 1e,f). In
118 addition, PS clustering in lipid bilayers with CD16-ID was dissipated with high salt (250mM NaCl

119 vs. 50mM NaCl in conventional binding buffer) (Extended Data Fig. 3h,i). Therefore, receptors
120 capable of engaging LAP have the property that basic residues in their intracellular regions cluster
121 PS, most likely by electrostatic interactions.

122

123 Under homeostatic conditions, PS is predominantly localized to the inner leaflet of the plasma
124 membrane by PS flippases ¹⁸, but this asymmetric distribution can be disrupted by phospholipid
125 scramblases ^{19,20}. To ask whether the observed enrichment of PS in the phagosome membrane is
126 required for LAP, we took advantage of the ability of calcium ionophores, such as ionomycin, to
127 induce phospholipid scrambling ¹⁹ and then “locked” PS on the outer leaflet with a PS-specific
128 antibody (Fig. 3a,b; Extended Data Fig. 3a). This technique effectively diminished phagosome PS
129 levels, as detected by a PS probe, upon feeding RAW264.7 cells with yeast particles (zymosan,
130 another LAP inducer ⁵; Extended Data Fig. 3b,c). RAW264.7 cells expressing Venus-LC3B
131 (RAW264.7-Venus-LC3) were similarly treated with ionomycin together with control or anti-PS
132 antibody and then fed zymosan. Recruitment of Venus-LC3B to phagosomes was detected by
133 confocal microscopy or by FACS wherein the Venus signal is retained following cellular
134 permeabilization with digitonin ²¹. These assays revealed that while zymosan induced recruitment
135 and retention of LC3 to phagosomes (LAP) in ionomycin-treated cells under control conditions
136 (no antibody or IgG control), ionomycin with anti-PS antibodies prevented LAP induced by
137 zymosan (Fig. 2c,d).

138

139 As a second approach to reduce PS enrichment, we silenced the PS flippases (Extended Data Fig.
140 5a) ATP11A and ATP11C or their requisite chaperone, CDC50A ²² that are abundant in mouse
141 macrophages (Extended Data Fig. 5b). Effective silencing (Extended Data Fig. 5c,d) of these

142 proteins impaired the enrichment of PS on the phagosome membrane (Extended Data Fig. 5h,i)
143 and prevented the retention of Venus-LC3B following phagocytosis of zymosan (Fig. 3e,f).

144
145 PS is synthesized in the endoplasmic reticulum and transported to the plasma membrane by the
146 Oxysterol-binding related proteins 5 and 8 (ORP5 and ORP8), which exchange PS for
147 phosphoinositide-4P (PI4P), generated from PI by PI4KIIIa in the plasma membrane ²³ (Extended
148 Data Fig. 5e). Silencing of ORP5 and ORP8 in RAW264.7 cells (Extended Data Fig. 5f,g) reduced
149 PS levels at the phagosome membrane (Extended Data Fig. 5h,i) and prevented the retention of
150 Venus-LC3B upon engulfment of zymosan (Fig. 3f,g). Altogether, our results support the idea that
151 enrichment of PS in the phagosome membrane promotes LAP.

152
153 LAP promotes phagosome maturation ^{5,7,8}, and we therefore interrogated the downstream
154 acidification of phagosomes using zymosan labeled with the pH-sensitive dye pHrodo ²⁴.
155 Zymosan-containing phagosomes acidified in wild-type RAW264.7 cells, but this was reduced in
156 LAP-deficient RAW264.7 cells lacking Rubicon or ATG5 (Fig. 3g). Testing the role of PS
157 enrichment in this process, we found that cells in which ORP5 and ORP8, ATP11A and ATP11C,
158 or CDC50A were silenced showed similarly delayed phagosome acidification (Fig. 3g). Ablation
159 of ATG5 or Rubicon also delayed the killing of yeast (Fig. 3h), as did silencing of ORP5 and
160 ORP8, ATP11A and ATP11C, or CDC50A (Fig. 3h), consistent with the role of LAP in
161 phagosome maturation ^{7,8}.

162
163 We next pharmacologically reduced PS plasma levels, employing a PI4KIIIa inhibitor, GSK-A1
164 ^{23,25}, and an inhibitor of PS levels at the plasma membrane, Fendiline ²⁶. Consistent with other

165 reports, GSK-A1 reduced cellular levels of PS²³ (Extended Data Fig. 6a), and Fendiline reduced
166 ceramide levels and reduced plasma membrane PS²⁶. Treatment of RAW264.7 cells with either
167 inhibitor reduced PS enrichment in zymosan-containing phagosomes (Extended Data Fig. 6b,c),
168 and LC3 translocation to phagosomes (Fig. 4a,b). Phagosome acidification was similarly inhibited
169 to the same extent as in Rubicon-deficient cells (Fig. 4c). In contrast, these inhibitors did not affect
170 canonical autophagy (Extended Data Fig. 6d). Additionally, these inhibitors reduced BMDM
171 killing of yeast (Extended Data Fig. 7a,b), consistent with the idea that PS enrichment in the
172 phagosome membrane supports lipidation of LC3 proteins to promote maturation and
173 acidification.

174

175 The ability to engage LAP is associated with inhibition of anti-tumor immune responses,
176 subcutaneously implanted tumor cells generated smaller tumors in LAP-deficient mice compared
177 to LAP-proficient mice, a phenomenon dependent on adaptive immunity but stemming from the
178 myeloid compartment⁶. To test the effect of LAP-specific inhibitors in an in vivo setting we pre-
179 treated conventional dendritic cells (DCs) with Fendiline and primed them with dead MC38 cells
180 *ex vivo*, and then transferred them to MC38 tumor-bearing mice. DCs that were treated with the
181 PS inhibitor induced a delay in tumor growth comparable to the transfer of Rubicon-deficient DCs,
182 as compared to untreated, primed WT DCs (Fig. 4d), supporting the use of LAP inhibitors as anti-
183 tumor promoting agents.

184

185 Like autophagy, LAP requires the class III PI3-kinase VPS34⁶ and its product,
186 phosphatidylinositol 3-phosphate (PI3P). LAP also requires Rubicon, but while Rubicon is not
187 generally required for VPS34 activity or LC3-lipidation during canonical autophagy^{27,28}

188 (Extended Data Fig. 8a), VPS34 activity upon LAP requires Rubicon (Extended Data Fig. 8a,b).

189 PI3P can be detected with probes based on the PI3P-binding PX domain of p40phox^{29,30} (Extended
190 Data Fig. 8c,d). Using either recombinantly produced (Extended Data Fig. 8e,f) or genetically
191 encoded fluorescent probes (Extended Data Fig. 8g,h), we determined that the binding of PX-
192 p40phox to zymosan-containing phagosomes was absent in Rubicon-deficient cells.

193

194 Components of the PI3KC3 complex, including VPS34, VPS15, and Beclin-1, co-precipitate with
195 Rubicon^{27,28} (Extended Data Fig. 8i). PI3KC3 complex translocation as well as LC3-lipidation
196 were reduced or absent in phagosomes from Rubicon-deficient cells (Extended Data Fig. 8j).
197 Rubicon-deficient cells reconstituted with full length FLAG-Rubicon co-precipitated PI3KC3
198 complex components (Extended Data Fig. 9a), that were enriched at the phagosome membrane
199 (Extended Data Fig. 9b). Immunoprecipitation of FLAG-Rubicon from Pam3-phag lysates
200 revealed co-precipitation of the PI3KC3 complex (Extended Data Fig. 9c) and VPS34 activity,
201 detected by PI3P generation *in vitro* (Extended Data Fig. 9d). Rubicon binds the PI3KC3 complex
202 via its coiled-coil domain (CCD)^{27,28,31}, and deletion of this domain from FLAG-Rubicon
203 (Rubicon Δ CCD) prevented co-precipitation of the PI3KC3 complex (Extended Data Fig. 9a),
204 translocation of PI3KC3 partners to phagosomes, and VPS34 activity on phagosomes (Extended
205 Data Fig. 9b-d). These results support the idea that Rubicon is required for recruitment and PI3KC3
206 complex activity at phagosome membranes.

207

208 Despite reduced interaction with PIK3C3, Rubicon Δ CCD translocated to phagosomes (Extended
209 Data Fig. 9a,b,e,f), suggesting that Rubicon recruitment and PIK3C3 interaction are independent
210 events. We found that recruitment of Rubicon to phagosomes was limited when PS was reduced

211 at the phagosomes (Fig. 5a,b), in the absence of TLR2, or in the presence of TLR2^{ACID} or
212 TLR2 Δ TIR^{ACID} (both unable to interact with PS); however, it was independent of canonical TLR2
213 signaling mediated by the TIR domain (Fig. 5c, Extended Data Fig. 10a). In contrast, ablation of
214 Rubicon did not affect the recruitment of Venus-Lact-C2 to phagosomes (Extended Data Fig.
215 10b,c). Therefore, Rubicon recruitment to phagosomes is dependent upon PS enrichment and
216 occurs downstream of this event.

217

218 To observe the interplay between Rubicon and PS in living cells, we reconstituted Rubicon-
219 deficient RAW264.7 cells with mCherry-Rubicon. These cells also expressed Venus-FVIII-C2 or
220 Venus-Lact-C2 to visualize PS enrichment on phagosomes. Using either probe, we observed co-
221 recruitment of Rubicon and PS probes to phagosomes upon engulfment of Pam3-beads or BSA-
222 beads with anti-BSA antibody (i.e.: Ig-coated Beads), but not with BSA-beads alone (Extended
223 Data Fig. 11a-d). Super-resolution microscopy revealed a strong co-association of Rubicon and
224 PS at the phagosome membrane (Fig. 5d,e; Extended Data Fig. 11e,f), and recombinant Rubicon
225 preferentially bound to both phosphatidic acid (PA)- and PS-immobilized lipids (Fig. 5f, Extended
226 Data Fig. 12a). To determine the molecular basis of Rubicon translocation, we generated two
227 fragments of Rubicon, an N-terminal fragment to residue 644 and a C-terminal fragment beginning
228 at 645. While only the C-terminal fragment was recruited to zymosan-containing phagosomes
229 (Extended Data Fig. 12b), only the N-terminal fragment (containing the CCD), bound the PI3KC3
230 complex (Extended Data Fig. 12c). Unlike full-length Rubicon, neither fragment showed VPS34
231 activity in phagosomes (Extended Data Fig. 12d). Therefore, it is likely that the C-terminal region
232 mediates binding to phagosomes whereas the N-terminal region recruits the PI3KC3 complex. To
233 test if the C-terminal region binds PS, we generated the recombinant C-terminal fragment and

234 examined its binding to isolated phagosomes in the presence or absence of recombinant
235 Lactadherin, which binds specifically to PS³². We found that the C-terminal fragment of Rubicon
236 and Lactadherin competed for binding to phagosomes (Fig. 5g), further supporting the idea that
237 the C-terminal region of Rubicon binds PS on phagosomes.

238

239 The C-terminal region of Rubicon contains a FYVE-like domain³³, which in other proteins binds
240 PI3P³⁴. We found that mutating basic amino acids in this domain (718-721; KRLR to EELE;
241 Rubicon^{MUT}; Fig. 6a) dramatically reduced the co-precipitation of lipid species with Rubicon
242 following zymosan engulfment (Extended Data Fig. 13a). Despite similar PI3KC3 complex
243 binding (Fig. 6b), Rubicon^{MUT} was not recruited to phagosomes (Fig. 6c,d) and did not promote
244 generation of PI3P at the phagosome membrane (Fig. 6e; Extended Data Fig. 13b). Furthermore,
245 while Rubicon restored efficient LAP (Fig 6f; Extended Data Fig. S13c) and phagosome
246 maturation to Rubicon-deficient cells, neither Rubicon^{MUT} nor the C-terminal fragment of Rubicon
247 supported phagosome maturation (Fig. 6g; Extended Data Fig. 13d). Our results suggest that
248 Rubicon interacts with the PI3KC3 complex and recruits this activity to PS-enriched phagosomes
249 to promote LAP and phagosome maturation.

250

251 Based on our findings, we propose the following model for the initiation of LAP (Extended Data
252 Fig. 14a). Receptors containing the basic patch, when ligated, enrich PS in the phagosome as it
253 forms. The Rubicon-containing VPS34-complex is then recruited to phagosomes via the binding
254 of Rubicon to PS. This generates PI3P on the phagosome membrane, which, in turn, recruits the
255 E3-ligase complex, ATG16L-5-12^{35,36} to lipidate ATG8 family proteins on the single phagosome

256 membrane. The phagosome is now decorated with these ATG8 proteins, facilitating fusion with
257 lysosomes to digest the cargo ⁵.

258
259 During canonical autophagy, ATG8 is exclusively ligated to phosphatidylethanolamine (PE).
260 However, during noncanonical conjugation of ATG8 to single membranes (CASM), ATG8
261 proteins are ligated to both PE and PS ³⁷. It is possible that this ligation to PS is facilitated by the
262 enrichment of PS in phagosomes during the CASM process of LAP. Another CASM process is
263 LC3-associated endocytosis (LANDO) ^{4,38}, in which ATG8 proteins might also conjugate to both
264 PE and PS ³⁷. Some endosomes have also been found to be enriched for PS ³⁹, and it is therefore
265 possible that a similar mechanism to what we have described for LAP exists for such PS
266 enrichment, Rubicon binding, and ATG8 lipidation during LANDO. Unlike LAP, LANDO does
267 not appear to promote endosome fusion to lysosomes, but instead promotes recycling of some
268 receptors from the endosome to the plasma membrane ^{4,38}. Interestingly, we found that cells in
269 which ORP5 and ORP8, ATP11A and ATP11C, or CDC50A were silenced showed similarly
270 delayed recycling of TREM2 receptor in RAW264.7 cells as ATG5 deficiency (Extended Data
271 Fig. 14b,c). TREM2 has a potential basic patch in its cytosolic tail (Extended Data Fig. 14d),
272 suggesting that a similar mechanism may take place during LANDO.

273
274 LAP and LANDO have important roles in innate immunity, anti-cancer immunity, and
275 neurodegenerative disease ^{4,38} and are likely to have additional roles in other physiologic and
276 pathologic settings. While protein-lipid interactions are well known to play roles in different signal
277 transduction pathways, we suggest that the interactions we have described here, where a signal is
278 transduced from PS-clustering receptors (e.g. TLR2, CD16, TIM4) to downstream PS-binding

279 proteins (e.g. Rubicon in the PI3KC3 complex), represents a novel form of signal transduction. It
280 is notable, though, that PS-enrichment on phagosomes engages c-Src^{10,11}, and we can therefore
281 envision that the activation of c-Src upon engagement of TLR2 may depend on the ability of the
282 latter to bind and cluster PS. Thus, we expect there will be additional pathways initiated in a
283 manner similar to the one described here.

284

285 Main References.
286
287 1 Heckmann, B. L., Boada-Romero, E., Cunha, L. D., Magne, J. & Green, D. R. LC3-
288 Associated Phagocytosis and Inflammation. *J Mol Biol* **429**, 3561-3576 (2017).
<https://doi.org/10.1016/j.jmb.2017.08.012>
289 2 Heckmann, B. L. *et al.* LC3-Associated Endocytosis Facilitates beta-Amyloid Clearance
290 and Mitigates Neurodegeneration in Murine Alzheimer's Disease. *Cell* **178**, 536-551 e514
291 (2019). <https://doi.org/10.1016/j.cell.2019.05.056>
292 3 Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead
293 cells by efferocytosis. *Nat Rev Mol Cell Biol* **21**, 398-414 (2020).
<https://doi.org/10.1038/s41580-020-0232-1>
294 4 Magne, J. & Green, D. R. LC3-associated endocytosis and the functions of Rubicon and
295 ATG16L1. *Sci Adv* **8**, eabo5600 (2022). <https://doi.org/10.1126/sciadv.abo5600>
296 5 Sanjuan, M. A. *et al.* Toll-like receptor signalling in macrophages links the autophagy
297 pathway to phagocytosis. *Nature* **450**, 1253-1257 (2007).
<https://doi.org/10.1038/nature06421>
298 6 Cunha, L. D. *et al.* LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor
299 Immune Tolerance. *Cell* **175**, 429-441 e416 (2018).
<https://doi.org/10.1016/j.cell.2018.08.061>
300 7 Herb, M., Gluschko, A. & Schramm, M. LC3-associated phagocytosis - The highway to
301 hell for phagocytosed microbes. *Semin Cell Dev Biol* **101**, 68-76 (2020).
<https://doi.org/10.1016/j.semcdb.2019.04.016>
302 8 Grijmans, B. J. M., van der Kooij, S. B., Varela, M. & Meijer, A. H. LAPped in Proof:
303 LC3-Associated Phagocytosis and the Arms Race Against Bacterial Pathogens. *Front
Cell Infect Microbiol* **11**, 809121 (2021). <https://doi.org/10.3389/fcimb.2021.809121>
304 9 Yeung, T. *et al.* Membrane phosphatidylserine regulates surface charge and protein
305 localization. *Science* **319**, 210-213 (2008). <https://doi.org/10.1126/science.1152066>
306 10 Yeung, T. *et al.* Receptor activation alters inner surface potential during phagocytosis.
307 *Science* **313**, 347-351 (2006). <https://doi.org/10.1126/science.1129551>
308 11 Yeung, T. *et al.* Contribution of phosphatidylserine to membrane surface charge and
309 protein targeting during phagosome maturation. *J Cell Biol* **185**, 917-928 (2009).
<https://doi.org/10.1083/jcb.200903020>
310 12 Gilbert, G. E. & Drinkwater, D. Specific membrane binding of factor VIII is mediated by
311 O-phospho-L-serine, a moiety of phosphatidylserine. *Biochemistry* **32**, 9577-9585 (1993).
<https://doi.org/10.1021/bi00088a009>
312 13 Aliprantis, A. O. *et al.* Cell activation and apoptosis by bacterial lipoproteins through
313 toll-like receptor-2. *Science* **285**, 736-739 (1999).
<https://doi.org/10.1126/science.285.5428.736>
314 14 Etokebe, G. E. *et al.* Toll-like receptor 2 (P631H) mutant impairs membrane
315 internalization and is a dominant negative allele. *Scand J Immunol* **71**, 369-381 (2010).
<https://doi.org/10.1111/j.1365-3083.2010.02379.x>
316 15 Ben-Ali, M. *et al.* Functional characterization of naturally occurring genetic variants in
317 the human TLR1-2-6 gene family. *Hum Mutat* **32**, 643-652 (2011).
<https://doi.org/10.1002/humu.21486>

329 16 Underhill, D. M. *et al.* The Toll-like receptor 2 is recruited to macrophage phagosomes
330 and discriminates between pathogens. *Nature* **401**, 811-815 (1999).
<https://doi.org/10.1038/44605>

332 17 Salmon, J. E., Brogle, N. L., Edberg, J. C. & Kimberly, R. P. Fc gamma receptor III
333 induces actin polymerization in human neutrophils and primes phagocytosis mediated by
334 Fc gamma receptor II. *J Immunol* **146**, 997-1004 (1991).

335 18 Nagata, S., Sakuragi, T. & Segawa, K. Flippase and scramblase for phosphatidylserine
336 exposure. *Curr Opin Immunol* **62**, 31-38 (2020).
<https://doi.org/10.1016/j.co.2019.11.009>

338 19 Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid
339 scrambling by TMEM16F. *Nature* **468**, 834-838 (2010).
<https://doi.org/10.1038/nature09583>

341 20 Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8
342 and CED-8 promote phosphatidylserine exposure in apoptotic cells. *Science* **341**, 403-406
343 (2013). <https://doi.org/10.1126/science.1236758>

344 21 Kaminskyy, V., Abdi, A. & Zhivotovsky, B. A quantitative assay for the monitoring of
345 autophagosome accumulation in different phases of the cell cycle. *Autophagy* **7**, 83-90
346 (2011). <https://doi.org/10.4161/auto.7.1.13893>

347 22 Andersen, J. P. *et al.* P4-ATPases as Phospholipid Flippases-Structure, Function, and
348 Enigmas. *Front Physiol* **7**, 275 (2016). <https://doi.org/10.3389/fphys.2016.00275>

349 23 Chung, J. *et al.* INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine
350 countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. *Science*
351 **349**, 428-432 (2015). <https://doi.org/10.1126/science.aab1370>

352 24 Deriy, L. V. *et al.* Disease-causing mutations in the cystic fibrosis transmembrane
353 conductance regulator determine the functional responses of alveolar macrophages. *J Biol
354 Chem* **284**, 35926-35938 (2009). <https://doi.org/10.1074/jbc.M109.057372>

355 25 Bojjireddy, N. *et al.* Pharmacological and genetic targeting of the PI4KA enzyme reveals
356 its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and
357 phosphatidylinositol 4,5-bisphosphate levels. *J Biol Chem* **289**, 6120-6132 (2014).
<https://doi.org/10.1074/jbc.M113.531426>

359 26 Cho, K. J. *et al.* Inhibition of Acid Sphingomyelinase Depletes Cellular
360 Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane. *Mol Cell Biol*
361 **36**, 363-374 (2016). <https://doi.org/10.1128/MCB.00719-15>

362 27 Zhong, Y. *et al.* Distinct regulation of autophagic activity by Atg14L and Rubicon
363 associated with Beclin 1-phosphatidylinositol-3-kinase complex. *Nat Cell Biol* **11**, 468-
364 476 (2009). <https://doi.org/10.1038/ncb1854>

365 28 Matsunaga, K. *et al.* Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally
366 regulate autophagy at different stages. *Nat Cell Biol* **11**, 385-396 (2009).
<https://doi.org/10.1038/ncb1846>

368 29 Kanai, F. *et al.* The PX domains of p47phox and p40phox bind to lipid products of
369 PI(3)K. *Nat Cell Biol* **3**, 675-678 (2001). <https://doi.org/10.1038/35083070>

370 30 Ellson, C. D. *et al.* PtdIns(3)P regulates the neutrophil oxidase complex by binding to the
371 PX domain of p40(phox). *Nat Cell Biol* **3**, 679-682 (2001).
<https://doi.org/10.1038/35083076>

373 31 Chang, C. *et al.* Bidirectional Control of Autophagy by BECN1 BARA Domain
374 Dynamics. *Mol Cell* **73**, 339-353 e336 (2019).
<https://doi.org/10.1016/j.molcel.2018.10.035>

375 32 Shi, J., Heegaard, C. W., Rasmussen, J. T. & Gilbert, G. E. Lactadherin binds selectively
377 to membranes containing phosphatidyl-L-serine and increased curvature. *Biochim
378 Biophys Acta* **1667**, 82-90 (2004). <https://doi.org/10.1016/j.bbamem.2004.09.006>

379 33 Bhargava, H. K. *et al.* Structural basis for autophagy inhibition by the human Rubicon-
380 Rab7 complex. *Proc Natl Acad Sci U S A* **117**, 17003-17010 (2020).
<https://doi.org/10.1073/pnas.2008030117>

381 34 Stenmark, H., Aasland, R. & Driscoll, P. C. The phosphatidylinositol 3-phosphate-
383 binding FYVE finger. *FEBS Lett* **513**, 77-84 (2002). [https://doi.org/10.1016/s0014-5793\(01\)03308-7](https://doi.org/10.1016/s0014-5793(01)03308-7)

382 35 Rai, S. *et al.* The ATG5-binding and coiled coil domains of ATG16L1 maintain
386 autophagy and tissue homeostasis in mice independently of the WD domain required for
387 LC3-associated phagocytosis. *Autophagy* **15**, 599-612 (2019).
<https://doi.org/10.1080/15548627.2018.1534507>

388 36 Dudley, L. J. *et al.* Intrinsic lipid binding activity of ATG16L1 supports efficient
389 membrane anchoring and autophagy. *EMBO J* **38** (2019).
<https://doi.org/10.15252/embj.2018100554>

390 37 Durgan, J. *et al.* Non-canonical autophagy drives alternative ATG8 conjugation to
393 phosphatidylserine. *Mol Cell* **81**, 2031-2040 e2038 (2021).
<https://doi.org/10.1016/j.molcel.2021.03.020>

391 38 Pena-Martinez, C., Rickman, A. D. & Heckmann, B. L. Beyond autophagy: LC3-
396 associated phagocytosis and endocytosis. *Sci Adv* **8**, eabn1702 (2022).
<https://doi.org/10.1126/sciadv.abn1702>

392 39 Fairn, G. D. *et al.* High-resolution mapping reveals topologically distinct cellular pools of
399 phosphatidylserine. *J Cell Biol* **194**, 257-275 (2011).
<https://doi.org/10.1083/jcb.201012028>

400 40 Martinez, J. *et al.* Molecular characterization of LC3-associated phagocytosis reveals
402 distinct roles for Rubicon, NOX2 and autophagy proteins. *Nat Cell Biol* **17**, 893-906
403 (2015). <https://doi.org/10.1038/ncb3192>

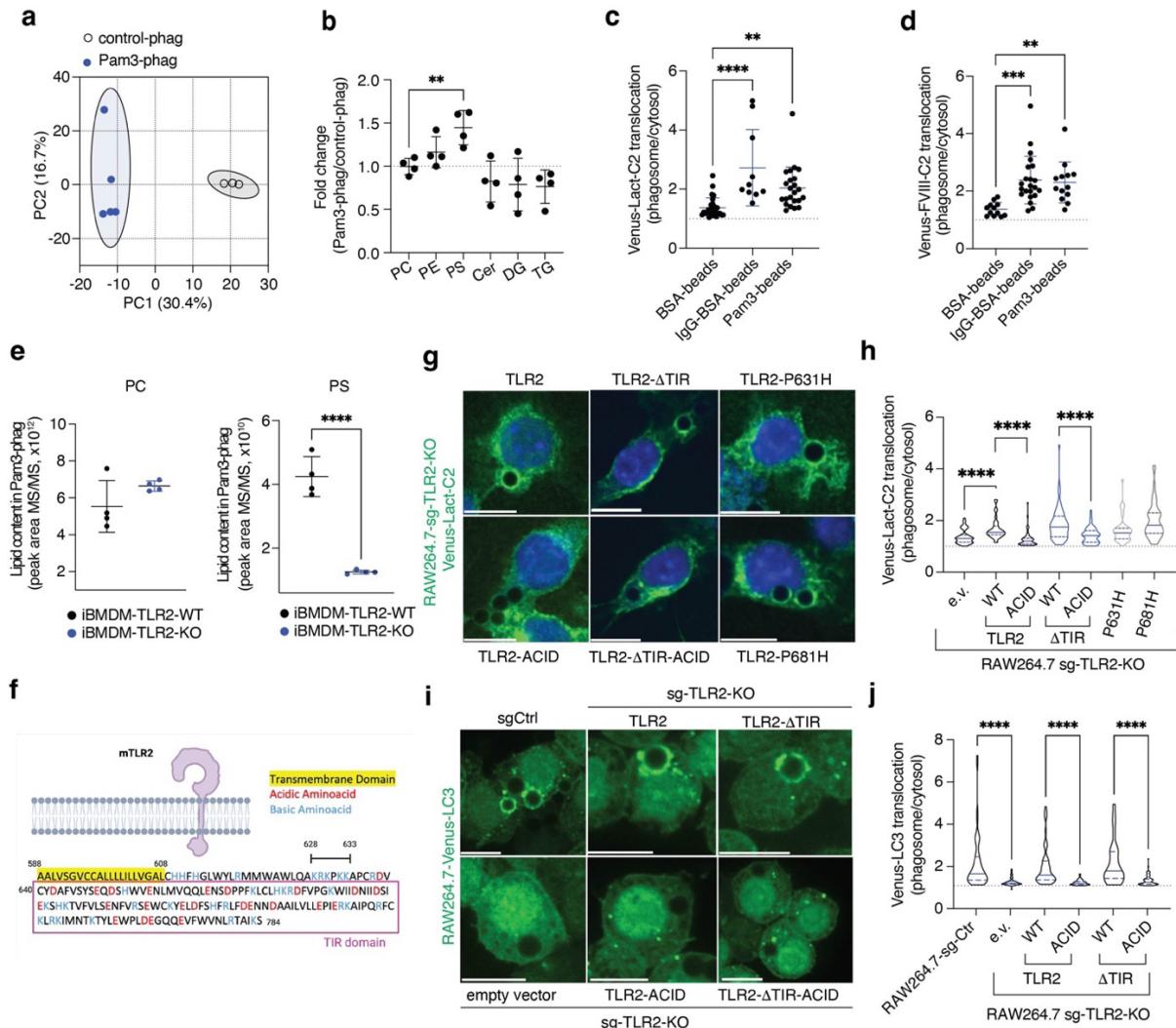
404 41 Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis
405 of autophagy in response to nutrient starvation using transgenic mice expressing a
406 fluorescent autophagosome marker. *Mol Biol Cell* **15**, 1101-1111 (2004).
<https://doi.org/10.1091/mbc.e03-09-0704>

407 42 Arora, P. & Porcelli, S. A. An Efficient and High Yield Method for Isolation of Mouse
409 Dendritic Cell Subsets. *J Vis Exp*, e53824 (2016). <https://doi.org/10.3791/53824>

410 43 De Nardo, D., Kalvakolanu, D. V. & Latz, E. Immortalization of Murine Bone Marrow-
411 Derived Macrophages. *Methods Mol Biol* **1784**, 35-49 (2018).
https://doi.org/10.1007/978-1-4939-7837-3_4

412 44 Guy, C. *et al.* LAG3 associates with TCR-CD3 complexes and suppresses signaling by
414 driving co-receptor-Lck dissociation. *Nat Immunol* **23**, 757-767 (2022).
<https://doi.org/10.1038/s41590-022-01176-4>

413 45 Liu, X. *et al.* Unbiased and robust analysis of co-localization in super-resolution images.
417 *Stat Methods Med Res*, 9622802221094133 (2022).
<https://doi.org/10.1177/09622802221094133>

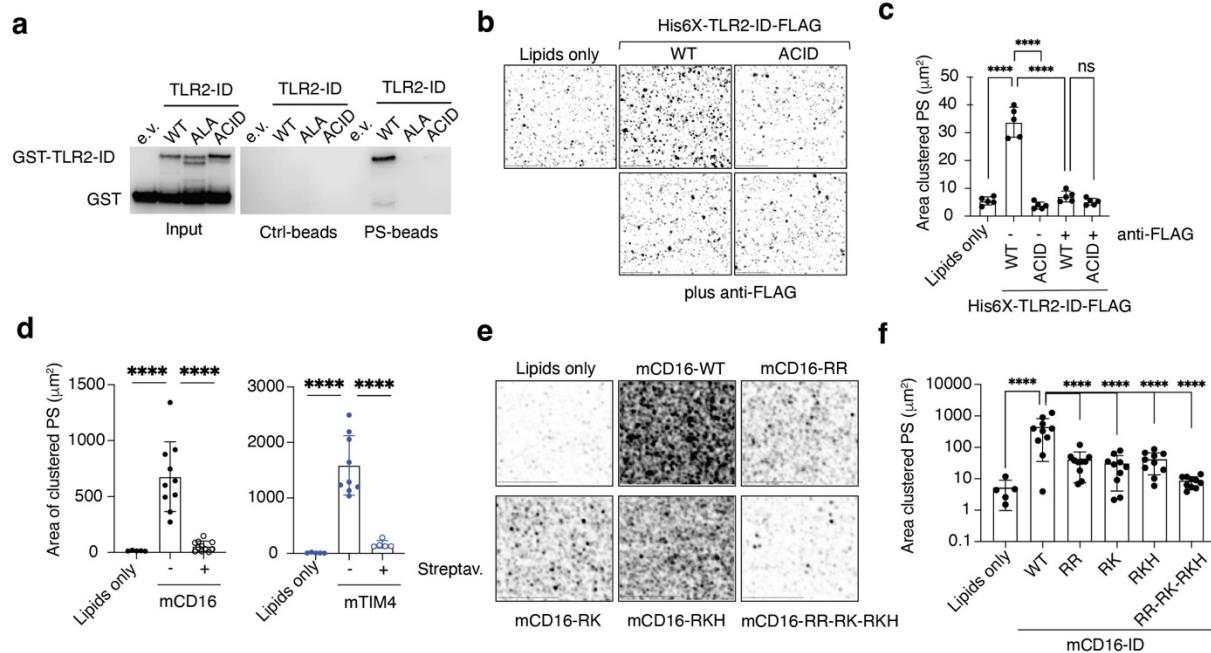

419 46 Guy, C. S. *et al.* Distinct TCR signaling pathways drive proliferation and cytokine
420 production in T cells. *Nat Immunol* **14**, 262-270 (2013). <https://doi.org/10.1038/ni.2538>

421 47 Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and
422 purification of total lipides from animal tissues. *J Biol Chem* **226**, 497-509 (1957).

423

424

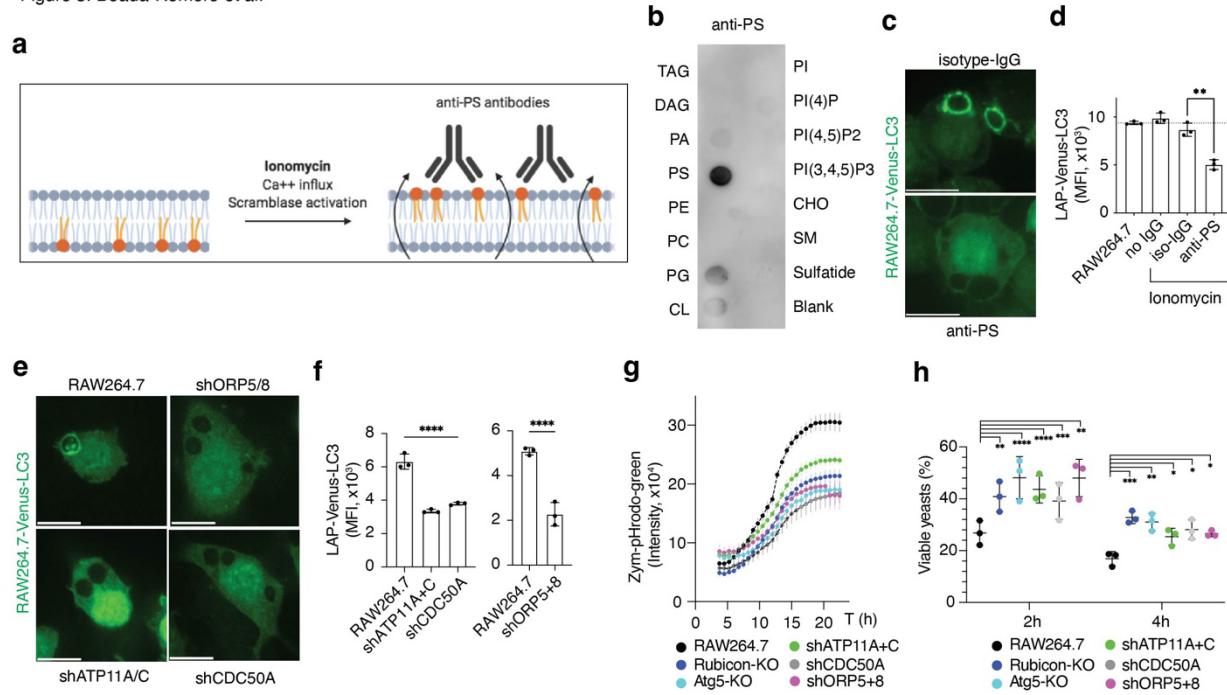
Figure 1. Boada-Romero et al.


425
426

427 **Figure 1: Phosphatidylserine species are enriched in the phagosome in a receptor-mediated**
428 **manner independently of TIR signaling. (a)** Principal component analysis of lipid content from
429 phagosomes containing Pam3csk4-beads (Pam3-phag, blue) relative to phagosomes containing
430 uncoupled-beads (control-phag, grey) isolated from immortalized bone marrow derived
431 macrophages (iBMDM) in a representative experiment, n=4. **(b)** Fold change of MS/MS values of
432 different lipid species in phagosomes containing Pam3-phag relative to control-phag isolated from
433 iBMDM. Lipid species determined by lipidomics were aggregated per lipid class and each dot
434 represents the cumulative value in n=4 independent experiments. PC, phosphatidylcholine; PE,
435 phosphatidylethanolamine; PS, phosphatidylserine; Cer, Ceramide; DG, diacylglycerol; TG,
436 triacylglycerol. **(c, d)** RAW264.7 cells stably expressing the PS-probes Venus-LACT-C2 or

437 Venus-FVIII-C2 were fed BSA-beads, BSA-beads coupled with anti-BSA antibody (IgG-BSA-
438 beads), or Pam3csk4-beads (Pam3-beads) for 30min and enrichment of PS-probe to phagosome
439 membranes relative to cytosolic signal was determined by immunofluorescence. Each dot
440 represents a phagosome (n>10) in a representative experiment, n=2. (e) Cumulative MS/MS peak
441 area of PC and PS of Pam3-phag from wild-type (WT) and TLR2-KO iBMDM determined by
442 lipidomic analysis. Replicates in a representative experiment, n=2. (f) Scheme of mouse TLR2
443 (Uniprot: Q9QUN7) depicted in a membrane. Transmembrane domain is highlighted in yellow;
444 acidic and basic amino acid are colored in red and blue, respectively; and Toll-Interleukin receptor
445 (TIR) domain is boxed in magenta. Numbers indicate amino acid position showcasing the basic
446 patch (⁶²⁸KRKPKK⁶³³). (g-j) RAW264.7-sg-TLR2-KO cells stably expressing the PS-probe
447 Venus-LACT-C2 (g, h) or Venus-LC3 (i, j) were transduced to express TLR2 full length or lacking
448 the TIR domain (TLR2 Δ TIR), in either wild-type (WT), K628E-R629D-K630E-K632E-K633E
449 (ACID), P631H (corresponding to human SNP rs5743704), or P681H mutant TLR2. Transduction
450 with empty vector (e.v.) served as a negative control. Cells were fed Pam3csk4-beads (30min, g,
451 h; 1h, i, j) and Venus-LACT-C2 or Venus-LC3 translocation to phagosomes was determined by
452 immunofluorescence. (g, i) Representative confocal images and (h, j) violin-plots of PS-probe
453 enrichment at the phagosome membrane relative to cytosolic signal (n>20 phagosomes) in one
454 representative experiment, n=2. **P<0.01, ****P<0.001, ***P<0.0001 by two-sided Student's
455 t test.

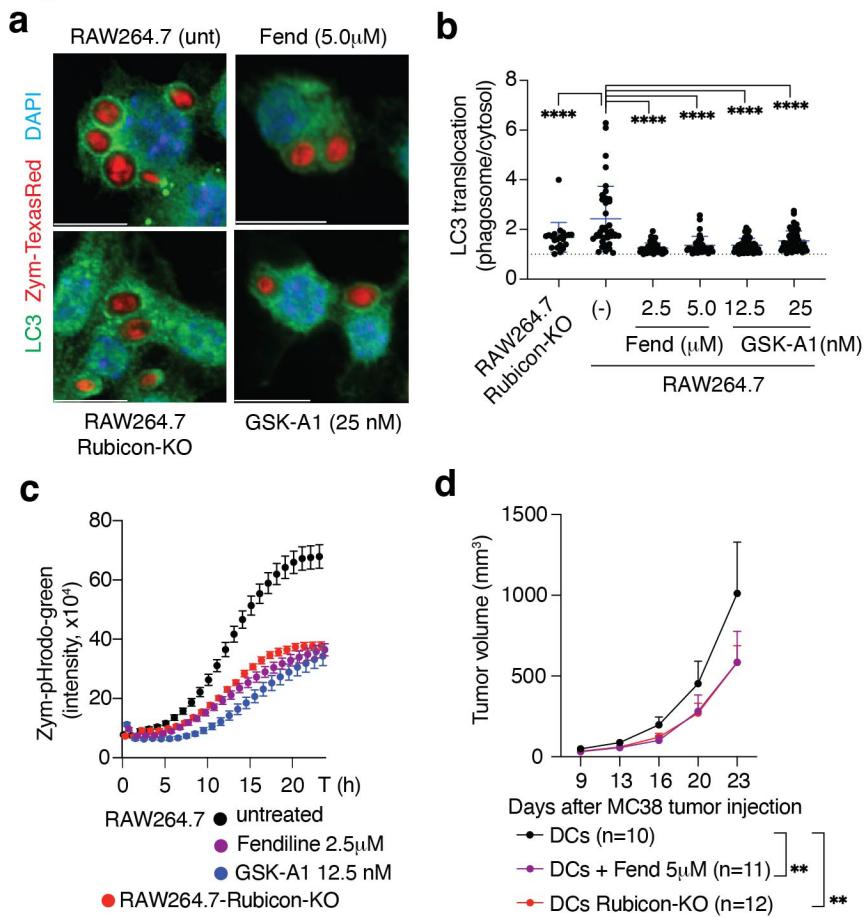
456


Figure 2. Boada-Romero et al.

457
458

459 **Figure 2: The cytosolic domains of receptors cluster phosphatidylserine.** (a) PS-bead pull-
460 down of TLR2 intracellular domain (TLR2-ID). Uncoupled-beads (Ctrl-beads), PS-beads, in
461 combination with wild-type (WT), K628A-R629A-K630A-K632A-K633A (ALA), and K628E-
462 R629D-K630E-K632E-K633E (ACID) versions were used as indicated, blots representative of
463 n=4. (b-f) Glass-supported lipid bilayer resembling plasma membrane composition were incubated
464 with TLR2-ID (b-c), cytosolic tails of mCD16 (d-f) or mTIM4 (d) as indicated, and top-Fluor-PS
465 clustering was determined by immunofluorescence. (b, e) Representative images or (c, d, f) area
466 of clustered PS quantified in different fields from representative experiments, n=2. (b-d) Anti-
467 FLAG or streptavidin allows peptide manipulation and disrupts lipid clustering. ***P < 0.001 by
468 two-sided Student's t test.
469

Figure 3. Boada-Romero et al.

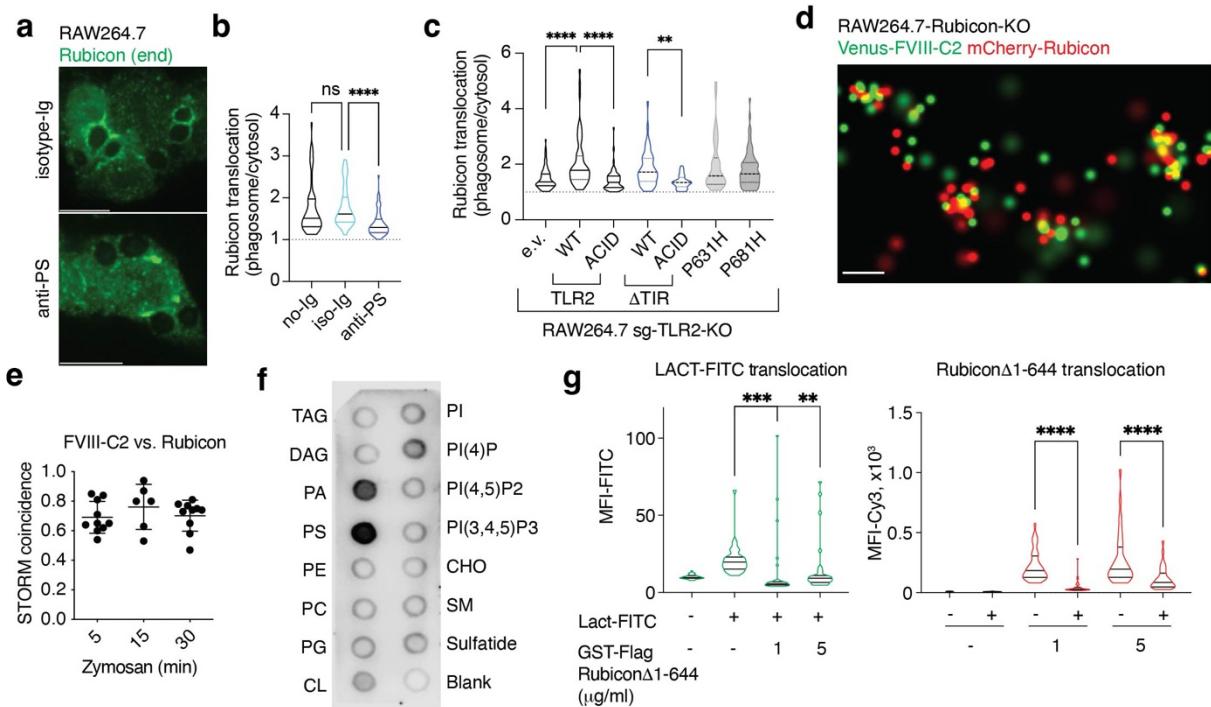


470
471

472 **Figure 3 Reduced phosphatidylserine levels impair LC3-associated phagocytosis.** (a) Scheme
473 showing the phosphatidylserine (PS) trapping strategy using anti-PS antibody. At the steady-state,
474 PS is confined to the cytosolic leaflet at the plasma membrane. The calcium ionophore ionomycin
475 induces a flux of calcium into the cells that in turns activates calcium-dependent lipid scramblases
476 that expose PS at the cell surface. Specific anti-PS antibodies lock the PS at the outer leaflet and
477 preclude its localization in the cytosolic face. (b). Lipid strip showing the binding specificity of
478 anti-PS antibody. PS: phosphatidylserine; PA: phosphatidyl acid; PG: phosphatidylglycerol; PC:
479 phosphatidylcholine; PE: phosphatidylethanolamine; DAG: diacyl-glycerol; TAG: triacyl-
480 glycerol; CL: cardiolipin; SM: sphingomyelin; CHO: cholesterol; PI: phosphatidylinositol. (c, d)
481 RAW264.7 cells stably expressing Venus-LC3 cells (RAW264.7-Venus-LC3) were treated with
482 ionomycin (10mM, 30min) combined with anti-phosphatidylserine (PS) antibody (1:50) or isotype
483 control (anti-FLAG, 1:50) and fed Zymosan (1h). (e, f) RAW264.7-Venus-LC3 cells silenced for
484 ATP11A and ATP11C, CDC50A, or ORP5 and ORP8 using a stably transduced short hairpin (sh)
485 RNA (shATP11A/C, shCDC50A, and shORP5/8,) and fed Zymosan (1h). (c, e) Representative
486 confocal images and (d, f) Venus-LC3 levels in Zymosan-TexasRed⁺ cells after digitonin treatment
487 to assess retained Venus-LC3. (g) Phagosome acidification over time upon feeding with acid-
488 sensitive probe Zymosan-pHrodo-Green in the indicated cell lines. (h) Yeast killing capacity after

489 2h and 4h of yeast engulfment. Values normalized to yeast recovered after 1h of engulfment per
490 cell line (time 0h). RAW264.7-Atg5-KO and Rubicon-KO cells display LAP deficiency. Data are
491 means \pm SD of three (d, f, h) or eight (g) biological replicates. Each representative of 3 independent
492 experiments. * $P < 0.05$, ** $P < 0.01$ *** $P < 0.001$ **** $P < 0.001$ by two-sided Student's t test.
493

Figure 4. Boada-Romero et al.

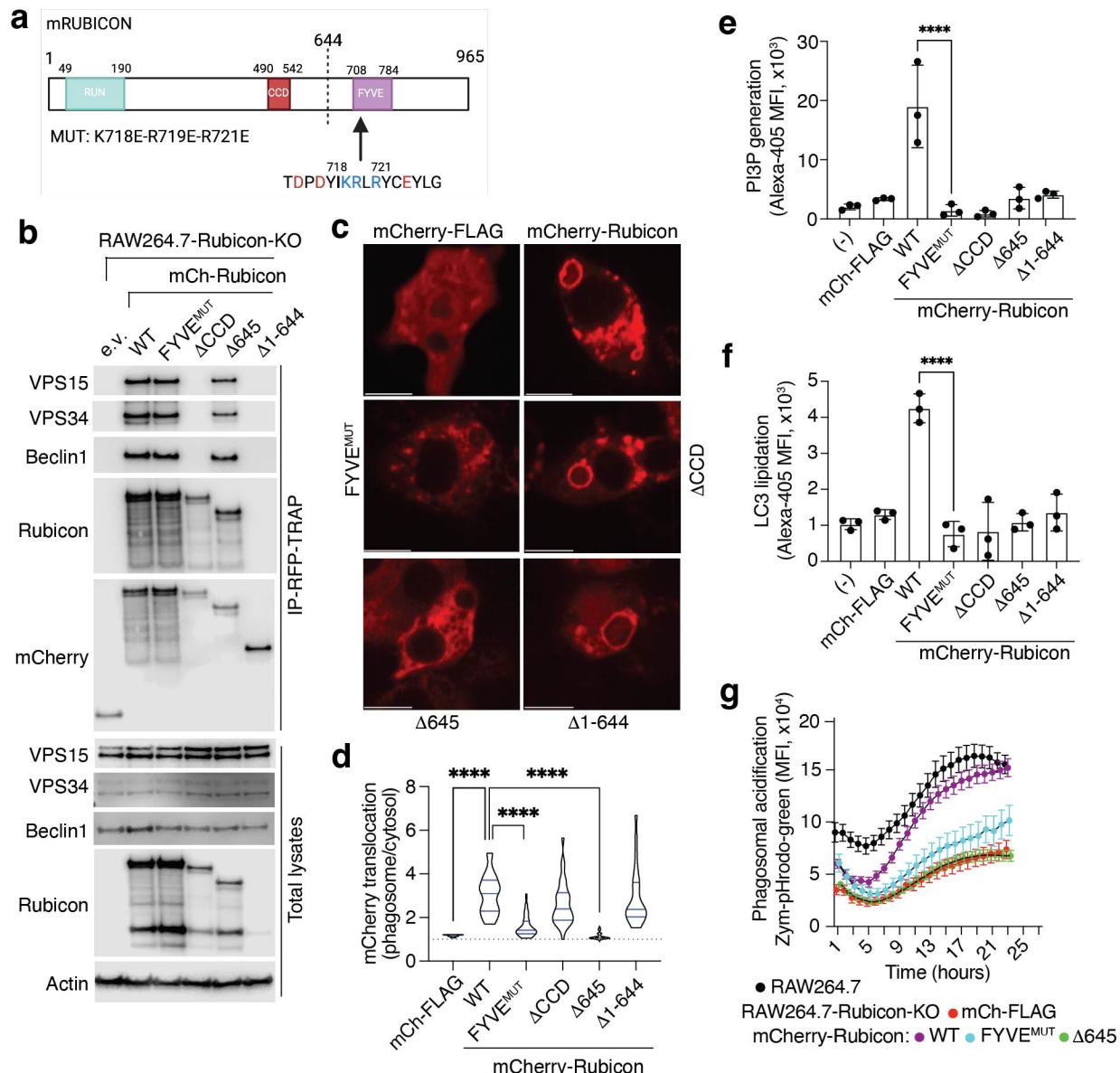


494
495

496 **Figure 4: Chemical inhibition of PS metabolism serve as LAP inhibitor.** (a, b) RAW264.7
497 were pretreated as indicated for 16h and fed Zymosan-TexasRed particles. Representative confocal
498 images (a) and cumulative data (b) of endogenous LC3 enrichment at the phagosome membrane
499 relative to cytosolic signal in n>10 phagosomes. (c) Phagosome acidification over time in
500 RAW264.7 cells pretreated with inhibitors (16h) upon feeding Zymosan-pHRodo-Green. Data are
501 means \pm SD eight biological replicates, representative of 3 independent experiments. (d)
502 C57BL/6J mice were implanted subcutaneously with 10^5 MC38 cells. CD8 $^+$ DCs were treated *ex*
503 *vivo*, or not with Fendiline (5 μ M, 20h) as indicated, and co-cultured with killed MC38 cells for
504 3h. At days 7 and 14 post-implantation mice were injected intradermally with 10^6 of these CD8 $^+$
505 DCs and tumor growth assessed. Data are mean \pm SEM of n>10 mice in 2 independent
506 experiments. ** P < 0.01 **** P < 0.001 by two-sided Student's t test (b) or ANOVA test (d).

507

Figure 5. Boada-Romero et al.


508
509

510 **Figure 5: Rubicon binds to phosphatidylserine in the phagosome membrane. (a, b)**
 511 RAW264.7 cells were treated with ionomycin (10 μ M, 30min) combined with anti-
 512 phosphatidylserine (PS) antibody (1:50) or isotype control (anti-FLAG, 1:50) and fed Zymosan
 513 (30min). Representative confocal images (a) and violin-plots (b) of endogenous Rubicon
 514 enrichment at the phagosome membrane relative to cytosolic signal (n>40 phagosomes). (c)
 515 RAW264.7-sg-TLR2-KO cells were transduced to express full length TLR2 or TLR2 lacking the
 516 TIR domain (TLR2 Δ TIR), in either wild-type (WT), K628E-R629D-K630E-K632E-K633E
 517 (ACID), P631H (corresponding to human SNP rs5743704), or P681H mutant TLR2. Transduction
 518 with empty vector (e.v.) serves as a negative control. Cells were fed Pam3csk4-beads (30min) and
 519 Rubicon translocation was determined by immunofluorescence. Violin-plots showing the
 520 enrichment of Rubicon at the phagosome membrane relative to the cytosolic level (n>20
 521 phagosomes). (d, e) RAW264.7-Rubicon-KO cells stably expressing the PS-probe Venus-FVIII-
 522 C2 and mCherry-Rubicon were fed Zymosan and analyzed by stochastic optical reconstruction
 523 microscopy (STORM). (d) Super-resolution image showing a representative membrane portion of
 524 a Zymosan-containing phagosome and (e) statistical index in super-resolution images assessing
 525 the proximity of PS-probe and Rubicon at phagosome membranes over time. Data are means \pm SD

526 of >6 biological replicates (phagosomes) in one representative experiment. (f) Lipid strip showing
527 the lipid-binding specificity of full-length Rubicon recombinantly produced in insect cells, n=2.
528 (g) *In vitro* binding competition assays of proteins in Pam3csk4-beads containing phagosomes
529 isolated from RAW264.7-Rubicon-KO cells. Phagosomes were incubated with Lactadherin-FITC
530 (Lact-FITC) and/or GST-Rubicon D1-644 as indicated. After anti-GST-Cy3 staining, phagosomes
531 were quantitatively analyzed by microscopy for green (Lactadherin binding) or red signal (GST-
532 Rubicon Δ1-644 binding). Violin plots depict n>30 phagosomes. ** $P < 0.01$, *** $P < 0.001$, ****
533 $P < 0.0001$ by (b, g) two-sided Student's t test or (c) ANOVA test (pairwise comparations Fisher's
534 LSD).

535

Figure 6. Boada-Romero et al.

536
537

538 **Figure 6: Binding of Rubicon to phosphatidylserine via FYVE domain is essential for LAP.**

539 (a) Scheme of mouse Rubicon protein (Uniprot: Q80U62). RUN: RPIP8, UNC-14 and NESCA
540 domain; CCD: coiled-coil domain; FYVE: Fab-1, YGL023, Vps27, and EEA1 domain. Numbers
541 indicate amino acid position and highlighted are amino acids in the lipid binding core within the
542 FYVE domain. (b) RAW264.7-Rubicon-KO cells stably expressing mCherry-tagged Rubicon
543 (mCh-Rubicon), WT or FYVE^{MUT}, ΔCCD, Δ645, or Δ1-644, were lysed, subjected to RFP-TRAP-
544 immunoprecipitation (IP) and immunoblotted. Total lysates serve as input for IP. FYVE^{MUT}:

545 K718E-R719E-R721E and Δ CCD (Δ Coiled-coil domain, lacks Beclin1-interacting region, amino
546 acids 490-542). (c, d) RAW264.7-Rubicon-KO cells stably expressing different versions of
547 mCherry-Rubicon were fed Zymosan (30 minutes). Representative confocal images (c) and violin-
548 plots (d) showing enrichment of mCherry signal at the phagosome membrane relative to the
549 cytosol (n>25 phagosomes). Representative of 2 independent experiments. (e, f) Cytometric
550 analysis of PI3P generation or LC3-lipidation in RAW264.7-Rubicon-KO cells expressing
551 different versions of mCherry-Rubicon. PI3P was detected with recombinant GST-p40-phox-PX
552 (d) or immobilized LC3 levels (e) in Zymosan-FITC⁺ cells after digitonin treatment. (g)
553 Phagosome acidification over time in RAW264.7 or RAW264.7-Rubicon-KO cells expressing
554 different versions of mCherry-Rubicon upon feeding with the acid-sensitive probe Zymosan-
555 pHRodo-Green. Data are means \pm SD of 3 (e, f) or 8 (g) biological replicates. Each representative
556 of 2 (g) or 3 (e, f) experiments. mCherry-FLAG is used as negative control, (-) indicates
557 untransduced RAW264.7-Rubicon-KO cells (e, f). ****P < 0.0001 by two-sided Student's t test.
558

559 Methods

560

561 Mice

562 Rubicon-KO mice were previously described ⁴⁰, TLR2-KO mice were obtained from the Jackson
563 Laboratories (Cat. No. 004650). Rubicon and TLR2 mouse lines were backcrossed to transgenic
564 reporter mice expressing GFP-LC3 ⁴¹ (generous gift from Dr. Noboru Mizushima) on the
565 C57BL/6J background. Female recipient C57BL/6J mice for dendritic cell transfers were
566 purchased from Jackson Laboratories (Cat. No. 000664). Age- and sex-matched littermates were
567 used as controls. Mice were bred and housed in pathogen-free facilities, in a 12-hour light/dark
568 cycle in ventilated cages, with chow and water supply ad libitum at the Animal Resources Center
569 in St. Jude Children's Research Hospital. Procedures were approved by the Institutional Animal
570 Care and Use Committee at St. Jude and in compliance with all relevant ethical guidelines.

571

572 Cell lines and culture conditions

573 Cancer cell lines HEK293T (Cat. No.: CRL-3216), RAW264.7 (Cat No. TIB-71), and L-929 (Cat.
574 No.: CCL-1) were purchased from ATCC. MC38 (mouse colon carcinoma) cells were a gift from
575 Dr. Hongbo Chi (St. Jude Children's Research Hospital, Memphis, TN, USA), B16F10 (mouse
576 melanoma) cells secreting Fms-related tyrosine kinase 3 ligand (FLT3L; B16F10-FLT3L cells)
577 were a gift from Dr. Steven S. Porcelli (Albert Einstein College of Medicine, New York, NY,
578 USA) ⁴². RAW264.7-Rubicon-KO and RAW264.7-ATG5-KO cells were generated by CRISPR-
579 Cas9 as previously described ^{2,6}; these cells were used to benchmark LAP-deficiency in most of
580 the experiments. RAW264.7-TLR2-KO cells were generated by CRISPR-Cas9 using the
581 LentiCRISPR-v2 system (kind gift from Dr. Brett Stringer, Addgene#98290) targeting an early
582 PAM site in the Tlr2 coding exon. After lentiviral transduction, cells were selected by repetitive
583 cell sorting using a validated monoclonal antibody (Clone T2.5, Biolegend 121810) until a
584 homogenous polyclonal negative population was obtained. Lack of TLR2 expression in the
585 negative population was confirmed by western blot using a different antibody (Cell Signaling
586 Technology-CST, 13744). Re-expression of mTLR2 or its mutants was achieved by transduction
587 of negative cells with retrovirus carrying the relevant constructs and repeated sorting of the
588 positive population using the aforementioned method. TLR2 forms were sg-insensitive due to

589 silent mutations at PAM region recognized by the sgRNA-Cas9 system at position R41 (AGG to
590 CGA).

591

592 HEK293T, MC38, B16F10-FLT3L, RAW264.7, and L-929 were cultured in Dulbecco's modified
593 Eagle's medium (DMEM; Gibco, 11971-025). Culture media contained 10% heat-inactivated fetal
594 bovine serum (FBS; v/v), 2mM L-glutamine (Gibco, 25030-164) and 100 IU/ml penicillin - 100
595 µg/ml streptomycin (Corning, 30-001-Cl). Primary dendritic cells were cultured in R10 media:
596 RPMI1 1640 (Gibco, 21870-076), supplemented with 10% heat-inactivated FBS, non-essential
597 amino acids (Gibco, 11140-050), 1mM sodium pyruvate (Gibco, 11360-070), 55mM 2-
598 mercaptoethanol (Gibco, 21985-023), 10 mM HEPES (Gibco, 15630-080), 2mM L-glutamine
599 (Gibco, 25030-164) and 100 IU/ml penicillin and 100 µg/ml streptomycin (Corning, 30-001-Cl).
600 Cells were maintained in a humidified incubator at 37°C and 5% CO₂. Cells were routinely tested
601 for Mycoplasma contamination using MycoAlert Mycoplasma Detection Kit (LONZA, LT07).

602

603 Generation of BMDM and immortalized BMDM (iBMDM)

604 Bone marrow-derived macrophages (BMDM) were generated from bone marrow of 6-12 weeks
605 old mice. Briefly, mice were euthanized with isoflurane and hindlimbs were harvested and cleaned
606 to expose femurs and tibias. Bone marrow was flushed with complete DMEM media and cells
607 were resuspended at 0.5x10⁶ cells/ml in DMEM (Gibco, 11971-025) media containing 20% (v/v)
608 FBS, 30% (v/v) L-929 conditioned media, 2mM L-glutamine (Gibco, 25030-164), 100 IU/ml
609 penicillin, and 100 µg/ml streptomycin (Corning, 30-001-Cl). Cells were differentiated for seven
610 days in 15cm non-tissue culture-treated petri dishes with media renewal at day 4. BMDMs were
611 harvested with cell incubation with 2mM-EDTA containing 1X DPBS at room temperature and
612 plated on tissue culture-treated vessels one day before the experiment started. L-929 conditioned
613 media was generated by culturing cells in T175 tissue culture-treated flasks (Corning, 431080)
614 until complete cellular confluence was achieved. Complete media was replenished and harvested
615 after 10 days of L929-conditioning. Media aliquots were 0.45µm-filtered (Corning, 431220),
616 frozen down at -80°C to be thawed as needed.

617

618 Immortalized BMDM (iBMDM) were generated by transduction of BMDMs with J2 retroviruses
619 carrying v-raf and v-myc oncogenes at days 3 and 4 as previously described ⁴³. Transduced BMDM

620 were passaged on decreased concentrations of L-929 conditioned media overtime (1st week 30%,
621 2nd week 25%, 3rd week 20, 4th week 15%, 5th and 6th week 10%, and 7th and 8th week 5%) until
622 cells proliferate in DMEM complete media without L-929 conditioned media. Psi-Cre-J2 (derived
623 from NIH3T3 cells) served as the source of J2 retrovirus.

624

625 Tumor growth in vivo and transfer of dendritic cells

626 Isolation of CD8⁺ dendritic cells

627 Rubicon-deficient mice and littermate heterozygous mice were subcutaneously implanted with
628 B16F10-FLT3L (10⁷ cells in 100 ml of 1X DPBS) to boost dendritic cells (DCs) differentiation ⁴².
629 Enlarged spleens were isolated from tumor bearing mice 11-14 days post-implantation. Spleens
630 were minced and digested with 1X Collagenase/Hyaluronidase (Stock 10x; StemCell Tech, 07912)
631 at 37°C for 30 minutes. Digested spleens were filtered through 70 µm cell strainers (Fisherbrand,
632 22363548). After resuspension in R10 media, cells were re-filtered through 50 µm filters (Sysmex,
633 04-004-2327) to generate a single cell suspension. CD8⁺ DCs were isolated using CD8⁺ dendritic
634 cell isolation kit (Miltenyi Biotec, 130-091-169), following the manufacturer protocol.

635 Isolated CD8⁺ DCs were cultured in R10 media supplemented with recombinant mouse FLT3L
636 (250ng/ml; R&D Systems, 427-FL-025). CD8⁺ DCs isolated from Rubicon-proficient mice were
637 incubated in the presence or absence of 5µM Fendiline-HCl (Tocris, 6407), CD8⁺ DCs isolated
638 from Rubicon-deficient mice served as controls to benchmark for the effect of LAP-deficient DCs
639 over tumor growth. After 20h, all DCs were fed killed MC38 cells for 3h and DCs were re-isolated
640 using CD11c purification Kit (MACS, 130-125-835). MC38 were killed upon treatment with BH3-
641 mimetic: 1µM ABT-737 (MedChem Express, HY-50907) and 1µM Mcl-1 inhibitor: S63845
642 (MedChem Express, HY-100741) for 2h under culture conditions. Isolated DC cells were counted,
643 and 10 cells were intradermally injected at day 7 and day 14 after MC38 cell implantation.

644

645 Tumor growth

646 C57BL/6J female mice were subcutaneously implanted with MC38 cells (10⁵ cells in 100 µl of 1X
647 DPBS; Gibco, 14190-144). At day 7 (palpable tumors) and day 14, tumor-bearing mice were
648 intradermally injected with 10⁶ CD8⁺ DCs that were previously treated or not with Fendiline and
649 fed MC38 cells (see above). Tumor-bearing mice were randomly assigned to the groups (5-6
650 animals per group), so each cage contained mice for different experimental groups. Operator was

651 unaware of DC source (Rubicon-het untreated vs. Rubicon-het Fendiline-treated vs. Rubicon-KO)
652 at the time of intradermal injection or tumor measurements. Tumor dimensions (width and length)
653 were measured every 3-4 days (twice a week) starting at day 9. Tumor volumes were calculated
654 using the formula $0.5 \times (\text{width}^2 \times \text{length})$ in two independent experiments (total of $n=10-12$ mice
655 per group). Experimental endpoints were mice distress or tumor ulceration at any point or tumors
656 volume above $2,000 \text{ mm}^3$.

657

658 Plasmids

659 All plasmids were validated by Sanger-sequencing before usage. Plasmid backbones, source of
660 cDNA and cloning primers are stated in Supporting Information.

661

662 Lipid and LAP reporters

663 pMXs-Venus-Lact-C2, encodes the discoidin-type lectin domain (C2) of mouse
664 Lactadherin/Mfge8 (residues 307-463, Uniprot: P21956) and pMXs-Venus-FVIII-C2 encodes the
665 C2 domain of mouse Coagulation factor VIII (residues 2161-2313, Uniprot: Q06194) downstream
666 and in-frame of mVenus (cloned MluI to NotI). These domains are reported to specifically bind
667 phosphatidylserine^{12,32}. A cDNA library generated from mouse placenta total mRNA (Takara,
668 636672) served as template to amplify the domains by PCR. pMXs-Venus-LC3, was generated by
669 subcloning full-length rat LC3B (Uniprot: Q62625) from ptfLC3 (kind gift from Dr. Tamotsu
670 Yoshimori, Addgene#21074) downstream and in-frame of mVenus using BspHI and NotI. The
671 pMXs-p40-phox-PX-Venus encodes the PX domain of mouse p40-phox (residues 3-148, NCF4,
672 Uniprot: P97369) upstream and in-frame of mVenus (cloned BglIII-BamHI to MluI) into the pMXs
673 backbone. For recombinant expression, p40-phox-PX was subcloned into pGEX-4T1 and
674 expressed as an N-terminal GST-tagged protein.

675

676 Rubicon constructs

677 Mouse Rubicon cDNA template was a generous gift from Dr. Tamotsu Yoshimori
678 (Addgene#21636). Rubicon constructs were N-terminal tagged with either FLAG or mCherry.
679 Rubicon Δ CCD (lacking the Beclin1-interacting region at amino acids 490-542, Uniprot: Q80U62)
680 was generated by amplifying the N-terminal and the C-terminal fragments by PCR and later
681 joining these using an MfeI site introduced in the amplicons. Rubicon Δ 645 and Rubicon Δ 1-644

682 deletions were generated by PCR. Rubicon-K718E-R719E-R721E (Rubicon-MUT, where the
683 basic residues in the core FYVE motif were changed to acidic residues) was generated by site-
684 directed mutagenesis. pMXs-Flag-mCherry served as a negative control for experiments involving
685 FLAG-tagged or mCherry-tagged constructs. For recombinant expression in insect cells, full
686 length mouse Rubicon cDNA was subcloned into pFAST-BAC-HT downstream and in-frame of
687 a His6X N-terminal tag (BamHI-MluI) adding a C-terminal FLAG tag (MluI to NotI). Final
688 plasmid is pFAST-BAC-HT-Rubicon-FLAG. For recombinant expression in *E. coli*, Rubicon-Δ1-
689 644 was subcloned into pGEX-4T1 (MluI to NotI).

690

691 TLR2 constructs

692 TLR2 cDNA was a kind gift from Dr. Ruslan Medzhitov (Addgene#13083). TLR2 constructs to
693 complement RAW264.7-TLR2-KO cells were insensitive (TLR2-sgi) to CRISPR-Cas9 activity
694 due to silent mutation generated by site-directed-mutagenesis. This change at position R41 (AGG
695 to CGA) eliminates the consensus for the protospacer motif (PAM) recognized by the sgRNA-
696 Cas9 system. TLR2-sgi-K628E-R629D-K630E-K632E-K633E (called TLR2-sgi-ACID), TLR2-
697 sgi-K628A-R629A-K630A-K632A-K633A (called TLR2-sgi-ALA), TLR2-sgi-P631H and
698 TLR2-sgi-P681H were generated by site-directed mutagenesis of TLR2-sgi. TLR2-sgi-ΔTIR and
699 TLR2-sgi-ΔTIR-ACID were generated by PCR and lack the TIR domain (residues: 640-784,
700 Uniprot: Q9QUN7). For recombinant expression, the complete intracellular domain of TLR2 (ID,
701 609-784, Uniprot: Q9QUN7), or its different mutant versions, were subcloned in different
702 backbones. 1) For lipid arrays and PS-Beads pulldown into pGEX-4T1 (BamHI to NotI) to obtain
703 GST-TLR2-ID, GST-TLR2-ID-ALA or GST-TLR2-ID-ACID. 2) For lipid bilayer experiments
704 into pNIC-Bsa4 (kind gift from Dr. Tudor Moldoveanu, NdeI to NotI) to generate pNIC-His6X-
705 TLR2-ID-FLAG and pNIC-His6X-TLR2-ID-ACID-FLAG.

706

707 Knockdown of component in phosphatidylserine metabolism and trafficking

708 First, expression of P4-ATPase flippases and co-chaperones were assessed by end-point PCR in
709 RAW264.7 and BMDM. Primers were: *Atp11a* (cagatactgtcagggaaga, gacttgtgggtgtcgatga),
710 *Atp11b* (gaactgcctgcagcatcg, gccattctcagtgcctcaatagt), *Atp11c* (accctcaaccgttgtgtg,
711 ccagaaatggatgattgccaac), *Atp8a1* (ttagacaaggcttacggcaa, cttcacactcgattctgcca), *Atp8a2*
712 (cagtggagacatgtgaagg, agccctgtcgattttaaggttc), *Atp8b3* (tcggggagaaccctgaggata,

713 tcgatggaactgctgtacag), *Cdc50a* (caaacagcaacggctaccc, gttgtggagggtgacgaagat), *Cdc50b*
714 (actcctccaacggcatcaag, gctcgtagtagaggcacacgg), *Gapdh* (aggtcggtgtgaacggatttg,
715 tgttagaccatgttagttgaggta).

716
717 Bacterial stocks of pLKO vectors expressing validated short hairpin RNA (shRNA) targeting
718 enzymes in PS metabolism/transport were purchased from the Mission-SIGMA collection: mouse
719 OSBPL5/ORP5 (TRCN0000105111), mouse OSBPL8/RP8 (TRCN0000105248), mouse
720 ATP11A (TRCN0000101533), mouse ATP11C (TRCN0000101851), and mouse
721 TMEM30A/CDC50A (TRCN0000317704). Lentiviral production and target cell transduction
722 were performed as described below. Upon puromycin-selection, silencing was validated by
723 western-blot or quantitative PCR (qPCR), using the primers above, if suitable antibodies were not
724 commercially available. Silenced cells were transduced with Venus-LC3 and Venus-Lact-C2
725 reporters as needed.

726
727 Transfection and transduction
728 HEK293T were used to produce Vesicular Stomatitis Virus-G (VSV-G) pseudotyped retrovirus
729 and lentivirus to transduce RAW267.4 cells. Briefly, for retrovirus, HEK293T cells were co-
730 transfected using PEI-MAX (1 μ g/ml; Polyscience, 324765) with VSV-G (Addgene#8454), pCL-
731 AMPHO (Imgenex, 10046P; now in Novus) and a retroviral vector harboring the gene constructs
732 of interest in the pMXs backbone. For lentivirus, cells were co-transfected with VSV-G, PAX2
733 (Addgene#12260) and a lentiviral-based plasmid (pLKO or pLenti-V2). Supernatants were
734 collected at 48h and 72h after transfection, filtered through 0.45 μ m filters (Corning, 431220) and
735 target cells were transduced twice via spinfection with the help of polybrene (8 μ g/ml,
736 hexamethrine bromide, Sigma, TR1003). Cells were selected for antibiotic resistance (FLAG-
737 tagged constructs, Puromycin 5 μ g/ml), or by consecutive cell sorting for the expression of
738 fluorescent proteins (mCherry-tagged or mVenus-tagged constructs) or the re-expression of TLR2
739 at the cell surface (Clone T2.5, Biolegend 121810) until the cell population was homogeneous.
740 Expression of the protein of interest was validated by western blot, immunofluorescence, and/or
741 flow cytometry.

742
743 Reagents

744 Compounds and drugs
745 Ionomycin (Cayman Chem, 11932), Fendiline-HCl (Tocris, 6407), selective PI4KIII inhibitor:
746 GSK-A1 (Cayman Chem, 34502), BH3-mimetic: ABT-737 (MedChem Express, HY-50907);
747 Mcl-1 inhibitor: S63845 (MedChem Express, HY-100741), mTOR inhibitor: Torin-1 (MedChem
748 Express, HY-13003), V-ATPse inhibitor: Bafilomycin A1 (Cayman Chemical, 11038) were
749 reconstituted as per manufactures' datasheet and used as indicated in the figure legends. EBSS
750 (GIBCO, 24010-043) served as starvation media.

751

752 Phagosome stimulation

753 Pam3csk4-Beads were prepared according to manufacture instructions. Briefly, ~3 μ m carboxyl-
754 polystyrene beads (Spherotech, CP-30-10) were washed twice with 1X DPBS and activated in
755 glass tubes (Pyrex, Corning, 9826-16) for 30 min at room temperature using 10 mM Sodium
756 Acetate [pH 5.0] buffer containing 5 μ g/ml 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
757 hydrochloride (EDC, ThermoFisher, 22980) as coupling agent. TLR2 ligand Pam3csk4 (Invivogen,
758 tlrl-pms) was coupled to activated beads at a final concentration of 100 μ g/ml for 3h at room
759 temperature with gentle rocking. BSA-Beads (for immunofluorescence, Spherotech; BP-30-5;
760 ~3 μ m) or Biotin-Beads (for lipidomics, Spherotech; TP-30-5; ~3 μ m) served as control beads.
761 Incubation with anti-BSA (Clone BSA-33, Sigma, B2901) or anti-Biotin (Jackson
762 Immunoresearch Inc - JIR, 200-002-211) at 10 μ g/ml for 2h at 4°C rendered Ig-coupled beads to
763 stimulate FcRs for immunofluorescence or lipidomics experiments, respectively. Zymosan
764 particles were used as complex ligands to induce phagocytosis. Zymosan (Invivogen, tlrl-zyn),
765 Zymosan-TexasRed (ThermoFisher, Z2843), Zymosan-Alexa594 (ThermoFisher, Z23374),
766 Zymosan-FITC (ThermoFisher, Z2841) and Zymosan-phRODO-Green (ThermoFisher, P35365)
767 were used as indicated in the figure legends.

768

769 Antibodies

770 Anti-Phosphatidylserine (anti-PS, Clone 1H6, EMD-Millipore 05-719), anti-Oxysterol-binding
771 protein-related protein 8 (anti-OSBP8/ORP8; Abcam, ab99069), anti-Cell cycle control protein
772 50A (anti-CDC50A/TMEM30A, Sigma, AV47410), anti-Microtubule-associated protein 1 light
773 chain B (anti-MAPLC3/LC3; for western blot: Cell Signaling Technology-CST, 2775; for
774 immunofluorescence: MBL Int, PM036), anti-Sequestosome-1 (anti-SQSTM1/p62, Sigma,

775 P0067), anti-phosphoinositide 3-kinase regulatory subunit 4 (anti-PIK3R4/VPS15; CST, 14580),
776 anti-Phosphatidylinositol 3-kinase catalytic subunit type 3 (anti-PIK3C3/VPS34; Clone D9A5,
777 CST 4263), anti-Beclin1 (CST, 3738), anti-NAPDH oxidase 2 (anti-NOX2/gp91-phox; Santa Cruz
778 Technology, sc-130543), anti-Rubicon (Clone D9F7, CST, 8465), anti-Toll-like receptor 2 (anti-
779 TLR2; Clone T2.5 for flow cytometry, Biolegend 121810; for western blot, Clone E1J2W, CST,
780 13744), anti-mCherry (Clonetech, 632543), anti-Triggering receptor expressed on myeloid cells 2
781 (anti-TREM2; R&D MAB17291), anti-Glutathione-S-Transferase (anti-GST, Clone GST-2;
782 Sigma SAB4200692), anti-FLAG (Clone M2; Sigma, F1804), anti-Actin (Clone C4, HRP-
783 conjugated; Santa Cruz, sc-47778), anti-Bovine Serum Albumin (anti-BSA, Clone BSA-33,
784 Sigma, B2901) or anti-Biotin (JIR, 200-002-211) were used as indicated in manufacturers'
785 datasheets.

786

787 Immunoblotting.

788 Cells were washed and harvested in cold 1X PBS, and then lysed for 20 min on ice. Lysis buffer
789 was 50mM Tris-HCl [pH 7.5], 150 mM NaCl, 5mM EDTA, 1% Igepal-CA630 (v/v, Sigma,
790 I8896); supplemented with protease (cOmplete; Roche, 11836153001) and phosphatase inhibitors
791 (PhosSTOP; Roche, 04906837001). Cell lysates were centrifuged at 16,000xg for 10 min at 4°C,
792 supernatants were collected, and protein concentration was quantified (BCA-based; Thermo,
793 23225). Same protein amount per sample was diluted with Laemmli sample buffer (4X; BioRad,
794 1610791) supplemented with 10% 2-betamercaptoethanol (v/v; Sigma, M3148) and 1mM
795 dithiotreol (DTT; Sigma, D0632), boiled for 10 min at 95°C, and resolved by SDS-PAGE using
796 Criterion XT Bis-Tris precast gels (4-12%; BioRad, 3450123/4/5) and XT-MES1X as running
797 buffer (stock 10X; BioRad, 1610789). Proteins were transferred to 0.22μm PVDF membrane
798 (Millipore, ISEQ00010) using tank transfer. Buffer contained 25mM Tris base, 192mM glycine
799 and 20% methanol (v/v) in MilliQ water (final pH 8.3). Blotted membranes were blocked with 5%
800 (w/v) milk in TBS-0.05% Tween-20 (v/v; Fisher Scientific, BP337100; TBS-t) for 1h and washed
801 with TBS-T. Membranes were incubated overnight with antibodies in 2% (w/v) BSA, 0.01%
802 sodium azide (w/v; Sigma, S2002) in TBS-T, washed thoroughly with TBS-T and incubated with
803 species-specific horseradish peroxidase (HRP)-conjugated secondary antibody (Amersham, anti-
804 mouse: NA931, anti-rabbit: NA934) in 2.5% (w/v) Milk-TBS-T. After extensive washing,
805 membranes were developed using Clarity Western ECL substrate (Bio-Rad, 1705060).

806 Chemiluminescence was acquired with an Odyssey-Fc device (LICOR) and ImageStudioLite
807 (LICOR) was used as western-blotting processing software.

808

809 Immunoprecipitation (IP)

810 Cell lysates were generated as described above. After protein quantification, protein amount (~1-
811 2mg) per sample was diluted to 0.2% Igepal-CA630 lysis buffer using buffer without detergent.
812 Diluted lysates were subjected to immunoprecipitation with anti-Rubicon (2µl of antibody per 1mg
813 of lysate) overnight at 4°C with rotation. Ig-complexes were precipitated with Protein A Sepharose
814 for Fast Flow (Cytiva, 17-1279; 15µl slurry per sample) for 2h at 4°C with rotation. After extensive
815 washes with 0.2% Igepal-CA630 lysis buffer, protein complexes were solubilized in loading buffer
816 and analyzed by standard immunoblotting (see above). For IP of mCherry-tagged proteins, RFP-
817 Trap agarose beads (Chromotek, rta) were used following a similar protocol. For IP of FLAG-
818 tagged protein, anti-FLAG(M2) agarose beads (Sigma, A2220) were used. After four washes with
819 0.2% Igepal-CA630 lysis buffer and a final wash in TBS, FLAG-tagged proteins bound to beads
820 were eluted using purified 3xFLAG peptide (produced in the Macromolecular Synthesis Facility
821 at St. Jude; sequence: MDYKDHDG DYKDHDIDYKDDDDK). Eluates from three consecutive
822 elution steps (100µg/ml 3xFLAG peptide in 1ml TBS, 20 min at 4°C with rotation) were pooled
823 and concentrated using centrifugal filter units (Amicon, 10KDa cut-off; Millipore, Ultra-4
824 UFC801024 and/or Ultra-0.5 UFC501024). Same volume per sample was solubilized in loading
825 buffer and analyzed by standard immunoblotting (see above). Alternatively, concentrated eluates
826 from anti-FLAG IPs of phagosomes were used for VPS34 activity quantification as indicated
827 below.

828

829 Immunoprecipitation for lipidomics

830 RAW-Rubicon-KO cells expressing mCherry-FLAG or FLAG-Rubicon (either WT or MUT) were
831 plated in 15cm tissue culture-treated plates (~ 25x10⁶ cells/plate, two 15cm plates per experimental
832 point). After treatment and stimulation, cells were washed and harvested in cold 1X PBS, pelleted,
833 and resuspended in 8ml IP-lipidomics buffer: 50mM Tris-HCl [pH 7.5], 150 mM NaCl, 1.5mM
834 MgCl₂ prepared in HPLC-grade water (Fisher, W5SK-4). Lysis buffer was supplemented with
835 protease inhibitors (cComplete; Roche 11836153001) and phosphatase inhibitors (PhosSTOP;
836 Roche 04906837001). Cells were sonicated to obtain a homogeneous lysate: 3 cycles 10 sec, 1 min

837 off, on ice; 50% duty cycle; Level 5 output, Sonifier450, Branson. Cell extracts were clarified at
838 16,000xg for 10 min at 4°C and subjected to immunoprecipitation with anti-FLAG agarose beads
839 (50µl slurry per condition) in IP-lipidomics buffer for 3h at 4°C with gentle rocking. After three
840 washes with 0.9% (w/v) NaCl (prepared in HPLC-grade water), beads were flashed-frozen in
841 liquid nitrogen and kept at -80°C for further processing. An aliquot per point was run in SDS-
842 PAGE for conventional anti-FLAG immunoblotting to evaluate amount of FLAG-tagged protein
843 per sample and volumes for lipid extraction were normalized accordingly to process similar
844 amounts of FLAG-tagged proteins independently of bead volume.

845

846 Phagosome purification

847 Phagocytes (~ 25x10⁶ cells/plate, two 15cm plates per experimental point) were fed with
848 Pam3csk4-beads or control beads so that each cell engulfed 0-3 phagosomes after 45 minutes.
849 Plates were thoroughly washed with ice-cold 1X PBS to eliminate non-phagocytized beads. Cells
850 were harvested in ice-cold 1X PBS and mechanically homogenized in 2ml 8% (w/v) sucrose
851 (0.25M; Sigma, S9378) using glass douncers. After homogenization, the disrupted cell solution
852 was mixed with 62% (w/v) sucrose (1.81M, saturated solution) to reach a final sucrose
853 concentration of ~40% and layered onto 62% sucrose in polycarbonate centrifuge tubes (Beckman
854 Coulter, 34058). 35% (1.02M), 25% (0.73M), and 10% (0.29M) sucrose solutions were carefully
855 layered onto the cell solution mixtures. Sucrose-containing buffers were prepared in 3mM
856 imidazole [pH 7.4] (Sigma, I202) and layers were 8 ml each except for the 5ml 62% layer at tube
857 bottom. Equilibrated tubes were ultra-centrifuged at 100,000xg for 1h at 4°C using a swinging-
858 bucket rotor (SW 32Ti, Beckman Coulter, 369650; Optima XE, Beckman Coulter). Phagosome-
859 containing beads float at the interface between the 10% and 25% layers. Retrieved bead-containing
860 phagosomes were washed with cold 1X PBS (or 0.9% NaCl solution for lipidomics), ultra-
861 centrifuged at 100,000xg for 30 min at 4°C, and recovered for further processing. For binding
862 assays, phagosomes were harvested in 1X PBS and counted using a cell counter (Cellometer,
863 Nexcelom). For biochemical analysis, phagosomes were lysed in 1% Igepal-CA630 lysis buffer,
864 protein concentration was determined, and equal amounts per sample were analyzed by SDS-
865 PAGE and immunoblotting. Alternatively, phagosome lysates were subjected to anti-FLAG
866 immunoprecipitation to analyze FLAG-Rubicon-containing complexes at the phagosome
867 membranes or to assess VPS34-lipid kinase activity in vitro. For lipidomic assays, bead-containing

868 phagosomes were resuspended in 0.9% NaCl (prepared in HPLC-grade water), counted to
869 equilibrate numbers, and pelleted at 100,000xg for 20 min at 4 °C using fixed angle rotor (TLA-
870 100 rotor, Beckman Coulter, 349481) in a benchtop ultracentrifuge (OptimaTL, Beckman
871 Coulter). Pelleted phagosomes were transferred to lipidomics-compatible tubes in a minimal
872 residual volume and flash-frozen in liquid nitrogen for further processing.

873

874 In vitro analysis of VPS34 activity

875 Phagosomes were isolated as described above from RAW264.7-Rubicon-KO cells reconstituted
876 with FLAG-Rubicon, FLAG-RubiconΔCCD, or empty vector. Phagosomes were lysed in 1%
877 Igepal-CA630 lysis buffer and FLAG-tagged Rubicon was immunoprecipitated using anti-FLAG
878 agarose beads overnight at 4°C with rotation. FLAG-Rubicon-containing complexes were eluted
879 with 3XFLAG peptide. Eluates and flow-through washing buffer were concentrated using
880 centrifugal filter units and ability of fractions to generate PI3P was analyzed by competitive ELISA
881 with Class III PI3 Kinase Kit (Echelon, K-3000), following the manufactures instructions. Aliquots
882 were analyzed by standard immunoblotting to determine the presence of complex components.

883

884 Analysis of Venus-LC3, LC3, p40-phox-PX-Venus, and PI3P levels by flow cytometry.

885 Cells were plated on 12-well plates (5x10⁵ cells/well). The following day, cells were stimulated
886 for 1h with either Zymosan-TexasRed (ZymTxR) or Zymosan-645 (Zym645). Cells were washed
887 with 1X DPBS and harvested after 20 min of incubation with 2mM-EDTA containing 1X DPBS
888 at room temperature. Cells were centrifugated at 300xg for 3min at 4°C and lysed with 200µg/ml
889 Digitonin (Sigma; D141) solution in 1X DPBS for 15 min at room temperature to release free
890 Venus-LC3. After 15 min, lysis was quenched using FACS-Buffer (1% BSA w/v, 1mM EDTA in
891 1X PBS), cells were centrifuged, and resuspended in FACS-Buffer. Cell fluorescence was acquired
892 with a SP6800 Sony Spectral Analyzer and compensated values were analyzed using FlowJo.v10.
893 When cells from different origins were analyzed (i.e., RAW264.7-VenusLC3 vs. RAW264.7-
894 Rubicon-KO-VenusLC3 cells), values of immobilized Venus-LC3 were normalized to Venus-LC3
895 expression from intact cells to control for difference in reporter expression. Experiments using
896 anti-PS blocking antibody were performed in 96-well plates and cell numbers were scaled down
897 accordingly.

898

899 For endogenous LC3 detection by flow cytometry, Zymosan-FITC was used to stimulate the cells.
900 Digitonin-permeabilized cell pellets were Fc-blocked (BioXCell, BE0307; final concentration:
901 10 μ g/ml) and then stained with anti-LC3 antibody (1:500; MBL Int, PM036) and anti-Rabbit-
902 DyLight405 (1:500; JIR, 711-475-152). Incubations were performed in FACS-Buffer for 20min
903 on ice and cells were washed with 1X PBS after primary and secondary antibody incubations.

904
905 Minor adjustments were used to detect genetically encoded p40-phox-PX-Venus by flow
906 cytometry: LAP stimulation occurred for 30 min and digitonin solution was diluted to 50 μ g/ml.
907 For endogenous PI3P detection by flow cytometry using recombinantly produced PI3P probe,
908 50 μ g/ml digitonin-treated cell pellets were Fc-blocked and stained with recombinant GST-p40-
909 phox-PX (1 μ g/ml, home-made see below), followed by anti-GST (1:500, Sigma, SAB4200692)
910 and secondary staining anti-Mouse-DyLight405 (1:500; JIR, 711-475-151). Incubations were
911 performed in FACS-Buffer for 20min on ice and cells were washed with 1X PBS after probe,
912 primary, and secondary antibody incubations.

913
914 Cell imaging
915 Confocal immunofluorescence
916 Cells were seeded in tissue culture-treated 8-well chambered slides (mslides, IBIDI, 80826) at
917 50,000 cells per well. After experimental procedures, cells were fixed in 4% paraformaldehyde
918 (v/v; PFA, Stock 16%, Electron Microscopy Sciences, 15710) for 15 min at room temperature and
919 washed with 1X PBS. Experiments using anti-PS blocking antibody were performed in μ -Slide
920 Angiogeneis chambers (IBIDI, 81506) and cell numbers were scaled down accordingly.

921
922 Samples that required staining were permeabilized and quenched with 0.5% (v/v) Igepal-CA630,
923 1% (w/v) glycine in 1X PBS for 20 min at room temperature. Fixed cells were blocked in 3% fatty
924 acid free BSA (w/v; Sigma, 7030) in 1X PBS for 30 min at room temperature. After a 1X PBS
925 wash, cells were incubated for 1h at room temperature with primary antibodies diluted in 2% fatty
926 acid free BSA: anti-FLAG (1:1,000; Clone M2, Sigma, F1804), anti-Rubicon (1:500; Clone D9F7,
927 CST, 8465), anti-LC3 (1:1,000; MBL Int, PM036), anti-VPS34 (1:500; Clone D9A5, CST 4263).
928 Cells were washed with 1X PBS and incubated for 30min at room temperature with secondary
929 antibodies diluted in 2% fatty acid free BSA: anti-mouse-AF647 (1:500; JIR, 715-605-151), anti-

930 rabbit-AlexaFluor488 (1:500; JIR, 711-545-152). Stained cells were washed with 1X PBS and
931 post-fixed in 1% (v/v) PFA in 1X PBS for 10 min at room temperature.

932

933 Images were acquired using a Marianas confocal (Intelligent Imaging Innovations, 3i) comprised
934 of a CSU-X spinning disk, Prime95B sCMOS camera, and differential interference contrast (DIC)
935 as well as 405, 488, 561 and 640nm laser lines were used. Alternatively, a CSU-W (Yokogawa)
936 spinning disk to facilitate super resolution via optical reassignment (SoRA) imaging in
937 combination with 60X 1.45NA oil objective and Prime95B camera were used. Representative
938 pictures are shown and scale bars in confocal immunofluorescence pictures are 10 μ m, unless
939 otherwise indicated.

940

941 Analysis of phagosome enrichment in IF images

942 Individual phagosomes from various cells in confocal images were analyzed by sampling a line
943 that sections the phagosome and part of the cytosol, then fluorescence intensities on the selected
944 channels in this region of interest (ROI) were determined. Maximum intensity at the phagosome
945 membrane was normalized for the cytosolic expression of the probe (or the background level for
946 the antibody staining) per ROI to determine the fluorescence enrichment at the phagosome
947 membrane per each phagosome. Cumulative values (n>10) in various cells from different fields
948 were analyzed and statistically compared. Value above 1 (dotted line in the graphics) indicates
949 enrichment in the phagosome membrane.

950

951 Stochastic optical reconstruction microscopy (STORM)

952 Cells were plated on tissue-culture treated chambered coverslips (Ibidi) and allowed to engulf
953 zymosan particles prior to fixation with 4% PFA for 10 min. Reactive groups were subsequently
954 quenched with 20mM glycine in 1X PBS for 30 min before permeabilization with 0.1% Triton-
955 100 for 3 min and subsequent blocking in 1X PBS buffer containing 2% BSA and 5% normal
956 donkey serum. Anti-GFP (Rockland ImmunoChemicals; 600-401-215) and anti-mCherry
957 (Biorbyt; orb11618) antibodies were used at 1 μ g/mL overnight at 4°C and were subsequently
958 detected with STORM-appropriate secondary antibodies (Biotium; 20836 and 20811). STORM
959 acquisition was facilitated with an N-STORM system (Nikon Instruments) as previously described
960 ⁴⁴.

961
962 To analyze spatial distribution of single molecule data, we applied our recently developed
963 algorithm denoted ‘normalized spatial intensity correlation (NSInC;⁴⁵). Briefly, 3-dimensional co-
964 ordinates of identified single molecules are analyzed for their bi-directional association, while
965 tested against random distribution and following correction for any edge-effect bias. The
966 association index per field is calculated with a value of 0 representing complete spatial randomness
967 (CSR) while values of 1 and -1 represent complete association or exclusion, respectively.

968
969 Recombinant protein purification.
970 Protein Production and Purification from bacteria.
971 GST, GST-p40-phox-PX, GST-TLR2-Intracellular domain (ID, 589-784), GST-TLR2-ID-
972 K628E-R629D-K630E-K632E-K633E (GST-TLR2-ID-E/D), GST-TLR2-ID-K628A-R629A-
973 K630A-K632A-K633A (GST-TLR2-ID-ALA), GST-FLAG-Rubicon Δ 1-644 were recombinantly
974 produced in *E. coli*. pGEX-4T1-based plasmids harboring the construct of interest were
975 transformed into BL21 Star(DE3)pLysS (ThermoFisher, C602003) and plated onto Ampicillin-
976 containing LB plates. Picked colonies were grown as 10ml volume pre-cultures in Ampicillin-
977 containing LB broth at 37°C with vigorous shaking for overnight. Large volume Ampicillin-
978 containing LB previously pre-warmed at 37°C were inoculated with pre-cultures. Bacteria grew at
979 37°C and protein induction occurred at 20°C for overnight upon addition of 0.1mM isopropyl D-
980 1-thigalactopyranoside (IPTG; Goldbio, I2481C) to the bacterial culture at mid-log phase
981 (OD_{600nm}=0.6). Induced bacteria were pelleted by centrifugation and frozen down at -70°C for
982 further processing. Thawed bacterial pellets were lysed in Bacterial Protein Extraction Reagent
983 (B-PER; Thermo Fisher Scientific, 90079) supplemented with 100 μ g/ml lysozyme (Thermo Fisher
984 Scientific, 90082) and 5U/ml DNase-I (Thermo Fisher Scientific, 90083) for 30 min at room
985 temperature with gently rocking. Bacterial lysates were clarified by centrifugation at 30,000xg for
986 15 min at 4°C, followed by subsequent centrifugation at 30,000xg for 30 min at 4°C. Supernatants
987 containing soluble recombinant protein were pulled-down with Glutathione (GSH) Sepharose
988 4FastFlow (GE Healthcare, 17-5132) for 3h at 4°C with gently rocking. Beads were extensively
989 washed with 0.2% Igepal-CA630 TBS (x3), followed by two washes with 100mM Tris-HCl
990 [pH8.0], 150mM NaCl, 5mM EDTA Buffer. GST-tagged recombinant protein was eluted by three
991 sequential incubations of GSH-beads with 50mM reduced L-GSH (SIGMA, G4251) in 100mM

992 Tris-HCl [pH8.0],150mM NaCl, 5mM EDTA buffer for 30 min at 4°C with rocking. The pooled
993 eluates were concentrated using centrifugal filter units (Amicon, 10KDa cut-off; Millipore, Ultra-
994 15 UFC901024 and Ultra-0.5 UFC501024). Purification yield and protein integrity were analyzed
995 by SDS-PAGE followed by Coomassie staining according to manufacturer instructions (PageBlue
996 Protein Staining Solution; Thermo Fisher Scientific, 24620). Protein concentration was determined
997 with NanoDrop measurements.

998

999 His6X-TLR2-ID-FLAG and His6X-TLR2-ID-K628E-R629D-K630E-K632E-K633E-FLAG
1000 (His6X-TLR2-ID-ACID-FLAG) were recombinantly produced in *E. coli*. pNIC-based plasmids
1001 harboring the construct of interest were transformed into BL21 Star(DE3)pLysS (ThermoFisher,
1002 C602003). Bacteria were induced as previously described. Frozen induced-bacterial pellets were
1003 resuspended in lysis buffer containing 20mM Tris-HCl [pH 8.0], 300mM NaCl, 1mM PMSF, 1mM
1004 AEBSF, 1X protease inhibitor cocktail and 10% glycerol at 4°C using 10ml per gram of bacterial
1005 pellet. Lysis was performed by microfluidizer at 4°C, lysates were processed twice to insure
1006 complete lysis. Lysates were clarified 18,500xg for 1h at 4°C (Avanti JXN-26, rotor JA-25.50) and
1007 subjected to metal affinity chromatography (50ml 50% Ni-NTA slurry per condition).
1008 Equilibration buffer for the column was 20mM Tris-HCl [pH 8.0], 300mM NaCl, and 10%
1009 glycerol. After gravity flow, the column was washed with four bed volumes of equilibration buffer
1010 containing 5mM, 10mM, 20mM and 30mM imidazole, respectively. Final elution proceeded with
1011 four bed volume of equilibration buffer containing 400mM imidazole. Fractions were analyzed by
1012 SDS-PAGE, followed by gel staining and elution fractions containing the protein of interest (5mM,
1013 10mM and 20mM) were pooled and subjected to size exclusion chromatography. HiLoad 26/600
1014 Superdex 75pg (MW range: ~3,000 to ~ 70,000 KDa; Cytiva Lifescience, 28989334) was the
1015 column and equilibration buffer contained 20mM Tris-HCl [pH 8.0], 50mM NaCl. Size exclusion
1016 chromatography was performed on AKTA-PURE at 4°C and recombinant proteins eluted as a
1017 single peak: 163.49ml for WT version and 156.98ml for ACID version. Fractions containing the
1018 protein of interest were pooled and concentrated using centrifugal filter units (Amicon, 10KDa
1019 cut-off; Millipore, Ultra-4 UFC801024 and/or Ultra-0.5 UFC501024). Final protein concentration
1020 was determined by nanodrop measurements.

1021

1022 Protein production in insect cells.

1023 Full length mouse Rubicon cDNA was FLAG-tagged at the C-terminus and subcloned into
1024 pFAST-BAC-HT. Double termini tagging (His6X-tag at the N-terminus and FLAG-tag at the C-
1025 terminus) allowed tandem purification to ensure full-length protein to be recovered. His6X-
1026 Rubicon-FLAG was expressed and purified from insect cells in the Protein Production Facility at
1027 St. Jude Children's Research Hospital. Briefly, pFAST-BAC-HT-Rubicon-FLAG was
1028 transformed into DH10Bac E.coli (Vendor?, Cat No.?) and used to generate bacmid DNA that was
1029 used to transfect Sf9 insect cells (Vendor?, Cat No.?) using serum-free media. Transfected Sf9
1030 insect cells generated, by homologous recombinant, baculovirus harboring His6X-Rubicon-
1031 FLAG. Baculovirus-containing supernatant from transfected cells was used to infect Sf9 that
1032 amplified viral stock to serial infection to finally infect 3 liter of Sf9 cells. After 72h, infected cells
1033 were harvested and frozen at -20°C.

1034

1035 The frozen cell pellets were lysed using a microfluidizer in buffer containing 50 mM Tris-HCl, pH
1036 8.0, 500mM NaCl, 10% glycerol and the lysate centrifuged at 20,000 rpm for 1h at 4°C. The
1037 supernatant was 0.2 µM filtered and was incubated overnight at 4°C with 5 mL of Ni-NTA beads
1038 (Qiagen). XXX

1039

1040 Lipid binding assays

1041 Protein-lipid overlays – Lipid strips

1042 Lipid binding capacity of recombinant proteins or anti-PS antibody were analyzed using lipid
1043 arrays (Echelon Biosciences Inc; Membrane lipid Strips, P6002, or PIP Strips P6001) as directed
1044 by manufacture protocols. Briefly, membranes spotted with different lipid species were blocked
1045 with 3% fatty acid free BSA (w/v; Sigma, 7030) in 0.1% (v/v) Tween-20 1X PBS (PBS-T) for 1h
1046 at room temperature with gentle rocking. Recombinant protein was diluted to 500ng/ml in blocking
1047 buffer and incubated for 1h at room temperature with gentle rocking. Primary anti-GST (1µg/ml),
1048 and secondary anti-mouse-HRP (1:5,000) antibodies revealed protein-lipid interaction. Extensive
1049 washes with PBS-T were performed between probe, primary and secondary antibody incubations.
1050 Protein-lipid overlay arrays were developed as conventional immunoblot and ImageStudioLite
1051 (LICOR) was used to performed densitometry analysis of chemiluminescence spots. Values were
1052 normalized to the value of blank control per image. To analyze the selectivity of the anti-PS

1053 antibody (Clone 1H6, EMD-Millipore 05-719) the primary antibody was added after blocking at
1054 1µg/ml, rest of steps remained the same.

1055

1056 PS-bead pulldown

1057 Recombinant mTLR2-ID wild-type, ALA-mutant, or ACID-mutant purified from *E. coli* (see
1058 above) were analyzed side-by-side for their binding-capacity to PS-conjugated beads (Echelon
1059 Biosciences Inc, P-B0PS) or control beads, as directed by manufacture protocols. Briefly, 15 µl of
1060 slurry beads per point were washed twice in binding buffer: 10mM HEPES [pH 7.4], 150mM
1061 NaCl, 0.25% (v/v) Igepal-CA630; then 10 µg of recombinant protein was incubated for 3h at 4°C
1062 with rotation. After 4 washes with binding buffer, conjugated proteins were subjected to
1063 conventional immunoblotting for anti-GST.

1064

1065 Competition assays on isolated Pam3csk4-bead-containing phagosomes

1066 Pam3csk4-beads containing phagosomes were isolated from RAW264.7-Rubicon-KO cells as
1067 described above. Same number of phagosomes were incubated in half-area 96 well-plates with the
1068 PS-binding probe bovine Lactadherin-FITC (BLAC-FITC, Haemtech Co, now Prolytix),
1069 recombinantly produced GST-FLAG-RubiconΔ645 or their combination at different
1070 concentrations for overnight at 4°C with gentle rocking. After PFA fixation, phagosomes were
1071 permeabilized and quenched with 0.5% (v/v) Igepal-CA630, 1% (w/v) glycine in 1X PBS for 20
1072 min at room temperature, blocked with 3% (w/v) BSA in 1X PBS, stained with primary (anti-
1073 FLAG) and secondary antibodies (anti-mouseCy3; JIR, 115-165-166) and post-fix with 1% (v/v)
1074 PFA for 10min. Phagosomes were imaged by confocal microscopy and green and red signals were
1075 quantify per phagosome.

1076

1077 Planar glass-supported lipid bilayers

1078 Peptides.

1079 All intracellular domains contain six-histidine tag (HisX6) at their N-termini and a PEG-Biotin
1080 moiety (or a FLAG-tag) at their C-termini, sequences can be found in Extended Table 1. His6X
1081 forced the proper orientation of the cytosolic tail in the planar glass-supported lipid bilayer, the
1082 biotin moiety (or the FLAG-tag) allowed streptavidin-based (or anti-FLAG antibody) intracellular
1083 domain manipulations. Intracellular domains were based on Uniprot annotation: mouseCD16

1084 (P08508, residues 236-261), humanCD16 (P08637, residues 230-254), humanTIM4 (Q96H15,
1085 residues 336-378), and mouseTLR2 (Q9QUN7, residues 606-784). Solubilization after
1086 lyophilization of mouseTIM4 (Q6U7R4, residues 301-343) intracellular domain was ineffective,
1087 and therefore human TIM4 was used.

1088

1089 TLR2-ID was recombinantly produced in bacteria (see above). Small intracellular domains for
1090 mCD16, hCD16, hTIM4 and mTIM1 (hereafter cytosolic tail) were synthesized as peptides in the
1091 Macromolecular Synthesis Facility at St. Jude using a SymphonyX peptide synthesizer (Gyros
1092 Protein Technologies) and standard Fmoc chemistry. Peptides contained a C-term PEG-Biotin and
1093 were synthesized using a preloaded PEG-Biotin resin (Sigma-Aldrich). Peptides were cleaved
1094 from the resin using TFA / Water / Thioanisole / Triisopropylsilane / Phenol / Ethanedithiol –
1095 82.5/0.5/0.5/0.25/0.25 and precipitated into cold diethyl ether, followed by centrifugation and
1096 lyophilization. Crude peptides were analyzed for purity using a Waters Alliance HPLC system
1097 fitted with a 2489 UV-visible detector and a 2475 fluorescence detector. Mass spec of peptides
1098 was confirmed using a Bruker Microflex LRF.

1099

1100 Lipid bilayers

1101 All lipids were purchased from Avanti Polar Lipids and planar glass-supported lipid bilayer were
1102 prepared as previously described⁴⁶. Briefly, a lipid mixture containing 30% 16:0-18:1 PC (POPC,
1103 850457), 50%PE (PE, 792518), 10% 18:1 DGS-Ni-NTA (790404), 10% PS (PS, 940037) and 1%
1104 TopFluor PS (810283) was mixed in chloroform, dried under vacuum and resuspended in 10ml of
1105 1X PBS. After lipid extrusion using a mini-Extruder (Avanti Polar Lipids), 50µl of liposome
1106 solution was added to 1ml of bilayer buffer (20mM HEPES, 50mM NaCl) and 150µl of solution
1107 was deposited on a glass slide affixed to a flow cell (Ibidi; catalog 80608) previously cleaned with
1108 piranha solution (1:1 mixture 30% H₂O₂ and 96% H₂SO₄). Lipid-bilayer was incubated for 5min
1109 at room temperature for equilibration, excess of lipid was washed off with 2 washes of 1ml bilayer
1110 buffer and sample lanes were imaged for TopFluor-PS clustering to determine baseline clustering
1111 of PS in the lipid bilayer (Lipids Only in the panels). N-terminal His6x-tag peptides were diluted
1112 X100 in 1X PBS and a planar glass-supported lipid bilayer was incubated with 500ml of peptide
1113 solution ~5-10µM for 15min at room temperature. After wash, images were acquired to assess the
1114 effect of peptides on TopFluor-PS clustering. Manipulations of peptide/protein on planar glass-

1115 supported lipid bilayer was achieved by incubation in high salt concentration (20mM HEPES
1116 150mM NaCl, for 10 min at room temperature) or non-labelable streptavidin (10 μ g/mL, Sigma-
1117 Aldrich, Cat No. 189730). For His6x-TLR2-ID-FLAG, anti-FLAG antibody (10 μ g/mL, Biolegend,
1118 Cat No. 637301) was used instead. Images were acquired with a Marianis spinning
1119 disk microscope (Intelligent Imaging Innovations) equipped with SoRa CSU-W (Yokogawa),
1120 Prime 95B sCMOS camera (Photometrics) and 1.45 NA 100X oil objective. Images were acquired
1121 and analyzed using Slidebook software version 6.0.24 (Intelligent Imaging Innovations).

1122

1123 Receptor recycling assay

1124 TREM2 recycling by LANDO was analyzed as previously described². Briefly, cells were plated
1125 on 4-well chambered slides (μ slides, IBIDI, 80426). The next day cells were blocked with 10%
1126 normal donkey serum in DMEM (v/v; Sigma, S30-M) for 15 min at 37°C, followed by incubation
1127 with anti-TREM2 (1:100; R&D, MAB17291) in 1% donkey serum and 5% mouse serum in
1128 DMEM for 1h at 37°C. Antibody-containing medium was aspirated, cells were acid stripped with
1129 cold DMEM (pH 2.0) and washed twice with cold 1X DPBS to remove cell-surface antibody. Cells
1130 were then re-incubated in 10% donkey serum in DMEM for 1 hour at 37°C to allow recycling of
1131 the internalized receptor-antibody complexes at the cell surface. These were labelled with
1132 secondary Alexa Fluor 594-antibody (1:500; Thermo Fisher Scientific, A-21209) in 1% donkey-
1133 serum in DMEM for 1 hour at 37°C. Cells were then acid stripped, washed with cold 1X DPBS
1134 and fixed in 4% (v/v) PFA for 15 min at room temperature. Cell-permeable Hoechst dye was added
1135 to label nuclei. Images were acquired on a Marianis spinning disk confocal microscope (Intelligent
1136 Imaging Innovations, 3i) equipped with an EMCCD camera. Image analysis including all
1137 quantification was performed using the software Slidebook 6 (3i). Quantification of recycled
1138 TREM2 receptors was performed by calculating the sum of the intracellular fluorescent signal
1139 divided by the total number of cells.

1140

1141 Yeast killing assay

1142 *Saccharomyces cerevisiae* was purchased from ATCC (Cat No. 201389) and cultured at 30°C in
1143 Yeast Peptone Dextrose (YPD) agar plates or liquid broth (Sigma-Aldrich, Y1500, Y1375).
1144 Macrophage capacity for *S. cerevisiae* killing was analyzed as previously described⁵. Briefly,
1145 macrophages were plated in 12-well plates at 5 \times 10⁵ cells/well, triplicates per time point were used.

1146 Yeast cells from overnight YPD-liquid culture were washed three times with 1X DPBS, number
1147 of yeast were estimated based on OD600nm turbidity, and then added to macrophages at 1:1 ratio.
1148 After 1h, wells were extensively washed with 1X DPBS. One set of triplicates served as baseline
1149 value (time 0h) and macrophages were lysed by osmotic shock upon incubation with MilliQ-H₂O
1150 for 10 min at room temperature, then serially diluted to 1:10,000 and plated onto YPD-agar plates
1151 in duplicate per well. The remaining wells were maintained in complete medium and processed as
1152 described above at the indicated time points. YPD-agar plates were incubated at 30°C for 24h or
1153 until colonies were clearly visible and yeast colonies were counted. Yeast killing capacity was
1154 normalized to baseline values per cell line to account for differences in plating or phagocytosis for
1155 each cell line. Final values were represented as percentage of viable yeast.

1156 Effects of GSK-A1 and Fendiline-HCl on yeast growth in YPD liquid culture was determined by
1157 assessing yeast culture turbidity at OD60nm with spectrophotometer overtime.

1158

1159 Phagosome acidification assays

1160 Cells were plated onto 48well plates (75,000 cells per well) using 6-8 replicates per condition.
1161 Following day, after treatments, cells were fed the pH sensitive probe zymosan-pHrodo-Green
1162 particles (0.2 μ l per well prepared as a mastermix) to assess acidification of phagosomes overtime.
1163 The probe remains colorless at neutral pH and turns green upon acidification. Images were
1164 acquired every 60min using Incucyte (Essen Biosciences) and manufacture's image software
1165 allowed cell segmentation and fluorescent quantification overtime. Experiments using different
1166 cell lines showed comparable values of confluency overtime and similar levels of phagocytosis
1167 were confirmed by flow cytometer in parallel assays.

1168

1169 Lipidomics analyses

1170 Lipids extraction

1171 Phagosomes, cells, or IP beads were used for lipidomic analysis; samples were processed as
1172 described above. Equal numbers (3×10^6) of macrophages, ($\sim 5 \times 10^6$) phagosomes or IP beads were
1173 washed with ice-cold 1X DPBS, flash-frozen in liquid nitrogen and then stored at -80°C until
1174 samples were processed for extraction of total lipids. A modified Folch extraction procedure ⁴⁷
1175 was used for the extraction of total lipids from purified sample. Briefly, 1 ml of chloroform-
1176 methanol (2:1, v/v) was added to the cells or beads and mixed by vortexing. Next, 200 μ l of saline

1177 was added, and the tubes were mixed for 30 sec in a Bead Ruptor Elite (OMNI International) for
1178 30 sec at 8 m/s. The homogenate was incubated at room temperature for 30 sec and then
1179 centrifuged for 10 min at 21,000xg at 4°C. After centrifugation, the lower organic-phase layer was
1180 transferred to a new tube and evaporated to dryness under a stream of liquid nitrogen. The dried
1181 lipid extracts were thoroughly dissolved with 30 μ l of chloroform-methanol (2:1, v/v), transferred
1182 to autosampler vials and analyzed by LC-MS/MS (10 μ l per injection).

1183

1184 LC-MS lipid profiling

1185 LC separations were performed with a Vanquish Horizon UHPLC (Thermo Fisher Scientific)
1186 using stepped-gradient conditions as follows: 0–4.5 min, 45 to 60%, B; 4.5–5 min, 60 to 70%, B;
1187 5–8 min, 70%, B; 8–19 min, 70 to 75%, B; 19–20 min, 75 to 90%, B; 20–33 min, 90 to 95%, B;
1188 33–34 min, 90 to 100%, B; 34–39 min, 100%, B; 39–40 min, 100 to 45%, B; 40–45 min, 45%, B.
1189 Mobile phase A was water/acetonitrile (60:40, v/v) and mobile phase B was IPA/acetonitrile
1190 (90:10, v/v); both A and B contained 10 mM ammonium acetate. The column used was a Thermo
1191 Fisher Scientific Accucore C30 (2.1 mm \times 250 mm, 2.6 μ m) operated at 50°C. The flow rate was
1192 250 μ l/min and the injection volume was 10 μ l. A Thermo Fisher Scientific Q Exactive hybrid
1193 quadrupole-Orbitrap mass spectrometer (QE-MS) equipped with a HESI-II probe was employed
1194 as detector. For each sample, two chromatographic runs were carried out subsequently, and
1195 separate data were acquired for negative and positive ions. The QE-MS was operated using a data-
1196 dependent LC-MS/MS method (Top-15 dd-MS²) for both positive and negative ion modes. The
1197 mass spectrometer was operated at a resolution of 140,000 (FWHM, at m/z 200), AGC targeted of
1198 1×10^6 , and max injection time 80 msec. The instrument's operating conditions were: scan range
1199 100–1,500 m/z; sheath gas flow 45; aux gas flow 8; sweep gas 2; spray voltage 3.6 kV for positive
1200 mode and 2.5 kV for negative mode; capillary temperature equal to 320 °C; S-lenses RF level 50;
1201 aux gas heater equal to 320°C. For the Top-15 dd-MS² conditions a resolution of 35,000 was used,
1202 AGC targeted of 1×10^5 , max injection time 50 msec, MS² isolation width 1.0 m/z, NCE 35.

1203

1204 Data processing

1205 The Thermo Fisher Scientific LipidSearch software (version 4.2) was used for identification and
1206 relative quantification of lipids with the following parameters: precursor and product ion mass
1207 tolerance of \pm 5 ppm; main adducts search (M+H, M-H, M+NH₄, M+CH₃COO, M+2H, M-2H,

1208 M+Na, M+K) for all precursor ions. All lipid sub-classes were searched within for the major lipid
1209 classes (phospholipids, sphingolipids, glycerolipids and neutral lipids). All individual data files
1210 were searched for product ion MS/MS spectra of all lipid precursor ions. The MS/MS predicted
1211 fragmented ions for all precursor adducts were measured within 5 ppm of mass tolerance. The
1212 product ions that matched the predicted fragment ions within 5 ppm of mass tolerance were used
1213 to calculate a match-score, and those candidates providing the highest quality match were
1214 determined and used for the identification of lipid molecules, and the peak areas integrated to
1215 generate chromatographic data for semi-quantitative analyses. Next, the resulting data from search
1216 results was used to perform alignments across the experimental groups under the following
1217 Alignment setup: ExpType LC-MS; Alignment Method Mean; R.T. Tolerance 0.25 min; Calculate
1218 unassigned peak area On; Filter Type New filter; Toprank filter On; Main Node Filter All isomer
1219 peaks; m-Score Threshold 5.0; c-Score Threshold 2.0; ID Quality filter A, B, C and D.

1220

1221 The sum of all peak areas was taken as total lipid content per sample and individuals lipid values
1222 were normalized to total lipid content to account for slight differences in lipid extraction or data
1223 acquisition. The data obtained from LipidSearch alignments was exported to Excel, formatted to
1224 comma-separated value (CSV) files, normalized as indicated above and then imported into
1225 MetaboAnalyst 5.0 for multivariate data analysis. The peak areas were normalized using the
1226 parameters for sample normalization sum, data transformation \log_{10} and data scaling range. After
1227 the normalization in MetaboAnalyst, statistical analysis using multiparametric ANOVA, Partial
1228 Least-Squares Discriminant Analysis (PLS-DA) and Heatmaps using the default clustering
1229 algorithms were made to interrogate the lipidomics data looking for significances of individual
1230 molecules and lipid classes.

1231

1232 Software

1233 FlowJo v10 was used for analysis of flow cytometry and GraphPad was used for data statistical
1234 analysis and data visualization. Other software packages have been indicated in specific methods
1235 sections. Cartoons were generated using BioRender.

1236

1237 Methods References

1238

1239 1 Martinez, J. *et al.* Molecular characterization of LC3-associated phagocytosis reveals
1240 distinct roles for Rubicon, NOX2 and autophagy proteins. *Nat Cell Biol* **17**, 893-906
1241 (2015). <https://doi.org/10.1038/ncb3192>

1242 2 Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis
1243 of autophagy in response to nutrient starvation using transgenic mice expressing a
1244 fluorescent autophagosome marker. *Mol Biol Cell* **15**, 1101-1111 (2004).
1245 <https://doi.org/10.1091/mbc.e03-09-0704>

1246 3 Arora, P. & Porcelli, S. A. An Efficient and High Yield Method for Isolation of Mouse
1247 Dendritic Cell Subsets. *J Vis Exp*, e53824 (2016). <https://doi.org/10.3791/53824>

1248 4 Cunha, L. D. *et al.* LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor
1249 Immune Tolerance. *Cell* **175**, 429-441 e416 (2018).
1250 <https://doi.org/10.1016/j.cell.2018.08.061>

1251 5 Heckmann, B. L. *et al.* LC3-Associated Endocytosis Facilitates beta-Amyloid Clearance
1252 and Mitigates Neurodegeneration in Murine Alzheimer's Disease. *Cell* **178**, 536-551 e514
1253 (2019). <https://doi.org/10.1016/j.cell.2019.05.056>

1254 6 De Nardo, D., Kalvakolanu, D. V. & Latz, E. Immortalization of Murine Bone Marrow-
1255 Derived Macrophages. *Methods Mol Biol* **1784**, 35-49 (2018).
1256 https://doi.org/10.1007/978-1-4939-7837-3_4

1257 7 Gilbert, G. E. & Drinkwater, D. Specific membrane binding of factor VIII is mediated by
1258 O-phospho-L-serine, a moiety of phosphatidylserine. *Biochemistry* **32**, 9577-9585 (1993).
1259 <https://doi.org/10.1021/bi00088a009>

1260 8 Shi, J., Heegaard, C. W., Rasmussen, J. T. & Gilbert, G. E. Lactadherin binds selectively
1261 to membranes containing phosphatidyl-L-serine and increased curvature. *Biochim
1262 Biophys Acta* **1667**, 82-90 (2004). <https://doi.org/10.1016/j.bbapm.2004.09.006>

1263 9 Guy, C. *et al.* LAG3 associates with TCR-CD3 complexes and suppresses signaling by
1264 driving co-receptor-Lck dissociation. *Nat Immunol* **23**, 757-767 (2022).
1265 <https://doi.org/10.1038/s41590-022-01176-4>

1266 10 Liu, X. *et al.* Unbiased and robust analysis of co-localization in super-resolution images.
1267 *Stat Methods Med Res*, 9622802221094133 (2022).
1268 <https://doi.org/10.1177/09622802221094133>

1269 11 Guy, C. S. *et al.* Distinct TCR signaling pathways drive proliferation and cytokine
1270 production in T cells. *Nat Immunol* **14**, 262-270 (2013). <https://doi.org/10.1038/ni.2538>

1271 12 Sanjuan, M. A. *et al.* Toll-like receptor signalling in macrophages links the autophagy
1272 pathway to phagocytosis. *Nature* **450**, 1253-1257 (2007).
1273 <https://doi.org/10.1038/nature06421>

1274 13 Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and
1275 purification of total lipides from animal tissues. *J Biol Chem* **226**, 497-509 (1957).
1276

1277

1278 **Acknowledgments:**

1279
1280 We thank current and past members from Dr. Doug Green's lab and department of immunology
1281 in St. Jude for comments, reagents, protocols sharing, and support. Mao Yang and Xiaofei Wang
1282 helped with mouse work and tumor measurements. Patrick Rodrigues (Macromolecular Synthesis
1283 Facility at St. Jude) synthesized the peptides. Richard Heath, Youming Shao, Vibhor Mishra,
1284 Muralidhar Reddivari, Terry Coop, and Rosario Mosca (Protein Production Facility at St. Jude)
1285 helped with recombinant protein production.

1286

1287 **Funding:** This work was supported by grants R01AI40646 and R35CA231620 from the U.S.
1288 National Institutes of Health (DRG). EBR was recipient of an EMBO Long-Term Fellowship
1289 (ALTF 1526 -2016).

1290

1291 **Author contributions:**

1292 Conceptualization: EBR, DRG.

1293 Methodology: EBR, CSG, GP, LM, ZL, DRG.

1294 Investigation: EBR, CSG, GP, LM, ZL.

1295 Writing - Original Draft: EBR, DRG.

1296 Writing - Review & Editing: EBR, DRG, CSG, GP, LM, ZL.

1297 Visualization: EBR.

1298 Supervision: DRG.

1299 Funding acquisition: EBR, DRG.

1300

1301 **Competing interests:** DRG consulted for Sonata Therapeutics, Horizon Therapeutics, and Ventus
1302 Therapeutics during the period of this project. The rest of authors declare that they have no
1303 competing interests.

1304

1305 **Data and materials availability:** All data are available in the main text, extended data, or the
1306 supplementary materials. Source data for lipidomics experiments is available upon request to
1307 corresponding author and will be deposited in the relevant repository upon manuscript acceptance.

1308 Plasmids used in this study will be deposited in Addgene or are commercially available.

1309

1310 Correspondence and requests for materials should be addressed to Douglas R. Green
1311 (douglas.green@stjude.org)

1312