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Abstract 42 

 43 
Understanding the complex background of cancer requires genotype-phenotype information 44 
in single-cell resolution. Long-read single-cell RNA sequencing (scRNA-seq), capturing full-45 
length transcripts, lacked the depth to provide this information so far. Here, we increased the 46 
PacBio sequencing depth to 12,000 reads per cell, leveraging multiple strategies, including 47 
artifact removal and transcript concatenation, and applied the technology to samples from 48 
three human ovarian cancer patients. Our approach captured 152,000 isoforms, of which over 49 
52,000 were novel, detected cell type- and cell-specific isoform usage, and revealed 50 
differential isoform expression in tumor and mesothelial cells. Furthermore, we identified gene 51 
fusions, including a novel scDNA sequencing-validated IGF2BP2::TESPA1 fusion, which was 52 
misclassified as high TESPA1 expression in matched short-read data, and called somatic and 53 
germline mutations, confirming targeted NGS cancer gene panel results. With multiple new 54 
opportunities, especially for cancer biology, we envision long-read scRNA-seq to become 55 
increasingly relevant in oncology and personalized medicine. 56 
 57 
 58 
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Introduction 65 

Cancer is a complex disease characterized by genomic and transcriptomic alterations1 that 66 
drive multiple tumor-promoting capabilities or hallmarks2. Among others, these alterations 67 
include point mutations, insertions and deletions (indels), and gene fusions on the genomic 68 
level, and splice isoforms on the transcriptomic level. Their detection offers great potential for 69 
personalized oncology as they can serve as direct therapeutic targets3,4 or potential 70 
neoantigens informing on the immunogenicity of the tumor5. Gene fusions arising from large-71 
scale genomic rearrangements, for example, play an oncogenic role in a variety of tumor 72 
types6, and are successfully used as therapeutic targets7,8. Like mutations9 and copy number 73 
variations10, fusion rates can vary widely across cancer types, and gene fusions are thought 74 
to be drivers in 16.5% of cancer cases, and even the only driver in more than 1%11. 75 
Furthermore, out-of-frame gene fusions are more immunogenic than mutations and indels, 76 
making them an ideal target for immunotherapies and cancer vaccines12,13. On the 77 
transcriptomic level, alternative splicing is a major mechanism for the diversification of a cell’s 78 
transcriptome and proteome14 and can impact all hallmarks of tumorigenesis. It also presents 79 
a fairly novel non-genomic source of potential neoantigens15. In breast and ovarian cancer, 80 
68% of samples had at least one isoform with novel exon-exon junction (neojunction) detected 81 
in proteomic data16. 82 

The complexity of cancer further extends to intra-tumor heterogeneity17 and its intricate 83 
interplay with the tumor microenvironment (TME)18. Ultimately, to fully decipher functional 84 
tumor heterogeneity and its effect on the TME, single-cell resolution providing both phenotype 85 
and genotype information is required. Single-cell RNA sequencing (scRNA-seq) is now widely 86 
used for the phenotypic dissection of heterogeneous tissues. It can be divided into short-read, 87 
high-throughput technologies allowing for gene expression quantification and long-read, low-88 
throughput technologies that cover full-length transcripts19. Up to now, short- and long-read 89 
methods had to be used in parallel to combine the advantages of each technology. The long-90 
read scRNA-seq field is rapidly expanding, with methods being constantly developed and 91 
improved on Nanopore20,21 and PacBio22–26 long-read platforms. So far, long-read RNA-seq 92 
has however only been applied on the bulk level in the field of oncology24,27,28. High-quality, 93 
high-throughput, long-read scRNA-seq has the potential to provide isoform-level cell type-94 
specific readouts and capture tumor-specific genomic alterations. With near ubiquitous p53 95 
mutations and defective DNA repair pathways causing frequent non-recurrent gene fusions, 96 
high-grade serous ovarian cancer (HGSOC) is an ideal candidate to investigate these 97 
alterations10,29,30.  98 

Here, for the first time, we used high-quality, high-throughput long-read scRNA-seq to capture 99 
cell type-specific genomic and transcriptomic alterations on clinical cancer patients. We 100 
applied both short-read and long-read scRNA-seq to five samples from three HGSOC patients, 101 
comprising 2,571 cells, and generated the largest PacBio scRNA-seq dataset to date. We 102 
were able to identify over 150,000 isoforms, of which a third were novel, as well as novel cell 103 
type- and cell-specific isoforms. We detected differential isoform usage in tumor cells and cells 104 
of the TME. Additionally, we discovered dysregulations in the insulin like growth factor (IGF) 105 
network in tumor cells on the genomic and transcriptomic level. Thereby, we demonstrated 106 
that scRNA-seq can capture genomic alterations accurately, including cancer- and patient-107 
specific germline and somatic mutations in genes such as TP53, as well as gene fusions, 108 
including a novel IGF2BP2::TESPA1 fusion.  109 
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Results 110 

Long-read scRNA-seq creates a catalog of isoforms in ovarian cancer 111 
patient-derived tissue samples 112 

We generated short-read and long-read scRNA-seq data from five omentum biopsy samples 113 
(Extended Data Table 1) from three HGSOC patients. Three samples were derived from 114 
HGSOC omental metastases and two from matching distal tumor-free omental tissues 115 
(Fig. 1a). To generate long reads, we opted for the PacBio platform for its generation of high-116 
fidelity (HiFi) reads through circular consensus sequencing (CCS). To overcome its limitations 117 
in sequencing output and optimize for longer library length, we 1) removed template-switch 118 
oligo artifacts that can account for up to 50% of reads through biotin enrichment, 2) 119 
concatenated transcripts to sequence multiple cDNA molecules per CCS read, and 3) 120 
sequenced on the PacBio Sequel II platform (2-4 SMRT 8M cells per sample, Methods). This 121 
allowed the generation of a total of 212 Mio HiFi reads in 2,571 cells, which, after 122 
demultiplexing, deduplication, and intrapriming removal, resulted in 30.7 Mio unique molecular 123 
identifiers (UMIs) (Extended Data Table 1). On average, 12k UMIs were detected per cell.  124 
 125 
The long-read dataset revealed 152,546 isoforms, each associated with at least three UMIs. 126 
We classified the isoforms according to the SQANTI classification31 and calculated their 127 
proportions (Methods, Fig. 1b,c): full splice match (FSM) - isoforms already in the GENCODE 128 
database (32.8%), incomplete splice matches (ISM) - isoforms corresponding to shorter 129 
versions of the FSM (35.1%), novel in catalog (NIC) - isoforms presenting combinations of 130 
known splice donors and acceptors (15.9%), and novel not in catalog (NNC) - isoforms 131 
harboring at least one unknown splice site, or neojunction (14.4%). Novel isoforms (classes 132 
NIC and NNC) accounted for 30% of the isoforms, and 11% of the total reads in all samples, 133 
while FSM accounted for 33% of the isoforms and 80% of the reads (Fig. 1c,d), indicating that 134 
high coverage is required for the reliable detection of new, low abundant, transcripts. 135 
 136 
To evaluate the structural integrity of all isoforms, we compared their 5’ end to the FANTOM5 137 
CAGE database32 and their 3’ end to the PolyASite database33 (Fig. 1e). More than 82% of 138 
the NIC and 74% of NNC isoforms could be validated on 3’ and 5’ ends, similarly to FSM. As 139 
expected, fewer ISM isoforms were found to be complete (42%): they are either incompletely 140 
sequenced isoforms missing their 5’ end (30%) or the result of early 3’ termination (55%). 141 
 142 
FSM, NIC, and NNC had overall better 3’ and 5’ validation than the full-length tagged isoforms 143 
in the GENCODE database (Fig. 1e). Only the ‘Matched Annotation from NCBI and EMBL-144 
EBI’ (MANE34) containing curated representative transcripts cross-validated between the 145 
GENCODE and RefSeq database had a better 3’ and 5’ validation of 95%. A total of 52,884 146 
novel isoforms were complete (NIC+NNC), of which 40,046 were confirmed as valid novel 147 
isoforms by GENCODE, corresponding to 17% of the current GENCODE v36 database. 148 
Isoforms that were not confirmed were mainly either “partially redundant with existing 149 
transcripts”, or “overlapping with multiple loci”. Finally, we assessed the biotypes of our newly 150 
discovered isoforms, indicative of their presumed functional categorization. We found that 42% 151 
are protein coding, more than the 36% of protein coding isoforms found in the GENCODE 152 
database (230k entries) (Fig. 1f-g). This demonstrates the ability of concatenated long-read 153 
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sequencing to generate high yield, high-quality data and discover novel isoforms with 154 
enhanced annotation.  155 

Long-read sequencing allows for short-read-independent cell type 156 
identification  157 

Next, through comparison to short-read data, we assessed the ability of long-read sequencing 158 
to cluster cells and to identify cell types. We generated short- and long-read gene count 159 
matrices and removed non-protein-coding, ribosomal, and mitochondrial genes. After filtering, 160 
we obtained 16.5 Mio unique long reads associated with 12,757 genes, and 26.3 Mio unique 161 
short reads associated with 13,122 genes (Extended Data Table 1). The short- and long-read 162 
datasets were of similar sequencing depth with a median of 4,930 and 2,750 UMIs per cell, 163 
respectively (average 10,235 and 6,413 UMIs, Extended Data Fig. 1a). Also, the genes 164 
detected in both datasets overlapped by 86.4% (Extended Data Fig. 1b,c).  165 
 166 
We first identified cell types independently per cell, using cell type marker gene lists 167 
(Methods). We compared short- and long-read data and found that both data types identified 168 
cell types with similar percentages, namely HGSOC (13% in short-read vs 15% in long-read 169 
data), mesothelial cells (22 vs 23%), fibroblasts (9 vs 8%), T cells (38 vs 37%), myeloid cells 170 
(both 14%), B cells (3 vs 1%), and endothelial cells (both 1%). Those cell populations 171 
expressed cell type specific marker genes (Extended Data Fig. 1c). We then projected short-172 
read gene, long-read gene, and long-read isoform expression onto 2-dimensional embeddings 173 
using UMAP35 (Fig. 2a). We manually clustered cell types based on the embeddings and 174 
calculated the Jaccard distance between clusters. Cell clusters based on short- and long-175 
reads were very similar, with a Jaccard distance >94% for all cell types except B-cells, where 176 
the Jaccard distance was >75% (Fig. 2b). Furthermore, Jaccard similarity analysis between 177 
cell type clusters and attributed cell type labels were analogous between short- and long-read 178 
data, with a better prediction of B cells and endothelial cells for long reads (Extended Data 179 
Fig. 1b). These findings show that long-read gene and isoform expression data can be used 180 
to identify cell types reliably and independently from short-read data.  181 

Long-read sequencing captures germline and somatic mutations and 182 
identifies increased neojunctions in tumor cells 183 

Next, we assessed the potential of long-read data for mutation detection, and used somatic 184 
mutations to further validate the cell type annotation. Germline mutations are expected in all 185 
cell types, whereas somatic mutations should be present only in tumor cells. As reference, we 186 
used mutations called from a panel covering 324 genes on patient-matched bulk DNA samples 187 
(Methods). We identified germline variants in 48 cells belonging to all cell types from distal 188 
omentum and tumor sites (Fig. 2c, Supplementary Table 1). Somatic mutations were called 189 
in 34 cells, all in the cell cluster annotated as tumor cells (Fig. 2d). In 20 of those cells, TP53 190 
was found mutated (Supplementary Table 1). Thus, high-fidelity long-read data can be 191 
leveraged for both germline and somatic mutation calling.  192 

We analyzed the expression of cell type-specific isoforms. HGSOC cells expressed more 193 
genes, transcript isoforms, and RNA molecules than other cell types (Extended Data Fig. 3a-194 
c). This difference does however not translate into mean UMIs per isoform, as isoforms 195 
expressed in cancer cells harbor fewer UMIs than in mesothelial cells, for example. This 196 
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means that cancer cells express more low-abundant isoforms (Extended Data Fig. 3d) 197 
suggesting wider isoform diversity and broader cellular functions and controls. Isoform class 198 
distribution between cell types revealed a higher fraction of novel isoforms and neojunctions 199 
(NNC) in tumor cells (Fig. 2e).  200 

We then looked into isoforms uniquely expressed in the different cell types. At the cell type 201 
level, cancer cells contained more than 8% (9,476) of cell type-specific isoforms, between 2.3-202 
10.6 times more than the most frequent other cell types (myeloids, T/NK cells, fibroblasts and 203 
mesothelial cells) (Methods, Extended Data Fig. 3e). At the cellular level, 0.5% of the cancer-204 
specific isoforms were also unique to a single cell, which is between 3-6 times the percentage 205 
of unique isoforms in other cell types (Extended Data Fig. 3e). In all cell types, cell type-206 
specific isoforms (Extended Data Fig. 3f) had a higher percentage of novel isoforms than 207 
non-specific isoforms distributed across cells (Fig. 2e). This phenomenon was even stronger 208 
in cell-specific isoforms: in cancer, more than 75% of isoforms unique to cells were novel, and 209 
50% of these were neojunctions (NNC) (Extended Data Fig. 3e). Those rare isoforms were 210 
difficult to detect for previous methods, hence their novelty. Taken together, cancer cells 211 
expressed at least twice as many unique isoforms than other cell types, indicating an 212 
increased transcriptomic diversification and support previous findings of cancer-specific 213 
neojunction expression in bulk data16. 214 

Differential isoform expression in the tumor microenvironment reveals 215 
epithelial-to-mesenchymal transition 216 

Comparing cells from metastatic and tumor-free samples, we found that mesothelial and 217 
fibroblast cells showed distinct clustering, in both short- and long-read embeddings (Fig. 3a). 218 
We observed a bridge between TME fibroblasts and mesothelial cells on the UMAPs, 219 
suggesting that TME cells might undergo a form of transdifferentiation. To understand this 220 
phenomenon, we analyzed differential isoform and gene expression in TME vs. distal 221 
mesothelial and fibroblast cells. For mesothelial cells, the gene with the highest change in 222 
relative isoform abundance amongst all its transcripts was the collagen type 1 alpha chain 223 
(COL1A1) (Pcorr=6.34x10-49, |ΔΠ|=0.86, Methods) (Fig. 3b). TME mesothelial cells used the 224 
canonical 3’ transcription termination site, while distal cells had a premature transcription 225 
termination, resulting in a truncated protein (Fig. 3c). COL1A1 was also the top differentially 226 
expressed gene (P = 2x10-3) between TME and distal mesothelial cells, and the fifth most 227 
differentially expressed gene between TME and distal fibroblasts (P = 0.015), with TME cells 228 
overexpressing it in both cases compared to their distal counterparts. COL1A2, was also found 229 
to be differentially spliced in TME mesothelial cells (Pcorr=6.85x10-91, |ΔΠ|=0.37) and 230 
fibroblasts (Pcorr=2.02x10-77, |ΔΠ|=0.36). HGSOC cells showed the same COL1A2  splicing 231 
pattern as TME cells when compared to all non-tumor cells (Pcorr=6.54x10-79, |ΔΠ|=0.42). Both 232 
expressed transcripts with a canonical 3’UTR, longer than the 3’UTR expressed in distal cells 233 
(Fig. 3d). Thus, in two cases, tumor-associated stromal cells overexpressed and used longer 234 
collagen matrix isoforms than their distal counterparts. Another top differentially expressed 235 
isoform in TME vs. distal mesothelial cells was gelsolin (GSN), which exists in two main protein 236 
variants: one residing in the cytoplasm (cGSN), the other in the extracellular (plasma) 237 
environments (pGSN)36. At the gene level, GSN was not significantly overexpressed in TME 238 
vs. distal or in HGSOC vs. non-HGSOC cells. However, TME mesothelial cells had a 239 
significantly higher cGSN/pGSN isoform ratio than distal ones (Pcorr=2.49x10-18, |ΔΠ|=0.34) 240 
(Fig. 3e). Similarly, cancer cells had a significantly higher cGSN/pGSN ratio than non-cancer 241 
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cells (Pcorr=3.4x10-127, |ΔΠ|=0.28), and consistent with findings for COL1A, TME cells displayed 242 
a cancer-like isoform expression profile compared to cells from distal sites, suggesting tissue 243 
mimicry. To test if the differential expression of those structural isoforms in TME cells could 244 
be linked to epithelial-to-mesenchymal transition (EMT), we performed gene set enrichment, 245 
which revealed the EMT pathway as enriched in TME mesothelial and fibroblasts cells (Fig. 246 
3f) supporting the idea of a tumor-transformed stroma.  247 

Differential isoform expression in cancer reveals isoform-specific IGF1 248 
usage 249 

HGSOC cells significantly expressed different isoforms in 17% of the genes, compared to 250 
all distal cells, but only 0.6% were switched with |ΔΠ|>0.5 (6,841 genes tested, Methods) 251 
(Extended Data Fig. 4a). One of the most significant switches was found in the insulin-like 252 
growth factor gene IGF1 (Pcorr=1.1x10-130, |ΔΠ|=0.68), a gene coding for a hormone linked to 253 
the development, progression, survival, and chemoresistance of many cancer types including 254 
ovarian cancer37. Cancer cells from all patients almost exclusively used the second exon of 255 
the gene as their transcription start site (Class II isoform), whereas other cells mainly used the 256 
first exon (Class I isoform)38 (Fig. 4a,b). The Class II isoform was highly expressed in HGSOC, 257 
with 95% of cancer cells expressing it (Fig. 4c,d). Reflecting the findings of the DIE analysis 258 
in mesothelial cells, fibroblasts and mesothelial cells in the TME also expressed a higher 259 
fraction of class II isoforms than cells derived from distal biopsies (Fig. 4d). IGF1 was found 260 
to be significantly higher expressed in cancer cells (Pcorr=4.8x10-32) as well as in TME 261 
mesothelial cells and fibroblasts compared to distal mesothelial cells and fibroblasts 262 
(Pcorr=4.05x10-32).  263 
 264 
Similarly, cancer and TME cells differentially expressed multiple isoforms in the two actin-265 
associated tropomyosin genes TPM1 and TPM2. Cancer cells expressed terminal exon 9a 266 
and exon 6b of TPM2 (Pcorr<10-293, |ΔΠ|=0.28), and TME cells also expressed those exons 267 
more than distal ones (Extended Data Fig. 4a-d). Cancer cells also preferentially expressed 268 
exon 1b and 6a of TPM1 (Extended Data Fig. 4e). Another strongly switched gene in cancer 269 
cells is vesicle-associated VAMP5 (Pcorr=4.59x10-17, |ΔΠ|=0.70). Indeed, the overexpressed 270 
isoforms in HGSOC cells were a (predicted protein-coding) VAMP8-VAMP5 read-through 271 
gene, i.e., a novel gene formed of two adjacent genes (Extended Data Fig. 4f). HGSOC cells 272 
expressed almost no wild-type (wt) VAMP5 but had a significantly higher VAMP8 expression 273 
than other cells (Pcorr=1.0x10-15t), indicating that this read-through gene was under 274 
transcriptional control of VAMP8. Amongst others, HGSOC cells also differentially expressed 275 
isoforms in the Golgi vesicle-associated AP1S2 gene (Pcorr=6.52x10-97, |ΔΠ|=0.60). 276 
Fibroblasts, mesothelial, and myeloid cells expressed the canonical isoform (Uniprot: P56377-277 
1), whereas HGSOC cells used another terminal 3’ exon (Uniprot: A0A5F9ZHW1) (Extended 278 
Data Fig. 4g). Last, patient 2 cancer cells highly expressed a novel shortened isoform of 279 
ceramide kinase gene CERK, (Pcorr=1.38x10-39, |ΔΠ|=0.78) (Extended Data Fig. 4h). In 280 
summary, tumor cells showed differential isoform usage in genes associated with hormonal 281 
(IGF1), actin (TPM1, TPM2, GSN), vesicle (VAMP8-VAMP5, APS1A), and sphingolipid 282 
(CERK) functions.  283 
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Long-read sequencing captures gene fusions and identifies an 284 
IGF2BP2::TESPA1 fusion that was misidentified in short-read data 285 

To detect fusion transcripts, we aligned long reads to the reference genome and filtered for 286 
reads split-aligned across multiple genes. We then ranked fusion transcripts with counts 287 
across all cells of more than 10 UMIs (Supplementary Table 2). Out of the 34 detected fusion 288 
entries, 21 were genes fused with mitochondrial ribosomal RNA (mt-rRNA1-2) and ubiquitous 289 
among  all cell types, 11 isoforms were IGF2BP2::TESPA1 fusions specific to patient 2, one 290 
was a cancer cell-specific CBLC (chr8:43.064.215) fusion to a long non-coding RNA (lncRNA) 291 
expressed in patient 3, and one was a cancer cell-specific fusion of FNTA with a lncRNA 292 
expressed in patient 1. The ubiquitous mt-rRNA fusions were likely template-switching artifacts 293 
from the library preparation, as rRNA makes up to 80% of RNA in cells39. IGF2BP2::TESPA1 294 
was a highly expressed fusion event in patient 2: 2,174 long-reads mapped to both IGF2BP2 295 
(Chr3) and TESPA1 (Chr12). The gene fusion consisted of 5' located exons 1-4 of IGF2BP2, 296 
corresponding to 112 amino acids (aa) and including the RNA recognition motif 1 (RRM1) and 297 
half of the RRM2 domain, linked to the terminal TESPA1 3' untranslated region (UTR) exon, 298 
encoding 69 aa as in-frame fusion and including no known domains (Fig. 5a). In total, the 299 
gene fusion encoded 181 aa, compared to 599 aa of wt IGF2BP2 and 521 aa of wt TESPA1 300 
(Fig. 5b). 98.9% of fusion reads were found in HGSOC cells and the fusion was detected in 301 
86.8% of patient 2’s cancer cells, making it a highly cancer cell- and patient-specific fusion 302 
event (Fig. 5c). Cancer cells lacking the gene fusion had lower overall UMI counts, suggesting 303 
low coverage as a possible reason for the absence of the gene fusion (Fig. 5d).  304 
 305 
We next investigated the footprint of the gene fusion in the short-read data. The TESPA1 gene 306 
was expressed uniquely in T cells and highly expressed only in patient 2, almost exclusively 307 
in HGSOC cells, and colocalized with IGF2BP2 expression (Fig. 5e,f). In short-read data, 308 
TESPA1 was the highest differentially expressed gene in cancer cells compared to non-cancer 309 
cells in patient 2 (Pcorr=1.17x10-14). Next, we designed a custom reference including the 310 
IGF2BP2::TESPA1 transcriptomic breakpoint as well as wt TESPA1 and wt IGF2BP2 311 
junctions and re-aligned Patient 2’s short-reads (Extended Data Fig. 5, Methods). Out of the 312 
989 reads mapping to the custom reference, 94% preferentially aligned to IGF2BP2::TESPA1 313 
(99.8% of those in HGSOC cells). This implies that the reported overexpression of TESPA1 in 314 
short-reads is false, as nearly all junction reads map to the fusion and not the wt gene. Reads 315 
covering the TESPA1 3’ UTR region harbored three heterozygous single nucleotide 316 
polymorphisms (hSNPs): chr12:54.950.144 A>T (rs1047039), chr12:54.950.240 G>A 317 
(rs1801876), and chr12:54.950.349 C>G (rs2171497). In long reads, wt TESPA1 was either 318 
triple-mutated or not mutated at all, indicating two different alleles. All fusion long reads, 319 
however, were triple-mutated, indicating a genomic origin and monoallelic expression of the 320 
fusion (Fig. 5g). In short reads, the three loci were mutated in nearly all reads, supporting the 321 
hypothesis that the observed TESPA1 expression represents almost completely 322 
IGF2BP2::TESPA1 expression and that it has a genomic origin. 323 

Genomic breakpoint validation of the IGF2BP2::TESPA1 fusion  324 

To validate that the IGF2BP2::TESPA1 gene fusion is the result of genomic rearrangements, 325 
we looked for a breakpoint in single-cell DNA sequencing (scDNA-seq) data from a patient 326 
2-matched metastatic sample. Two RNA fusion long reads mapped to intronic regions of 327 
IGF2BP2 and TESPA1 (Extended Data Fig. 5) indicating the location of the breakpoint at 328 
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chr3:185.604.020-chr12:54.960.603. We then estimated the scDNA-seq copy number 329 
profiles of all cells and identified two clones among the 162 cells of the scDNA sample: a 330 
cancer clone (Subclone 0) and a copy number-neutral non-cancer clone (Subclone 1) 331 
(Fig. 6a). We next aligned the scDNA data to a custom reference covering the breakpoint 332 
(Methods, Supplementary Dataset 1), including the wt TESPA1, wt IGF2BP2, and 333 
IGF2BP2::TESPA1 fusion sequences. We found nine reads mapping to the breakpoint (nine 334 
in subclone 0 cancer cells, zero in sublone 1 cells, P=0.0321) (Fig. 6b). We also found 14 335 
reads mapping to wt IGF2BP2 (ten in subclone 0 cells, four in sublone 1 cells, P=0,78) (Fig. 336 
6c), and eight reads mapping to wt TESPA1 (five subclone 0 cells, three subclone 1 cells, 337 
P=1.0) (Fig. 6d). Thus, scDNA-seq data confirmed the breakpoint in the intronic region 338 
detected by the long-read scRNA-seq. The scDNA-seq data also confirmed that the 339 
IGF2BP2::TESPA1 fusion was cancer-cell specific, as suggested by long-read scRNA-seq 340 
data. IGF2 RNA, which is bound by the wt IGF2BP2 protein, is also largely overexpressed in 341 
patient 2 cancer cells compared to other patients (Pcorr<2.54x10-15). The genomic region 342 
containing IGF2BP2 has an increased copy number (Fig. 6a) in patient 2, so the fact that 343 
one allele is a fusion allele does not impair the wt IGF2BP2 transcription.  344 

Discussion 345 

Detecting genomic alterations such as mutations40,41 and gene fusions42,43 in combination with 346 
isoform-level15 transcriptomic readouts on the single-cell level can provide valuable 347 
information on cancer formation, progression, the role of the TME, drug targets, and therapy 348 
response44. Here, we applied PacBio HiFi high-throughput long-read RNA-seq on five omental 349 
metastases and tumor-free samples from chemo-naive HGSOC patients to detect and quantify 350 
all of these alterations. 351 

Until now, a combination of single-cell short- and long-read sequencing was necessary to 352 
identify cell-specific isoforms: the higher depth of short-read sequencing allowed for cell typing 353 
based on gene expression, while long-read sequencing was used to identify isoforms22. 354 
Leveraging multiple strategies to generate high PacBio sequencing output, we achieved a 50-355 
fold increased sequencing depth compared to the first long-read PacBio scRNA-seq study22 356 
allowing for short read-comparable cell type identification. Consequently, future studies with 357 
similar or increased long-read throughput will not have to rely on parallel short-read 358 
sequencing, thereby saving cost and labor. 359 

Our analysis revealed a differential isoform usage between distal tumor-free and TME 360 
mesothelial cells in extracellular matrix associated genes (COL1A1, COL1A2, GSN). A 361 
geneset enrichment analysis between the two sites revealed higher EMT pathway enrichment 362 
in TME-derived mesothelial cells and fibroblasts. These findings are consistent with increasing 363 
evidence that EMT in the TME is induced by cancer cells, leading to cancer-associated 364 
phenotypes45 including TGFβ1-induced mesenchymal states of mesothelial cells in ovarian 365 
cancer46. Notably, in IGF1, TPM2, GSN and COL1A2 genes, we found overlap in isoform 366 
usage between cancer and TME cells (fibroblasts and mesothelial cells). Whether this cancer 367 
mimicry of the TME is caused by signaling or the result of mRNA exchange via tumor-secreted 368 
extracellular vesicles47, as it was shown for GSN48, requires further investigation. 369 

Additionally, we demonstrated the potential of the technology in terms of coverage and 370 
sequencing accuracy to detect mutations and gene fusions. In particular, in one patient, the 371 
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novel fusion IGF2BP2::TESPA1 was highly overexpressed compared to wt IGF2BP2 (~10x 372 
more) and TESPA1 (~150x more). IGF2BP2 is known to be regulated via 3’UTR miRNA 373 
silencing49, however the IGF2BP2::TESPA1 fusion has the unregulated 3'UTR of TESPA1, 374 
which could explain its overexpression. TESPA1 is normally expressed in T cells50 and long-375 
read data confirmed T cell-specific wt TESPA1 expression. Short read data however 376 
erroneously reported TESPA1 as the most differentially expressed gene in cancer cells, 377 
resulting from 3’ end capture of the fusion transcripts. This highlights that short-read scRNA-378 
seq data fails to distinguish between gene and fusion expression, potentially leading to wrong 379 
biological conclusions. 380 
 381 
Overall, HGSOC cells revealed a profoundly modified IGF system in all patients, with a drastic 382 
switch from IGF1 Class I to Class II isoform, IGF2 overexpression, and a highly expressed 383 
IGF2BP2 gene fusion in one patient. The IGF protein family promotes cancer growth, survival, 384 
proliferation, and drug resistance through signaling via PI3K-AKT or MAPK, and is a known 385 
clinical target in ovarian cancer37. Secreted (Class II) IGF1 is associated with the progression 386 
of ovarian cancer51 and the observed overexpression of Class II IGF1 in HGSOC cells could 387 
mediate uncontrolled cell proliferation in the tumor.  388 

Although the achieved sequencing depth allowed for short-read independent cell typing and 389 
clustering, a further increased depth is needed to capture low abundance transcripts. For 390 
example, we did not obtain sufficient reads to retrieve and characterize the T cell receptor 391 
repertoire. This is consistent with a long-read scRNA-seq study in blood lymphocytes that 392 
reported a 3.6-fold lower pairing rate for T cell receptors than the higher abundant B cell 393 
receptors from plasmablasts52. With further technological advances and decreased 394 
sequencing costs, however, we expect that these limitations can and will be overcome. 395 
Enrichment for low abundant transcripts for long-read sequencing or depletion of mitochondrial 396 
and ribosomal RNA53 represent interesting avenues forward.  397 

Altogether, we demonstrate that long-read sequencing provides a more complete picture of 398 
cancer-specific changes. These findings highlight the manifold advantages and new 399 
opportunities that this technology provides to the field of precision oncology, opening the 400 
premise of personalized drug prediction and neoantigen detection for cancer vaccines54,55.  401 

Materials and Methods 402 

Omentum patient cohort 403 

The use of material for research purposes was approved by the corresponding cantonal ethic 404 
commissions (EKNZ: 2017–01900, to V.H.S.) and informed consent was obtained for all 405 
human primary material. Tissue samples were immediately collected from the theater and 406 
transferred on ice to the department of biomedicine of the University Hospital Basel for tissue 407 
dissociation. 408 

Sample processing  409 

Fresh omentum and omental HGSOC tumor metastasis biopsy samples were cut into small 410 
pieces and dissociated in digestion solution (1 mg/mL collagenase/Dispase [Sigma cat. no. 411 
10269638001], 1 unit/mL DNase I [NEB, cat. no. M0303] and 10% FBS in DMEM [Sigma, cat. 412 
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no. D8437-500mL]) for 30 min at 37°C. To focus on the non-adipose cell fraction, adipocytes 413 
were separated by centrifugation and the cell pellet was collected. Red blood cell lysis (RBC) 414 
was performed using MACS red blood lysis solution (cat. no. 130-094-183). Then, the cell 415 
pellet was resuspended into MACS dead cell removal microbeads (cat. no. 130-090-101) and 416 
was loaded into the AutoMACS separator to remove dead cells. After counting cell number, 417 
cells were resuspended in PBS with 1% BSA and transferred to the Genomics Facility Basel. 418 
The cell suspension was again filtered and cell number and viability was assessed on a 419 
Cellometer K2 Image Cytometer (Nexcelom Bioscience, cat. no. Cellometer K2) using 420 
ViaStain AOPI Staining Solution (Nexcelom Bioscience, cat. no. CS2-0106-5mL) and PD100 421 
cell counting slides (Nexcelom Bioscience, cat. no. CHT4-PD100-003). For samples with 422 
viability below 70% and when cell numbers allowed (>105 cells total), apoptotic and dead cells 423 
were removed by immunomagnetic cell separation using the Annexin Dead Cell Removal Kit 424 
(StemCell Technologies, cat. no. 17899) and EasySep Magnet (StemCell Technologies, cat. 425 
no. 18000). If the cell pellet appeared still red, additional RBC lysis was performed. Cells were 426 
washed with a resuspension buffer (PBS with 0.04% BSA), spun down and resuspended in a 427 
resuspension buffer. Finally, cells were again counted and their viability determined. The cell 428 
concentration was set according to 10x Genomics protocols (700-1,200 cells/µL). 429 

10x Genomics single-cell capture and short-read sequencing 430 

Cell suspensions were loaded and processed using the 10x Genomics Chromium platform 431 
with the 3P v3.1 kit on the 10x Genomics Chromium Single Cell Controller (10x Genomics, 432 
PN-120263) according to the manufacturer’s instructions. 500 or 1,000 cells were targeted per 433 
lane. The quality of cDNA traces and GEX libraries were profiled on a 5200 Fragment Analyzer 434 
(Agilent Technologies).  435 
Paired-end sequencing was performed on the Illumina NovaSeq platform (100 cycles, 380pm 436 
loading concentration with 1% addition of PhiX) at recommended sequencing depth (20,000-437 
50,000 reads/cell).  438 

Long-read library preparation and PacBio sequencing 439 

To increase long-read PacBio sequencing throughput, we followed the strategy of cDNA 440 
concatenation of the HIT-scISOseq protocol23 with the modification of two rounds of biotin-441 
PCR in order to further reduce template-switch oligo (TSO) artifacts from the data.  442 
Full protocol details: 443 

cDNA amplification and biotin-enrichment 444 

15 ng of each patient’s cDNA library were amplified using the KAPA HiFi HotStart Uracil+ 445 
ReadyMix 2x (Kapa Biosystems, cat. no. KK2801) with 0.5 µM final concentration of custom-446 
primers (Integrated DNA Technologies, HPLC purified). Primers contained overhang 447 
sequences adapted from Hebelstrup et al.56 with a single deocxyuredine (dU) residue at a 10 448 
nt distance from the 5’ terminus enabling USER enzyme digestion and creating single-449 
stranded overhangs. Generated PCR fragments thus contain a single dU residue per DNA 450 
strand. The forward primer was specific to the 10x Genomics partial Read 1 sequence and 451 
contained a biotin modification allowing for biotin enrichment of amplified full-length cDNA 452 
molecules. The reverse primer was specific to the 10x Genomics partial TSO sequence.  453 
Forward Primer: /5Biosg/AGGTCTTAA/ideoxyU/CTACACGACGCCTTCCGATCT 454 
Reverse Primer: ATTAAGACC/ideoxyU/AAGCAGTGGTATCAACGCAGAG 455 
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The PCR was run according to the manufacturer's instruction with two cycles at an annealing 456 
temperature of 63°C followed by 7 cycles at an annealing temperature of 67°C; annealing time 457 
was 30 seconds. Extension was performed at 72°C for 90 seconds. PCR products were 458 
purified at 0.6X SPRIselect bead cleanup (Beckman Coulter, cat. no. B23318) according to 459 
the manufacturer’s instructions and eluted in 22 µL EB buffer (Qiagen, cat. no. 19086). DNA 460 
concentrations were measured using the Qubit dsDNA HS Assay Kit (Thermo Fisher 461 
Scientific, cat. no. Q32854), which were in the range of 1.5 µg per sample. cDNA traces were 462 
additionally evaluated on a 5200 Fragment Analyzer System (Agilent Technologies) using the 463 
HS NGS Fragment Kit, 1-6000 bp (Agilent, cat. no. DNF-474-0500). Full-length cDNAs were 464 
enriched through capture on 5 µL streptavidin-coated M-280 dynabeads using the 465 
Dynabeads™ kilobaseBINDER™ Kit (Invitrogen, cat. no. 60101), thus depleting TSO-TSO 466 
artifacts. Washed Dynabeads containing the DNA-complexes were directly resuspended in 20 467 
µL USER reaction buffer containing 10 µL StickTogether DNA Ligase Buffer 2x (NEB, cat. no. 468 
B0535S), 1.5 µL USER Enzyme (NEB, cat. no. M5505S) and 8.5 µL Nuclease-free water 469 
(Invitrogen, AM9939) and incubated in a thermocycler at 37°C for 20 min and held at 10°C (no 470 
annealing). This created a nick at the deoxyuracil site forming palindrome overhangs and 471 
releasing the biotin-bound DNA molecules from the beads. Beads were removed by magnetic 472 
separation and the supernatant with the biotin-released cleaved PCR products was subjected 473 
to a 0.6X SPRIselect cleanup step. Approximately 100 ng of purified product per sample were 474 
split into two aliquots and subjected to a second PCR amplification step with 6 cycles using 475 
an annealing temperature of 67°C. Reactions were pooled, purified by 0.6X SPRIselect 476 
cleanup and quality checked on both Qubit and Fragment Analyzer. Total DNA yield was 477 
between 5-8 µg, which were subjected to a second round of streptavidin-purification using 10 478 
µL of beads.  479 

Transcript ligation 480 

Beads were incubated in 19 µL USER reaction buffer at 37°C for 20 min for USER digestion 481 
and 25°C for 17 min for overhang annealing. Beads were then removed by magnetic 482 
separation and the supernatant was transferred to a new PCR tube. 1 µL of T4 DNA ligase 483 
high-concentration (2,000,000, units/mL, NEB, cat. no. M0202T) was added, mixed and 484 
incubated at 10°C for >24hrs and heat inactivated at 65°C for 10 min. To efficiently deplete 485 
any non-ligated transcripts, 0.38X SPRIselect cleanup was performed, eluted in 20 µL EB 486 
buffer and traces were evaluated on the Fragment Analyzer using the HS Large Fragment kit 487 
(Agilent Technologies, cat. no. DNF-492-0500) at 1:5 dilutions. Ligation products were 8-11kb 488 
long; average yield was 100 ng per sample.  489 

End repair/dA tailing, adapter ligation and PCR amplification 490 

To enable PCR-amplification of the ligated construct, the NEBNext Ultra II DNA Library Prep 491 
Kit for Illumina was followed (NEB, cat. no. E7645S) using total DNA yield as input material. 492 
2.5 µL of 5 µM dT overhang adapter (Roche, cat. no. KK8727) were used for the End Prep 493 
reaction. Adapter-ligated libraries were purified by 0.39X SPRIselect cleanup, eluted in 22 µL 494 
EB buffer and products were evaluated by HS Large Fragment kit. Total yield of around 40 ng 495 
was split in two and PCR amplified using 2X KAPA HiFi Hot-Start ReadyMix (Roche, cat. no. 496 
KK2602) and KAPA Library Amplification Primer Mix (10X concentration, Roche, cat. no. 497 
KK2623), 10 µL library input each with 11 cycles and 9 min extension time. Following a 0.38X 498 
SPRIselect cleanup and elution in 48 µL EB buffer, products were evaluated on a large 499 
fragment gel revealing an average fragment length of libraries of 4.6 kb and average total of 500 
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1.1 µg DNA. To increase total yield to 2 µg DNA required for SMRTbell library preparation of 501 
a product with 5 kb amplicon size, the PCR was repeated with three additional cycles and 502 
5 min extension time. After 0.4X SPRI cleanup and Fragment Analyzer inspection, the final 503 
yield was 2 µg per library. 504 

PacBio SMRTbell library preparation 505 

The SMRTbell Express Template Kit (PacBio, cat. no. 100-938-900) was used following 506 
manufacturer’s instructions for DNA damage repair, end repair/dA-tailing and ligation of a 507 
hairpin adapter (double amount used). Final purification of the SMRTbell template was 508 
performed by 0.42X SPRIselect cleanup and elution in 43 µL EB buffer. Exonuclease 509 
treatment was performed by addition of 5 µL of NEBbuffer1 (NEB, cat. no. B7001S) and 1 µL 510 
of each Exonuclease I (NEB, cat. no. M0293S) and Exonuclease III (NEB, cat. no. M0206S) 511 
bringing the total volume to 50 µL per reaction. Enzyme treatment was performed at 37°C for 512 
60 min. After SPRIselect cleanup, products were quantified on a large fragment gel at 1:30 513 
dilution. Final yield was approximately 650 ng per sample, a sufficient amount for long-read 514 
sequencing.  515 

PacBio Sequel II sequencing 516 

Libraries were sequenced on the PacBio Sequel II platform with the SMRT cell 8M. Omentum 517 
metastasis and tumor-free omentum were run on three and two 8M cells, respectively. 518 

Single-cell DNA-sequencing 519 

Cell suspensions were loaded and processed using the 10x Genomics Chromium platform 520 
with the single-cell CNV kit on the 10x Genomics Chromium Single Cell Controller (10x 521 
Genomics, PN-120263) according to the manufacturer’s instructions. Paired-end sequencing 522 
was performed on the Illumina NovaSeq platform (100 cycles, 380pm loading concentration 523 
with 1% addition of PhiX) at recommended sequencing depth.  524 

Data Analysis 525 

Short-read data analysis 526 

Preprocessing 527 
Raw reads were mapped to the GRCh38 reference genome using 10x Genomics Cell Ranger 528 
3.1.0 to infer read counts per gene per cell. We performed index-hopping removal using a 529 
method developed by Griffiths et al.57.  530 

10x Genomics short-read analysis 531 

GEX data of each sample was analyzed using the scAmpi workflow58. In brief, UMI counts 532 
were quality controlled and cells and genes filtered to remove known contaminants. Cells 533 
where over 50% of the reads mapped to mitochondrial genes and cells with fewer than 400 534 
different expressed genes were removed, as well as non protein-coding genes and genes that 535 
were expressed in less than 20 cells. Doublet detection was performed using scDblFinder59. 536 
Subsequently, counts were normalized and corrected for cell cycle effects, library size, and 537 
sample effect using sctransform60. Similar cells were grouped based on unsupervised 538 
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clustering using Phenograph61 and an automated cell type classification was performed 539 
independently for each cell62 using gene lists defining highly expressed genes in different cell 540 
types from previous publications. Major cell type marker lists were developed in-house based 541 
on unpublished datasets (manuscripts in preparation) including the Tumor Profiler Study63 542 
using the Seurat FindMarkers method64. Immune subtype marker gene lists were obtained 543 
from Newman et al.65, enriched with T cell subtypes from Sade-Feldman et al.66  544 

Long-read data analysis 545 

Generating CCS 546 

Using SMRT-Link (version 9.0.0.92188), we performed circular consensus sequencing (CCS) 547 
with the following modified parameters: maximum subread length 50,000 bp, minimum 548 
subread length 10 bp, and minimum number of passes 3.                                                         549 

Unconcatenating long reads 550 

We used NCBI BLAST (version 2.5.0+) to map the 5' and 3' primers to CCS constructs, with 551 
parameters: “-outfmt 7 -word_size 5” as described previously23. Sequences between two 552 
successive primers were used as input for primer trimming using IsoSeq3 Lima (parameters: 553 
--isoseq --dump-clips --min-passes 3). Cell barcodes and UMIs were then demultiplexed using 554 
IsoSeq3 tag with parameter --design T-12U-16B. Finally, we used IsoSeq3 refine with option 555 
--require-polya to remove concatemers and trim polyA tails. Only reads with a correct 5’-3’ 556 
primer pair, a barcode also found in the short-read data, a UMI, and a polyA tail were retained.  557 

Isoform classification 558 

Demultiplexing UMIs with IsoSeq3 dedup and calling isoforms on the cohort level with 559 
collapse_isoforms_by_sam.py resulted in unfeasible runtimes. Therefore, we called isoforms 560 
first on the cell level as a pre-filtering step. Long-reads were split according to their cell 561 
barcodes, and UMI deduplication was performed using IsoSeq3 dedup. Next, reads were 562 
mapped and aligned to the reference genome (hg38) using minimap2 with parameters: -ax 563 
splice -uf --secondary=no -C5. Identical isoforms were merged based on their aligned exonic 564 
structure using collapse_isoforms_by_sam.py with parameters: -c 0.99 -i 0.95 --565 
gen_mol_count. We then classified isoforms using SQANTI3 31 with arguments: --skipORF --566 
fl_count --skip_report. We finally filtered artifacts including intrapriming (accidental priming of 567 
pre-mRNA 'A's), reverse-transcriptase template switching artifacts, and mismapping to non-568 
canonical junctions. In order to have a unique isoform catalog for all our samples, we then 569 
retained only reads associated to isoforms passing the SQANTI3 filter, and we ran 570 
collapse_isoforms_by_sam.py, SQANTI3 classification and filtering again on all cells together. 571 
The described pipeline is available here and was implemented in Snakemake, a reproducible 572 
and scalable workflow management system67. 573 

3’ and 5’ isoform filtering 574 

For SQANTI3-defined isoforms, incomplete splice match, novel in catalog and novel not in 575 
catalog, we only retained isoforms falling within 50 bp of a CAGE-validated transcription start 576 
site (FANTOM5 CAGE database), and 50 bp of a polyA site form the PolyASite database33. 577 
The GENCODE database was used as a comparison, all protein-coding isoforms were 578 
grouped under the GENCODE.full label, a subset including only full-length isoforms was 579 
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labeled as GENCOD.FL, and the Matched Annotation from NCBI and EMBL-EBI (MANE34) 580 
was named GENCODE.MANE. 581 

Isoforms biotypes 582 

Novel isoform biotypes were assessed internally by the GENCODE team with biotypes 583 
matching those described by Frankish et al.68. 584 

Cell type-specific isoforms 585 

Considering only the SQANTI3-defined ‘full splice match’, ‘novel not in catalog’ and ‘novel in 586 
catalog’ isoforms with at least 3 reads, we established the following classification: “Cell-587 
specific” isoforms are present in only 1 cell and “cell type specific“ isoforms are present in >=3 588 
cells of an unique cell type. 589 
 590 
Cell type annotation  591 
 592 
Cells were annotated with long-reads the same way as short-reads, using scROSHI. The 593 
major cell types were modified according to gene expression in long-reads. Immune subtype 594 
marker gene lists were unchanged. 595 

Mutation detection 596 

Positions of mutations from Foundation Medicine’s targeted NGS panel (Foundation One CDx) 597 
mutations described in Table 1 were used as reference. One mutation not present in the list, 598 
TP53_P151H, was visually detected in Patient 1 and added to the list. If a position was 599 
mutated at least in one cell belonging to a distal biopsy sample, the mutation was classified 600 
as a germline variant. Cells with one mutated read in one of the positions were considered 601 
mutated.  602 

Differential isoform tests 603 

Differential isoform testing was performed using a χ2 test as previously described in 604 
Scisorseqr25!"#$%&'()*"+,-./0"',$"&1+2"%0,',$3"45"6&$&"100%7.&8"/,"%.8%9%8-1("+&(("/):&0*"1.8"605 

7&.&0" 6&$&" 8%0+1$8&8" %'" /2&)" 8%8" .,/" $&1+2" 0-''%+%&./" 8&:/2" :&$" +,.8%/%,." ;<=" $&180" :&$"606 

+,.8%/%,.":&$"7&.&>!"?@91(-&0"'$,3"1"A<"/&0/"',$"8%''&$&./%1("%0,',$3"-017&"6&$&"+,3:-/&8":&$"607 

7&.&" 62&$&" 1" 0-''%+%&./" 8&:/2" 610" $&1+2&8*" 1.8" 6&" +,$$&+/&8" ',$" 3-(/%:(&" /&0/%.7" -0%.7"608 

#&.B13%.%"C,+2D&$7"+,$$&+/%,."6%/2"1"=E"'1(0&"8%0+,9&$)"$1/&!"4'"/2&"+,$$&+/&8":@91(-&"610"609 

FG!G="1.8"/2&"0-3",'"+21.7&"%."/2&"$&(1/%9&":&$+&./",'"%0,',$3";HI>",'"/2&"/,:"/6,"%0,',$30"%."610 

&%/2&$":,0%/%9&",$".&71/%9&"8%$&+/%,."610"3,$&"/21."JGE*"/2&."/2&"7&.&"610"+1((&8"8%''&$&./%1(()"611 

0:(%+&8!"K,"+(100%')"/2&"/,:"8%''&$&./%1(()"0:(%+&8"7&.&0*"6&"/,,L"/2&"$1.L",'"7&.&0"D)"HI"1.8"612 

+,$$&+/&8":@91(-&0*"1.8"0-33&8"/2,0&"/6,"$1.L0!"K2&"031((&0/"0-3",'"$1.L0"6&$&"+,.0%8&$&8"613 
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Pathway enrichment analysis 616 

We used GSVA to perform pathway enrichment analysis. Gene sets were obtained from the 617 
default scAmpi workflow70, with the addition of the 618 
EPITHELIAL_MESENCHYMAL_TRANSITION pathway from GSEA. 619 

Fusion Discovery 620 

Mapped reads from isoform classification were pooled. We called reads mapping to two 621 
separate genes at a distance of more than 100,000 bp or to different chromosomes using 622 
fusion_finder.py (cDNA_Cupcake package, https://github.com/Magdoll/cDNA_Cupcake) with 623 
parameters --min_locus_coverage_bp 200 -d 1000000. Fusion isoforms with sufficient depth 624 
(min. 10 reads) were kept, and their breakpoint, expression per cell type and number of cells 625 
in which they are expressed was assessed. 626 

Short-reads re-alignment to IGF2BP2::TESPA1 627 
We designed a custom reference including IGF2BP2::TESPA1 transcriptomic breakpoint as 628 
well as the wild-type IGF2BP2 and TESPA1 exon junction covering the breakpoint. The 629 
reference was composed of 5 sequences of 80 nucleotides (40 bases upstream and 630 
downstream of the breakpoint), sequences XXX_1 and XXX_2 represent the breakpoints of 631 
the two main isoforms seen in each gene: 632 
 633 
>TESPA1_wt_1 634 
TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCAATTCTGGAGGCTGGCAAATCCAAG635 
GTCAAAAGCCTGCA 636 
 637 
>TESPA1_wt_2 638 
TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCTTCACGAGTCTTTGCCAGCAAAAGTC639 
TGGTGGTGGTGGG 640 
 641 
>IGF2BP2_wt_1 642 
ATGTGACGTTGACAACGGCGGTTTCTGTGTCTGTGTTGACTTGTTCCACATTCTCCACTGTCCCA643 
TATTGAGCCAAAA 644 
 645 
>IGF2BP2_wt_2 646 
ATCACTGGATTGTGTGTTCTTCTGAATTACTTCTTTAGGCTTGTTCCACATTCTCCACTGTCCCAT647 
ATTGAGCCAAAA 648 
 649 
>TESPA1_IGF2BP2_fusion_1 650 
TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCCTTGTTCCACATTCTCCACTGTCCCA651 
TATTGAGCCAAAA 652 
 653 
>TESPA1_IGF2BP2_fusion_2 654 
CAAATCCAAGGTCAAAAGCCTGCATCTGGTGAGGGCCTCCTTGTTCCACATTCTCCACTGTCCCA655 
TATTGAGCCAAAA 656 
 657 
Patient 2 reads were aligned to this reference using minimap2 with parameters: -ax sr --658 
secondary=no. Reads mapping unambiguously to one of those reference sequences were 659 
then attributed to the cell type to which their cell barcode belonged. 660 
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scDNA analysis 661 

Cell Ranger DNA was used to demultiplex and align Chromium-prepared sequencing 662 
samples. We used the cellranger-dna mkfastq command to generate FASTQ files from the 663 
Illumina raw BCL files, and we ran the command cellranger-dna cnv to align FASTQ files to 664 
the hg38 reference genome, call cells, and estimate copy numbers. We obtained the copy 665 
number profiles and detected the main clonal structure of samples using SCICoNE71. 666 

DNA breakpoint validation 667 

To validate in scDNA data breakpoints found in scRNA data, we used the putative scRNA 668 
breakpoint reads as a reference to re-align scDNA reads using BWA with options: -pt8 -CH. 669 
For the IGF2BP2::TESPA1 fusion, the reference was composed of 3 sequences of 184 670 
nucleotides (92 bases upstream and downstream of the breakpoint):  671 
 672 
>IGF2BP2_WT 673 
CAAACTTGTAGAAATGTGAATTTTTCTTGTTATTTTACAAGATTTGCAAAGGGACCTGAGACCCCG674 
AAAAGCTTAAGGACTACTGTTAAAAATACTGTTTGTTAAATAACTTTAAAGCAGCTGCAGCCTTTAT675 
GGGTTGCAGGGAGTTGTATGTAATGCTCAGAAAGAGCTGCCACTGAGAAT 676 
 677 
>TESPA1_WT 678 
TTCAATGATGTGGGCTGATTAGAACATAGCTGAAAGCAGGTGTTGGGATATTGATTTCCATGGCT679 
GGTCCTCACCTGTTACAAAACTTCTACTACAATGAGTTTCAAACTTCAATATGCAATCAATTATCTA680 
ACCTAAAGATCTTGGTAAAACTGTGATTCATTAGGTCTGGGGTGGGGGCTG 681 
 682 
>IGF2BP2_TESPA1_Fusion 683 
TTCAATGATGTGGGCTGATTAGAACATAGCTGAAAGCAGGTGTTGGGATATTGATTTCCATGGCT684 
GGTCCTCACCTGTTACAAAACTTCTACTACTGTTTGTTAAATAACTTTAAAGCAGCTGCAGCCTTT685 
ATGGGTTGCAGGGAGTTGTATGTAATGCTCAGAAAGAGCTGCCACTGAGAAT 686 
 687 
Reads mapping unambiguously to one of those reference sequences were then attributed to 688 
the clone to which their cell barcode belonged. 689 
 690 
Data and code availability 691 
The raw sequencing files reported in this study have been deposited in the European 692 
Genome-phenome Archive (EGA) under the accession number EGAS00001006807. The 693 
software used to analyze the data of this study has been deposited at the GitHub repository: 694 
https://github.com/cbg-ethz/scIsoPrep 695 
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Figure 1: Study design and long read data overview. (a) Schematic of freshly processed
HGSOC metastasis and patient-matched tumor-free omentum tissue biopsies, scRNA-seq.
(b) Definition of SQANTI-defined isoform structural categories. (c) Proportions of isoform
structural categories detected in merged metastasis and healthy omentum samples.
Percentage and total number of isoforms per category are indicated. (d) Proportions of
unique reads attributed to isoforms detected in (c). Percentage and total number of UMIs per
category are indicated. (e) Percentage of isoforms for which transcription start site is
supported by CAGE (FANTOM5) data and transcription termination site is supported by
polyA (PolyASite) data, per isoform structural categories. GENCODE.all indicates all
protein-coding isoforms in the GENCODE database, GENCODE.FL is a subset of
GENCODE.full containing only isoforms tagged as full-length, and GENCODE.MANE is a
subset of canonical transcripts, one per human protein coding locus. (f) GENCODE defined
biotypes composition of novel isoforms. (g) Biotypes composition of the GENCODE
database.
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Figure 2: Clustering and cell type specific isoform distribution.
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(a) Cohort UMAP embeddings by data types and automatic cell type annotation. Top and
bottom rows: cell type labels based on short- and long-read data, respectively. Left column:
embedding on short-read data - gene level, middle column: embedding on long-read data -
gene level, right column: embedding on long-read data - isoform level. (b) Jaccard distance
of cell populations in different UMAP embeddings: short-reads - gene level versus
long-reads - gene level (left), short-reads - gene level versus long-reads - isoform level
(middle), long-reads - gene level versus long-reads - isoform level (right). (c) Long-reads -
gene level UMAP cohort visualizations of cells with at least one somatic mutation also found
in bulk DNA. (d) Long-reads - gene level UMAP cohort visualization of cells with at least one
germline variant. Germline variants are variants detected in healthy omentum distal samples.
(e) SQANTI-defined structural category normalized distribution of isoforms detected per cell
type (number of isoforms displayed in white).
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Figure 3: Differential isoform expression in tumor microenvironment reveals
epithelial-to-mesenchymal transition.
(a) Cohort UMAPs embedding of short-read data - gene level (left), long-read data - gene
level (middle), long-read data - isoform level (right), colored by tissue type. (b) Volcano plot
of mesothelial TME vs. distal cells differential isoform usage. The X-axis represents the
effect size in the gene, the Y-axis is the p-value derived from a χ2 test corrected for multiple
testing using the Benjamini–Hochberg method. (c) ScisorWiz representation of isoforms in
COL1A1, each horizontal line represents a single read colored according to cell types.
Dashed boxes highlight the use of the canonical 3’ UTR in TME fibroblasts and mesothelial
cells, while distal mesothelial cells use an earlier 3’ exon termination. (d) ScisorWiz
representation of isoforms in COL1A2. Dashed boxes highlight the 3’UTR, where TME and
HGSOC cells differentially express a longer 3’UTR than distal cells. (e) ScisorWiz
representation of isoforms in GSN. Dashed boxes highlight the TSS, where mesothelial TME
and HGSOC cells differentially express the cGSN isoform, while mesothelial distal cells and
fibroblasts use pGSN. (f) Gene set variation analysis (GSVA) scores for different cell types.
Heatmap colors from blue to red represent low to high enrichment.
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Figure 4: Differential isoform expression of IGF1 in tumor vs non-tumor cells.
(a) ScisorWiz representation of isoforms in IGF1, each horizontal line represents a single
isoform colored according to cell types. Colored areas are exons, and whitespace are
intronic space, not drawn to scale. Exons are numbered according to the Gencode
reference, Class I and II isoforms are isoforms with starting exons 1 and 2, respectively.
Boxes highlight Class II expression in cancer and TME cells. (b) Projection of IGF1 gene
(top) and ClassI/II isoform (bottom) expression on UMAP obtained from clustering on
long-reads transcripts. (c) Alluvial plot of cells expressing IGF1 in different cell types (left),
divided between cells expressing Class I or II (right). (d) Barplot of percentage of cells
expressing Class II isoform in different cell types and locations colored by cell type.
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Figure 5: Tumor and patient-specific detection of novel IGF2BP2::TESPA1 gene
fusion. (a) Overview of wt IGF2BP2, wt TESPA1 and gene fusions with exon structure. (b)
Overview of wt IGF2BP2, wt TESPA1 and fusion proteins and protein domains. RRM:
RNA-recognition motif, KH: hnRNP K-homology domain, KRAP_IP3R_bind: Ki-ras-induced
actin-interacting protein-IP3R-interacting domain. (c) Violin plot showing patient and tumor
specific IGF2BP2::TESPA1 fusion transcript detection in patient 2. (d) UMI count in
fusion-containing vs -lacking patient 2 tumor cells. (e) scDNA copy-number profile clustering
of the matched patient 2 sample. Subclone 0 (121 cells) exhibited multiple copy number
alterations along its genome representing a single tumor clone, while subclone 1 (62 cells)
had a diploid genome representing non-HGSOC cells. (f) patient 2 scDNA reads aligning to
custom IGF2BP2::TESPA1 gene fusion breakpoint reference. Only tumor subclone reads
were found to align to it.
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Figure 6: IGF2BP2::TESPA1 fusion breakpoint validation in scDNA.
(a) Copy number values per subclone in Patient 2 scDNA. Sublone 0 has multiple copy
number alterations, indicative of cancer, while Subclone 1 is copy-number neutral,
non-cancer. (b) IGV view of scDNA reads aligning unambiguously to the TESPA1::IGF2BP2
genomic breakpoint. In red, reads from Subclone 0 cells, in blue, reads from Subclone 1
cells. (c) IGV view of scDNA reads aligning unambiguously to wt IGF2BP2. The dashed line
indicates the location of the (putative) breakpoint. (d) IGV view of scDNA reads aligning
unambiguously to wt TESPA1. The dashed line indicates the location of the breakpoint.
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