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Abstract

Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial in-

formation but require complex, manually-tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based

spatial transcriptomics that combines deep learning models for cell segmentation and spot detection with a probabilistic

gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing

spatial transcriptomics data from MERFSIH, seqFISH, or ISS experiments. Polaris is available through the DeepCell

software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.

1 Introduction

Advances in spatial transcriptomics have enabled system-level gene expression measurement while preserving spatial infor-

mation, enabling new studies into the connections between gene expression, tissue organization, and disease states1,2. Spatial

transcriptomics methods fall broadly into two categories. Sequencing-based methods leverage arrays of spatially barcoded

RNA capture beads to integrate spatial information and transcriptomes3–6. Image-based methods, including multiplexed

RNA fluorescent in situ hybridization (FISH) and in situ RNA sequencing (ISS), perform sequential rounds of fluorescent

staining to label transcripts to measure the expression of thousands of genes in the same sample7–11. Because these meth-

ods rely on imaging, the data they generate naturally contain the sample’s spatial organization. While image-based spatial

transcriptomics enables measurements with high transcript recall and subcellular resolution1,2, rendering the raw imaging
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Figure 1: A weakly supervised deep learning framework for accurate fluorescent spot detection for spatial
transcriptomics imaging data. (a) Training data generation for spot detection. Spot labels were generated by finding
consensus among a panel of commonly used classical spot detection algorithms through generative modeling. These consensus
labels were then used to train Polaris’ spot detection model. Sequential steps are linked with an arrow; associated methods
and data types are linked with a solid line. (b) Demonstration of the training data generation for an example spot image.
Spot locations are converted into detections and distance maps which guide the classification and regression tasks performed
during model training. Spot colors correspond to the annotation colors in (a). (c) Output of Polaris’ spot detection model
for an example seqFISH image. The regression is the sum of the squared pixel-wise regression in the x- and y-directions.
Values above a default threshold are set to zero.

data interpretable remains challenging. Specifically, the computer vision pipelines for image-based spatial transcriptomics

must reliably perform cell segmentation, spot detection, and gene assignment across diverse imaging data. Prior methods

that sought an integrated solution to this problem rely on manually-tuned algorithms to optimize performance for a partic-

ular sample or spatial transcriptomics assay12,13. Thus, there remains a need for an integrated, open-source pipeline that

can perform these steps reliably across the diverse images generated by spatial transcriptomics assays with minimal human

intervention.

Deep learning methods are a natural fit for this problem. Prior work by ourselves and others has shown that deep learn-

ing methods can accurately perform cell segmentation with minimal user intervention14–17, providing a key computational

primitive for cellular image analysis. Here, we focus on the problem of spot detection for image-based spatial transcriptomics

data. Existing spot detection methods fall into two categories: “classical” and “supervised”18. Classical methods are widely

used but require manual fine-tuning on each dataset to optimize performance19,20. This places a fundamental limit on their

scalability. Supervised methods21–23, which often rely on deep learning methodologies, require labeled training data to learn
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how to detect spots. This requirement presents a major challenge, as experimentally generated data contain too many spots

for manual annotation to be feasible. Training data derived from classical algorithms are limited by the characteristics of

those algorithms, imposing a ceiling on model performance. Further, simulated training data lack the artifacts present in

experimentally generated data which can limit their performance on real data.

In this work, we demonstrate that deep learning can be combined with weak supervision to create a universal spot detector

for image-based spatial transcriptomics data. In our approach, we first create annotations for representative fluorescent spot

images by manually fine-tuning a collection of classical algorithms on each image. Inspired by prior work on programmatic

labeling24, we de-noise conflicting spot annotations with a generative model (Fig. 1a-b) and use these consensus annotations

to train a deep learning model for spot detection. For each pixel in an image, our model predicts the probability that the

pixel contains a spot and performs a regression to the nearest spot’s center to predict spot locations with sub-pixel resolution.

(Fig. 1c) In the Supplementary Information, we provide further details of dataset construction, generative modeling, and

deep learning methodology.

Given that training deep learning models with weak supervision can yield a computational primitive for spot detection,

we then constructed Polaris, an integrated deep learning pipeline for image-based spatial transcriptomics (Fig. 2a). Polaris

utilizes classical computer vision methods for image alignment and deep learning models for spot detection and cell segmen-

tation16. For multiplexed spatial transcriptomics images, we infer gene identities by fitting a probabilistic graphical model

to the per-spot probability “intensity” generated by the spot detection model with variational inference25,26 (Fig. 2b-c).

Polaris models spot probability values with a relaxed Bernoulli distribution. Constructed in this fashion, Polaris offers a

turnkey analysis solution for data from various image-based spatial transcriptomics methods while removing the need for

manual parameter tuning or extensive user expertise.

2 Results

The absence of ground-truth annotations for experimental data presents challenges for benchmarking Polaris’ spot detection

capabilities. To evaluate our approach’s accuracy, we followed prior work and simulated spot images, which have unambiguous

ground truth spot locations.27,28 Because we control the image generation, we can explore model performance as a function

of image difficulty by tuning parameters such as the spot density and signal-to-noise ratio. Benchmarking on simulated data

demonstrated that our method outperforms models trained with either simulated data or data labeled with a single classical

algorithm. We found that this performance gap held across the tested range of spot intensity and density (Supplementary Fig.

S7). We concluded that the consensus annotations more accurately capture the ground truth locations of spots in training

images than any single classical algorithm and that there is significant value to training with experimentally generated images.

We further demonstrated Polaris’ spot detection capabilities on held-out experimentally-generated images. Visual inspec-

tion showed that our model generalized to out-of-distribution, spot-like data generated by various spatial-transcriptomics

assays, such as ISS7 and splitFISH images11 (Supplementary Fig. S3). Additionally, we used held-out images to quantify

the agreement between Polaris and the classical methods used to create our consensus training data. We observed higher

agreement between Polaris and the classical methods than exists among the classical methods themselves. This result is a
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Figure 2: Polaris produces single-cell, spatial gene expression maps for multiplex spatial transcriptomics
images. (a, b) Analysis steps for Polaris for singleplex (red) and multiplex (blue) spatial transcriptomics imaging data.
Sequential steps are linked with an arrow, and associated methods and data types are linked with a solid line. Deep learning
models perform spot detection and cell segmentation, while a probabilistic graphical model infers gene identities. (c) A
probabilistic graphical model for inferring gene identities from spot detections. This model consists of a mixture of K relaxed
Bernoulli distributions, parameterized by their probability, α, and their temperature, λ, for generating observed data, x,
of size N spots. Shaded vertices represent observed random variables; empty vertices represent latent random variables;
edges signify conditional dependency; rectangles (“plates”) represent independent replication; and small solid dots represent
deterministic parameters. (d) Spatial organization of marker gene locations in a mouse ileum tissue sample. Each spot
corresponds to a decoded transcript for a cell type marker gene. Whole-cell segmentation was performed with Mesmer16.
(e-g) Locations of decoded genes in an example Goblet cell, enterocyte, and B cell, respectively.
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result of Polaris being trained with consensus labels. The combination of benchmarking on simulated data, visual inspection,

and analysis of inter-algorithm agreement led us to conclude that Polaris can accurately perform spot detection on a diverse

array of challenging single-molecule images. (Supplementary Fig. S5)

As with our benchmarking of spot detection method, we used simulated data to quantitatively benchmark the performance

of our barcode assignment method. When accurate simulation of experimental data is possible, simulations remove the need

for unambiguous ground-truth annotations for benchmarking. Moreover, here they allowed us to explore our method’s

dependency on spot dropout, an event that can occur due to labeling failure, image quality, or failure in the spot detection

pipeline. Regardless of origin, the presence of dropout imposes a robustness constraint on the barcode decoding methodology,

as decoding schemes robust to dropout would better tolerate labeling and spot detection model failures. Our benchmarking

of spot decoding with simulated data demonstrates that decoding with a generative model based on the relaxed Bernoulli

distribution was more robust to dropout than any other benchmarked method (Supplementary Fig. S8).

We demonstrated Polaris’ performance on a variety of previously published data: (1) a MERFISH experiment in a

mouse ileum tissue sample29 (Fig. 2d-f), a MERFISH experiment in a mouse kidney tissue sample30 (Supplementary Fig.

S9), and a ISS experiment of a pooled CRISPR library in HeLa cells31 (Supplementary Fig. S11). We found that Polaris

detected marker genes from expected cell types - even in areas with high cell density with heterogeneous cell morphologies.

Additionally, we performed a seqFISH experiment in a human macrophage cell culture sample (Supplementary Fig. S9).

For all experiments, we found that Polaris’ gene expression counts were consistent with bulk sequencing data and pipelines

relying on manual parameter tuning (Supplementary Fig. S10). These results demonstrate that Polaris can generalize across

sample types, imaging platforms, and spatial transcriptomics assays without manual parameter tuning.

3 Discussion

We sought to create a key computational primitive for spot detection and an integrated, open-source pipeline for image-based

spatial transcriptomics. Our weakly supervised deep learning model for spot detection provides a universal spot detection

method for image-based spatial transcriptomics images. Polaris packages this model and others into a unified pipeline that

takes users from raw data to interpretable spatial gene expression maps with single-cell resolution. We believe Polaris will

help standardize the computational aspect of image-based spatial transcriptomics, reduce the amount of time required to go

from raw data to insights, and facilitate scaling analyses to larger datasets. Polaris’ outputs are compatible with downstream

bioinformatics tools, such as squidpy32 and Seurat33. Polaris is available for academic use through the DeepCell software

library https://github.com/vanvalenlab/deepcell-spots; a singleplex version of the pipeline is available through the

DeepCell web portal https://deepcell.org.

Code availability

Code used for cell segmentation and model development is available at https://github.com/vanvalenlab/deepcell-tf.

The spot detection and gene assignment code is available at https://github.com/vanvalenlab/deepcell-spots. An

example Jupyter notebook for Polaris is available at https://github.com/vanvalenlab/deepcell-spots/blob/ma
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ster/notebooks/applications/Polaris-application.ipynb. The code used for model deployment is available at

https://github.com/vanvalenlab/kiosk-console. Finally, code for reproducing all models and figures included in the

paper is available at https://github.com/vanvalenlab/Polaris-2023_Laubscher_et_al.

Data availability

The data and annotations used to train the spot detection model are available for academic use at https://deepcell.rea

dthedocs.io/en/master/data-gallery.
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4 Methods

4.1 Generation of sequential fluorescent in situ hybridization (seqFISH) images for spot

training data

4.1.1 Probe design

mRNA transcripts were targeted with single-stranded DNA probes, as previously described10. Primary probes were designed

to target a panel of 10 genes with OligoMiner using balanced coverage settings34. The primary probes were designed to have

secondary probe-binding sites flanking both ends of the sequence that binds to the mRNA transcript. The secondary probes

were 15 bases long and consisted of nucleotide combinations that were optimized to have 40%-60% GC content and minimal

genomic off-target binding.

4.1.2 Probe construction

Single-stranded DNA primary probes were obtained from Integrated DNA Technologies (IDT) as an oPools Oligo Pool.

Oligos were received lyophilized and dissolved in ultrapure water at a stock concentration of 1 µM per probe. Single-stranded

DNA secondary probes were also obtained from IDT and were 5’-functionalized with Alexa Fluor 647, Alexa Fluor 546, or

Alexa Fluor 488. Secondary probes were received lyophilized and dissolved in ultrapure water at a concentration of 100 nM.

4.1.3 Cell culture

HeLa (CCL-2) cells were received from the American Type Culture Collection. The cells were cultured in Eagle’s minimum

essential medium (Cytiva #SH30024LS) supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 µg/mL

streptomycin (Gibco or Caisson), and 10% fetal bovine serum (Omega Scientific or Thermo Fisher). Cells were incubated at

37◦C in a humidified 5% CO2 atmosphere and were passaged when they reached 70%-80% confluence.

4.1.4 Buffer preparation

The primary probe hybridization buffer consisted of 133 mg/mL high-molecular-weight dextran sulfate (Calbiochem #3710-

50GM), 2X saline-sodium citrate (SSC) (IBI Scientific #IB72010), and 66% formamide (Bio Basic #FB0211-500) in ultrapure

water. The 55% wash buffer was comprised of 2X SSC, 55% formamide, and 1% Triton-X (Sigma-Aldrich #10789704001)

in ultrapure water. The secondary probe hybridization buffer consisted of 2X SSC, 16% ethylene carbonate (Sigma-Aldrich

#E26258-500G), and 167 mg/mL of high-molecular-weight dextran sulfate in ultrapure water. The ethylene carbonate was

first melted at 50◦C for 30-60 minutes. The 10% wash buffer was comprised of 2X SSC, 10% formamide, and 1% Triton-X in

ultrapure water. The imaging buffer base consisted of 0.072M Tris HCl (pH 8) (RPI #T60050-1000), 0.43 M NaCl (Fisher

#MK-7581-500), and 3 mM Trolox (Sigma-Aldrich #238813) in ultrapure water. The anti-bleaching buffer was comprised

of 70% imaging buffer base, 2X SSC, 1% catalase (10X dilution of stock) (Sigma #C3155), 0.005 mg/mL glucose oxidase

(Sigma-Aldrich #G2133-10KU), and 0.08% D-glucose (Sigma #G7528) in ultrapure water.
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4.1.5 seqFISH sample preparation

The cells were seeded in a fibronectin-functionalized (Fisher Scientific #33010018) glass-bottom 96-well plate (Cellvis P96-

1.5H-N) at 80%-90% confluence. Cells were rinsed with warm 1X phosphate-buffered saline (PBS) (Gibco), fixed with fresh

4% formaldehyde (Thermo #28908) in 1X PBS for 10 minutes at room temperature, and then permeabilized with 70%

ethanol overnight at -20◦C. Prior to probe hybridization, the cells were rinsed with 2X SSC. The primary probes were diluted

to 10 nM in the primary probe hybridization buffer and 100 µL of this solution was added to each well. Cells were incubated

with the primary probe solution for 24 hours at 37◦C. The primary probes were rinsed out twice with 55% wash buffer. Cells

were incubated in 55% wash buffer for 30 minutes in the dark at room temperature and then rinsed three times with 2X SSC

buffer. The secondary probes were diluted to 50 nM in the secondary probe hybridization buffer and 100 µL was added to

each of the wells. The probes then incubated for 15 minutes in the dark at room temperature. The secondary probes were

then washed twice in 10% wash buffer. The cells then incubated in the 10% wash buffer for 5 minutes in the dark at room

temperature. Finally, the cells were washed once with 2X SSC buffer and once with imaging buffer. Before imaging, the

buffer was changed to anti-bleaching buffer (100 µL).

Images of cell autofluorescence were acquired with non-specific secondary probe staining to generate simulated spot images.

These samples were prepared with the same seqFISH method described above, without the addition of primary probes.

4.1.6 Imaging conditions

The seqFISH samples were imaged with a Nikon Ti2 fluorescence microscope and controlled by Nikon Elements. Images were

acquired with a Nikon SOLA SE II light source, a 100X oil objective, and a Photometrics Prime 95B CMOS camera.

4.2 Creation of spot training data

4.2.1 Image annotation

Our training dataset consisted of 1000 128x128 pixel images: 400 images generated as described above by performing seqFISH

on cell culture samples, 400 previously published images generated with multiplexed error-robust FISH on tissue samples29,35,

and 200 previously published images generated with SunTag labeling of nascent proteins in cell culture samples36. All data

were scaled so that the pixels had the same physical dimension of 110 nm prior to training. These images contained up to

approximately 200 spots per image and were min-max normalized to a range of [0,1] prior to annotation. We annotated each

image with four classical spot detection algorithms: maximum intensity filtering (skimage.feature.peak local max), dif-

ference of Gaussians (skimage.feature.blob dog), Laplacian of Gaussian (skimage.feature.blob log), and the Crocker-

Grier centroid-finding algorithm (trackpy.locate). To accelerate image labeling, we created a Tkinter graphical user

interface to tune the algorithm parameters (intensity threshold, minimum distance between spots, etc.) on a per-image basis.

Additional details are provided in Supplementary Note 1.

For the spot detection algorithms that return spot locations with pixel-level resolution (peak local max, blob dog, and

blob log in skimage.feature), the subpixel localization was determined by fitting a 2D isotropic Gaussian to the spot

intensity37. A 10x10 pixel portion of the image surrounding the detected spot was cropped out and used for the Gaussian
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fitting. A nonlinear least squares regression was performed, with initial parameters of Gaussian mean at the pixel center,

an amplitude of 1 (the image’s maximum value after min-max normalization) and a standard deviation of 0.5 pixels. The

spot location was constrained to be in the middle 20% of the image, and the spot standard deviation was constrained to be

between 0 and 3.

4.2.2 Clustering of spot annotations

Spots detected by the four classical algorithms were clustered into groups by proximity. For clarity, we refer to these classical

algorithms as “annotators”. Each group of detections was presumed to be derived from the same spot in the image. To

perform this clustering, we first constructed a graph with each detected spot being a node. Two detections were connected

by an edge if they were within 1.5 pixels of each other. We then took the connected components of this graph to be clusters.

We screened the clusters to ensure that they contained at most one detection from each algorithm. If a cluster contained

more than one detection from the same algorithm, the detection closest to the cluster centroid was retained, and all other

detections were separated into new clusters.

From this graph, we derived the “detection information matrix,” which identifies the annotators that contribute a detection

to each cluster. This matrix has dimensions of C · A, where C is the number of connected components or clusters in the

graph and A is the number of annotators. The matrix has a value of 1 or 0 when a particular annotator does or does not

have a detection in a particular cluster, respectively.

4.2.3 Creation of consensus annotations with expectation maximization

A generative model fit with the expectation-maximization (EM) algorithm38 was used to estimate the probability that a

cluster of detections corresponds to a true spot in the image. The detection information matrix, described above, was used

as the input into the generative model along with an initial guess for the true positive rate (TPR) and false positive rate

(FPR) of each algorithm and a prior probability of a spot being a true detection. The initial guesses for the TPR and FPR

were 0.9 and 0.1, respectively. The prior probability of a spot being a true detection was defined as 0.5. Briefly, the EM

algorithm consists of two steps - an expectation step and a maximization step. The expectation step yields an estimate for the

probability that each detection cluster corresponds to a true detection. The maximization step yields an updated estimate

for the TPR and FPR of each annotator. The expectation and maximization steps were performed iteratively 20 times,

sufficient iterations for convergence to a local maximum of the likelihood. The resulting values were used as an estimate

for the Bayesian probability of each cluster corresponding to a “true” spot. We provide further details of these steps in the

Supplementary Information. Clusters with a probability above 0.9 were used as spots in the training dataset, and the spot

location was taken to be the centroid of the detection cluster.

4.3 Creation of simulated data for benchmarking

4.3.1 Simulated spot images

Simulated spot images were used to benchmark Polaris’ spot detection model. We created simulated images by adding

Gaussian spots at random locations to cellular autofluorescence images. The location and number of spots in an image
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were sampled from uniform distributions. The intensity and width of the simulated Gaussian were sampled from normal

distributions reflecting a spot distribution that is characteristic of experimental images.

4.3.2 Simulated detection information

Simulated detection information was used to benchmark the EM algorithm for generating consensus spot annotations. First,

we simulated a set of spot identities, as true or false-detected spots. The ratio of ground-truth true and false spots was

determined by a pre-defined prior probability of true spots. We then used the defined TPR and FPR values to simulate

detections. The probability that true spots are detected by the simulated spot detection methods is defined by the simulated

TPR, and the probability that false spots are detected is defined by the simulated FPR. As with detections from experimental

images, the simulated detections are stored in a detection information matrix. See the Supplemental Information for more

details on this matrix.

4.3.3 Simulated barcode pixel values

Simulated barcode pixel values to benchmark Polaris’ barcode assignment method’s robustness to dropout. We generated

simulated barcode pixel values by sampling from distributions of spot and background pixel values from experimental images.

The benchmarked methods include a graphical model of relaxed Bernoulli distributions, a graphical model of multivariate

normal distributions, barcode matching by Hamming distance, and PoSTcode26. The relaxed Bernoulli graphical model, the

multivariate normal graphical model, and the distance matching method take input pixel values sampled from a distribution

simulating spot probability values output by Polaris. Alternatively, PoSTcode takes input pixel values from a distribution

simulating pixel values of the raw imaging data, consistent with its original methodology. Our method for simulating barcode

values does not consider correlations in pixel values between images acquired in the same fluorescence channel or imaging

round. PoSTcode relies on this nuanced characteristic of experimental data; thus, its performance on the simulated data

used in this benchmarking analysis may have been negatively impacted.

4.4 Spot detection deep learning model architecture

4.4.1 Preparation of coordinate annotations for training data

The coordinate spot locations were converted into two different types of images before being used for deep learning model

training. The first image type is a classification image array in which pixels corresponding to spots and background are

one-hot encoded. The second image type is a regression image array, in which pixel values correspond to the distance to the

nearest spot in the x- and y-direction.

4.4.2 Image preprocessing

We performed preprocessing of images prior to model training. Pixel intensities were clipped at the 0.01 and 99.9th percentiles

and then min-max normalized so that all pixel values were scaled between 0 and 1.
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4.4.3 Model architecture

Our deep learning model architecture is based on FeatureNets, a previously published backbone where the receptive field is an

explicit hyperparameter14. We attach two prediction heads to this backbone: a classification head (to predict the probability

a given pixel contains a spot) and a regression head (to predict the distance to the nearest spot with sub-pixel resolution).

The receptive field of the network is an explicit hyperparameter that was set to a default value of 13 pixels.

All models were trained with stochastic gradient descent with Nesterov momentum. We used a learning rate of 0.01 and

momentum of 0.9. We performed image augmentation during training to increase data diversity; augmentation operations

included rotating (0◦-180◦), flipping, and scaling (0.8X-1.2X) input images. The labeled data were split into training and

validation sets, with the training set consisting of 90% and the validation set consisting of 10% of the data. The test set for

benchmarking model performance consisted of simulated spot images and held-out experimentally generated spot images.

4.4.4 Image postprocessing

We processed the classification and regression predictions to produce a list of spots. The local maxima of the classification

prediction output was determined using maximum intensity filtering, with a default intensity threshold of 0.95. For most

datasets, we found that the spot detection results do not vary widely with changes to this threshold value. In the pixels

determined to be local maxima, the sub-pixel localization is determined by adding the value of the regression prediction in

the x- and y-directions. These sub-pixel locations are returned as the output of the model.

4.5 Generation of multiplexed seqFISH dataset in cultured macrophages

4.5.1 Cell culture

THP-1 (TIB-202) cells were received from the American Type Culture Collection. The cells were cultured in Roswell Park

Memorial Institute (RPMI) 1640 Medium (Gibco) supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100

µg/mL streptomycin (Gibco or Caisson), and 10% fetal bovine serum (Omega Scientific or Thermo Fisher). To make the

complete medium, 2-mercaptoethanol (BME) (Sigma-Aldrich #M6250) was added to a concentration of 0.05mM before every

use. Cells were incubated at 37◦C in a humidified 5% CO2 atmosphere and were passaged to maintain a concentration of

0.3-1 x 106 cells/mL.

4.5.2 seqFISH sample preparation and imaging

The THP-1 monocyte cells were seeded on a fibronectin-functionalized glass slide (Corning #2980-246) at 80%-90% confluence

contained by a rubber gasket (Grace Bio-Labs #JTR8R-2.5). To differentiate the THP-1 monocytes into macrophages, the

cells were incubated with 10ng/mL phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich #P8139) in RPMI with BME for

24 hours. The media was then replaced with fresh RPMI with BME and incubated for an additional 24 hours. Differentiation

was confirmed visually based on changes in adherence and morphology.

The macrophages were dosed with 1ug/mL LPS (Sigma Aldrich #L4524) in RPMI with BME for 3 hours. Cells were rinsed

with warm 1X PBS, fixed with fresh 4% formaldehyde (Thermo #28908) in 1X PBS for 10 minutes at room temperature,
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and then permeabilized with 70% ethanol overnight at -20◦C. The primary probe library (Spatial Genomics) was added to

the sample in a flow chamber provided by Spatial Genomics and incubated overnight at 37◦C. The sample was washed several

times with primary wash buffer (Spatial Genomics). The nuclei of the sample were stained with staining solution (Spatial

Genomics).

The macrophage sample was imaged with the Spatial Genomics Gene Positioning System (GenePS). Image tiling and

secondary probe staining were performed programmatically by this instrument.

4.5.3 Spatial Genomics image analysis

To generate a point of comparison for Polaris’ output, we analyzed the seqFISH dataset with the Spatial Genomics software.

The spot detection for this analysis was performed via manual parameter tuning. For each imaging round and channel, the

threshold intensity used to detect spots was defined visually. The validity of this threshold value was confirmed across several

randomly selected fields of view. The DAPI channel was used as the input for their supervised nuclear segmentation method;

nuclear masks were dilated to create whole-cell masks.

4.6 Multiplex FISH analysis pipeline

4.6.1 Cell segmentation

For cell culture samples, cell segmentation was performed with nuclear and whole-cell segmentation applications from the

Deepcell software library. For tissue samples, cell segmentation was performed with Mesmer16. The source code for these

models is available at https://github.com/vanvalenlab/deepcell-tf; a persistent deployment is available at https:

//deepcell.org.

4.6.2 Gene identity assignment

Existing spot decoding methods for image-based spatial transcriptomics fall into two main categories: (1) pixel-wise decoding,

which attempts to decode every pixel in the input image, and (2) spot-wise decoding, which attempts to detect spots before

decoding them. Polaris’ spot decoding method uses elements of both methods. For spot decoding, Polaris’ pixel-wise spot

probability output was used to determine which pixels to decode. The maximum intensity projection of the spot probability

image was performed across all rounds and channels and the set of pixels to be decoded was determined by an intensity

threshold with a default value of 0.01. For each thresholded pixel, the array of spot probability values through the rounds

and channels was used as the input for gene assignment.

Gene assignment was performed by fitting a generative model to the probability intensities at identified spot locations,

a similar method to previously published work.26 Our model consists of 2 · R · C relaxed Bernoulli distributions, where R

is the number of imaging rounds in the experiment and C is the number of fluorescent channels in each round. The model

for pixel intensities was based on a mixture of relaxed Bernoulli distributions by default, but Polaris also has two alternative

distributions for modeling pixel intensities: Bernoulli and multivariate Gaussian. Therefore, the model consists of a “spot”

distribution and a “no spot” distribution for each imaging round and channel. This model requires two inputs:
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1. Spot probabilities at the pixel location across all imaging rounds and channels of the detected spots, as predicted by

Polaris’ deep learning model

2. A codebook defining the imaging rounds in which each gene in the sample is labeled, referred to as the gene’s barcode

The distributions are fit to the pixel values of the detected spots with stochastic variational inference25. The codebook

is used to constrain the logit function of the relaxed Bernoulli distribution, and the temperature is learned. We assume

independence across channels and imaging rounds, but the distribution parameters are shared across all genes. An empty

barcode of zeros is added to the input codebook, corresponding to a “background” - or false positive - assignment. These

distributions define the probability of each barcode assignment for a set of pixel values. For each detected spot, the probability

of each barcode assignment is calculated, based on the probability of sampling out of the “spot” or “no spot” distribution

for each round and channel. The gene whose barcode has the highest probability is assigned to the spot. If the prediction

probability does not exceed a threshold value, set to 0.95 by default, it is instead given an “unknown” assignment.

To find the coordinate locations of decoded genes, we create a mask with the pixels successfully decoded to a gene in

the codebook and apply this mask to the maximum intensity-project spot intensity image. We perform peak finding with

maximum intensity filtering to yield the coordinate location of each decoded gene.

4.6.3 Gene assignment rescue methods

After prediction, “background” and “unknown” assignments can be rescued to be assigned gene identities through two

methods. The first method, which we refer to as “error rescue”, compares the pixel values of the spot to each barcode in the

codebook. If the Hamming distance of the pixel values to a barcode is less than or equal to 1, the assignment is updated.

This method catches the rare cases in which the probabilistic decoder misses an assignment. The second method, which

we refer to as “mixed rescue”, catches the spots that contain two mixed barcodes. This situation occurs when two RNA

molecules are in close proximity in the sample and the signal from their barcode labels is mixed. Mixed barcodes often lead

to a low probability assignment, so all spots below a threshold probability, set to 0.95 by default, are checked for this case.

For this method, the barcode values for the original assignment are subtracted and the update pixel values are compared

to each barcode in the codebook. If the Hamming distance of the pixel values to a barcode is less than or equal to 1, the

assignment is updated.

4.6.4 Background masking

Bright objects in the background of smFISH images can interfere with barcode assignment, so detected spots in these regions

can be masked out. This step requires a background image without FISH staining to assess the initial fluorescence intensity

in the sample. The background image is min-max normalized so that pixels are scaled between 0 and 1, and a mask is created

with a threshold intensity, which defaults to 0.5. Any detected spots in the masked regions are excluded from downstream

analysis.
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5 Supplementary Information

5.1 Supplementary Note 1: Construction of training data for Polaris’ spot detection model

5.1.1 Overview

To construct a training dataset for Polaris’ spot detection model, we assembled a set of representative images from sequential

fluorescence in situ hybridization (seqFISH)10, multiplexed error-robust FISH (MERFISH)29,35, and SunTag labeled imaging

data36. We detected the location of these spots using the four classical spot detection algorithms described in the methods

section. Here, we refer to each of these classical spot detection algorithms as “annotators”. The parameters of these methods

were manually fine-tuned on a per-image basis to optimize the spot detection results for each image. To generate subpixel

resolution, we performed Gaussian fitting on the pixel values surrounding the spot location to estimate its subpixel location,

as described in the methods section.

To generate consensus spot annotations, we fit a generative model to the detections generated by the four annotators

(Supplementary Fig. S1). To determine which annotators detected each spot in an image, the detections from all annotators

are first grouped by proximity into clusters. We presume that the detections closer than a defined threshold of 1.5 pixels have

derived from the same spot in the image. Each cluster is allowed to contain only one detection from each annotator. If a

cluster contains more than one detection from an annotator, the centroid of the cluster is determined, and the detection from

that annotator closest to the centroid is included in the cluster. All other detections from that annotator are then separated

into new clusters.

The generative model characterizes annotators with two parameters:

1. True positive rate (TPR), which is an annotator’s probability of detecting a ground-truth true spot

2. False positive rate (FPR), which is an annotator’s probability of detecting a ground-truth false spot

The generative model characterizes detected spots by the probability of corresponding to a “true” spot (p(TP)). Said another

way, p(TP) is the probability that a spot is a true spot given that it is detected. The probability that a detection corresponds

to a “false” spot (p(FP)) has a value of 1−p(TP). The generative model is provided an initial guess for the TPR and FPR of

each classical algorithm and a matrix, which we name the “detection information matrix”. This matrix of annotation data,

x = xici=1,...,n consists of binary variables, xic, which are equal to 1 if annotator i detected cluster c, and 0 if not. We define

zc to be a binary variable indicating if cluster c is a true spot or not (1 if true, 0 if not). We assume that each annotator i

produces Bernoulli distributed annotations. Therefore, for every cluster c and annotator i, the distribution of xic given the

cluster assignment zc and annotator characteristics θi(zc) is a Bernoulli distribution:

P (xic = 1|zc, θi(zc) = θi(zc)
xic(1− θi(zc))

1−xic (1)

We assume the variables xic are independent to obtain that the probability to observe the data x = xic, given θi and zc is

P ({xic}|{zc}, {θi}) =
∏
i

∏
c

θi(zc)
xic(1− θi(zc))

1−xic (2)
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We fit our generative model to our spot detection data using the expectation-maximization (EM) algorithm38. The EM

algorithm iteratively performs three steps. First, the p(TP) and p(FP) values of each detection cluster are estimated given

the TPR and FPR for each spot detection algorithm. Second, these probabilities are used to calculate the expectation

value for the number of true positives (E(TP)), false positives (E(FP)), true negatives (E(TN)), and false negatives (E(FN))

from each algorithm. These two steps together comprise the expectation step. Third, these expectation values are used

to update the estimated TPR and FPR for each algorithm. This step comprises the maximization step. These steps are

performed iteratively until the estimate for the p(TP) value of the cluster converges. If the resulting p(TP) of a cluster

exceeds a probability threshold of 0.9, the cluster is included in the final consensus set of spot annotations. The location of

the consensus spot is taken to be at the centroid of the cluster, because each annotator is assumed to have some random

localization error.

Figure S1: Schematic diagram of the EM method for consensus spot annotation creation. The method consists
of three steps: (1) Bayesian estimation of p(TP) and p(FP). (2) Calculation of expectation values for the number of true
positives (TPs), false negatives (FNs), false positives (FPs), and true negatives (TNs). (3) Update of the maximum likelihood
estimate for the TPR and FPR values of each spot detection method.

5.1.2 Computation for the expectation step

We define the probability of a detection being a true or false detection with Bayes’ theorem:

p(Z|data, θ) = p(data|Z, θ)p(Z)

p(data|θ)
(3)

where Z is the identity of the spot as a true or false detection, data indicates which annotators detected which clusters, and

θ is the TPR or FPR of each method. The term p(Z) is the prior probability of a spot being a true or false detection. We
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can use the least informative value for the prior by setting p(Z) = 1/2, indicating an equal probability that a spot is a true

or false detection. The term p(data|θ) can be expressed as:

p(data|θ) =
∑
Z

p(data|Z, θ)p(Z) (4)

Therefore, the probability p(Z|data, θ) can be written as:

p(Z|data, θ) = p(data|Z, θ)p(Z)

p(data|θ)
(5)

=
p(data|Z, θ)p(Z)∑
Z p(data|Z, θ)p(Z)

(6)

=
p(data|Z, θ) · 1

2∑
Z p(data|Z, θ) · 1

2

(7)

=
p(data|Z, θ)∑
Z p(data|Z, θ)

(8)

This equation states that the likelihood of each possible label (e.g., true or false) is normalized by the total likelihood of both

labels to calculate the probability that a cluster is a true or false detection.

We can use Bayes’ theorem to calculate the probability of observing data given the TPR and FPR of each method.

To offer a concrete example, consider the following three situations for a hypothetical set of three annotators. For a “true

detection,” the probability that all three annotators detect the spot is given by the product of the TPRs of each method:

p(data|Z, θ) =
3∏

i=1

TPRi (9)

Alternatively, the probability that the first two annotators detect a ground-truth true spot while the third annotator

(incorrectly) does not is given by the following equation:

p(data|Z, θ) = TPR1 · TPR2 · (1− TPR3) (10)

Similarly, the probability that the first two annotators incorrectly detect a ground-truth false spot while the last annotator

(correctly) does not is given by the following equation:

p(data|Z, θ) = FPR1 · FPR2 · (1− FPR3) (11)

We can then calculate E(TP), E(FN), E(FP), and E(TN) for each annotator. Two scenarios can arise in calculating these

values.

1. If an annotator detects a spot in a particular cluster, E(TP) for that method is equal to p(TP) for that cluster, and

E(FP) for that annotator is equal to p(FP) for that cluster. E(TN) and E(FN) are set to zero.

2. If an annotator does not detect a spot in a particular cluster, E(TN) for that annotator is equal to p(FP) for that

cluster, and E(FN) for that annotator is equal to p(TP) for that cluster. E(TP) and E(FP) are set to zero.
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5.1.3 Computation for the maximization step

We sum E(TP), E(FN), E(FP), and E(TN) across all clusters to calculate an updated maximum likelihood estimate for TPRi

and FPRi for method i with equations of the following form:

TPRi =

∑
i E(TPi)∑

i E(TPi) +
∑

i E(FNi)
(12)

FPRi =

∑
i E(FPi)∑

i E(FPi) +
∑

i E(TNi)
(13)

5.1.4 Evaluation of generative model performance for the creation of training data

We performed simulated experiments to demonstrate the accuracy of our generative model output by simulating spot detection

methods with varying TPR and FPR values and simulating spot identities as true or false spots. These simulated experiments

do not involve simulated images or application of classical spot detection methods, but instead involve simulating annotations

in the form of a detection information matrix. These experiments demonstrate that the EM algorithm can be applied to

accurately find consensus among noisy detections.

We demonstrate that the generative model outputs TPR and FPR estimates for classical methods that are close to their

actual values. Using the simulated detection information matrix for simulated spot detection methods with different TPR

and FPR values, we determined the error distribution for the TPR and FPR estimates of the simulated spot detection

methods based on 200 trials of EM parameter estimation. For the simulated spot detection methods, the TPR and FPR

values were sampled from uniform distributions centered at 0.9 and 0.1, respectively (Supplementary Fig. S2a). Using four

simulated spot detection methods, we investigated the relationship between the accuracy of the generative model output and

the number of spots in the input data set (Supplementary Fig. S2b). The fraction of correctly labeled detections increases

with the number of spot detections in the dataset, with the accuracy exceeding 95% over the typical range of dataset sizes

for training Polaris’ deep learning model. Additionally, using a simulated dataset size of 1000 spots, we found that the

accuracy of the generative model output improves with the number of spot detection methods used to create the consensus

spot locations, approaching 100% (Supplementary Fig. S2c). In these experiments, we ran 50 independent simulations per

condition in which TPRs and FPRs were sampled from uniform distributions with a range of 0.2, centered at 0.9 and 0.1,

respectively.
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Figure S2: Benchmarking consensus annotation output of the generative model. (a) Error distribution for EM
estimates of TPR and FPR values for 100 trials with three simulated classical methods. (b) Fraction of simulated detections
correctly classified with increasing dataset size (number of spots in the dataset). (c) Fraction of simulated detections correctly
classified as a true or false detection by EM for an increasing number of classical spot detection methods used in the EM
method.
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5.2 Supplementary Note 2: Custom loss function for Polaris’ deep learning model for spot

detection

We trained the network using a custom loss function composed of a classification loss and a regression loss, which considers

the outputs of both of the model’s prediction heads. The loss function has the following form:

L(y, ŷ) = Lcla(C, Ĉ) + Lreg(R, R̂) (14)

where C is the classification head output, R is the regression head output, and y = (C,R). The classification loss is the

weighted cross-entropy with inverse class frequency-based weights. The regression loss is given by:

Lreg(R, R̂) =
1

|Gd|
∑
i∈Gd

ℓ((dyi, dxi), (d̂yi, d̂xi)) (15)

where Ri = (dyi, dxi) (i denotes a single pixel), Gd = {pixels i = (iy, ix)| a spot-containing pixel j exists with L∞(i, j) =

maxk∈x,y |ik − jk| ≤ d}, and ℓ is the smooth L1 function. dxi is the x-coordinate of the position difference between the

nearest spot to pixel i, and pixel i’s center. Similarly, dyi is the y-coordinate of this position difference. d is a configurable

parameter which determines the threshold distance from the nearest spot under which the estimated nearest spot’s position

for that pixel is taken into account in the loss function.
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5.3 Supplementary Note 3: Generalization of Polaris’ spot detection model to a variety of

spot images

Figure S3: Polaris’ spot detection model generalizes to spot images generated with a variety of single-molecule
assays. The spot probability prediction images encode the pixel-wise spot probability, and the regression prediction images.
The regression image is the sum of the square of the subpixel distances to the nearest spot in the x- and y-dimensions. Pixels
beyond a threshold value are set to zero. These outputs are used together to generate a set of predicted spot locations with
subpixel resolution, plotted over the raw image.
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5.4 Supplementary Note 4: Mutual nearest-neighbor method for matching sets of spots

To more quantitatively benchmark the performance of our deep learning models, we need a method for comparing sets of

coordinate spot locations. Our method finds sets of mutual nearest neighbors to compare sets of ground-truth and predicted

spot locations. Locations that can be matched between ground-truth spots and detected spots are considered true positive

detections. Detected spots that cannot be matched to ground-truth spots are false positive detections, and ground-truth

spots that cannot be matched to detected spots are false negative detections. These values can be used to calculate metrics

such as precision and recall to quantify the performance of a spot detection method.

Figure S4: Example cases handled by a mutual nearest-neighbor matching algorithm. (a) Example with spots
inside and outside the threshold distance to a ground-truth spot. Ground truth spots and their threshold distance are shown
in grey. True positive detections are shown in green and false positive detections are shown in orange. (b) Example with two
spots inside the threshold distance to a ground-truth spot. (c) Example with two spots within the threshold distance of two
ground-truth spots.

To be considered a true detection, a detection must be within some threshold distance of a ground-truth detection. All

spots outside this threshold distance are considered false detections (Supplementary Fig. S4a). If more than one detection is

within the threshold distance of a ground-truth spot, the detection that is the closest to the ground-truth spot is considered

a true detection, and all others are considered false detections (Supplementary Fig. S4b). If more than one detection is

within the threshold distance for more than one ground-truth spot, edge cases may arise. For a detection to be considered

a true detection, that detection and the corresponding ground-truth spot must be mutual nearest neighbors. Therefore, if

a detection is within the threshold distance for two ground-truth spots, it is only paired with a ground-truth spot if they

are each others’ mutual nearest neighbors. Otherwise, the detection is considered a false detection, even if the detection is

within the threshold distance of a ground-truth spot (Supplementary Fig. S4c).
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5.5 Supplementary Note 5: Inter-algorithm agreement of spot detection results

Figure S5: Quantification of agreement between Polaris’ deep learning model and different classical spot
detection methods. The benchmarked methods include maximum-intensity filtering (PLM), the Crocker-Grier centroid-
finding algorithm (trackpy), Laplacian of Gaussian (LoG), difference of Gaussians (DoG), and Polaris (DL model).
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5.6 Supplementary Note 6: Benchmarking the receptive field of Polaris’ spot detection

model

To quantify the effect of the receptive field parameter of Polaris’ spot detection model on its performance, we followed prior

work27,28 and used simulated spot images, which is a common practice in the field. This approach to benchmarking has

the advantage of having an unambiguous ground truth. We find that the receptive field parameter has a modest effect on

the model’s performance. The model’s precision decreases with increasing receptive field, a trend that was also reflected in

the model’s F1 score across different values for the receptive field (Supplementary Fig. S6a,c). Intermediate values for the

receptive field had the lowest recall, but the best values for the validation loss during training (Supplementary Fig. S6b,d).

Because the effect of the receptive field parameter on the average value for all metrics is relatively modest, the intermediate

value of 13 was selected as the default value for the spot detection model.
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Figure S6: Benchmarking the receptive field parameter of Polaris’ spot detection model. (a-d) Violin plot
quantifying the performance metrics ((a) precision, (b) recall, (c) F1, (d) best validation loss during training) for models
trained with different values for receptive field of Polaris’ spot detection model. n=24 trained models per receptive field
condition.
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5.7 Supplementary Note 7: Benchmarking Polaris’ spot detection model on simulated im-

ages with ranging spot characteristics

Figure S7: Benchmarking model performance on simulated spot images with a range of spot intensities and
densities. (a) Performance quantification for models with various training datasets applied to images with varying spot
intensity. (b) Performance quantification for models with various training datasets applied to images with varying spot
density. Units of spot intensity are arbitrary.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.03.556122doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.03.556122
http://creativecommons.org/licenses/by/4.0/


5.8 Supplementary Note 8: Robustness of Polaris’ barcode decoding method to dropout

Figure S8: Benchmarking of robustness of gene decoding methods to dropout. Quantification of F1 score for four
barcode decoding methods (a graphical models of relaxed Bernoulli distributions, a graphical model of multivariate normal
distributions, Hamming distance matching, and PoSTcode) for simulated barcode pixel values with a range of dropout rates.
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5.9 Supplementary Note 9: Benchmarking Polaris’ performance on various multiplexed

FISH image sets

We benchmarked Polaris’ performance on two previously published MERFISH datasets29,30 and one seqFISH dataset. We

demonstrate that Polaris accurately detects and decodes FISH spots in cell culture and tissue samples (Supplementary

Fig. S9a-b). Visual inspection of Polaris’ output illustrates the value of multiplexed FISH methods, which quantify gene

expression while retaining the sub-cellular location of each transcript. In the kidney tissue sample, anatomical structures

create tissue-level organization of gene expression (Supplementary Fig. S9a). These structures would be lost during the

tissue homogenization required for sequencing-based assays.

The cultured macrophage sample was created by stimulating immortalized macrophages with lipopolysaccharide (LPS).

In response, the macrophages demonstrate cell-to-cell and sub-cellular heterogeneity in inflammatory gene expression (Sup-

plementary Fig. S9b). While single-cell sequencing technologies would be able to capture the cell-to-cell heterogeneity in

gene expression, the sub-cellular spatial distribution of transcripts would be lost. Furthermore, image-based spatial tran-

scriptomics assays can be more easily paired with other imaging assays, such as dynamic observation of a live cell reporter

or spatial proteomics. These paired measurements allow multiple nodes of an individual cell’s signaling state to be observed.

To benchmark Polaris’ performance on MERFISH data in tissue samples, we compare its output to counts measured with

RNA-seq. We find that for the mouse ileum MERFISH dataset29, Polaris’ mean gene expression counts per cell correlate well

with RNA-seq counts (r=0.582), which is similar to the correlation between the counts from the original analysis of this data

with RNA-seq counts (r=0.683) (Supplementary Fig. S10a). The counts from these two analyses are also highly correlated

(r=0.871) (Supplementary Fig. S10b). For the mouse kidney MERFISH dataset30, we find similar results; Polaris and the

original analysis yield mean gene expression counts per cell that are similarly correlated with RNA-seq counts (r=0.552 and

r=0.565, respectively) (Supplementary Fig. S10c). The counts from the two MERFISH analyses are also highly correlated

(r=0.954) (Supplementary Fig. S10d). These comparisons demonstrate that Polaris can output a similar result as the original

analysis pipelines but without fine-tuning of the underlying spot detection method.

Furthermore, we demonstrate Polaris’ performance on seqFISH data in a cell culture sample. We compare its output mean

gene expression counts per cell to counts obtained with the Spatial Genomics analysis software and found the two analyses

yielded counts that were similarly correlated with RNA-seq counts (r=0.802 and r=0.694, respectively) (Supplementary Fig.

S10e). As with the MERFISH analyses, the counts from the two seqFISH analysis pipelines were highly correlated (r=0.909)

(Supplementary Fig. S10f). This analysis demonstrates that Polaris generalizes between different FISH assays and sample

types without manual parameter tuning. However, the spatial transcriptomics field acknowledges that FISH counts are prone

to overdispersion, limiting the utility of comparisons made with a linear regression movdel30,39.
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Figure S9: Demonstration of Polaris’ performance on a MERFISH and seqFISH data. (a) Example Polaris
prediction for a MERFISH experiment in a mouse kidney tissue sample.30 (b) Example Polaris prediction for a seqFISH
experiment in a macrophage cell culture sample. The spot colors of the Polaris prediction in (a,b) denote the predicted gene
identities. The inset image location is defined by the white box in the full field of view (FOV).
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Figure S10: Correlation of Polaris’ quantification of MERFISH data with other quantification methods. (a,c)
Scatter plot plotted in logspace, comparing gene expression counts quantified with MERFISH with counts measured with
RNA-seq. (b,d) Scatter plot plotted in logspace, comparing previously published MERFISH gene expression counts with
counts quantified with Polaris. (e) Scatter plot plotted in logspace, comparing mean gene expression counts per cell quantified
with seqFISH with counts measured with RNA-seq. (f) Scatter plot plotted in logspace, comparing mean gene counts per
cell obtained by manual analysis of seqFISH data with gene counts quantified with Polaris.
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5.10 Supplementary Note 10: Demonstration of Polaris’ performance decoding a ISS bar-

code library

We benchmarked Polaris’ combinatorial ISS barcode assignment performance on a previously published image set31 in HeLa

cells created with pooled optical genetic screen assay, which uses ISS to encode a genetic perturbation (Supplementary Fig.

S11a). We find that the barcode counts decoded by Polaris are highly correlated with the counts quantified in the original

analysis (r=0.956) (Supplementary Fig. S11b). For all barcodes, Polaris consistently yields higher counts of decoded spots,

demonstrating higher sensitivity than the originally published image analysis pipeline.

Figure S11: Demonstration of Polaris’ performance on an ISS dataset in HeLa cells. (a) Example Polaris prediction
for the ISS sample. The spot colors correspond with barcode identities. The inset location is defined by the black box in the
full field of view (FOV). (b) Scatter plot correlating total counts for each barcode decoded by the original published analysis
with counts quantified by Polaris (r=0.956).
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analysis in preserved tissue and cells. Nature Methods 2013, 10, 857–860.

[8] Chen, K. H.; Boettiger, A. N.; Moffitt, J. R.; Wang, S.; Zhuang, X. Spatially resolved, highly multiplexed RNA profiling

in single cells. Science 2015, 348 .

[9] Codeluppi, S.; Borm, L. E.; Zeisel, A.; La Manno, G.; van Lunteren, J. A.; Svensson, C. I.; Linnarsson, S. Spatial

organization of the somatosensory cortex revealed by osmFISH. Nature Methods 2018, 15, 932–935.

[10] Eng, C.-H. L.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.-C.;

Cai, L. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 2019, 568, 235–239.

[11] Goh, J. J. L.; Chou, N.; Seow, W. Y.; Ha, N.; Cheng, C. P. P.; Chang, Y. C.; Zhao, Z. W.; Chen, K. H. Highly specific

multiplexed RNA imaging in tissues with split-FISH. Nature Methods 2020, 17, 689–693.

[12] Axelrod, S.; Cai, M.; Carr, A.; Freeman, J.; Ganguli, D.; Kiggins, J.; Long, B.; Tung, T.; Yamauchi, K. Starfish: Scalable

Pipelines for Image-Based Transcriptomics. Journal of Open Source Software 2021, 6, 2440.

[13] Cisar, C.; Keener, N.; Ruffalo, M.; Paten, B. A unified pipeline for FISH spatial transcriptomics. Cell Genomics 2023,

100384.

[14] Valen, D. A. V.; Kudo, T.; Lane, K. M.; Macklin, D. N.; Quach, N. T.; DeFelice, M. M.; Maayan, I.; Tanouchi, Y.;

Ashley, E. A.; Covert, M. W. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell

Imaging Experiments. PLOS Computational Biology 2016, 12, e1005177.

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.03.556122doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.03.556122
http://creativecommons.org/licenses/by/4.0/


[15] Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular segmentation. Nature

Methods 2020, 18, 100–106.

[16] Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data

annotation and deep learning. Nature Biotechnology 2021, 40, 555–565.

[17] Pachitariu, M.; Stringer, C. Cellpose 2.0: how to train your own model. Nature Methods 2022, 19, 1634–1641.

[18] Mabaso, M.; Withey, D.; Twala, B. Spot detection methods in fluorescence microscopy imaging: A review. Image

Analysis and Stereology 2018, 37, 173–190.

[19] van der Walt, S.; Schönberger, J. L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J. D.; Yager, N.; Gouillart, E.; Yu, T.

scikit-image: image processing in Python. PeerJ 2014, 2, e453.

[20] Allan, D. B.; Caswell, T.; Keim, N. C.; van der Wel, C. M.; Verweij, R. W. soft-matter/trackpy: Trackpy v0.5.0. 2021;

https://zenodo.org/record/4682814.

[21] Gudla, P.; Nakayama, K.; Pegoraro, G.; Mistelli, T. SpotLearn: Convolutional Neural Network for Detection of Fluo-

rescence In Situ Hybridization (FISH) Signals in High- Throughput Imaging Approaches. Cold Spring Harbor Symposia

on Quantitative Biology 2017, 82, 57–70.

[22] Eichenberger, B. T.; Zhan, Y.; Rempfler, M.; Giorgetti, L.; Chao, J. A. deepBlink : threshold-independent detection

and localization of diffraction-limited spots. Nucleic Acids Research 2021, 49, 7292–7297.

[23] Wollmann, T.; Rohr, K. Deep Consensus Network: Aggregating predictions to improve object detection in microscopy

images. Medical Image Analysis 2021, 70, 102019.

[24] Ratner, A.; Bach, S. H.; Ehrenberg, H.; Fries, J.; Wu, S.; Ré, C. Snorkel: rapid training data creation with weak
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