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Abstract

Biomolecular condensates are membraneless organelles that can concentrate hundreds of different
proteins to operate essential biological functions. However, accurate identification of their
components remains challenging and biased towards proteins with high structural disorder
content with focus on self-phase separating (driver) proteins. Here, we present a machine learning
algorithm, PICNIC (Proteins Involved in CoNdensates In Cells) to classify proteins involved in
biomolecular condensates regardless of their role in condensate formation. PICNIC successfully
predicts condensate members by identifying amino acid patterns in the protein sequence and
structure in addition to the intrinsic disorder and outperforms previous methods. We performed
extensive experimental validation in cellulo and demonstrated that PICNIC accurately predicts 21
out of 24 condensate-forming proteins regardless of their structural disorder content. Even though
increasing disorder content was associated with organismal complexity, we found no correlation
between predicted condensate proteome content and disorder content across organisms. Overall,
we applied a novel machine learning classifier to interrogate condensate components at single

protein and whole-proteome levels across the tree of life (picnic.cd-code.org).

Main

Introduction

Biomolecular condensates are membrane-less organelles that can selectively concentrate
biomolecules' and are typically non-stochiometric assemblies of thousands of protein molecules
and nucleic acids. The role of condensates has been implicated in several fundamental
biochemical processes in physiology and disease’ . Functions exerted by condensates include: i)

sequestering molecules and shutting down translation of specific mRNAs?; ii) buffering
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concentration of proteins®; iii) reservoir of proteins for fast assembly and disassembly of large
p p y y g

complexes, such as the nuclear envelope’.

Proteins can have two major roles in a condensate: drivers (scaffolds) or clients®’. Drivers can
induce the formation of condensates and are essential members of condensates. For example,
knock-out of the driver protein can lead to disassembly of a condensate. While a client is
recruited to a condensate often via an interaction with a driver protein, and it is neither necessary
nor sufficient in driving the condensate formation. Drivers often self-phase separate in vitro,
nevertheless self-phase separation does not guarantee in vivo driver functionality. For most
condensate-forming proteins the client or driver status is unknown, therefore we refer to them as

condensate members.

While many proteins can phase-separate in the test-tube and form liquid-like condensates in vitro,
studying if they also form condensates in vivo is more challenging. Individual proteins can be
labeled using fluorescent tags and imaged for testing droplet formation which exhibit liquid-like
properties such as fusion, Oswald ripening, fast dynamics in fluorescent recovery after
photobleaching (FRAP)'!" assay. However, condensates may contain hundreds and even
thousands of different proteins. Systematic detection of condensate proteomes is limited to a few
mass spectrometry and proximity labeling studies: purified nucleoli'*"?, P-bodies'* and stress

granules'>'

were subjected to mass spectrometry analysis for enrichment. Systematically and
experimentally testing which proteins are members of condensates remains a bottleneck in the

field. Therefore, computational methods can facilitate the process of characterizing proteins

involved in biomolecular condensates at proteome-scale.

The main limitation of computational method development is related to the sparse experimental
data of verified condensate-forming proteins. The first models were proposed based on properties
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of a few protein families, such as CatGranule'” and PScore'®'”. While these methods aided the
discovery of novel condensate-forming proteins with similar properties, they do not generalize
well®.

In recent years, several data driven and machine learning based liquid-liquid phase separation
(LLPS) predictors have been developed*' ** making use of the experimental data aggregated in
four LLPS databases®2*. While most predictors focused on identifying self-phase separating

22724 and thus trained on in vitro

proteins (i.e. form in vitro condensates, that are also often drivers)
data, a recent metapredictor combined scores of previous methods and microscopy data to
identify all condensate members (both drivers and clients)*. These methods have excellent
performance compared to the first generation of predictors, nevertheless they have several
shortcomings. For example a sub-optimal or biased definition of the negative dataset based on a

priori assumptions about driving features, such as disorder being the main determinant, and

accordingly using structured proteins from PDB as negative data®.

Here, we focused on predicting proteins involved in biomolecular condensates instead of proteins
involved in in vitro self-phase separation per se. We developed a new machine learning model
called PICNIC (Proteins Involved in CoNdensates In Cells). As amino acid composition bias and
patterning of charges were shown to impact the ability of proteins to form condensates** >, we
developed novel features that represent short and long range co-occurrences of amino acids in the
protein sequence and structure (AlphaFold2 models), as well as used features such as sequence
complexity®, disorder score™ that were previously shown to be successful in identifying drivers.
We addressed the short-comings of previous methods by using a larger and highly curated and
non-redundant dataset of in vivo condensates (derived from CD-CODE)*, and by defining the
non-condensate forming, negative dataset, based on a protein-protein interaction network.

Experimental validation of 24 proteins spanning a wide-range structural disorder confirmed that
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18 of them localize to condensates with high confidence, while 3 form condensates with low
confidence. Further, 8 of them co-localize with known biomolecular condensates. Thus, our
experimental validation suggests an ~88% success rate in identifying condensate forming
proteins. Moreover, we trained another model with extended set of features which include Gene
Ontology terms (PICNICgo), which provides useful insights about specific protein functions that
are enriched in proteins of biomolecular condensate, such as RNA-binding.

Although PICNIC was trained on the richest human data, it generalizes well to other organisms
tested. Proteome-wide predictions by PICNIC estimate that ~40% of proteins partition into
condensates across different organisms, from bacteria to humans, with no apparent correlation

with organismal complexity or disordered protein content.

Results

Defining condensate-forming proteins

In order to develop a model to identify condensate-forming proteins, we assembled a ground truth
dataset for H. sapiens, that has the most experimentally studied condensates of all organisms to
date. Since we aimed at developing a binary classifier, we considered two classes of proteins: 1)
proteins involved in condensates (positive dataset) and proteins not involved in condensates
(negative dataset) (Figure 1a). The positive dataset was constructed from a semi-manually
curated dataset of biomolecular condensates and their respective proteins, called CD-CODE
(CrowDsourcing COndensate Database and Encyclopedia), developed by our labs**. CD-CODE
compiles information from primary literature and from four widely used databases of LLPS
proteins %%,

Building the negative dataset is a complicated task as there is no publicly available resource that

reports proteins that do not form condensates. Additionally, condensates may form only under
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specific conditions®’. Here, we defined the negative dataset based on protein-protein interaction
network (InWeb database™ for human proteins). We excluded all proteins that have direct
connections with known condensate proteins. We reasoned that these proteins are potential
condensate members that have not yet been studied. The remaining proteins comprised the
negative dataset (Figure 1a). Of course, this procedure doesn’t guarantee the absence of
condensate proteins among the negative dataset (false negatives). But exclusion of the proteins
that directly interact with proteins that were reported as members of synthetic or biomolecular
condensates is lowering the probability of mixing positive and negative data. Overall, our non-
redundant dataset (filtered by 50% sequence identity) contained 2142 positive and 1709 negative

human proteins, which were divided by 4:1 ratio into training and test datasets.

PICNIC identifies sequence- and structure-determinants of condensate formation

We hypothesized that the ability to form condensates is encoded in the proteins’ sequence and
structure, and developed a machine learning classifier called PICNIC (Proteins Involved in
CoNdensates In Cell) based on sequence-distance-based and structure-based features derived
from Alphafold2 models (Figure 1b, in total 65 sequence-distance-based and 21 structure-based
features).

It has been already shown that many proteins involved in condensates harbor intrinsically
disordered regions (IDRs) and low-complexity sequences. Due to their inherent flexibility, multi-
valency and ability to sample multiple conformations, they are adept at a wide array of binding-
related functions including macro-molecular assemblies’>”*, We also tested several metrics of
disorder and sequence complexity as features (Supplementary Methods). Our final model
contained several features related to disorder, such as ITUPred scores®®, that have a feature

importance of 0.5-3%.
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Although the presence of highly disordered residues is among most important features (Figure
1e, pink), it is not a prerequisite for the protein to have long disordered domains to be a member
of the condensate. The proportion of known condensate-forming proteins with no disordered
regions in the human proteome is 21% (disordered regions < 10aa. Figure S1), while 33% of all
human proteins have no disordered regions. For example, Human protein Guanine nucleotide
exchange factor C9orf72 is a driver protein in stress granules; Speckle-type POZ protein is a
driver in nuclear speckle and SPOP/DAXX body. Both proteins consist of ordered domains only
that were experimentally determined by electron microscopy and X-ray crystallography,
respectively (Figure S1, PDB ids 6L T0 ad 3HUG6). Thus, both analysis of experimentally verified
condensates and the selected features by our model suggest that disorder is not a necessity for

condensate-forming proteins.

Along with overall sequence complexity and disorder scores of a protein, the secondary structure
of individual residue types was also found to be important. We used the confidence score of the
AlphaFold model prediction, the pPLDDT score, that was shown to correlate with sequence
disorder”. We represented the occurrence of an amino acid (AA) in a given secondary structure
element (SSE) with a given model confidence as a triad (aa-SSE-pLDDT).

As amino acid composition bias and patterning of charges were shown to impact the ability of

proteins to form condensates®*

, we developed features that represent short and long range co-
occurrences of amino acids in the protein sequence. We represent co-occurrence of amino-acids
in the protein sequence within a distance (number of amino acids in linear sequence) by triads
(AA,, distance, AA;). After feature selection, the long-range distance between charged amino

acids, e.g. Lysine and Arginine (K,60, R) and Aspartic acid and Lysine (D,20,K), and short-range

distance of Leucine and hydrophobic amino acids (e.g. L,0,W; F,2,L.; L,2,1), and the distance
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between Cysteine and hydrophobic amino acids were shown to be the most important features.

Overall Lysine and Leucine amino acids contribute the most to the model (Figure 1c).

RNA-related functions are enriched in condensate proteins

In order to further increase to performance of our model, we integrated functional information
that is already known about each protein and described as Gene Ontology (GO) terms. We
developed a second classifier, called PICNICgo that combines GO terms and the previously used
PICNIC features (Figure 1b). After feature selection only 18 features were included in the final
model, 10 new GO features and 8 features of PICNIC described in the previous section. We
found, that the most significant GO term is RNA binding, which is superseding the importance of
other terms and features by several orders of magnitude (Figure 1d).

While the GO annotation feature is biased by existing knowledge, it nevertheless validates the
design of the negative dataset: it highlights RNA binding molecular function as one of the of the
most important features in PICNICgo model, which is known to play crucial role in biomolecular
condensate formation, as RNA molecules are significant constituents of condensates’*’. This
feature is efficient in discriminating the two classes of proteins because the positive and negative
datasets show different distributions of RNA binding annotation. In PICNICgo the following
functions were marked as the most important: transferase activity, transferring phosphorus
containing groups, enzyme binding, phosphoric ester hydrolase activity, organic cyclic compound
binding, and heterocyclic compound binding (Figure 1d). The success of including functional

annotation demonstrates, that for proteins with unknown cellular compartmentalization, specific
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set of functional descriptions can provide additional evidence for their tendency to form

biomolecular condensates.

PICNIC accurately identifies proteins involved in biomolecular condensate formation

Several data-driven predictors were developed in the last few years, that aim to predict proteins
involved in LLPS from protein sequence alone or from sequence and experimental data, such as
microscopy images*'. Here, we compared the performance of PICNIC to sequence based
predictors, PSAP¥, DeePhase*? and two versions of PhaSePred”, one general model (PdPS-8fea
based on 8 features) and one developed for human proteins only which uses existing experimental
data, such as fluorescent microscopy images of the proteins as well as experimental data on
phosphorylation sites (PdPS-10fea based on 10 features).

We compared the performance of tools on three different datasets: 1) test dataset from the
recently published PhaSePred methods?; 2) proteins forming nuclear punctae defined by the
OpenCell project*; 3) test dataset generated from CD-CODE* (see Supplementary Methods,
Dataset S1). Although the CD-CODE test data is not independent and was partially used by
existing predictors during their training process, PICNIC has superior performance with a
maximum F1-score of 0.81 (Figure 2¢). Not surprisingly, the models that use existing
experimental information outperform the sequence-based predictors. Specifically, PICNICgo has
the best performance (ROC-AUC=0.91, F1-score=0.84) followed by PdPS-10fea (ROC-

AUC=0.89, F1-score=0.83).

To further validate our model, we used microscopy images from Human Protein Atlas (HPA)
where fluorescently labeled proteins were imaged and their cellular localization was
determined*. Specifically, three types of cellular localizations were screened: nucleolus,

centrosome and nuclear speckle. We filtered the list of proteins from HPA that were already in
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our training set that resulted in 484 proteins with known localization. Overall, PICNIC scores
were higher for the proteins from HPA than for proteins without known localization (Figure S3).
69% of proteins mapped from HPA (with exclusion of the proteins from the training dataset) have
a PICNIC score greater than 0.5, meaning that PICNIC correctly identified them as members of
biomolecular condensates. It should be noted that HPA doesn’t report if a protein does not belong
to given condensate (negative examples). Therefore, this dataset can be used only to check model
sensitivity (recall, what fraction of true condensate forming proteins were predicted correctly),

but not model precision (what fraction of positive predictions are actually true positives).

PICNIC is robust in identifying small sequence perturbations that impact condensate
formation

A real challenge of computational predictors is to be sensitive to small sequence perturbations
that impact condensate formation. To test if PICNIC can distinguish similar sequences with
altered condensate forming properties, we considered the synuclein family, that comprises three
paralogs in human. Although they have similar sequences (Figure 3a and ¢, 60-70% identity) and
structures as predicted by AlphaFold (Figure 3b), only a- and y-synuclein form condensates in
vivo, and only a-synuclein phase separates in vitro. Specifically, FITC-labeled B-synuclein, which
lacks the characteristic NAC region of a-synuclein, does not phase separate at high
concentrations (200 uM) and under crowding conditions (10% [weight/volume] PEG), whereas
FITC-labeled a-synuclein forms condensates under the same conditions* . While a- and y-
synuclein can form amyloid-like fibers, B-synuclein does not**°. Moreover, a- and y-synuclein
are part of biomolecular condensates: a-synuclein is reported to be the member of Synaptic
vesicle pool condensate*’, y-synuclein is a member of the Centrosome*®, but B-synuclein has not
been found in any biomolecular condensates yet. PICNIC is the only method tested here which

accurately predicts the in vivo condensate-forming ability of the synuclein family (Figure 3d).
10
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Other methods either give the same score for all three paralogs and/or do not predict the correct
tendency of condensate formation in vivo. We surmise that PICNIC is sensitive to structural
rearrangements of proteins, and hypothesize that the bending of alpha-helix in B-synuclein

potentially hinders the protein’s ability to form condensate.

Interpretation of our machine learning models

To explore the generalisability of our models, we compared the most important features learnt by
PICNIC vs. PICNICgo. First, we calculated the most divergent gene ontology features between
the dataset of known condensate-forming proteins (CD-CODE) and the dataset of whole
proteomes of corresponding organisms (Figure S4). Further, we compared these distributions to
the distributions of potential condensate proteins predicted by PICNIC. This analysis
demonstrated that PICNIC can recognize the protein properties deduced as most important by
PICNICgo model, as well as terms describing cellular localization which were excluded from
PICNICgo features (Figure S5).

We also compared the two models in the opposite direction to see whether PICNICgo model can
identify the sequence- and structure-based features considered as important by the PICNIC
model. Interestingly, for different species different subsets of features were highlighted, but in
concordance with features selected as most significant by PICNIC (Figure S6). Thus, PICNIC
that was trained without Gene Ontology annotation can detect properties of proteins in
biomolecular condensates captured by Gene Ontology terms for different species and vice versa:
PICNICgo detects properties of proteins in biomolecular condensates captured by distance-based
and AlphaFold-based features for different species, further validating the generalizability of the

model. Overall, the propensity of a protein to be a member of biomolecular condensate seems
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encoded in the sequence, and machine learning models, such as PICNIC can recognize these

encoded properties.

Experimental validation of predicted condensate-forming proteins

In order to experimentally validate our model, we decided to predict the condensate localization
of poorly characterized human proteins and sought to validate their condensate-forming behavior
inside living cells. To do so, we chose 24 proteins (Dataset S2) which: i) cover diverse molecular
functions spanning the entire central dogma of molecular biology and regulation of all the major
cellular bio-polymers for instance, nucleic acids, proteins and chromatin (Figure S7a), ii)
represent the average sequence length of human proteins (i.e., around 350 amino acids ) by
having a range of 125 to 684 amino acids (Figure S7b), iii) represent diverse 3D structures from
ordered, alpha-helical, beta-stranded to highly disordered (Figure 4c¢) iv) are involved in genetic
diseases (AIMP1, CWC27, RP9, LMODI) as well as host-virus interaction (/F2GL). Overall, the
24 proteins, we chose for experimentally verifying and benchmarking PICNIC, represent global
cellular functions and therefore are suitable to demonstrate how robust our machine learning

model is in predicting condensate-forming proteins across entire proteomes.

We cloned 24 transgenes and transfected them in U20S cells expressing fluorescently labelled
proteins (see Supplementary Methods). Using fluorescent imaging, we found, that 21 out of the
24 tested proteins (87.5%) localized to mesoscale foci without any stressors, while 3 proteins
(CIORF52, SPAG7 and CWC27, encircled in red) localized to the nucleoplasm without forming

any discernible mesoscale foci (Figure 4a). Foci were defined based on enrichment in
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fluorescent intensity, i.e., the intensity ratio inside relative to outside the foci is greater than one

(Figure S8a). Only three proteins tested have no detectable foci, and 21 form foci (Figure 4a).

In order to classify the observed foci as biomolecular condensates, we aimed to define
quantitative characteristics and thresholds. We measured four simple characteristics from
fluorescent microscopy images (Figure S8): area and perimeter, informing on the size and the
typical number of proteins in a foci); shape (roundness); number of foci per cell. Next, we
decided on a threshold for these characteristics to aid a quantitative definition of condensates. We
consider foci as condensates above the diameter of 350 nm (distance between two furthest pixels
in one condensate), that is well above the diffraction limit. This would correspond to at least
~1um perimeter assuming a near round shape (Figure S8c). Using back-of-the-envelope
calculations, we can consider an average protein size as 10 nm®, then a 1 um® compartment can
contain ca. 1 million protein molecules and a 500 nm® compartment can contain 100,000 protein
molecules. We note, that other super resolution techniques are required to characterize the size of

clusters of proteins below the diffraction limit.

Experiments confirm 87.5% of PICNIC predictions

By applying the above definition, in our dataset, 75 %, i.e. 18 proteins (encircled in green) form
high confidence condensates, 12.5 % i.e. 3 proteins (encircled in orange) form low confidence
condensates (foci with perimeter <1 pm) while other 3 are not forming any condensates
(fluorescent intensity ratio ~ 1). We observe most condensates to be round (Figure S8d). The
number of condensates per cell varies between 1 to 100s depending on the protein of interest.
Using co-localization experiments with known nucleolus and P-body markers, we found that 5
proteins (R51A41, H2A1H, HIT, CWC27, MRPLI) can localize to the nucleolus, a well-

characterised liquid-like nuclear condensate (Figure 5a). Further, 2 proteins (PHPI4 and HBS1L)
13
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localize to processing bodies (P-bodies), another well-characterized cytoplasmic condensate. In
addition, 8 other proteins (RS10L, TYW5, SPA24, AIMP1, ZC3H15, IF2GL, LMODI, RPS4Y?2)
localized to cytoplasmic bodies and rest (KHDC4, CWC25, PolD3, RAMAC, DRC4, RP9)
localize to the nuclear bodies (Figure 5a). FRAP recovery profiles for the nuclear body forming
proteins revealed, that 6 out of 7 tested proteins show very fast dynamics while one (RBMY1D)
shows no recovery at the indicated time (Figure 5c).

Other popular tools to predict condensate proteins would fail to make correct predictions for
many of these proteins as shown by the high misclassification rates (Figure 4d). Overall, 87.5%
of PICNIC predictions were found to be correct (misclassification rate is 25% for high confidence
condensates and 12.5% if we include both high and low confidence condensates) in our

experimental assays validating the model.

Proteome-wide predictions detect no correlation of predicted condensate proteome size with

disorder content and organismal complexity

In order to see if our model is generalizable, we tested its performance in identifying known
condensate-forming proteins of other organisms. The CD-CODE database® was screened to
evaluate the fraction of proteins that were correctly identified as members of condensates by the
developed model. Although PICNIC was trained on human data, it successfully predicted 72% of
such proteins in mouse and 86% in Caenorhabditis elegans for example (Figure 6a). Thus,
PICNIC model is species-independent and can be used in different organisms to assess the ability
of proteins to be involved in biomolecular condensates.

To estimate the overall fraction of condensate-proteins, we calculated PICNIC scores for 14
different organisms across the tree of life including bacteria, plants and fungi (Figure 6¢). We

chose organisms that have already known condensate protein members that were experimentally
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verified in CD-CODE. We excluded organisms from further analysis where the number of
known proteins is too small to compute statistics on performance: Danio rerio (N=14),
Dictyostelium discoideum (N=2), Escherichia coli (N=6), Mycobacterium tuberculosis (N=1),
Oryza sativa (N=1), Candida albicans (N=6). We found that the proportion of the predicted
condensate-forming proteome is 40-60%, and is similar across related organisms, e.g., 42% and
39% in human and mouse, respectively (Figure 6c¢). Interestingly, while the fraction of

4930 we found no

disordered proteins increases with organismal complexity as shown before
correlation between fraction of predicted condensate proteins in a proteome and the disordered

protein content (Figure 6b). For example, E. coli and H. sapiens have both ~40% of their

proteome predicted to be involved in biomolecular condensates (Figure 6¢).

Discussion

Here, we present a machine learning classifier that can learn and decode biomolecular condensate
forming behaviour of proteins, that goes beyond protein structural disorder. We developed two
models for the prediction of proteins involved in condensates in vivo, that reach precision of 77%
(81% for recall) and 87% (82% for recall) for PICNIC and PICNICgo, respectively at the suggested
score threshold of 0.5 (Figure 2). The success of PICNIC models relies on several innovations: 1)
novel amino acid co-occurrence features combined with protein structure-based features, that
became only possible on a proteome scale since the Alphafold2 revolution®'*%; 2) gradient boosting
classifier that has an appropriate model complexity that fits the size of the training dataset; 3)
improved curation and definition of the positive and negative datasets. Specifically, PICNIC
models benefit from high quality positive data, that is the manually curated database of
biomolecular condensates CD-CODE?**. Additionally, we designed the negative dataset based on
no a priori assumptions about protein disorder/structure. Previous predictors used either a i)

2242 or ii) proteins with 3D structures (retrieved
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from PDB) since phase separation is common in disordered proteins that do not have well-defined
3D structures. The simple exclusion does not provide reliable negative dataset, as it may contain
many potentially phase separating proteins that have not been discovered yet. The second approach
generates a biased negative dataset and is problematic because of two reasons: 1) phase separating
proteins can have well-defined structure (Figure S1), Figure 4c), 2) such dataset is biased towards
set of properties inherited by experimentally solved proteins. E.g., disorder predictors would also
use 3D structures as negative dataset. To resolve this issue, here we used a protein-protein
interaction network-based approach and excluded proteins that have a connection in the network
with known condensate proteins (Figure 1a).

Gradient boosting methods (GBM) allow optimization on different loss functions which provides
necessary flexibility, but more prone to overfitting. Here, the latter was compensated by choice of
tree depth and providing of an evaluation dataset. GBM generally outperforms simpler models
such as Random Forest or Support Vector Machine, but at the same time it doesn’t require as
much data as models based on Neural Networks. Because there is not enough well-annotated data
for positive and negative datasets, we chose GBM to mitigate the tradeoff between model
complexity and its performance.

With the incorporation of biological knowledge about genes and proteins, PICNICgo reaches
even higher performance (Figure 2¢). Not surprisingly, it identified, along with the known impact
of disordered and low complexity regions, that RNA binding seems to play crucial roles in the
ability of proteins to be involved in biomolecular condensates (Figure 1c¢). Although gene
ontology terms are valuable resource of information, they could introduce bias due to their nature
of annotation.

We would like to emphasize that some of the other tools we benchmarked against were designed
to solve a different task, namely to predict the ability of a protein to undergo phase separation or

drive phase separation and in vitro condensate formation*>*2. Specifically, PSAP* was trained on
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90 human proteins that can drive phase separation, and FuzDrop* was parametrized based on 67
proteins known to self-phase separate based on in vitro experiments. Therefore, it is not expected
that these tools would identify all condensate forming proteins, e.g. clients observed in vivo such
as the nuclear punctae from the OpenCell project (Figure S2b). In contrast, PICNIC was adapted
to recognize the proteins that are present in biomolecular condensates (serving a role of a driver
or client) regardless of the mechanism of condensate formation. Therefore, our model does not
evaluate if a protein is part of synthetic condensates, i.e., in vitro experiments, but rather focuses
on if a protein is part of condensates in biologically relevant conditions.

PICNIC scores for clients and drivers show similar distribution (Figure S9). Since the same
protein can behave as a driver or a client depending on the condensate identity and environment,
we surmise that the ability of driving condensate formation is not solely encoded in the sequence
and structure of individual proteins. This suggests, that additional input data are needed to be
taken into account by the model. Studying the protein in the context of its interacting partners
within a condensate may shed light on the properties of driver proteins.

While PICNIC is superior in identifying protein membership in biomolecular condensates, it has
several limitations. It cannot predict which sequence features or motifs are responsible for the
condensate function in a given protein. FuzDrop is the only method that can recognize specific
motifs in protein sequences that promote phase separation behavior*>*=°

The algorithms in this paper are designed to understand whether a protein has the potential to
localize to a condensate, based on previous data. We tested 24 predicted proteins and found that
87.5% form foci in cellulo, and 75% form high confidence condensates based on a quantitative
definition of condensates. In making this analysis, we set a cut-off above the diffraction limit.
This does not mean that clusters of proteins under this limit do not form condensates, but that
super-resolution techniques would be required to analyze this. It is important to state that this

localization makes no claim to biological function in cells. These condensates were observed in
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cell lines, using GFP-tagged proteins that had varied expression levels. It is possible that some
proteins will only form condensates under stress or in certain cell types at certain concentrations.
In some cases, a protein for instance might not localize to a condensate under physiological
conditions, but might when overexpressed in cancer. Therefore, although each protein can
localize to a condensate, it remains to be sorted out by detailed experiments whether any
individual protein localizes to a condensate in a specific cell type at a certain concentration and
using different tags or antibodies.

We detect that structural disorder is not a prerequisite for condensate member proteins, as many
of them have no IDRs both based on analysis of the CD-CODE database (Figure S1b) as well as
5 out of the 21 proteins identified here experimentally as condensate members have <30%
disordered residues (Figure 4c¢). Thus, a wide-range of structural disorder can lead to condensate
partitioning. Accordingly, we found no correlation of condensate proteome size and disorder
content of an organism.

The generalizability of our model shows that the predictor learned general features (based solely
on sequence information and structures that were also deduced from the sequence) across the tree
of life. The provided results can shed light on evolution of biomolecular condensates across
different species and by predicting condensate members beyond drivers can aid identifying
potential protein targets to modulate biomolecular condensate behaviour and aid drug design®*’.

Overall, PICNIC accurately predicts proteins involved in biomolecular condensates and provides

proteome-wide perspective on proteins involved in condensate formation in different species.
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Methods

Construction of positive and negative datasets

The positive dataset of condensate forming proteins was extracted from CD-CODE database
v1.00**. We used all human proteins with at least 1 evidence star as a positive dataset. The
negative dataset was constructed by excluding proteins that interact with known condensate
forming proteins based on the InWeb v3 database®®. After filtering the sequence for 50%
sequence identity, our dataset composed of 2142 positive and 1709 negative proteins, that were
divided by ratio 4:1 into training and test datasets. We divided the dataset into 20% test dataset
(used only for testing the final model) and 80% working dataset, which was randomly divided

into 70% training and 30% validation datasets for the 10-fold cross-validation (Dataset S1).

Model features

Disorder score and sequence complexity

Intrinsically disordered regions (IDRs) and low-complexity regions of proteins were shown to be
an important feature for predicting the ability to phase separate. To estimate protein disorder, we
used the TUPred algorithm™, which assigns a score to each residue in the sequence. We used k™
percentile with k£ equal to [5,25,50,75,95], which is the score below which & percentage of residue
scores fall. The 5™ and 95" percentiles were chosen instead of minimum/maximum values to
exclude the bias due to outliers.

We calculated sequence complexity in order to identify low-complexity regions (LCRs). These
regions often contain repeats of single amino acids or short amino acid motifs. We calculated
sequence complexity according to the definition suggested by Wootton and Federhen®® using two
different sizes of sliding window for the protein sequence: 40 and 60. Proteins with length less

than 60 residues were excluded from this analysis.
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Sequence distance-based features

We represented the co-occurrence of amino-acids (AA) in the protein sequence within certain
distance by a pair of triads (AA, distancesnorr, AA2) and (AA, distanceiong, AA2), where AAj,
AA; is one of the 20 amino acids types, distancesnor 3 [1,2,3,4,5] and distanceiong 3
[[0,20),[20,40),[40,60),[60,80)]. These features represent short and long range co-occurences of
amino acids in the protein sequence. Short threshold distancesnor: defines the distance between
two types of amino acids (e.g., 1 means neighboring residues). Long threshold, distanceiong
defines a window equal to 20, that is the distance in sequence between the two types of amino
acids co-occur. The total number of tested sequence distance-based features was 1890, including

both short and long distances.

Secondary structure features based on AlphaFold models

Recent advances in Deep Learning techniques enabled de novo modeling of protein structures
from sequences with high accuracy that is comparable to experimental methods’'. Here, we used
predicted AlphaFold2 models that were downloaded from the resource created by the EMBL
Consortium (second release, Date of access: January, 2022)*?, which contains precomputed
structures for proteomes of many organisms. Alongside with atomic protein structures, AlphaFold
provides the pLDDT score (predicted IDDT-Ca), that is a per-residue measure of local
confidence on a scale from 0 — 100 . pLDDT scores were divided into four classes (according to
DeepMind classification): [0, 50) - 'very low', [50,70) - low’, [70,90) —confident™, [90,100] —
‘very high’. We used the STRIDE algorithm to annotate the secondary structure based on 3D
protein structure ®'. STRIDE assigns one of seven classes to each amino acid in the protein
sequence: Alpha helix (H), 3-10 helix (G), PI-helix (I), Extended conformation (E), Isolated

bridge (B), Turn (T), Coil (C).
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Next, we calculated all possible triads in the form (AA, SSE, pLDDT), where aa belongs to one
of 20 types of amino acids, SSE 3 [H, G, I, E, B, T, C], pLDDT »5 ['very low, ‘low’, ’confident’,
‘very high’]. For longer proteins, AlphaFold2 models consist of overlapping segments of 1400 aa
length. In case of discrepancy, when the same amino acid is assigned with different 3D
coordinates and pLDDT score, we consolidated the predictions using the following rules: 1) We
calculated all possible STRIDE predictions (with different pLDDT scores); 2) we selected the
most frequent STRIDE class that had the highest pLDDT score. The total number of features

based on structural information provided by Alphafold2 and STRIDE was 560.

Gene Ontology features

Gene Ontology terms are a hierarchal dictionary of annotations describing the function of a
particular gene®>®. They assign gene characteristics for three directions: molecular function,
biological process and cellular component. Each of the direction is represented by a directed
acyclic graph, where nodes represent terms (or annotations) and edges represent the relationship
of subtype from descendant to ancestor node. There are tens of thousands of terms, therefore one
hot encoding for all possible terms is not feasible. To decrease the number of encoded terms, we
took only the most frequent terms into account. To estimate the frequency of terms, we used the
Swissprot annotations of proteins (after removing redundancy by excluding sequences with more
than 30% sequence identity) from Uniprot database®. It must be noted, that the frequency of
ancestor term t, also included summation of the frequencies of all descendant terms tq, calculated

by the equation:

Fr(ta) = Noc(ta) 2t Noc(ta), where Noc(t) — number of occurrences of term t in the corpus.
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Only terms with frequencies greater than a threshold were kept for feature calculation. Thresholds
were chosen for each of the three directions separately to encompass adequate number of terms in
the annotations (2500 for molecular function and biological process). We excluded the cellular
component direction from the feature selection, as some gene ontology terms contain information
about cellular compartments (based on Human Protein Atlas **, OpenCell **). We used one-hot
encoding, where each protein was assigned with a vector of fixed length (equal to the number of
chosen terms); 1 was assigned if the considered term in the given position (or any of their
descendants) was mentioned in protein annotation, otherwise 0. The total number of features

describing molecular function and biological process for the set of proteins was 1002.

Machine learning algorithms

We developed two types of models: one including gene ontology features (PICNICgo) and one
without (PICNIC). Both models have the following structure: they consist of 10 Catboost
classifiers with dataset for early stopping (to calculate loss function on the dataset different from
training to prevent overfitting over training dataset) and fixed depth®®. Catboost is a classifier
based on gradient boosting machine (GBM) — a machine learning technique that gives a
prediction model in the form of an ensemble of decision trees®”.

Among other gradient boosting classifiers CatBoostClassifier from catboost library showed
consistency across multiple runs (we compared LGBMClassifier from lightgbm library and
XGBClassifier from xgboost library). To estimate the overall model performance across multiple
runs with different parameters, we used the following metric: we chose the validation score (F1-
score) of best iteration of each separate fold, and then computed the mean value across 10 folds.
The model training started with all features, that is 2467 for the model without Gene Ontology
features (PICNIC), and 3469 for the model with GO features, PICNICgo. We selected the best

features based on feature importance: at each training iteration only features with importance
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greater than a given threshold were selected for the next run (we took the union of features across
different folds). Thus, each subsequent training iteration decreased the number of used features.
We chose this feature selection approach because the feature importance did not fluctuate much
for different folds (Figure 1e). The final models contained 18 and 92 features for PICNICgo and
PICNIC, respectively. The number of features in the model with protein annotations are much
lesser in comparison with another model as subset of the sequence- and structure-based features
connected to phase separation properties are already directly encoded by Gene Ontology

annotations.

Cloning, cell culture and imaging

U20S cells were transfected with plasmids encoding Human proteins tagged with iRF-670 at the
N-terminus. All the 24 tested genes were codon optimized (for synthesis ease as well as to
override any cellular regulation involving mRNA degradation of endogenous sequences) and
synthesized by Integrated DNA Technologies (IDT) (Dataset S3), restriction digested using Notl-
HF and Ascl enzymes (NEB-R3189 and NEB-R0558) and then ligated into the pre-digested
vectors using T4 DNA ligase(M0202) and transformed in E. coli DH5-alpha cells. Positive clones

were confirmed by insert release and correctness was verified by DNA sequencing.

Cells were grown in high glucose DMEM medium (Gibco-31966021) supplemented with 10%
FBS (Sigma- S0615) as well as 100 units/ml Penicillin-Streptomycin (Gibco-15140112).
Following trypsinization with Trypsin-EDTA (Gibco-25300054) cells were seeded on the Ibidi 8
well imaging chamber (80826). After overnight growing the cells, cells were then transfected
with plasmids encoding the 24 transgenes and for the colocalization purpose with GFP-tagged

DCPal (a processing-body marker plasmid) and GFP-tagged Fibrillarin (a sub-nucleolar marker
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specific to the middle dense fibrillar region allowing the potential dissection of all 3 sub-nucleolar

localization of the test proteins) using the Fugene HD transfection reagent (Promega-E2311).

Cellular fluorescent images were recorded on a spinning disk confocal microscope with FRAP
capability using the 60x/1.2U-Plan-SApo, water immersion objective lens (Olympus) using
488nm and 640nm laser lines, on an Andor-iXon-897-EMCCD camera. Images, colocalization
and the FRAP movies were analyzed and representative images were prepared using Fiji®®
(Dataset S4).

Fluorescent microscopy images were quantified manually using Fiji and shape, size descriptors
(roundness, perimeter and area) as well as fluorescence intensity were measured (Figure S8).
Enrichment ratio of the condensates was calculated as the ratio of the mean fluorescence of the
condensate foci divided by the mean fluorescence of the background. The data was plotted using

GraphPad prism software. All the images were finally prepared in Adobe Illustrator.

Data and Software Availability

The training, validation and test datasets are available as Dataset S1. The list and properties of the
24 proteins selected for experimental validation is provided as Dataset S2. Plasmid vector maps
and representative images are available as Dataset S3 and S4, shared as a public repository
available at https://edmond.mpdl.mpg.de/dataset.xhtml?persistentld=doi:10.17617/3.0Y9QS8N.
The PICNIC code, documentation and examples as jupyter notebooks can be found at

https://git.mpi-cbg.de/tothpetroczylab/picnic. Predictions across proteomes of 14 organisms are

provided as a web application https://picnic.cd-code.org.

Acknowledgements

24


https://git.mpi-cbg.de/tothpetroczylab/picnic
https://picnic.cd-code.org/
https://doi.org/10.1101/2023.06.01.543229
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.01.543229; this version posted September 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A.H. was funded by the ELBE postdoctoral fellowship. H.R.S thanks the Nomis foundation for
financial support. A.T.-P. was funded by the MPG RGL funds. N.R. were founded by Dewpoint
Therapeutics. We would like to thank the Computer Services and Scientific Computing Facilities
of the MPI-CBG for their support, especially to Oscar Gonzales for supporting our HPC and
HongKee Moon for developing the PICNIC web application. We thank Andrej Pozniakovski for

molecular biology support.

Author Contributions

AH, HRS, AAH and ATP designed research; AH and HRS performed research; SG and NR
contributed new reagents or analytic tools; AH, HRS, SG and ATP analyzed data; AH, HRS,

AAH and ATP wrote the paper.

Competing Interest statement

A.A.H. is a founder and shareholder of Dewpoint Therapeutics. The remaining authors declare no

competing interests.

25


https://doi.org/10.1101/2023.06.01.543229
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.01.543229; this version posted September 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Main Figures

a e

L-Coil-d
L-AlphaHelix-|
E-AlphaHelix-h
-Strand-m
S-AlphaHelix-I
L-Coil-|

Dataset . Machine learning classifier

) T-Strand-h

Protein-protein oo Protein members in L-AlphaHelix-m

interaction network . blomolecular o

(PPI) condensates in Sequences Features Labels |G-AlphaHelix-|
human

Positive (2142) }

@ Negative (1709) @ 3¢

T-Coil-1
F-AlphaHelix-|
C-AlphaHelix-m

° O\ yo

‘W-AlphaHelix-m
° /' [ I-AlphaHelix-1
°

b Unknown Gradient boosting machine (GBM) lupred's

Fajotet
NOD - 199
oo, .

o
.
MIPRPERS

o

S

Features

PICNICGO

PICNIC
Sequence-based Structure-based

[ (AA,SSE, | Gene Ontology
| pLDDT)

o000 N 5 N
/ LB ‘Molecular @
D Alphafold2 model function m
+ Y Model confidence
[ S “z ;

Disorder score (IUPRED) 2 (DLDDT). Biological @

,\@/ ? B process

S

Sequence complexity & 0 507090100 @

m>C
Zmo0%_p
2O > oA
200, 53

S222=SRRRGE

7
28

»  (AA,distance, AA) o,

6 Tpo»
RS i
~30

3

5 So03!
ARB2<

<
<o
3

S22

»
e O8O

Sk
SRGR:

oiares

DS
BSSS00
=

C PICNIC d PICNIC-GO

mr »»_oPRO
CRRSRSR0E

B e —

orgaric cyc compound binding Y
asterase acviy e lsphons conariegoups —— 1K
hosphor ester hydrolase aciviy L3W

positively
charged
negatively

8| charmes
uncharged

rophiic
AERC _OOF

s

g
o
Y

aromatic

aliphatic

>0<I_rvm<Eni00ZOmERT

hydrophobic

SE SNoor

ZEZIORR<ATR

3 3 T B 3 e S— oi
Number of occurrences in model features esture mporance L
L

NoS;

§*""""!"“'””"'””WWWWMWWumm“ i

°

15 2.0 25
Feature Importance

Figure 1. Development of PICNIC (Proteins Involved in CoNdensates In Cells) algorithm.
a) In order to construct a training dataset, we annotated the known condensate-forming proteins
from CD-CODE (positive dataset, members of biomolecular condensates) on the protein-protein
interaction (PPI) network, and we excluded their first connections (proteins having interactions
with condensate proteins). The remaining proteins comprised the negative dataset. Gradient
boosting machine was used to distinguish two classes of proteins: members of biomolecular
condensates and proteins that are not involved in any type of biomolecular condensate. b)
Sequence, structure and function-based features of PICNIC. We developed two types of models:
with (PICNICgo) and without the use of gene ontology annotation features (PICNIC). Sequence-

based features included sequence complexity, disorder score (IUPred), and features based on
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amino acid co-occurrences. Structure-based features based on Alphafold2 models included the
pLDDT score, a per-residue measure of local confidence on a scale from 0 — 100 (colored on the
structure). We annotated the secondary structure (SSE) based on 3D protein structures using
STRIDE and all possible triads in the form (AA, SSE, pLDDT) were calculated. ¢) Amino acid
occurrences in the features of PICNIC model show that Leucine and Lysine contribute the most
to the model predictions. d) The model including GO terms (PICNICgo) used three types of
features, based on gene ontology (in green), disorder (orange), distance-based (violet). The most
important features included RNA-binding, disorder and co-occurrences of charged and
hydrophobic residues. The feature importance is consistent across different folds of cross-
validation (mean values across 10 folds are shown, black lines with upper and lower border show
standard deviation for each feature within cross-validation). e) Feature importance of PICNIC is
consistent across different folds. Mean values across 10 folds are shown, black lines with upper
and lower border show standard deviation for each feature within cross-validation. Features
constitute three groups: based on AlphaFold2 models (in light blue), disorder (pink), complexity

(dark red) and distance-based (blue).
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Figure 2. PICNIC models have the best performance in predicting condensate-forming
proteins. Comparison of sequence-based predictors (lines, PICNIC, PdPS-8fea, PSAP, and
DeePhase) and predictors using experimental data (dotted lines) as features to predict protein
condensates. Specifically, PdPS-10-fea uses phosphorylation sites and immunofluorescent
microscopy images of the proteins, PICNICgo uses GO-terms as features. a) Test dataset from
PhaSepDB high-throughput retrieved from? (441 positive and 1998 negative examples,
excluding proteins that were part of the PICNIC training set), b) test dataset from OpenCell** (78
positive and 1998 negative examples excluding proteins that were part of the PICNIC training
set), ¢) test dataset from the current study based on CD-CODE?** (338 positive and 299 negative
examples). PICNIC outperforms sequence-based predictors even on the test set that includes

training data of previously published predictors, that may inflate their performance.
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Figure 3. PICNIC captures the different phase separation behaviour within the synuclein
protein family. a) The three paralogs in human share high sequence identity as depicted in the
multiple sequence alignment. b) Structural models for a-synuclein (yellow), 3-synuclein (cyan)
and y-synuclein (green), predicted by AlphaFold2 reveal that 3-synuclein has a bent structure. c)
Despite the high sequence similarity, only a- and y-synuclein are part of biomolecular
condensates, while f-synuclein has not been found in any biomolecular condensates yet and was
shown not to phase separate in vitro. d) Comparison of prediction scores of different tools in
identifying condensate forming (o and y, green) and non-condensate forming paralog (8, red).
PICNIC accurately predicts the condensate-forming ability of the synuclein family, and ranks p-
synuclein the lowest, while other tools give equivalent scores to all paralogs or fail to identify the
right trend. Vertical lines indicate the threshold used by the various methods to classify

condensate-forming proteins.
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Figure 4. Most (18 out of 24) tested proteins form high confidence condensates in cellulo.

a) Representative images of the U20S cells expressing the tested proteins tagged with a
fluorescent protein (GFP). Formation of mesoscale cellular condensates are highlighted in the
inset. All images are scaled to the scale bar 10 micron (shown on upper left image). We found 21
out of the 24 tested proteins (87.5%) formed mesoscale foci without any stressors, while 3
proteins (C1ORF52, SPAG7 and CWC27, encircled in red) localized to the nucleoplasm without
forming any detectable foci (foci were defined by exhibiting a fluorescent intensity ratio >1).
Notice the presence of rim like structures in case of HIT and H241H. Using size, shape and the
fraction of cells forming mesoscale foci as a deciding characteristic, ~75% i.e., 18 proteins
(encircled in green) form high confidence condensates, and 3 proteins (encircled in orange) form
low confidence condensates (foci with longest diameter <350nm. Figure S8). b) Wide range of
structural motifs covered in the test proteins; AlphaFold2 structural models of the proteins are
colored according to secondary structures. Notice the wide range of structural motifs, alpha-
helical (red), beta stranded (yellow) to largely disordered (green) proteins.

¢) Disorder content (computed as mean [UPred score or reverse pLDDT score (1 - pLDDT)) of
the tested protein does not correlate with the ability to form condensates. d) Comparison of the
predictions provided by sequence-based predictors (bars, PICNIC, PdPS-8fea, PSAP, and
DeePhase) and predictors using experimental data (hatched bars) as features to predict protein
condensates. Both PICNIC and PICNICgo exhibit the lowest misclassification rate for the tested

24 proteins.
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Figure 5. A subset of the tested proteins localizes to known condensates.
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a) Colocalization of the cellular condensate-forming proteins with well-characterized liquid like
cellular condensates as can be concluded from the fluorescence intensity profiles correlation with
the marker protein fluorescence profiles. While Rad51A4P1 (in purple) localizes strongly around
the Dense fibrillar center (DFC, in green) forming a rim like structure, H2A41H (in purple) show
rather weak localization as a rim around the DFC (in green) showing sub-nucleolar localization
specific to the outer Granular center (GC). See the cartoon representation of the nucleolar
architecture. Further, PHP[4 (purple) strongly co-localizes with the DCP1a (green) labelled
processing bodies. RAD15-associated protein 1 (Rad51AP1) shows multi-condensate localization
that varies from exclusive nuclear bodies, to nuclear bodies abutting the nucleolus, to sub-
nucleolar localization (GC) as well as complete nucleolar localization suggesting an interesting
regulated role for this protein’s involvement on multiple nuclear-condensates possibly in a cell-
cycle stage regulated manner. All images are scaled to the scale bar 10 micron, upper right. b)
FRAP assays showing the fast recovery dynamics consistent with the liquid like nature of the P-
bodies (upper panel) and the Nucleolus (lower panel). Fibrillarin and the DCP1a FRAP recovery
profile, inset highlighting the fast recovery dynamics of targeted P-body and the nucleolus. The
scale bar is 10 micron each for each. ¢) FRAP recovery profiles for the nuclear body forming
proteins. 6 out of 7 tested proteins show very fast dynamics while one (RBMY1D) shows no
recovery at the indicated time. All the images with indicated whole nuclei (lower panel for each

protein) are scaled to the 10-micron scale bar shown in the bottom right.
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Figure 6. Inferring condensate proteins across the tree of life reveals no correlation with
disorder content.

a) PICNIC model is species-independent. We validated the PICNIC model on known
condensate proteins from different species (defined by CD-CODE). PICNIC correctly identified
70-100% of known condensate proteins of all species tested, except for zebrafish (50%). b)
Disorder content and fraction of condensate-forming proteins of a proteome are not
correlated. Proteome-wide prediction of proteins in biomolecular condensates by PICNIC
predictor (¢) compared with the fraction of disordered proteins (proteins with at least one
disordered region of >=40 residues) in proteomes shows no correlation across many organisms
from bacteria to mammals (R* = 0.014 for all datapoints, grey dotted line, and R* = 0.033 when

excluding E. coli and M. tuberculosis, black solid line).
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