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Abstract  

Biomolecular condensates are membraneless organelles that can concentrate hundreds of different 

proteins to operate essential biological functions. However, accurate identification of their 

components remains challenging and biased towards proteins with high structural disorder 

content with focus on self-phase separating (driver) proteins. Here, we present a machine learning 

algorithm, PICNIC (Proteins Involved in CoNdensates In Cells) to classify proteins involved in 

biomolecular condensates regardless of their role in condensate formation. PICNIC successfully 

predicts condensate members by identifying amino acid patterns in the protein sequence and 

structure in addition to the intrinsic disorder and outperforms previous methods.  We performed 

extensive experimental validation in cellulo and demonstrated that PICNIC accurately predicts 21 

out of 24 condensate-forming proteins regardless of their structural disorder content. Even though 

increasing disorder content was associated with organismal complexity, we found no correlation 

between predicted condensate proteome content and disorder content across organisms. Overall, 

we applied a novel machine learning classifier to interrogate condensate components at single 

protein and whole-proteome levels across the tree of life (picnic.cd-code.org). 

 

 

Main 

Introduction 

Biomolecular condensates are membrane-less organelles that can selectively concentrate 

biomolecules1  and are typically non-stochiometric assemblies of thousands of protein molecules 

and nucleic acids.   The role of condensates has been implicated in several fundamental 

biochemical processes in physiology and disease2–4. Functions exerted by condensates include: i) 

sequestering molecules and shutting down translation of specific mRNAs5; ii) buffering 
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concentration of proteins6; iii) reservoir of proteins for fast assembly and disassembly of large 

complexes, such as the nuclear envelope7.  

Proteins can have two major roles in a condensate: drivers (scaffolds) or clients8,9. Drivers can 

induce the formation of condensates and are essential members of condensates. For example, 

knock-out of the driver protein can lead to disassembly of a condensate. While a client is 

recruited to a condensate often via an interaction with a driver protein, and it is neither necessary 

nor sufficient in driving the condensate formation. Drivers often self-phase separate in vitro, 

nevertheless self-phase separation does not guarantee in vivo driver functionality. For most 

condensate-forming proteins the client or driver status is unknown, therefore we refer to them as 

condensate members. 

While many proteins can phase-separate in the test-tube and form liquid-like condensates in vitro, 

studying if they also form condensates in vivo is more challenging. Individual proteins can be 

labeled using fluorescent tags and imaged for testing droplet formation which exhibit liquid-like 

properties such as fusion, Oswald ripening, fast dynamics in fluorescent recovery after 

photobleaching (FRAP)10,11 assay. However, condensates may contain hundreds and even 

thousands of different proteins. Systematic detection of condensate proteomes is limited to a few 

mass spectrometry and proximity labeling studies: purified nucleoli12,13, P-bodies14 and stress 

granules15,16 were subjected to mass spectrometry analysis for enrichment. Systematically and 

experimentally testing which proteins are members of condensates remains a bottleneck in the 

field. Therefore, computational methods can facilitate the process of characterizing proteins 

involved in biomolecular condensates at proteome-scale. 

 

The main limitation of computational method development is related to the sparse experimental 

data of verified condensate-forming proteins. The first models were proposed based on properties 
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of a few protein families, such as CatGranule17 and PScore18,19. While these methods aided the 

discovery of novel condensate-forming proteins with similar properties, they do not generalize 

well20.  

In recent years, several data driven and machine learning based liquid-liquid phase separation 

(LLPS) predictors have been developed21–24 making use of the experimental data aggregated in 

four LLPS databases25–28. While most predictors focused on identifying self-phase separating 

proteins (i.e. form in vitro condensates, that are also often drivers)22–24 and thus trained on in vitro 

data, a recent metapredictor combined scores of previous methods and microscopy data to 

identify all condensate members (both drivers and clients)29. These methods have excellent 

performance compared to the first generation of predictors, nevertheless they have several 

shortcomings. For example a sub-optimal or biased definition of the negative dataset based on a 

priori assumptions about driving features, such as disorder being the main determinant, and 

accordingly using structured proteins from PDB as negative data23.  

 

Here, we focused on predicting proteins involved in biomolecular condensates instead of proteins 

involved in in vitro self-phase separation per se. We developed a new machine learning model 

called PICNIC (Proteins Involved in CoNdensates In Cells). As amino acid composition bias and 

patterning of charges were shown to impact the ability of proteins to form condensates30–32, we 

developed novel features that represent short and long range co-occurrences of amino acids in the 

protein sequence and structure (AlphaFold2 models), as well as used features such as sequence 

complexity23, disorder score33 that were previously shown to be successful in identifying drivers. 

We addressed the short-comings of previous methods by using a larger and highly curated and 

non-redundant dataset of in vivo condensates (derived from CD-CODE)34, and by defining the 

non-condensate forming, negative dataset, based on a protein-protein interaction network.  

Experimental validation of 24 proteins spanning a wide-range structural disorder confirmed that 
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18 of them localize to condensates with high confidence, while 3 form condensates with low 

confidence. Further, 8 of them co-localize with known biomolecular condensates. Thus, our 

experimental validation suggests an ~88% success rate in identifying condensate forming 

proteins. Moreover, we trained another model with extended set of features which include Gene 

Ontology terms (PICNICGO), which provides useful insights about specific protein functions that 

are enriched in proteins of biomolecular condensate, such as RNA-binding.  

Although PICNIC was trained on the richest human data, it generalizes well to other organisms 

tested. Proteome-wide predictions by PICNIC estimate that ~40% of proteins partition into 

condensates across different organisms, from bacteria to humans, with no apparent correlation 

with organismal complexity or disordered protein content. 

 

Results 

Defining condensate-forming proteins 

In order to develop a model to identify condensate-forming proteins, we assembled a ground truth 

dataset for H. sapiens, that has the most experimentally studied condensates of all organisms to 

date.  Since we aimed at developing a binary classifier, we considered two classes of proteins: 1) 

proteins involved in condensates (positive dataset) and proteins not involved in condensates 

(negative dataset) (Figure 1a). The positive dataset was constructed from a semi-manually 

curated dataset of biomolecular condensates and their respective proteins, called CD-CODE 

(CrowDsourcing COndensate Database and Encyclopedia), developed by our labs34. CD-CODE 

compiles information from primary literature and from four widely used databases of LLPS 

proteins 25–28.  

Building the negative dataset is a complicated task as there is no publicly available resource that 

reports proteins that do not form condensates. Additionally, condensates may form only under 
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specific conditions35. Here, we defined the negative dataset based on protein-protein interaction 

network (InWeb database36 for human proteins). We excluded all proteins that have direct 

connections with known condensate proteins. We reasoned that these proteins are potential 

condensate members that have not yet been studied. The remaining proteins comprised the 

negative dataset (Figure 1a). Of course, this procedure doesn’t guarantee the absence of 

condensate proteins among the negative dataset (false negatives). But exclusion of the proteins 

that directly interact with proteins that were reported as members of synthetic or biomolecular 

condensates is lowering the probability of mixing positive and negative data. Overall, our non-

redundant dataset (filtered by 50% sequence identity) contained 2142 positive and 1709 negative 

human proteins, which were divided by 4:1 ratio into training and test datasets. 

 

PICNIC identifies sequence- and structure-determinants of condensate formation 

We hypothesized that the ability to form condensates is encoded in the proteins’ sequence and 

structure, and developed a machine learning classifier called PICNIC (Proteins Involved in 

CoNdensates In Cell) based on sequence-distance-based and structure-based features derived 

from Alphafold2 models (Figure 1b, in total 65 sequence-distance-based and 21 structure-based 

features). 

It has been already shown that many proteins involved in condensates harbor intrinsically 

disordered regions (IDRs) and low-complexity sequences. Due to their inherent flexibility, multi-

valency and ability to sample multiple conformations, they are adept at a wide array of binding-

related functions including macro-molecular assemblies9,37,38. We also tested several metrics of 

disorder and sequence complexity as features (Supplementary Methods). Our final model 

contained several features related to disorder, such as IUPred scores33, that have a feature 

importance of 0.5-3%.  
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Although the presence of highly disordered residues is among most important features (Figure 

1e, pink), it is not a prerequisite for the protein to have long disordered domains to be a member 

of the condensate. The proportion of known condensate-forming proteins with no disordered 

regions in the human proteome is 21% (disordered regions < 10aa. Figure S1), while 33% of all 

human proteins have no disordered regions. For example, Human protein Guanine nucleotide 

exchange factor C9orf72 is a driver protein in stress granules; Speckle-type POZ protein is a 

driver in nuclear speckle and SPOP/DAXX body. Both proteins consist of ordered domains only 

that were experimentally determined by electron microscopy and X-ray crystallography, 

respectively (Figure S1, PDB ids 6LT0 ad 3HU6). Thus, both analysis of experimentally verified 

condensates and the selected features by our model suggest that disorder is not a necessity for 

condensate-forming proteins.  

Along with overall sequence complexity and disorder scores of a protein, the secondary structure 

of individual residue types was also found to be important. We used the confidence score of the 

AlphaFold model prediction, the pLDDT score, that was shown to correlate with sequence 

disorder39. We represented the occurrence of an amino acid (AA) in a given secondary structure 

element (SSE) with a given model confidence as a triad (aa-SSE-pLDDT). 

As amino acid composition bias and patterning of charges were shown to impact the ability of 

proteins to form condensates30–32, we developed features that represent short and long range co-

occurrences of amino acids in the protein sequence.  We represent co-occurrence of amino-acids 

in the protein sequence within a distance (number of amino acids in linear sequence) by triads 

(AA1, distance, AA2). After feature selection, the long-range distance between charged amino 

acids, e.g. Lysine and Arginine (K,60, R) and Aspartic acid and Lysine (D,20,K), and short-range 

distance of Leucine and hydrophobic amino acids (e.g. L,0,W; F,2,L; L,2,L), and the distance 
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between Cysteine and hydrophobic amino acids were shown to be the most important features. 

Overall Lysine and Leucine amino acids contribute the most to the model (Figure 1c).  

 

RNA-related functions are enriched in condensate proteins 

In order to further increase to performance of our model, we integrated functional information 

that is already known about each protein and described as Gene Ontology (GO) terms. We 

developed a second classifier, called PICNICGO that combines GO terms and the previously used 

PICNIC features (Figure 1b). After feature selection only 18 features were included in the final 

model, 10 new GO features and 8 features of PICNIC described in the previous section. We 

found, that the most significant GO term is RNA binding, which is superseding the importance of 

other terms and features by several orders of magnitude (Figure 1d).  

While the GO annotation feature is biased by existing knowledge, it nevertheless validates the 

design of the negative dataset: it highlights RNA binding molecular function as one of the of the 

most important features in PICNICGO model, which is known to play crucial role in biomolecular 

condensate formation, as RNA molecules are significant constituents of condensates9,40. This 

feature is efficient in discriminating the two classes of proteins because the positive and negative 

datasets show different distributions of RNA binding annotation. In PICNICGO the following 

functions were marked as the most important: transferase activity, transferring phosphorus 

containing groups, enzyme binding, phosphoric ester hydrolase activity, organic cyclic compound 

binding, and heterocyclic compound binding (Figure 1d). The success of including functional 

annotation demonstrates, that for proteins with unknown cellular compartmentalization, specific 
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set of functional descriptions can provide additional evidence for their tendency to form 

biomolecular condensates. 

PICNIC accurately identifies proteins involved in biomolecular condensate formation 

Several data-driven predictors were developed in the last few years, that aim to predict proteins 

involved in LLPS from protein sequence alone or from sequence and experimental data, such as 

microscopy images41. Here, we compared the performance of PICNIC to sequence based 

predictors, PSAP23, DeePhase42 and two versions of PhaSePred29, one general model (PdPS-8fea 

based on 8 features) and one developed for human proteins only which uses existing experimental 

data, such as fluorescent microscopy images of the proteins as well as experimental data on 

phosphorylation sites (PdPS-10fea based on 10 features).  

We compared the performance of tools on three different datasets: 1) test dataset from the 

recently published PhaSePred methods29; 2) proteins forming nuclear punctae defined by the 

OpenCell project43; 3) test dataset generated from CD-CODE34 (see Supplementary Methods, 

Dataset S1). Although the CD-CODE test data is not independent and was partially used by 

existing predictors during their training process, PICNIC has superior performance with a 

maximum F1-score of 0.81 (Figure 2c). Not surprisingly, the models that use existing 

experimental information outperform the sequence-based predictors. Specifically, PICNICGO has 

the best performance (ROC-AUC=0.91, F1-score=0.84) followed by PdPS-10fea (ROC-

AUC=0.89, F1-score=0.83).  

 

To further validate our model, we used microscopy images from Human Protein Atlas (HPA) 

where fluorescently labeled proteins were imaged and their cellular localization was 

determined44.  Specifically, three types of cellular localizations were screened: nucleolus, 

centrosome and nuclear speckle. We filtered the list of proteins from HPA that were already in 
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our training set that resulted in 484 proteins with known localization. Overall, PICNIC scores 

were higher for the proteins from HPA than for proteins without known localization (Figure S3). 

69% of proteins mapped from HPA (with exclusion of the proteins from the training dataset) have 

a PICNIC score greater than 0.5, meaning that PICNIC correctly identified them as members of 

biomolecular condensates. It should be noted that HPA doesn’t report if a protein does not belong 

to given condensate (negative examples). Therefore, this dataset can be used only to check model 

sensitivity (recall, what fraction of true condensate forming proteins were predicted correctly), 

but not model precision (what fraction of positive predictions are actually true positives). 

 

PICNIC is robust in identifying small sequence perturbations that impact condensate 

formation  

A real challenge of computational predictors is to be sensitive to small sequence perturbations 

that impact condensate formation. To test if PICNIC can distinguish similar sequences with 

altered condensate forming properties, we considered the synuclein family, that comprises three 

paralogs in human. Although they have similar sequences (Figure 3a and c, 60-70% identity) and 

structures as predicted by AlphaFold (Figure 3b), only α- and g-synuclein form condensates in 

vivo, and only α-synuclein phase separates in vitro. Specifically, FITC-labeled β-synuclein, which 

lacks the characteristic NAC region of α-synuclein, does not phase separate at high 

concentrations (200 μM) and under crowding conditions (10% [weight/volume] PEG), whereas 

FITC-labeled α-synuclein forms condensates under the same conditions22 . While α- and g-

synuclein can form amyloid-like fibers, β-synuclein does not45,46. Moreover, α- and g-synuclein 

are part of biomolecular condensates: α-synuclein is reported to be the member of Synaptic 

vesicle pool condensate47, g-synuclein is a member of the Centrosome48, but β-synuclein has not 

been found in any biomolecular condensates yet. PICNIC is the only method tested here which 

accurately predicts the in vivo condensate-forming ability of the synuclein family (Figure 3d). 
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Other methods either give the same score for all three paralogs and/or do not predict the correct 

tendency of condensate formation in vivo. We surmise that PICNIC is sensitive to structural 

rearrangements of proteins, and hypothesize that the bending of alpha-helix in β-synuclein 

potentially hinders the protein’s ability to form condensate.  

 

Interpretation of our machine learning models 

To explore the generalisability of our models, we compared the most important features learnt by 

PICNIC vs. PICNICGO. First, we calculated the most divergent gene ontology features between 

the dataset of known condensate-forming proteins (CD-CODE) and the dataset of whole 

proteomes of corresponding organisms (Figure S4). Further, we compared these distributions to 

the distributions of potential condensate proteins predicted by PICNIC. This analysis 

demonstrated that PICNIC can recognize the protein properties deduced as most important by 

PICNICGO model, as well as terms describing cellular localization which were excluded from 

PICNICGO features (Figure S5).  

We also compared the two models in the opposite direction to see whether PICNICGO model can 

identify the sequence- and structure-based features considered as important by the PICNIC 

model. Interestingly, for different species different subsets of features were highlighted, but in 

concordance with features selected as most significant by PICNIC (Figure S6). Thus, PICNIC 

that was trained without Gene Ontology annotation can detect properties of proteins in 

biomolecular condensates captured by Gene Ontology terms for different species and vice versa: 

PICNICGO detects properties of proteins in biomolecular condensates captured by distance-based 

and AlphaFold-based features for different species, further validating the generalizability of the 

model. Overall, the propensity of a protein to be a member of biomolecular condensate seems 
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encoded in the sequence, and machine learning models, such as PICNIC can recognize these 

encoded properties.  

 

Experimental validation of predicted condensate-forming proteins 

In order to experimentally validate our model, we decided to predict the condensate localization 

of poorly characterized human proteins and sought to validate their condensate-forming behavior 

inside living cells. To do so, we chose 24 proteins (Dataset S2) which: i) cover diverse molecular 

functions spanning the entire central dogma of molecular biology and regulation of all the major 

cellular  bio-polymers for instance, nucleic acids, proteins and chromatin (Figure S7a), ii) 

represent the average sequence length of human proteins (i.e., around 350 amino acids ) by 

having a range of 125 to 684 amino acids (Figure S7b), iii) represent diverse 3D structures from 

ordered, alpha-helical, beta-stranded to highly disordered (Figure 4c) iv)  are involved in genetic 

diseases (AIMP1, CWC27, RP9, LMOD1) as well as host-virus interaction (IF2GL). Overall, the 

24 proteins, we chose for experimentally verifying and benchmarking PICNIC, represent global 

cellular functions and therefore are suitable to demonstrate how robust our machine learning 

model is in predicting condensate-forming proteins across entire proteomes.  

 

We cloned 24 transgenes and transfected them in U2OS cells expressing fluorescently labelled 

proteins (see Supplementary Methods). Using fluorescent imaging, we found, that 21 out of the 

24 tested proteins (87.5%) localized to mesoscale foci without any stressors, while 3 proteins 

(C1ORF52, SPAG7 and CWC27, encircled in red) localized to the nucleoplasm without forming 

any discernible mesoscale foci (Figure 4a).  Foci were defined based on enrichment in 
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fluorescent intensity, i.e., the intensity ratio inside relative to outside the foci is greater than one 

(Figure S8a).  Only three proteins tested have no detectable foci, and 21 form foci (Figure 4a). 

 

In order to classify the observed foci as biomolecular condensates, we aimed to define 

quantitative characteristics and thresholds. We measured four simple characteristics from 

fluorescent microscopy images (Figure S8): area and perimeter, informing on the size and the 

typical number of proteins in a foci); shape (roundness); number of foci per cell. Next, we 

decided on a threshold for these characteristics to aid a quantitative definition of condensates. We 

consider foci as condensates above the diameter of 350 nm (distance between two furthest pixels 

in one condensate), that is well above the diffraction limit. This would correspond to at least 

~1µm perimeter assuming a near round shape (Figure S8c). Using back-of-the-envelope 

calculations, we can consider an average protein size as 10 nm3, then a 1 µm3 compartment can 

contain ca. 1 million protein molecules and a 500 nm3 compartment can contain 100,000 protein 

molecules.  We note, that other super resolution techniques are required to characterize the size of 

clusters of proteins below the diffraction limit. 

 

Experiments confirm 87.5% of PICNIC predictions 

By applying the above definition, in our dataset, 75 %, i.e. 18 proteins (encircled in green) form 

high confidence condensates, 12.5 % i.e. 3 proteins (encircled in orange) form low confidence 

condensates (foci with perimeter <1 µm) while other 3 are not forming any condensates 

(fluorescent intensity ratio ~ 1). We observe most condensates to be round (Figure S8d). The 

number of condensates per cell varies between 1 to 100s depending on the protein of interest.   

Using co-localization experiments with known nucleolus and P-body markers, we found that 5 

proteins (R51A1, H2A1H, H1T, CWC27, MRPL1) can localize to the nucleolus, a well-

characterised liquid-like nuclear condensate (Figure 5a). Further, 2 proteins (PHP14 and HBS1L) 
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localize to processing bodies (P-bodies), another well-characterized cytoplasmic condensate. In 

addition, 8 other proteins (RS10L, TYW5, SPA24, AIMP1, ZC3H15, IF2GL, LMOD1, RPS4Y2) 

localized to cytoplasmic bodies and rest (KHDC4, CWC25, PolD3, RAMAC, DRC4, RP9) 

localize to the nuclear bodies (Figure 5a). FRAP recovery profiles for the nuclear body forming 

proteins revealed, that 6 out of 7 tested proteins show very fast dynamics while one (RBMY1D) 

shows no recovery at the indicated time (Figure 5c). 

Other popular tools to predict condensate proteins would fail to make correct predictions for 

many of these proteins as shown by the high misclassification rates (Figure 4d). Overall, 87.5% 

of PICNIC predictions were found to be correct (misclassification rate is 25% for high confidence 

condensates and 12.5% if we include both high and low confidence condensates) in our 

experimental assays validating the model.  

 

Proteome-wide predictions detect no correlation of predicted condensate proteome size with 

disorder content and organismal complexity 

In order to see if our model is generalizable, we tested its performance in identifying known 

condensate-forming proteins of other organisms. The CD-CODE database34 was screened to 

evaluate the fraction of proteins that were correctly identified as members of condensates by the 

developed model. Although PICNIC was trained on human data, it successfully predicted 72% of 

such proteins in mouse and 86% in Caenorhabditis elegans for example (Figure 6a). Thus, 

PICNIC model is species-independent and can be used in different organisms to assess the ability 

of proteins to be involved in biomolecular condensates.  

To estimate the overall fraction of condensate-proteins, we calculated PICNIC scores for 14 

different organisms across the tree of life including bacteria, plants and fungi (Figure 6c). We 

chose organisms that have already known condensate protein members that were experimentally 
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verified in CD-CODE.  We excluded organisms from further analysis where the number of 

known proteins is too small to compute statistics on performance: Danio rerio (N=14), 

Dictyostelium discoideum (N=2), Escherichia coli (N=6), Mycobacterium tuberculosis (N=1), 

Oryza sativa (N=1), Candida albicans (N=6). We found that the proportion of the predicted 

condensate-forming proteome is 40-60%, and is similar across related organisms, e.g., 42% and 

39% in human and mouse, respectively (Figure 6c). Interestingly, while the fraction of 

disordered proteins increases with organismal complexity as shown before49,50, we found no 

correlation between fraction of predicted condensate proteins in a proteome and the disordered 

protein content (Figure 6b). For example, E. coli and H. sapiens have both ~40% of their 

proteome predicted to be involved in biomolecular condensates (Figure 6c).  

 

Discussion 

Here, we present a machine learning classifier that can learn and decode biomolecular condensate 

forming behaviour of proteins, that goes beyond protein structural disorder.  We developed two 

models for the prediction of proteins involved in condensates in vivo, that reach precision of 77% 

(81% for recall) and 87% (82% for recall) for PICNIC and PICNICGO, respectively at the suggested 

score threshold of 0.5 (Figure 2). The success of PICNIC models relies on several innovations: 1) 

novel amino acid co-occurrence features combined with protein structure-based features, that 

became only possible on a proteome scale since the Alphafold2 revolution51,52; 2) gradient boosting 

classifier that has an appropriate model complexity that fits the size of the training dataset; 3) 

improved curation and definition of the positive and negative datasets. Specifically, PICNIC 

models benefit from high quality positive data, that is the manually curated database of 

biomolecular condensates CD-CODE34. Additionally, we designed the negative dataset based on 

no a priori assumptions about protein disorder/structure. Previous predictors used either a i) 

exclusion of positive dataset from all known proteins29,42 or ii) proteins with 3D structures (retrieved 
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from PDB) since phase separation is common in disordered proteins that do not have well-defined 

3D structures. The simple exclusion does not provide reliable negative dataset, as it may contain 

many potentially phase separating proteins that have not been discovered yet. The second approach 

generates a biased negative dataset and is problematic because of two reasons: 1) phase separating 

proteins can have well-defined structure (Figure S1), Figure 4c), 2) such dataset is biased towards 

set of properties inherited by experimentally solved proteins. E.g., disorder predictors would also 

use 3D structures as negative dataset. To resolve this issue, here we used a protein-protein 

interaction network-based approach and excluded proteins that have a connection in the network 

with known condensate proteins (Figure 1a). 

Gradient boosting methods (GBM) allow optimization on different loss functions which provides 

necessary flexibility, but more prone to overfitting. Here, the latter was compensated by choice of 

tree depth and providing of an evaluation dataset. GBM generally outperforms simpler models 

such as Random Forest or Support Vector Machine, but at the same time it doesn’t require as 

much data as models based on Neural Networks. Because there is not enough well-annotated data 

for positive and negative datasets, we chose GBM to mitigate the tradeoff between model 

complexity and its performance. 

With the incorporation of biological knowledge about genes and proteins, PICNICGO reaches 

even higher performance (Figure 2c). Not surprisingly, it identified, along with the known impact 

of disordered and low complexity regions, that RNA binding seems to play crucial roles in the 

ability of proteins to be involved in biomolecular condensates (Figure 1c). Although gene 

ontology terms are valuable resource of information, they could introduce bias due to their nature 

of annotation.  

We would like to emphasize that some of the other tools we benchmarked against were designed 

to solve a different task, namely to predict the ability of a protein to undergo phase separation or 

drive phase separation and in vitro condensate formation22,42. Specifically, PSAP23 was trained on 
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90 human proteins that can drive phase separation, and FuzDrop22 was parametrized based on 67 

proteins known to self-phase separate based on in vitro experiments. Therefore, it is not expected 

that these tools would identify all condensate forming proteins, e.g. clients observed in vivo such 

as the nuclear punctae from the OpenCell project (Figure S2b). In contrast, PICNIC was adapted 

to recognize the proteins that are present in biomolecular condensates (serving a role of a driver 

or client) regardless of the mechanism of condensate formation. Therefore, our model does not 

evaluate if a protein is part of synthetic condensates, i.e., in vitro experiments, but rather focuses 

on if a protein is part of condensates in biologically relevant conditions.  

PICNIC scores for clients and drivers show similar distribution (Figure S9). Since the same 

protein can behave as a driver or a client depending on the condensate identity and environment, 

we surmise that the ability of driving condensate formation is not solely encoded in the sequence 

and structure of individual proteins. This suggests, that additional input data are needed to be 

taken into account by the model. Studying the protein in the context of its interacting partners 

within a condensate may shed light on the properties of driver proteins. 

While PICNIC is superior in identifying protein membership in biomolecular condensates, it has 

several limitations. It cannot predict which sequence features or motifs are responsible for the 

condensate function in a given protein. FuzDrop is the only method that can recognize specific 

motifs in protein sequences that promote phase separation behavior22,53–55 .  

The algorithms in this paper are designed to understand whether a protein has the potential to 

localize to a condensate, based on previous data.  We tested 24 predicted proteins and found that 

87.5% form foci in cellulo, and 75% form high confidence condensates based on a quantitative 

definition of condensates.  In making this analysis, we set a cut-off above the diffraction limit.  

This does not mean that clusters of proteins under this limit do not form condensates, but that 

super-resolution techniques would be required to analyze this. It is important to state that this 

localization makes no claim to biological function in cells.  These condensates were observed in 
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cell lines, using GFP-tagged proteins that had varied expression levels.  It is possible that some 

proteins will only form condensates under stress or in certain cell types at certain concentrations. 

In some cases, a protein for instance might not localize to a condensate under physiological 

conditions, but might when overexpressed in cancer. Therefore, although each protein can 

localize to a condensate, it remains to be sorted out by detailed experiments whether any 

individual protein localizes to a condensate in a specific cell type at a certain concentration and 

using different tags or antibodies. 

We detect that structural disorder is not a prerequisite for condensate member proteins, as many 

of them have no IDRs both based on analysis of the CD-CODE database (Figure S1b) as well as 

5 out of the 21 proteins identified here experimentally as condensate members have <30% 

disordered residues (Figure 4c). Thus, a wide-range of structural disorder can lead to condensate 

partitioning. Accordingly, we found no correlation of condensate proteome size and disorder 

content of an organism.  

The generalizability of our model shows that the predictor learned general features (based solely 

on sequence information and structures that were also deduced from the sequence) across the tree 

of life. The provided results can shed light on evolution of biomolecular condensates across 

different species and by predicting condensate members beyond drivers can aid identifying 

potential protein targets to modulate biomolecular condensate behaviour and aid drug design56,57. 

Overall, PICNIC accurately predicts proteins involved in biomolecular condensates and provides 

proteome-wide perspective on proteins involved in condensate formation in different species.  
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Methods 

Construction of positive and negative datasets  

The positive dataset of condensate forming proteins was extracted from CD-CODE database 

v1.0034. We used all human proteins with at least 1 evidence star as a positive dataset. The 

negative dataset was constructed by excluding proteins that interact with known condensate 

forming proteins based on the InWeb v3 database36. After filtering the sequence for 50% 

sequence identity, our dataset composed of 2142 positive and 1709 negative proteins, that were 

divided by ratio 4:1 into training and test datasets. We divided the dataset into 20% test dataset 

(used only for testing the final model) and 80% working dataset, which was randomly divided 

into 70% training and 30% validation datasets for the 10-fold cross-validation (Dataset S1).  

 

Model features 

Disorder score and sequence complexity 

Intrinsically disordered regions (IDRs) and low-complexity regions of proteins were shown to be 

an important feature for predicting the ability to phase separate. To estimate protein disorder, we 

used the IUPred algorithm58, which  assigns a score to each residue in the sequence. We used kth 

percentile with k equal to [5,25,50,75,95], which is the score below which k percentage of residue 

scores fall. The 5th and 95th percentiles were chosen instead of minimum/maximum values to 

exclude the bias due to outliers. 

We calculated sequence complexity in order to identify low-complexity regions (LCRs). These 

regions often contain repeats of single amino acids or short amino acid motifs. We calculated 

sequence complexity according to the definition suggested by Wootton and Federhen59 using two 

different sizes of sliding window for the protein sequence: 40 and 60. Proteins with length less 

than 60 residues were excluded from this analysis.   
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Sequence distance-based features 

We represented the co-occurrence of amino-acids (AA) in the protein sequence within certain 

distance by a pair of triads (AA1, distanceshort, AA2) and (AA1, distancelong, AA2), where AA1, 

AA2 is one of the 20 amino acids types, distanceshort э [1,2,3,4,5] and distancelong э 

[[0,20),[20,40),[40,60),[60,80)]. These features represent short and long range co-occurences of 

amino acids in the protein sequence.  Short threshold distanceshort defines the distance between 

two types of amino acids (e.g., 1 means neighboring residues). Long threshold, distancelong   

defines a window equal to 20, that is the distance in sequence between the two types of amino 

acids co-occur. The total number of tested sequence distance-based features was 1890, including 

both short and long distances. 

 

Secondary structure features based on AlphaFold models 

Recent advances in Deep Learning techniques enabled de novo modeling of protein structures 

from sequences with high accuracy that is comparable to experimental methods51. Here, we used 

predicted AlphaFold2 models that were downloaded from the resource created by the EMBL 

Consortium (second release, Date of access: January, 2022)52, which contains precomputed 

structures for proteomes of many organisms. Alongside with atomic protein structures, AlphaFold 

provides the pLDDT score (predicted lDDT-Cα), that is a per-residue measure of local 

confidence on a scale from 0 – 100 60. pLDDT scores were divided into four classes (according to 

DeepMind classification): [0, 50) - 'very low', [50,70) - low’, [70,90) –‘confident’', [90,100] – 

‘very high’. We used the STRIDE algorithm to annotate the secondary structure based on 3D 

protein structure 61. STRIDE assigns one of seven classes to each amino acid in the protein 

sequence: Alpha helix (H), 3-10 helix (G), PI-helix (I), Extended conformation (E), Isolated 

bridge (B), Turn (T), Coil (C).  
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Next, we calculated all possible triads in the form (AA, SSE, pLDDT), where aa belongs to one 

of 20 types of amino acids, SSE э [H, G, I, E, B, T, C], pLDDT э ['very low, ‘low’, ’confident', 

‘very high’]. For longer proteins, AlphaFold2 models consist of overlapping segments of 1400 aa 

length. In case of discrepancy, when the same amino acid is assigned with different 3D 

coordinates and pLDDT score, we consolidated the predictions using the following rules: 1) We 

calculated all possible STRIDE predictions (with different pLDDT scores); 2) we selected the 

most frequent STRIDE class that had the highest pLDDT score. The total number of features 

based on structural information provided by Alphafold2 and STRIDE was 560. 

 

Gene Ontology features 

Gene Ontology terms are a hierarchal dictionary of annotations describing the function of a 

particular gene62,63. They assign gene characteristics for three directions: molecular function, 

biological process and cellular component. Each of the direction is represented by a directed 

acyclic graph, where nodes represent terms (or annotations) and edges represent the relationship 

of subtype from descendant to ancestor node. There are tens of thousands of terms, therefore one 

hot encoding for all possible terms is not feasible. To decrease the number of encoded terms, we 

took only the most frequent terms into account. To estimate the frequency of terms, we used the 

Swissprot annotations of proteins (after removing redundancy by excluding sequences with more 

than 30% sequence identity) from Uniprot database64. It must be noted, that the frequency of 

ancestor term ta also included summation of the frequencies of all descendant terms td, calculated 

by the equation: 

 

Fr(ta) = Noc(ta)+∑ 𝑁!"(𝑡#)$! , where Noc(t) – number of occurrences of term t in the corpus. 
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Only terms with frequencies greater than a threshold were kept for feature calculation. Thresholds 

were chosen for each of the three directions separately to encompass adequate number of terms in 

the annotations (2500 for molecular function and biological process). We excluded the cellular 

component direction from the feature selection, as some gene ontology terms contain information 

about cellular compartments (based on Human Protein Atlas 44, OpenCell 43). We used one-hot 

encoding, where each protein was assigned with a vector of fixed length (equal to the number of 

chosen terms); 1 was assigned if the considered term in the given position (or any of their 

descendants) was mentioned in protein annotation, otherwise 0. The total number of features 

describing molecular function and biological process for the set of proteins was 1002.  

 

Machine learning algorithms 

We developed two types of models: one including gene ontology features (PICNICGO) and one 

without (PICNIC). Both models have the following structure: they consist of 10 Catboost 

classifiers with dataset for early stopping (to calculate loss function on the dataset different from 

training to prevent overfitting over training dataset) and fixed depth65,66. Catboost is a classifier 

based on gradient boosting machine (GBM) – a machine learning technique that gives a 

prediction model in the form of an ensemble of decision trees67.  

Among other gradient boosting classifiers CatBoostClassifier from catboost library showed 

consistency across multiple runs (we compared LGBMClassifier from lightgbm library and 

XGBClassifier from xgboost library). To estimate the overall model performance across multiple 

runs with different parameters, we used the following metric: we chose the validation score (F1-

score) of best iteration of each separate fold, and then computed the mean value across 10 folds.  

The model training started with all features, that is 2467 for the model without Gene Ontology 

features (PICNIC), and 3469 for the model with GO features, PICNICGO. We selected the best 

features based on feature importance: at each training iteration only features with importance 
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greater than a given threshold were selected for the next run (we took the union of features across 

different folds). Thus, each subsequent training iteration decreased the number of used features.  

We chose this feature selection approach because the feature importance did not fluctuate much 

for different folds (Figure 1e). The final models contained 18 and 92 features for PICNICGO and 

PICNIC, respectively. The number of features in the model with protein annotations are much 

lesser in comparison with another model as subset of the sequence- and structure-based features 

connected to phase separation properties are already directly encoded by Gene Ontology 

annotations.  

Cloning, cell culture and imaging 

U2OS cells were transfected with plasmids encoding Human proteins tagged with iRF-670 at the 

N-terminus. All the 24 tested genes were codon optimized (for synthesis ease as well as to 

override any cellular regulation involving mRNA degradation of endogenous sequences) and 

synthesized by Integrated DNA Technologies (IDT) (Dataset S3), restriction digested using NotI-

HF and AscI enzymes (NEB-R3189 and NEB-R0558) and then ligated into the pre-digested 

vectors using T4 DNA ligase(M0202) and transformed in E. coli DH5-alpha cells. Positive clones 

were confirmed by insert release and correctness was verified by DNA sequencing. 

 

Cells were grown in high glucose DMEM medium (Gibco-31966021) supplemented with 10% 

FBS (Sigma- S0615) as well as 100 units/ml Penicillin-Streptomycin (Gibco-15140112). 

Following trypsinization with Trypsin-EDTA (Gibco-25300054) cells were seeded on the Ibidi 8 

well imaging chamber (80826). After overnight growing the cells, cells were then transfected 

with plasmids encoding the 24 transgenes and for the colocalization purpose with GFP-tagged 

DCPa1 (a processing-body marker plasmid) and GFP-tagged Fibrillarin (a sub-nucleolar marker 
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specific to the middle dense fibrillar region allowing the potential dissection of all 3 sub-nucleolar 

localization of the test proteins) using the Fugene HD transfection reagent (Promega-E2311).  

 

Cellular fluorescent images were recorded on a spinning disk confocal microscope with FRAP 

capability using the 60x/1.2U-Plan-SApo, water immersion objective lens (Olympus) using 

488nm and 640nm laser lines, on an Andor-iXon-897-EMCCD camera.  Images, colocalization 

and the FRAP movies were analyzed and representative images were prepared using Fiji68 

(Dataset S4).  

Fluorescent microscopy images were quantified manually using Fiji and shape, size descriptors 

(roundness, perimeter and area) as well as fluorescence intensity were measured (Figure S8). 

Enrichment ratio of the condensates was calculated as the ratio of the mean fluorescence of the 

condensate foci divided by the mean fluorescence of the background. The data was plotted using 

GraphPad prism software. All the images were finally prepared in Adobe Illustrator.  

 

Data and Software Availability  

The training, validation and test datasets are available as Dataset S1. The list and properties of the 

24 proteins selected for experimental validation is provided as Dataset S2. Plasmid vector maps 

and representative images are available as Dataset S3 and S4, shared as a public repository 

available at https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.0Y9Q8N. 

The PICNIC code, documentation and examples as jupyter notebooks can be found at 

https://git.mpi-cbg.de/tothpetroczylab/picnic. Predictions across proteomes of 14 organisms are 

provided as a web application https://picnic.cd-code.org. 
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Main Figures  

 

 

Figure 1. Development of PICNIC (Proteins Involved in CoNdensates In Cells) algorithm. 

a) In order to construct a training dataset, we annotated the known condensate-forming proteins 

from CD-CODE (positive dataset, members of biomolecular condensates) on the protein-protein 

interaction (PPI) network, and we excluded their first connections (proteins having interactions 

with condensate proteins). The remaining proteins comprised the negative dataset. Gradient 

boosting machine was used to distinguish two classes of proteins: members of biomolecular 

condensates and proteins that are not involved in any type of biomolecular condensate. b) 

Sequence, structure and function-based features of PICNIC. We developed two types of models: 

with (PICNICGO) and without the use of gene ontology annotation features (PICNIC). Sequence-

based features included sequence complexity, disorder score (IUPred), and features based on 
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amino acid co-occurrences. Structure-based features based on Alphafold2 models included the 

pLDDT score, a per-residue measure of local confidence on a scale from 0 – 100 (colored on the 

structure). We annotated the secondary structure (SSE) based on 3D protein structures using 

STRIDE and all possible triads in the form (AA, SSE, pLDDT) were calculated. c) Amino acid 

occurrences in the features of PICNIC model show that Leucine and Lysine contribute the most 

to the model predictions. d) The model including GO terms (PICNICGO) used three types of 

features, based on gene ontology (in green), disorder (orange), distance-based (violet). The most 

important features included RNA-binding, disorder and co-occurrences of charged and 

hydrophobic residues. The feature importance is consistent across different folds of cross-

validation (mean values across 10 folds are shown, black lines with upper and lower border show 

standard deviation for each feature within cross-validation). e) Feature importance of PICNIC is 

consistent across different folds. Mean values across 10 folds are shown, black lines with upper 

and lower border show standard deviation for each feature within cross-validation. Features 

constitute three groups: based on AlphaFold2 models (in light blue), disorder (pink), complexity 

(dark red) and distance-based (blue). 
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Figure 2. PICNIC models have the best performance in predicting condensate-forming 

proteins. Comparison of sequence-based predictors (lines, PICNIC, PdPS-8fea, PSAP, and 

DeePhase) and predictors using experimental data (dotted lines) as features to predict protein 

condensates. Specifically, PdPS-10-fea uses phosphorylation sites and immunofluorescent 

microscopy images of the proteins, PICNICGO uses GO-terms as features. a) Test dataset from 

PhaSepDB high-throughput retrieved from29 (441 positive and 1998 negative examples, 

excluding proteins that were part of the PICNIC training set), b) test dataset from OpenCell43 (78 

positive and 1998 negative examples excluding proteins that were part of the PICNIC training 

set), c) test dataset from the current study based on CD-CODE34 (338 positive and 299 negative 

examples). PICNIC outperforms sequence-based predictors even on the test set that includes 

training data of previously published predictors, that may inflate their performance.  
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Figure 3. PICNIC captures the different phase separation behaviour within the synuclein 

protein family. a) The three paralogs in human share high sequence identity as depicted in the 

multiple sequence alignment. b) Structural models for a-synuclein (yellow), b-synuclein (cyan) 

and g-synuclein (green), predicted by AlphaFold2 reveal that b-synuclein has a bent structure. c) 

Despite the high sequence similarity, only α- and g-synuclein are part of biomolecular 

condensates, while β-synuclein has not been found in any biomolecular condensates yet and was 

shown not to phase separate in vitro. d) Comparison of prediction scores of different tools in 

identifying condensate forming (α and g, green) and non-condensate forming paralog (β, red). 

PICNIC accurately predicts the condensate-forming ability of the synuclein family, and ranks β-

synuclein the lowest, while other tools give equivalent scores to all paralogs or fail to identify the 

right trend. Vertical lines indicate the threshold used by the various methods to classify 

condensate-forming proteins. 
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Figure 4. Most (18 out of 24) tested proteins form high confidence condensates in cellulo.  

a) Representative images of the U2OS cells expressing the tested proteins tagged with a 

fluorescent protein (GFP). Formation of mesoscale cellular condensates are highlighted in the 

inset. All images are scaled to the scale bar 10 micron (shown on upper left image). We found 21 

out of the 24 tested proteins (87.5%) formed mesoscale foci without any stressors, while 3 

proteins (C1ORF52, SPAG7 and CWC27, encircled in red) localized to the nucleoplasm without 

forming any detectable foci (foci were defined by exhibiting a fluorescent intensity ratio >1). 

Notice the presence of rim like structures in case of H1T and H2A1H. Using size, shape and the 

fraction of cells forming mesoscale foci as a deciding characteristic, ~75% i.e., 18 proteins 

(encircled in green) form high confidence condensates, and 3 proteins (encircled in orange) form 

low confidence condensates (foci with longest diameter <350nm. Figure S8). b) Wide range of 

structural motifs covered in the test proteins; AlphaFold2 structural models of the proteins are 

colored according to secondary structures.  Notice the wide range of structural motifs, alpha-

helical (red), beta stranded (yellow) to largely disordered (green) proteins.  

c) Disorder content (computed as mean IUPred score or reverse pLDDT score (1 - pLDDT)) of 

the tested protein does not correlate with the ability to form condensates. d) Comparison of the 

predictions provided by sequence-based predictors (bars, PICNIC, PdPS-8fea, PSAP, and 

DeePhase) and predictors using experimental data (hatched bars) as features to predict protein 

condensates. Both PICNIC and PICNICGO exhibit the lowest misclassification rate for the tested 

24 proteins.  
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Figure 5.  A subset of the tested proteins localizes to known condensates. 
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a) Colocalization of the cellular condensate-forming proteins with well-characterized liquid like 

cellular condensates as can be concluded from the fluorescence intensity profiles correlation with 

the marker protein fluorescence profiles. While Rad51AP1 (in purple) localizes strongly around 

the Dense fibrillar center (DFC, in green) forming a rim like structure, H2A1H (in purple) show 

rather weak localization as a rim around the DFC (in green) showing sub-nucleolar localization 

specific to the outer Granular center (GC). See the cartoon representation of the nucleolar 

architecture. Further, PHP14 (purple) strongly co-localizes with the DCP1a (green) labelled 

processing bodies. RAD15-associated protein 1 (Rad51AP1) shows multi-condensate localization 

that varies from exclusive nuclear bodies, to nuclear bodies abutting the nucleolus, to sub-

nucleolar localization (GC) as well as complete nucleolar localization suggesting an interesting 

regulated role for this protein’s involvement on multiple nuclear-condensates possibly in a cell-

cycle stage regulated manner. All images are scaled to the scale bar 10 micron, upper right. b)  

FRAP assays showing the fast recovery dynamics consistent with the liquid like nature of the P-

bodies (upper panel) and the Nucleolus (lower panel). Fibrillarin and the DCP1a FRAP recovery 

profile, inset highlighting the fast recovery dynamics of targeted P-body and the nucleolus. The 

scale bar is 10 micron each for each. c) FRAP recovery profiles for the nuclear body forming 

proteins. 6 out of 7 tested proteins show very fast dynamics while one (RBMY1D) shows no 

recovery at the indicated time. All the images with indicated whole nuclei (lower panel for each 

protein) are scaled to the 10-micron scale bar shown in the bottom right.  
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Figure 6. Inferring condensate proteins across the tree of life reveals no correlation with 

disorder content. 

a) PICNIC model is species-independent. We validated the PICNIC model on known 

condensate proteins from different species (defined by CD-CODE). PICNIC correctly identified 

70-100% of known condensate proteins of all species tested, except for zebrafish (50%).  b) 

Disorder content and fraction of condensate-forming proteins of a proteome are not 

correlated. Proteome-wide prediction of proteins in biomolecular condensates by PICNIC 

predictor (c) compared with the fraction of disordered proteins (proteins with at least one 

disordered region of >=40 residues) in proteomes shows no correlation across many organisms 

from bacteria to mammals (R2 = 0.014 for all datapoints, grey dotted line, and R2 = 0.033 when 

excluding E. coli and M. tuberculosis, black solid line). 
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