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Abstract

Understanding the complex background of cancer requires genotype-phenotype information
in single-cell resolution. Long-read single-cell RNA sequencing (scRNA-seq), capturing full-
length transcripts, lacked the depth to provide this information so far. Here, we increased the
PacBio sequencing depth to 12,000 reads per cell, leveraging multiple strategies, including
artifact removal and transcript concatenation, and applied the technology to samples from
three human ovarian cancer patients. Our approach captured 152,000 isoforms, of which over
52,000 were novel, detected cell type- and cell-specific isoform usage, and revealed
differential isoform expression in tumor and mesothelial cells. Furthermore, we identified gene
fusions, including a novel scDNA sequencing-validated IGF2BP2::TESPA1 fusion, which was
misclassified as high TESPA1 expression in matched short-read data, and called somatic and
germline mutations, confirming targeted NGS cancer gene panel results. With multiple new
opportunities, especially for cancer biology, we envision long-read scRNA-seq to become
increasingly relevant in oncology and personalized medicine.
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65 Introduction

66 Cancer is a complex disease characterized by genomic and transcriptomic alterations' that
67  drive multiple tumor-promoting capabilities or hallmarks?. Among others, these alterations
68 include point mutations, insertions and deletions (indels), and gene fusions on the genomic
69 level, and splice isoforms on the transcriptomic level. Their detection offers great potential for
70  personalized oncology as they can serve as direct therapeutic targets®* or potential
71 neoantigens informing on the immunogenicity of the tumor®. Gene fusions arising from large-
72  scale genomic rearrangements, for example, play an oncogenic role in a variety of tumor
73 types®, and are successfully used as therapeutic targets”®. Like mutations® and copy number
74  variations', fusion rates can vary widely across cancer types, and gene fusions are thought
75 to be drivers in 16.5% of cancer cases, and even the only driver in more than 1%".
76  Furthermore, out-of-frame gene fusions are more immunogenic than mutations and indels,
77 making them an ideal target for immunotherapies and cancer vaccines''®. On the
78  transcriptomic level, alternative splicing is a major mechanism for the diversification of a cell’s
79  transcriptome and proteome' and can impact all hallmarks of tumorigenesis. It also presents
80 a fairly novel non-genomic source of potential neoantigens'®. In breast and ovarian cancer,
81  68% of samples had at least one isoform with novel exon-exon junction (neojunction) detected
82  in proteomic data®®.

83 The complexity of cancer further extends to intra-tumor heterogeneity'’ and its intricate
84 interplay with the tumor microenvironment (TME)'®. Ultimately, to fully decipher functional
85  tumor heterogeneity and its effect on the TME, single-cell resolution providing both phenotype
86  and genotype information is required. Single-cell RNA sequencing (scRNA-seq) is now widely
87  used for the phenotypic dissection of heterogeneous tissues. It can be divided into short-read,
88  high-throughput technologies allowing for gene expression quantification and long-read, low-
89  throughput technologies that cover full-length transcripts'. Up to now, short- and long-read
90 methods had to be used in parallel to combine the advantages of each technology. The long-
91 read scRNA-seq field is rapidly expanding, with methods being constantly developed and
92 improved on Nanopore®?' and PacBio* % long-read platforms. So far, long-read RNA-seq
93  has however only been applied on the bulk level in the field of oncology?*?”?%, High-quality,
94  high-throughput, long-read scRNA-seq has the potential to provide isoform-level cell type-
95  specific readouts and capture tumor-specific genomic alterations. With near ubiquitous p53
96 mutations and defective DNA repair pathways causing frequent non-recurrent gene fusions,
97  high-grade serous ovarian cancer (HGSOC) is an ideal candidate to investigate these
98 alterations'®%%%,

99  Here, for the first time, we used high-quality, high-throughput long-read scRNA-seq to capture
100 cell type-specific genomic and transcriptomic alterations on clinical cancer patients. We
101  applied both short-read and long-read scRNA-seq to five samples from three HGSOC patients,
102  comprising 2,571 cells, and generated the largest PacBio scRNA-seq dataset to date. We
103  were able to identify over 150,000 isoforms, of which a third were novel, as well as novel cell
104 type- and cell-specific isoforms. We detected differential isoform usage in tumor cells and cells
105 of the TME. Additionally, we discovered dysregulations in the insulin like growth factor (IGF)
106  network in tumor cells on the genomic and transcriptomic level. Thereby, we demonstrated
107  that scRNA-seq can capture genomic alterations accurately, including cancer- and patient-
108  specific germline and somatic mutations in genes such as TP53, as well as gene fusions,
109 including a novel IGF2BP2:: TESPA1 fusion.
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110 Results

111 Long-read scRNA-seq creates a catalog of isoforms in ovarian cancer
112  patient-derived tissue samples

113  We generated short-read and long-read scRNA-seq data from five omentum biopsy samples
114  (Extended Data Table 1) from three HGSOC patients. Three samples were derived from
115 HGSOC omental metastases and two from matching distal tumor-free omental tissues
116  (Fig. 1a). To generate long reads, we opted for the PacBio platform for its generation of high-
117  fidelity (HiFi) reads through circular consensus sequencing (CCS). To overcome its limitations
118  in sequencing output and optimize for longer library length, we 1) removed template-switch
119  oligo artifacts that can account for up to 50% of reads through biotin enrichment, 2)
120  concatenated transcripts to sequence multiple cDNA molecules per CCS read, and 3)
121 sequenced on the PacBio Sequel Il platform (2-4 SMRT 8M cells per sample, Methods). This
122  allowed the generation of a total of 212 Mio HiFi reads in 2,571 cells, which, after
123  demultiplexing, deduplication, and intrapriming removal, resulted in 30.7 Mio unique molecular
124  identifiers (UMIs) (Extended Data Table 1). On average, 12k UMIs were detected per cell.
125

126  The long-read dataset revealed 152,546 isoforms, each associated with at least three UMIs.
127  We classified the isoforms according to the SQANTI classification®' and calculated their
128  proportions (Methods, Fig. 1b,c): full splice match (FSM) - isoforms already in the GENCODE
129 database (32.8%), incomplete splice matches (ISM) - isoforms corresponding to shorter
130 versions of the FSM (35.1%), novel in catalog (NIC) - isoforms presenting combinations of
131 known splice donors and acceptors (15.9%), and novel not in catalog (NNC) - isoforms
132  harboring at least one unknown splice site, or neojunction (14.4%). Novel isoforms (classes
133  NIC and NNC) accounted for 30% of the isoforms, and 11% of the total reads in all samples,
134  while FSM accounted for 33% of the isoforms and 80% of the reads (Fig. 1¢,d), indicating that
135  high coverage is required for the reliable detection of new, low abundant, transcripts.

136

137  To evaluate the structural integrity of all isoforms, we compared their 5’ end to the FANTOM5
138  CAGE database® and their 3’ end to the PolyASite database® (Fig. 1e). More than 82% of
139  the NIC and 74% of NNC isoforms could be validated on 3’ and 5’ ends, similarly to FSM. As
140  expected, fewer ISM isoforms were found to be complete (42%): they are either incompletely
141 sequenced isoforms missing their 5’ end (30%) or the result of early 3’ termination (55%).
142

143  FSM, NIC, and NNC had overall better 3’ and 5’ validation than the full-length tagged isoforms
144  in the GENCODE database (Fig. 1e). Only the ‘Matched Annotation from NCBI and EMBL-
145 EBI' (MANE®**) containing curated representative transcripts cross-validated between the
146 GENCODE and RefSeq database had a better 3' and 5’ validation of 95%. A total of 52,884
147  novel isoforms were complete (NIC+NNC), of which 40,046 were confirmed as valid novel
148 isoforms by GENCODE, corresponding to 17% of the current GENCODE v36 database.
149  Isoforms that were not confirmed were mainly either “partially redundant with existing
150 transcripts”, or “overlapping with multiple loci”. Finally, we assessed the biotypes of our newly
151  discovered isoforms, indicative of their presumed functional categorization. We found that 42%
152  are protein coding, more than the 36% of protein coding isoforms found in the GENCODE
153  database (230k entries) (Fig. 1f-g). This demonstrates the ability of concatenated long-read
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154  sequencing to generate high yield, high-quality data and discover novel isoforms with
155  enhanced annotation.

156 Long-read sequencing allows for short-read-independent cell type
157 identification

158  Next, through comparison to short-read data, we assessed the ability of long-read sequencing
159 to cluster cells and to identify cell types. We generated short- and long-read gene count
160  matrices and removed non-protein-coding, ribosomal, and mitochondrial genes. After filtering,
161  we obtained 16.5 Mio unique long reads associated with 12,757 genes, and 26.3 Mio unique
162  short reads associated with 13,122 genes (Extended Data Table 1). The short- and long-read
163  datasets were of similar sequencing depth with a median of 4,930 and 2,750 UMIs per cell,
164  respectively (average 10,235 and 6,413 UMIs, Extended Data Fig. 1a). Also, the genes
165 detected in both datasets overlapped by 86.4% (Extended Data Fig. 1b,c).

166

167 We first identified cell types independently per cell, using cell type marker gene lists
168 (Methods). We compared short- and long-read data and found that both data types identified
169  cell types with similar percentages, namely HGSOC (13% in short-read vs 15% in long-read
170  data), mesothelial cells (22 vs 23%), fibroblasts (9 vs 8%), T cells (38 vs 37%), myeloid cells
171 (both 14%), B cells (3 vs 1%), and endothelial cells (both 1%). Those cell populations
172  expressed cell type specific marker genes (Extended Data Fig. 1¢). We then projected short-
173  read gene, long-read gene, and long-read isoform expression onto 2-dimensional embeddings
174  using UMAP* (Fig. 2a). We manually clustered cell types based on the embeddings and
175 calculated the Jaccard distance between clusters. Cell clusters based on short- and long-
176  reads were very similar, with a Jaccard distance >94% for all cell types except B-cells, where
177  the Jaccard distance was >75% (Fig. 2b). Furthermore, Jaccard similarity analysis between
178  cell type clusters and attributed cell type labels were analogous between short- and long-read
179  data, with a better prediction of B cells and endothelial cells for long reads (Extended Data
180 Fig. 1b). These findings show that long-read gene and isoform expression data can be used
181  to identify cell types reliably and independently from short-read data.

182 Long-read sequencing captures germline and somatic mutations and
183 identifies increased neojunctions in tumor cells

184  Next, we assessed the potential of long-read data for mutation detection, and used somatic
185  mutations to further validate the cell type annotation. Germline mutations are expected in all
186  cell types, whereas somatic mutations should be present only in tumor cells. As reference, we
187  used mutations called from a panel covering 324 genes on patient-matched bulk DNA samples
188 (Methods). We identified germline variants in 48 cells belonging to all cell types from distal
189  omentum and tumor sites (Fig. 2c, Supplementary Table 1). Somatic mutations were called
190 in 34 cells, all in the cell cluster annotated as tumor cells (Fig. 2d). In 20 of those cells, TP53
191 was found mutated (Supplementary Table 1). Thus, high-fidelity long-read data can be
192  leveraged for both germline and somatic mutation calling.

193  We analyzed the expression of cell type-specific isoforms. HGSOC cells expressed more
194  genes, transcript isoforms, and RNA molecules than other cell types (Extended Data Fig. 3a-
195 ¢). This difference does however not translate into mean UMIs per isoform, as isoforms
196  expressed in cancer cells harbor fewer UMIs than in mesothelial cells, for example. This
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197 means that cancer cells express more low-abundant isoforms (Extended Data Fig. 3d)
198  suggesting wider isoform diversity and broader cellular functions and controls. Isoform class
199 distribution between cell types revealed a higher fraction of novel isoforms and neojunctions
200  (NNC) in tumor cells (Fig. 2e).

201 We then looked into isoforms uniquely expressed in the different cell types. At the cell type
202 level, cancer cells contained more than 8% (9,476) of cell type-specific isoforms, between 2.3-
203  10.6 times more than the most frequent other cell types (myeloids, T/NK cells, fibroblasts and
204 mesothelial cells) (Methods, Extended Data Fig. 3e). At the cellular level, 0.5% of the cancer-
205  specific isoforms were also unique to a single cell, which is between 3-6 times the percentage
206  of unique isoforms in other cell types (Extended Data Fig. 3e). In all cell types, cell type-
207  specific isoforms (Extended Data Fig. 3f) had a higher percentage of novel isoforms than
208 non-specific isoforms distributed across cells (Fig. 2e). This phenomenon was even stronger
209 in cell-specific isoforms: in cancer, more than 75% of isoforms unique to cells were novel, and
210  50% of these were neojunctions (NNC) (Extended Data Fig. 3e). Those rare isoforms were
211  difficult to detect for previous methods, hence their novelty. Taken together, cancer cells
212  expressed at least twice as many unique isoforms than other cell types, indicating an
213 increased transcriptomic diversification and support previous findings of cancer-specific
214 neojunction expression in bulk data'®.

215 Differential isoform expression in the tumor microenvironment reveals
216  epithelial-to-mesenchymal transition

217  Comparing cells from metastatic and tumor-free samples, we found that mesothelial and
218  fibroblast cells showed distinct clustering, in both short- and long-read embeddings (Fig. 3a).
219  We observed a bridge between TME fibroblasts and mesothelial cells on the UMAPs,
220  suggesting that TME cells might undergo a form of transdifferentiation. To understand this
221 phenomenon, we analyzed differential isoform and gene expression in TME vs. distal
222  mesothelial and fibroblast cells. For mesothelial cells, the gene with the highest change in
223  relative isoform abundance amongst all its transcripts was the collagen type 1 alpha chain
224  (COL1A1) (Peor=6.34x10™°, |AM|=0.86, Methods) (Fig. 3b). TME mesothelial cells used the
225  canonical 3’ transcription termination site, while distal cells had a premature transcription
226  termination, resulting in a truncated protein (Fig. 3c). COL1A1 was also the top differentially
227  expressed gene (P = 2x107) between TME and distal mesothelial cells, and the fifth most
228  differentially expressed gene between TME and distal fibroblasts (P = 0.015), with TME cells
229  overexpressingitin both cases compared to their distal counterparts. COL1A2, was also found
230 to be differentially spliced in TME mesothelial cells (P.r=6.85x10°", |AM|=0.37) and
231  fibroblasts (Peor=2.02x1077, |AM|=0.36). HGSOC cells showed the same COL1A2 splicing
232  pattern as TME cells when compared to all non-tumor cells (Psor=6.54x10"°, |AMN|=0.42). Both
233  expressed transcripts with a canonical 3’'UTR, longer than the 3’'UTR expressed in distal cells
234  (Fig. 3d). Thus, in two cases, tumor-associated stromal cells overexpressed and used longer
235  collagen matrix isoforms than their distal counterparts. Another top differentially expressed
236  isoformin TME vs. distal mesothelial cells was gelsolin (GSN), which exists in two main protein
237  variants: one residing in the cytoplasm (cGSN), the other in the extracellular (plasma)
238  environments (0GSN)*. At the gene level, GSN was not significantly overexpressed in TME
239 vs. distal or in HGSOC vs. non-HGSOC cells. However, TME mesothelial cells had a
240  significantly higher cGSN/pGSN isoform ratio than distal ones (Pcor=2.49x107%, |AM|=0.34)
241  (Fig. 3e). Similarly, cancer cells had a significantly higher cGSN/pGSN ratio than non-cancer
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242  cells (Peor=3.4x10""%"|AM|=0.28), and consistent with findings for COL 1A, TME cells displayed
243  a cancer-like isoform expression profile compared to cells from distal sites, suggesting tissue
244  mimicry. To test if the differential expression of those structural isoforms in TME cells could
245  be linked to epithelial-to-mesenchymal transition (EMT), we performed gene set enrichment,
246  which revealed the EMT pathway as enriched in TME mesothelial and fibroblasts cells (Fig.
247  3f) supporting the idea of a tumor-transformed stroma.

248 Differential isoform expression in cancer reveals isoform-specific IGF1
249 usage

250 HGSOC cells significantly expressed different isoforms in 17% of the genes, compared to
251  all distal cells, but only 0.6% were switched with |AlM|>0.5 (6,841 genes tested, Methods)
252 (Extended Data Fig. 4a). One of the most significant switches was found in the insulin-like
253  growth factor gene IGF1 (Peor=1.1x10"%, |AM|=0.68), a gene coding for a hormone linked to
254  the development, progression, survival, and chemoresistance of many cancer types including
255  ovarian cancer®’. Cancer cells from all patients almost exclusively used the second exon of
256 the gene as their transcription start site (Class Il isoform), whereas other cells mainly used the
257  firstexon (Class | isoform)® (Fig. 4a,b). The Class Il isoform was highly expressed in HGSOC,
258  with 95% of cancer cells expressing it (Fig. 4c,d). Reflecting the findings of the DIE analysis
259 in mesothelial cells, fibroblasts and mesothelial cells in the TME also expressed a higher
260 fraction of class Il isoforms than cells derived from distal biopsies (Fig. 4d). IGF1 was found
261 to be significantly higher expressed in cancer cells (Pcor=4.8x10°?) as well as in TME
262 mesothelial cells and fibroblasts compared to distal mesothelial cells and fibroblasts
263 (Pcor=4.05x107%).

264

265  Similarly, cancer and TME cells differentially expressed multiple isoforms in the two actin-
266  associated tropomyosin genes TPM1 and TPM2. Cancer cells expressed terminal exon 9a
267  and exon 6b of TPM2 (Peor<102%, |AM|=0.28), and TME cells also expressed those exons
268 more than distal ones (Extended Data Fig. 4a-d). Cancer cells also preferentially expressed
269 exon 1b and 6a of TPM1 (Extended Data Fig. 4e). Another strongly switched gene in cancer
270  cells is vesicle-associated VAMP5 (Por=4.59x10"", |AM|=0.70). Indeed, the overexpressed
271 isoforms in HGSOC cells were a (predicted protein-coding) VAMP8-VAMP5 read-through
272  gene, i.e., a novel gene formed of two adjacent genes (Extended Data Fig. 4f). HGSOC cells
273  expressed almost no wild-type (wt) VAMPS5 but had a significantly higher VAMPS8 expression
274  than other cells (Per=1.0x10"%), indicating that this read-through gene was under
275  transcriptional control of VAMP8. Amongst others, HGSOC cells also differentially expressed
276 isoforms in the Golgi vesicle-associated AP1S2 gene (Poor=6.52x10%", |AM|=0.60).
277  Fibroblasts, mesothelial, and myeloid cells expressed the canonical isoform (Uniprot: P56377-
278 1), whereas HGSOC cells used another terminal 3’ exon (Uniprot: AOA5F9ZHW1) (Extended
279 Data Fig. 4g). Last, patient 2 cancer cells highly expressed a novel shortened isoform of
280 ceramide kinase gene CERK, (Pcor=1.38x10%, |AM|=0.78) (Extended Data Fig. 4h). In
281  summary, tumor cells showed differential isoform usage in genes associated with hormonal
282  (IGF1), actin (TPM1, TPM2, GSN), vesicle (VAMP8-VAMP5, APS1A), and sphingolipid
283  (CERK) functions.
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284 Long-read sequencing captures gene fusions and identifies an
285 IGF2BP2::TESPAT1 fusion that was misidentified in short-read data

286  To detect fusion transcripts, we aligned long reads to the reference genome and filtered for
287 reads split-aligned across multiple genes. We then ranked fusion transcripts with counts
288  across all cells of more than 10 UMIs (Supplementary Table 2). Out of the 34 detected fusion
289 entries, 21 were genes fused with mitochondrial ribosomal RNA (mt-rRNA1-2) and ubiquitous
290 among all cell types, 11 isoforms were IGF2BP2:: TESPA1 fusions specific to patient 2, one
291  was a cancer cell-specific CBLC (chr8:43.064.215) fusion to a long non-coding RNA (IncRNA)
292  expressed in patient 3, and one was a cancer cell-specific fusion of FNTA with a IncRNA
293  expressed in patient 1. The ubiquitous mt-rRNA fusions were likely template-switching artifacts
294  from the library preparation, as rRNA makes up to 80% of RNA in cells®. IGF2BP2:: TESPA1
295 was a highly expressed fusion event in patient 2: 2,174 long-reads mapped to both IGF2BP2
296 (Chr3) and TESPAT1 (Chr12). The gene fusion consisted of 5' located exons 1-4 of IGF2BP2,
297  corresponding to 112 amino acids (aa) and including the RNA recognition motif 1 (RRM1) and
298  half of the RRM2 domain, linked to the terminal TESPA1 3' untranslated region (UTR) exon,
299 encoding 69 aa as in-frame fusion and including no known domains (Fig. 5a). In total, the
300 gene fusion encoded 181 aa, compared to 599 aa of wt IGF2BP2 and 521 aa of wt TESPA1
301  (Fig. 5b). 98.9% of fusion reads were found in HGSOC cells and the fusion was detected in
302 86.8% of patient 2's cancer cells, making it a highly cancer cell- and patient-specific fusion
303 event (Fig. 5¢). Cancer cells lacking the gene fusion had lower overall UMI counts, suggesting
304 low coverage as a possible reason for the absence of the gene fusion (Fig. 5d).

305

306  We nextinvestigated the footprint of the gene fusion in the short-read data. The TESPA1 gene
307  was expressed uniquely in T cells and highly expressed only in patient 2, almost exclusively
308 in HGSOC cells, and colocalized with IGF2BP2 expression (Fig. 5e,f). In short-read data,
309 TESPAT1 was the highest differentially expressed gene in cancer cells compared to non-cancer
310 cells in patient 2 (Per=1.17x10"*). Next, we designed a custom reference including the
311 IGF2BP2::TESPA1 transcriptomic breakpoint as well as wt TESPA1 and wt IGF2BP2
312 junctions and re-aligned Patient 2’s short-reads (Extended Data Fig. 5, Methods). Out of the
313 989 reads mapping to the custom reference, 94% preferentially aligned to IGF2BP2:: TESPA1
314  (99.8% of those in HGSOC cells). This implies that the reported overexpression of TESPAT in
315  short-reads is false, as nearly all junction reads map to the fusion and not the wt gene. Reads
316  covering the TESPA1 3 UTR region harbored three heterozygous single nucleotide
317  polymorphisms (hSNPs): chr12:54.950.144 A>T (rs1047039), chr12:54.950.240 G>A
318  (rs1801876), and chr12:54.950.349 C>G (rs2171497). In long reads, wt TESPA1 was either
319  triple-mutated or not mutated at all, indicating two different alleles. All fusion long reads,
320 however, were triple-mutated, indicating a genomic origin and monoallelic expression of the
321  fusion (Fig. 5g). In short reads, the three loci were mutated in nearly all reads, supporting the
322  hypothesis that the observed TESPA71 expression represents almost completely
323 IGF2BP2::-TESPAT1 expression and that it has a genomic origin.

324 Genomic breakpoint validation of the IGF2BP2:: TESPA1 fusion

325 To validate that the IGF2BP2::TESPA1 gene fusion is the result of genomic rearrangements,
326  we looked for a breakpoint in single-cell DNA sequencing (scDNA-seq) data from a patient
327  2-matched metastatic sample. Two RNA fusion long reads mapped to intronic regions of
328 IGF2BP2 and TESPA1 (Extended Data Fig. 5) indicating the location of the breakpoint at
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329 chr3:185.604.020-chr12:54.960.603. We then estimated the scDNA-seq copy number

330  profiles of all cells and identified two clones among the 162 cells of the scDNA sample: a
331  cancer clone (Subclone 0) and a copy number-neutral non-cancer clone (Subclone 1)

332 (Fig. 6a). We next aligned the scDNA data to a custom reference covering the breakpoint
333 (Methods, Supplementary Dataset 1), including the wt TESPA1, wt IGF2BP2, and

334 IGF2BP2::TESPAT1 fusion sequences. We found nine reads mapping to the breakpoint (nine
335 in subclone 0 cancer cells, zero in sublone 1 cells, P=0.0321) (Fig. 6b). We also found 14
336  reads mapping to wt /IGF2BP2 (ten in subclone 0 cells, four in sublone 1 cells, P=0,78) (Fig.
337  6c¢), and eight reads mapping to wt TESPAT (five subclone 0 cells, three subclone 1 cells,
338 P=1.0) (Fig. 6d). Thus, scDNA-seq data confirmed the breakpoint in the intronic region

339 detected by the long-read scRNA-seq. The scDNA-seq data also confirmed that the

340 IGF2BP2::TESPA1 fusion was cancer-cell specific, as suggested by long-read scRNA-seq
341  data. IGF2 RNA, which is bound by the wt IGF2BP2 protein, is also largely overexpressed in
342  patient 2 cancer cells compared to other patients (Psor<2.54x107'%). The genomic region

343  containing IGF2BP2 has an increased copy number (Fig. 6a) in patient 2, so the fact that
344  one allele is a fusion allele does not impair the wt IGF2BP2 transcription.

345 DIScussion

346  Detecting genomic alterations such as mutations and gene fusions in combination with
347  isoform-level’ transcriptomic readouts on the single-cell level can provide valuable
348 information on cancer formation, progression, the role of the TME, drug targets, and therapy
349  response*t. Here, we applied PacBio HiFi high-throughput long-read RNA-seq on five omental
350 metastases and tumor-free samples from chemo-naive HGSOC patients to detect and quantify
351  all of these alterations.

40,41 42,43

352  Until now, a combination of single-cell short- and long-read sequencing was necessary to
353 identify cell-specific isoforms: the higher depth of short-read sequencing allowed for cell typing
354 based on gene expression, while long-read sequencing was used to identify isoforms?,
355  Leveraging multiple strategies to generate high PacBio sequencing output, we achieved a 50-
356 fold increased sequencing depth compared to the first long-read PacBio scRNA-seq study??
357  allowing for short read-comparable cell type identification. Consequently, future studies with
358 similar or increased long-read throughput will not have to rely on parallel short-read
359 sequencing, thereby saving cost and labor.

360 Our analysis revealed a differential isoform usage between distal tumor-free and TME
361  mesothelial cells in extracellular matrix associated genes (COL1A1, COL1A2, GSN). A
362 geneset enrichment analysis between the two sites revealed higher EMT pathway enrichment
363 in TME-derived mesothelial cells and fibroblasts. These findings are consistent with increasing
364  evidence that EMT in the TME is induced by cancer cells, leading to cancer-associated
365 phenotypes* including TGFB1-induced mesenchymal states of mesothelial cells in ovarian
366  cancer*. Notably, in IGF1, TPM2, GSN and COL1A2 genes, we found overlap in isoform
367  usage between cancer and TME cells (fibroblasts and mesothelial cells). Whether this cancer
368  mimicry of the TME is caused by signaling or the result of mMRNA exchange via tumor-secreted
369 extracellular vesicles*, as it was shown for GSN*®, requires further investigation.

370  Additionally, we demonstrated the potential of the technology in terms of coverage and
371  sequencing accuracy to detect mutations and gene fusions. In particular, in one patient, the
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372  novel fusion IGF2BP2::TESPA1 was highly overexpressed compared to wt IGF2BP2 (~10x
373 more) and TESPA1 (~150x more). IGF2BP2 is known to be regulated via 3UTR miRNA
374  silencing®, however the IGF2BP2:: TESPA1 fusion has the unregulated 3'UTR of TESPAT,
375  which could explain its overexpression. TESPAT is normally expressed in T cells® and long-
376 read data confirmed T cell-specific wt TESPA1 expression. Short read data however
377  erroneously reported TESPA1 as the most differentially expressed gene in cancer cells,
378  resulting from 3’ end capture of the fusion transcripts. This highlights that short-read scRNA-
379  seq data fails to distinguish between gene and fusion expression, potentially leading to wrong
380  biological conclusions.

381

382  Overall, HGSOC cells revealed a profoundly modified IGF system in all patients, with a drastic
383  switch from IGF1 Class | to Class Il isoform, IGF2 overexpression, and a highly expressed
384  IGF2BP2 gene fusion in one patient. The /GF protein family promotes cancer growth, survival,
385  proliferation, and drug resistance through signaling via PISK-AKT or MAPK, and is a known
386 clinical target in ovarian cancer®’. Secreted (Class Il) IGF1 is associated with the progression
387  of ovarian cancer®' and the observed overexpression of Class Il IGF1 in HGSOC cells could
388  mediate uncontrolled cell proliferation in the tumor.

389  Although the achieved sequencing depth allowed for short-read independent cell typing and
390 clustering, a further increased depth is needed to capture low abundance transcripts. For
391 example, we did not obtain sufficient reads to retrieve and characterize the T cell receptor
392  repertoire. This is consistent with a long-read scRNA-seq study in blood lymphocytes that
393 reported a 3.6-fold lower pairing rate for T cell receptors than the higher abundant B cell
394 receptors from plasmablasts®®. With further technological advances and decreased
395 sequencing costs, however, we expect that these limitations can and will be overcome.
396  Enrichment for low abundant transcripts for long-read sequencing or depletion of mitochondrial
397  and ribosomal RNA®® represent interesting avenues forward.

398  Altogether, we demonstrate that long-read sequencing provides a more complete picture of
399 cancer-specific changes. These findings highlight the manifold advantages and new
400 opportunities that this technology provides to the field of precision oncology, opening the
401  premise of personalized drug prediction and neoantigen detection for cancer vaccines®°.

402 Materials and Methods

403 Omentum patient cohort

404  The use of material for research purposes was approved by the corresponding cantonal ethic
405 commissions (EKNZ: 2017-01900, to V.H.S.) and informed consent was obtained for all
406 human primary material. Tissue samples were immediately collected from the theater and
407  transferred on ice to the department of biomedicine of the University Hospital Basel for tissue
408  dissociation.

409 Sample processing

410  Fresh omentum and omental HGSOC tumor metastasis biopsy samples were cut into small
411  pieces and dissociated in digestion solution (1 mg/mL collagenase/Dispase [Sigma cat. no.
412  10269638001], 1 unit/mL DNase | [NEB, cat. no. M0303] and 10% FBS in DMEM [Sigma, cat.
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413  no. D8437-500mL]) for 30 min at 37°C. To focus on the non-adipose cell fraction, adipocytes
414  were separated by centrifugation and the cell pellet was collected. Red blood cell lysis (RBC)
415  was performed using MACS red blood lysis solution (cat. no. 130-094-183). Then, the cell
416  pellet was resuspended into MACS dead cell removal microbeads (cat. no. 130-090-101) and
417  was loaded into the AutoMACS separator to remove dead cells. After counting cell number,
418  cells were resuspended in PBS with 1% BSA and transferred to the Genomics Facility Basel.
419  The cell suspension was again filtered and cell number and viability was assessed on a
420 Cellometer K2 Image Cytometer (Nexcelom Bioscience, cat. no. Cellometer K2) using
421  ViaStain AOPI Staining Solution (Nexcelom Bioscience, cat. no. CS2-0106-5mL) and PD100
422  cell counting slides (Nexcelom Bioscience, cat. no. CHT4-PD100-003). For samples with
423  viability below 70% and when cell numbers allowed (>10° cells total), apoptotic and dead cells
424  were removed by immunomagnetic cell separation using the Annexin Dead Cell Removal Kit
425  (StemCell Technologies, cat. no. 17899) and EasySep Magnet (StemCell Technologies, cat.
426  no. 18000). If the cell pellet appeared still red, additional RBC lysis was performed. Cells were
427  washed with a resuspension buffer (PBS with 0.04% BSA), spun down and resuspended in a
428 resuspension buffer. Finally, cells were again counted and their viability determined. The cell
429  concentration was set according to 10x Genomics protocols (700-1,200 cells/uL).

430 10x Genomics single-cell capture and short-read sequencing

431  Cell suspensions were loaded and processed using the 10x Genomics Chromium platform
432  with the 3P v3.1 kit on the 10x Genomics Chromium Single Cell Controller (10x Genomics,
433 PN-120263) according to the manufacturer’s instructions. 500 or 1,000 cells were targeted per
434  lane. The quality of cDNA traces and GEX libraries were profiled on a 5200 Fragment Analyzer
435  (Agilent Technologies).

436  Paired-end sequencing was performed on the lllumina NovaSeq platform (100 cycles, 380pm
437 loading concentration with 1% addition of PhiX) at recommended sequencing depth (20,000-
438 50,000 reads/cell).

439 Long-read library preparation and PacBio sequencing

440 To increase long-read PacBio sequencing throughput, we followed the strategy of cDNA
441 concatenation of the HIT-scISOseq protocol®® with the modification of two rounds of biotin-
442  PCRin order to further reduce template-switch oligo (TSO) artifacts from the data.

443  Full protocol details:

444  cDNA amplification and biotin-enrichment

445 15 ng of each patient’'s cDNA library were amplified using the KAPA HiFi HotStart Uracil+
446  ReadyMix 2x (Kapa Biosystems, cat. no. KK2801) with 0.5 uM final concentration of custom-
447  primers (Integrated DNA Technologies, HPLC purified). Primers contained overhang
448  sequences adapted from Hebelstrup et al.’® with a single deocxyuredine (dU) residue at a 10
449 nt distance from the 5 terminus enabling USER enzyme digestion and creating single-
450 stranded overhangs. Generated PCR fragments thus contain a single dU residue per DNA
451  strand. The forward primer was specific to the 10x Genomics partial Read 1 sequence and
452  contained a biotin modification allowing for biotin enrichment of amplified full-length cDNA
453  molecules. The reverse primer was specific to the 10x Genomics partial TSO sequence.

454  Forward Primer: /5Biosg/AGGTCTTAA/ideoxyU/CTACACGACGCCTTCCGATCT

455  Reverse Primer: ATTAAGACC/ideoxyU/AAGCAGTGGTATCAACGCAGAG
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456  The PCR was run according to the manufacturer's instruction with two cycles at an annealing
457  temperature of 63°C followed by 7 cycles at an annealing temperature of 67°C; annealing time
458 was 30 seconds. Extension was performed at 72°C for 90 seconds. PCR products were
459  purified at 0.6X SPRIselect bead cleanup (Beckman Coulter, cat. no. B23318) according to
460 the manufacturer’s instructions and eluted in 22 yL EB buffer (Qiagen, cat. no. 19086). DNA
461  concentrations were measured using the Qubit dsDNA HS Assay Kit (Thermo Fisher
462  Scientific, cat. no. Q32854), which were in the range of 1.5 ug per sample. cDNA traces were
463  additionally evaluated on a 5200 Fragment Analyzer System (Agilent Technologies) using the
464 HS NGS Fragment Kit, 1-6000 bp (Agilent, cat. no. DNF-474-0500). Full-length cDNAs were
465 enriched through capture on 5 pL streptavidin-coated M-280 dynabeads using the
466 Dynabeads™ kilobaseBINDER™ Kit (Invitrogen, cat. no. 60101), thus depleting TSO-TSO
467  artifacts. Washed Dynabeads containing the DNA-complexes were directly resuspended in 20
468 L USER reaction buffer containing 10 pL StickTogether DNA Ligase Buffer 2x (NEB, cat. no.
469 B0535S), 1.5 yL USER Enzyme (NEB, cat. no. M5505S) and 8.5 uL Nuclease-free water
470  (Invitrogen, AM9939) and incubated in a thermocycler at 37°C for 20 min and held at 10°C (no
471  annealing). This created a nick at the deoxyuracil site forming palindrome overhangs and
472  releasing the biotin-bound DNA molecules from the beads. Beads were removed by magnetic
473  separation and the supernatant with the biotin-released cleaved PCR products was subjected
474 toa 0.6X SPRIselect cleanup step. Approximately 100 ng of purified product per sample were
475  split into two aliquots and subjected to a second PCR amplification step with 6 cycles using
476 an annealing temperature of 67°C. Reactions were pooled, purified by 0.6X SPRIselect
477  cleanup and quality checked on both Qubit and Fragment Analyzer. Total DNA yield was
478  between 5-8 pg, which were subjected to a second round of streptavidin-purification using 10
479 L of beads.

480 Transcript ligation

481  Beads were incubated in 19 yL USER reaction buffer at 37°C for 20 min for USER digestion
482 and 25°C for 17 min for overhang annealing. Beads were then removed by magnetic
483  separation and the supernatant was transferred to a new PCR tube. 1 yL of T4 DNA ligase
484  high-concentration (2,000,000, units/mL, NEB, cat. no. M0202T) was added, mixed and
485 incubated at 10°C for >24hrs and heat inactivated at 65°C for 10 min. To efficiently deplete
486 any non-ligated transcripts, 0.38X SPRIselect cleanup was performed, eluted in 20 uL EB
487  buffer and traces were evaluated on the Fragment Analyzer using the HS Large Fragment kit
488 (Agilent Technologies, cat. no. DNF-492-0500) at 1:5 dilutions. Ligation products were 8-11kb
489 long; average yield was 100 ng per sample.

490 End repair/dA tailing, adapter ligation and PCR amplification

491  To enable PCR-amplification of the ligated construct, the NEBNext Ultra || DNA Library Prep
492  Kit for lllumina was followed (NEB, cat. no. E7645S) using total DNA vyield as input material.
493 2.5 L of 5 uM dT overhang adapter (Roche, cat. no. KK8727) were used for the End Prep
494  reaction. Adapter-ligated libraries were purified by 0.39X SPRIselect cleanup, eluted in 22 pL
495  EB buffer and products were evaluated by HS Large Fragment kit. Total yield of around 40 ng
496  was split in two and PCR amplified using 2X KAPA HiFi Hot-Start ReadyMix (Roche, cat. no.
497  KK2602) and KAPA Library Amplification Primer Mix (10X concentration, Roche, cat. no.
498  KK2623), 10 pL library input each with 11 cycles and 9 min extension time. Following a 0.38X
499  SPRIselect cleanup and elution in 48 uyL EB buffer, products were evaluated on a large
500 fragment gel revealing an average fragment length of libraries of 4.6 kb and average total of
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501 1.1 ug DNA. To increase total yield to 2 ug DNA required for SMRTbell library preparation of
502 a product with 5 kb amplicon size, the PCR was repeated with three additional cycles and
503 5 min extension time. After 0.4X SPRI cleanup and Fragment Analyzer inspection, the final
504  yield was 2 ug per library.

505 PacBio SMRTbell library preparation

506 The SMRTbell Express Template Kit (PacBio, cat. no. 100-938-900) was used following
507  manufacturer’s instructions for DNA damage repair, end repair/dA-tailing and ligation of a
508 hairpin adapter (double amount used). Final purification of the SMRTbell template was
509 performed by 0.42X SPRIselect cleanup and elution in 43 pL EB buffer. Exonuclease
510 treatment was performed by addition of 5 uL of NEBbuffer1 (NEB, cat. no. B7001S) and 1 uL
511  of each Exonuclease | (NEB, cat. no. M0293S) and Exonuclease IIl (NEB, cat. no. M0206S)
512  bringing the total volume to 50 uL per reaction. Enzyme treatment was performed at 37°C for
513 60 min. After SPRIselect cleanup, products were quantified on a large fragment gel at 1:30
514  dilution. Final yield was approximately 650 ng per sample, a sufficient amount for long-read
515  sequencing.

516 PacBio Sequel Il sequencing

517  Libraries were sequenced on the PacBio Sequel Il platform with the SMRT cell 8M. Omentum
518  metastasis and tumor-free omentum were run on three and two 8M cells, respectively.

519  Single-cell DNA-sequencing

520 Cell suspensions were loaded and processed using the 10x Genomics Chromium platform
521  with the single-cell CNV kit on the 10x Genomics Chromium Single Cell Controller (10x
522  Genomics, PN-120263) according to the manufacturer’s instructions. Paired-end sequencing
523  was performed on the lllumina NovaSeq platform (100 cycles, 380pm loading concentration
524  with 1% addition of PhiX) at recommended sequencing depth.

525 Data Analysis
526  Short-read data analysis

527  Preprocessing

528 Raw reads were mapped to the GRCh38 reference genome using 10x Genomics Cell Ranger
529  3.1.0 to infer read counts per gene per cell. We performed index-hopping removal using a
530 method developed by Griffiths et al.”’.

531  10x Genomics short-read analysis

532  GEX data of each sample was analyzed using the scAmpi workflow®®. In brief, UMI counts
533  were quality controlled and cells and genes filtered to remove known contaminants. Cells
534  where over 50% of the reads mapped to mitochondrial genes and cells with fewer than 400
535 different expressed genes were removed, as well as non protein-coding genes and genes that
536  were expressed in less than 20 cells. Doublet detection was performed using scDblFinder®.
537  Subsequently, counts were normalized and corrected for cell cycle effects, library size, and
538 sample effect using sctransform®. Similar cells were grouped based on unsupervised
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539  clustering using Phenograph®' and an automated cell type classification was performed
540 independently for each cell®? using gene lists defining highly expressed genes in different cell
541  types from previous publications. Major cell type marker lists were developed in-house based
542  on unpublished datasets (manuscripts in preparation) including the Tumor Profiler Study®
543  using the Seurat FindMarkers method®. Immune subtype marker gene lists were obtained
544  from Newman et al.?®, enriched with T cell subtypes from Sade-Feldman et al.®®

545 Long-read data analysis
546  Generating CCS

547  Using SMRT-Link (version 9.0.0.92188), we performed circular consensus sequencing (CCS)
548  with the following modified parameters: maximum subread length 50,000 bp, minimum
549  subread length 10 bp, and minimum number of passes 3.

550 Unconcatenating long reads

551  We used NCBI BLAST (version 2.5.0+) to map the 5' and 3' primers to CCS constructs, with
552  parameters: “-outfmt 7 -word_size 5” as described previously®®. Sequences between two
553  successive primers were used as input for primer trimming using IsoSeq3 Lima (parameters:

554  --isoseq --dump-clips --min-passes 3). Cell barcodes and UMIs were then demultiplexed using
555  IsoSeq3 tag with parameter --design T-12U-16B. Finally, we used IsoSeq3 refine with option
556  --require-polya to remove concatemers and trim polyA tails. Only reads with a correct 5’-3’

557  primer pair, a barcode also found in the short-read data, a UMI, and a polyA tail were retained.
558 Isoform classification

559  Demultiplexing UMIs with IsoSeq3 dedup and calling isoforms on the cohort level with
560 collapse_isoforms_by sam.py resulted in unfeasible runtimes. Therefore, we called isoforms
561 first on the cell level as a pre-filtering step. Long-reads were split according to their cell
562  barcodes, and UMI deduplication was performed using IsoSeq3 dedup. Next, reads were
563 mapped and aligned to the reference genome (hg38) using minimap2 with parameters: -ax
564  splice -uf --secondary=no -C5. Identical isoforms were merged based on their aligned exonic
565  structure using collapse_isoforms_by sam.py with parameters: -c 0.99 -i 0.95 --
566 gen_mol_count. We then classified isoforms using SQANTI3 *' with arguments: --skipORF --
567  fl_count --skip_report. We finally filtered artifacts including intrapriming (accidental priming of
568 pre-mRNA 'A's), reverse-transcriptase template switching artifacts, and mismapping to non-
569 canonical junctions. In order to have a unique isoform catalog for all our samples, we then
570 retained only reads associated to isoforms passing the SQANTI3 filter, and we ran
571  collapse_isoforms_by sam.py, SQANTI3 classification and filtering again on all cells together.
572  The described pipeline is available here and was implemented in Snakemake, a reproducible
573  and scalable workflow management system®’.

574 3’ and 5’ isoform filtering

575  For SQANTI3-defined isoforms, incomplete splice match, novel in catalog and novel not in
576 catalog, we only retained isoforms falling within 50 bp of a CAGE-validated transcription start
577  site (FANTOM5 CAGE database), and 50 bp of a polyA site form the PolyASite database™:.
578 The GENCODE database was used as a comparison, all protein-coding isoforms were
579  grouped under the GENCODE.full label, a subset including only full-length isoforms was
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580 labeled as GENCOD.FL, and the Matched Annotation from NCBI and EMBL-EBI (MANE**)
581  was named GENCODE.MANE.

582 Isoforms biotypes

583  Novel isoform biotypes were assessed internally by the GENCODE team with biotypes
584  matching those described by Frankish et al.®.

585  Cell type-specific isoforms

586  Considering only the SQANTI3-defined ‘full splice match’, ‘novel not in catalog’ and ‘novel in
587 catalog’ isoforms with at least 3 reads, we established the following classification: “Cell-
588  specific” isoforms are present in only 1 cell and “cell type specific” isoforms are present in >=3
589 cells of an unique cell type.

590

591  Cell type annotation

592

593 Cells were annotated with long-reads the same way as short-reads, using scROSHI. The
594  major cell types were modified according to gene expression in long-reads. Immune subtype
595  marker gene lists were unchanged.

596 Mutation detection

597  Positions of mutations from Foundation Medicine’s targeted NGS panel (Foundation One CDx)
598 mutations described in Table 1 were used as reference. One mutation not present in the list,
599 TP53_P151H, was visually detected in Patient 1 and added to the list. If a position was
600 mutated at least in one cell belonging to a distal biopsy sample, the mutation was classified
601 as a germline variant. Cells with one mutated read in one of the positions were considered
602 mutated.

603 Differential isoform tests

604 Differential isoform testing was performed using a x2 test as previously described in
605  Scisorseqr®. Briefly, counts for each isoform ID were assigned to individual cell types, and
606 genes were discarded if they did not reach sufficient depth per condition (25 reads per
607  condition per gene). P-values from a x2 test for differential isoform usage were computed per
608 gene where a sufficient depth was reached, and we corrected for multiple testing using
609 Benjamini Hochberg correction with a 5% false discovery rate. If the corrected p-value was
610  <0.05 and the sum of change in the relative percent of isoform (Al) of the top two isoforms in
611  either positive or negative direction was more than 10%, then the gene was called differentially
612  spliced. To classify the top differentially spliced genes, we took the rank of genes by All and
613  corrected p-values, and summed those two ranks. The smallest sum of ranks were considered
614  as the top differentially expressed genes. Differentially used isoforms were visualized using

615  ScisorWiz®.
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616 Pathway enrichment analysis

617  We used GSVA to perform pathway enrichment analysis. Gene sets were obtained from the
618  default SsCAmpi workflow’®, with the addition of the
619 EPITHELIAL_MESENCHYMAL_TRANSITION pathway from GSEA.

620 Fusion Discovery

621 Mapped reads from isoform classification were pooled. We called reads mapping to two
622  separate genes at a distance of more than 100,000 bp or to different chromosomes using
623 fusion_finder.py (cDNA_Cupcake package, https://github.com/Magdoll/cDNA_Cupcake) with
624  parameters --min_locus_coverage _bp 200 -d 1000000. Fusion isoforms with sufficient depth
625 (min. 10 reads) were kept, and their breakpoint, expression per cell type and number of cells
626  in which they are expressed was assessed.

627  Short-reads re-alignment to IGF2BP2::TESPA1

628 We designed a custom reference including IGF2BP2::TESPA1 transcriptomic breakpoint as
629 well as the wild-type IGF2BP2 and TESPA1 exon junction covering the breakpoint. The
630 reference was composed of 5 sequences of 80 nucleotides (40 bases upstream and
631  downstream of the breakpoint), sequences XXX_1 and XXX_2 represent the breakpoints of
632 the two main isoforms seen in each gene:

633

634 >TESPA1_wt_1

635 TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCAATTCTGGAGGCTGGCAAATCCAAG

636 GTCAAAAGCCTGCA

637

638 >TESPA1_wt 2

639 TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCTTCACGAGTCTTTGCCAGCAAAAGTC
640 TGGTGGTGGTGGG

641

642 >IGF2BP2_wt_1

643 ATGTGACGTTGACAACGGCGGTTTCTGTGTCTGTGTTGACTTGTTCCACATTCTCCACTGTCCCA

644 TATTGAGCCAAAA

645

646 >IGF2BP2_wt 2

647 ATCACTGGATTGTGTGTTCTTCTGAATTACTTCTTTAGGCTTGTTCCACATTCTCCACTGTCCCAT

648 ATTGAGCCAAAA

649

650 >TESPA1_IGF2BP2_fusion_1

651 TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCCTTGTTCCACATTCTCCACTGTCCCA
652 TATTGAGCCAAAA

653

654 >TESPA1_IGF2BP2_fusion_2

655 CAAATCCAAGGTCAAAAGCCTGCATCTGGTGAGGGCCTCCTTGTTCCACATTCTCCACTGTCCCA
656 TATTGAGCCAAAA

657

658 Patient 2 reads were aligned to this reference using minimap2 with parameters: -ax sr --
659 secondary=no. Reads mapping unambiguously to one of those reference sequences were
660 then attributed to the cell type to which their cell barcode belonged.
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661 ScDNA analysis

662 Cell Ranger DNA was used to demultiplex and align Chromium-prepared sequencing
663 samples. We used the cellranger-dna mkfastq command to generate FASTQ files from the
664  lllumina raw BCL files, and we ran the command cellranger-dna cnv to align FASTQ files to
665 the hg38 reference genome, call cells, and estimate copy numbers. We obtained the copy
666  number profiles and detected the main clonal structure of samples using SCICONE™".

667  DNA breakpoint validation

668 To validate in scDNA data breakpoints found in scRNA data, we used the putative scRNA
669  breakpoint reads as a reference to re-align scDNA reads using BWA with options: -pt8 -CH.
670 For the IGF2BP2::TESPA1 fusion, the reference was composed of 3 sequences of 184
671 nucleotides (92 bases upstream and downstream of the breakpoint):

672

673 >IGF2BP2_WT

674 CAAACTTGTAGAAATGTGAATTTTTCTTGTTATTTTACAAGATTTGCAAAGGGACCTGAGACCCCG

675 AAAAGCTTAAGGACTACTGTTAAAAATACTGTTTGTTAAATAACTTTAAAGCAGCTGCAGCCTTTAT
676 GGGTTGCAGGGAGTTGTATGTAATGCTCAGAAAGAGCTGCCACTGAGAAT

677

678 >TESPA1_WT

679 TTCAATGATGTGGGCTGATTAGAACATAGCTGAAAGCAGGTGTTGGGATATTGATTTCCATGGCT

680 GGTCCTCACCTGTTACAAAACTTCTACTACAATGAGTTTCAAACTTCAATATGCAATCAATTATCTA
681 ACCTAAAGATCTTGGTAAAACTGTGATTCATTAGGTCTGGGGTGGGGGCTG

682

683 >IGF2BP2_TESPA1_Fusion

684 TTCAATGATGTGGGCTGATTAGAACATAGCTGAAAGCAGGTGTTGGGATATTGATTTCCATGGCT

685 GGTCCTCACCTGTTACAAAACTTCTACTACTGTTTGTTAAATAACTTTAAAGCAGCTGCAGCCTTT

686 ATGGGTTGCAGGGAGTTGTATGTAATGCTCAGAAAGAGCTGCCACTGAGAAT

687

688 Reads mapping unambiguously to one of those reference sequences were then attributed to
689 the clone to which their cell barcode belonged.

690

691 Data and code availability

692  The raw sequencing files reported in this study have been deposited in the European

693  Genome-phenome Archive (EGA) under the accession number EGAS00001006807. The
694  software used to analyze the data of this study has been deposited at the GitHub repository:
695  https://github.com/cbg-ethz/sclsoPrep
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Figure 1: Study design and long read data overview. (a) Schematic of freshly processed
HGSOC metastasis and patient-matched tumor-free omentum tissue biopsies, scRNA-seq.
(b) Definition of SQANTI-defined isoform structural categories. (¢) Proportions of isoform
structural categories detected in merged metastasis and healthy omentum samples.
Percentage and total number of isoforms per category are indicated. (d) Proportions of
unique reads attributed to isoforms detected in (¢). Percentage and total number of UMIs per
category are indicated. (e) Percentage of isoforms for which transcription start site is
supported by CAGE (FANTOMS5) data and transcription termination site is supported by
polyA (PolyASite) data, per isoform structural categories. GENCODE.all indicates all
protein-coding isoforms in the GENCODE database, GENCODE.FL is a subset of
GENCODE.full containing only isoforms tagged as full-length, and GENCODE.MANE is a
subset of canonical transcripts, one per human protein coding locus. (f) GENCODE defined
biotypes composition of novel isoforms. (g) Biotypes composition of the GENCODE
database.
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Figure 2: Clustering and cell type specific isoform distribution.
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(a) Cohort UMAP embeddings by data types and automatic cell type annotation. Top and
bottom rows: cell type labels based on short- and long-read data, respectively. Left column:
embedding on short-read data - gene level, middle column: embedding on long-read data -
gene level, right column: embedding on long-read data - isoform level. (b) Jaccard distance
of cell populations in different UMAP embeddings: short-reads - gene level versus
long-reads - gene level (left), short-reads - gene level versus long-reads - isoform level
(middle), long-reads - gene level versus long-reads - isoform level (right). (¢) Long-reads -
gene level UMAP cohort visualizations of cells with at least one somatic mutation also found
in bulk DNA. (d) Long-reads - gene level UMAP cohort visualization of cells with at least one
germline variant. Germline variants are variants detected in healthy omentum distal samples.
(e) SQANTI-defined structural category normalized distribution of isoforms detected per cell
type (number of isoforms displayed in white).
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Figure 3: Differential isoform expression in tumor microenvironment reveals
epithelial-to-mesenchymal transition.

(a) Cohort UMAPs embedding of short-read data - gene level (left), long-read data - gene
level (middle), long-read data - isoform level (right), colored by tissue type. (b) Volcano plot
of mesothelial TME vs. distal cells differential isoform usage. The X-axis represents the
effect size in the gene, the Y-axis is the p-value derived from a x2 test corrected for multiple
testing using the Benjamini-Hochberg method. (c) ScisorWiz representation of isoforms in
COL1A1, each horizontal line represents a single read colored according to cell types.
Dashed boxes highlight the use of the canonical 3’ UTR in TME fibroblasts and mesothelial
cells, while distal mesothelial cells use an earlier 3' exon termination. (d) ScisorWiz
representation of isoforms in COL1A2. Dashed boxes highlight the 3’'UTR, where TME and
HGSOC cells differentially express a longer 3'UTR than distal cells. (e) ScisorWiz
representation of isoforms in GSN. Dashed boxes highlight the TSS, where mesothelial TME
and HGSOC cells differentially express the cGSN isoform, while mesothelial distal cells and
fibroblasts use pGSN. (f) Gene set variation analysis (GSVA) scores for different cell types.
Heatmap colors from blue to red represent low to high enrichment.
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Figure 4: Differential isoform expression of IGF1 in tumor vs non-tumor cells.

(a) ScisorWiz representation of isoforms in IGF1, each horizontal line represents a single
isoform colored according to cell types. Colored areas are exons, and whitespace are
intronic space, not drawn to scale. Exons are numbered according to the Gencode
reference, Class | and Il isoforms are isoforms with starting exons 1 and 2, respectively.
Boxes highlight Class Il expression in cancer and TME cells. (b) Projection of IGF1 gene
(top) and Classl/ll isoform (bottom) expression on UMAP obtained from clustering on
long-reads transcripts. (¢) Alluvial plot of cells expressing /IGF1 in different cell types (left),
divided between cells expressing Class | or Il (right). (d) Barplot of percentage of cells
expressing Class Il isoform in different cell types and locations colored by cell type.
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Figure 5: Tumor and patient-specific detection of novel IGF2BP2::TESPA1 gene
fusion. (a) Overview of wt IGF2BP2, wt TESPA1 and gene fusions with exon structure. (b)
Overview of wt IGF2BP2, wt TESPA1 and fusion proteins and protein domains. RRM:
RNA-recognition motif, KH: hnRNP K-homology domain, KRAP_IP3R_bind: Ki-ras-induced
actin-interacting protein-IP3R-interacting domain. (c) Violin plot showing patient and tumor
specific IGF2BP2:: TESPA1 fusion transcript detection in patient 2. (d) UMI count in
fusion-containing vs -lacking patient 2 tumor cells. (e) scDNA copy-number profile clustering
of the matched patient 2 sample. Subclone 0 (121 cells) exhibited multiple copy number
alterations along its genome representing a single tumor clone, while subclone 1 (62 cells)
had a diploid genome representing non-HGSOC cells. (f) patient 2 scDNA reads aligning to
custom IGF2BP2::TESPA1 gene fusion breakpoint reference. Only tumor subclone reads
were found to align to it.
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Figure 6: IGF2BP2::TESPA1 fusion breakpoint validation in scDNA.

(a) Copy number values per subclone in Patient 2 scDNA. Sublone 0 has multiple copy
number alterations, indicative of cancer, while Subclone 1 is copy-number neutral,
non-cancer. (b) IGV view of scDNA reads aligning unambiguously to the TESPA1::IGF2BP2
genomic breakpoint. In red, reads from Subclone 0 cells, in blue, reads from Subclone 1
cells. (¢) IGV view of scDNA reads aligning unambiguously to wt IGF2BP2. The dashed line
indicates the location of the (putative) breakpoint. (d) IGV view of scDNA reads aligning
unambiguously to wt TESPA1. The dashed line indicates the location of the breakpoint.
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