

1 Targeting tumour-intrinsic neural vulnerabilities of 2 glioblastoma

3 Sohyon Lee^{1,*}, Tobias Weiss^{2,*}, Marcel Bühler², Julien Mena¹, Zuzanna Lottenbach¹, Rebekka
4 Wegmann¹, Miaomiao Sun², Michel Bihl³, Bartłomiej Augustynek⁴, Sven Baumann⁴, Sandra Goetze⁵⁻⁷,
5 Audrey van Drogen⁵⁻⁷, Patrick Pedrioli⁵⁻⁷, Daniel Kirschenbaum⁹, Flavio Vasella⁸, Elisabeth J. Rushing⁹,
6 Bernd Wollscheid⁵⁻⁷, Matthias A. Hediger⁴, Michael Weller^{2,§}, Berend Snijder^{1,§,✉}

7 ¹ Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.

8 ² Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich,
9 Switzerland.

10 ³ Institute of Pathology, University Hospital Zurich, Zurich, Switzerland

11 ⁴ Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical
12 Research, Inselspital, University of Bern, Bern, Switzerland.

13 ⁵ Institute of Translational Medicine (ITM), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

14 ⁶ Swiss Institute of Bioinformatics, Lausanne, Switzerland.

15 ⁷ ETH PHRT Swiss Multi-Omics Center (SMOC), Switzerland.

16 ⁸ Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich,
17 Switzerland

18 ⁹ Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.

19 * These authors contributed equally

20 § These authors contributed equally

21 ✉Correspondence to bsnijsder@ethz.ch

22 Abstract

23 Glioblastoma is the most common yet deadliest primary brain cancer¹. The neural behavior of
24 glioblastoma, including the formation of synaptic circuitry and tumour microtubes, is increasingly
25 understood to be pivotal for disease manifestation²⁻⁹. Nonetheless, the few approved treatments for
26 glioblastoma target its oncological nature, while its neural vulnerabilities remain incompletely mapped
27 and clinically unexploited. Here, we systematically survey the neural molecular dependencies and
28 cellular heterogeneity across glioblastoma patients and diverse model systems. In 27 surgical patient
29 samples, we identify cancer cell morphologies indicative of poor prognosis, and discover repurposable
30 neuroactive drugs with anti-glioblastoma efficacy by image-based drug screening. Glioblastoma cells
31 exhibit functional dependencies on highly expressed neuroactive drug targets, while interpretable
32 molecular machine learning (COSTAR) reveals their downstream convergence on AP-1-driven tumour
33 suppression. This drug-target connectivity signature is confirmed by accurate *in silico* drug screening
34 on >1 million compounds, as well as by multi-omic profiling of glioblastoma drug responses. Thus, Ca²⁺-
35 driven AP-1 pathway induction represents a tumour-intrinsic vulnerability at the intersection of
36 oncogenesis and neural activity-dependent signaling. Opportunities for clinical translation of this
37 neural vulnerability are epitomized by the antidepressant Vortioxetine synergizing with current
38 standard of care treatments *in vivo*. Together, the results presented here provide a mechanistic
39 foundation and conceptual framework for the treatment of glioblastoma based on its neural origins.

40 Introduction

41 Glioblastoma is a deadly brain cancer with limited treatment options, shaped by heterogeneous
42 developmental programs, genetic drivers, and tumour microenvironments¹⁰⁻¹⁴. Despite an increasing
43 understanding of this heterogeneity, the alkylating agent Temozolomide (TMZ), which prolongs
44 median survival from 12 to 15 months, remains the only first-line drug approved for glioblastoma¹⁵⁻
45¹⁷. Targeted therapies have been largely unsuccessful, in part due to the blood-brain barrier (BBB)
46 limiting tumour accessibility, the presence of treatment-resistant glioblastoma stem cells (GSCs), and
47 the lack of clinically predictive models¹⁸⁻²³. Systemically addressing these therapeutic roadblocks is an
48 urgent clinical need.

49 An emerging paradigm is to consider glioblastoma in the context of the nervous system. Single-cell
50 RNA sequencing (scRNA-Seq) and lineage tracing studies of glioblastoma have identified stemness
51 signatures resembling neural development^{7,12,13,24-29}. At the brain-tumour interface, synaptic
52 integration of cancer cells into neural circuits regulates tumour growth^{3,5,6,9}. Within the tumour, the
53 extension of microtubes akin to neuronal protrusions promotes the formation of treatment-resistant
54 invasive networks^{2,4,8}. Furthermore, modulating specific neurotransmitter or other secretory
55 pathways in the tumour microenvironment impairs glioblastoma metabolism and survival^{3,30-32}. Such
56 neural aspects of glioblastoma offer new clinically-targetable vulnerabilities that could be targeted by
57 repurposing approved “neuroactive” drugs (NADs). Neuroactive drugs can cross the BBB and are
58 routinely prescribed for indications such as psychiatric or neurodegenerative diseases. Yet, as
59 neuroactive drugs are originally developed to modulate the nervous system, their anti-cancer activity
60 in glioblastoma patients is largely unknown.

61 Several key questions arise. First, how does neural intratumour heterogeneity across glioblastoma
62 patients relate to disease course and response to therapy? Second, are there tumour-intrinsic neural
63 vulnerabilities that are therapeutically targetable? Third, if so, which molecular dependencies and
64 associated pathways are involved?

65 Here, we find morphological and neural stemness features across glioblastomas that relate to disease
66 prognosis and drug response. Using pharmacoscopy (PCY), an *ex vivo* imaging platform³³⁻³⁵ that
67 captures patient and tumour complexity, we screen repurposable neuroactive drugs and identify a set
68 with potent anti-glioblastoma activity. Top neuroactive drugs work consistently across patient samples
69 and particularly target GSCs with neural morphologies associated with invasion and poor prognosis.
70 These top drugs are validated across multiple glioblastoma model systems including patient-derived
71 cultures and orthotopic xenograft mouse models. Integration of anti-glioblastoma response with
72 multiplexed RNA-Seq, reverse genetic screening, and machine learning of drug-target networks reveals
73 convergence of neuroactive drugs with anti-glioblastoma activity on AP-1 and BTG gene families. In a
74 neural context, AP-1 transcription factors, including JUN and FOS, are immediate early genes (IEGs)
75 induced in response to neural activity or insult, while BTG1/2 are known tumour suppressors³⁶⁻³⁹.
76 Using this convergent AP-1/BTG connectivity signature, we predict and validate new candidate drugs
77 across >1 million compounds *in silico*. The antidepressant Vortioxetine is the top PCY-hit and inducer
78 of the AP-1/BTG signature across diverse experimental model systems, synergizing with both first- and
79 second-line glioblastoma therapies *in vivo*. Our study identifies clinically-actionable neuroactive drugs
80 for the treatment of glioblastoma converging on a gene regulatory network involved in cell
81 proliferation and neural activity.

82 Main

83 **Capturing the phenotypic single-cell heterogeneity of glioblastoma**

84 Glioblastoma cells adopt unique cellular morphologies and stemness properties to integrate and
85 survive in the brain ^{2,4,8,13,40}. To comprehensively profile the morphological and molecular
86 heterogeneity between and within glioblastoma patients, we investigated surgically-resected material
87 from a clinically-annotated cohort of 27 glioblastoma patients (prospective cohort; Fig. 1a, Extended
88 Data Fig. 1a and Supplementary Table 1). We quantified cell type composition and morphology by high-
89 content confocal imaging of freshly dissociated surgical samples cultured for two days *ex vivo* (n=27
90 patients), as well as in patient-matched tissue sections *in situ* (n=10 patients). In parallel, we measured
91 somatic genetic alterations by targeted next-generation sequencing (NGS; n=27 patients;
92 Supplementary Table 2) and single-cell transcriptomes by scRNA-Seq (n=4 patients).

93 We mapped the single-cell landscape of glioblastoma patient samples captured by both scRNA-seq and
94 high-content *ex vivo* imaging. Across technologies, glioblastoma cells were placed along a neural
95 stemness gradient against the neural progenitor marker Nestin and the mature astrocytic marker
96 S100B (Fig. 1b-e, Extended Data Fig. 1b-g, and Supplementary Fig. S1). Concordant with previous
97 literature using Nestin/S100B as glioblastoma markers ^{2,5,7,20,41}, analysis of 25,510 single cell
98 transcriptomes across three independent scRNA-Seq datasets revealed the highest co-expression of
99 markers associated with malignancy (e.g. SOX2, CD133, EGFR, Ki67) and neural properties of
100 glioblastoma (e.g. GAP43, NLGN3, CX43, GRIA2; Fig. 1c and Extended Data Fig. 1e-g) in the [Nestin+ or
101 S100B+ and CD45-] glioblastoma cell definition (n=22 glioblastoma patients; Lee *et al.*, this study; n=4
102 patients; Neftel *et al.*¹³, n=9 patients; Yu *et al.*²⁹, n=9 patients). Expression profiles of glioblastoma cells
103 displayed high inter-patient heterogeneity within the Nestin/S100B spectrum, and were distinct from
104 CD45+ immune cells present in the tumour microenvironment (TME; Fig. 1b,c, Extended Data Fig. 1c,d,
105 and Supplementary Fig. S1). Cell-type specific enrichment analysis of gene modules enriched in
106 Nestin/S100B/CD45-negative cells ('All Neg') confirmed the presence of additional TME cell types,
107 including CD45-low tumour-associated macrophages/microglia, fibroblasts, and stromal cells
108 (Extended Data Fig. 1k,l). By immunofluorescence (IF), we quantified cell type composition and
109 morphology for over 100 million imaged patient cells. This confirmed on average >90% *ex vivo* viability
110 of glioblastoma cells across the prospective cohort (Extended Data Fig. 1h-j and *Methods*) and revealed
111 a high degree of inter- and intra-tumour heterogeneity: Across patients, glioblastoma cells ranged from
112 4-39%, immune cells from 1-82%, and all marker negative TME cells 13-84% (Fig. 1d,e). Imaging
113 glioblastoma sample composition underscored the molecular tumour heterogeneity present within
114 the Nestin/S100B spectrum and revealed a diversity of glioblastoma cell morphologies (Fig. 1d,e).

115 **Glioblastoma stem cell morphologies prognostic of poor outcome**

116 At the apex of the neural stemness gradient, Nestin+ cells represent a treatment-resistant
117 glioblastoma stem cell (GSC) subpopulation shown to sustain long-term tumour growth ^{18,20,42-44}. Visual
118 inspection of Nestin+ GSCs disclosed recurring cellular morphologies ("morphotypes") distinguishable
119 by the presence of tumour extensions as well as cell size and shape (Fig. 1d,f-h and Supplementary Fig.
120 S2). Using deep learning on 51,028 manually curated single-cell image crops across all patient samples,
121 we trained a convolutional neural network (CNN) to classify Nestin+ cells into four main *ex vivo*

122 morphotypes (M1-M4; Fig. 1f,h and Extended Data Fig. 2a). Single-cell feature maps extracted from
123 the CNN and nuclei segmentation revealed a continuum of M1-M3 morphotypes and a distinct cluster
124 of small M4 cells (Fig. 1f,g and Extended Data Fig. 2b). M1 (polygonal with extensions; PE) and M2
125 (elongated with extensions; EE) GSC morphotypes had varying distributions of extensions per cell,
126 largely overlapping with previously reported dimensions of tumour microtubes (TMs; Extended Data
127 Fig. 2c) associated with glioma grade ². M3 (round big; RB) and M4 (round small; RS) morphotypes
128 without extensions were characterized by their roundness yet differed in cell size (Fig. 1g and Extended
129 Data Fig. 2b). Gap-junction protein CX43 and Nestin expression were higher in M1-M3 than M4, while
130 similar EGFR expression and only modest differences in cell viability were observed among the four
131 morphotypes (Fig. 1g, Extended Data Fig. 2d-g). Across patients, GSC morphotype composition varied
132 dramatically, with complex M1-M3 morphotypes ranging from 5% to 86% among Nestin+ GSCs (Fig.
133 1h).

134 To evaluate if this distinct contrast of patients with high or low *ex vivo* GSC morphotype complexity
135 reflected *in situ* tumour organization, we imaged tumour regions in cohort-matched tissues from
136 patients across the morphotype spectrum (M1-M3 high, ‘high complexity’, n=6; M1-M3 low, ‘low
137 complexity’, n=4; Fig. 1h,i and Supplementary Fig.S3) by 100x confocal microscopy. Striking higher-
138 level tumour organizational differences between the two patient groups were visually evident (Fig. 1i
139 and Extended Data Fig. 2i), which coincided with significant stratification of multicellular
140 immunohistochemistry (IHC) images by unsupervised deep learning (Fig. 1j). Subsequent single-cell
141 image analysis of 12,799 Nestin+ cells and manual single-cell tracing demonstrated the presence of all
142 four morphotypes *in situ* (Fig. 1k and Extended Data Fig. 2j). Comparison of quantitative morphological
143 features across 4,000 Nestin+ cells (n=400 cells/patient) further confirmed significant differences
144 between the two patient morphotype groups: Larger and more extended cell morphologies were more
145 abundant in the high complexity patient group (Fig. 1k).

146 The morphological makeup of an individual patient’s Nestin+ GSCs was the strongest prognostic signal
147 measured in our cohort. Higher baseline abundance of complex morphotypes (M1-M3% of Nestin+
148 cells) was associated with worse patient outcome ($P=0.0047$; n=17 patients with annotated PFS; Fig.
149 1l). The abundance of complex GSC morphotypes further correlated with Ki67 levels measured by
150 pathology (Extended Data Fig. 2k). However, Ki67 levels alone did not stratify patient survival, nor did
151 stratification based on IF marker-defined cell type composition (Extended Data Fig. 2l-n). While *MGMT*
152 promoter methylation status, a prognostic factor associated with response to alkylating agents, also
153 stratified patient survival in our cohort ($P=0.038$), complex GSC morphotype abundance was
154 independent of *MGMT* status (Fisher’s test, $P=0.19$, Extended Data Fig. 2m). These results provide
155 compelling evidence that complex M1-M3 GSC morphotypes and corresponding *in situ* tumour
156 organization characterizes particularly aggressive disease with poor clinical outcome among
157 glioblastomas.

158 Therapeutically targeting neural tumour heterogeneity

159 The question arises whether it is possible to pharmacologically target the heterogeneous spectrum of
160 glioblastoma cells in surgical patient samples, both in terms of neural stemness and morphological
161 complexity. Image-based *ex vivo* drug screening (pharmacoscropy; PCY) enables measurements of drug-
162 induced relative reduction of any marker- or morphology-defined cancer cell population. Positive PCY
163 scores indicate a drug-induced reduction of cancer cells relative to non-malignant TME cells (Fig. 2a).
164 In previous clinical trials, PCY identified effective therapies for aggressive haematological malignancies

165 33-35,45,46. To evaluate the use of pharmacoscopy in glioblastoma, we measured *ex vivo* drug responses
166 to first- and second-line glioblastoma chemotherapies (n=3 drugs) in patient samples from two
167 independent patient cohorts: our main prospective cohort (n=27 patients) and a retrospective cohort
168 (n=18 patients, Fig. 2b,c, Extended Data Fig. 3a-c, and Supplementary Table 1). Patient samples were
169 either dissociated on the same day of surgery (prospective cohort), or dissociated after cell recovery
170 from biobanking (retrospective cohort), and directly incubated with drugs for 48 hours. Limiting our
171 analysis to newly diagnosed glioblastoma patients that received 1st-line Temozolomide (TMZ)
172 treatment in the clinic, we found that *ex vivo* TMZ sensitivity of glioblastoma cells significantly stratified
173 patient survival in both cohorts (Fig. 2b,c), recapitulating higher TMZ sensitivities in patients with
174 tumours with *MGMT* promoter methylation (Extended Data Fig. 3c). Despite the limited success of
175 targeted therapies for glioblastoma, we additionally tested an oncology drug library (ONCDs; n=65
176 drugs; Supplementary Table 3) across a subset of our prospective cohort (n=13 patients; Fig. 2d and
177 Extended Data Fig. 3d-f). This also retrieved *ex vivo* drug sensitivities concordant with prior clinical
178 trials in glioblastoma: for example, the RTK inhibitor Regorafenib was among the top ONCD hits and
179 has shown preliminary signs of activity in a randomized phase II clinical trial for recurrent glioblastoma,
180 while the mTORs inhibitors Temsirolimus and Everolimus showed no efficacy *ex vivo* and in clinical
181 trials 47-49 (Extended Data Fig. 3d). When we explored associations between patient *ex vivo* ONCD
182 responses and genetic alterations measured by targeted NGS, the strongest pharmacogenetic
183 association was increased *ex vivo* sensitivity of patients with tumours carrying p53 mutations to the
184 CDK4/6 inhibitor Abemaciclib (Extended Data Fig. 3e). Taken together, our evaluation of standard-of-
185 care chemotherapies and oncology drugs by pharmacoscopy demonstrates the clinical concordance of
186 image-based *ex vivo* drug profiling for glioblastoma.

187 The majority of oncological drugs, however, have limited access to the brain and are designed to target
188 the transformed nature of cancer. Neuroactive drugs (NADs), in contrast, are developed to cross the
189 blood-brain barrier and act upon the nervous system. To find repurposable neuroactive drugs that
190 target the neural stemness and morphological features of glioblastoma, we tested a panel of NADs
191 (n=67 drugs; Supplementary Table 3) across the prospective cohort (n=27 patients) by pharmacoscopy.
192 The NAD library consisted of drugs approved for neurological diseases such as depression,
193 schizophrenia, epilepsy, and Alzheimer's disease. This identified 15 of 67 drugs (22%) with consistent
194 anti-glioblastoma activity across patients (top NADs; PCY-hits; mean PCY score > 0.03; Fig. 2e,f and
195 Extended Data Fig. 3e-g). Remarkably, top NADs effectively reduced fractions of aggressive M1-M3
196 GSC morphologies in patient samples *ex vivo*, reduced Nestin+ cells in patient-derived cultures (PDCs,
197 n=3 lines), and reduced the viability of established glioblastoma cell lines also in the absence of the
198 TME (n=4 lines, Fig. 2e,f). We additionally confirmed dose-response relationships in glioblastoma cell
199 lines (n=9 drugs; Extended Data Fig. 4a,b and Supplementary Fig.S4) and robustness of the PCY score
200 to potential technical factors (e.g. the presence of apoptotic cells after sample dissociation) in two
201 glioblastoma patient samples (n=67 drugs; Extended Data Fig. 4c-e).

202 Among the NADs, the top mean ranking PCY-hit was Vortioxetine, a safe and novel class of
203 antidepressant without known anti-glioblastoma activity (Fig. 2f). Strikingly, Vortioxetine and other
204 top NADs were more potent in patient samples with higher baseline abundance of aggressive M1-M3
205 GSC morphologies, while standard-of-care chemotherapies did not show this association (Fig. 2g,h and
206 Extended Data Fig. 4f). Other clinically attractive NADs included Paroxetine and Fluoxetine, both
207 antidepressants of the selective serotonin reuptake inhibitor (SSRI) class, and Brexpiprazole, an
208 atypical antipsychotic used for the treatment of schizophrenia. Brexpiprazole *ex vivo* response was

209 related to biological sex, with increased drug sensitivities in male patient samples (Fig. 2i and Extended
210 Data Fig. 3g). Sertindole response was highly variable among patient samples, despite its potency in
211 the other evaluated glioblastoma models. This patient variability in *ex vivo* Sertindole response related
212 to FGFR2 copy number loss, representing the most significant pharmacogenetic NAD association (Fig.
213 2j and Extended Data Fig. 3f). Not all top NADs were clinically attractive, considering the historically
214 reported side-effects of the cannabinoid receptor blocker Rimonabant and the antipsychotic Zotepine,
215 yet these could still provide mechanistic insights.

216 Thus, by comprehensively screening across heterogeneous patients and model systems, we identify a
217 set of repurposable neuroactive drugs that effectively target the neural heterogeneity of glioblastoma
218 cells. The consistency of the anti-glioblastoma efficacy of these neuroactive drugs across diverse model
219 systems, even in the absence of the TME and a functioning *in vivo* nervous system, indicates that they
220 target tumour-intrinsic vulnerabilities.

221 **Divergent functional dependencies on neuroactive drug targets**

222 The multitude of neuroactive drugs with anti-glioblastoma activity was unexpected, prompting the
223 question as to whether there could be shared underlying mechanisms. A previous screen of
224 neurochemical compounds in patient-derived stem cell lines found various neurochemical classes
225 represented among their hits³⁰, and the antidepressant Fluoxetine has been reported to target
226 glioblastoma metabolism³². In our *ex vivo* patient drug screens, top NADs represented diverse drug
227 classes without significant enrichment, indicating that canonical mode-of-action did not explain drug
228 efficacy (Fig. 3a). Among our tested serotonin and dopamine pathway modulators, for example, only
229 4 out of 11 antidepressants (36%) and 6 out of 16 antipsychotics (38%) exhibited anti-glioblastoma
230 activity in patient samples (Extended Data Fig. 4g). Such drug classifications, however, simplify the
231 polypharmacological drug-target profiles of neuroactive drugs. The majority of NADs act on multiple
232 primary target genes (PTGs). These include ion channels, GPCRs, and enzymes that modulate
233 neurotransmission in the central nervous system, whose expression remains a largely unexplored
234 dimension of glioblastoma heterogeneity. Dependency on neuroactive PTGs with high lineage
235 specificity and consistent expression across patients could explain the activity of top NADs.

236 We therefore determined the expression of NAD PTGs by scRNA-Seq across the three independent
237 datasets (Fig. 3b,c and Extended Data Fig. 5a,b)^{13,29}. Among PTGs with biochemical NAD-interactions
238 reported in the Drug Targets Commons database (DTC; Fig. 3d)⁵⁰, certain classes of ion channels and
239 GPCRs were enriched in neural lineage cells (e.g. potassium channels, glutamate receptors, and
240 cannabinoid receptors), while other classes showed broader expression patterns (e.g. calcium
241 channels, adrenergic receptors; Extended Data Fig. 5a). To characterize PTG expression across cell
242 types and patients, we defined neural- and patient-specificity scores (NS and PS; Fig. 3b, Extended Data
243 Fig. 5b and Methods). For detected genes, a higher NS indicates relative enrichment in neural lineage
244 cells (range -1 to 1) and a higher PS (range 0 to 1) indicates more patient-specific expression, while
245 both scores will be close to zero for low-abundance genes (Extended Data Fig. 5b and Supplementary
246 Table 4). Ion channels and receptors with high neural-specificity included the calcium signaling
247 modulator SIGMAR1, glutamatergic AMPA receptor subunit GRIA2, and cannabinoid receptor CNR1
248 (Fig. 3c). Patient-specificity for neurological receptors SIGMAR1 and CNR1 were on average 1.7 to 3-
249 fold lower than for oncogenic RTKs EGFR and PDGFRA, despite similar detection levels. Thus, we find
250 abundant and consistent pan-patient expression of neuroactive drug targets on glioblastoma cells.

251 We next tested dependencies on these NAD PTGs by performing a reverse genetic screen in LN-229
252 glioblastoma cells (n=59 genes; Extended Data Fig. 5c,d and Supplementary Table 5), confirmed to
253 have comparable PTG expression and NAD sensitivities to patient samples (Fig. 2f and Extended Data
254 Fig. 5c). Knockdown of 9 PTGs significantly decreased cell viability (Extended Data Fig. 5c,d), of which
255 lower expression levels of DRD1, DRD2, HTR3A, and TACR1 were also associated with better patient
256 survival in The Cancer Genome Atlas (TCGA) glioblastoma cohort (4 out of 9; Extended Data Fig. 5e).
257 However, these PTGs showing genetic dependencies were predominantly targeted by NADs that
258 showed no anti-glioblastoma activity by PCY. For example, only 5 of the 16 NADs interacting with DRD1
259 were PCY-hits, and only 1 out of 11 NADs interacting with HTR3A was a PCY-hit (Fig. 3e). Therefore,
260 while presenting possible neural vulnerabilities, these genetic PTG dependencies did not explain the
261 anti-glioblastoma activity of our top neuroactive drug hits.

262 **Anti-glioblastoma activity explained by drug-target convergence**

263 Despite their chemical and primary target diversity, our top NADs may still converge upon common
264 downstream signaling pathways. To test this, we developed an interpretable machine learning
265 approach that searches for “convergence of secondary drug targets analyzed by regularized
266 regression” (COSTAR). COSTAR is designed to identify the minimal drug-target connectivity signature
267 predictive of efficacy.

268 We expanded the drug-target search space to include PTGs with any bioactivity annotated by DTC,
269 termed extended PTGs (ePTGs). Secondary target genes (STGs) downstream of ePTGs were
270 subsequently mapped by high-confidence protein-protein interactions annotated in the STRING
271 database (Fig. 3d). This resulted in a drug-target connectivity map, or “COSTAR constellation”, of all
272 DTC-annotated drugs in our NAD and ONCD libraries (n=127 of 132 tested drugs) with 975 extended
273 primary targets, 10,573 secondary targets, and 114,517 network edges (Fig. 3f). Using logistic LASSO
274 regression, we trained a multi-linear model that identifies the minimal set of STGs that maximally
275 discriminates PCY-hit drugs (n=30; top-15 drugs from both NADs and ONCDs) from PCY-negative drugs
276 (n=97; all other tested drugs) in a cross-validation setting (Fig. 3g,h Extended Data Fig. 6a, and
277 Methods). Thereby, COSTAR converged upon the minimal connectivity signature that was predictive
278 of anti-glioblastoma drug efficacy (Fig. 3g and Extended Data Fig. 6a,b). Encouragingly, COSTAR
279 identified a signature that classified the 127 drugs in our training data with 92.1% accuracy, correctly
280 predicting 20/30 PCY-hits and 96/97 negative drugs (Fig. 3h).

281 The COSTAR connectivity signature linked PCY-hit NADs to the secondary target BTG2, predominantly
282 through JUN and TP53 ePTGs (Fig. 3i,j and Extended Data Fig. 6b). BTG2 and TP53 are both tumour
283 suppressors that control cell cycle and differentiation, while JUN is a member of the AP-1 transcription
284 factor (TF) family that, in a neural context, regulates gene expression and apoptosis in response to
285 stimuli such as neural activity or insult^{36,38}. Conversely, the majority of PCY-hit ONCDs were connected
286 to the secondary target AP1S2, a protein involved in clathrin coat assembly, through the cyclin G-
287 associated kinase GAK (Fig. 3i,j and Extended Data Fig. 6b). A subset of PCY-hit ONCDs were also linked
288 to BTG2 through cyclins CCND1 and CCNH, while a subset of PCY-hit NADs were linked to AP1S2
289 through RAB9A, a member of the RAS oncogene family (Fig. 3j). Taken together, this reveals pathway
290 convergence on AP-1 transcription factors and cell cycle regulation as a unique signature predictive of
291 anti-glioblastoma activity of neuroactive drugs.

292 COSTAR can compute the hit probability (COSTAR score) of any annotated compound, by matching its
293 drug target profile to the learned connectivity signature. To evaluate the predictive power of the
294 COSTAR signature and find additional neuroactive drug candidates with anti-glioblastoma activity, we
295 performed a large-scale *in silico* drug screen of 1,120,823 DTC-annotated compounds, and
296 experimentally validated 48 previously untested drugs among the top (COSTAR-hits, n=23) and bottom
297 (COSTAR-negs, n=25) scoring compounds (Fig. 3k-n). All COSTAR-hits were linked to the secondary
298 target BTG2 primarily through JUN (Fig. 3l), while none of the COSTAR-negs had annotated connections
299 to BTG2 (Extended Data Fig. 6c). We experimentally tested all 48 drugs across four GBM patient
300 samples *ex vivo* (P030, P032, P034, P042), and observed excellent agreement between COSTAR
301 predictions and *ex vivo* results (mean AUC=0.94, Fig. 3m,n). The COSTAR-hits again represented diverse
302 drug classes, including the antipsychotic Trifluoperazine, antiparkinsonian Ethopropazine,
303 antidepressant Sertraline, and bronchodilator Salmeterol (Fig. 3m). These results substantiate AP-1
304 transcription factor and cell cycle signaling pathway convergence as an actionable signature of
305 neuroactive drugs with *ex vivo* anti-glioblastoma activity.

306 **From neural activity-dependent signaling to tumour suppression**

307 The convergent COSTAR signature suggested a common gene regulatory network (GRN) underlying
308 the anti-glioblastoma activity of top NADs. We determined the transcriptional response of LN-229 cells
309 at 6 and 22 hours to PCY-hit NADs (n=11) spanning diverse drug classes, PCY-hit ONCDs (n=7), and
310 negative controls (NEG; n=2 PCY-neg NADs and DMSO; Fig. 4a-d, Extended Data Fig. 7a,b, and
311 Supplementary Table 3). In remarkable alignment with COSTAR, differential gene expression analysis
312 upon PCY-hit NAD treatment (PCY-hit NADs vs NEG) revealed a common transcriptional response
313 involving AP-1 and BTG family members (Fig. 4b,d and Extended Data Fig. 7e). This AP-1/BTG
314 upregulation was observed even for Vortioxetine and Brexpiprazole, both lacking DTC-annotations at
315 the time of analysis and thus not contributing to the COSTAR training (Fig. 4d).

316 In response to PCY-hit NAD treatment, we observed rapid and sustained upregulation of several AP-1
317 TFs, such as the canonical immediate-early genes (IEGs) JUN and FOS, with well-known roles in
318 mediating neural activity and apoptosis, and stress-induced AP-1 family members ATF3 and ATF4,
319 where ATF3 represented the most significantly upregulated gene across both time-points. The
320 presence of other upregulated IEGs including NR4A1, EGR1, and ARC, and pathway enrichment in
321 MAPK signaling, strengthened this surprising involvement of neural-activity dependent signaling in
322 glioblastoma (Fig. 4b and Extended Data Fig. 7d). BTG1, a close homologue of BTG2 identified by
323 COSTAR, was also among the top 20 most significant genes (Fig. 4b,d and Extended Data Fig. 7c) while
324 BTG2 was strongly induced in response to select drugs, including Vortioxetine and Paroxetine (Fig. 4d).
325 Induction of AP-1 factors was primarily NAD-specific, where ONCD treatment did not elicit a similar
326 global transcriptional response (Fig. 4d and Extended Data Fig. 7c). Additionally, over half of AP-1
327 factors showed no transcriptional upregulation (Extended Data Fig. 7e). For example, ATF2 expression
328 remained unchanged, despite it being one of the key dimerization partners of JUN⁵¹, as did FOSL1,
329 previously implicated in response to irradiation in glioblastoma⁵².

330 To find the transcriptional regulators mediating the response to PCY-hit NADs, we performed
331 transcription factor binding-site (TFBS) enrichment analysis of the upregulated genes (Fig. 4c and
332 Extended Data Fig. 7f). The most significantly enriched TF motifs at 6 hours were AP-1, ATF, and CREB
333 a calcium-activated regulator of AP-1 transcription^{36,53,54}. Over 60% of upregulated genes were
334 annotated targets of AP-1/ATF/CREB TFs (n=434 out of 719 genes; Fig. 4b,c). Though NAD-induced AP-

335 1 expression was sustained across both time-points, TFBS enrichment analysis of upregulated genes at
336 the later 22 hour time-point identified forkhead TF family members (e.g. FOXO1, FOXO3, FOXD3, HFH1)
337 known to regulate long-term cell differentiation as a gene regulatory module succeeding AP-1⁵⁵⁻⁵⁷
338 (Extended Data Fig. 7f).

339 A rapid Ca^{2+} influx and calcium-dependent signaling typically precede IEG expression and AP-1
340 activation in neural lineage cells^{36,54,58,59}. We therefore measured both NAD-mediated extracellular
341 calcium influx as well as endoplasmic reticulum (ER) calcium store release in LN-229 cells by high-
342 throughput FLIPR calcium assays (n=17-18 drugs; Supplementary Table 3). We observed an immediate
343 and strong extracellular Ca^{2+} influx in response to 5 out of 8 of our PCY-hit NADs, while none led to ER
344 Ca^{2+} store release (Fig. 4e,f and Extended Data Fig. 8a). The strongest Ca^{2+} influxes were triggered by
345 antidepressants Vortioxetine, Paroxetine and Fluoxetine (Fig. 4e,f). In contrast, the PCY-neg NADs
346 (n=6) including antidepressants Citalopram and Mirtazapine, and PCY-hit ONCDs Elesclomol and TMZ
347 did not trigger calcium influxes (Fig. 4e,f). These results demonstrate that for the majority of our top
348 NADs a rapid drug-induced Ca^{2+} influx precedes IEG upregulation and subsequent anti-glioblastoma
349 activity.

350 Downstream of AP-1, we evaluated whether BTG tumour suppressors could be direct effectors of the
351 AP-1 gene regulatory network. To delineate regulators of BTG family genes, we leveraged genome-
352 wide mapping of transcriptional regulatory networks by PathwayNet, a tissue-aware data integration
353 approach that utilizes 690 ChIP-Seq datasets from the ENCODE project⁶⁰. The most enriched
354 transcriptional regulators of BTG1/2 were members of the AP-1 TF network (e.g. JUN, ATF3, FOS),
355 implying BTG tumour suppressor gene expression is directly mediated by AP-1 factors (Fig. 4g).
356 Congruence between NAD-induced AP-1/BTG activation and its anti-glioblastoma activity would
357 strengthen a causal role for this gene regulatory network. Indeed, drug-induced expression of this
358 COSTAR signature was strongly correlated with a drug's *ex vivo* anti-glioblastoma efficacy in patient
359 samples ($R=0.72$, $P=1.4\text{e-}05$; Fig. 4h). We additionally performed BTG1/2 and JUN loss-of-function
360 experiments by siRNA-mediated knockdown in LN-229 cells. Quantitative RT-PCR after 72 hours of
361 gene silencing confirmed reduced expression of BTG1/2 and JUN and revealed interdependent
362 regulatory interactions governing their expression (Extended Data Fig. 8b). Particularly BTG1 inhibition
363 accelerated cell growth measured by live-cell imaging across 7 days (Fig. 4i, Supplementary Video 1),
364 and increased the total number of cells measured by IF after 3 days (Fig. 4j). Furthermore, after two
365 days of siRNA-mediated gene silencing and one subsequent day of top-NAD Vortioxetine treatment,
366 BTG1 inhibition attenuated Vortioxetine's anti-glioblastoma efficacy (Fig. 4j).

367 Together, these results propose a model in which neuroactive drugs that mediate anti-glioblastoma
368 activity trigger a rapid calcium influx, IEG and AP-1 transcription factor activation, and engagement of
369 an antiproliferative program that includes BTG-driven tumour suppression (Fig. 4k).

370 **AP-1 orchestrated anti-glioblastoma activity of neuro-active drugs**

371 To further delineate the molecular dynamics of this discovered anti-glioblastoma program, we
372 performed deep transcriptomic, proteomic, and phosphoproteomic profiling at 3-6 time-points in
373 Vortioxetine treated LN-229 cells (Fig. 5a and Extended Data Fig. 8c-h). NH-2 terminal JUN
374 phosphorylation occurring within 30 minutes to 3 hours after Vortioxetine treatment was central to
375 several differentially phosphorylated pathways, including the stress response pathway (e.g. HSPB1,
376 HSP90B1, RIPK2), mRNA processing (HRNPA2B1, NONO), and clathrin mediated endocytosis (DNM2,

377 M6PR) (Extended Data Fig. 8h). Consistent with this observation, a number of AP-1 TFs and associated
378 pathway annotations were upregulated at both the RNA and protein level across all timepoints. This
379 included induction of FOS, JUNB, ATF4 already at 3 hours, as well as the ER stress response, DNA
380 damage, and MAPK signaling pathways (Fig. 5a and Extended Data Fig. 8e). We also observed
381 upregulation of BTG1/2 and negative cell cycle regulators CDKN1B and PPM1B (Fig. 5a and Extended
382 Data Fig. 8g). Conversely, cytoskeletal components and oncogenic RTKs associated with the malignant
383 phenotype of glioblastoma, including EGFR, NTRK2, and PDGFRA, were downregulated upon
384 Vortioxetine treatment (Fig. 5a).

385 Next, we determined the cell type specificity of AP-1 induction at the single-cell gene and protein level
386 in compositionally heterogeneous glioblastoma patient samples. We performed scRNA-Seq on
387 dissociated cells from patient P024 following 3 hours of *ex vivo* Vortioxetine treatment (Fig. 5b,c and
388 Supplementary Fig. S5). Analysis of 1736 single-cell transcriptomes revealed 4 main clusters intermixed
389 with Vortioxetine-treated and DMSO-control cells (Supplementary Fig. S5a). Clusters 1 to 3
390 represented glioblastoma cells expressing Nestin, Ki67, CCND2, and VEGFA, with Cluster 1 showing the
391 most aggressive signature, while Cluster 4 represented immune cells (Fig. 5b and Supplementary Fig.
392 S5b). Analyzing the transcriptional response to Vortioxetine treatment confirmed glioblastoma-
393 specific induction of AP-1 factors (Fig. 5c). For example, JUNB, JUND, and AP-1 effector gene ARC were
394 upregulated in Cluster 1, while ATF4 and MAF were induced in all three glioblastoma clusters, with a
395 more pronounced induction of ATF4 in Clusters 2 and 3 (Fig. 5c). Immunofluorescence against AP-1
396 pathway members in three additional glioblastoma patient samples (P039, P040, P042) following
397 Vortioxetine treatment demonstrated the patient-, time-point, and concentration-dependent AP-1
398 induction in Nestin+ glioblastoma cells (Fig. 5d,e). The strongest induction was seen in patient sample
399 P040 that had high abundance of complex GSC morphotypes (M1-M3), which were reduced upon
400 Vortioxetine treatment (Fig. 5d,e). HOMER1 and ATF4 were induced in all three patient samples, while
401 FOS and JUND exhibited more patient variability (Fig. 5d). Together, this single-cell analysis highlights
402 the added dimension of cellular and patient complexity, yet supports AP-1 induction to be a key neural
403 vulnerability targeted by PCY-hit NADs.

404 **Preclinical translation of neuroactive drugs**

405 To evaluate the *in vivo* anti-glioblastoma efficacy of our top neuroactive drugs, we tested PCY-hit NADs
406 spanning different drug classes in orthotopic human-xenograft glioblastoma mouse models (n=4 or 5
407 drugs; Fig. 5f and Extended Data Fig. 9a-c). We accounted for the variability observed in different
408 orthotopic models by evaluating two different models (LN-229, ZH-161) across three independent
409 trials (Trials I-III) of *in vivo* drug-testing (Fig. 5f and Extended Data Fig. 9a). We included Temozolomide
410 (TMZ) as a positive control, and as negative controls we tested PCY-neg NAD Paliperidone and a vehicle
411 control. Since all tested NADs have confirmed BBB-penetrance and are approved for other neurological
412 disorders, doses were determined *a priori* based on literature and clinical evidence⁶¹⁻⁶⁶. Vortioxetine
413 was consistently the most effective drug *in vivo* (in 3/3 trials), showing significant survival benefit
414 comparable to the chemotherapeutic TMZ despite being tested at considerably lower dosage (Fig. 5f).
415 Brexpiprazole was the 2nd-best PCY-hit NAD (2/3 trials), while other NADs showed a significant survival
416 benefit in 1 out of 3 trials (Extended Data Fig. 9a). Consistent with PCY, the negative control
417 Paliperidone did not show a significant survival benefit (2/2 trials) (Fig. 5f). In the most aggressive
418 orthotopic model with the shortest median survival of the vehicle control, Vortioxetine and TMZ were
419 the only effective drugs (Trial II: ZH-161; Fig. 5f, right), whereas for the least aggressive model, all 5

420 tested PCY-hit NADs significantly prolonged survival (Trial III: ZH-161; Extended Data Fig. 9a). MRI
421 images of ZH-161 transplanted mice (Trial II) after 15 days of Vortioxetine, Apomorphine, and
422 Temozolomide treatment showed marked reduction of tumour size (Extended Data Fig. 9b,c). Finally,
423 we confirmed that the potent efficacy of Vortioxetine is not common to serotonin modulating drugs
424 by directly comparing Vortioxetine to the PCY-neg antidepressant Citalopram at the same dose
425 (10mg/kg) in an additional *in vivo* trial (Trial IV; Extended Data Fig. 9d-h). Unlike Citalopram,
426 Vortioxetine again provided a robust survival benefit (Extended Data Fig. 9d), and reduced tumour
427 burden (Extended Data Fig. 9e,f) and Ki67 levels (Extended Data Fig. 9g,h).

428 The striking consistency of our patient *ex vivo* and mouse *in vivo* results demonstrates strong
429 translatability of PCY-based NAD discovery and confirms Vortioxetine as the most promising clinical
430 candidate. Vortioxetine furthermore displayed multifaceted anti-tumour effects *in vitro*, reducing
431 glioblastoma invasiveness (Extended Data Fig. 10a,b), long-term survival (Extended Data Fig. 10c), and
432 growth (Extended Data Fig. 10d) across 2D and 3D glioblastoma cell lines (2D cultures: LN-229 and, LN-
433 308; 3D spheroids: ZH-161 and ZH-562). Lastly, we tested the combination of Vortioxetine with either
434 first- or second-line standard of care drugs for glioblastoma, TMZ and Lomustine (CCNU) *in vivo* (Trial
435 V: ZH-161; Fig. 5g). All three single agents significantly prolonged survival, with Vortioxetine results
436 now confirmed in 5 out of 5 *in vivo* trials (Fig. 5f,g and Extended Data Fig. 9a,d). Remarkably, compared
437 to TMZ or CCNU single agents, the combination of Vortioxetine with either drug provided a further
438 median survival increase of 20-30% compared to the single agents (Fig. 5g).

439 This strong preclinical evidence of the anti-glioblastoma efficacy of the safe antidepressant
440 Vortioxetine urges for clinical investigation of Vortioxetine in patients. Given the complementary
441 mechanisms of neuroactive drugs and approved chemotherapies, their successful combination could
442 facilitate the rapid adoption of NADs into clinical routine for this dire disease.

443 Discussion

444 Here we present the first therapeutic single-cell map across glioblastoma patient samples that reveals
445 the morphological and neural molecular heterogeneity of glioblastoma. Glioblastoma stem cells adopt
446 distinct cell morphological states that reflect *in situ* tumor organization and encodes clinical prognostic
447 value. While the presence of tumour microtubes has been associated with tumour grade ², we now
448 show that, even within glioblastoma, complex GSC morphologies are prognostic of shorter
449 progression-free survival. Critical to this discovery is the image-based evaluation of minimally-cultured
450 surgical patient samples, which empowers scalable drug screening (pharmacoscropy; PCY) across a
451 genetically and clinically heterogeneous patient cohort.

452 PCY-based *ex vivo* drug sensitivities predicted clinical response to chemotherapy and enabled the
453 discovery of repurposable neuroactive drugs that target the spectrum of glioblastoma cells across 27
454 patients and various model systems, greatly expanding upon prior literature ⁶⁷⁻⁶⁹. Response to the
455 antidepressant Vortioxetine, the most promising preclinical neuroactive candidate, was particularly
456 aligned with aggressive GSC morphotypes. These efforts expand the nascent community of
457 glioblastoma research focusing on the investigation of patient-derived tumour explants that facilitate
458 translational investigation of complex tumour behavior, including the development of genetically
459 characterized patient cultures, organoid biobanks, and regionally annotated samples ^{30,41,70-74}. As
460 pharmacoscropy allows patient-tailored evaluation of tumour-extrinsic responses to immuno- and cell-

461 based therapies^{46,75-77}, further development may enable investigation of additional complex tumour
462 physiology, including the neuron-glioma interface.

463 Our systematic analysis of the neuroactive drug mechanisms, drug target expression, and functional
464 genetic dependencies indicated a diverse set of possible neural vulnerabilities of glioblastoma. Despite
465 this diversity, our interpretable machine learning approach COSTAR identified a simple underlying
466 drug-target connectivity signature predictive of anti-glioblastoma efficacy. COSTAR effectively applies
467 Occam's razor to the collective biochemical drug-protein-protein interaction network, offering a novel
468 conceptual framework applicable to all fields of drug discovery. Through COSTAR, we uncovered a
469 convergence of AP-1 transcription factor activity and cell cycle regulation on BTG-mediated tumour
470 suppression. AP-1 and BTG upregulation was a defining feature of the response to neuroactive drugs
471 with anti-glioblastoma activity, where a growth-suppressing role for BTG1 was confirmed by functional
472 genetics. While the key pharmacological properties leading to AP-1 upregulation remain to be
473 identified, and additional mechanisms may still contribute to the integrated effect of each individual
474 drug, our results reveal diverse neuro-active drugs converging on this novel and potent glioblastoma-
475 suppressing pathway.

476 Previous studies have demonstrated the role of neuronal input in regulating glioblastoma growth at
477 the brain-tumour interface, highlighting the influence of the tumour microenvironment in modulating
478 the neural behavior of the tumour^{3,5,6,9}. Here, we uncover a *cell-intrinsic* AP-1 mediated neural
479 vulnerability in glioblastoma, offering a therapeutic window that enables direct targeting of the
480 tumour. In cancers, AP-1 factors were originally discovered as oncogenes, though an increasing
481 number of studies report context-dependent anti-oncogenic functions of AP-1 factors⁷⁸. In contrast,
482 for neural lineage cells such as neurons, immediate early gene expression of AP-1 factors is typically a
483 hallmark of neural activity or insult^{36,38}. We now find that neuroactive drugs can target this activity-
484 dependent neural signaling, triggering a strong transcriptional response that, in the context of
485 glioblastoma cells, leads to rapid cell death. Treating glioblastoma tailored to the cellular history and
486 lineage of the cancer rather than its unstably transformed state may represent new hope for this
487 devastating disease.

488 Data Availability

489 All transcriptomics data generated in this study including single-cell RNA-Seq, bulk RNA-Seq, and
490 DRUG-Seq datasets have been deposited in the public repository NCBI Gene Expression Omnibus (GEO);
491 <https://www.ncbi.nlm.nih.gov/geo/>) under the following accession numbers: [GSE214965](#) (DRUG-Seq;
492 multiplexed RNA-Seq of 20 drugs, 2 time points; Reviewer token: [uxglimouvdsszwh](#)), [GSE214966](#)
493 (scRNA-Seq; 4 glioblastoma patients at baseline; Reviewer token: [szezsuewrhcrpcl](#)), [GSE214967](#)
494 (scRNA-Seq; glioblastoma patient sample after Vortioxetine vs DMSO treatment; Reviewer token:
495 [kdaligmwptuvlin](#)), and [GSE214968](#) (RNA-Seq; Vortioxetine time course; Reviewer token:
496 [yhadscswlxwnzkv](#)). Previously published single-cell RNA-Seq datasets analyzed in this study are
497 publicly available at GEO under accession numbers [GSE117891](#) and [GSE131928](#). Proteomics and
498 phosphoproteomics data can be accessed via Panorama (<https://panoramaweb.org/GlioB.url>;
499 Username: [panorama+reviewer147@proteinms.net](#), Password: [TUqPvoSy](#)). DIA and phosphopeptide
500 enrichment datasets are available from MASSIVE (<ftp://massive.ucsd.edu/MSV000090357/>;
501 Username: [MSV000090357](#), Password: [wlab@2022](#)). Drug-target annotations and protein-protein
502 interaction data were retrieved from the following publicly available databases: Drug Target Commons

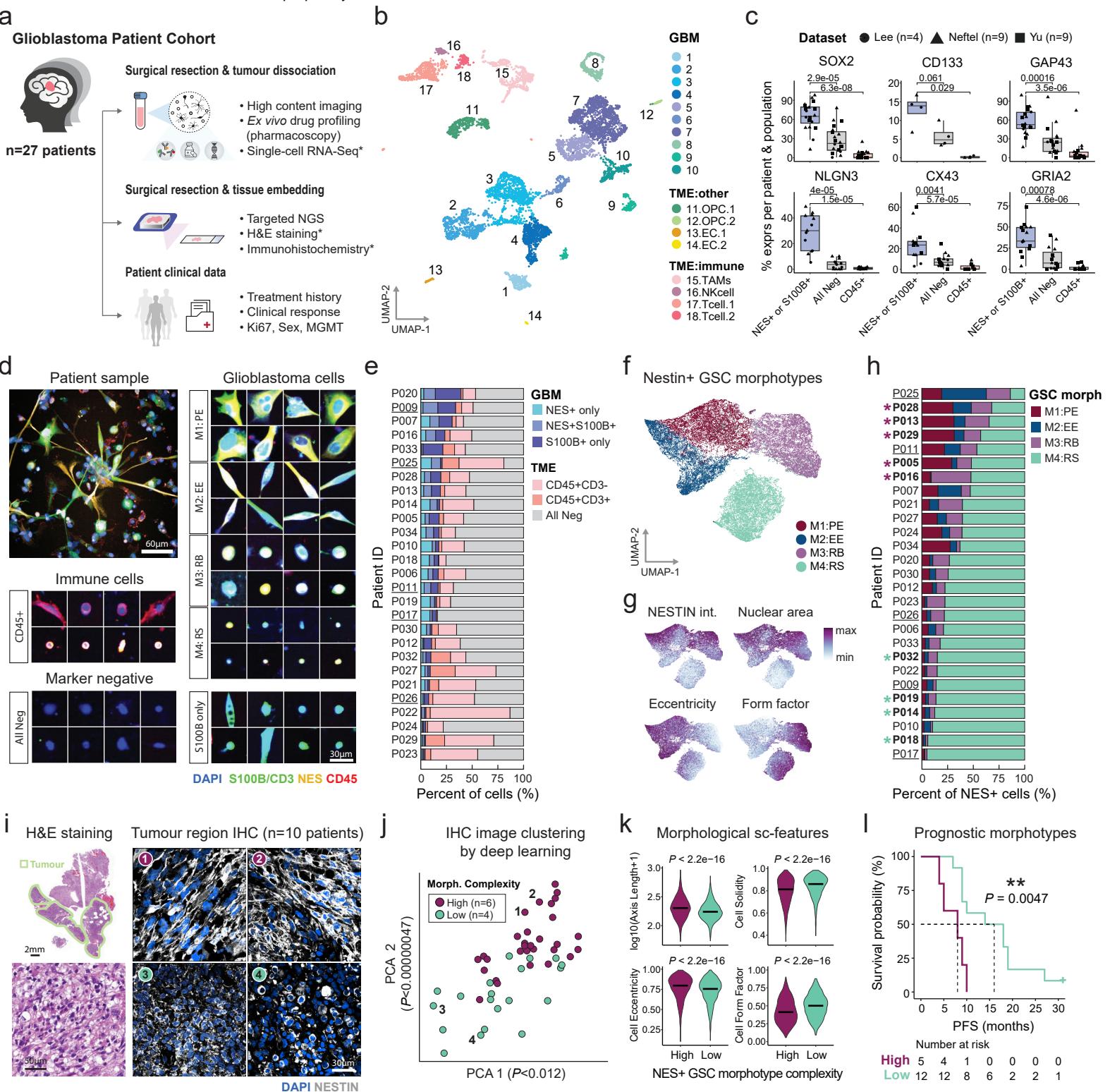
503 (DTC; <https://drugtargetcommons.fimm.fi/>) and STRING (<https://string-db.org/>). Other publicly
504 available databases used in this study include DAVID (<https://david.ncifcrf.gov/>), KEGG
505 (<https://www.genome.jp/kegg/>), Gene Ontology (<http://geneontology.org/>), and PathwayNet
506 (<http://pathwaynet.princeton.edu/>). Data provided via Supplementary Tables include *ex vivo* drug
507 response of glioblastoma cells (pharmacoscropy scores; Supplementary Table 3), transcriptome-wide
508 neural- and patient-specificity scores derived from three scRNA-Seq datasets (Supplementary Table 4),
509 and *in silico* COSTAR drug screening results across 1,120,823 compounds (Supplementary Table 6).

510 **Code Availability**

511 Code for de-multiplexing of DRUG-Seq data can be [found on GitHub](#). COSTAR code and example data
512 is available at: <https://www.snijderlab.org/COSTAR>. Additional code is available on reasonable
513 request.

514 **Acknowledgements**

515 We thank the patients and their families for making this study possible. We thank core facilities at ETH
516 Zurich and University of Zurich, including the Functional Genomics Center Zurich (FGCZ), the Flow
517 Cytometry Core Facility (EPIC, FCCF), ScopeM, and central informatics services (ID). This project has
518 received funding from the European Research Council (ERC) under the European Union's Horizon 2020
519 research and innovation programme (Grant agreement No. 803063-SCIPER; BS), and from the
520 Personalized Health and Related Technologies (PHRT) Strategic Focus Area of the ETH Domain (Project
521 #2021-566; BS). We further acknowledge funding from the Swiss National Science Foundation (grant
522 no. 310030_204972, MAH; 310030_185155, MW), and financial support from the Department of
523 Biology as well as the Institute of Molecular Systems Biology of the ETH Zurich. We thank the research
524 and administrative staff who helped us throughout the study, including Yasmin Festl and Silas Krämer,
525 and members of the Snijder lab for discussions.

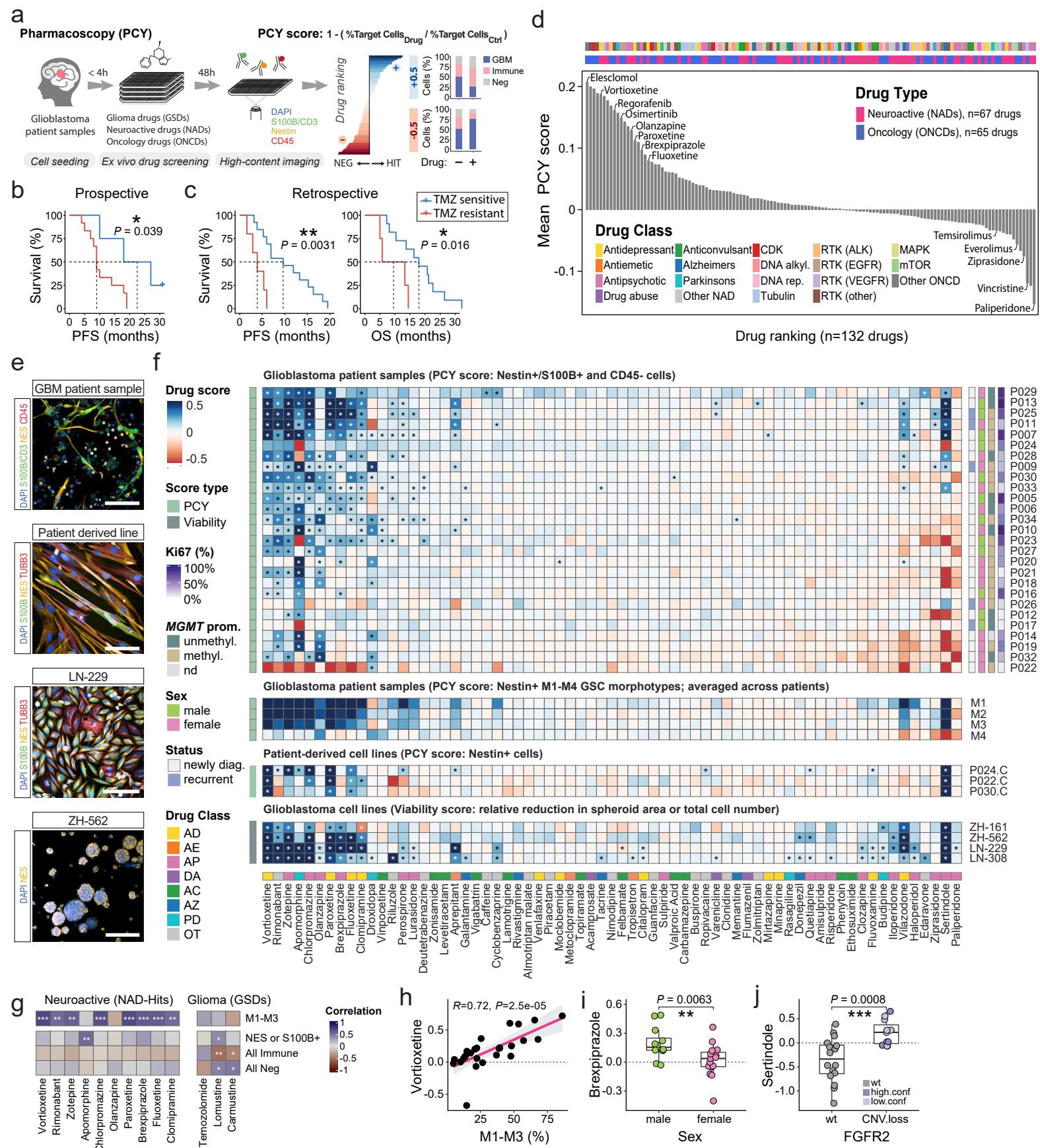


526 Figure Legends

527 **Fig. 1: Neural intratumour heterogeneity across glioblastoma patients relates to** 528 **disease prognosis**

529 **a**, Prospective glioblastoma patient cohort (n=27 patients) and associated experiments. Asterisks (*)
530 indicate assays performed with a subset of patients. **b**, UMAP projection of 7684 single-cell
531 transcriptomes from four glioblastoma patient samples (P007, P011, P012, P013) colored by cluster-id
532 (see methods and *Supplementary Fig.S1*). TME, tumour microenvironment; OPC, oligodendrocyte
533 precursor cells; EC, endothelial cell; TAM, tumour-associated macrophage; NK, natural killer cell. **c**,
534 Percent of cells expressing key marker genes (y-axis) per subpopulation (x-axis) across 22 glioblastoma
535 patient samples (data points). Data from 3 scRNA-Seq datasets (data point shape; Lee *et al.*, this study;
536 n=4 patients; Neftel *et al.*, n=9 patients; Yu *et al.*, n=9 patients) (see also *Extended Data Fig. 1g*). P-
537 values calculated from a two-sided Wilcoxon rank sum test. Boxplots show 25th–75th percentiles with
538 a line at the median; whiskers extend to 1.5 times the interquartile range. **d**, Compositional and
539 morphological diversity of cells from dissociated glioblastoma patient samples captured by high-
540 content *ex vivo* imaging. Glioblastoma ([NES+ or S100B+] and CD45-), immune (CD45+ and NES- and
541 S100B-), and marker negative (NES- and S100B- and CD45-) cells are shown, as well as Nestin+
542 glioblastoma stem cell (GSC) morphotypes (M1:PE, polygonal cell with extensions; M2:EE, elongated
543 cell with extensions; M3:RB, round big cells; M4:RS, round small cells). **e**, Cellular composition across
544 the prospective glioblastoma cohort (n=27 patients). **f-g**, UMAP projection of the morphological CNN
545 feature space of 84,180 Nestin+ GSCs (up to n=1000 cells per morphotype and patient; n=27 patients).
546 Colored by **f**, assigned Nestin+ GSC morphotype (M1-M4); **g**, local median of selected single-cell
547 features. Nestin Int.; Nestin expression measured by immunofluorescence. **h**, Nestin+ GSC
548 morphotype composition across the prospective glioblastoma cohort (n=27 patients). Asterisks (*)
549 indicate samples that were also profiled by immunohistochemistry (IHC) of patient-matched tissue
550 sections. Red and green * indicate patients with high or low GSC morphotype complexity, respectively.
551 **e,h**, Underlines indicate recurrent glioblastoma patient samples. **i**, Example images of glioblastoma
552 patient tissue sections stained by H&E and IHC (DAPI, Nestin). H&E stained tissue section of patient
553 P016 with tumour regions marked in green (top left) and zoom in (bottom left); Example IHC staining
554 of tumour regions from patients with high *ex vivo* GSC morphotype complexity (top middle and right;
555 1, P016; 2, P040) and low *ex vivo* GSC morphotype complexity (bottom middle and right; 3, P014; 4,
556 P019). **j**, Principal component analysis (PCA) of unsupervised deep learning-derived features for 50
557 multicellular IHC images (n=5 images/patient; n=10 patients). P-values indicate the significance of the
558 differences in the corresponding PCs between images from patients with high (n=30 images; red dots)
559 and low (n=20 images; green dots) *ex vivo* GSC morphotype complexity by Wilcoxon rank-sum test.
560 Labeled numbers correspond to patient images in *Fig. 1i*. **k**, Violin plots comparing *in situ*
561 morphological single-cell features (sc-features) of Nestin+ cells (n=400 randomly sampled
562 cells/patient) between high (n=6 patients) and low (n=4 patients) morphotype complexity groups. Line
563 denotes median and P-values based on Wilcoxon rank test. **l**, Kaplan-Meier curves of progression-free
564 survival (PFS) in newly diagnosed glioblastoma patients (n=17 patients) stratified by M1-M3
565 morphotype abundance (high, low) within Nestin+ GSCs. Survival curves are compared using the log-
566 rank (Mantel-Cox) test. Tick mark indicates ongoing response.

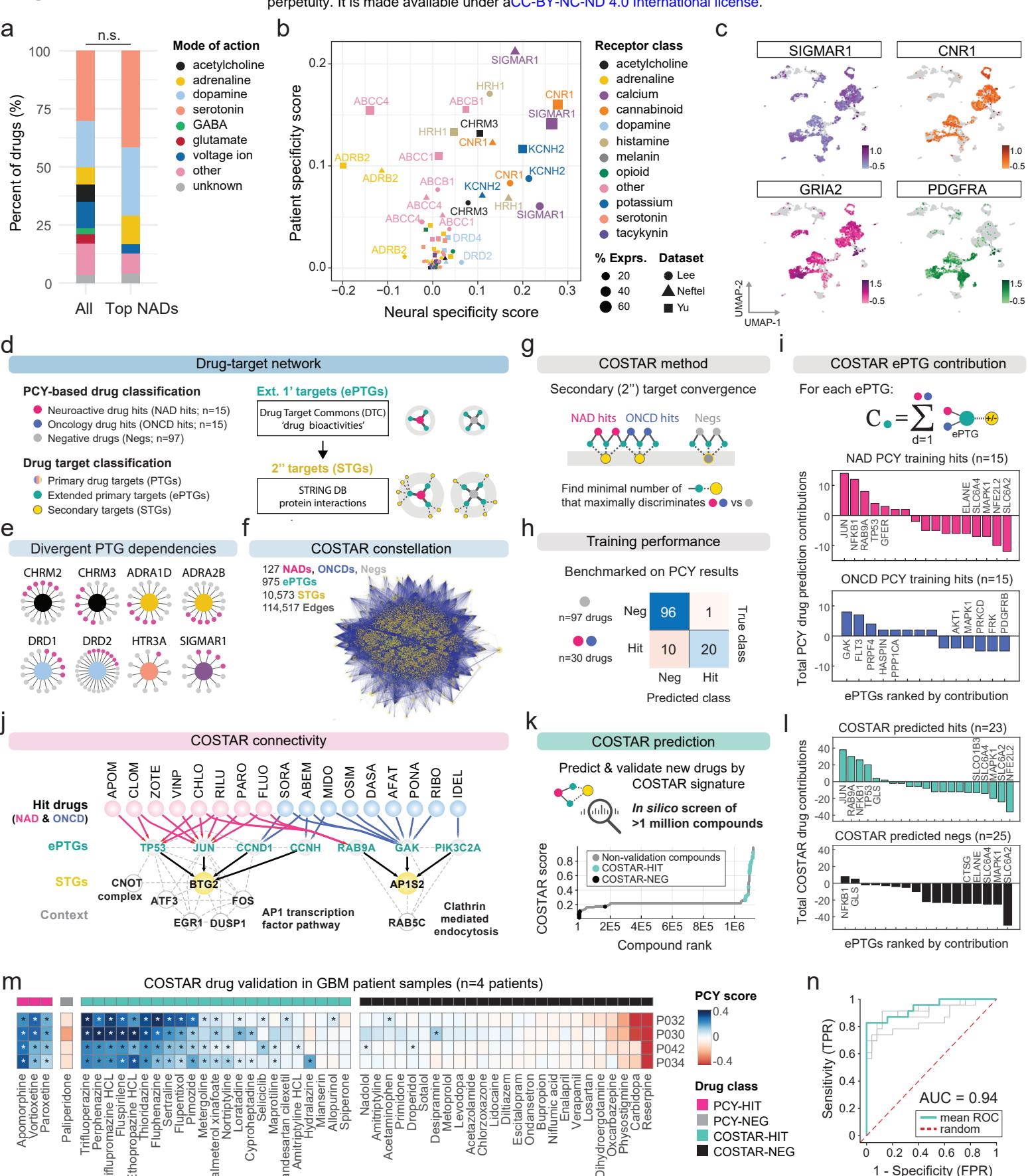
567



568 **Fig. 2: Image-based single-cell drug profiling across glioblastoma patient samples and**
569 **model systems identifies repurposable neuroactive drugs**

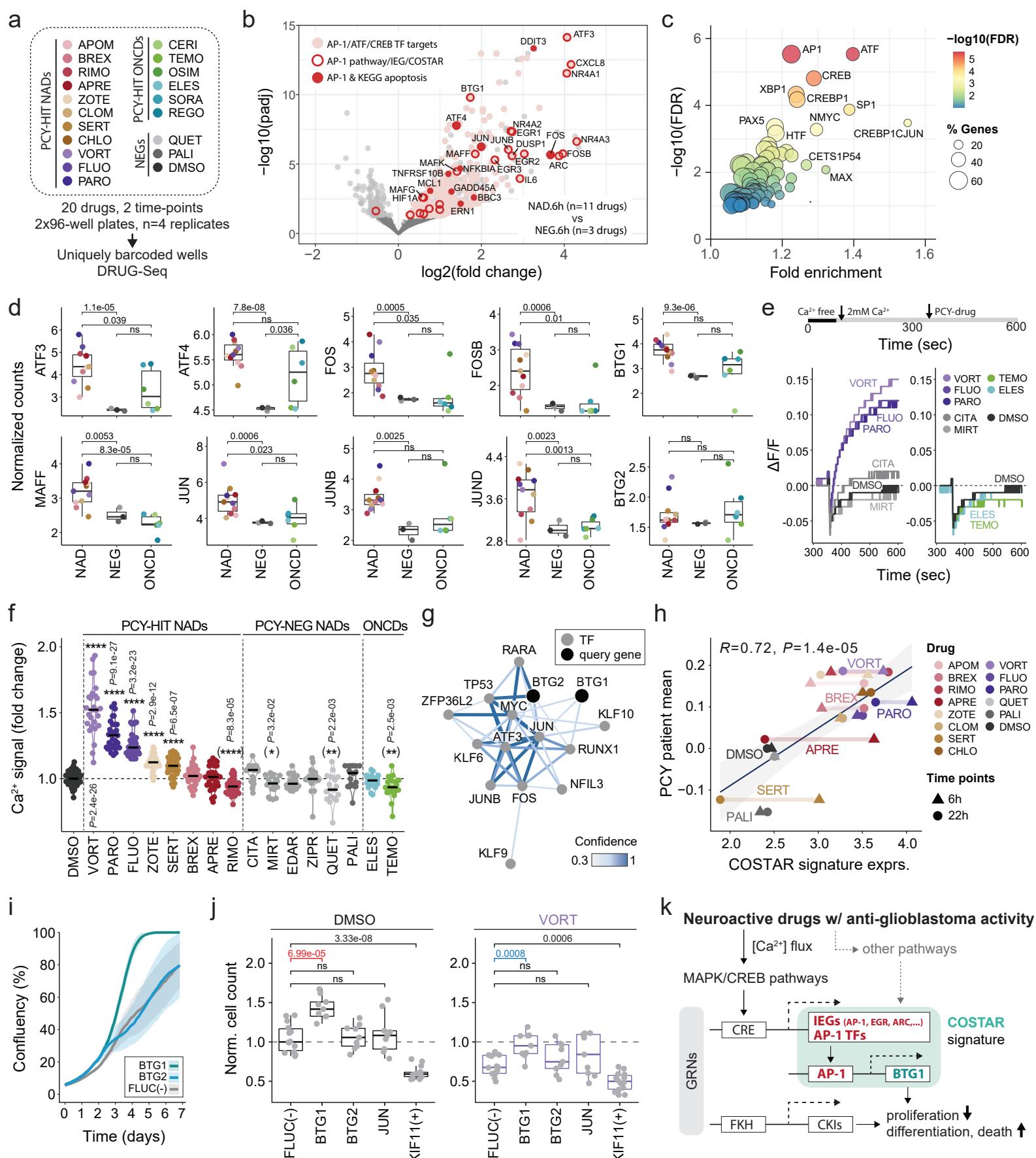
570 **a**, Workflow schematic showing image-based *ex vivo* drug screening (pharmacoscropy; PCY) of
571 dissociated glioblastoma patient samples. The PCY score quantifies drug-induced “on-target” killing by
572 measuring the change in fraction of a defined target population (e.g. Nestin+/S100B+ and CD45-
573 glioblastoma cells) compared to the (-) vehicle control. Positive PCY scores (blue) indicate a drug-
574 induced relative reduction of cancer cells compared to control, as illustrated in the stacked bar graphs
575 on the right. **b-c**, Stratification of newly diagnosed glioblastoma patient survival based on *ex vivo*
576 Temozolomide sensitivity (TMZ PCY score) of (Nestin+/S100B+ and CD45-) cells (blue, sensitive; red,
577 resistant). Kaplan-Meier survival curves are compared using the log-rank (Mantel-Cox) test. **b**,
578 Progression-free survival (PFS) of the prospective glioblastoma cohort (n=16 patients; $P=0.039$)
579 stratified by 100 μ M TMZ PCY score. Tick mark indicates ongoing response. **c**, Progression-free survival
580 (PFS; $P=0.0031$; left) and overall survival (OS; $P=0.016$; right) of the retrospective validation cohort
581 (n=18 patients) stratified by mean TMZ PCY score. **d**, Drug ranking (n=132 drugs) by their mean
582 (Nestin+/S100B+ and CD45-) PCY scores across glioblastoma patients (NADs, n=27 patients; ONCDs,
583 n=12 patients). Drug annotations indicate drug type (NADs; n=67 drugs, ONCDs; n=65 drugs) and drug
584 class. RTK, receptor tyrosine kinase; alkyl, alkylation; rep, replication. **e**, Representative
585 immunofluorescence images of a glioblastoma patient sample (P040; scale bar, 100 μ m), a patient-
586 derived cell line (P040.PDC; 100 μ m), an long-term glioblastoma cell line (LN-229; scale bar, 150 μ m),
587 and a glioblastoma-initiating cell line (ZH-562, scale bar, 250 μ m). Cells are labeled with the nuclear
588 stain DAPI (blue), astrocyte lineage marker S100B (green), and neural progenitor marker Nestin
589 (yellow). Other markers are indicated in their respective colors. **f**, Drug response heatmaps of
590 neuroactive drugs (NADs, n=67 drugs; columns) across glioblastoma patient samples (n=27 patients;
591 rows), Nestin+ GSC M1-M4 morphotypes (n=4 classes; averaged response across n=27 patients),
592 patient-derived lines (PDCs; n=3 lines, patient id followed by ‘.C’), and glioblastoma cell lines (n=4
593 lines). Drug score (heatmap color scale) indicates the PCY score for glioblastoma patient samples and
594 patient-derived cell lines while for long-term glioblastoma cell lines the drug score is a viability score.
595 Outliers beyond color scale limits set to minimum and maximum values. Clinical annotations per
596 patient sample (rows) indicate the Ki67 labeling index, MGMT promoter methylation status (unmethyl,
597 unmethylated; methyl, methylated; nd, not determined), sex, and newly diagnosed or recurrent
598 tumour status. Annotation per drug indicates neuroactive drug class. Asterisks (*) denote FDR-adjusted
599 $P < 0.05$ calculated by one-sided t-tests. **g**, Pearson correlations of marker and morphology-based
600 sample composition at baseline (rows) with the (S100B+/Nestin+ and CD45-) PCY scores of top
601 neuroactive drug hits (NAD-Hits) and glioma drugs (GSDs) across patients (n=27). **h**, Correlation of
602 morphology M1-M3 abundance of Nestin+ GSCs at baseline (x-axis) with Vortioxetine efficacy (y-axis;
603 PCY score) across patients (n=27), as in **g**. Linear regression line with a 95% confidence interval. Pearson
604 correlation coefficient with P -value annotated. **i**, Association of patient sex with response to
605 Brexpiprazole (PCY score; $P = 0.0063$). **j**, Association of FGFR2 copy number loss with response to
606 Sertindole (PCY score; $P = 0.0008$). CNV, copy number variation; High.conf, high confidence; Low.conf,
607 low confidence. **i,j**, P -values calculated from a two-sided Wilcoxon rank sum test. **g,i,j**, P -values: not
608 significant (ns), $P > 0.05$, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$. Boxplots as in *Fig. 1c*.

Figure 3



609 **Fig. 3: Neuroactive drugs with anti-glioblastoma efficacy converge upon an AP-1 and**
610 **cell cycle connectivity signature through divergent primary targets**

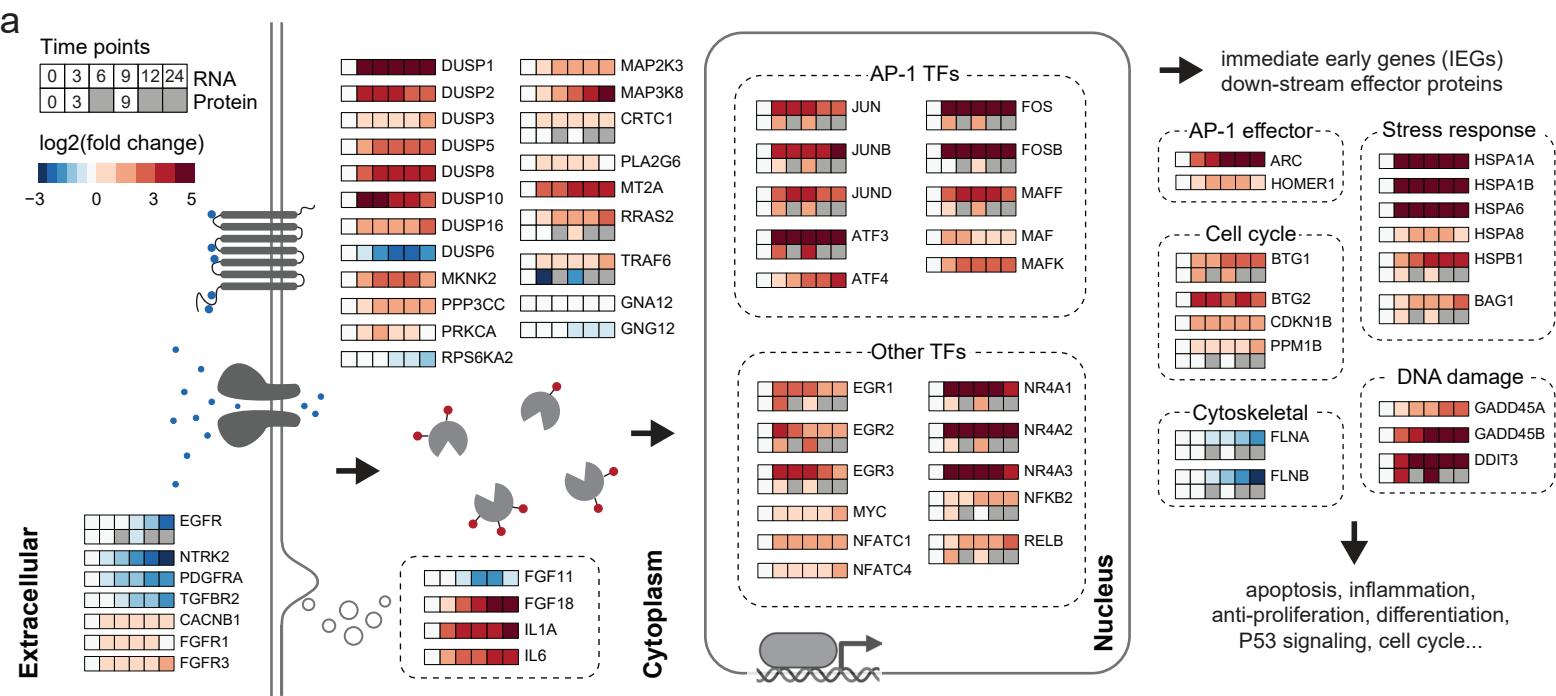
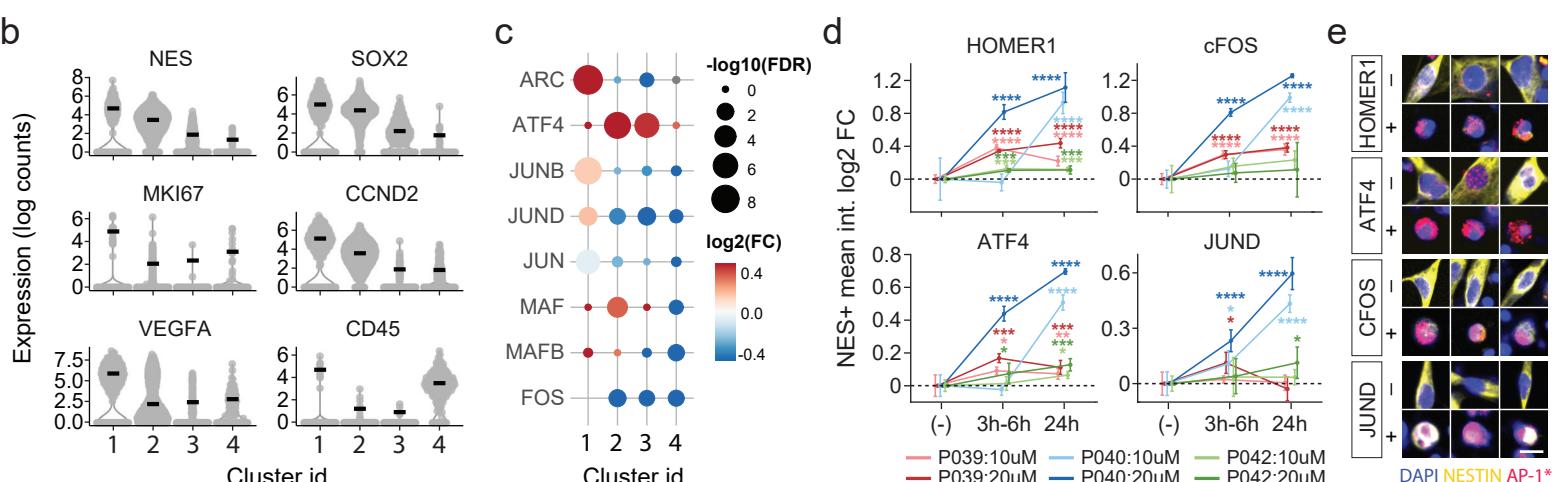
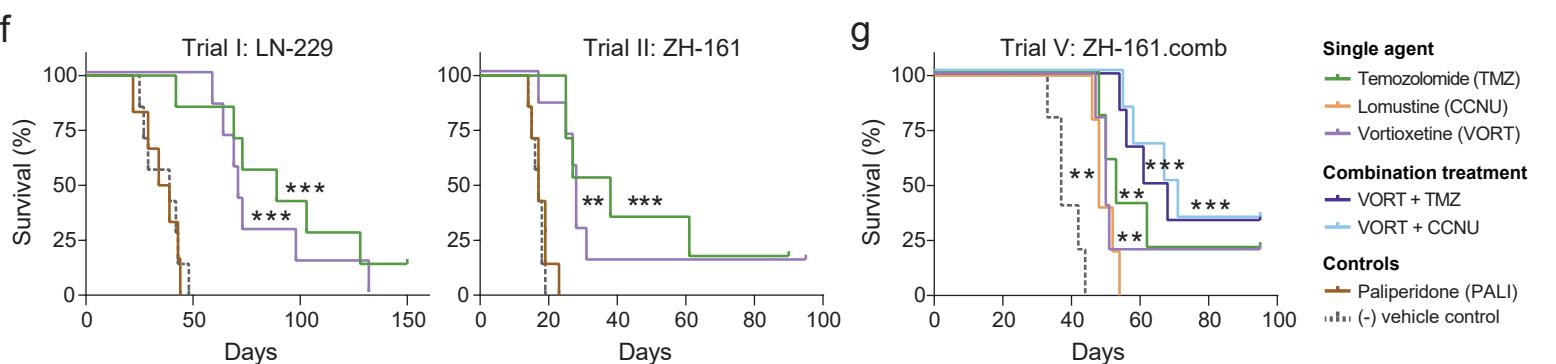
611 **a**, Drug mode-of-action for all neuroactive drugs (n=67 drugs; left) and top neuroactive drug hits (n=15
612 drugs with a mean patient PCY score > 0.03; right) represented as stacked bar plots. n.s., not significant
613 by hypergeometric enrichment test. **b**, Primary target gene (PTG) expression of neuroactive drugs in
614 22 glioblastoma patient samples across three scRNA-Seq datasets (shape) plotted as the neural
615 specificity score (x-axis) versus patient specificity score (y-axis) for each PTG (dot, gene; size, percent
616 expression; color, receptor class). **c**, scRNA-Seq log10(expression) of selected neuroactive PTGs
617 (*SIGMAR1*, *CNR1*, *GRIA2*) and oncogenic RTK (*PDGFRA*) visualized on the UMAP projection, as in *Fig.*
618 *1b*. **d**, Workflow for the collection of extended primary target genes (ePTGs) and associated secondary
619 target genes (STGs) of drugs tested across patient samples by PCY to search for “convergence of
620 secondary drug targets analyzed by regularized regression” (COSTAR). **e**, Example PTGs with genetic
621 dependencies (core nodes; colored as in **b**; see also *Extended Data Fig. 5c*) linking to both PCY-HIT
622 (pink) and PCY-NEG (grey) drugs. **f**, The full COSTAR network constellation of 127 PCY-tested drugs,
623 965 ePTGs, and 10573 STGs, connected by a total of 114517 edges **g**, COSTAR method: Logistic LASSO
624 regression is performed on the COSTAR constellation to learn a linear model that discriminates PCY-
625 HIT drugs (n=30, equally split across NADs and ONCDs) from PCY-NEG drugs (n=97) based on a small
626 set of STGs. **h**, COSTAR training model performance as a confusion matrix, where the ‘true’ class
627 denotes PCY-based experimental ground truth, and the ‘predicted’ class denotes the COSTAR-
628 prediction. **i**, ePTGs (x-axis) ranked by their integrated contribution to predict a hit (+1) or non-hit (-1)
629 (y-axis) in the COSTAR model, separated for PCY-hit NADs (top) and ONCD (bottom). **j**, COSTAR
630 connectivity (solid lines) reveals convergence of NAD (pink) and ONCD (blue) hits to key ePTGs (grey)
631 and STGs (yellow) included in the final model. See *Extended Data Fig. 6b* for the full model. Additional
632 proteins (white nodes) with high confidence interactions to STGs (dashed lines) are shown. **i**, *In silico*
633 COSTAR predictions based on drug-target connectivity across 1,120,823 compounds annotated in DTC.
634 Compounds are ranked (x-axis) by their predicted PCY-hit probability (COSTAR score; y-axis). Predicted
635 drug hits (COSTAR-HIT; mint green) and predicted non-hits (COSTAR-NEG; black) selected for
636 experimental validation are indicated. **k**, As in **g**, but for COSTAR-HITs (top) and COSTAR-NEGs
637 (bottom). **l**, Experimental validation by pharmacoscropy of COSTAR-HIT (n=23; mint green) and
638 COSTAR-NEG (n=25; black) drugs (columns) across four glioblastoma patient samples (rows) including
639 positive (PCY-HITs; pink; n=3) and negative (PCY-NEG; dark grey; n=1) control drugs. Heatmap color
640 scale indicates the PCY score of (Nestin+/S100B+ and CD45-) cells. Outliers beyond color scale limits
641 set to minimum and maximum values. Asterisks (*) denote FDR-adjusted P < 0.05. **l**, Receiver Operating
642 Characteristic (ROC) curves (grey, n=4 patients; mint green, mean across patients; red dashed, random
643 classifier) describing the COSTAR validation accuracy in glioblastoma patient samples of the COSTAR-
644 predicted drugs (n=48 drugs; corresponding to *Fig. 3m*). AUC; area under the curve.



645 **Fig. 4: Glioblastoma suppression is driven by a tumour-intrinsic AP-1 gene regulatory**
646 **network**

647 **a**, Multiplexed RNA-Seq (DRUG-Seq^{79,80}) of LN-229 cells after pharmacoscopy-hit neuroactive drug
648 (PCY-hit NADs, n=11 drugs), pharmacoscopy-hit oncology drug (PCY-hit ONCDs, n=6 drugs), and
649 negative control drug (NEG, n=2 PCY-neg NADs and DMSO vehicle control) treatment (n=4 replicate
650 wells per drug/time-point; n=2 time-points, 6 and 22 hours). **b**, Transcriptional response of PCY-hit
651 NAD-treated cells compared to NEG-treated cells (6 hours). X-axis: log2(fold change), positive value
652 indicating PCY-hit NAD upregulated genes; y-axis: $-\log_{10}(\text{adjusted } P\text{-value})$. Genes above a $-\log_{10}(0.05)$
653 adjusted P-value threshold (light grey or colored), and non-significant genes (dark grey). Target genes
654 of AP-1, ATF, or CREB TFs (pink), as well as AP-1 pathway, IEG, and COSTAR model member genes (red
655 outlines), and genes present in both the AP-1 & KEGG apoptosis pathway (solid red) are indicated. Gene
656 names of indicated genes with an adjusted P-value < 0.01 are shown. **c**, Transcription factor binding
657 site enrichment analysis of significantly upregulated genes upon PCY-hit NAD treatment in *Fig. 4b*.
658 Circles correspond to TF annotations, sizes scale with the percent of genes present in the annotation,
659 and colors indicate $-\log_{10}(\text{false discovery rate})$. **d**, Expression of AP-1 TF and BTG family genes (y-axis,
660 normalized RNA-Seq counts) that are significantly upregulated upon PCY-hit NAD treatment (6 hours).
661 Box plot groups (x-axis) correspond to drug categories and dots represent the average expression per
662 drug. 'PCY-hit NAD' and 'PCY-hit ONCD' abbreviated to NAD and ONCD, respectively. **e**, Calcium
663 response ($\Delta F/F$; y-axis) over time (x-axis) of LN-229 cells upon drug treatment measured by high-
664 throughput FLIPR assay. Timeline depicts assay setup (*Methods*). Representative traces from 8 drug
665 conditions (out of 17 tested) including 5 NADs (left), and 2 ONCDs (right). DMSO vehicle control traces
666 shown in both. $\Delta F/F$, change in fluorescence intensity relative to the baseline. **f**, Fold-change in
667 extracellular calcium influx upon drug treatment relative to DMSO vehicle control measured by FLIPR
668 assays in LN-229 cells (n=8 assay plates; n=17 conditions; n=18-30 wells/drug; DMSO, n=47 wells). Drug
669 categories including PCY-hit NADs, n=8 drugs; PCY-neg NADs, n=6 drugs; PCY-hit ONCDs, n=2 drugs
670 were compared. Asterisks (*) in parentheses denote conditions where the median [Ca²⁺ fold change]
671 < 0. Black line indicates the median value. **g**, Transcriptional regulation of BTG1/2 based on PathwayNet
672⁶⁰. Query genes (BTG1/2, black nodes) and the top-13 inferred transcription factor interactions (grey
673 nodes) are shown. Edge colors indicate relationship confidence. **h**, Correlation of average COSTAR
674 signature expression (x-axis) with *ex vivo* patient neuroactive drug response (y-axis) plotted per drug
675 (color) and time-point (shape). Mean glioblastoma PCY score across patients (n=27 patients) of
676 neuroactive drugs (n=11 PCY-H NADs, n=3 NEG) plotted against their corresponding geometric mean
677 expression of AP-1 TFs and BTG1/2 genes as shown in *Fig. 4d*. Linear regression line (black) with a 95%
678 confidence interval (light grey). Pearson correlation coefficient R=0.72, P-value 1.4e-05. **i**, Confluence
679 of LN-229 cells measured by IncuCyte live-cell imaging (y-axis) across 7 days (x-axis) in two siRNA
680 knockdown conditions (BTG1, BTG2) and a negative firefly luciferase control (FLUC). Mean of n=4
681 replicate wells shown +/- one standard deviation. **j**, Effect of target gene siRNA knockdown (columns)
682 on normalized LN-229 cell counts (y-axis) at baseline (DMSO; left panel) and upon Vortioxetine
683 treatment (VORT; 10 μ M; right panel). *KIF11*; positive (+) control. Cell counts are normalized to the
684 FLUC negative (-) control siRNA within the DMSO condition per experiment (n=9-14 replicate
685 wells/condition, n=2 experiments). **k**, Diagram summarizing mechanistic pathways by which
686 neuroactive drugs target glioblastoma. GRN; gene regulatory network. IEG; immediate early gene. CKI:
687 cyclin-dependent kinase inhibitor. CRE; cAMP response element. FKH; forkhead binding motif. **a-d,f,h**,
688 Colors correspond to drugs and drug name abbreviations annotated in *Supplementary Table 3*. **d,f,j**

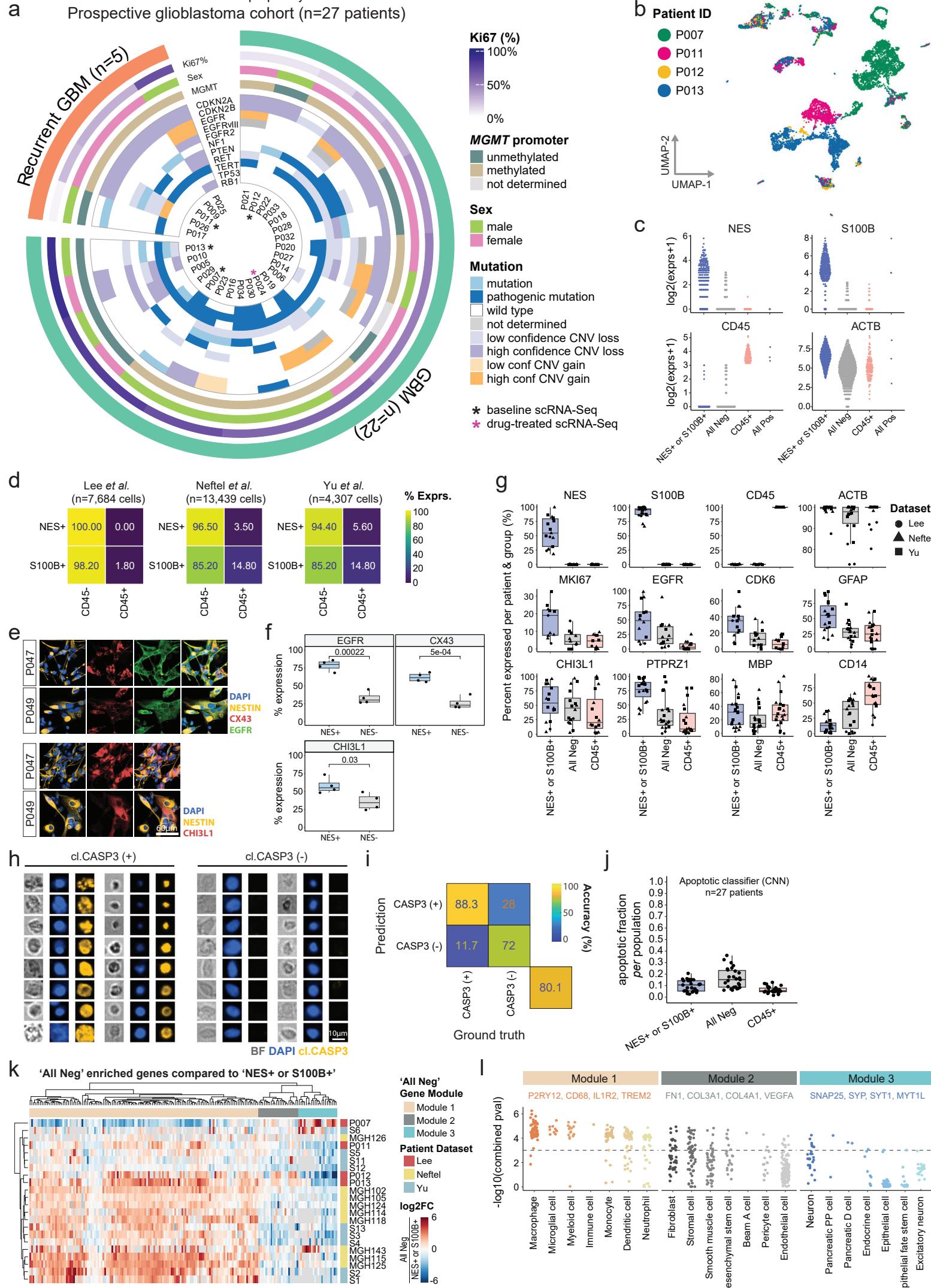
689 Two-sided t-test. **f,j** *P*-values adjusted for multiple comparisons by Holm correction. *P*-values: not
690 significant (ns), $P > 0.05$, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$. Boxplots as in *Fig. 1c*.



691 **Fig. 5: The antidepressant Vortioxetine induces a potent AP-1 response that**
692 **synergizes *in vivo* with current standard of care drugs for glioblastoma**

693 **a**, Time-course visualization of AP-1 (PID) and MAPK (KEGG) pathway induction following Vortioxetine
694 treatment (20 μ M) in LN-229 cells measured by RNA-Seq (n=6 time-points) and by proteomics (n=3
695 time-points). n=3 replicates/time-point. Genes selected for visualization are significantly differentially
696 expressed by RNA-Seq at all time-points compared to the first time-point (0h). Heatmap color scale
697 represents log2(fold change) compared to the 0h time-point. **b**, scRNA-Seq expression log2(UMI) of
698 selected glioblastoma and top cluster marker genes from glioblastoma patient sample P024. Cluster
699 ids are based upon UMAP clustering of both DMSO and Vortioxetine (VORT, 20 μ M) treated cells (3h)
700 shown in *Extended Data Fig. 10a*. Black lines indicate the median value. **c**, Differentially expressed AP-
701 1 transcription factors and downstream effector gene ARC per scRNA-Seq cluster upon Vortioxetine
702 treatment compared to DMSO in P024. Circle sizes scale with the $-\log_{10}$ (adjusted *P*-value) and
703 heatmap color scale represents VORT-induced log2(fold change) compared to DMSO treated cells per
704 cluster. **d**, Induction of AP-1 transcription factors and downstream effector *HOMER1* in glioblastoma
705 patient samples (n=3 additional patients; P039, P040, P042) upon *ex vivo* Vortioxetine treatment (time-
706 points: 0, 3-6, and 24 hours; concentrations: 10 and 20 μ M) in Nestin+ cells measured by
707 immunofluorescence. Two-sided t-test compared to negative control. **e**, Representative pseudo-
708 colored single-cell image crops from glioblastoma patient P040 of Nestin+ (yellow) cells after
709 Vortioxetine treatment (+; 20 μ M) and DMSO vehicle control (-) at 24 hours stained with different AP-
710 1 transcription factors/ *HOMER1* (red) and DAPI (blue). Scale bar, 15 μ m. **f**, Survival analysis of Trial I:
711 LN-229 (left) or Trial II: ZH-161 (right) tumour-bearing mice (n=6-7 mice/group). Mice were treated
712 intraperitoneally (*i.p.*) between days 5-21 after tumour implantation with a PCY-HIT NAD, Vortioxetine
713 (VORT; 10mg/kg; Trial I, *P*=0.0001; Trial II, *P*=0.0016), a positive control, Temozolomide (TMZ;
714 50mg/kg; Trial I, *P*=0.0009 ; Trial II, *P*=0.0002), a PCY-NEG NAD, Paliperidone (PALI; 5mg/kg), and a
715 negative vehicle control. See also *Extended Data Fig. 9* for Trial III-IV and full results of Trials I and II
716 including other PCY-hit NADs. **g**, Trial V: *in vivo* treatment of Vortioxetine (VORT; 10mg/kg) in
717 combination with 1st- and 2nd-line glioblastoma chemotherapies; Temozolomide (TMZ; 50mg/kg) and
718 Lomustine (CCNU; 20mg/kg) compared to single-agents and vehicle control in ZH-161 tumour-bearing
719 mice (n=5-6 mice/group). Combination treatments, TMZ+VORT/CCNU+VORT, both *P*=0.0007; Single-
720 agents, TMZ/CCNU/VORT, all *P*=0.0018. **f-g**, Survival plotted as Kaplan-Meier curves and *P* values
721 calculated using log-rank (Mantel-Cox) test. Censored mice denoted as tick marks. *P*-values: not
722 significant (ns) *P* > 0.05, **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001.

Extended Data Figure 1

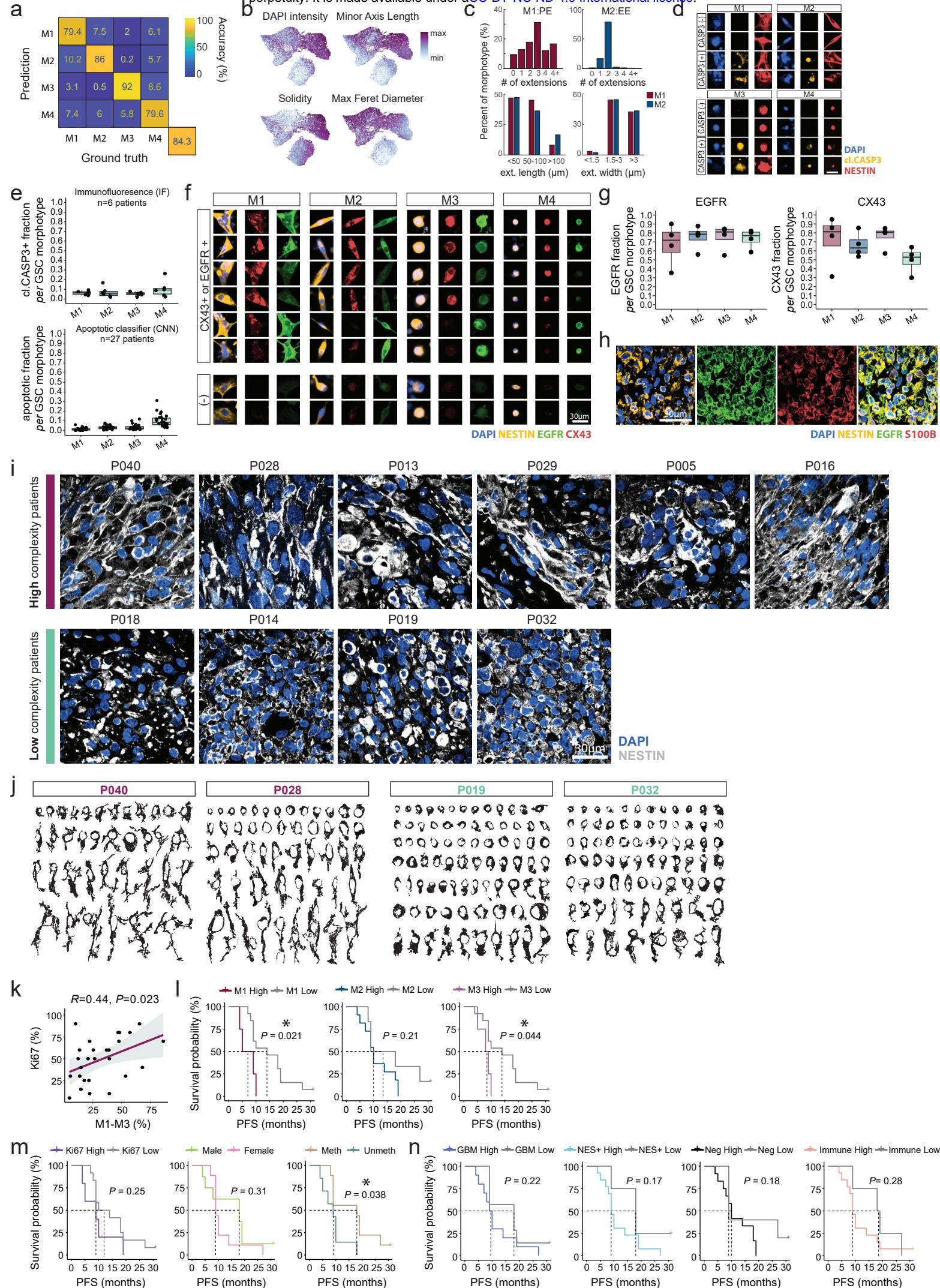


723 Extended Data Figure Legends

724 **Extended Data Fig. 1: Glioblastoma prospective cohort overview and single-cell RNA- 725 sequencing of four patient samples**

726 **a**, Circos plot overview of the glioblastoma prospective patient cohort (n=27 patients) included in this
727 study. Concentric circles from outermost to innermost show newly diagnosed versus recurrent tumour
728 status, Ki67 labeling index, sex, *MGMT* promoter methylation status, and the most frequent genetic
729 alterations (n=11) determined by targeted next-generation sequencing (NGS). Asterisks (*) denote
730 scRNA-Seq patient samples (black, n=4 patients at baseline; pink, n=1 patient after drug treatment).
731 CNV; copy number variation. See *Supplementary Table 1,2* for full cohort information. **b**, UMAP
732 projection of 7684 single-cell transcriptomes from four glioblastoma patient samples colored by
733 patient (P007, 3475 cells; P011, 1490 cells; P012, 330 cells; P013, 2389 cells, referred to as 'Lee *et al.*,
734 this study'). **c**, scRNA-Seq log2(expression+1) of glioblastoma markers (NES, S100B), pan-immune
735 marker (CD45), and housekeeping gene (ACTB) of n=1,320 single cells as a subset of **b**, (n=330 randomly
736 sampled cells per patient) **d**, Percent of Nestin or S100B positive cells (rows) either negative or positive
737 for CD45 (columns) by scRNA-Seq across 22 glioblastoma patient samples and 3 scRNA-Seq datasets
738 (Lee *et al.*, this study, n=4 patients, n=7,684 cells; Neftel *et al.*, n=9 patients, n=13,519 cells; Yu *et al.*,
739 n=9 patients, n=4,307 cells). **e**, Representative immunofluorescence (IF) images of two glioblastoma
740 patient samples labeled with different glioblastoma markers (Nestin, EGFR, CX43, and CHI3L1). **f**,
741 Quantification of IF images in **e**, across n=4 glioblastoma patient samples. P-values from a two-sided t-
742 test are shown. **g**, Percent of cells expressing key marker genes (y-axis) per patient (data points) and
743 subpopulation (x-axis) across 22 glioblastoma patient samples (dots) and 3 scRNA-Seq datasets (shape)
744 as in **d**. **h**, Example single-cell crops of cleaved CASP3+/- negative cells by IF in the image dataset used
745 to train a convolutional neural network (CNN) based on nuclear (DAPI) and cell morphology
746 (Brightfield) to detect apoptotic cells. **i**, Performance of the trained apoptotic classifier CNN in
747 classifying the manually curated test image dataset consisting of CASP3+/- single-cell crops (n=1,214
748 images) into the corresponding classes. Cell classification accuracy shown as a confusion matrix. **j**,
749 Fraction of cells classified as apoptotic by the CNN across the prospective patient cohort (n=27
750 patients) and marker defined populations. **k**, Genes (columns) enriched in (NES-, S100B-, and CD45-)
751 triple-negative cells ('All Neg' cells) compared to ([NES+ or S100B+] and CD45-) cells across the 22
752 patients (rows) of the three scRNA-seq cohorts (row annotation color). Heatmap depicts log2(fold
753 change) of genes enriched in the 'All Neg' cells. Expression of top-10 genes (columns) per patient (rows)
754 clustered into 3 gene modules (Modules 1-3; column annotation color). **l**, Cell-type specific enrichment
755 analysis (Web-CSEA, Dai *et al.* 2022) of the 'All Neg' enriched gene modules as in **k**. Dots represent
756 individual Web-CSEA datasets, example genes that are members of their respective gene modules are
757 annotated above. **g,f,i,l**, Boxplots as in *Fig. 1c*.

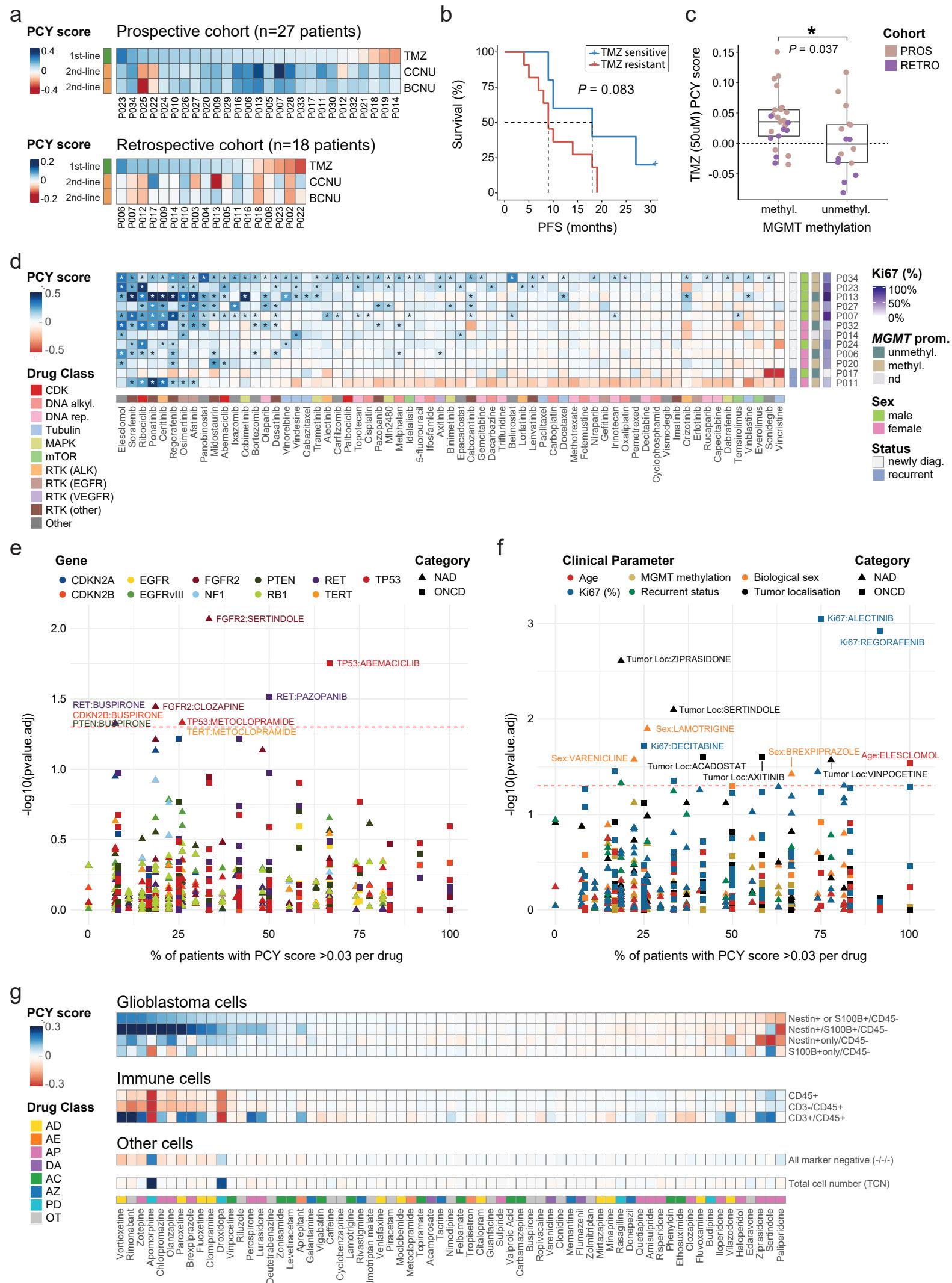
Extended Data Figure 2



758 **Extended Data Fig. 2: Deep learning of glioblastoma stem cell morphologies and**
759 **clinical parameter-based stratification of patient survival**

760 **a**, Performance of the trained GSC morphology CNN in classifying the manually curated test image
761 dataset consisting of Nestin+ single-cell crops (n=10,204 images) into the corresponding four GSC
762 morphotypes (M1-M4). Cell classification accuracy shown as a confusion matrix. **b**, UMAP projection
763 of the morphological CNN feature space of 84,180 single cells (up to n=1,000 cells per morphotype and
764 patient, n=27 patients). Cells are colored by the local median of selected single-cell image-based
765 features as in *Fig. 1g*. **c**, Frequency of extensions per cell (top panels) in extension-containing
766 morphotypes M1 (n=180 cells) and M2 (n=264 cells), and quantification of maximum extension length
767 and extension width in M1 (n=111 cells) and M2 (n=127 cells) morphotypes (bottom panels). **d**,
768 Example single-cell IF images of cleaved CASP3+/- negative cells across M1-M4 Nestin+ GSC
769 morphotypes. Scale bar, 30 μ m. **e**, Fraction of apoptotic cells across M1-M4 Nestin+ GSC morphotypes
770 quantified by either cleaved CASP3 IF (top; n=6 patients) or by the apoptotic CNN classifier (bottom;
771 n=27 patients). **f**, Example single-cell IF images of NES+ and CX43+/EGFR+ (top) or NES+ and CX43-
772 /EGFR- (bottom). **g**, Fraction of EGFR+ (left) or CX43+ (right) cells per Nestin+ GSC morphotype (x-axis)
773 across four patients (dots). **h**, Example *in situ* immunohistochemistry (IHC) image of tumour region
774 from patient P014 stained with nuclear stain (DAPI), glioblastoma stem cell marker (Nestin), epidermal
775 growth factor (EGFR), and astrocyte lineage marker (S100B). **i**, Example *in situ* IHC images of tumour
776 regions from patients with high *ex vivo* GSC morphotype complexity (top panels; n=6 patients) and low
777 *ex vivo* GSC morphotype complexity (bottom panels; n=4 patients). **j**, Examples of manually segmented
778 individual Nestin+ cells from binarized IHC images (Nestin channel) of individual patients confirming
779 the presence and spectrum of M1-M4 morphotypes *in situ*. Two high morphotype complexity patients
780 (left; red labels; P040, P028) and two low morphotype complexity patients (right; green labels; P019,
781 P032) shown. **k**, Correlation of histopathological Ki67 labeling (y-axis) index with percent of GSCs with
782 an M1-M3 morphotype (x-axis) per patient. Linear regression line (dark blue) with a 95% confidence
783 interval (light grey). Pearson correlation coefficient and *P*-value shown. **l-n**, Kaplan-Meier survival
784 curves of progression-free survival (PFS) in newly diagnosed glioblastoma patients (n=17 patients)
785 stratified by **l**, M1-M3 morphotype abundance (high, low) among Nestin+ GSCs; **m**, histopathological
786 Ki67% labeling index, sex, and *MGMT* promoter methylation status (n=1 patient with undetermined
787 *MGMT* status omitted); **n**, IF marker-defined population abundances per sample as defined in *Fig. 1d*.
788 **l-n**, Survival curves are compared using the log-rank (Mantel-Cox) test. Tick mark indicates ongoing
789 response. **e,g**, Boxplots as in *Fig. 1c*.

Extended Data Figure 3

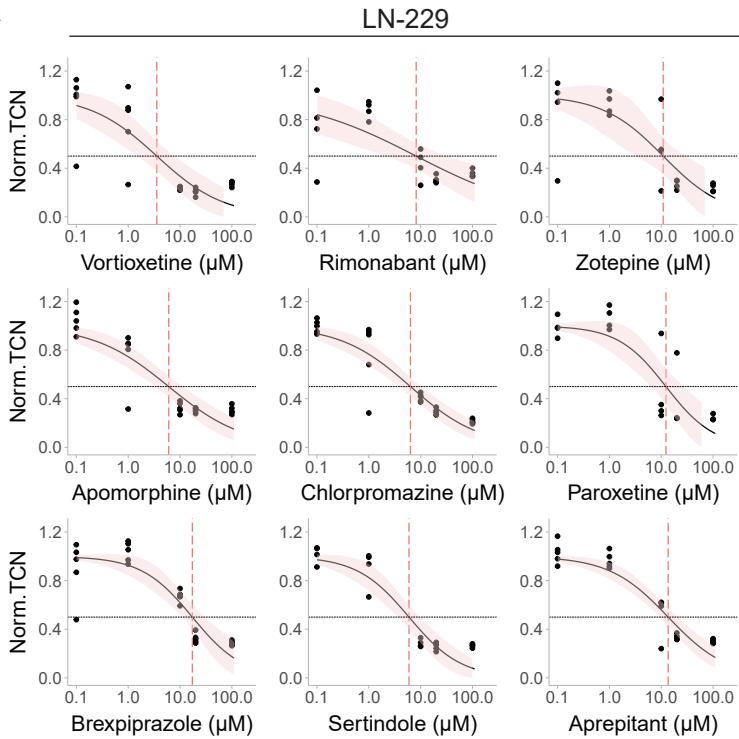


790 **Extended Data Fig. 3: Patient *ex vivo* drug response relates to clinical parameters,**
791 **tumour composition, and mutational profiles**

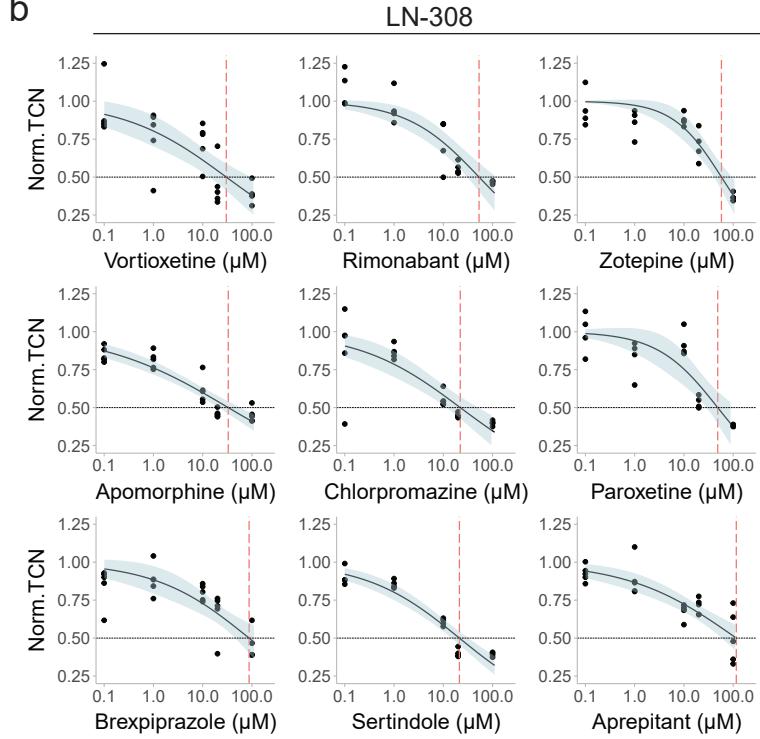
792 **a**, Glioblastoma drug (GSDs; rows; n=3 drugs) response across patient samples (columns; prospective
793 cohort, PROS, n=27 patients; retrospective cohort, RETRO, n=18 patients). GSD response is averaged
794 across four concentrations for Temozolomide (TMZ; 1st-line chemotherapy; 50, 100, 250, 500 μ M) and
795 Lomustine/Carmustine (CCNU and BCNU respectively; 2nd-line chemotherapies; 10, 50, 100, 250 μ M).
796 **b**, Stratification of progression-free survival (PFS) of newly diagnosed glioblastoma patients
797 (prospective cohort; n=16 patients) based on based on mean *ex vivo* Temozolomide sensitivity (TMZ
798 PCY score) of (Nestin+/S100B+ and CD45-) cells (blue, sensitive; red, resistant). Kaplan-Meier survival
799 curves are compared using the log-rank (Mantel-Cox) test and the optimal TMZ PCY score cut-point to
800 stratify patients is determined by maximally selected rank statistics. Tick mark indicates ongoing
801 response. **c**, Temozolomide (50 μ M) *ex vivo* response of glioblastoma patients (dots; n=41 patients
802 across both cohorts) stratified by *MGMT* promoter methylation status. Unmethyl; unmethylated,
803 Methyl; methylated. Wilcoxon rank sum test, $P=0.037$. Boxplots as in *Fig. 1c*. **d**, Drug response matrix
804 of oncology drugs (ONCDs; columns; n=65 drugs) across glioblastoma patient samples (rows; n=12
805 patients). Clinical annotations per patient sample (rows) indicate the Ki67 labeling index, *MGMT*
806 promoter methylation status (unmethyl; unmethylated, methyl; methylated, nd; not determined), Sex,
807 and recurrent tumour status (Status). Column drug annotations indicate oncology drug class as in *Fig.*
808 *2d*. Asterisks (*) denote FDR-adjusted $P < 0.05$. **e**, Pharmacogenomic analysis of the most common
809 genetic alterations (n=11) in glioblastoma patients and *ex vivo* drug response (PCY score). Each
810 datapoint represents a [gene:drug] association, where x-axis denotes the percent of patients for which
811 the respective drug's PCY score >0.03 and the y-axis denotes FDR-adjusted P -values. **f**, As in **e**, but for
812 associations between clinical parameters and *ex vivo* drug response (PCY score). **e,f** Colored by
813 gene/clinical parameter and shape denote drug category. Red dashed line indicates the significance
814 threshold. P -values were calculated using the Wilcoxon rank sum test for two groups, and for three or
815 more groups, by the Kruskal-Wallis test. For ONCD associations, the following genetic mutations or
816 clinical parameters had less than 3 patients in any category and were thus not analyzed: Genetic,
817 *EGFRvIII*, *NF1*, *TERT*, *RB1*; Clinical, Recurrent status. **g**, Drug response matrix of neuroactive drugs
818 (NADs, n=67 drugs; classes annotated as in *Fig. 2f*) averaged across glioblastoma patient samples (n=27
819 patients) for each cell population defined by immunofluorescence markers (Nestin, S100B, CD3, and
820 CD45) and total cell number (TCN). **a,d,g**, Heatmap color scale indicates the PCY score of **a,d**, Nestin+
821 or S100B+ cells **g**, mean PCY score of each respective population averaged across patients. Outliers
822 beyond color scale limits were correspondingly set to minimum and maximum values.

Extended Data Figure 4

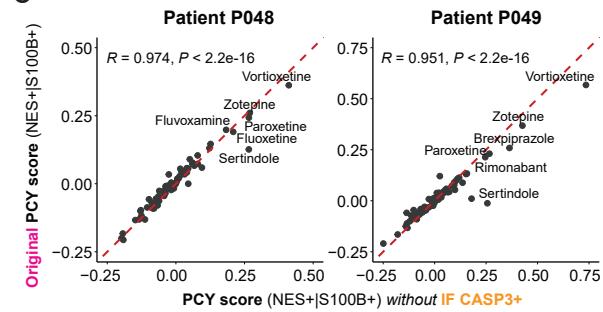
a



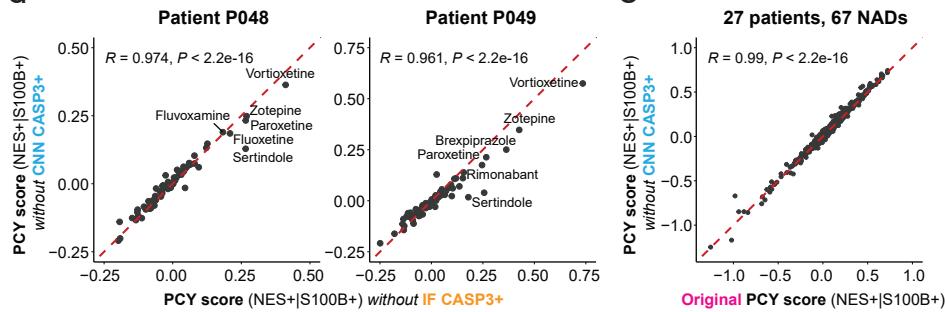
b



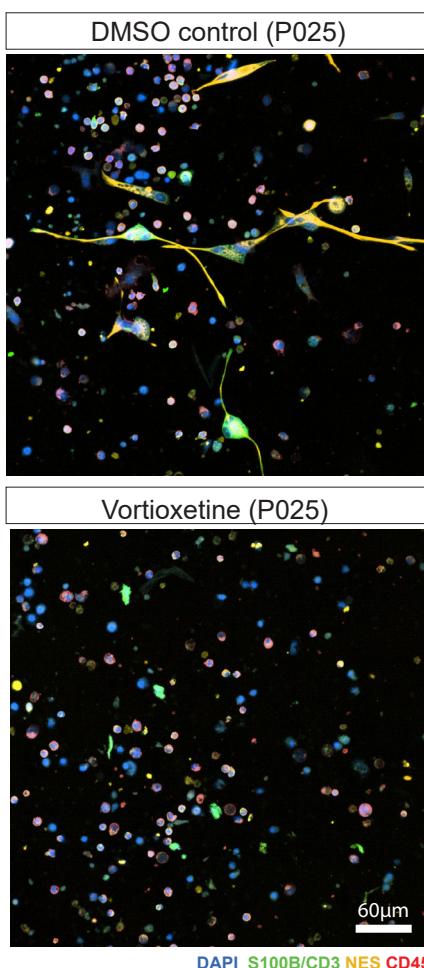
c



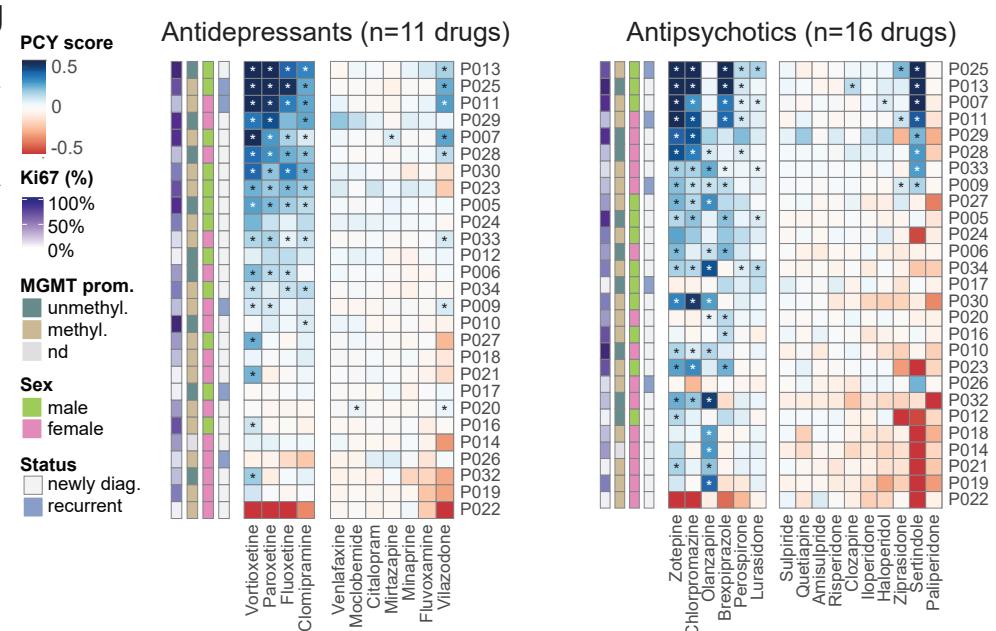
d



f

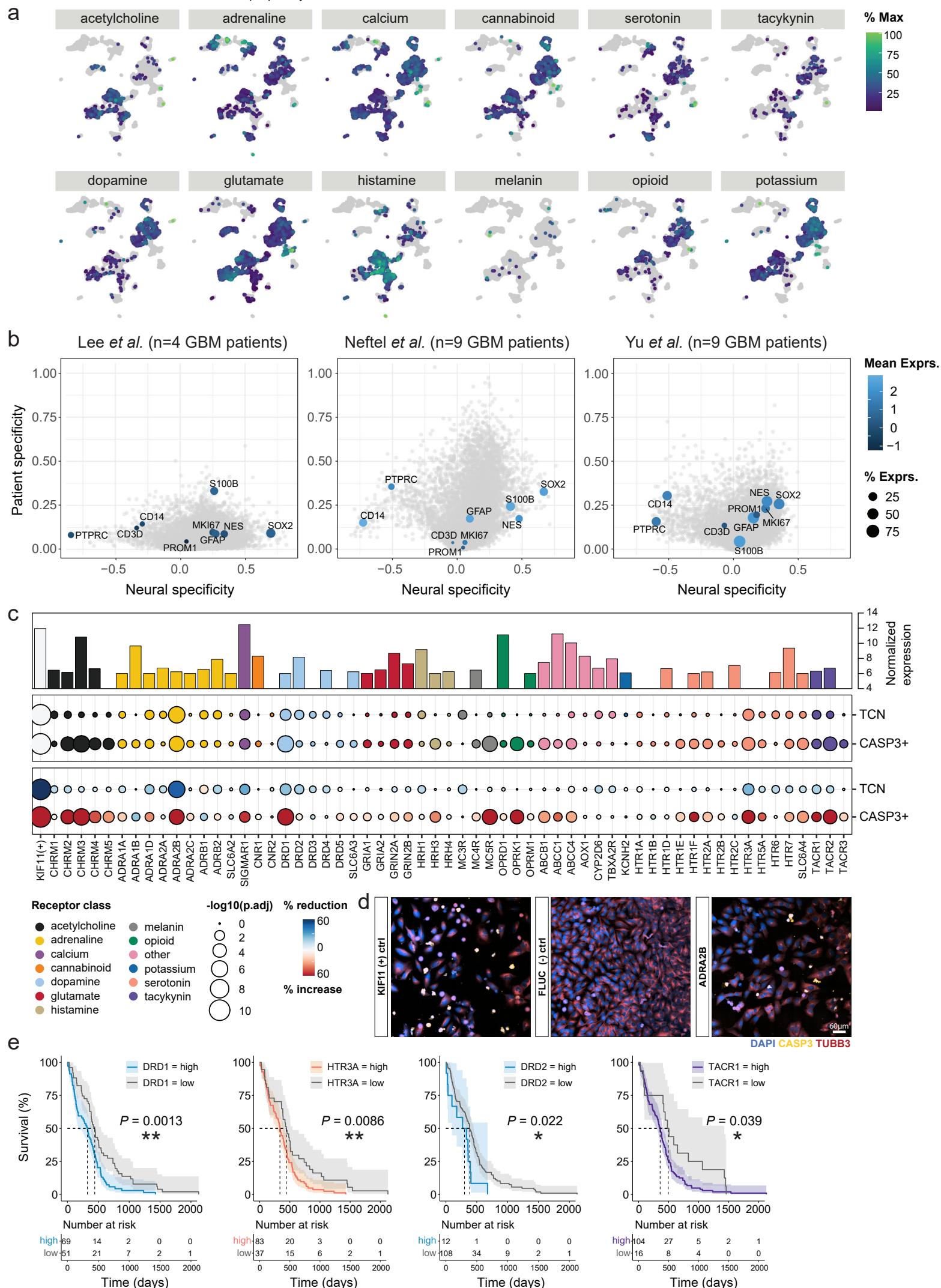


g



823 **Extended Data Fig. 4: Robust and dose-dependent drug responses to neuroactive**
824 **drugs across glioblastoma cell lines and patient samples**

825 **a,b**, Dose-response curves of glioblastoma cell lines (LN-229/LN-308; *see also Supplementary Fig.S4 for*
826 *spheroid lines ZH-161/ZH-562*) of a subset of top neuroactive drugs (n=9 drugs) across different
827 concentrations (logarithmically spaced x-axis, n=5 concentrations). Y-axis denotes relative cell counts
828 normalized to DMSO control. Dose-response curves (solid lines) are fitted with a two-parameter log-
829 logistic distribution with 95% confidence intervals (colored per cell line) and ED50 (red dashed lines).
830 n=3-5 replicate wells/drug, n=15 DMSO wells. **a**, Dose-response curves of glioblastoma cell line LN-
831 229. **b**, Dose-response curves of glioblastoma cell line LN-308. **c-e**, Comparison of neuroactive drug
832 pharmacoscopy scores of (Nestin+/S100B+ and CD45-) glioblastoma cells (n=67 NADs; original PCY
833 score) to NAD PCY scores calculated by excluding cleaved CASP3+ apoptotic cells. Apoptotic cells are
834 defined either by immunofluorescence (PCY score without IF CASP3+) or by the apoptotic CNN
835 classifier (PCY score without CNN CASP3+; *see also Methods*). Pearson correlation coefficients with P-
836 values annotated. **c,d**, NAD screens performed in two validation patient samples (P048, P049). **c**,
837 Comparison of the original PCY score to the PCY score without IF CASP3+ **d**, Comparison of the PCY
838 score without IF CASP3+ the PCY score without CNN CASP3+ **e**, Comparison of the original PCY score
839 to the PCY score without CNN CASP3+ across the whole prospective cohort (n=27 patients) and
840 neuroactive drugs (n=67 drugs). **f**, Representative immunofluorescence images of a patient sample
841 (P025) at baseline (DMSO control; top) and treated with Vortioxetine (bottom). Glioblastoma cells are
842 labeled with the nuclear stain DAPI, astrocyte lineage marker S100B, and neural progenitor marker
843 Nestin while immune cells are labeled with the T-cell marker CD3 and pan-immune marker CD45. Scale
844 bar, 60 μ M. **g**, Drug response matrix of antidepressants (left, n=11 drugs) and antipsychotics (right,
845 n=16 drugs) across glioblastoma patient samples (n=27 patients) subsetted from the original matrix,
846 as shown in *Fig. 2f*.

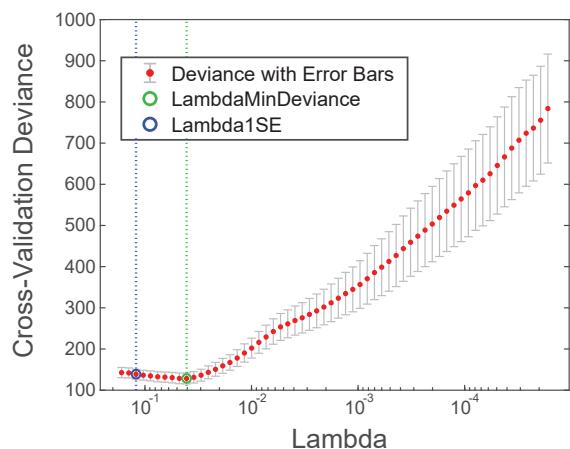


847 **Extended Data Fig. 5: Single-cell heterogeneity and functional dependencies of**
848 **primary neuroactive drug targets**

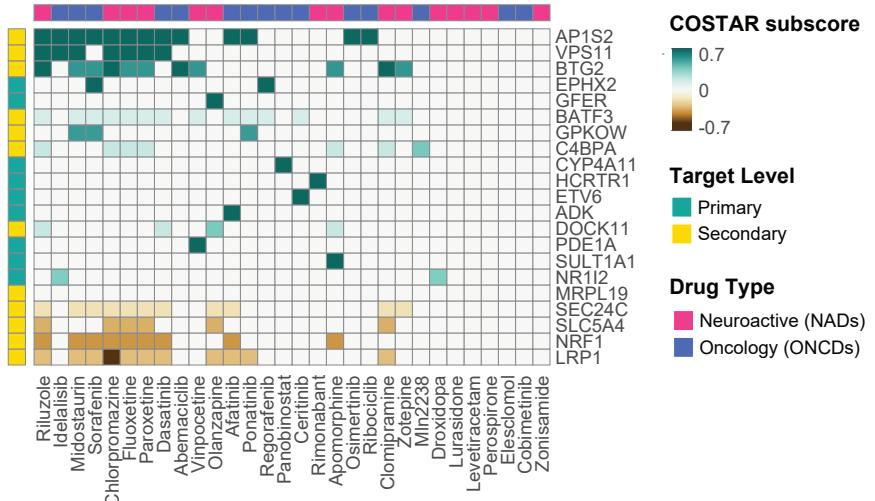
849 **a**, UMAP projection of 7684 single-cell transcriptomes from four glioblastoma patient samples (P007,
850 P011, P012, P013), colored by aggregate scRNA-Seq expression across primary target genes (PTG) per
851 receptor class in *Fig. 3b*. Color scaled to percent of maximum expression per receptor class. **b**, Neural
852 specificity score (x-axis) versus patient specificity score (y-axis) for three independent glioblastoma
853 scRNA-Seq datasets. Each dot represents a gene, with key marker genes annotated with labels. Key
854 marker genes colored by mean detected expression across cells and dot size scales with percent of
855 expressed cells. All other detected genes are colored in grey. (Lee *et al.*, *this study*; n=4 patients,
856 n=7684 cells, n=15,668 genes; Neftel *et al.*, n=9 patients, n=13,519 cells, n=22160 genes; Yu *et al.*, n=9
857 patients, n=4307 cells, n=19,098 genes; see also *Methods*). **c**, Baseline RNA-Seq expression (top panel;
858 y-axis) and siRNA-mediated gene silencing of PTGs in LN-229 cells (n=59 siRNA conditions; columns;
859 middle and bottom panels). Total cell number reduction (TCN) and cleaved CASP3+ fraction increase
860 (CASP3+) relative to the (-) control FLUC siRNA condition depicted as a circle per gene. Circle sizes scale
861 with the $-\log_{10}(\text{FDR-adjusted } P \text{ value})$. Color represents either the receptor class of each PTG (middle)
862 or the total cell number (TCN; bottom) for each tested PTG. **d**, Representative immunofluorescence
863 images of siRNA-mediated gene silencing of the positive control gene (KIF11 (+) ctrl; left), negative
864 control gene (FLUC (-) ctrl; middle), and ADRA2B (right). Scale bar, 60 μM . Cells are stained for DAPI
865 (blue), cleaved CASP3 (yellow) and TUBB3 (red). **e**, Kaplan-Meier survival analysis and associated risk
866 tables of the TCGA primary glioblastoma cohort (n=120 patients) based on RNA-Seq expression of 4
867 PTGs (panels) that significantly reduce cell viability in **c**, and stratify patient survival. Optimal cut-point
868 for patient stratification (high, low) is determined by maximally selected rank statistics. Survival curves
869 are compared using the log-rank (Mantel-Cox) test. 95% confidence intervals are indicated in shaded
870 curves.

Extended Data Figure 6

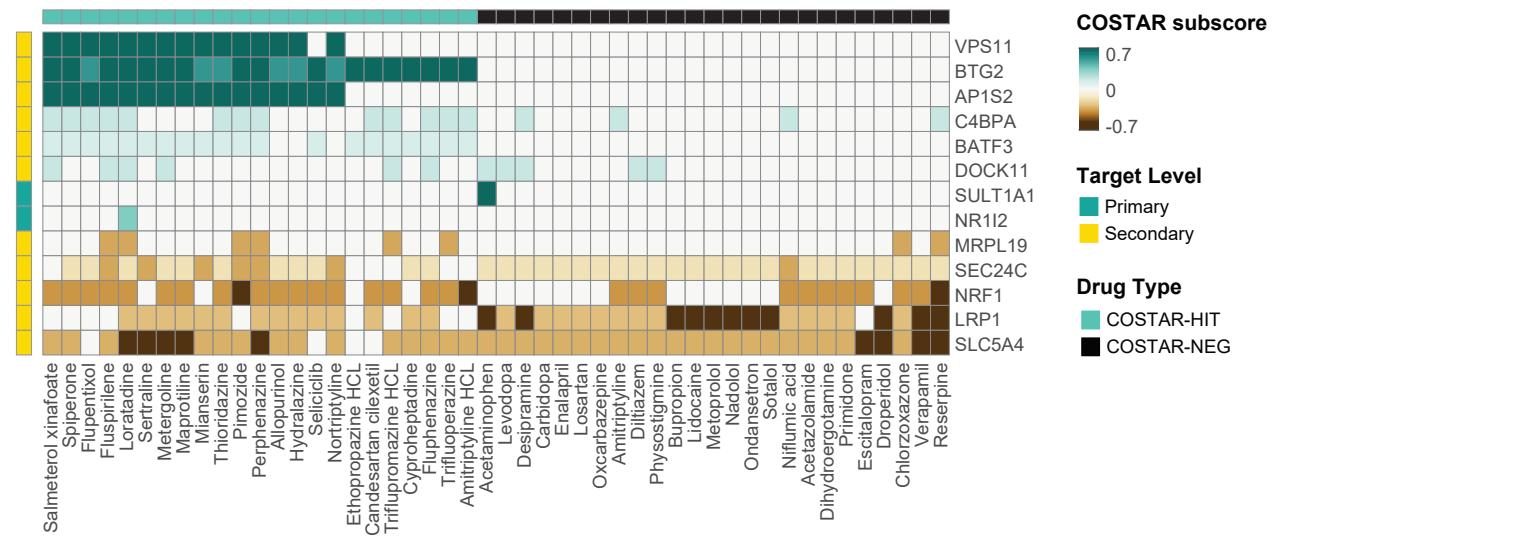
a



b



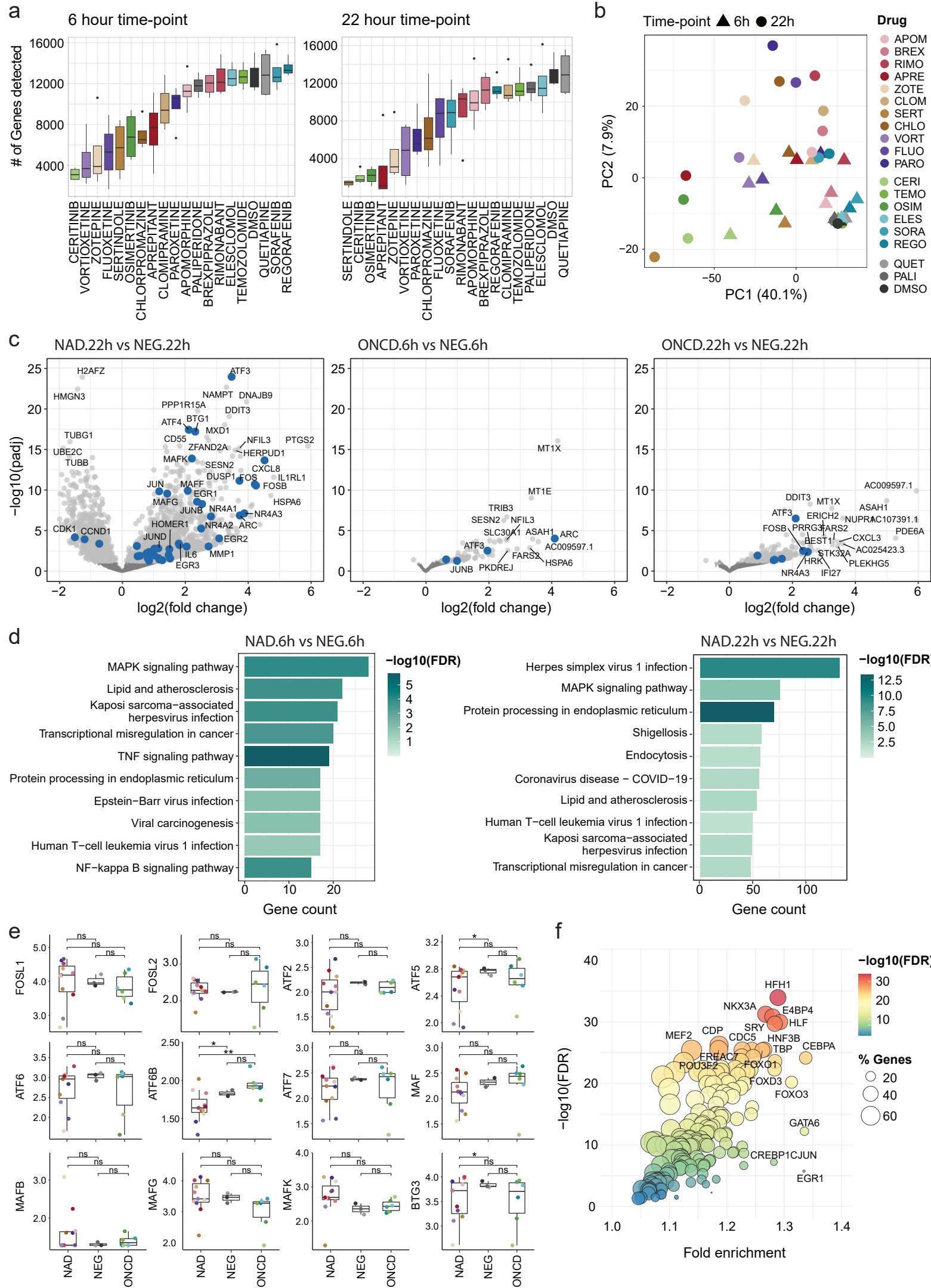
c



871 **Extended Data Fig. 6: COSTAR identifies a drug-target connectivity signature**
872 **predictive of anti-glioblastoma efficacy**

873 **a**, Visualization of the local optimum in the cross-validated predictive power of COSTAR LASSO
874 regression when fitting a binomial model to predict drug activity by PCY (hit vs neg) based on a drugs
875 connectivity pattern (COSTAR constellation, shown in Fig. 3f). X-axis denotes the Lambda regularization
876 parameter and the y-axis denotes the cross-validated error of the model (deviance). Red dots and light
877 grey error bars indicate the average and standard deviation in deviance across 20 bootstrapped runs.
878 Vertical dashed lines and colored circles indicate either the Lambda value with the minimal mean
879 squared error (green, MSE) or the more conservative Lambda value with minimal MSE plus one
880 standard deviation (blue, MSE+1STD). **b**, COSTAR subscores of PCY-hit drugs that were part of the
881 COSTAR training data (columns; n=30 drugs) to primary and secondary drug targets (rows). **c**, COSTAR
882 subscores of COSTAR-predicted drugs that were chosen for experimental validation in glioblastoma
883 patient samples (columns; n=23 COSTAR-HIT drugs; n=25 COSTAR-NEG drugs) to primary and
884 secondary drug targets (rows). **b-c**, Heatmap color scale indicates the COSTAR subscore which is the
885 LASSO model coefficient multiplied by the integrated connectivity of drug to target mapping. Target
886 genes with absolute COSTAR LASSO coefficients >0.1 are displayed. Target level (primary or secondary
887 target) is annotated per gene on the left.

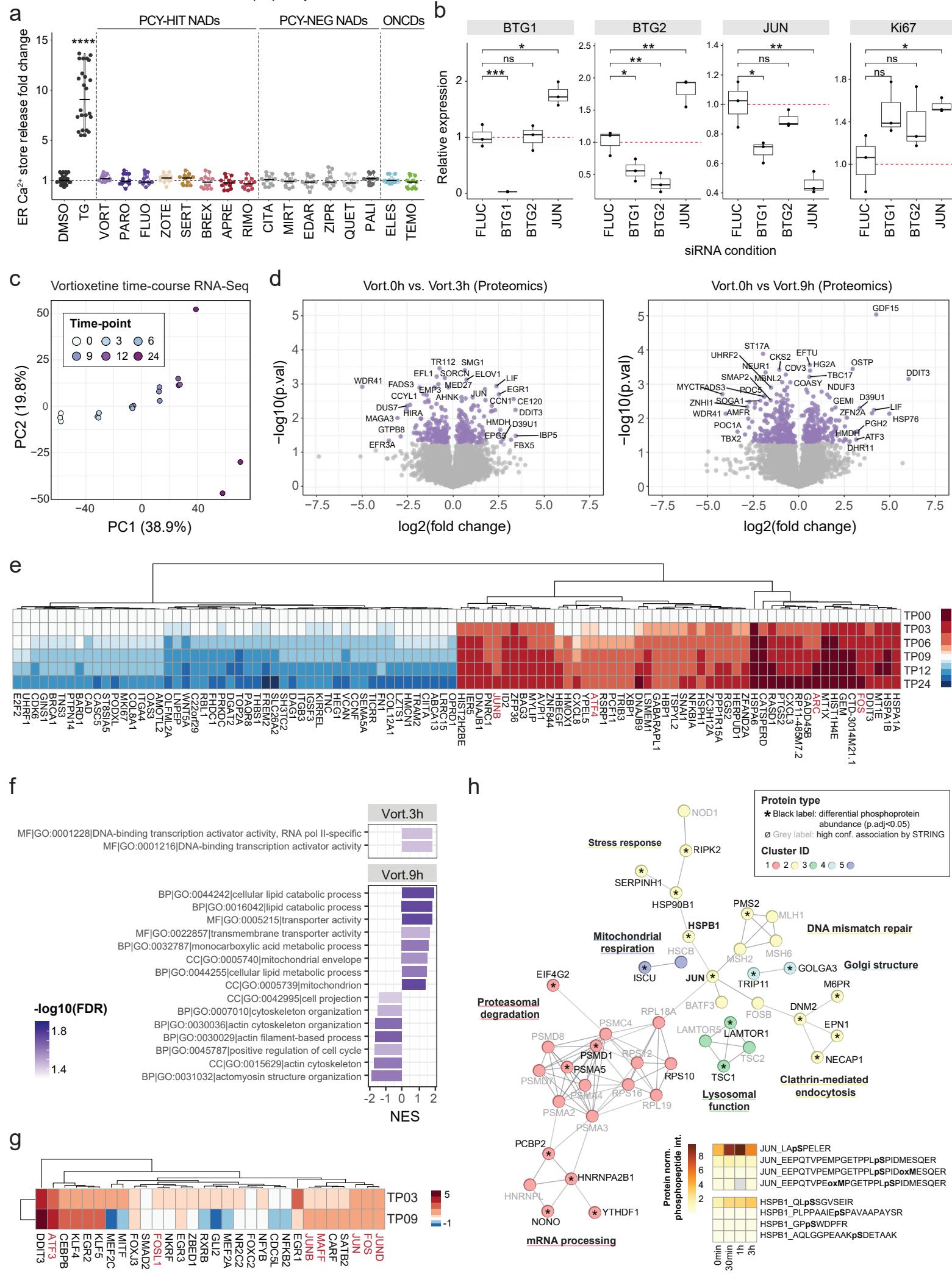
Extended Data Figure 7



888 **Extended Data Fig. 7: DRUG-Seq reveals a consistent transcriptional response to**
889 **neuroactive drugs with anti-glioblastoma efficacy**

890 **a**, Number of genes detected by DRUG-Seq (y-axis) per drug condition (columns) and by time-point
891 n=20 drugs, n=2 time-points, n=4 replicates per drug/time-point. **b**, Principal component analysis (PCA)
892 of averaged RNA-Seq counts per drug (color) and time-point (shape). **c**, Comparisons of drug induced
893 transcriptional profiles by DRUG-Seq shown as ($\log_2(\text{fold change})$ versus $-\log_{10}(\text{adjusted } P\text{-value})$) for
894 NADs vs NEGs (22h, left), ONCDs vs CTRLs (6h, middle), and ONCDs vs CTRLs (22h, right). Genes above
895 a $-\log_{10}(0.05 \text{ adjusted } P\text{-value})$ threshold (light grey) and non-significant genes (dark grey) are shown.
896 Highlighted genes (blue) include AP-1 transcription factor (TF) network genes (PID AP1 PATHWAY⁸¹)
897 and key COSTAR signature genes. **d**, Top enriched KEGG terms for differentially expressed genes based
898 on DESeq2 comparisons of NADs vs NEGs (6h, left) and NADs vs NEGs (22h, right). Bars represent the
899 number of differentially expressed genes present in the annotation, and colors indicate $-\log_{10}(\text{false}$
900 $\text{discovery rate})$. **e**, Expression of AP-1 transcription factor family and BTG genes additional to *Fig. 4d*.
901 Visualization and statistical tests as in *Fig. 4d*. P -values: not significant (ns) $P > 0.05$, * $P < 0.05$,
902 ** $P < 0.01$. **f**, Transcription factor binding site enrichment analysis of genes that were upregulated in
903 NAD treated cells in *Extended Data Fig. 7c* (22h, left). Circles correspond to transcription factor
904 annotations, circle sizes scale with the fraction of genes present in the annotation, and colors indicate
905 $-\log_{10}(\text{false discovery rate})$. **a,e** Boxplots as in *Fig. 1c*.

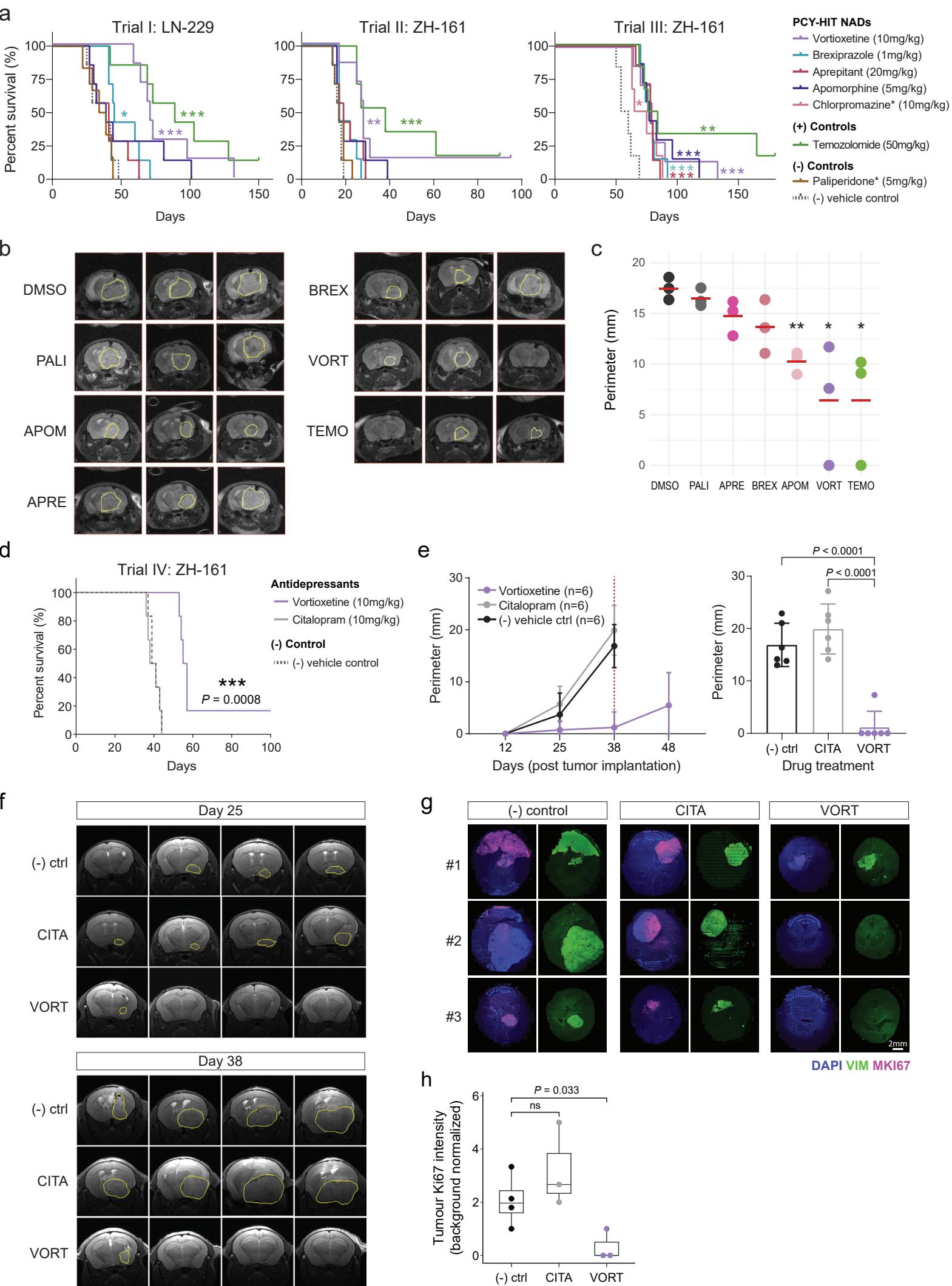
Extended Data Figure 8



906 **Extended Data Fig. 8: Measuring ER calcium store release, siRNA-mediated silencing**
907 **of COSTAR signature genes, and Vortioxetine-induced transcriptomic, proteomic and**
908 **phosphoproteomic response**

909 **a**, ER calcium store release upon drug treatment relative to DMSO vehicle control (fold change, 190-
910 430 seconds interval) measured by FLIPR assays in LN-229 cells (n=4 assay plates; n=18 conditions;
911 n=12 wells/drug; DMSO and Thapsigargin (TG) positive control, n=24 wells each). Different drug
912 categories including PCY-hit NADs, n=8 drugs; PCY-neg NADs, n=6 drugs; PCY-hit ONCDs, n=2 drugs;
913 and TG. Two-sided t-test against DMSO vehicle control. *P*-values adjusted for multiple comparisons by
914 Holm correction. *P*-values: TG, 2.86e-16. *****P* < 0.0001. Line indicates the median value. **b**, Relative
915 gene expression of BTG1, BTG2, JUN and Ki67 (panels) upon siRNA knockdown (columns) normalized
916 to the FLUC negative control siRNA (n=3 biological replicates; black dots). Boxplots as in *Fig. 1c*. **c**,
917 Principal component analysis (PCA) of replicate-averaged RNA-Seq counts following Vortioxetine
918 treatment (20 μ M) in LN-229 cells (n=3 replicates/time-point) colored by time-point. **d**, Time-point
919 comparisons (left, 3 hours vs 0 hours; right, 9 hours vs 0 hours) of proteomics measurements following
920 Vortioxetine treatment (Vort, 20 μ M; n=3 replicates/condition) in LN-229 cells shown as volcano plots
921 of log₂(fold change) versus $-\log_{10}(P\text{-value})$. Proteins above a $-\log_{10}(0.05\text{ P-value})$ threshold are
922 colored in purple. **e**, Heatmap of log₂(fold change) in gene expression per time-point (rows; relative to
923 0h) for the top 100 genes (columns) contributing to PC1 in *Extended Data Fig. 8c*. TP; time-point. AP-1
924 transcription factors and AP-1 effector genes in red. **f**, Gene Ontology (GO) gene set enrichment
925 analysis of signed $-\log_{10}(P\text{-values})$ of comparisons from *Extended Data Fig. 8d*. Bars represent the
926 normalized enrichment score (NES) and colors indicate $-\log_{10}(\text{false discovery rate})$. **g**, Log₂(fold
927 change) in protein expression per time-point (rows; relative to 0h) for the proteins (columns)
928 contributing to enriched GO term “GO:0001216 DNA-binding transcription activator activity” in
929 *Extended Data Fig. 8f*. AP-1 transcription factors are labeled in red. **h**, Connected protein-protein
930 interaction network of differentially abundant phosphoproteins upon Vortioxetine treatment (20 μ M;
931 n=3 replicates/condition) in LN-229 cells at any time-point. 22 out of 67 connected and significantly
932 enriched phosphoproteins are shown (asterisks; black labels) with high confidence STRING protein
933 interactions (grey labels). Cluster IDs (node colors) are based on the MCL algorithm with annotated
934 biological pathways. Heatmap depicts protein abundance- normalized phosphopeptide (rows)
935 intensities of JUN and HSPB1 across time-points (columns). Both genes are also significantly
936 upregulated at the transcript level across all time-points.

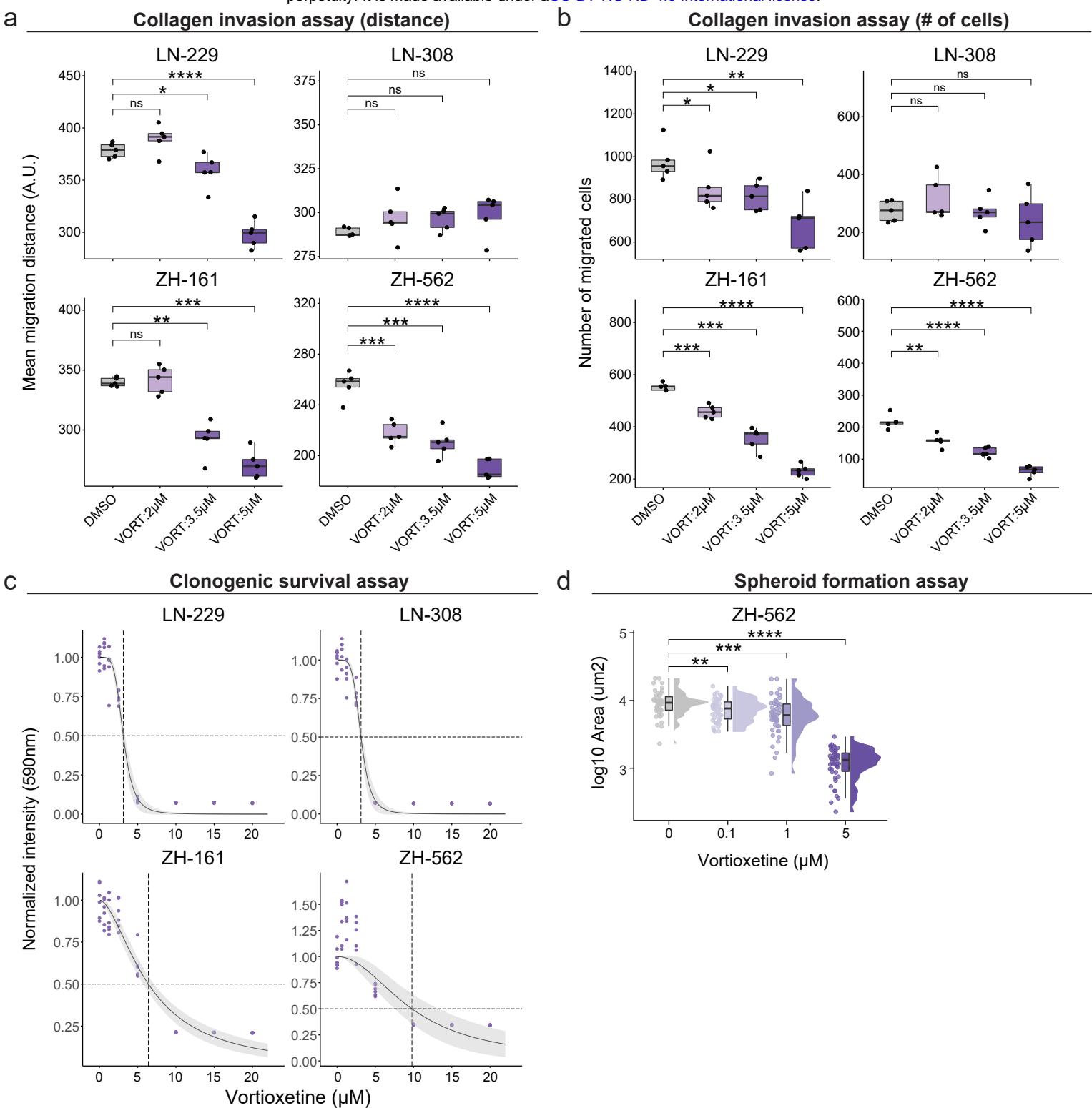
Extended Data Figure 9



937 **Extended Data Fig. 9: Top neuroactive drugs confer a significant survival benefit in**
938 **orthotopic *in vivo* mouse models of glioblastoma**

939 **a**, Complete survival analysis across three independent *in vivo* trials: Trial I: LN-229, Trial II: ZH-161,
940 and Trial III: ZH-161, each with n=6-7 tumour-bearing mice per drug treatment group and n=7 drug
941 treatments per trial. Mice were treated with their respective drugs for each trial intraperitoneally (*i.p.*)
942 between days 5-21 after tumour implantation. PCY-HIT NADs: Vortioxetine (VORT; 10mg/kg; Trial I,
943 $P=0.0001$; Trial II, $P=0.0016$; Trial III, $P=0.0006$); Brexpiprazole (BREX; 1mg/kg; Trial I, $P=0.0249$; Trial II,
944 ns; Trial III, $P=0.0002$); Aprepitant(APRE; 20mg/kg; Trial I, ns; Trial II, ns; Trial III, $P=0.0006$);
945 Apomorphine (APOM; 5mg/kg; Trial I, ns ; Trial II, ns; Trial III, $P=0.0005$); Chlorpromazine(CHLO;
946 10mg/kg; Trial III, $P=0.011$). Positive control (+): Temozolomide (TMZ; 50mg/kg; Trial I, $P=0.0009$; Trial
947 II, $P=0.0002$; Trial III, $P=0.0011$). PCY-NEG NAD: Paliperidone (PALI; 5mg/kg; Trial I, ns; Trial II, ns), and
948 a negative vehicle control. Drug names with asterisk (*) denote drugs used in a subset of the three *in*
949 *vivo* trials. Survival plotted as Kaplan–Meier curves and P -values calculated using log-rank (Mantel–
950 Cox) test. Censored mice denoted as tick marks. **b**, Representative MRI images of three ZH-161
951 transplanted mice (columns) after 15 days per drug treatment (n=7 drugs). Tumour perimeters are
952 indicated in yellow. **c**, Quantification of tumour perimeters corresponding to *Extended Data Fig. 9b*.
953 Dots represent the perimeter in mm (y-axis) for individual mice per drug (columns), red lines indicate
954 mean value. Two-sided t-test. P -values: Apomorphine (APOM; $P=0.0014$); Vortioxetine (VORT;
955 $P=0.034$); Temozolomide (TMZ; $P=0.0284$). P -values: not significant (ns) $P > 0.05$, * $P < 0.05$, ** $P < 0.01$.
956 **d**, Survival analysis of *in vivo* Trial IV: ZH-161-iRFP720 comparing the efficacy of the antidepressant
957 Vortioxetine (10mg/kg; $P=0.0008$) with a PCY-NEG antidepressant Citralopram (10mg/kg) and a
958 negative vehicle control (n=6 mice/treatment group). Drug treatment schedule and statistical analysis
959 was performed as in *Extended Data Fig. 9a*. **e**, Quantification of tumour perimeters of drug-treated
960 mice in **d**, at multiple time-points (left panel; n=6 mice/treatment group) post tumour implantation by
961 MRI. Right panel illustrates individual data points (mice) at day 38 post-implantation. **f**, Representative
962 MRI images of four ZH-161-iRFP720 transplanted mice (columns) after 25 days (top) and 38 days
963 (bottom) of drug treatment (n=3 drugs). Tumour perimeters are indicated in yellow. **g**, Representative
964 immunohistochemistry images of horizontal sections of mouse brains (n=3 mice/treatment group)
965 stained with human-specific Ki67 and Vimentin (VIM). **h**, Quantification of Ki67 tumour intensity
966 normalized to background per treatment group (n=3-4 mice analyzed per treatment).

Extended Data Figure 10



967 **Extended Data Fig. 10: The multi-faceted anti-glioblastoma effects of Vortioxetine**

968 **a**, Mean cell migration distance per condition (n=5 replicate wells) and **b**, number of migrated cells
969 measured in a collagen-based spheroid invasion assay after 36 hours of Vortioxetine treatment (2, 3.5,
970 5 μ M) across four glioblastoma cell lines; LN-229 (n=560-1125 cells/well), LN-308 (n=137-426
971 cells/well), ZH-161 (n=200-574 cells/well), ZH-562 (n=38-253 cells/well). **c**, Clonogenic survival
972 measured by a resazurin-based cell viability assay after 11-13 days of Vortioxetine treatment (7
973 concentrations; 0.625-20 μ M, n=6 replicate wells/concentration, n=50-500 cells/well) across four
974 glioblastoma cell lines; LN-229 LN-308, ZH-161, ZH-562. Dose-response fitted with a two-parameter
975 log-logistic distribution with 95% confidence intervals (light grey) and ED50 (dashed lines). **d**, Spheroid
976 formation analyzed by the 2D area of the ZH-562 line measured after 12 days of Vortioxetine treatment
977 (0.1-5 μ M). Approximately 5 cells/well initially seeded. DMSO; 0 μ M, n=45 replicate wells; 0.1 μ M, n=46,
978 P=0.005; 1 μ M, n=47, P=0.00027; 5 μ M, n=46, P<0.0001. Data is shown per concentration as a boxplot,
979 individual data points, and histogram. Boxplots as in *Fig. 1c*.

980 Methods

981 Patient sample processing

982 Surgically removed tumours were collected at the University Hospital of Zurich (Universitätsspital
983 Zürich, USZ) with approval by the Institutional Review Board, ethical approval number KEK-StV-
984 Nr.19/08, BASEC number 2008-02002. Metadata of the prospective and retrospective glioblastoma
985 patient cohorts including clinical parameters, experiment inclusion, and genetics summary can be
986 found in *Supplementary Table 1*. The prospective cohort consists of patients where fresh tissue was
987 processed directly within 4 hours after surgery (n=27 patients for drug screening, plus an additional
988 n=9 patients for validation experiments). For progression-free-survival (PFS) analysis of the prospective
989 cohort, only patients with newly diagnosed glioblastoma that received concomitant Temozolomide
990 (TMZ) chemotherapy were included. The retrospective cohort (n=18 patients) consists of patients for
991 which snap-frozen bio-banked tissue was available. All retrospectively studied patients included
992 received maintenance TMZ with overall-survival (OS) documented as a clinical endpoint. Retrospective
993 samples were selected to cover a broad spectrum of progression-free survival outcomes, and were
994 further selected based on quality control measures including cell viability, cell number, and the amount
995 of debris present in the sample.

996 Patient sample dissociation for *ex vivo* drug screening

997 Tissue samples were first washed with PBS and cut into small pieces using single-use sterile scalpels.
998 Subsequent dissociation was performed in reduced serum media (DMEM media; #41966 with 2% FBS;
999 #10270106, 1% Pen-strep; #15140122, and 25mM HEPES; #15630056, all products from Gibco)
1000 supplemented with Collagenase IV (1mg/ml) and DNaseI (0.1mg/ml) using the gentle MACS Octo
1001 Dissociator (Miltenyi Biotec, 130-096-427) for maximally 40 minutes. Homogenates were filtered
1002 through a 70µm Corning cell strainer (Sigma-Aldrich, #CLS431751) and washed once with PBS
1003 containing 2mM EDTA. Myelin and debris removal was performed by a gradient centrifugation of the
1004 cell suspension in a 7:3 mix of PBS:Percoll (Sigma-Aldrich, #P4937), with an additional PBS wash. In
1005 case the cell pellet visibly contained a significant portion of red blood cells (RBCs), RBC lysis was
1006 performed with 1X RBC lysis buffer (Biolegend, #420301) at room temperature for 10 minutes prior to
1007 the PBS wash. Subsequently, cells were resuspended in reduced serum media, filtered once more
1008 through a 70µm Corning cell strainer, and counted using the Countess II Automated Cell Counter
1009 (Invitrogen). In case sufficient cell numbers remained after cell seeding for *ex vivo* drug testing (see
1010 also 'Pharmacoscopy' methods), cells were cryopreserved in 10% DMSO-containing cryopreservation
1011 media, and/or cultured in DMEM media supplemented with 10% fetal bovine serum, 1% Pen-strep,
1012 and 25mM HEPES to obtain low-passage patient-derived cell lines (PDCs) maintained as adherent cell
1013 cultures.

1014 Patient *in situ* tissue characterization by H&E staining and immunohistochemistry (IHC)

1015 Patient tissue samples obtained directly from surgery were fixed using 4% formalin and embedded in
1016 paraffin. The paraffin embedded tissue was sliced in 5 µm sections. Deparaffinized tissue sections were
1017 subsequently stained with hematoxylin (Artechemis AG, Switzerland) and eosin (Sigma-Aldrich, USA)
1018 using the Tissue-Tek Prisma automated staining system. Imaging of H&E stained patient tissue sections
1019 (*Supplementary Data Fig. S3*) was performed by bright-field imaging at 40x using the Pannoramic 250
1020 Slide Scanner (3DHISTECH). Based on nuclei and cell morphologies observed in the H&E images, non-

1021 necrotic tumour regions were annotated and confirmed by a board-certified neuropathologist (D.K.,
1022 E.R.).

1023 For immunohistochemistry (IHC) of patient tissue sections, deparaffinization and rehydration was
1024 performed using an automated continuous linear stainer (Medite, COT20) containing xylene and serial
1025 dilutions of EtOH (100%, 95%, 70%). Tissue sections were immediately subjected to heat-mediated
1026 antigen retrieval at 95°C for 10 minutes in 1X pH6.0 sodium citrate buffer (Sigma-Aldrich, #21545) using
1027 Micromed T/T Mega Multifunctional Microwave Rapid Histoprocessor (Milestone). Tissue sections
1028 were subsequently fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS, blocked in 5% FBS and 0.1%
1029 Triton containing PBS, and stained overnight at 4°C in blocking solution with the following primary
1030 antibodies and dilutions: anti-Nestin (1:150, Biolegend, #656802, clone 10C2), anti-EGFR (1:300,
1031 Abcam, #ab98133), anti-S100 beta antibody (1:300, Abcam, #ab215989, clone EP1576Y). Secondary
1032 antibodies used include the following: donkey anti-sheep IgG (H+L) cross-adsorbed secondary
1033 antibody, Alexa Fluor™ 488 (Thermo Scientific, #A11015), goat anti-mouse IgG (H+L) highly cross-
1034 adsorbed secondary antibody, Alexa Fluor™ Plus 555 (Thermo Scientific, #A32727), goat anti-rabbit IgG
1035 (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (Thermo Scientific, #A32733).

1036 Confocal imaging of tissue sections was performed at 100x magnification with the Nikon Spinning Disk
1037 SoRa microscope where z-stack images compiling 31 series of 0.2 µm z-steps were taken. Maximum
1038 intensity projection of z-stacks were obtained by ImageJ and single cells were segmented based on
1039 their nuclei (DAPI channel) and cytoplasm (binarized Nestin channel) using CellProfiler 2.2.0.
1040 Downstream image analysis was performed with MATLAB R2019a-R2020a based on 'Nuclei' and
1041 associated 'Cell' features from CellProfiler. Nestin+ cells were filtered based on the intensity histogram
1042 of the Nestin channel. Manual tracing of single-cell morphologies (Extended Data Fig. 2j) was
1043 performed in Adobe Illustrator from binarized Nestin channel images by creating vectorized objects
1044 using the 'Image Trace' tool and visually verified traces selected for display purposes.

1045 **Cell culture**

1046 The adherent human glioblastoma cell lines LN-229 (ATCC, #CRL-2611) and LN-308, and patient-
1047 derived cell cultures (P022.C, P024.C, P030.C) were cultured in Dulbecco's modified Eagle medium
1048 (DMEM, #41966, Gibco) supplemented with 10% fetal bovine serum (FBS, #10270106, Gibco).
1049 Adherent human glioblastoma cell lines and patient-derived cell cultures were passaged using Trypsin-
1050 EDTA (0.25%, Gibco, #25200056). For DRUG-seq, RNA-Seq, siRNA knockdown, and proteomics
1051 measurements using LN-229 cells, low-passage cells below passage 15 were used. The spheroid human
1052 glioblastoma-initiating cell lines ZH-161 and ZH-562 was generated from freshly isolated tumour tissue
1053 and cultured in Neurobasal medium (NB, #21103049, Gibco) supplemented with B27 (Gibco,
1054 #17504044), 20 ng/mL b-FGF (Peprotech, #AF-100-18B), 20 ng/mL EGF (Peprotech, #AF-100-15), 2 mM
1055 L-glutamine (Gibco, #25030081). ZH-161 and ZH-562 cells were passaged using Accutase (Stemcell
1056 Technologies, #07920). Glioblastoma cell lines were authenticated at the Leibniz Institute DSMZ
1057 (Braunschweig, Germany) and regularly tested negative for mycoplasma. All cell cultures were
1058 maintained at 37°C, 5% CO₂ in a humidified incubator.

1059 **Pharmacoscopy (drug testing, immunocytochemistry, confocal microscopy, image analysis)**

1060 The method of '*pharmacoscopy*' refers to high-content image-based drug testing including the following
1061 steps of cell seeding, drug testing, immunocytochemistry, confocal microscopy, image analysis, and
1062 pharmacoscopy score calculation for each tested drug.

1063 *Cell seeding and drug testing*

1064 To perform pharmacoscopy of glioblastoma patient samples, freshly dissociated cells from resected
1065 tissue (see also methods relating to '*Patient sample processing*') were seeded into clear-bottom,
1066 tissue-culture treated, CellCarrier-384 Ultra Microplates (Perkin Elmer, #6057300) with 0.5-1.5x10⁴
1067 cells/well, typically within 4 hours of surgery. For cultured glioblastoma cell lines and patient derived
1068 cell cultures, trypsinized or accutase-treated cells were seeded at 0.5-2.5x10³ cells/well in 384 well
1069 plates. Prior to cell seeding, drugs were re-suspended as 5mM stock solutions and dispensed into 384
1070 well plates using an Echo 550 liquid handler (Labcyte) at their respective concentrations in a
1071 randomized plate layout to control for plate effects. Detailed information regarding drugs used in this
1072 study can be found in *Supplementary Table 3*. Different drug libraries included glioblastoma drugs
1073 (GSDs, n=3 drugs), oncology drugs (ONCDs, n=65 drugs), and neuroactive drugs (NADs, n=67 drugs).
1074 GSDs were tested at the following concentrations: Temozolomide (TMZ; 1st-line glioblastoma
1075 chemotherapy; 50, 100, 250, 500μM) and Lomustine/Carmustine (CCNU and BCNU respectively; 2nd-
1076 line glioblastoma chemotherapies; 10, 50, 100, 250μM). All ONCDs were tested at 1 and 10μM
1077 concentrations. All NADs were tested at 20μM and for select NADs (*Extended Data Fig. 4a,b* and
1078 *Supplementary Data Fig. S4*) a concentration range of 0.1-100μM was tested. Drug plates included the
1079 following number of replicate wells per drug/concentration: GSD plate, drug, n=3 wells, DMSO, n=16
1080 wells; NAD plate, drug, n=4 wells, DMSO, n=16-24 wells; ONCD plate, drug, n=4 wells, DMSO, n=16
1081 wells. Cells were incubated for 48 hours with drugs in reduced serum media at 37°C, 5% CO₂ before
1082 proceeding to cell fixation.

1083 *Immunocytochemistry*

1084 Cells were fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS and blocked in 5% FBS and 0.1% Triton
1085 containing PBS. For characterization of cellular and morphological composition across glioblastoma
1086 patient samples, cells were stained overnight at 4°C in blocking solution with the following antibodies
1087 and dilutions: Alexa Fluor® 488 anti-S100 beta (1:1000, Abcam, #ab196442, clone EP1576Y), PE anti-
1088 Nestin (1:150, Biolegend, #656806, clone 10C2), Alexa Fluor® 488 anti-CD3 (1:300, Biolegend, #300415,
1089 clone UC1T1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538, clone 2D1) and DAPI (1:1000,
1090 Biolegend, #422801, stock solution 10mg/ml). Due to the manufacturer discontinuation of the Alexa
1091 Fluor® 488 anti-S100 beta antibody, from patient sample P030 and onwards in the prospective cohort,
1092 samples were either stained with a self-conjugated Alexa Fluor® 488 anti-S100 beta antibody, where
1093 Alexa Fluor™ 488 NHS Ester (Thermo Scientific, #A20000) was conjugated to the anti-S100 beta
1094 antibody (Abcam, #ab215989, clone EP1576Y) or the following antibody panel where the 488 and 555
1095 channel markers were swapped: Alexa Fluor® 488 anti-Nestin (1:150, Biolegend, #656812, clone 10C2),
1096 Alexa Fluor® 555 anti-S100 beta (1:1000, Abcam, #ab274881, clone EP1576Y), PE anti-CD3 (1:300,
1097 Biolegend, #300441, clone UC1T1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538, clone
1098 2D1).

1099 Other conjugated antibodies used in this study include the following: Alexa Fluor® 647 anti-Tubulin
1100 Beta 3 (1:1000, Biolegend, #657406, clone AA10), Alexa Fluor® 488 anti-Vimentin (1:500, Biolegend,
1101 #677809, clone O91D3), Alexa Fluor® 555 anti-Cleaved Caspase-3 (1:500, Cell Signaling Technology,
1102 #9604S), Alexa Fluor® 546 anti-HOMER (1:300, Santa Cruz Biotechnology, #sc-17842 AF546, clone D-
1103 3), PE anti-CFOS (1:300, Cell Signaling Technology, #14609S, clone 9F6), FITC anti-ATF4 (1:300, Abcam,
1104 #ab225332), Alexa Fluor® 488 anti-JUND (1:300, Santa Cruz Biotechnology, #sc-271938 AF488, clone
1105 D-9), Alexa Fluor® 594 anti-CD45 (1:300, Biolegend, #368520, clone 2D1).

1106 Other unconjugated antibodies used in this study include the following: anti-Connexin43 (1:500, Cell
1107 Signaling Technology, #83649T), anti-EGFR (1:300, Abcam, #ab98133), anti-CHI3L1 (1:300, Cell
1108 Signaling Technology, #47066S, clone E2L1M), anti-Nestin (1:150, Biolegend, #656802, clone 10C2),
1109 anti-S100 beta antibody (1:300, Abcam, #ab215989, clone EP1576Y), anti-Ki67 (1:300, Cell Signaling
1110 Technology, #9129S, clone D3B5). For unconjugated primary antibodies, the following secondary
1111 antibodies were used: donkey anti-sheep IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor™
1112 488 (Thermo Scientific, #A11015), goat anti-mouse IgG (H+L) highly cross-adsorbed secondary
1113 antibody, Alexa Fluor™ Plus 555 (Thermo Scientific, #A32727), goat anti-rabbit IgG (H+L) highly cross-
1114 adsorbed secondary antibody, Alexa Fluor Plus 647 (Thermo Scientific, #A32733).

1115 *Confocal imaging and image analysis*

1116 Imaging of the 384 well plates was performed with an Opera Phenix automated spinning-disk confocal
1117 microscope (Perkin Elmer, HH14000000) at 20x magnification for all drug screening assays with the
1118 exception of 3D glioblastoma cell lines (ZH-161, ZH-562) where drug screening was performed at 10x
1119 magnification. Select images were imaged at 40x for visualization. Single cells were segmented based
1120 on their nuclei (DAPI channel) using CellProfiler 2.2.0. Downstream image analysis was performed with
1121 MATLAB R2019a-R2020a. Fractions of marker positive cells for each drug condition were derived for
1122 each patient sample based on the histograms of the local background corrected intensity
1123 measurements across the whole drug plate. In patient samples, marker positive populations were
1124 defined as following: glioblastoma cells ([Nestin+ or S100B+] and CD45-) and four Nestin+CD45- GSC
1125 morphotypes: M1 polygonal with extensions (M1:PE), M2 elongated with extensions (M2:EE), M3
1126 round big cells (M3:RB), and M4 round small cells (M4:RS). Other cell types include immune cells
1127 (CD45+ and S100B-Nestin-) and marker-negative cells (S100B-Nestin-CD45-). Marker positive fractions
1128 were averaged across each well/drug. Deep learning analysis of Nestin+ glioblastoma stem cell (GSC)
1129 morphologies was performed at baseline (DMSO) and upon neuroactive drug (NAD) treatment for each
1130 patient, where the methodology is further detailed in the methods section '*Deep learning of*
1131 *glioblastoma stem cell morphologies*'.

1132 *Pharmacoscopy score calculation*

1133 The pharmacoscopy score (PCY score) quantifies the drug-induced relative reduction of any marker-
1134 or morphology-defined cell population by measuring the change of a defined target population upon
1135 drug treatment compared to DMSO (-) vehicle control. In patient samples, the PCY score is calculated
1136 based on the fraction of ([Nestin+ or S100B+] and CD45- cells) out of all cells, or the fraction of
1137 [Nestin+CD45-] GSC morphotypes (M1-M4) out of all cells. In patient-derived cell lines, the score is
1138 based on [Nestin+] cells out of all cells. By all cells, we refer to any detected cell with a DAPI+ nucleus.

1139
$$\text{PCY score} = 1 - \{ [\text{TP}_{\text{DRUG}}] \div [\text{TP}_{\text{DMSO}}] \}$$

1140 where: TP_{DRUG} = fraction of the target population in a given DRUG condition of all cells

1141 TP_{DMSO} = fraction of the target population in the DMSO control condition of all cells

1142 PCY scores are averaged across technical replicates for each drug or control condition. For example, a
1143 positive PCY score of 0.5 can be interpreted as a drug-induced 50% reduction of the target population
1144 relative to the DMSO vehicle control. Additionally, in cases where the drug is cytotoxic and non-
1145 selectively kills every cell population equally or the drug does not exert an effect, the PCY score will be

1146 0, and in cases where the target population proliferates upon drug-treatment, or exhibits higher
1147 toxicity to other cell populations other than the target population, the PCY score will be negative. In
1148 summary, a positive PCY score of 1 represents the strongest possible “on-target” response, a PCY score
1149 of 0 indicates no effect/equal cytotoxicity, and a negative PCY score indicates higher toxicity to other
1150 cell populations other than the defined target population. In cases where a target population is not
1151 defined as such for the glioblastoma cell lines, drug response and cell viability is measured as total cell
1152 number reduction in LN-229 and LN-308 lines and a reduction of 2D-projected total spheroid area in
1153 ZH-161 and ZH-562 lines.

1154 *Demonstration of pharmacoscopy score robustness to apoptotic cells*

1155 To experimentally validate the robustness of the PCY score to apoptotic cells, we performed complete
1156 *ex vivo* neuroactive drug (NAD, n=67 drugs) screens in two validation patient samples (P048 and P049)
1157 by explicitly staining the entire drug plate for cleaved CASP3 by immunofluorescence. Presented in
1158 *Extended Data Fig. 4c-e*, the drug response results show excellent reproducibility, both when
1159 comparing the original PCY scores with the PCY scores obtained after excluding CASP3+ cells by
1160 immunofluorescence, as well as when comparing the PCY scores after excluding CASP3+ cells defined
1161 either by IF or by the CNN apoptotic classifier (see also *Methods* ‘Image-based deep learning - Deep
1162 learning of apoptotic cell morphologies’). Finally, we re-calculated the PCY scores by excluding the
1163 CNN-classified apoptotic cells measured across all 27 patient samples and 67 neuroactive drugs and
1164 compared it to the original PCY scores reported in the manuscript (*Fig. 2f*). The drug response
1165 correlation with or without the inclusion of apoptotic cells was 0.988, demonstrating that the PCY score
1166 is highly robust to the presence of apoptotic cells (*Extended Data Fig. 4e*), and can be expected to be
1167 equally robust to other forms of cell death.

1168 **Targeted Next Generation Sequencing (NGS, Oncomine Comprehensive Assay v3)**

1169 Tissue blocks from patient-matched glioblastomas were used to determine genetic alterations
1170 including mutations, copy number variations and gene fusions. Formalin-fixed paraffin-embedded
1171 (FFPE) tissue blocks were collected from the Tissue Biobank at the University Hospital Zurich (USZ).
1172 Tumour area was marked on the H&E slide and relative tumour cell content was estimated by a trained
1173 pathologist. 1-3 cores cylinders (0.6 mm diameter) from the tumour area of the FFPE blocks were used
1174 for DNA and RNA isolation. DNA was isolated with the Maxwell 16 FFPE Tissue LEV DNA Purification Kit
1175 (Promega, #AS1130). The double-strand DNA concentration (dsDNA) was determined using the
1176 fluorescence-based Qubit dsDNA HS Assay Kit. RNA was extracted with the Maxwell 16 FFPE Tissue LEV
1177 RNA Purification Kit (Promega, #AS1260). To avoid genomic DNA contamination, samples were
1178 pretreated with DNase1 for 15 min at room temperature (RT). Library preparation with 20 ng DNA or
1179 RNA input was conducted using the Oncomine Comprehensive Assay v3. Adaptor/barcode ligation,
1180 purification and equilibration was automated with Tecan Liquid Handler (EVO-100). NGS libraries were
1181 templated using Ion Chef and sequenced on a S5 (Thermo Fisher Scientific), and data were analyzed
1182 using Ion Reporter Software 5.14 with Applied Filter Chain: Oncomine Variants (5.14) settings and
1183 Annotation Set: Oncomine Comprehensive Assay v3 Annotations v1.4.

1184 For NGS data analysis, the Ion Reporter Software within Torrent Suite Software was used, enabling
1185 detection of small nucleic variants (SNVs), copy number variations (CNVs), gene fusions and indels from
1186 161 unique cancer driver genes. Detected sequence variants were evaluated for their pathogenicity
1187 based on previous literature and the ‘ClinVar’ database⁸². Gene alterations described as benign or

1188 likely benign were not included in our results. Non-pathogenic mutations harboring a Minor Allele
1189 Frequency higher than 0.01 were not selected. The Default Fusion View parameter was selected. For
1190 CNV confidence range, the default filter was used to detect gains and losses using the confidence
1191 interval values of 5% confidence interval for Minimum Ploidy Gain over the expected value and 95%
1192 confidence interval for Minimum Ploidy Loss under the expected value. CNV low confidence range was
1193 defined for gain by copy number from 4 to 6 (lowest value observed for CNV confidence interval
1194 5%:2.9) and loss from 0.5 to 1 (highest value observed for CNV confidence interval 95%:2.43). High
1195 confidence range was defined by gain up to 6 copy number (lowest value observed for CNV confidence
1196 interval 5%:4.54) and loss below 0.5 copy number (highest value observed for CNV confidence interval
1197 95%:1.37). 5% and 95% interval confidence of all selected loss and gain are available in *Supplementary*
1198 *Table 2*. The minimum number of tiles required was eight. Results are reported as detected copy
1199 number.

1200 **Single-cell RNA-Seq and re-analysis of other published datasets**

1201 *Generation of cohort-matched scRNA-Seq datasets of glioblastoma patient samples*

1202 Cryopreserved single-cell suspensions of glioblastoma patient samples that were part of the
1203 prospective cohort were thawed in reduced serum media (DMEM containing 2% FBS) and used for
1204 single-cell RNA-Seq experiments. Viability markers SYTOX Blue (1 μ M, Thermo Fisher, #S11348) and
1205 DRAQ5 (1 μ M, Biolegend, #424101) were added to the cell suspension at least 15 minutes before
1206 sorting. FACS gates were set based on CD45 (Alexa Fluor[®] 594 anti-CD45, 1:20, Biolegend, #368520,
1207 clone 2D1), SYTOX Blue and DRAQ5 intensities to isolate live CD45+ and CD45- populations as shown
1208 in *Supplementary Fig. S1* using the BD FACSAriaTM Fusion Cell Sorter. Cells were sorted into DNA
1209 LoBind[®] Eppendorf tubes (VWR, #525-0130), then CD45- cells were mixed with CD45+ cells at 2:1 to
1210 10:1 ratios depending on cell availability to enrich for glioblastoma cells. Single-cell transcriptomes
1211 from four patient samples (P007, P011, P012, P013; n=7684 cells) visualized in *Fig. 1b, Extended Data*
1212 *Fig. 1b, and Supplementary Fig. S1* are referred to as 'Lee *et al.*; this study'. For patient sample P024
1213 that was used to measure the effect of Vortioxetine drug treatment, FAC-sorted cells were incubated
1214 for 3 hours with or without 20 μ M Vortioxetine before proceeding to library preparation. Single-cell
1215 RNA-Seq library preparation was performed using the Chromium Next GEM Single Cell 3' v3.0 and v3.1
1216 kits (10x Genomics). Libraries were sequenced on the Novaseq 6000 (Illumina). Read alignment to the
1217 GRCh38 human reference genome, generation of feature-barcode matrices, and aggregation of
1218 multiple samples were performed using the Cell Ranger analysis pipeline (10x genomics, versions 3.0.1
1219 and 6.1.1). Four patient samples (P007, P011, P012, P013) were processed in November 2019 with the
1220 earlier version of 10x Genomics library prep kits and Cell Ranger analysis pipeline while the later sample
1221 (P024) was processed in September 2021. Quality control for this in-house dataset was performed by
1222 only analyzing high-quality cells with fewer than 10% of mitochondrial transcripts and genes that had
1223 at least a count of 2 in at least 3 cells. For the Lee *et al.* dataset, an expression threshold of
1224 $\log_2(\text{count}+1) > 3$ was applied to consider a gene expressed in a given cell. Only patient samples with
1225 more than 50 positive cells for a given gene were considered in *Fig. 1c* and *Extended Data Fig. 1g*.

1226 UMAP clusters in *Fig. 1b* are based on Leiden community detection and cell types are assigned by
1227 marker expression. Top marker genes per scRNA-Seq cluster in *Fig. 1b* that are expressed in more than
1228 10 percent of cells per cluster are shown in *Supplementary Fig. S1b,c*. Glioblastoma (GBM) clusters are
1229 numbered in descending order based on cluster-averaged expression of the Gene Ontology term "stem
1230 cell differentiation" (GO:0048863).

1231 *Re-analysis of other published scRNA-Seq datasets*

1232 To analyze additional glioblastoma patient cohorts by single-cell RNA-Seq, we utilized two published
1233 datasets: (Neftel *et al.* 2019) and (Yu *et al.* 2020). For Neftel *et al.*, we removed cells with less than 2^9
1234 detected genes and/or more than 15% of mitochondrial transcripts. For Yu *et al.* the data was already
1235 prefiltered, but patient samples (7-9, 14-15) that did not correspond to glioblastoma (grade IV
1236 astrocytomas) were not included. For both datasets only genes that had at a count of 2 in at least 2
1237 cells were included in the analysis. For the Neftel *et al.* and Yu *et al.* datasets, expression thresholds of
1238 $\log_2(\text{count}+1)$ over 5 and 3, respectively, were applied to consider a gene expressed in a given cell.
1239 Only patient samples with more than 50 positive cells for a given gene were considered in *Fig. 1c* and
1240 *Extended Data Fig. 1g*.

1241 *Cell-type specific enrichment analysis (CSEA) of gene modules enriched in Nestin/S100B/CD45-negative*
1242 *cells ('All Neg')*

1243 To determine putative cell types represented in Nestin-S100B-CD45- cells ('All Neg') by scRNA-Seq we
1244 analyzed the $\log_2(\text{fold change})$ of 'All Neg' enriched genes compared to '([Nestin+ or S100B+] and
1245 CD45-)' glioblastoma cells. First, we created an aggregated average 'metacell' for each patient and
1246 subpopulation (either 'All Neg' or glioblastoma cells) by summing the counts across each patient-
1247 subpopulation and dividing this by the number of cells in the corresponding patient-subpopulation.
1248 This generated an aggregated average 'All Neg' metacell and glioblastoma metacell for each patient.
1249 Next, considering only genes where the aggregate-averaged expression is above 1 in at least one
1250 metacell type, we calculated the $\log_2(\text{fold change})$ of ['All Neg' metacell]/[glioblastoma metacell] per
1251 gene and per patient. Manhattan distance-based clustering of the top-10 $\log_2(\text{fold change})$ of 'All Neg'
1252 enriched genes per patient are visualized in *Extended Data Fig. 1k* across the three scRNA-Seq patient
1253 cohorts. Finally, dendrogram tree cutting of 'All Neg' enriched genes yielded gene modules (Modules
1254 1-3) that were analyzed by WebCSEA (cell-type specific enrichment analysis; across 111 scRNA-Seq
1255 panels of human tissues and 1,355 tissue cell types;⁸³) to determine most likely cell types represented
1256 by the respective gene modules. The top-7 most likely cell types representing each 'All Neg' gene
1257 module ranked by the lowest combined p-values are shown in *Extended Data Fig. 1l*.

1258 *Neural and patient specificity score analysis*

1259 Neural specificity scores and patient specificity scores for each gene were defined as follows: using the
1260 in-house dataset, we identified putative cell types by unsupervised clustering using Monocle⁸⁴ and
1261 annotated the clusters based on known marker genes as being either immune or neural cells. We then
1262 obtained a list of differentially expressed genes between immune and neural cells using DESingle⁸⁵,
1263 using a logFC cutoff of 0.5. This yielded a list of 11571 neural-specific and 1157 immune specific genes.
1264 Using these lists as cell-type specific gene sets, we calculated an immune- and a neural score for each
1265 cell using singscore, and classified every cell in the additional datasets as either neural or immune
1266 based on a linear combination of both scores. To assess how specifically a gene is expressed in neural
1267 cells, we defined a '*neural specificity score*' as follows: [*neural specificity* = *fraction of neural cells*
1268 *expressing gene* – *fraction of immune cells expressing gene*] where we define expression of a gene in
1269 a cell as having any non-zero count. Thus, a positive score indicates that a gene is more often found in
1270 neural cells than in immune cells, and vice versa for negative scores. This score ranges from -1 (gene is
1271 expressed in all immune cells and no neural cells) to =1 (gene is expressed in all neural cells and no
1272 immune cells). Note that for low expressed genes, this score will be close to 0, reflecting the fact that
1273 we cannot make clear statements about cell type specificity for genes with expression values close to

1274 the detection limit of scRNA-Seq. To assess how much gene expression for a single gene varies across
1275 patients, we defined a '*patient specificity score*' as follows: First, for every gene gi and every patient pj
1276 we calculated a cell type composition independent fraction of cells expressing gene gi as
1277 $[Fraction_expressing_ij = fraction_expressing_immune_ij + fraction_expressing_neural_ij]$. We then
1278 defined patient specificity as the median absolute deviation (MAD) of fraction_expressing across all
1279 patients, thus defining $[Patient_specificity_i = mad(Fraction_expressing_i,:)]$.

1280 **Deep learning-based image analysis**

1281 *Deep learning of glioblastoma stem cell (GSC) morphotypes*

1282 To generate a training dataset, Nestin+CD45- cells identified by immunofluorescence (IF) across the
1283 whole prospective glioblastoma patient cohort (n=27 patients) were cropped as 5-channel 150x150
1284 pixel images. These single-cell image crops were then manually-curated and labeled as four
1285 morphological classes (M1-M4 GSC morphotypes) based on their shape, size, and presence of tumour
1286 extensions. A convolutional neural network (CNN) with a modified AlexNet architecture ⁸⁶ with the
1287 number of output classes set to 4 was then trained on this manually-curated training data with 12,757
1288 images per class and 51,028 images in total. CNN training included usage of the Adam optimizer, with
1289 a mini-batch size of 150 and a maximum number of 30 epochs. The initial learning rate was set to 0.001
1290 with a piecewise learning rate schedule and a drop factor of 0.01 every 6 epochs.

1291 Network performance on a manually-curated test image dataset consisting of 10,204 Nestin+ single-
1292 cell crops is shown as a confusion matrix in *Extended Data Fig. 2a*. All Nestin+ single-cell images were
1293 subsequently classified by this pre-trained CNN to determine GSC morphotype abundances across
1294 patients and drug conditions. For visualization of the CNN-based GSC morphotypes, UMAP plots were
1295 generated based on the CNN feature space that consists of ten dimensional activations taken from the
1296 2nd-last fully connected layer of the network. The CNN feature space of 84,180 cells (maximally 1000
1297 cells per class and patient, n=27 patients) was projected on the UMAP using the following parameters:
1298 distance metric, seuclidean; number of neighbors, 10; minimal distance, 0.06. Different morphological
1299 and marker-based features from the original cell segmentation determined by CellProfiler 2.2.0 such
1300 as cell area, eccentricity, and roundness, and mean marker intensity were selected for visualization.

1301 *Deep learning of multicellular IHC images*

1302 For deep learning of multicellular IHC images of DAPI- and Nestin-stained patient tissue sections a pre-
1303 trained version of the AlexNet CNN available in MATLAB R2023a was used. 50 full size IHC images (2304
1304 x 2304 pixels; n=5 images/patient across 10 patients) at 100x magnification were automatically resized
1305 using an augmented image datastore and analyzed by this AlexNet for unsupervised clustering of
1306 image features. Dimensionality reduction on the activations from the last fully connected layer 'fc8'
1307 was performed by principal component analysis (PCA) as shown in *Fig. 1j*.

1308 *Deep learning of apoptotic cell morphologies*

1309 To generate a training dataset, across 6 glioblastoma patient samples, cleaved CASP3+/- cells by IF
1310 were cropped as 5-channel 50x50 pixel images. 6,072 single-cell image crops were then manually-
1311 curated and labeled as two classes (CASP3+ or CASP3-) based on their cleaved CASP3 staining. A
1312 convolutional neural network (CNN) with a modified AlexNet architecture ⁸⁶ with the image input size
1313 set as 50x50x2 (2-channel classifier; including only the brightfield (BF) and DAPI channels) and number
1314 of output classes set to 2 (CASP3+/CASP3-) was then trained on this manually-curated image dataset

1315 (n=6,072 single-cell images; split by a 8:2 ratio into training and test data, respectively). CNN training
1316 included usage of the Adam optimizer, with a mini-batch size of 64 and a maximum number of 30
1317 epochs. The initial learning rate was set to 0.01 with a piecewise learning rate schedule and a drop
1318 factor of 0.1 every 10 epochs.

1319 Network performance on a manually-curated test image dataset consisting of 1,214 single-cell crops is
1320 shown as a confusion matrix in *Extended Data Fig. 1i*. All DAPI+ nuclei detected in patient samples were
1321 retrospectively classified by this apoptotic classifier CNN based on the BF and DAPI channels to quantify
1322 apoptotic fractions across the prospective patient cohort, marker-based subpopulations, GSC
1323 morphotypes, and drug conditions. Cells were classified as apoptotic (CASP3+) based on a CNN
1324 confidence threshold of 87%, close to the True Positive Rate (TPR) of the classifier.

1325 **siRNA knockdown and quantitative real-time PCR**

1326 All siRNAs used in the study were part of the MISSION® esiRNA (Sigma-Aldrich, Euphoria Biotech)
1327 library (*Supplementary Table 5*) and ordered as custom gene arrays (esiOPEN, esiFLEX). FLUC esiRNA
1328 (EHUFLUC) targeting firefly Luciferase was used as a negative control, and KIF11 esiRNA (EHU019931)
1329 was used as a positive control for transfection and viability. For all siRNA experiments, low-passage LN-
1330 229 cells were used. siRNAs were transfected at 10ng/well in 384 well plates and 40ng/well in 96 well
1331 plates using Lipofectamine RNAiMAX (Invitrogen, #13778075). Imaging and drug incubation
1332 experiments were conducted in 384 well plates, while Incucyte live cell imaging and cell lysis
1333 preparation for RNA extraction and quantitative real-time PCR was performed in 96 well plates. For
1334 384 well plates, both the siRNAs and Lipofectamine transfection reagent were dispensed using a
1335 Labcyte Echo liquid handler in a randomized plate layout to control for plate effects when possible. For
1336 data presented in *Extended Data Fig. 5c,d, and Extended Data Fig. 8b*, cells were incubated at 37°C,
1337 5% CO₂ for 48 hours following siRNA transfection before fixing, immunohistochemistry, and RNA
1338 extraction. For data presented in *Fig. 4j*, following 48 hours of siRNA transfection, cells were incubated
1339 for an additional 24 hours with either DMSO vehicle control or Vortioxetine (10μM) before fixing and
1340 subsequent analysis.

1341 siRNA knockdown efficiency and relative abundance for the following target genes; BTG1, BTG2, JUN,
1342 and MKI67 was measured by TaqMan™ Array plates (Applied Biosystems, Standard, 96-well Plate;
1343 Format 16 with candidate endogenous controls) using the TaqMan™ Fast Advanced Master Mix
1344 (Thermo Scientific, #A44360) on a QuantStudio™ 3 Real-Time PCR System (Applied Biosystems,
1345 #A28567). Total RNA from LN-229 cells was extracted using the Direct-zol RNA MicroPrep Kit (Zymo
1346 Research, #R2062), RNA concentration was measured using the Qubit 4 Fluorometer (Thermo
1347 Scientific), and cDNA synthesized with the iScript™ cDNA Synthesis Kit (Bio-Rad, #1708890). For each
1348 TaqMan biological replicate assay (n=3 replicates) 25ng of cDNA per sample was used. To calculate the
1349 relative abundance of each target gene, the geometric mean Ct value of four endogenous control
1350 genes (18s rRNA, GAPDH, HPRT, GUSB) was subtracted from each [sample-target gene] Ct value to
1351 derive the deltaCt (dCt) value. Then, the mean deltaCt value from FLUC negative control samples was
1352 subtracted from each [sample-target gene] deltaCt value to derive the delta-deltaCt (ddCt) value.
1353 Finally, relative abundance (fold-difference) of each [sample-target gene] was calculated as the 2^(-ddCt).
1354

1355 **COSTAR: Convergence of secondary drug-targets analyzed by regularized regression**

1356 COSTAR is an interpretable molecular machine learning approach that utilizes logistic LASSO regression
1357 in a cross-validation setting to learn a multi-linear model that identifies the minimal set of drug-target
1358 connections that maximally discriminates PCY-hit drugs from PCY-negative drugs.

1359 Drug-target connections were retrieved from the Drug Target Commons (DTC)⁵⁰. DTC is a crowd-
1360 sourced platform that integrates drug-target bioactivities curated from both literature and public
1361 databases such as PubChem and ChEMBL. Drug-target annotations (DTC bioactivities) listed as of
1362 August 2020 were included, with the target organism limited to *Homo sapiens*. Among PCY-tested
1363 drugs in our NAD and ONCD libraries, 127 out of 132 drugs had DTC ‘bioactivity’ annotations. PTGs
1364 with biochemical associations to a given drug correspond to bioactivities with the inhibitory constant
1365 ‘KI’ as the ‘End Point Standard Type’. Extended PTGs (ePTGs) include all annotated drug bioactivities.
1366 Secondary target genes (STGs) down-stream of ePTGs were retrieved by high-confidence protein-
1367 protein interactions annotated in the STRING database (interaction score \geq 0.6). The final drug-target
1368 connectivity map that was used for COSTAR consisted of 127 PCY-tested drugs, 975 extended primary
1369 targets, 10,573 secondary targets, and 114,517 network edges. The 127 drugs were labeled either as
1370 PCY-hits (n=30, equally split across NADs and ONCDs) or PCY-negative drugs (n=97) based on the
1371 ranked mean PCY score across patients.

1372 A 20-fold cross-validated LASSO generalized linear model was trained in Matlab with the drug-target
1373 connectivity map as the predictor variable and PCY-hit status (hit vs. neg) as the binomially-distributed
1374 response variable to identify the optimal regularization coefficient (lambda) across a geometric
1375 sequence of 60 possible values. Final model coefficients were fitted using the lambda value
1376 corresponding to the minimum deviance in the cross-validation analysis shown in *Extended Data Fig.*
1377 *6a*. COSTAR performance was first evaluated on the training dataset, represented as a confusion matrix
1378 in *Fig. 3h*. Using this trained linear model, COSTAR was next utilized as an *in silico* drug screening tool
1379 to predict the PCY-hit probability (COSTAR score) based on the connectivity of 1,120,823 compounds
1380 annotated in DTC (*Supplementary Table 6*). For interpretability, COSTAR subscores, defined as the
1381 individual connectivity to target genes multiplied by their respective coefficients (betas) in the linear
1382 model, can be investigated in *Extended Data Fig. 6b,c*. COSTAR predictions from this *in silico* screen
1383 were further experimentally validated in glioblastoma patient samples on a set of new drugs predicted
1384 as either COSTAR-hits or COSTAR-negs (n=48 drugs total; n=23 COSTAR-hits; n=25 COSTAR-negs).

1385 DRUG-Seq

1386 High-throughput multiplexed RNA sequencing was performed with the Digital RNA with perturbation
1387 of Genes (DRUG-Seq) method as described in⁷⁹ with a few modifications. Modifications to the
1388 published method are the following: 1) extraction of RNA prior to cDNA reverse transcription with the
1389 Zymo Direct-zol-96 RNA isolation kit (Zymo, #R0256) 2) change of reverse transcription primers for
1390 compatibility with standard Illumina sequencing primers 3) cDNA clean-up prior to library amplification
1391 performed with the DNA Clean & Concentrator-5 kit (Zymo, #D4013) 4) fragmentation was performed
1392 with 2ng input and sequencing library generated using the Nextera XT library prep kit (Illumina, #FC-
1393 131-1024). In short, 1x10⁴ LN-229 cells were plated in CellCarrier-96 Ultra Microplates (PerkinElmer,
1394 #6055302) and incubated overnight in reduced serum media at 37°C, 5% CO₂ prior to drug treatment.
1395 A total of 20 drugs (*Supplementary Table 3*) were profiled across two different time-points (6 hours
1396 and 22 hours; n=4 replicates per drug and time-point). These 20 drugs were selected to include PCY-
1397 hit NADs spanning diverse drug classes (n=11), PCY-hit ONCDs (n=7), PCY-negative NADs (n=2), and a
1398 DMSO control. Cells in drug-treated 96-wells were lysed with TRIzol™ Reagent (ThermoFisher,

1399 #15596018) and then subsequent cDNA and library prep was performed as described above. 100bp
1400 (80:20) paired-end reads were generated using Illumina's NextSeq 2000 platform.

1401 **Calcium assays on the FLIPR platform**

1402 For calcium assays, 24 hours prior to the experiment, LN-229 cells were seeded at a density of 70,000
1403 cells/well on poly-D-Lysine-coated ViewPlateTM-96 F TC 96-well black polystyrene clear bottom
1404 microplates (PerkinElmer, #6005182) in 100 μ l full medium. Calcium 6 dye stock solution was prepared
1405 by dissolving a vial from Calcium 6 assay kit (Molecular Devices, #5024048) in 10 ml sterile-filtered
1406 nominal Ca²⁺ free (NCF), modified Krebs buffer containing 117mM NaCl, 4.8mM KCl, 1mM MgCl₂, 5mM
1407 D-glucose, 10mM HEPES (pH 7.4) and 500 μ l aliquots were stored at -20°C. Before each experiment,
1408 the dye stock was freshly diluted 1:10 in NCF Krebs buffer and after removing the medium from the
1409 cells, 50 μ l of the diluted dye was applied per well. In order to allow the cells to absorb the dye into
1410 their cytosol, they were incubated at 37°C for 2 hours in the dark. For assay setup outlined in *Fig. 4e*,
1411 cells were treated with their respective PCY-drug after a period of equilibration in 2mM calcium-
1412 containing buffer. The fluorescence Ca²⁺ measurements were carried out using FLIPR Tetra® (Molecular
1413 Devices) where cells were excited using a 470–495nm LED module and the emitted fluorescence signal
1414 was filtered with a 515–575nm emission filter according to the manufacturer's guidelines. For fold
1415 change calculations presented in *Fig. 4f*, normalized calcium levels for each drug were calculated by
1416 averaging calcium levels after drug treatment (400-600 seconds interval) divided by the basal level of
1417 calcium prior to drug administration (200-300 seconds interval).

1418 In the ER Ca²⁺ store release assay, the stable baselines were established for 50 seconds before 50 μ l of
1419 2 μ M (2X) Thapsigargin (Sigma-Aldrich, #T9033) or 40 μ M (2X) drug solutions freshly prepared in NCF
1420 Krebs buffer were robotically dispensed to the cells to determine whether the drugs impact the ER Ca²⁺
1421 stores. Next, the cells were incubated and fluorescence was monitored in the presence of Thapsigargin
1422 or drugs for another 5 min. In the extracellular Ca²⁺ uptake assay, after initial recording of the baseline,
1423 50 μ l of 4mM CaCl₂ (2X) prepared in NCF Krebs buffer was dispensed onto the cells to re-establish a
1424 physiological 2mM calcium concentration and the fluorescence was monitored for 5 min. Next, 60 μ M
1425 (3X) drug solutions freshly prepared in Krebs buffer containing 2mM CaCl₂ were robotically dispensed
1426 to the cells and the fluorescence was recorded for an additional 4 min. The raw data was extracted
1427 with the ScreenWorks software version 3.2.0.14. The values represent average fluorescence level of
1428 the Calcium 6 dye measured over arbitrary selected and fixed time frames.

1429 **Time-course RNA-Seq library preparation and sequencing**

1430 LN-229 cells were seeded at 2x10⁵ cells/well into in 6-well Nunc™ Cell-Culture Treated Multidishes
1431 (ThermoFisher, #140675) and incubated overnight in reduced serum media at 37°C, 5% CO₂ prior to
1432 drug treatment. The following day, Vortioxetine (Avachem Scientific, #3380) was manually added to
1433 each well at a final concentration of 20 μ M. At the start of the experiment, LN-229 cells that were not
1434 treated with Vortioxetine were collected as the 0 hour time-point. After 3, 6, 9, 12, and 24 hours
1435 following Vortioxetine treatment, drug-containing media was removed and cells were collected in
1436 TRIzol™ Reagent (ThermoFisher, #15596018). Total RNA was isolated using Direct-zol RNA MicroPrep
1437 Kit (Zymo Research, #R2062) and RNA quality and quantity was determined with the Agilent 4200
1438 TapeStation. Sample RIN scores ranged from 5.9-10 (mean: 9.33). RNA input was normalized to 300-
1439 400 ng and RNA libraries were prepared using the Illumina Truseq stranded mRNA library prep. 100bp
1440 single-end reads were generated using Illumina's Novaseq 6000 platform with an average sequencing
1441 depth of approximately 50 million reads per replicate. Reads were mapped and aligned to the

1442 reference human genome assembly (GRCh38.p13) using STAR/2.7.8a and counts were extracted using
1443 featureCounts. Subsequent read normalization (variance stabilizing transformation, vsd-normalized
1444 counts) and RNA-Seq analysis including differential expression (DE) analysis was performed with the R
1445 package 'DESeq2' ⁸⁷.

1446 **Time-course proteomics and phosphoproteomics**

1447 Cell preparation and Vortioxetine treatment was performed as in 'Time-course RNA-Seq library
1448 preparation' except cell numbers were scaled to be seeded in T-150 culture flasks and 3 time-points
1449 were measured (0, 3, 9 hours). Peptides for mass spectrometry measurements were prepared using
1450 the PreOmics iST kit (PreOmics) on the PreON (HSE AG). The robot was programmed to process 8
1451 samples in parallel. During the first step of processing, cell pellets were resuspended in 50µl of lysis
1452 buffer and denatured for 10 minutes at 95°C. This step was followed by 3 hours of digestion with
1453 trypsin and Lys-C. Peptides were dried in a speed-vac (Thermo Fisher Scientific) for 1 hour before being
1454 resuspended in LC- Load buffer at a concentration of 1 µg/µl with iRT peptides (Biognosys).

1455 Samples were analyzed on an Orbitrap Lumos mass spectrometer (Thermo Fisher Scientific) equipped
1456 with an Easy-nLC 1200 (Thermo Fisher Scientific). Peptides were separated on an in-house packed 30
1457 cm RP-HPLC column (Michrom BioResources, 75 µm i.d. x 30 cm; Magic C18 AQ 1.9 µm, 200 Å). Mobile
1458 phase A consisted of HPLC-grade water with 0.1% formic acid, and mobile phase B consisted of HPLC-
1459 grade ACN (80%) with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were eluted at a flow
1460 rate of 250 nl/min using a non-linear gradient from 4% to 47% mobile phase B in 228 min. For data-
1461 independent acquisition (DIA), DIA-overlapping windows were used and a mass range of m/z 396-1005
1462 was covered. The DIA isolation window size was set to 8 and 4 m/z, respectively, and a total of 75 or
1463 152 DIA scan windows were recorded at a resolution of 30,000 with an AGC target value set to 1200%.
1464 HCD fragmentation was set to 30% normalized collision. Full MS were recorded at a resolution of
1465 60,000 with an AGC target set to standard and the maximum injection time set to auto. DIA data were
1466 analyzed using Spectronaut v14 (Biognosys). MS1 values were used for the quantification process,
1467 peptide quantity was set to mean. Data were filtered using Qvalue sparse with a precursor and a
1468 protein Qvalue cut-off of 0.01 FDR. Interference correction and local cross-run normalization was
1469 performed. For PRM measurements, peptides were separated by reversed-phase chromatography on
1470 a 50 cm ES803 C18 column (Thermo Fisher Scientific) that was connected to a Easy-nLC 1200 (Thermo
1471 Fisher Scientific). Peptides were eluted at a constant flow rate of 200 nl/min with a 117 min non-linear
1472 gradient from 4–52% buffer B (80% ACN, 0.1% FA) and 25–50% B. Mass spectra were acquired in PRM
1473 mode on an Q Exactive HF-X Hybrid Quadrupole-Orbitrap MS system (Thermo Fisher Scientific). The
1474 MS1 mass range was 340–1,400 m/z at a resolution of 120,000. Spectra were acquired at 60,000
1475 resolution (automatic gain control target value 2.0*10e5); Normalized HCD collision energy was set to
1476 28%, maximum injection time to 118 ms. Monitored peptides were analyzed in Skyline v20 and results
1477 were uploaded to PanoramaWeb. Targeted MS experiments can be accessed via Panorama
1478 (<https://panoramaweb.org/GlioB.url>). DIA and phosphopeptide enrichment datasets are available
1479 from MASSIVE under <ftp://massive.ucsd.edu/MSV000090357/>.

1480 For phosphopeptide enrichment, protein lysate from LN-229 cells was prepared using a deoxycholate-
1481 based buffer. 500 µg of Vortioxetine-treated cells (time course of 0 mins, 30mins, 1h, 3h in triplicates)
1482 were used as starting material. A tryptic digest was performed for 16h. Samples were then purified on
1483 Macrospin C18 columns (Harvard Apparatus). Phosphopeptides were specifically enriched using IMAC
1484 cartridges on the Bravo AssayMAP liquid handling platform (Agilent). In short, samples were dissolved

1485 in 160 μ l of loading buffer (80% ACN, 0.1% TFA). Then, the AssayMAP phosphoenrichment protocol
1486 was performed with slight modifications in terms of washing volume and speed. After purification,
1487 dried peptides were resuspended in LC buffer and subjected to DDA-MS on a QExactive H-FX mass
1488 spectrometer (Thermo Fisher Scientific) equipped with an Easy-nLC 1200 (Thermo Fisher Scientific).
1489 Peptides were separated on an ES903 column (Thermo Fisher Scientific, 75 μ m i.d. x 50 cm; particle
1490 size 2 μ m). Mobile phase A consisted of HPLC-grade water with 0.1% formic acid, and mobile phase B
1491 consisted of HPLC-grade ACN (80%) with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were
1492 eluted at a flow rate of 250 nl/min using a non-linear gradient from 3% to 56% mobile phase B in 115
1493 min. MS1 spectra were acquired at a resolution of 60,000 with an AGC target value of 3e6 and a
1494 maximum injection time of 56 ms. The scan range was between m/z 350-1650. A data-dependent top
1495 12 method was used with a precursor isolation window of 1.3 m/z. MS/MS scans were acquired with
1496 normalized collision energy of 27 at a resolution of 15,000. AGC target was 1e5 with a maximum
1497 injection time of 22 ms. Dynamic exclusion was set to 30s. Data analysis was performed using FragPipe
1498 (v19.1) with the LFQ-phospho workflow ⁸⁸. Min site localization probability was set to 0.75 in Ionquant
1499 ⁸⁹. Statistical analysis was performed on the phosphoprotein-filtered combined protein output in
1500 FragPipe-Analyst. Benjamini-Hochberg adjusted p-value cutoff was set to 0.05, log-fold change cutoff
1501 was 1. No imputation was selected.

1502 **Incucyte live cell imaging**

1503 To measure cell proliferation in real-time, 2.5x10³ LN-229 cells/well were plated in CellCarrier-96
1504 Ultra Microplates (PerkinElmer, #6055302) 24 hours prior to the experiment, and transfected with
1505 BTG1, BTG2, and FLUC (-) MISSION® esiRNAs (Sigma-Aldrich, Euphoria Biotech, 40ng/well) using
1506 Lipofectamine RNAiMAX (Invitrogen, #13778075). Further details regarding siRNAs can be found in
1507 *Supplementary Table 5* and *Methods* related to 'siRNA knockdown and quantitative real-time PCR'.
1508 Real-time confluence of cell cultures (n=4 replicate wells/condition) was monitored by imaging every
1509 2 hours for 7 days at 10x magnification with the 'phase' channel using the Incucyte live-cell analysis
1510 system S3 (Sartorius). Automatic image segmentation and analysis of the phase contrast images was
1511 performed by the Incucyte base analysis software (version 2020B).

1512 **Clonogenic survival assay**

1513 Adherent cells (LN-229: 50 cells; LN-308: 300 cells) were seeded in six replicates in 100 μ L per well in
1514 96-well plates and incubated overnight. On the following day, medium was replaced by fresh medium
1515 containing indicated final concentrations of Vortioxetine or DMSO. Glioblastoma-initiating cells (500
1516 cells) were seeded in 75 μ L medium and incubated overnight. Treatment was initiated by addition of
1517 75 μ L medium containing 2x concentrated Vortioxetine or DMSO to reach indicated final
1518 concentrations. DMSO concentration was kept at 0.5% for all treatments and controls. Following
1519 treatment addition, cells were cultured for 11 (LN-229) to 13 days (other cell lines) and clonogenic
1520 survival was estimated from a resazurin-based assay ⁹⁰ using a Tecan M200 PRO plate reader (λ Ex =
1521 560 nm / λ Em = 590 nm).

1522 **Collagen-based spheroid invasion assay**

1523 Spheroid invasion assay was performed as described (Kumar et al. 2015). Briefly, 2000 cells were
1524 seeded in six replicates into cell-repellent 96 U-bottom well plates (Greiner, #650979) and incubated
1525 for 48 hours to allow spheroid formation. Subsequently, 70 μ l medium were removed, spheroids were
1526 overlaid with 70 μ l 2.5% Collagen IV (Advanced Biomatrix, #5005-B) in 1xDMEM containing sodium

1527 bicarbonate (Sigma-Aldrich #S8761) and collagen was solidified in the incubator for 2 hours. Collagen-
1528 embedded spheroids were then overlaid with 100 μ l chemoattractant (NIH-3T3-conditioned medium)
1529 containing 2x concentrated Vortioxetine/DMSO (0.5% final DMSO concentration across conditions)
1530 and incubated for 36 hours. Spheroids were stained with Hoechst and images were acquired on a
1531 MuviCyte imaging system (Perkin Elmer, #HH40000000) using a 4x objective. Images were contrast-
1532 enhanced and converted to binary using ImageJ/Fiji and quantified with the automated Spheroid
1533 Dissemination/Invasion counter software (aSDIcs), which quantifies the migration distance from the
1534 center of the spheroid for each detected cell nucleus⁹¹.

1535 ***In vivo* drug testing**

1536 All animal experiments were done under the guidelines of the Swiss federal law on animal protection
1537 and were approved by the cantonal veterinary office (ZH98/2018). CD1 female nu/nu mice (Janvier, Le
1538 Genest-Saint-Isle, France) of 6 to 12 weeks of age were used in all experiments and 100'000 LN-229-
1539 derived- or 150'000 ZH-161-derived cells were implanted⁹². Tumour-bearing mice were treated from
1540 day 5 – day 21 after tumour implantation with intraperitoneally (*i.p.*) administered Vortioxetine daily
1541 10mg/kg, Citalopram daily 10mg/kg, Paliperidone daily 5mg/kg, Apomorphine daily 5mg/kg,
1542 Aprepitant daily 20mg/kg, Brexpiprazole daily 1mg/kg, Chlorpromazine three time per week 10mg/kg,
1543 Temozolomide 50mg/kg for five consecutive days, CCNU 20mg/kg at day 7 and 14 after tumour
1544 implantation, or daily DMSO control. Magnetic resonance imaging (MRI) was performed with a 4.7T
1545 imager (Bruker Biospin, Ettlingen, Germany) when the first mouse became symptomatic for *in vivo*
1546 Trials I-III or a 7T imager (Bruker BioSpin) at days 12, 25, 38 and 48 after tumor implantation for *in vivo*
1547 Trial IV. Coronal T2-weighted images were acquired using ParaVision 360(Bruker BioSpin). Tumor
1548 regions were identified manually by two independent raters and maximum perimeter was outlined
1549 and quantified using MIPAV (11.0.7).

1550 Mouse brains were embedded in Shandon Cryochrome™ (Thermo Scientific) and were cut horizontally
1551 by 8 μ m steps until reaching the tumour. Sections were stained for 1 second with 0.4% methylene blue
1552 and rinsed with deionized water (2x10 dips) to confirm tumours (when present) under the microscope.
1553 Tissue sections were stored in the dark, in dry boxes overnight before being stored at -80°C. Tissue
1554 sections were subsequently fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS, blocked in 5% FBS and
1555 0.1% Triton containing PBS, and stained overnight at 4°C in blocking solution with DAPI and the
1556 following antibodies and dilutions: Alexa Fluor® 488 anti-Vimentin (1:500, Biolegend, #677809, clone
1557 O91D3), anti-Ki67 (1:300, Cell Signaling Technology, #9129S, clone D3B5), goat anti-rabbit IgG (H+L)
1558 highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (Thermo Scientific, #A32733). Imaging
1559 was performed by 20x fluorescence imaging using the Pannoramic 250 Slide Scanner (3DHISTECH).

1560 References

- 1561 1. Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C. & Barnholtz-Sloan, J. S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 1562 2014-2018. *Neuro. Oncol.* **23**, iii1–iii105 (2021).
- 1563 2. Osswald, M. *et al.* Brain tumour cells interconnect to a functional and resistant network. *Nature* **528**, 93–98 (2015).
- 1564 3. Venkatesh, H. S. *et al.* Neuronal Activity Promotes Glioma Growth through Neuroligin-3 1565 Secretion. *Cell* **161**, 803–816 (2015).
- 1566 4. Weil, S. *et al.* Tumor microtubes convey resistance to surgical lesions and chemotherapy in 1567 gliomas. *Neuro. Oncol.* **19**, 1316–1326 (2017).
- 1568 5. Venkataramani, V. *et al.* Glutamatergic synaptic input to glioma cells drives brain tumour 1569 progression. *Nature* **573**, 532–538 (2019).
- 1570 6. Venkatesh, H. S. *et al.* Electrical and synaptic integration of glioma into neural circuits. *Nature* 1571 **573**, 539–545 (2019).
- 1572 7. Alcantara Llaguno, S. *et al.* Cell-of-origin susceptibility to glioblastoma formation declines with 1573 neural lineage restriction. *Nat. Neurosci.* **22**, 545–555 (2019).
- 1574 8. Venkataramani, V. *et al.* Glioblastoma hijacks neuronal mechanisms for brain invasion. *Cell* **185**, 1575 2899–2917.e31 (2022).
- 1576 9. Krishna, S. *et al.* Glioblastoma remodelling of human neural circuits decreases survival. *Nature* 1577 **617**, 599–607 (2023).
- 1578 10. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines 1579 human glioblastoma genes and core pathways. *Nature* **455**, 1061–1068 (2008).
- 1580 11. Brennan, C. W. *et al.* The somatic genomic landscape of glioblastoma. *Cell* **155**, 462–477 (2013).
- 1581 12. Suvà, M. L. *et al.* Reconstructing and reprogramming the tumor-propagating potential of 1582 glioblastoma stem-like cells. *Cell* **157**, 580–594 (2014).
- 1583 13. Neftel, C. *et al.* An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. 1584 *Cell* **178**, 835–849.e21 (2019).
- 1585 14. Varn, F. S. *et al.* Glioma progression is shaped by genetic evolution and microenvironment 1586 interactions. *Cell* **185**, 2184–2199.e16 (2022).
- 1587 15. Stupp, R. *et al.* Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *N. 1588 Engl. J. Med.* **352**, 987–996 (2005).
- 1589 16. Hegi, M. E. *et al.* MGMT gene silencing and benefit from temozolomide in glioblastoma. *N. Engl. 1590 J. Med.* **352**, 997–1003 (2005).
- 1591 17. Weller, M. *et al.* EANO guidelines on the diagnosis and treatment of diffuse gliomas of 1592

1594 adulthood. *Nat. Rev. Clin. Oncol.* **18**, 170–186 (2021).

1595 18. Singh, S. K. *et al.* Identification of human brain tumour initiating cells. *Nature* **432**, 396–401
1596 (2004).

1597 19. Bao, S. *et al.* Glioma stem cells promote radioresistance by preferential activation of the DNA
1598 damage response. *Nature* **444**, 756–760 (2006).

1599 20. Chen, J. *et al.* A restricted cell population propagates glioblastoma growth after chemotherapy.
1600 *Nature* **488**, 522–526 (2012).

1601 21. Harder, B. G. *et al.* Developments in blood-brain barrier penetrance and drug repurposing for
1602 improved treatment of glioblastoma. *Front. Oncol.* **8**, 462 (2018).

1603 22. Le Rhun, E. *et al.* Molecular targeted therapy of glioblastoma. *Cancer Treat. Rev.* **80**, 101896
1604 (2019).

1605 23. Gómez-Oliva, R. *et al.* Evolution of Experimental Models in the Study of Glioblastoma: Toward
1606 Finding Efficient Treatments. *Front. Oncol.* **10**, 614295 (2020).

1607 24. Patel, A. P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary
1608 glioblastoma. *Science* **344**, 1396–1401 (2014).

1609 25. John Lin, C.-C. *et al.* Identification of diverse astrocyte populations and their malignant analogs.
1610 *Nat. Neurosci.* **20**, 396–405 (2017).

1611 26. Lan, X. *et al.* Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.
1612 *Nature* **549**, 227–232 (2017).

1613 27. Lee, J. H. *et al.* Human glioblastoma arises from subventricular zone cells with low-level driver
1614 mutations. *Nature* **560**, 243–247 (2018).

1615 28. Couturier, C. P. *et al.* Single-cell RNA-seq reveals that glioblastoma recapitulates a normal
1616 neurodevelopmental hierarchy. *Nat. Commun.* **11**, 3406 (2020).

1617 29. Yu, K. *et al.* Surveying brain tumor heterogeneity by single-cell RNA-sequencing of multi-sector
1618 biopsies. *Natl Sci Rev* **7**, 1306–1318 (2020).

1619 30. Dolma, S. *et al.* Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and
1620 Survival of Glioblastoma Stem Cells. *Cancer Cell* **29**, 859–873 (2016).

1621 31. Caragher, S. P. *et al.* Activation of Dopamine Receptor 2 Prompts Transcriptomic and Metabolic
1622 Plasticity in Glioblastoma. *J. Neurosci.* **39**, 1982–1993 (2019).

1623 32. Bi, J. *et al.* Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant
1624 drug. *Cell Rep.* **37**, 109957 (2021).

1625 33. Snijder, B. *et al.* Image-based ex-vivo drug screening for patients with aggressive haematological
1626 malignancies: interim results from a single-arm, open-label, pilot study. *Lancet Haematol* **4**,
1627 e595–e606 (2017).

1628 34. Kornauth, C. *et al.* Functional Precision Medicine Provides Clinical Benefit in Advanced

1629 1630 Aggressive Hematologic Cancers and Identifies Exceptional Responders. *Cancer Discov.* **12**, 372–
387 (2022).

1631 1632 35. Heinemann, T. *et al.* Deep morphology learning enhances ex vivo drug profiling-based precision
medicine. *Blood Cancer Discov* (2022) doi:10.1158/2643-3230.BCD-21-0219.

1633 1634 36. Sheng, M. & Greenberg, M. E. The regulation and function of c-fos and other immediate early
genes in the nervous system. *Neuron* **4**, 477–485 (1990).

1635 1636 37. Rouault, J. P. *et al.* Identification of BTG2, an antiproliferative p53-dependent component of the
DNA damage cellular response pathway. *Nat. Genet.* **14**, 482–486 (1996).

1637 1638 38. Yap, E.-L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural
Activity and Behavior. *Neuron* **100**, 330–348 (2018).

1639 1640 39. Yunianti, L., Scheijen, B., van der Meer, L. T. & van Leeuwen, F. N. Tumor suppressors BTG1 and
BTG2: Beyond growth control. *J. Cell. Physiol.* **234**, 5379–5389 (2019).

1641 1642 40. Malta, T. M. *et al.* Machine Learning Identifies Stemness Features Associated with Oncogenic
Dedifferentiation. *Cell* **173**, 338–354.e15 (2018).

1643 1644 41. Jacob, F. *et al.* A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter-
and Intra-tumoral Heterogeneity. *Cell* **180**, 188–204.e22 (2020).

1645 1646 42. Dahlstrand, J., Collins, V. P. & Lendahl, U. Expression of the Class VI Intermediate Filament
Nestin in Human Central Nervous System Tumors1. *Cancer Res.* **52**, 5334–5341 (1992).

1647 1648 43. Yuan, X. *et al.* Isolation of cancer stem cells from adult glioblastoma multiforme. *Oncogene* **23**,
9392–9400 (2004).

1649 1650 44. Zhang, M. *et al.* Nestin and CD133: valuable stem cell-specific markers for determining clinical
outcome of glioma patients. *J. Exp. Clin. Cancer Res.* **27**, 85 (2008).

1651 1652 45. Schmid, J. A. *et al.* Efficacy and feasibility of Pharmacoscopy-guided treatment for acute myeloid
leukemia patients that exhausted all registered therapeutic options. *medRxiv* (2023)
doi:10.1101/2023.03.28.23287745.

1654 1655 46. Kropivsek, K. *et al.* Ex vivo drug response heterogeneity reveals personalized therapeutic
strategies for patients with multiple myeloma. *Nat Cancer* **4**, 734–753 (2023).

1656 1657 47. Wick, W. *et al.* Phase II Study of Radiotherapy and Temsirolimus versus Radiochemotherapy
with Temozolomide in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter
Hypermethylation (EORTC 26082). *Clin. Cancer Res.* **22**, 4797–4806 (2016).

1659 1660 48. Chinnaiyan, P. *et al.* A randomized phase II study of everolimus in combination with
chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. *Neuro.
Oncol.* **20**, 666–673 (2018).

1662 1663 49. Lombardi, G. *et al.* Regorafenib compared with lomustine in patients with relapsed glioblastoma
(REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. *Lancet Oncol.* **20**,
110–119 (2019).

1665 50. Tang, J. *et al.* Drug Target Commons: A Community Effort to Build a Consensus Knowledge Base
1666 for Drug-Target Interactions. *Cell Chem Biol* **25**, 224–229.e2 (2018).

1667 51. Hai, T. & Curran, T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB
1668 alters DNA binding specificity. *Proc. Natl. Acad. Sci. U. S. A.* **88**, 3720–3724 (1991).

1669 52. Wang, L. *et al.* A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic
1670 and cell-extrinsic therapeutic targets. *Nat Cancer* **3**, 1534–1552 (2022).

1671 53. Karin, M., Liu, Z. g. & Zandi, E. AP-1 function and regulation. *Curr. Opin. Cell Biol.* **9**, 240–246
1672 (1997).

1673 54. Sanyal, S., Sandstrom, D. J., Hoeffer, C. A. & Ramaswami, M. AP-1 functions upstream of CREB to
1674 control synaptic plasticity in Drosophila. *Nature* **416**, 870–874 (2002).

1675 55. Carlsson, P. & Mahlapuu, M. Forkhead Transcription Factors: Key Players in Development and
1676 Metabolism. *Dev. Biol.* **250**, 1–23 (2002).

1677 56. Ho, K. K., Myatt, S. S. & Lam, E. W.-F. Many forks in the path: cycling with FoxO. *Oncogene* **27**,
1678 2300–2311 (2008).

1679 57. Benayoun, B. A., Caburet, S. & Veitia, R. A. Forkhead transcription factors: key players in health
1680 and disease. *Trends Genet.* **27**, 224–232 (2011).

1681 58. Sheng, M., Thompson, M. A. & Greenberg, M. E. CREB: a Ca(2+)-regulated transcription factor
1682 phosphorylated by calmodulin-dependent kinases. *Science* **252**, 1427–1430 (1991).

1683 59. Whitmarsh, A. J. & Davis, R. J. Transcription factor AP-1 regulation by mitogen-activated protein
1684 kinase signal transduction pathways. *J. Mol. Med.* **74**, 589–607 (1996).

1685 60. Park, C. Y. *et al.* Tissue-aware data integration approach for the inference of pathway
1686 interactions in metazoan organisms. *Bioinformatics* **31**, 1093–1101 (2015).

1687 61. Grünblatt, E., Mandel, S., Berkuzki, T. & Youdim, M. B. Apomorphine protects against MPTP-
1688 induced neurotoxicity in mice. *Mov. Disord.* **14**, 612–618 (1999).

1689 62. Guilloux, J.-P. *et al.* Antidepressant and anxiolytic potential of the multimodal antidepressant
1690 vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice.
1691 *Neuropharmacology* **73**, 147–159 (2013).

1692 63. Maeda, K. *et al.* Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-
1693 dopamine activity modulator. *J. Pharmacol. Exp. Ther.* **350**, 589–604 (2014).

1694 64. Berger, M. *et al.* Hepatoblastoma cells express truncated neurokinin-1 receptor and can be
1695 growth inhibited by aprepitant in vitro and in vivo. *J. Hepatol.* **60**, 985–994 (2014).

1696 65. Oliva, C. R., Zhang, W., Langford, C., Suto, M. J. & Griguer, C. E. Repositioning chlorpromazine for
1697 treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the
1698 COX4-1 regulatory subunit. *Oncotarget* **8**, 37568–37583 (2017).

1699 66. Torrisi, S. A. *et al.* Fluoxetine and Vortioxetine Reverse Depressive-Like Phenotype and Memory

1700 Deficits Induced by A β 1-42 Oligomers in Mice: A Key Role of Transforming Growth Factor- β 1.
1701 *Front. Pharmacol.* **10**, 693 (2019).

1702 67. Lee, J.-K., Nam, D.-H. & Lee, J. Repurposing antipsychotics as glioblastoma therapeutics:
1703 Potentials and challenges. *Oncol. Lett.* **11**, 1281–1286 (2016).

1704 68. Tan, S. K. *et al.* Drug Repositioning in Glioblastoma: A Pathway Perspective. *Front. Pharmacol.* **9**,
1705 218 (2018).

1706 69. Caragher, S. P., Hall, R. R., Ahsan, R. & Ahmed, A. U. Monoamines in glioblastoma: complex
1707 biology with therapeutic potential. *Neuro. Oncol.* **20**, 1014–1025 (2018).

1708 70. Lee, J.-K. *et al.* Spatiotemporal genomic architecture informs precision oncology in glioblastoma.
1709 *Nat. Genet.* **49**, 594–599 (2017).

1710 71. Lee, J.-K. *et al.* Pharmacogenomic landscape of patient-derived tumor cells informs precision
1711 oncology therapy. *Nat. Genet.* **50**, 1399–1411 (2018).

1712 72. MacLeod, G. *et al.* Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and
1713 Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells. *Cell Rep.* **27**, 971–986.e9
1714 (2019).

1715 73. Stockslager, M. A. *et al.* Functional drug susceptibility testing using single-cell mass predicts
1716 treatment outcome in patient-derived cancer neurosphere models. *Cell Rep.* **37**, 109788 (2021).

1717 74. Shekarian, T. *et al.* Immunotherapy of glioblastoma explants induces interferon- γ responses and
1718 spatial immune cell rearrangements in tumor center, but not periphery. *Sci Adv* **8**, eabn9440
1719 (2022).

1720 75. Vladimer, G. I. *et al.* Global survey of the immunomodulatory potential of common drugs. *Nat.*
1721 *Chem. Biol.* **13**, 681–690 (2017).

1722 76. Shilts, J. *et al.* A physical wiring diagram for the human immune system. *Nature* (2022)
1723 doi:10.1038/s41586-022-05028-x.

1724 77. Meister, H. *et al.* Multifunctional mRNA-Based CAR T Cells Display Promising Antitumor Activity
1725 Against Glioblastoma. *Clin. Cancer Res.* **28**, 4747–4756 (2022).

1726 78. Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. *Nat. Rev. Cancer* **3**, 859–
1727 868 (2003).

1728 79. Ye, C. *et al.* DRUG-seq for miniaturized high-throughput transcriptome profiling in drug
1729 discovery. *Nat. Commun.* **9**, 4307 (2018).

1730 80. Li, J. *et al.* DRUG-seq Provides Unbiased Biological Activity Readouts for Neuroscience Drug
1731 Discovery. *ACS Chem. Biol.* **17**, 1401–1414 (2022).

1732 81. Schaefer, C. F. *et al.* PID: the Pathway Interaction Database. *Nucleic Acids Res.* **37**, D674–9
1733 (2009).

1734 82. Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and supporting

1735 evidence. *Nucleic Acids Res.* **46**, D1062–D1067 (2018).

1736 83. Dai, Y. *et al.* WebCSEA: web-based cell-type-specific enrichment analysis of genes. *Nucleic Acids*
1737 *Res.* **50**, W782–W790 (2022).

1738 84. Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are revealed by
1739 pseudotemporal ordering of single cells. *Nat. Biotechnol.* **32**, 381–386 (2014).

1740 85. Miao, Z., Deng, K., Wang, X. & Zhang, X. DEsingle for detecting three types of differential
1741 expression in single-cell RNA-seq data. *Bioinformatics* **34**, 3223–3224 (2018).

1742 86. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional
1743 neural networks. in *Proceedings of the 25th International Conference on Neural Information*
1744 *Processing Systems - Volume 1* 1097–1105 (Curran Associates Inc., 2012).

1745 87. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
1746 RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

1747 88. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFagger:
1748 ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics.
1749 *Nat. Methods* **14**, 513–520 (2017).

1750 89. Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant Enables Accurate and Sensitive Label-Free
1751 Quantification With FDR-Controlled Match-Between-Runs. *Mol. Cell. Proteomics* **20**, 100077
1752 (2021).

1753 90. Riss, T. L. *et al.* Cell Viability Assays. in *Assay Guidance Manual* (eds. Markossian, S. *et al.*) (Eli
1754 Lilly & Company and the National Center for Advancing Translational Sciences, 2013).

1755 91. Kumar, K. S. *et al.* Computer-assisted quantification of motile and invasive capabilities of cancer
1756 cells. *Sci. Rep.* **5**, 15338 (2015).

1757 92. Weiss, T. *et al.* NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against
1758 Glioblastoma. *Clin. Cancer Res.* **24**, 882–895 (2018).