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Abstract 22 

Glioblastoma is the most common yet deadliest primary brain cancer1. The neural behavior of 23 

glioblastoma, including the formation of synaptic circuitry and tumour microtubes, is increasingly 24 

understood to be pivotal for disease manifestation2–9. Nonetheless, the few approved treatments for 25 

glioblastoma target its oncological nature, while its neural vulnerabilities remain incompletely mapped 26 

and clinically unexploited. Here, we systematically survey the neural molecular dependencies and 27 

cellular heterogeneity across glioblastoma patients and diverse model systems. In 27 surgical patient 28 

samples, we identify cancer cell morphologies indicative of poor prognosis, and discover repurposable 29 

neuroactive drugs with anti-glioblastoma efficacy by image-based drug screening. Glioblastoma cells 30 

exhibit functional dependencies on highly expressed neuroactive drug targets, while interpretable 31 

molecular machine learning (COSTAR) reveals their downstream convergence on AP-1-driven tumour 32 

suppression. This drug-target connectivity signature is confirmed by accurate in silico drug screening 33 

on >1 million compounds, as well as by multi-omic profiling of glioblastoma drug responses. Thus, Ca2+-34 

driven AP-1 pathway induction represents a tumour-intrinsic vulnerability at the intersection of 35 

oncogenesis and neural activity-dependent signaling. Opportunities for clinical translation of this 36 

neural vulnerability are epitomized by the antidepressant Vortioxetine synergizing with current 37 

standard of care treatments in vivo. Together, the results presented here provide a mechanistic 38 

foundation and conceptual framework for the treatment of glioblastoma based on its neural origins.  39 
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Introduction 40 

Glioblastoma is a deadly brain cancer with limited treatment options, shaped by heterogeneous 41 

developmental programs, genetic drivers, and tumour microenvironments 10–14. Despite an increasing 42 

understanding of this heterogeneity, the alkylating agent Temozolomide (TMZ), which prolongs 43 

median survival from 12 to 15 months, remains the only first-line drug approved for glioblastoma 15–44 
17. Targeted therapies have been largely unsuccessful, in part due to the blood-brain barrier (BBB) 45 

limiting tumour accessibility, the presence of treatment-resistant glioblastoma stem cells (GSCs), and 46 

the lack of clinically predictive models 18–23. Systemically addressing these therapeutic roadblocks is an 47 

urgent clinical need. 48 

An emerging paradigm is to consider glioblastoma in the context of the nervous system. Single-cell 49 

RNA sequencing (scRNA-Seq) and lineage tracing studies of glioblastoma have identified stemness 50 

signatures resembling neural development 7,12,13,24–29. At the brain-tumour interface, synaptic 51 

integration of cancer cells into neural circuits regulates tumour growth 3,5,6,9. Within the tumour, the 52 

extension of microtubes akin to neuronal protrusions promotes the formation of treatment-resistant 53 

invasive networks 2,4,8. Furthermore, modulating specific neurotransmitter or other secretory 54 

pathways in the tumour microenvironment impairs glioblastoma metabolism and survival 3,30–32. Such 55 

neural aspects of glioblastoma offer new clinically-targetable vulnerabilities that could be targeted by 56 

repurposing approved “neuroactive” drugs (NADs). Neuroactive drugs can cross the BBB and are 57 

routinely prescribed for indications such as psychiatric or neurodegenerative diseases. Yet, as 58 

neuroactive drugs are originally developed to modulate the nervous system, their anti-cancer activity 59 

in glioblastoma patients is largely unknown. 60 

Several key questions arise. First, how does neural intratumour heterogeneity across glioblastoma 61 

patients relate to disease course and response to therapy? Second, are there tumour-intrinsic neural 62 

vulnerabilities that are therapeutically targetable? Third, if so, which molecular dependencies and 63 

associated pathways are involved? 64 

Here, we find morphological and neural stemness features across glioblastomas that relate to disease 65 

prognosis and drug response. Using pharmacoscopy (PCY), an ex vivo imaging platform 33–35 that 66 

captures patient and tumour complexity, we screen repurposable neuroactive drugs and identify a set 67 

with potent anti-glioblastoma activity. Top neuroactive drugs work consistently across patient samples 68 

and particularly target GSCs with neural morphologies associated with invasion and poor prognosis. 69 

These top drugs are validated across multiple glioblastoma model systems including patient-derived 70 

cultures and orthotopic xenograft mouse models. Integration of anti-glioblastoma response with 71 

multiplexed RNA-Seq, reverse genetic screening, and machine learning of drug-target networks reveals 72 

convergence of neuroactive drugs with anti-glioblastoma activity on AP-1 and BTG gene families. In a 73 

neural context, AP-1 transcription factors, including JUN and FOS, are immediate early genes (IEGs) 74 

induced in response to neural activity or insult, while BTG1/2 are known tumour suppressors 36–39. 75 

Using this convergent AP-1/BTG connectivity signature, we predict and validate new candidate drugs 76 

across >1 million compounds in silico. The antidepressant Vortioxetine is the top PCY-hit and inducer 77 

of the AP-1/BTG signature across diverse experimental model systems, synergizing with both first- and 78 

second-line glioblastoma therapies in vivo. Our study identifies clinically-actionable neuroactive drugs 79 

for the treatment of glioblastoma converging on a gene regulatory network involved in cell 80 

proliferation and neural activity. 81 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://paperpile.com/c/fVo72U/C2bC+4G7c+USHU+FZuV+bNLi
https://paperpile.com/c/fVo72U/uhl0+o65V+1mv3
https://paperpile.com/c/fVo72U/uhl0+o65V+1mv3
https://paperpile.com/c/fVo72U/RaTF+caVv+AElZ+qPFS+mfD1+jB20
https://paperpile.com/c/fVo72U/USHU+6gQG+BTQ3+cbjp+vppG+rAbK+FZuV+kCk7+y6eu
https://paperpile.com/c/fVo72U/iBiF+Zvzl+xN1C+Z0uF
https://paperpile.com/c/fVo72U/KUB3+Nnfn+I8Po
https://paperpile.com/c/fVo72U/iBiF+pllU+GkFy+MwYa
https://paperpile.com/c/fVo72U/TKEK+HIif+UL7L
https://paperpile.com/c/fVo72U/lazf+zUS8+Ztms+vGBH
https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 3 of 49 
 

Main 82 

Capturing the phenotypic single-cell heterogeneity of glioblastoma 83 

Glioblastoma cells adopt unique cellular morphologies and stemness properties to integrate and 84 

survive in the brain 2,4,8,13,40. To comprehensively profile the morphological and molecular 85 

heterogeneity between and within glioblastoma patients, we investigated surgically-resected material 86 

from a clinically-annotated cohort of 27 glioblastoma patients (prospective cohort; Fig. 1a, Extended 87 

Data Fig. 1a and Supplementary Table 1). We quantified cell type composition and morphology by high-88 

content confocal imaging of freshly dissociated surgical samples cultured for two days ex vivo (n=27 89 

patients), as well as in patient-matched tissue sections in situ (n=10 patients). In parallel, we measured 90 

somatic genetic alterations by targeted next-generation sequencing (NGS; n=27 patients; 91 

Supplementary Table 2) and single-cell transcriptomes by scRNA-Seq (n=4 patients).  92 

We mapped the single-cell landscape of glioblastoma patient samples captured by both scRNA-seq and 93 

high-content ex vivo imaging. Across technologies, glioblastoma cells were placed along a neural 94 

stemness gradient against the neural progenitor marker Nestin and the mature astrocytic marker 95 

S100B (Fig. 1b-e, Extended Data Fig. 1b-g, and Supplementary Fig. S1). Concordant with previous 96 

literature using Nestin/S100B as glioblastoma markers 2,5,7,20,41, analysis of 25,510 single cell 97 

transcriptomes across three independent scRNA-Seq datasets revealed the highest co-expression of 98 

markers associated with malignancy (e.g. SOX2, CD133, EGFR, Ki67) and neural properties of 99 

glioblastoma (e.g. GAP43, NLGN3, CX43, GRIA2; Fig. 1c and Extended Data Fig. 1e-g) in the [Nestin+ or 100 

S100B+ and CD45-] glioblastoma cell definition (n=22 glioblastoma patients;  Lee et al., this study; n=4 101 

patients; Neftel et al.13, n=9 patients; Yu et al.29, n=9 patients). Expression profiles of glioblastoma cells 102 

displayed high inter-patient heterogeneity within the Nestin/S100B spectrum, and were distinct from 103 

CD45+ immune cells present in the tumour microenvironment (TME; Fig. 1b,c, Extended Data Fig. 1c,d, 104 

and Supplementary Fig.S1). Cell-type specific enrichment analysis of gene modules enriched in 105 

Nestin/S100B/CD45-negative cells (‘All Neg’) confirmed the presence of additional TME cell types, 106 

including CD45-low tumour-associated macrophages/microglia, fibroblasts, and stromal cells 107 

(Extended Data Fig. 1k,l). By immunofluorescence (IF), we quantified cell type composition and 108 

morphology for over 100 million imaged patient cells. This confirmed on average >90% ex vivo viability 109 

of glioblastoma cells across the prospective cohort (Extended Data Fig. 1h-j and Methods) and revealed 110 

a high degree of inter- and intra-tumour heterogeneity: Across patients, glioblastoma cells ranged from 111 

4-39%, immune cells from 1-82%, and all marker negative TME cells 13-84% (Fig. 1d,e). Imaging 112 

glioblastoma sample composition underscored the molecular tumour heterogeneity present within 113 

the Nestin/S100B spectrum and revealed a diversity of glioblastoma cell morphologies (Fig. 1d,e). 114 

Glioblastoma stem cell morphologies prognostic of poor outcome 115 

At the apex of the neural stemness gradient, Nestin+ cells represent a treatment-resistant 116 

glioblastoma stem cell (GSC) subpopulation shown to sustain long-term tumour growth 18,20,42–44. Visual 117 

inspection of Nestin+ GSCs disclosed recurring cellular morphologies (“morphotypes”) distinguishable 118 

by the presence of tumour extensions as well as cell size and shape (Fig. 1d,f-h and Supplementary Fig. 119 

S2). Using deep learning on 51,028 manually curated single-cell image crops across all patient samples, 120 

we trained a convolutional neural network (CNN) to classify Nestin+ cells into four main ex vivo 121 
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morphotypes (M1-M4; Fig. 1f,h and Extended Data Fig. 2a). Single-cell feature maps extracted from 122 

the CNN and nuclei segmentation revealed a continuum of M1-M3 morphotypes and a distinct cluster 123 

of small M4 cells (Fig. 1f,g and Extended Data Fig. 2b). M1 (polygonal with extensions; PE) and M2 124 

(elongated with extensions; EE) GSC morphotypes had varying distributions of extensions per cell, 125 

largely overlapping with previously reported dimensions of tumour microtubes (TMs; Extended Data 126 

Fig. 2c) associated with glioma grade 2. M3 (round big; RB) and M4 (round small; RS) morphotypes 127 

without extensions were characterized by their roundness yet differed in cell size (Fig. 1g and Extended 128 

Data Fig. 2b). Gap-junction protein CX43 and Nestin expression were higher in M1-M3 than M4, while 129 

similar EGFR expression and only modest differences in cell viability were observed among the four 130 

morphotypes (Fig. 1g, Extended Data Fig. 2d-g). Across patients, GSC morphotype composition varied 131 

dramatically, with complex M1-M3 morphotypes ranging from 5% to 86% among Nestin+ GSCs (Fig. 132 

1h).  133 

To evaluate if this distinct contrast of patients with high or low ex vivo GSC morphotype complexity 134 

reflected in situ tumour organization, we imaged tumour regions in cohort-matched tissues from 135 

patients across the morphotype spectrum (M1-M3 high, ‘high complexity’, n=6; M1-M3 low, ‘low 136 

complexity’, n=4; Fig. 1h,i and Supplementary Fig.S3) by 100x confocal microscopy. Striking higher-137 

level tumour organizational differences between the two patient groups were visually evident (Fig. 1i 138 

and Extended Data Fig. 2i), which coincided with significant stratification of multicellular 139 

immunohistochemistry (IHC) images by unsupervised deep learning (Fig. 1j). Subsequent single-cell 140 

image analysis of 12,799 Nestin+ cells and manual single-cell tracing demonstrated the presence of all 141 

four morphotypes in situ (Fig. 1k and Extended Data Fig. 2j). Comparison of quantitative morphological 142 

features across 4,000 Nestin+ cells (n=400 cells/patient) further confirmed significant differences 143 

between the two patient morphotype groups: Larger and more extended cell morphologies were more 144 

abundant in the high complexity patient group (Fig. 1k).  145 

The morphological makeup of an individual patient’s Nestin+ GSCs was the strongest prognostic signal 146 

measured in our cohort. Higher baseline abundance of complex morphotypes (M1-M3% of Nestin+ 147 

cells) was associated with worse patient outcome (P=0.0047; n=17 patients with annotated PFS; Fig. 148 

1l). The abundance of complex GSC morphotypes further correlated with Ki67 levels measured by 149 

pathology (Extended Data Fig. 2k). However, Ki67 levels alone did not stratify patient survival, nor did 150 

stratification based on IF marker-defined cell type composition (Extended Data Fig. 2l-n). While MGMT 151 

promoter methylation status, a prognostic factor associated with response to alkylating agents, also 152 

stratified patient survival in our cohort (P=0.038), complex GSC morphotype abundance was 153 

independent of MGMT status (Fisher’s test, P=0.19, Extended Data Fig. 2m). These results provide 154 

compelling evidence that complex M1-M3 GSC morphotypes and corresponding in situ tumour 155 

organization characterizes particularly aggressive disease with poor clinical outcome among 156 

glioblastomas. 157 

Therapeutically targeting neural tumour heterogeneity  158 

The question arises whether it is possible to pharmacologically target the heterogeneous spectrum of 159 

glioblastoma cells in surgical patient samples, both in terms of neural stemness and morphological 160 

complexity. Image-based ex vivo drug screening (pharmacoscopy; PCY) enables measurements of drug-161 

induced relative reduction of any marker- or morphology-defined cancer cell population. Positive PCY 162 

scores indicate a drug-induced reduction of cancer cells relative to non-malignant TME cells (Fig. 2a). 163 

In previous clinical trials, PCY identified effective therapies for aggressive haematological malignancies 164 
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33–35,45,46. To evaluate the use of pharmacoscopy in glioblastoma, we measured ex vivo drug responses 165 

to first- and second-line glioblastoma chemotherapies (n=3 drugs) in patient samples from two 166 

independent patient cohorts: our main prospective cohort (n=27 patients) and a retrospective cohort 167 

(n=18 patients, Fig. 2b,c, Extended Data Fig. 3a-c, and Supplementary Table 1). Patient samples were 168 

either dissociated on the same day of surgery (prospective cohort), or dissociated after cell recovery 169 

from biobanking (retrospective cohort), and directly incubated with drugs for 48 hours. Limiting our 170 

analysis to newly diagnosed glioblastoma patients that received 1st-line Temozolomide (TMZ) 171 

treatment in the clinic, we found that ex vivo TMZ sensitivity of glioblastoma cells significantly stratified 172 

patient survival in both cohorts (Fig. 2b,c), recapitulating higher TMZ sensitivities in patients with 173 

tumours with MGMT promoter methylation (Extended Data Fig. 3c). Despite the limited success of 174 

targeted therapies for glioblastoma, we additionally tested an oncology drug library (ONCDs; n=65 175 

drugs; Supplementary Table 3) across a subset of our prospective cohort (n=13 patients; Fig. 2d and 176 

Extended Data Fig. 3d-f). This also retrieved ex vivo drug sensitivities concordant with prior clinical 177 

trials in glioblastoma: for example, the RTK inhibitor Regorafenib was among the top ONCD hits and 178 

has shown preliminary signs of activity in a randomized phase II clinical trial for recurrent glioblastoma, 179 

while the mTORs inhibitors Temsirolimus and Everolimus showed no efficacy ex vivo and in clinical 180 

trials 47–49 (Extended Data Fig. 3d). When we explored associations between patient ex vivo ONCD 181 

responses and genetic alterations measured by targeted NGS, the strongest pharmacogenetic 182 

association was increased ex vivo sensitivity of patients with tumours carrying p53 mutations to the 183 

CDK4/6 inhibitor Abemaciclib (Extended Data Fig. 3e). Taken together, our evaluation of standard-of-184 

care chemotherapies and oncology drugs by pharmacoscopy demonstrates the clinical concordance of 185 

image-based ex vivo drug profiling for glioblastoma. 186 

The majority of oncological drugs, however, have limited access to the brain and are designed to target 187 

the transformed nature of cancer. Neuroactive drugs (NADs), in contrast, are developed to cross the 188 

blood-brain barrier and act upon the nervous system. To find repurposable neuroactive drugs that 189 

target the neural stemness and morphological features of glioblastoma, we tested a panel of NADs 190 

(n=67 drugs; Supplementary Table 3) across the prospective cohort (n=27 patients) by pharmacoscopy. 191 

The NAD library consisted of drugs approved for neurological diseases such as depression, 192 

schizophrenia, epilepsy, and Alzheimer’s disease. This identified 15 of 67 drugs (22%) with consistent 193 

anti-glioblastoma activity across patients (top NADs; PCY-hits; mean PCY score > 0.03; Fig. 2e,f and 194 

Extended Data Fig. 3e-g). Remarkably, top NADs effectively reduced fractions of aggressive M1-M3 195 

GSC morphologies in patient samples ex vivo, reduced Nestin+ cells in patient-derived cultures (PDCs, 196 

n=3 lines), and reduced the viability of established glioblastoma cell lines also in the absence of the 197 

TME (n=4 lines, Fig. 2e,f). We additionally confirmed dose-response relationships in glioblastoma cell 198 

lines (n=9 drugs; Extended Data Fig. 4a,b and Supplementary Fig.S4) and robustness of the PCY score 199 

to potential technical factors (e.g. the presence of apoptotic cells after sample dissociation) in two 200 

glioblastoma patient samples (n=67 drugs; Extended Data Fig. 4c-e).  201 

Among the NADs, the top mean ranking PCY-hit was Vortioxetine, a safe and novel class of 202 

antidepressant without known anti-glioblastoma activity (Fig. 2f). Strikingly, Vortioxetine and other 203 

top NADs were more potent in patient samples with higher baseline abundance of aggressive M1-M3 204 

GSC morphologies, while standard-of-care chemotherapies did not show this association (Fig. 2g,h and 205 

Extended Data Fig. 4f). Other clinically attractive NADs included Paroxetine and Fluoxetine, both 206 

antidepressants of the selective serotonin reuptake inhibitor (SSRI) class, and Brexpiprazole, an 207 

atypical antipsychotic used for the treatment of schizophrenia. Brexpiprazole ex vivo response was 208 
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related to biological sex, with increased drug sensitivities in male patient samples (Fig. 2i and Extended 209 

Data Fig. 3g). Sertindole response was highly variable among patient samples, despite its potency in 210 

the other evaluated glioblastoma models. This patient variability in ex vivo Sertindole response related 211 

to FGFR2 copy number loss, representing the most significant pharmacogenetic NAD association (Fig. 212 

2j and Extended Data Fig. 3f). Not all top NADs were clinically attractive, considering the historically 213 

reported side-effects of the cannabinoid receptor blocker Rimonabant and the antipsychotic Zotepine, 214 

yet these could still provide mechanistic insights.  215 

Thus, by comprehensively screening across heterogeneous patients and model systems, we identify a 216 

set of repurposable neuroactive drugs that effectively target the neural heterogeneity of glioblastoma 217 

cells. The consistency of the anti-glioblastoma efficacy of these neuroactive drugs across diverse model 218 

systems, even in the absence of the TME and a functioning in vivo nervous system, indicates that they 219 

target tumour-intrinsic vulnerabilities.  220 

Divergent functional dependencies on neuroactive drug targets 221 

The multitude of neuroactive drugs with anti-glioblastoma activity was unexpected, prompting the 222 

question as to whether there could be shared underlying mechanisms. A previous screen of 223 

neurochemical compounds in patient-derived stem cell lines found various neurochemical classes 224 

represented among their hits30, and the antidepressant Fluoxetine has been reported to target 225 

glioblastoma metabolism 32. In our ex vivo patient drug screens, top NADs represented diverse drug 226 

classes without significant enrichment, indicating that canonical mode-of-action did not explain drug 227 

efficacy (Fig. 3a). Among our tested serotonin and dopamine pathway modulators, for example, only 228 

4 out of 11 antidepressants (36%) and 6 out of 16 antipsychotics (38%) exhibited anti-glioblastoma 229 

activity in patient samples (Extended Data Fig. 4g). Such drug classifications, however, simplify the 230 

polypharmacological drug-target profiles of neuroactive drugs. The majority of NADs act on multiple 231 

primary target genes (PTGs). These include ion channels, GPCRs, and enzymes that modulate 232 

neurotransmission in the central nervous system, whose expression remains a largely unexplored 233 

dimension of glioblastoma heterogeneity. Dependency on neuroactive PTGs with high lineage 234 

specificity and consistent expression across patients could explain the activity of top NADs. 235 

We therefore determined the expression of NAD PTGs by scRNA-Seq across the three independent 236 

datasets (Fig. 3b,c and Extended Data Fig. 5a,b) 13,29. Among PTGs with biochemical NAD-interactions 237 

reported in the Drug Targets Commons database (DTC; Fig. 3d)50, certain classes of ion channels and 238 

GPCRs were enriched in neural lineage cells (e.g. potassium channels, glutamate receptors, and 239 

cannabinoid receptors), while other classes showed broader expression patterns (e.g. calcium 240 

channels, adrenergic receptors; Extended Data Fig. 5a). To characterize PTG expression across cell 241 

types and patients, we defined neural- and patient-specificity scores (NS and PS; Fig. 3b, Extended Data 242 

Fig. 5b and Methods). For detected genes, a higher NS indicates relative enrichment in neural lineage 243 

cells (range -1 to 1) and a higher PS (range 0 to 1) indicates more patient-specific expression, while 244 

both scores will be close to zero for low-abundance genes (Extended Data Fig. 5b and Supplementary 245 

Table 4). Ion channels and receptors with high neural-specificity included the calcium signaling 246 

modulator SIGMAR1, glutamatergic AMPA receptor subunit GRIA2, and cannabinoid receptor CNR1 247 

(Fig. 3c). Patient-specificity for neurological receptors SIGMAR1 and CNR1 were on average 1.7 to 3-248 

fold lower than for oncogenic RTKs EGFR and PDGFRA, despite similar detection levels. Thus, we find 249 

abundant and consistent pan-patient expression of neuroactive drug targets on glioblastoma cells. 250 
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We next tested dependencies on these NAD PTGs by performing a reverse genetic screen in LN-229 251 

glioblastoma cells (n=59 genes; Extended Data Fig. 5c,d and Supplementary Table 5), confirmed to 252 

have comparable PTG expression and NAD sensitivities to patient samples (Fig.2f and Extended Data 253 

Fig. 5c). Knockdown of 9 PTGs significantly decreased cell viability (Extended Data Fig. 5c,d), of which 254 

lower expression levels of DRD1, DRD2, HTR3A, and TACR1 were also associated with better patient 255 

survival in The Cancer Genome Atlas (TCGA) glioblastoma cohort (4 out of 9; Extended Data Fig. 5e). 256 

However, these PTGs showing genetic dependencies were predominantly targeted by NADs that 257 

showed no anti-glioblastoma activity by PCY. For example, only 5 of the 16 NADs interacting with DRD1 258 

were PCY-hits, and only 1 out of 11 NADs interacting with HTR3A was a PCY-hit (Fig. 3e). Therefore, 259 

while presenting possible neural vulnerabilities, these genetic PTG dependencies did not explain the 260 

anti-glioblastoma activity of our top neuroactive drug hits.  261 

Anti-glioblastoma activity explained by drug-target convergence 262 

Despite their chemical and primary target diversity, our top NADs may still converge upon common 263 

downstream signaling pathways. To test this, we developed an interpretable machine learning 264 

approach that searches for “convergence of secondary drug targets analyzed by regularized 265 

regression” (COSTAR). COSTAR is designed to identify the minimal drug-target connectivity signature 266 

predictive of efficacy. 267 

We expanded the drug-target search space to include PTGs with any bioactivity annotated by DTC, 268 

termed extended PTGs (ePTGs). Secondary target genes (STGs) downstream of ePTGs were 269 

subsequently mapped by high-confidence protein-protein interactions annotated in the STRING 270 

database (Fig. 3d). This resulted in a drug-target connectivity map, or “COSTAR constellation”, of all 271 

DTC-annotated drugs in our NAD and ONCD libraries (n=127 of 132 tested drugs) with 975 extended 272 

primary targets, 10,573 secondary targets, and 114,517 network edges (Fig. 3f). Using logistic LASSO 273 

regression, we trained a multi-linear model that identifies the minimal set of STGs that maximally 274 

discriminates PCY-hit drugs (n=30; top-15 drugs from both NADs and ONCDs) from PCY-negative drugs 275 

(n=97; all other tested drugs) in a cross-validation setting (Fig. 3g,h Extended Data Fig. 6a, and 276 

Methods). Thereby, COSTAR converged upon the minimal connectivity signature that was predictive 277 

of anti-glioblastoma drug efficacy (Fig. 3g and Extended Data Fig. 6a,b). Encouragingly, COSTAR 278 

identified a signature that classified the 127 drugs in our training data with 92.1% accuracy, correctly 279 

predicting 20/30 PCY-hits and 96/97 negative drugs (Fig. 3h).  280 

The COSTAR connectivity signature linked PCY-hit NADs to the secondary target BTG2, predominantly 281 

through JUN and TP53 ePTGs (Fig. 3i,j and Extended Data Fig. 6b). BTG2 and TP53 are both tumour 282 

suppressors that control cell cycle and differentiation, while JUN is a member of the AP-1 transcription 283 

factor (TF) family that, in a neural context, regulates gene expression and apoptosis in response to 284 

stimuli such as neural activity or insult 36,38. Conversely, the majority of PCY-hit ONCDs were connected 285 

to the secondary target AP1S2, a protein involved in clathrin coat assembly, through the cyclin G-286 

associated kinase GAK (Fig. 3i,j and Extended Data Fig. 6b). A subset of PCY-hit ONCDs were also linked 287 

to BTG2 through cyclins CCND1 and CCNH, while a subset of PCY-hit NADs were linked to AP1S2 288 

through RAB9A, a member of the RAS oncogene family (Fig. 3j). Taken together, this reveals pathway 289 

convergence on AP-1 transcription factors and cell cycle regulation as a unique signature predictive of 290 

anti-glioblastoma activity of neuroactive drugs.  291 
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COSTAR can compute the hit probability (COSTAR score) of any annotated compound, by matching its 292 

drug target profile to the learned connectivity signature. To evaluate the predictive power of the 293 

COSTAR signature and find additional neuroactive drug candidates with anti-glioblastoma activity, we 294 

performed a large-scale in silico drug screen of 1,120,823 DTC-annotated compounds, and 295 

experimentally validated 48 previously untested drugs among the top (COSTAR-hits, n=23) and bottom 296 

(COSTAR-negs, n=25) scoring compounds (Fig. 3k-n). All COSTAR-hits were linked to the secondary 297 

target BTG2 primarily through JUN (Fig. 3l), while none of the COSTAR-negs had annotated connections 298 

to BTG2 (Extended Data Fig. 6c). We experimentally tested all 48 drugs across four GBM patient 299 

samples ex vivo (P030, P032, P034, P042), and observed excellent agreement between COSTAR 300 

predictions and ex vivo results (mean AUC=0.94, Fig. 3m,n). The COSTAR-hits again represented diverse 301 

drug classes, including the antipsychotic Trifluoperazine, antiparkinsonian Ethopropazine, 302 

antidepressant Sertraline, and bronchodilator Salmeterol (Fig. 3m). These results substantiate AP-1 303 

transcription factor and cell cycle signaling pathway convergence as an actionable signature of 304 

neuroactive drugs with ex vivo anti-glioblastoma activity. 305 

From neural activity-dependent signaling to tumour suppression 306 

The convergent COSTAR signature suggested a common gene regulatory network (GRN) underlying 307 

the anti-glioblastoma activity of top NADs. We determined the transcriptional response of LN-229 cells 308 

at 6 and 22 hours to PCY-hit NADs (n=11) spanning diverse drug classes, PCY-hit ONCDs (n=7), and 309 

negative controls (NEG; n=2 PCY-neg NADs and DMSO; Fig. 4a-d, Extended Data Fig. 7a,b, and 310 

Supplementary Table 3). In remarkable alignment with COSTAR, differential gene expression analysis 311 

upon PCY-hit NAD treatment (PCY-hit NADs vs NEGs) revealed a common transcriptional response 312 

involving AP-1 and BTG family members (Fig. 4b,d and Extended Data Fig. 7e). This AP-1/BTG 313 

upregulation was observed even for Vortioxetine and Brexpiprazole, both lacking DTC-annotations at 314 

the time of analysis and thus not contributing to the COSTAR training (Fig. 4d).  315 

In response to  PCY-hit NAD treatment, we observed rapid and sustained upregulation of several AP-1 316 

TFs, such as the canonical immediate-early genes (IEGs) JUN and FOS, with well-known roles in 317 

mediating neural activity and apoptosis, and stress-induced AP-1 family members ATF3 and ATF4, 318 

where ATF3 represented the most significantly upregulated gene across both time-points. The 319 

presence of other upregulated IEGs including NR4A1, EGR1, and ARC, and pathway enrichment in 320 

MAPK signaling, strengthened this surprising involvement of neural-activity dependent signaling in 321 

glioblastoma (Fig. 4b and Extended Data Fig. 7d). BTG1, a close homologue of BTG2 identified by 322 

COSTAR, was also among the top 20 most significant genes (Fig. 4b,d and Extended Data Fig. 7c) while 323 

BTG2 was strongly induced in response to select drugs, including Vortioxetine and Paroxetine (Fig. 4d). 324 

Induction of AP-1 factors was primarily NAD-specific, where ONCD treatment did not elicit a similar 325 

global transcriptional response (Fig. 4d and Extended Data Fig. 7c). Additionally, over half of AP-1 326 

factors showed no transcriptional upregulation (Extended Data Fig. 7e). For example, ATF2 expression 327 

remained unchanged, despite it being one of the key dimerization partners of JUN 51, as did FOSL1, 328 

previously implicated in response to irradiation in glioblastoma 52.  329 

To find the transcriptional regulators mediating the response to PCY-hit NADs, we performed 330 

transcription factor binding-site (TFBS) enrichment analysis of the upregulated genes (Fig. 4c and 331 

Extended Data Fig. 7f). The most significantly enriched TF motifs at 6 hours were AP-1, ATF, and CREB 332 

a calcium-activated regulator of AP-1 transcription 36,53,54. Over 60% of upregulated genes were 333 

annotated targets of AP-1/ATF/CREB TFs (n=434 out of 719 genes; Fig. 4b,c). Though NAD-induced AP-334 
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1 expression was sustained across both time-points, TFBS enrichment analysis of upregulated genes at 335 

the later 22 hour time-point identified forkhead TF family members (e.g. FOXO1, FOXO3, FOXD3, HFH1) 336 

known to regulate long-term cell differentiation as a gene regulatory module succeeding AP-155–57 337 

(Extended Data Fig. 7f).  338 

A rapid Ca2+ influx and calcium-dependent signaling typically precede IEG expression and AP-1 339 

activation in neural lineage cells 36,54,58,59. We therefore measured both NAD-mediated extracellular 340 

calcium influx as well as endoplasmic reticulum (ER) calcium store release in LN-229 cells by high-341 

throughput FLIPR calcium assays (n=17-18 drugs; Supplementary Table 3). We observed an immediate 342 

and strong extracellular Ca2+ influx in response to 5 out of 8 of our PCY-hit NADs, while none led to ER 343 

Ca2+ store release (Fig. 4e,f and Extended Data Fig. 8a). The strongest Ca2+ influxes were triggered by 344 

antidepressants Vortioxetine, Paroxetine and Fluoxetine (Fig. 4e,f). In contrast, the PCY-neg NADs 345 

(n=6) including antidepressants Citalopram and Mirtazapine, and PCY-hit ONCDs Elesclomol and TMZ 346 

did not trigger calcium influxes (Fig. 4e,f). These results demonstrate that for the majority of our top 347 

NADs a rapid drug-induced Ca2+ influx precedes IEG upregulation and subsequent anti-glioblastoma 348 

activity. 349 

Downstream of AP-1, we evaluated whether BTG tumour suppressors could be direct effectors of the 350 

AP-1 gene regulatory network. To delineate regulators of BTG family genes, we leveraged genome-351 

wide mapping of transcriptional regulatory networks by PathwayNet, a tissue-aware data integration 352 

approach that utilizes 690 ChIP-Seq datasets from the ENCODE project 60. The most enriched 353 

transcriptional regulators of BTG1/2 were members of the AP-1 TF network (e.g. JUN, ATF3, FOS), 354 

implying BTG tumour suppressor gene expression is directly mediated by AP-1 factors (Fig. 4g). 355 

Congruence between NAD-induced AP-1/BTG activation and its anti-glioblastoma activity would 356 

strengthen a causal role for this gene regulatory network. Indeed, drug-induced expression of  this 357 

COSTAR signature was strongly correlated with a drug’s ex vivo anti-glioblastoma efficacy in patient 358 

samples (R=0.72, P=1.4e-05; Fig. 4h). We additionally performed BTG1/2 and JUN loss-of-function 359 

experiments by siRNA-mediated knockdown in LN-229 cells. Quantitative RT-PCR after 72 hours of 360 

gene silencing confirmed reduced expression of BTG1/2 and JUN and revealed interdependent 361 

regulatory interactions governing their expression (Extended Data Fig. 8b). Particularly BTG1 inhibition 362 

accelerated cell growth measured by live-cell imaging across 7 days (Fig. 4i, Supplementary Video 1), 363 

and increased the total number of cells measured by IF after 3 days (Fig. 4j). Furthermore, after two 364 

days of siRNA-mediated gene silencing and one subsequent day of top-NAD Vortioxetine treatment, 365 

BTG1 inhibition attenuated Vortioxetine’s anti-glioblastoma efficacy (Fig. 4j).  366 

Together, these results propose a model in which neuroactive drugs that mediate anti-glioblastoma 367 

activity trigger a rapid calcium influx, IEG and AP-1 transcription factor activation, and engagement of 368 

an antiproliferative program that includes BTG-driven tumour suppression (Fig. 4k). 369 

AP-1 orchestrated anti-glioblastoma activity of neuro-active drugs 370 

To further delineate the molecular dynamics of this discovered anti-glioblastoma program, we 371 

performed deep transcriptomic, proteomic, and phosphoproteomic profiling at 3-6 time-points in 372 

Vortioxetine treated LN-229 cells (Fig. 5a and Extended Data Fig. 8c-h). NH-2 terminal JUN 373 

phosphorylation occurring within 30 minutes to 3 hours after Vortioxetine treatment was central to 374 

several differentially phosphorylated pathways, including the stress response pathway (e.g. HSPB1, 375 

HSP90B1, RIPK2),  mRNA processing (HRNPA2B1, NONO), and clathrin mediated endocytosis (DNM2, 376 
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M6PR) (Extended Data Fig. 8h). Consistent with this observation, a number of AP-1 TFs and associated 377 

pathway annotations were upregulated at both the RNA and protein level across all timepoints. This 378 

included induction of FOS, JUNB, ATF4 already at 3 hours, as well as the ER stress response, DNA 379 

damage, and MAPK signaling pathways (Fig. 5a and Extended Data Fig. 8e). We also observed 380 

upregulation of BTG1/2 and negative cell cycle regulators CDKN1B and PPM1B (Fig. 5a and Extended 381 

Data Fig. 8g). Conversely, cytoskeletal components and oncogenic RTKs associated with the malignant 382 

phenotype of glioblastoma, including EGFR, NTRK2, and PDGFRA, were downregulated upon 383 

Vortioxetine treatment (Fig. 5a).  384 

Next, we determined the cell type specificity of AP-1 induction at the single-cell gene and protein level 385 

in compositionally heterogeneous glioblastoma patient samples. We performed scRNA-Seq on 386 

dissociated cells from patient P024 following 3 hours of ex vivo Vortioxetine treatment (Fig. 5b,c and 387 

Supplementary Fig. S5). Analysis of 1736 single-cell transcriptomes revealed 4 main clusters intermixed 388 

with Vortioxetine-treated and DMSO-control cells (Supplementary Fig. S5a). Clusters 1 to 3 389 

represented glioblastoma cells expressing Nestin, Ki67, CCND2, and VEGFA, with Cluster 1 showing the 390 

most aggressive signature, while Cluster 4 represented immune cells (Fig. 5b and Supplementary Fig. 391 

S5b). Analyzing the transcriptional response to Vortioxetine treatment confirmed glioblastoma-392 

specific induction of AP-1 factors (Fig. 5c). For example, JUNB, JUND, and AP-1 effector gene ARC were 393 

upregulated in Cluster 1, while ATF4 and MAF were induced in all three glioblastoma clusters, with a 394 

more pronounced induction of ATF4 in Clusters 2 and 3 (Fig. 5c). Immunofluorescence against AP-1 395 

pathway members in three additional glioblastoma patient samples (P039, P040, P042) following 396 

Vortioxetine treatment demonstrated the patient-, time-point, and concentration-dependent AP-1 397 

induction in Nestin+ glioblastoma cells (Fig. 5d,e). The strongest induction was seen in patient sample 398 

P040 that had high abundance of complex GSC morphotypes (M1-M3), which were reduced upon 399 

Vortioxetine treatment (Fig. 5d,e). HOMER1 and ATF4 were induced in all three patient samples, while 400 

FOS and JUND exhibited more patient variability (Fig. 5d). Together, this single-cell analysis highlights 401 

the added dimension of cellular and patient complexity, yet supports AP-1 induction to be a key neural 402 

vulnerability targeted by PCY-hit NADs. 403 

Preclinical translation of neuroactive drugs 404 

To evaluate the in vivo anti-glioblastoma efficacy of our top neuroactive drugs, we tested PCY-hit NADs 405 

spanning different drug classes in orthotopic human-xenograft glioblastoma mouse models (n=4 or 5 406 

drugs; Fig. 5f and Extended Data Fig. 9a-c). We accounted for the variability observed in different 407 

orthotopic models by evaluating two different models (LN-229, ZH-161) across three independent 408 

trials (Trials I-III) of in vivo drug-testing  (Fig. 5f and Extended Data Fig. 9a). We included Temozolomide 409 

(TMZ) as a positive control, and as negative controls we tested PCY-neg NAD Paliperidone and a vehicle 410 

control. Since all tested NADs have confirmed BBB-penetrance and are approved for other neurological 411 

disorders, doses were determined a priori based on literature and clinical evidence 61–66.  Vortioxetine 412 

was consistently the most effective drug in vivo (in 3/3 trials), showing significant survival benefit 413 

comparable to the chemotherapeutic TMZ despite being tested at considerably lower dosage (Fig. 5f). 414 

Brexpiprazole was the 2nd-best PCY-hit NAD (2/3 trials), while other NADs showed a significant survival 415 

benefit in 1 out of 3 trials (Extended Data Fig. 9a). Consistent with PCY, the negative control 416 

Paliperidone did not show a significant survival benefit (2/2 trials) (Fig. 5f). In the most aggressive 417 

orthotopic model with the shortest median survival of the vehicle control, Vortioxetine and TMZ were 418 

the only effective drugs (Trial II: ZH-161; Fig. 5f, right), whereas for the least aggressive model, all 5 419 
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tested PCY-hit NADs significantly prolonged survival (Trial III: ZH-161; Extended Data Fig. 9a). MRI 420 

images of ZH-161 transplanted mice (Trial II) after 15 days of Vortioxetine, Apomorphine, and 421 

Temozolomide treatment showed marked reduction of tumour size (Extended Data Fig. 9b,c). Finally, 422 

we confirmed that the potent efficacy of Vortioxetine is not common to serotonin modulating drugs 423 

by directly comparing Vortioxetine to the PCY-neg antidepressant Citalopram at the same dose 424 

(10mg/kg) in an additional in vivo trial (Trial IV; Extended Data Fig. 9d-h). Unlike Citalopram, 425 

Vortioxetine again provided a robust survival benefit (Extended Data Fig. 9d), and reduced tumour 426 

burden (Extended Data Fig. 9e,f) and Ki67 levels (Extended Data Fig. 9g,h). 427 

The striking consistency of our patient ex vivo and mouse in vivo results demonstrates strong 428 

translatability of PCY-based NAD discovery and confirms Vortioxetine as the most promising clinical 429 

candidate. Vortioxetine furthermore displayed multifaceted anti-tumour effects in vitro, reducing 430 

glioblastoma invasiveness (Extended Data Fig. 10a,b), long-term survival (Extended Data Fig. 10c), and 431 

growth (Extended Data Fig. 10d) across 2D and 3D glioblastoma cell lines (2D cultures: LN-229 and, LN-432 

308; 3D spheroids: ZH-161 and ZH-562). Lastly, we tested the combination of Vortioxetine with either 433 

first- or second-line standard of care drugs for glioblastoma, TMZ and Lomustine (CCNU) in vivo (Trial 434 

V: ZH-161; Fig. 5g). All three single agents significantly prolonged survival, with Vortioxetine results 435 

now confirmed in 5 out of 5 in vivo trials (Fig. 5f,g and Extended Data Fig. 9a,d). Remarkably, compared 436 

to TMZ or CCNU single agents, the combination of Vortioxetine with either drug provided a further 437 

median survival increase of 20-30% compared to the single agents (Fig. 5g).  438 

This strong preclinical evidence of the anti-glioblastoma efficacy of the safe antidepressant 439 

Vortioxetine urges for clinical investigation of Vortioxetine in patients. Given the complementary 440 

mechanisms of neuroactive drugs and approved chemotherapies, their successful combination could 441 

facilitate the rapid adoption of NADs into clinical routine for this dire disease.  442 

Discussion 443 

Here we present the first therapeutic single-cell map across glioblastoma patient samples that reveals 444 

the morphological and neural molecular heterogeneity of glioblastoma. Glioblastoma stem cells adopt 445 

distinct cell morphological states that reflect in situ tumor organization and encodes clinical prognostic 446 

value. While the presence of tumour microtubes has been associated with tumour grade 2, we now 447 

show that, even within glioblastoma, complex GSC morphologies are prognostic of shorter 448 

progression-free survival. Critical to this discovery is the image-based evaluation of minimally-cultured 449 

surgical patient samples, which empowers scalable drug screening (pharmacoscopy; PCY) across a 450 

genetically and clinically heterogeneous patient cohort.  451 

PCY-based ex vivo drug sensitivities predicted clinical response to chemotherapy and enabled the 452 

discovery of repurposable neuroactive drugs that target the spectrum of glioblastoma cells across 27 453 

patients and various model systems, greatly expanding upon prior literature 67–69. Response to the 454 

antidepressant Vortioxetine, the most promising preclinical neuroactive candidate, was particularly 455 

aligned with aggressive GSC morphotypes. These efforts expand the nascent community of 456 

glioblastoma research focusing on the investigation of patient-derived tumour explants that facilitate 457 

translational investigation of complex tumour behavior, including the development of genetically 458 

characterized patient cultures, organoid biobanks, and regionally annotated samples 30,41,70–74. As 459 

pharmacoscopy allows patient-tailored evaluation of tumour-extrinsic responses to immuno- and cell-460 
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based therapies 46,75–77, further development may enable investigation of additional complex tumour 461 

physiology, including the neuron-glioma interface. 462 

Our systematic analysis of the neuroactive drug mechanisms, drug target expression, and functional 463 

genetic dependencies indicated a diverse set of possible neural vulnerabilities of glioblastoma. Despite 464 

this diversity, our interpretable machine learning approach COSTAR identified a simple underlying 465 

drug-target connectivity signature predictive of anti-glioblastoma efficacy. COSTAR effectively applies 466 

Occam’s razor to the collective biochemical drug-protein-protein interaction network, offering a novel 467 

conceptual framework applicable to all fields of drug discovery. Through COSTAR, we uncovered a 468 

convergence of AP-1 transcription factor activity and cell cycle regulation on BTG-mediated tumour 469 

suppression. AP-1 and BTG upregulation was a defining feature of the response to neuroactive drugs 470 

with anti-glioblastoma activity, where a growth-suppressing role for BTG1 was confirmed by functional 471 

genetics. While the key pharmacological properties leading to AP-1 upregulation remain to be 472 

identified, and additional mechanisms may still contribute to the integrated effect of each individual 473 

drug, our results reveal diverse neuro-active drugs converging on this novel and potent glioblastoma-474 

suppressing pathway. 475 

Previous studies have demonstrated the role of neuronal input in regulating glioblastoma growth at 476 

the brain-tumour interface, highlighting the influence of the tumour microenvironment in modulating 477 

the neural behavior of the tumour 3,5,6,9. Here, we uncover a cell-intrinsic AP-1 mediated neural 478 

vulnerability in glioblastoma, offering a therapeutic window that enables direct targeting of the 479 

tumour. In cancers, AP-1 factors were originally discovered as oncogenes, though an increasing 480 

number of studies report context-dependent anti-oncogenic functions of AP-1 factors 78. In contrast, 481 

for neural lineage cells such as neurons, immediate early gene expression of AP-1 factors is typically a 482 

hallmark of neural activity or insult 36,38. We now find that neuroactive drugs can target this activity-483 

dependent neural signaling, triggering a strong transcriptional response that, in the context of 484 

glioblastoma cells, leads to rapid cell death. Treating glioblastoma tailored to the cellular history and 485 

lineage of the cancer rather than its unstably transformed state may represent new hope for this 486 

devastating disease. 487 

Data Availability 488 

All transcriptomics data generated in this study including single-cell RNA-Seq, bulk RNA-Seq, and 489 

DRUG-Seq datasets have been deposited in the public repository NCBI Gene Expression Omnibus (GEO; 490 

https://www.ncbi.nlm.nih.gov/geo/) under the following accession numbers: GSE214965 (DRUG-Seq; 491 

multiplexed RNA-Seq of 20 drugs, 2 time points; Reviewer token: uxglimouvdszzwh), GSE214966 492 

(scRNA-Seq; 4 glioblastoma patients at baseline; Reviewer token: szezsuewrhcrpcl), GSE214967 493 

(scRNA-Seq; glioblastoma patient sample after Vortioxetine vs DMSO treatment; Reviewer token: 494 

kdaligmwptuvlin), and GSE214968 (RNA-Seq; Vortioxetine time course; Reviewer token: 495 

yhadscswlxwnzkv). Previously published single-cell RNA-Seq datasets analyzed in this study are 496 

publicly available at GEO under accession numbers GSE117891 and GSE131928. Proteomics and 497 

phosphoproteomics data can be accessed via Panorama (https://panoramaweb.org/GlioB.url; 498 

Username: panorama+reviewer147@proteinms.net, Password: TUqPvoSy). DIA and phosphopeptide 499 

enrichment datasets are available from MASSIVE (ftp://massive.ucsd.edu/MSV000090357/; 500 

Username: MSV000090357, Password: wlab@2022). Drug-target annotations and protein-protein 501 

interaction data were retrieved from the following publicly available databases: Drug Target Commons 502 
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(DTC; https://drugtargetcommons.fimm.fi/) and STRING (https://string-db.org/). Other publicly 503 

available databases used in this study include DAVID (https://david.ncifcrf.gov/), KEGG 504 

(https://www.genome.jp/kegg/), Gene Ontology (http://geneontology.org/), and PathwayNet 505 

(http://pathwaynet.princeton.edu/). Data provided via Supplementary Tables include ex vivo drug 506 

response of glioblastoma cells (pharmacoscopy scores; Supplementary Table 3), transcriptome-wide 507 

neural- and patient-specificity scores derived from three scRNA-Seq datasets (Supplementary Table 4), 508 

and in silico COSTAR drug screening results across 1,120,823 compounds (Supplementary Table 6).  509 

Code Availability 510 

Code for de-multiplexing of DRUG-Seq data can be found on GitHub. COSTAR code and example data 511 

is available at: https://www.snijderlab.org/COSTAR. Additional code is available on reasonable 512 

request. 513 
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Figure Legends 526 

Fig. 1: Neural intratumour heterogeneity across glioblastoma patients relates to 527 

disease prognosis 528 

a, Prospective glioblastoma patient cohort (n=27 patients) and associated experiments. Asterisks (*) 529 

indicate assays performed with a subset of patients. b, UMAP projection of 7684 single-cell 530 

transcriptomes from four glioblastoma patient samples (P007, P011, P012, P013) colored by cluster-id 531 

(see methods and Supplementary Fig.S1). TME, tumour microenvironment; OPC, oligodendrocyte 532 

precursor cells; EC, endothelial cell; TAM, tumour-associated macrophage; NK, natural killer cell. c, 533 

Percent of cells expressing key marker genes (y-axis) per subpopulation (x-axis) across 22 glioblastoma 534 

patient samples (data points). Data from 3 scRNA-Seq datasets (data point shape; Lee et al., this study; 535 

n=4 patients; Neftel et al., n=9 patients; Yu et al., n=9 patients) (see also Extended Data Fig. 1g). P-536 

values calculated from a two-sided Wilcoxon rank sum test. Boxplots show 25th–75th percentiles with 537 

a line at the median; whiskers extend to 1.5 times the interquartile range. d, Compositional and 538 

morphological diversity of cells from dissociated glioblastoma patient samples captured by high-539 

content ex vivo imaging. Glioblastoma ([NES+ or S100B+] and CD45-), immune (CD45+ and NES- and 540 

S100B-), and marker negative (NES- and S100B- and CD45-) cells are shown, as well as Nestin+ 541 

glioblastoma stem cell (GSC) morphotypes (M1:PE, polygonal cell with extensions; M2:EE, elongated 542 

cell with extensions; M3:RB, round big cells; M4:RS, round small cells). e, Cellular composition across 543 

the prospective glioblastoma cohort (n=27 patients). f-g, UMAP projection of the morphological CNN 544 

feature space of 84,180 Nestin+ GSCs (up to n=1000 cells per morphotype and patient; n=27 patients). 545 

Colored by f, assigned Nestin+ GSC morphotype (M1-M4); g, local median of selected single-cell 546 

features. Nestin Int.; Nestin expression measured by immunofluorescence. h, Nestin+ GSC 547 

morphotype composition across the prospective glioblastoma cohort (n=27 patients). Asterisks (*) 548 

indicate samples that were also profiled by immunohistochemistry (IHC) of patient-matched tissue 549 

sections. Red and green * indicate patients with high or low GSC morphotype complexity, respectively. 550 

e,h, Underlines indicate recurrent glioblastoma patient samples. i, Example images of glioblastoma 551 

patient tissue sections stained by H&E and IHC (DAPI, Nestin). H&E stained tissue section of patient 552 

P016 with tumour regions marked in green (top left) and zoom in (bottom left); Example IHC staining 553 

of tumour regions from patients with high ex vivo GSC morphotype complexity (top middle and right; 554 

1, P016; 2, P040) and low ex vivo GSC morphotype complexity (bottom middle and right; 3, P014; 4, 555 

P019). j, Principal component analysis (PCA) of unsupervised deep learning-derived features for 50 556 

multicellular IHC images (n=5 images/patient; n=10 patients). P-values indicate the significance of the 557 

differences in the corresponding PCs between images from patients with high (n=30 images; red dots) 558 

and low (n=20 images; green dots) ex vivo GSC morphotype complexity by Wilcoxon rank-sum test. 559 

Labeled numbers correspond to patient images in Fig. 1i. k, Violin plots comparing in situ 560 

morphological single-cell features (sc-features) of Nestin+ cells (n=400 randomly sampled 561 

cells/patient) between high (n=6 patients) and low (n=4 patients) morphotype complexity groups. Line 562 

denotes median and P-values based on Wilcoxon rank test. l, Kaplan-Meier curves of progression-free 563 

survival (PFS) in newly diagnosed glioblastoma patients (n=17 patients) stratified by M1-M3 564 

morphotype abundance (high, low) within Nestin+ GSCs. Survival curves are compared using the log-565 

rank (Mantel-Cox) test. Tick mark indicates ongoing response. 566 

 567 
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Fig. 2: Image-based single-cell drug profiling across glioblastoma patient samples and 568 

model systems identifies repurposable neuroactive drugs 569 

a, Workflow schematic showing image-based ex vivo drug screening (pharmacoscopy; PCY) of 570 

dissociated glioblastoma patient samples. The PCY score quantifies drug-induced “on-target” killing by 571 

measuring the change in fraction of a defined target population (e.g. Nestin+/S100B+ and CD45- 572 

glioblastoma cells) compared to the (-) vehicle control. Positive PCY scores (blue) indicate a drug-573 

induced relative reduction of cancer cells compared to control, as illustrated in the stacked bar graphs 574 

on the right. b-c, Stratification of newly diagnosed glioblastoma patient survival based on ex vivo 575 

Temozolomide sensitivity (TMZ PCY score) of (Nestin+/S100B+ and CD45-) cells (blue, sensitive; red, 576 

resistant). Kaplan-Meier survival curves are compared using the log-rank (Mantel-Cox) test. b, 577 

Progression-free survival (PFS) of the prospective glioblastoma cohort (n=16 patients; P=0.039) 578 

stratified by 100µM TMZ PCY score. Tick mark indicates ongoing response. c, Progression-free survival 579 

(PFS; P=0.0031; left) and overall survival (OS; P=0.016; right) of the retrospective validation cohort 580 

(n=18 patients) stratified by mean TMZ PCY score. d, Drug ranking (n=132 drugs) by their mean 581 

(Nestin+/S100B+ and CD45-) PCY scores across glioblastoma patients (NADs, n=27 patients; ONCDs, 582 

n=12 patients). Drug annotations indicate drug type (NADs; n=67 drugs, ONCDs; n=65 drugs) and drug 583 

class. RTK, receptor tyrosine kinase; alkyl, alkylation; rep, replication. e, Representative 584 

immunofluorescence images of a glioblastoma patient sample (P040; scale bar, 100µm), a patient-585 

derived cell line (P040.PDC; 100µm), an long-term glioblastoma cell line (LN-229; scale bar, 150µm), 586 

and a glioblastoma-initiating cell line (ZH-562, scale bar, 250µm). Cells are labeled with the nuclear 587 

stain DAPI (blue), astrocyte lineage marker S100B (green), and neural progenitor marker Nestin 588 

(yellow). Other markers are indicated in their respective colors. f, Drug response heatmaps of 589 

neuroactive drugs (NADs, n=67 drugs; columns) across glioblastoma patient samples (n=27 patients; 590 

rows), Nestin+ GSC M1-M4 morphotypes (n=4 classes; averaged response across n=27 patients), 591 

patient-derived lines (PDCs; n=3 lines, patient id followed by ‘.C’), and glioblastoma cell lines (n=4 592 

lines). Drug score (heatmap color scale) indicates the PCY score for glioblastoma patient samples and 593 

patient-derived cell lines while for long-term glioblastoma cell lines the drug score is a viability score. 594 

Outliers beyond color scale limits set to minimum and maximum values. Clinical annotations per 595 

patient sample (rows) indicate the Ki67 labeling index, MGMT promoter methylation status (unmethyl, 596 

unmethylated; methyl, methylated; nd, not determined), sex, and newly diagnosed or recurrent 597 

tumour status. Annotation per drug indicates neuroactive drug class. Asterisks (*) denote FDR-adjusted 598 

P < 0.05 calculated by one-sided t-tests. g, Pearson correlations of marker and morphology-based 599 

sample composition at baseline (rows) with the (S100B+/Nestin+ and CD45-) PCY scores of top 600 

neuroactive drug hits (NAD-Hits) and glioma drugs (GSDs) across patients (n=27). h, Correlation of 601 

morphotype M1-M3 abundance of Nestin+ GSCs at baseline (x-axis) with Vortioxetine efficacy (y-axis; 602 

PCY score) across patients (n=27), as in g. Linear regression line with a 95% confidence interval. Pearson 603 

correlation coefficient with P-value annotated. i, Association of patient sex with response to 604 

Brexpiprazole (PCY score; P = 0.0063). j, Association of FGFR2 copy number loss with response to 605 

Sertindole (PCY score; P = 0.0008). CNV, copy number variation; High.conf, high confidence; Low.conf, 606 

low confidence. i,j, P-values calculated from a two-sided Wilcoxon rank sum test. g,i,j, P-values: not 607 

significant (ns), P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Boxplots as in Fig. 1c. 608 
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Fig. 3: Neuroactive drugs with anti-glioblastoma efficacy converge upon an AP-1 and 609 

cell cycle connectivity signature through divergent primary targets 610 

a, Drug mode-of-action for all neuroactive drugs (n=67 drugs; left) and top neuroactive drug hits (n=15 611 

drugs with a mean patient PCY score > 0.03; right) represented as stacked bar plots. n.s., not significant 612 

by hypergeometric enrichment test. b, Primary target gene (PTG) expression of neuroactive drugs in 613 

22 glioblastoma patient samples across three scRNA-Seq datasets (shape) plotted as the neural 614 

specificity score (x-axis) versus patient specificity score (y-axis) for each PTG (dot, gene; size, percent 615 

expression; color, receptor class). c, scRNA-Seq log10(expression) of selected neuroactive PTGs 616 

(SIGMAR1, CNR1, GRIA2) and oncogenic RTK (PDGFRA) visualized on the UMAP projection, as in Fig. 617 

1b. d, Workflow for the collection of extended primary target genes (ePTGs) and associated secondary 618 

target genes (STGs) of drugs tested across patient samples by PCY to search for “convergence of 619 

secondary drug targets analyzed by regularized regression” (COSTAR).  e, Example PTGs with genetic 620 

dependencies (core nodes; colored as in b; see also Extended Data Fig. 5c) linking to both PCY-HIT 621 

(pink) and PCY-NEG (grey) drugs.  f, The full COSTAR network constellation of 127 PCY-tested drugs, 622 

965 ePTGs, and 10573 STGs, connected by a total of 114517 edges g, COSTAR method: Logistic LASSO 623 

regression is performed on the COSTAR constellation to learn a linear model that discriminates PCY-624 

HIT drugs (n=30, equally split across NADs and ONCDs) from PCY-NEG drugs (n=97) based on a small 625 

set of STGs. h, COSTAR training model performance as a confusion matrix, where the ‘true’ class 626 

denotes PCY-based experimental ground truth, and the ‘predicted’ class denotes the COSTAR-627 

prediction. i, ePTGs (x-axis) ranked by their integrated contribution to predict a hit (+1) or non-hit (-1) 628 

(y-axis) in the COSTAR model, separated for PCY-hit NADs (top) and ONCD (bottom). j, COSTAR 629 

connectivity (solid lines) reveals convergence of NAD (pink) and ONCD (blue) hits to key ePTGs (grey) 630 

and STGs (yellow) included in the final model. See Extended Data Fig. 6b for the full model. Additional 631 

proteins (white nodes) with high confidence interactions to STGs (dashed lines) are shown. i, In silico 632 

COSTAR predictions based on drug-target connectivity across 1,120,823 compounds annotated in DTC. 633 

Compounds are ranked (x-axis) by their predicted PCY-hit probability (COSTAR score; y-axis). Predicted 634 

drug hits (COSTAR-HIT; mint green) and predicted non-hits (COSTAR-NEG; black) selected for 635 

experimental validation are indicated. k, As in g, but for COSTAR-HITs (top) and COSTAR-NEGs 636 

(bottom). k, Experimental validation by pharmacoscopy of COSTAR-HIT (n=23; mint green) and 637 

COSTAR-NEG (n=25; black) drugs (columns) across four glioblastoma patient samples (rows) including 638 

positive (PCY-HITs; pink; n=3) and negative (PCY-NEG; dark grey; n=1) control drugs. Heatmap color 639 

scale indicates the PCY score of (Nestin+/S100B+ and CD45-) cells. Outliers beyond color scale limits 640 

set to minimum and maximum values. Asterisks (*) denote FDR-adjusted P < 0.05. l, Receiver Operating 641 

Characteristic (ROC) curves (grey, n=4 patients; mint green, mean across patients; red dashed, random 642 

classifier) describing the COSTAR validation accuracy in glioblastoma patient samples of the COSTAR-643 

predicted drugs (n=48 drugs; corresponding to Fig. 3m). AUC; area under the curve.   644 
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Fig. 4: Glioblastoma suppression is driven by a tumour-intrinsic AP-1 gene regulatory 645 

network 646 

a, Multiplexed RNA-Seq (DRUG-Seq79,80) of LN-229 cells after pharmacoscopy-hit neuroactive drug 647 

(PCY-hit NADs, n=11 drugs), pharmacoscopy-hit oncology drug (PCY-hit ONCDs, n=6 drugs), and 648 

negative control drug (NEGs, n=2 PCY-neg NADs and DMSO vehicle control) treatment (n=4 replicate 649 

wells per drug/time-point; n=2 time-points, 6 and 22 hours). b, Transcriptional response of PCY-hit 650 

NAD-treated cells compared to NEG-treated cells (6 hours). X-axis: log2(fold change), positive value 651 

indicating PCY-hit NAD upregulated genes; y-axis: –log10(adjusted P-value). Genes above a –log10(0.05 652 

adjusted P-value) threshold (light grey or colored), and non-significant genes (dark grey). Target genes 653 

of AP-1, ATF, or CREB TFs (pink), as well as AP-1 pathway, IEG, and COSTAR model member genes (red 654 

outlines), and genes present in both the AP-1 & KEGG apoptosis pathway(solid red) are indicated. Gene 655 

names of indicated genes with an adjusted P-value < 0.01 are shown. c, Transcription factor binding 656 

site enrichment analysis of significantly upregulated genes upon PCY-hit NAD treatment in Fig. 4b. 657 

Circles correspond to TF annotations, sizes scale with the percent of genes present in the annotation, 658 

and colors indicate –log10(false discovery rate). d, Expression of AP-1 TF and BTG family genes (y-axis, 659 

normalized RNA-Seq counts) that are significantly upregulated upon PCY-hit NAD treatment (6 hours). 660 

Box plot groups (x-axis) correspond to drug categories and dots represent the average expression per 661 

drug. ‘PCY-hit NAD’ and ‘PCY-hit ONCD’ abbreviated to NAD and ONCD, respectively. e, Calcium 662 

response (ΔF/F; y-axis) over time (x-axis) of LN-229 cells upon drug treatment measured by high-663 

throughput FLIPR assay. Timeline depicts assay setup (Methods). Representative traces from 8 drug 664 

conditions (out of 17 tested) including 5 NADs (left), and 2 ONCDs (right). DMSO vehicle control traces 665 

shown in both. ΔF/F, change in fluorescence intensity relative to the baseline. f, Fold-change in 666 

extracellular calcium influx upon drug treatment relative to DMSO vehicle control measured by FLIPR 667 

assays in LN-229 cells (n=8 assay plates; n=17 conditions; n=18-30 wells/drug; DMSO, n=47 wells). Drug 668 

categories including PCY-hit NADs, n=8 drugs; PCY-neg NADs, n=6 drugs; PCY-hit ONCDs, n=2 drugs 669 

were compared. Asterisks (*) in parentheses denote conditions where the median [Ca2+ fold change] 670 

< 0. Black line indicates the median value. g, Transcriptional regulation of BTG1/2 based on PathwayNet 671 
60. Query genes (BTG1/2, black nodes) and the top-13 inferred transcription factor interactions (grey 672 

nodes) are shown. Edge colors indicate relationship confidence. h, Correlation of average COSTAR 673 

signature expression (x-axis) with ex vivo patient neuroactive drug response (y-axis) plotted per drug 674 

(color) and time-point (shape). Mean glioblastoma PCY score across patients (n=27 patients) of 675 

neuroactive drugs (n=11 PCY-H NADs, n=3 NEGs) plotted against their corresponding geometric mean 676 

expression of AP-1 TFs and BTG1/2 genes as shown in Fig. 4d. Linear regression line (black) with a 95% 677 

confidence interval (light grey). Pearson correlation coefficient R=0.72, P-value 1.4e-05. i, Confluency 678 

of LN-229 cells measured by IncuCyte live-cell imaging (y-axis) across 7 days (x-axis) in two siRNA 679 

knockdown conditions (BTG1, BTG2) and a negative firefly luciferase control (FLUC). Mean of n=4 680 

replicate wells shown +/- one standard deviation. j, Effect of target gene siRNA knockdown (columns) 681 

on normalized LN-229 cell counts (y-axis) at baseline (DMSO; left panel) and upon Vortioxetine 682 

treatment (VORT; 10µM; right panel). KIF11; positive (+) control. Cell counts are normalized to the 683 

FLUC negative (-) control siRNA within the DMSO condition per experiment (n=9-14 replicate 684 

wells/condition, n=2 experiments). k, Diagram summarizing mechanistic pathways by which 685 

neuroactive drugs target glioblastoma. GRN; gene regulatory network. IEG; immediate early gene. CKI: 686 

cyclin-dependent kinase inhibitor. CRE; cAMP response element. FKH; forkhead binding motif. a,d-f,h, 687 

Colors correspond to drugs and drug name abbreviations annotated in Supplementary Table 3. d,f,j 688 
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Two-sided t-test. f,j  P-values adjusted for multiple comparisons by Holm correction. P-values: not 689 

significant (ns), P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Boxplots as in Fig. 1c.  690 
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Fig. 5: The antidepressant Vortioxetine induces a potent AP-1 response that 691 

synergizes in vivo with current standard of care drugs for glioblastoma  692 

a, Time-course visualization of AP-1 (PID) and MAPK (KEGG) pathway induction following Vortioxetine 693 

treatment (20µM) in LN-229 cells measured by RNA-Seq (n=6 time-points) and by proteomics (n=3 694 

time-points). n=3 replicates/time-point. Genes selected for visualization are significantly differentially 695 

expressed by RNA-Seq at all time-points compared to the first time-point (0h). Heatmap color scale 696 

represents log2(fold change) compared to the 0h time-point. b, scRNA-Seq expression log2(UMI) of 697 

selected glioblastoma and top cluster marker genes from glioblastoma patient sample P024. Cluster 698 

ids are based upon UMAP clustering of both DMSO and Vortioxetine (VORT, 20µM) treated cells (3h) 699 

shown in Extended Data Fig. 10a. Black lines indicate the median value. c, Differentially expressed AP-700 

1 transcription factors and downstream effector gene ARC per scRNA-Seq cluster upon Vortioxetine 701 

treatment compared to DMSO in P024. Circle sizes scale with the –log10 (adjusted P-value) and 702 

heatmap color scale represents VORT-induced log2(fold change) compared to DMSO treated cells per 703 

cluster. d, Induction of AP-1 transcription factors and downstream effector HOMER1 in glioblastoma 704 

patient samples (n=3 additional patients; P039, P040, P042) upon ex vivo Vortioxetine treatment (time-705 

points: 0, 3-6, and 24 hours; concentrations: 10 and 20µM) in Nestin+ cells measured by 706 

immunofluorescence. Two-sided t-test compared to negative control. e, Representative pseudo-707 

colored single-cell image crops from glioblastoma patient P040 of Nestin+ (yellow) cells after 708 

Vortioxetine treatment (+; 20µM) and DMSO vehicle control (-) at 24 hours stained with different AP-709 

1 transcription factors/ HOMER1 (red) and DAPI (blue). Scale bar, 15µm. f, Survival analysis of Trial I: 710 

LN-229 (left) or Trial II: ZH-161 (right) tumour-bearing mice (n=6-7 mice/group). Mice were treated 711 

intraperitoneally (i.p.) between days 5-21 after tumour implantation with a PCY-HIT NAD, Vortioxetine 712 

(VORT; 10mg/kg; Trial I, P=0.0001; Trial II, P=0.0016), a positive control, Temozolomide (TMZ; 713 

50mg/kg; Trial I, P=0.0009 ; Trial II, P=0.0002), a PCY-NEG NAD, Paliperidone (PALI; 5mg/kg), and a 714 

negative vehicle control. See also Extended Data Fig. 9 for Trial III-IV and full results of Trials I and II 715 

including other PCY-hit NADs. g, Trial V: in vivo treatment of Vortioxetine (VORT; 10mg/kg) in 716 

combination with 1st- and 2nd-line glioblastoma chemotherapies; Temozolomide (TMZ; 50mg/kg) and 717 

Lomustine (CCNU; 20mg/kg) compared to single-agents and vehicle control in ZH-161 tumour-bearing 718 

mice (n=5-6 mice/group). Combination treatments, TMZ+VORT/CCNU+VORT, both P=0.0007; Single-719 

agents, TMZ/CCNU/VORT, all P=0.0018. f-g, Survival plotted as Kaplan–Meier curves and P values 720 

calculated using log-rank (Mantel-Cox) test. Censored mice denoted as tick marks. P-values: not 721 

significant (ns) P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.   722 
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Extended Data Figure Legends 723 

Extended Data Fig. 1: Glioblastoma prospective cohort overview and single-cell RNA-724 

sequencing of four patient samples 725 

a, Circos plot overview of the glioblastoma prospective patient cohort (n=27 patients) included in this 726 

study. Concentric circles from outermost to innermost show newly diagnosed versus recurrent tumour 727 

status, Ki67 labeling index, sex, MGMT promoter methylation status, and the most frequent genetic 728 

alterations (n=11) determined by targeted next-generation sequencing (NGS). Asterisks (*) denote 729 

scRNA-Seq patient samples (black, n=4 patients at baseline; pink, n=1 patient after drug treatment). 730 

CNV; copy number variation. See Supplementary Table 1,2 for full cohort information. b, UMAP 731 

projection of 7684 single-cell transcriptomes from four glioblastoma patient samples colored by 732 

patient (P007, 3475 cells; P011, 1490 cells; P012, 330 cells; P013, 2389 cells, referred to as ‘Lee et al., 733 

this study’). c, scRNA-Seq log2(expression+1) of glioblastoma markers (NES, S100B), pan-immune 734 

marker (CD45), and housekeeping gene (ACTB) of n=1,320 single cells as a subset of b, (n=330 randomly 735 

sampled cells per patient) d, Percent of Nestin or S100B positive cells (rows) either negative or positive 736 

for CD45 (columns) by scRNA-Seq across 22 glioblastoma patient samples and 3 scRNA-Seq datasets 737 

(Lee et al., this study, n=4 patients, n=7,684 cells; Neftel et al., n=9 patients, n=13,519 cells; Yu et al., 738 

n=9 patients, n=4,307 cells). e, Representative immunofluorescence (IF) images of two glioblastoma 739 

patient samples labeled with different glioblastoma markers (Nestin, EGFR, CX43, and CHI3L1). f, 740 

Quantification of IF images in e, across n=4 glioblastoma patient samples. P-values from a two-sided t-741 

test are shown. g, Percent of cells expressing key marker genes (y-axis) per patient (data points) and 742 

subpopulation (x-axis) across 22 glioblastoma patient samples (dots) and 3 scRNA-Seq datasets (shape) 743 

as in d. h, Example single-cell crops of cleaved CASP3+/- negative cells by IF in the image dataset used 744 

to train a convolutional neural network (CNN) based on nuclear (DAPI) and cell morphology 745 

(Brightfield) to detect apoptotic cells. i, Performance of the trained apoptotic classifier CNN in 746 

classifying the manually curated test image dataset consisting of CASP3+/- single-cell crops (n=1,214 747 

images) into the corresponding classes. Cell classification accuracy shown as a confusion matrix. j, 748 

Fraction of cells classified as apoptotic by the CNN across the prospective patient cohort (n=27 749 

patients) and marker defined populations. k, Genes (columns) enriched in (NES-, S100B-, and CD45-) 750 

triple-negative cells (‘All Neg’ cells) compared to ([NES+ or S100B+] and CD45-) cells across the 22 751 

patients (rows) of the three scRNA-seq cohorts (row annotation color). Heatmap depicts log2(fold 752 

change) of genes enriched in the ‘All Neg’ cells. Expression of top-10 genes (columns) per patient (rows) 753 

clustered into 3 gene modules (Modules 1-3; column annotation color). l, Cell-type specific enrichment 754 

analysis (Web-CSEA, Dai et al. 2022) of the ‘All Neg’ enriched gene modules as in k. Dots represent 755 

individual Web-CSEA datasets, example genes that are members of their respective gene modules are 756 

annotated above. g,f,l, Boxplots as in Fig. 1c.  757 
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Extended Data Fig. 2: Deep learning of glioblastoma stem cell morphologies and 758 

clinical parameter-based stratification of patient survival  759 

a, Performance of the trained GSC morphology CNN in classifying the manually curated test image 760 

dataset consisting of Nestin+ single-cell crops (n=10,204 images) into the corresponding four GSC 761 

morphotypes (M1-M4). Cell classification accuracy shown as a confusion matrix. b, UMAP projection 762 

of the morphological CNN feature space of 84,180 single cells (up to n=1,000 cells per morphotype and 763 

patient, n=27 patients). Cells are colored by the local median of selected single-cell image-based 764 

features as in Fig. 1g. c, Frequency of extensions per cell (top panels) in extension-containing 765 

morphotypes M1 (n=180 cells) and M2 (n=264 cells), and quantification of maximum extension length 766 

and extension width in M1 (n=111 cells) and M2 (n=127 cells) morphotypes (bottom panels). d, 767 

Example single-cell IF images of cleaved CASP3+/- negative cells across M1-M4 Nestin+ GSC 768 

morphotypes. Scale bar, 30µm. e, Fraction of apoptotic cells across M1-M4 Nestin+ GSC morphotypes 769 

quantified by either cleaved CASP3 IF (top; n=6 patients) or by the apoptotic CNN classifier (bottom; 770 

n=27 patients). f, Example single-cell IF images of NES+ and CX43+/EGFR+ (top) or NES+ and CX43-771 

/EGFR- (bottom). g, Fraction of EGFR+ (left) or CX43+ (right) cells per Nestin+ GSC morphotype (x-axis) 772 

across four patients (dots). h, Example in situ immunohistochemistry (IHC) image of tumour region 773 

from patient P014 stained with nuclear stain (DAPI), glioblastoma stem cell marker (Nestin), epidermal 774 

growth factor (EGFR), and astrocyte lineage marker (S100B). i, Example in situ IHC images of tumour 775 

regions from patients with high ex vivo GSC morphotype complexity (top panels; n=6 patients) and low 776 

ex vivo GSC morphotype complexity (bottom panels; n=4 patients). j, Examples of manually segmented 777 

individual Nestin+ cells from binarized IHC images (Nestin channel) of individual patients confirming 778 

the presence and spectrum of M1-M4 morphotypes in situ. Two high morphotype complexity patients 779 

(left; red labels; P040, P028) and two low morphotype complexity patients (right; green labels; P019, 780 

P032) shown. k, Correlation of histopathological Ki67 labeling (y-axis) index with percent of GSCs with 781 

an M1-M3 morphotype (x-axis) per patient. Linear regression line (dark blue) with a 95% confidence 782 

interval (light grey). Pearson correlation coefficient and P-value shown. l-n, Kaplan-Meier survival 783 

curves of progression-free survival (PFS) in newly diagnosed glioblastoma patients (n=17 patients) 784 

stratified by l, M1-M3 morphotype abundance (high, low) among Nestin+ GSCs; m, histopathological 785 

Ki67% labeling index, sex, and MGMT promoter methylation status (n=1 patient with undetermined 786 

MGMT status omitted); n, IF marker-defined population abundances per sample as defined in Fig. 1d. 787 

l-n, Survival curves are compared using the log-rank (Mantel-Cox) test. Tick mark indicates ongoing 788 

response. e,g, Boxplots as in Fig. 1c.  789 
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Extended Data Fig. 3: Patient ex vivo drug response relates to clinical parameters, 790 

tumour composition, and mutational profiles  791 

a, Glioblastoma drug (GSDs; rows; n=3 drugs) response across patient samples (columns; prospective 792 

cohort, PROS, n=27 patients; retrospective cohort, RETRO, n=18 patients). GSD response is averaged 793 

across four concentrations for Temozolomide (TMZ; 1st-line chemotherapy; 50, 100, 250, 500µM) and 794 

Lomustine/Carmustine (CCNU and BCNU respectively; 2nd-line chemotherapies; 10, 50, 100, 250µM). 795 

b, Stratification of progression-free survival (PFS) of newly diagnosed glioblastoma patients 796 

(prospective cohort; n=16 patients) based on based on mean ex vivo Temozolomide sensitivity (TMZ 797 

PCY score) of (Nestin+/S100B+ and CD45-) cells (blue, sensitive; red, resistant). Kaplan-Meier survival 798 

curves are compared using the log-rank (Mantel-Cox) test and the optimal TMZ PCY score cut-point to 799 

stratify patients is determined by maximally selected rank statistics. Tick mark indicates ongoing 800 

response. c, Temozolomide (50µM) ex vivo response of glioblastoma patients (dots; n=41 patients 801 

across both cohorts) stratified by MGMT promoter methylation status. Unmethyl; unmethylated, 802 

Methyl; methylated. Wilcoxon rank sum test, P=0.037. Boxplots as in Fig. 1c. d, Drug response matrix 803 

of oncology drugs (ONCDs; columns; n=65 drugs) across glioblastoma patient samples (rows; n=12 804 

patients). Clinical annotations per patient sample (rows) indicate the Ki67 labeling index, MGMT 805 

promoter methylation status (unmethyl; unmethylated, methyl; methylated, nd; not determined), Sex, 806 

and recurrent tumour status (Status). Column drug annotations indicate oncology drug class as in Fig. 807 

2d. Asterisks (*) denote FDR-adjusted P < 0.05. e, Pharmacogenomic analysis of the most common 808 

genetic alterations (n=11) in glioblastoma patients and ex vivo drug response (PCY score). Each 809 

datapoint represents a [gene:drug] association, where x-axis denotes the percent of patients for which 810 

the respective drug’s PCY score >0.03 and the y-axis denotes FDR-adjusted P-values. f, As in e, but for 811 

associations between clinical parameters and ex vivo drug response (PCY score). e,f Colored by 812 

gene/clinical parameter and shape denote drug category. Red dashed line indicates the significance 813 

threshold. P-values were calculated using the Wilcoxon rank sum test for two groups, and for three or 814 

more groups, by the Kruskal-Wallis test. For ONCD associations, the following genetic mutations or 815 

clinical parameters had less than 3 patients in any category and were thus not analyzed: Genetic, 816 

EGFRvIII, NF1, TERT, RB1; Clinical, Recurrent status. g, Drug response matrix of neuroactive drugs 817 

(NADs, n=67 drugs; classes annotated as in Fig. 2f) averaged across glioblastoma patient samples (n=27 818 

patients) for each cell population defined by immunofluorescence markers (Nestin, S100B, CD3, and 819 

CD45) and total cell number (TCN). a,d,g, Heatmap color scale indicates the PCY score of a,d, Nestin+ 820 

or S100B+ cells g, mean PCY score of each respective population averaged across patients. Outliers 821 

beyond color scale limits were correspondingly set to minimum and maximum values.  822 
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Extended Data Fig. 4: Robust and dose-dependent drug responses to neuroactive 823 

drugs across glioblastoma cell lines and patient samples 824 

a,b, Dose-response curves of glioblastoma cell lines (LN-229/LN-308; see also Supplementary Fig.S4 for 825 

spheroid lines ZH-161/ZH-562) of a subset of top neuroactive drugs (n=9 drugs) across different 826 

concentrations (logarithmically spaced x-axis, n=5 concentrations). Y-axis denotes relative cell counts 827 

normalized to DMSO control. Dose-response curves (solid lines) are fitted with a two-parameter log-828 

logistic distribution with 95% confidence intervals (colored per cell line) and ED50 (red dashed lines). 829 

n=3-5 replicate wells/drug, n=15 DMSO wells. a, Dose-response curves of glioblastoma cell line LN-830 

229. b, Dose-response curves of glioblastoma cell line LN-308. c-e, Comparison of neuroactive drug 831 

pharmacoscopy scores of (Nestin+/S100B+ and CD45-) glioblastoma cells (n=67 NADs; original PCY 832 

score) to NAD PCY scores calculated by excluding cleaved CASP3+ apoptotic cells. Apoptotic cells are 833 

defined either by immunofluorescence (PCY score without IF CASP3+) or by the apoptotic CNN 834 

classifier (PCY score without CNN CASP3+; see also Methods). Pearson correlation coefficients with P-835 

values annotated. c,d, NAD screens performed in two validation patient samples (P048, P049). c, 836 

Comparison of the original PCY score to the PCY score without IF CASP3+ d, Comparison of the PCY 837 

score without IF CASP3+ the PCY score without CNN CASP3+ e, Comparison of the original PCY score 838 

to the PCY score without CNN CASP3+ across the whole prospective cohort (n=27 patients) and 839 

neuroactive drugs (n=67 drugs). f, Representative immunofluorescence images of a patient sample 840 

(P025) at baseline (DMSO control; top) and treated with Vortioxetine (bottom). Glioblastoma cells are 841 

labeled with the nuclear stain DAPI , astrocyte lineage marker S100B, and neural progenitor marker 842 

Nestin while immune cells are labeled with the T-cell marker CD3 and pan-immune marker CD45. Scale 843 

bar, 60µM. g, Drug response matrix of antidepressants (left, n=11 drugs) and antipsychotics (right, 844 

n=16 drugs) across glioblastoma patient samples (n=27 patients) subsetted from the original matrix, 845 

as shown in Fig. 2f.   846 
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Extended Data Fig. 5: Single-cell heterogeneity and functional dependencies of 847 

primary neuroactive drug targets 848 

a, UMAP projection of 7684 single-cell transcriptomes from four glioblastoma patient samples (P007, 849 

P011, P012, P013), colored by aggregate scRNA-Seq expression across primary target genes (PTG) per 850 

receptor class in Fig. 3b. Color scaled to percent of maximum expression per receptor class. b, Neural 851 

specificity score (x-axis) versus patient specificity score (y-axis) for three independent glioblastoma 852 

scRNA-Seq datasets. Each dot represents a gene, with key marker genes annotated with labels. Key 853 

marker genes colored by mean detected expression across cells and dot size scales with percent of 854 

expressed cells. All other detected genes are colored in grey. (Lee et al., this study; n=4 patients, 855 

n=7684 cells, n=15,668 genes; Neftel et al., n=9 patients, n=13,519 cells, n=22160 genes; Yu et al., n=9 856 

patients, n=4307 cells, n=19,098 genes; see also Methods). c, Baseline RNA-Seq expression (top panel; 857 

y-axis) and siRNA-mediated gene silencing of PTGs in LN-229 cells (n=59 siRNA conditions; columns; 858 

middle and bottom panels). Total cell number reduction (TCN) and cleaved CASP3+ fraction increase 859 

(CASP3+) relative to the (-) control FLUC siRNA condition depicted as a circle per gene. Circle sizes scale 860 

with the –log10(FDR-adjusted P value). Color represents either the receptor class of each PTG (middle) 861 

or the total cell number (TCN; bottom) for each tested PTG. d, Representative immunofluorescence 862 

images of siRNA-mediated gene silencing of the positive control gene (KIF11 (+) ctrl; left), negative 863 

control gene (FLUC (-) ctrl; middle), and ADRA2B (right). Scale bar, 60µM. Cells are stained for DAPI 864 

(blue), cleaved CASP3 (yellow) and TUBB3 (red). e, Kaplan-Meier survival analysis and associated risk 865 

tables of the TCGA primary glioblastoma cohort (n=120 patients) based on RNA-Seq expression of 4 866 

PTGs (panels) that significantly reduce cell viability in c, and stratify patient survival. Optimal cut-point 867 

for patient stratification (high, low) is determined by maximally selected rank statistics. Survival curves 868 

are compared using the log-rank (Mantel-Cox) test. 95% confidence intervals are indicated in shaded 869 

curves.   870 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


10-410-310-210-1

Lambda

100

200

300

400

500

600

700

800

900

1000

C
ro

ss
-V

al
id

at
io

n 
D

ev
ia

nc
e 

Deviance with Error Bars
LambdaMinDeviance
Lambda1SE

a

-0.7

0

0.7

Target Level
Primary
Secondary

Drug Type
Neuroactive (NADs)
Oncology (ONCDs)

COSTAR subscore

b

LRP1
NRF1
SLC5A4
SEC24C
MRPL19
NR1I2
SULT1A1
PDE1A
DOCK11
ADK
ETV6
HCRTR1
CYP4A11
C4BPA
GPKOW
BATF3
GFER
EPHX2
BTG2
VPS11
AP1S2

Zo
ni

sa
m

id
e 

C
ob

im
et

in
ib

 
El

es
cl

om
ol

 
Pe

ro
sp

iro
ne

 
Le

ve
tir

ac
et

am
 

Lu
ra

si
do

ne
 

D
ro

xi
do

pa
 

M
ln

22
38

 
Zo

te
pi

ne
 

C
lo

m
ip

ra
m

in
e 

R
ib

oc
ic

lib
 

O
si

m
er

tin
ib

 
Ap

om
or

ph
in

e 
R

im
on

ab
an

t 
C

er
iti

ni
b 

Pa
no

bi
no

st
at

 
R

eg
or

af
en

ib
 

Po
na

tin
ib

 
Af

at
in

ib
 

O
la

nz
ap

in
e 

Vi
np

oc
et

in
e 

Ab
em

ac
ic

lib
 

D
as

at
in

ib
 

Pa
ro

xe
tin

e 
Fl

uo
xe

tin
e 

C
hl

or
pr

om
az

in
e 

So
ra

fe
ni

b 
M

id
os

ta
ur

in
 

Id
el

al
is

ib
 

R
ilu

zo
le

 

c

SLC5A4
LRP1
NRF1
SEC24C
MRPL19
NR1I2
SULT1A1
DOCK11
BATF3
C4BPA
AP1S2
BTG2
VPS11

R
es

er
pi

ne
Ve

ra
pa

m
il

C
hl

or
zo

xa
zo

ne
D

ro
pe

rid
ol

Es
ci

ta
lo

pr
am

Pr
im

id
on

e
D

ih
yd

ro
er

go
ta

m
in

e
Ac

et
az

ol
am

id
e

N
ifl

um
ic

 a
ci

d
So

ta
lo

l
O

nd
an

se
tro

n
N

ad
ol

ol
M

et
op

ro
lo

l
Li

do
ca

in
e

Bu
pr

op
io

n
Ph

ys
os

tig
m

in
e

D
ilt

ia
ze

m
Am

itr
ip

ty
lin

e
O

xc
ar

ba
ze

pi
ne

Lo
sa

rta
n

En
al

ap
ril

C
ar

bi
do

pa
D

es
ip

ra
m

in
e

Le
vo

do
pa

Ac
et

am
in

op
he

n
Am

itr
ip

ty
lin

e 
H

C
L

Tr
ifl

uo
pe

ra
zi

ne
Fl

up
he

na
zi

ne
C

yp
ro

he
pt

ad
in

e
Tr

ifl
up

ro
m

az
in

e 
H

C
L

C
an

de
sa

rta
n 

ci
le

xe
til

Et
ho

pr
op

az
in

e 
H

C
L

N
or

tri
pt

yl
in

e
Se

lic
ic

lib
H

yd
ra

la
zi

ne
Al

lo
pu

rin
ol

Pe
rp

he
na

zi
ne

Pi
m

oz
id

e
Th

io
rid

az
in

e
M

ia
ns

er
in

M
ap

ro
til

in
e

M
et

er
go

lin
e

Se
rtr

al
in

e
Lo

ra
ta

di
ne

Fl
us

pi
ril

en
e

Fl
up

en
tix

ol
Sp

ip
er

on
e

Sa
lm

et
er

ol
 x

in
af

oa
te

-0.7

0

0.7

Target Level
Primary
Secondary

Drug Type
COSTAR-HIT
COSTAR-NEG

COSTAR subscore

Extended Data Figure 6 .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 25 of 49 
 

Extended Data Fig. 6: COSTAR identifies a drug-target connectivity signature 871 

predictive of anti-glioblastoma efficacy 872 

a, Visualization of the local optimum in the cross-validated predictive power of COSTAR LASSO 873 

regression when fitting a binomial model to predict drug activity by PCY (hit vs neg) based on a drugs 874 

connectivity pattern (COSTAR constellation, shown in Fig. 3f). X-axis denotes the Lambda regularization 875 

parameter and the y-axis denotes the cross-validated error of the model (deviance). Red dots and light 876 

grey error bars indicate the average and standard deviation in deviance across 20 bootstrapped runs. 877 

Vertical dashed lines and colored circles indicate either the Lambda value with the minimal mean 878 

squared error (green, MSE) or the more conservative Lambda value with minimal MSE plus one 879 

standard deviation (blue, MSE+1STD). b, COSTAR subscores of PCY-hit drugs that were part of the 880 

COSTAR training data (columns; n=30 drugs) to primary and secondary drug targets (rows). c, COSTAR 881 

subscores of COSTAR-predicted drugs that were chosen for experimental validation in glioblastoma 882 

patient samples (columns; n=23 COSTAR-HIT drugs; n=25 COSTAR-NEG drugs) to primary and 883 

secondary drug targets (rows). b-c, Heatmap color scale indicates the COSTAR subscore which is the 884 

LASSO model coefficient multiplied by the integrated connectivity of drug to target mapping. Target 885 

genes with absolute COSTAR LASSO coefficients >0.1 are displayed. Target level (primary or secondary 886 

target) is annotated per gene on the left.  887 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


AC009597.1
ARCASAH1

ATF3
FARS2

HSPA6
JUNB

MT1E

MT1X

NFIL3

PKDREJ

SESN2
SLC30A1

TRIB3

AC009597.1

AC025423.3

AC107391.1
ASAH1ATF3

BEST1 CXCL3

DDIT3

ERICH2
FARS2FOSB

HRK
IFI27

MT1X

NR4A3

NUPR1
PDE6A

PLEKHG5

PRRG3

STK32A

ARC

ATF3

ATF4 BTG1

CCND1

CD55

CDK1

CXCL8

DDIT3
DNAJB9

DUSP1

EGR1

EGR2

EGR3

FOS
FOSB

H2AFZ

HERPUD1

HMGN3

HOMER1

HSPA6

IL1RL1

IL6

JUN

JUNB

JUND

MAFF

MAFG

MAFK

MMP1

MXD1

NAMPT

NFIL3

NR4A1

NR4A2
NR4A3

PPP1R15A

PTGS2

SESN2TUBB

TUBG1

UBE2C ZFAND2A

a

c

d

CERI

DMSO

ELES
OSIM

PALI
QUET

REGO
SORA

TEMO

APOM

APRE

BREX

CHLO

CLOM

FLUO
PARO

RIMO

SERT

VORT

ZOTE

4000

8000

12000

16000
C

ER
IT

IN
IB

VO
R

TI
O

XE
TI

N
E

ZO
TE

PI
N

E
FL

U
O

XE
TI

N
E

SE
R

TI
N

D
O

LE
O

SI
M

ER
TI

N
IB

C
H

LO
R

PR
O

M
AZ

IN
E

AP
R

EP
IT

AN
T

C
LO

M
IP

R
AM

IN
E

PA
R

O
XE

TI
N

E
AP

O
M

O
R

PH
IN

E
PA

LI
PE

R
ID

O
N

E
BR

EX
PI

PR
AZ

O
LE

R
IM

O
N

AB
AN

T
EL

ES
C

LO
M

O
L

TE
M

O
ZO

LO
M

ID
E

D
M

SO
Q

U
ET

IA
PI

N
E

SO
R

AF
EN

IB
R

EG
O

R
AF

EN
IB

# 
of

 G
en

es
 d

et
ec

te
d

6 hour time-point

4000

8000

12000

16000

SE
R

TI
N

D
O

LE
C

ER
IT

IN
IB

O
SI

M
ER

TI
N

IB
AP

R
EP

IT
AN

T
ZO

TE
PI

N
E

VO
R

TI
O

XE
TI

N
E

PA
R

O
XE

TI
N

E
C

H
LO

R
PR

O
M

AZ
IN

E
FL

U
O

XE
TI

N
E

SO
R

AF
EN

IB
R

IM
O

N
AB

AN
T

AP
O

M
O

R
PH

IN
E

BR
EX

PI
PR

AZ
O

LE
R

EG
O

R
AF

EN
IB

C
LO

M
IP

R
AM

IN
E

TE
M

O
ZO

LO
M

ID
E

PA
LI

PE
R

ID
O

N
E

EL
ES

C
LO

M
O

L
D

M
SO

Q
U

ET
IA

PI
N

E

22 hour time-point b

NAD.22h vs NEG.22h ONCD.6h vs NEG.6h ONCD.22h vs NEG.22h 

−20

0

20

−50 0
PC1 (40.1%)

PC
2 

(7
.9

%
)

Time-point 22h6h

log2(fold change)

−l
og

10
(p

ad
j)

0

5

10

15

20

25

−2 0 2 4 6
0

5

10

15

20

25

−2 0 2 4 6
0

5

10

15

20

25

−2 0 2 4 6
log2(fold change) log2(fold change)

HFH1

NKX3A E4BP4
HLFSRYCDP

HNF3B

POU3F2

MEF2 CDC5

FOXO1
FREAC7

CEBPATBP

FOXD3
FOXO3

GATA6

CREBP1CJUN

EGR1

0

10

20

30

40

1.0 1.1 1.2 1.3 1.4

Fold enrichment

−l
og

10
(F

D
R

)

10
20
30

−log10(FDR)

% Genes
20
40
60

f

NAD.6h vs NEG.6h 

NF−kappa B signaling pathway

Human T−cell leukemia virus 1 infection

Viral carcinogenesis

Epstein−Barr virus infection

Protein processing in endoplasmic reticulum

TNF signaling pathway

Transcriptional misregulation in cancer

Kaposi sarcoma−associated
herpesvirus infection

Lipid and atherosclerosis

MAPK signaling pathway

0 10 20

1
2
3
4
5

−log10(FDR)

Transcriptional misregulation in cancer

Kaposi sarcoma−associated
herpesvirus infection

Human T−cell leukemia virus 1 infection

Lipid and atherosclerosis

Coronavirus disease − COVID−19

Endocytosis

Shigellosis

Protein processing in endoplasmic reticulum

MAPK signaling pathway

Herpes simplex virus 1 infection

0 50 100

2.5
5.0
7.5
10.0
12.5

−log10(FDR)
NAD.22h vs NEG.22h 

Gene count Gene count
e ns

ns
ns

3.0

4.0

5.0

FO
SL

1

ns
ns

ns

2.0

3.0

FO
SL

2

ns
ns

ns

1.5

2.0

2.5

3.0

AT
F2

* ns
ns

2.0

2.4

2.8

3.2

AT
F5

ns
ns

ns

2.0

2.5

3.0

3.5

AT
F6

* ** ns

1.50

2.00

2.50

AT
F6

B

ns
ns

ns

1.5

2.0

2.5

3.0

AT
F7

ns
ns

ns

1.5

2.0

2.5

3.0

M
AF

ns
ns

ns

2.0

3.0

N
AD

N
EG

O
N

C
D

M
AF

B

ns
ns

ns

2.0

3.0

4.0

N
AD

N
EG

O
N

C
D

M
AF

G

ns
ns

ns

2.0

3.0

4.0

N
AD

N
EG

O
N

C
D

M
AF

K

* ns
ns

3.0

3.5

4.0

N
AD

N
EG

O
N

C
D

BT
G

3

Extended Data Figure 7
Drug

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 26 of 49 
 

Extended Data Fig. 7: DRUG-Seq reveals a consistent transcriptional response to 888 

neuroactive drugs with anti-glioblastoma efficacy 889 

a, Number of genes detected by DRUG-Seq (y-axis) per drug condition (columns) and by time-point 890 

n=20 drugs, n=2 time-points, n=4 replicates per drug/time-point. b, Principal component analysis (PCA) 891 

of averaged RNA-Seq counts per drug (color) and time-point (shape). c, Comparisons of drug induced 892 

transcriptional profiles by DRUG-Seq shown as (log2(fold change) versus –log10(adjusted P-value)) for 893 

NADs vs NEGs (22h, left), ONCDs vs CTRLs (6h, middle), and ONCDs vs CTRLs (22h, right). Genes above 894 

a –log10(0.05 adjusted P-value) threshold (light grey) and non-significant genes (dark grey) are shown. 895 

Highlighted genes (blue) include AP-1 transcription factor (TF) network genes (PID AP1 PATHWAY81) 896 

and key COSTAR signature genes. d, Top enriched KEGG terms for differentially expressed genes based 897 

on DESeq2 comparisons of NADs vs NEGs (6h, left) and NADs vs NEGs (22h, right). Bars represent the 898 

number of differentially expressed genes present in the annotation, and colors indicate –log10(false 899 

discovery rate). e, Expression of AP-1 transcription factor family and BTG genes additional to Fig. 4d. 900 

Visualization and statistical tests as in Fig. 4d. P-values: not significant (ns) P > 0.05, *P < 0.05, 901 

**P < 0.01. f, Transcription factor binding site enrichment analysis of genes that were upregulated in 902 

NAD treated cells in Extended Data Fig. 7c (22h, left). Circles correspond to transcription factor 903 

annotations, circle sizes scale with the fraction of genes present in the annotation, and colors indicate 904 

–log10(false discovery rate). a,e Boxplots as in Fig. 1c.  905 
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Extended Data Fig. 8: Measuring ER calcium store release, siRNA-mediated silencing 906 

of COSTAR signature genes, and Vortioxetine-induced transcriptomic, proteomic and 907 

phosphoproteomic response 908 

a, ER calcium store release upon drug treatment relative to DMSO vehicle control (fold change, 190-909 

430 seconds interval) measured by FLIPR assays in LN-229 cells (n=4 assay plates; n=18 conditions; 910 

n=12 wells/drug; DMSO and Thapsigargin (TG) positive control, n=24 wells each). Different drug 911 

categories including PCY-hit NADs, n=8 drugs; PCY-neg NADs, n=6 drugs; PCY-hit ONCDs, n=2 drugs; 912 

and TG. Two-sided t-test against DMSO vehicle control. P-values adjusted for multiple comparisons by 913 

Holm correction. P-values: TG, 2.86e-16. ****P < 0.0001. Line indicates the median value. b, Relative 914 

gene expression of BTG1, BTG2, JUN and Ki67 (panels) upon siRNA knockdown (columns) normalized 915 

to the FLUC negative control siRNA (n=3 biological replicates; black dots). Boxplots as in Fig. 1c. c, 916 

Principal component analysis (PCA) of replicate-averaged RNA-Seq counts following Vortioxetine 917 

treatment (20µM) in LN-229 cells (n=3 replicates/time-point) colored by time-point. d, Time-point 918 

comparisons (left, 3 hours vs 0 hours; right, 9 hours vs 0 hours) of proteomics measurements following 919 

Vortioxetine treatment (Vort, 20µM; n=3 replicates/condition) in LN-229 cells shown as volcano plots 920 

of log2(fold change) versus –log10(P-value). Proteins above a –log10(0.05 P-value) threshold are 921 

colored in purple. e, Heatmap of log2(fold change) in gene expression per time-point (rows; relative to 922 

0h) for the top 100 genes (columns) contributing to PC1 in Extended Data Fig. 8c. TP; time-point. AP-1 923 

transcription factors and AP-1 effector genes in red. f, Gene Ontology (GO) gene set enrichment 924 

analysis of signed –log10(P-values) of comparisons from Extended Data Fig. 8d. Bars represent the 925 

normalized enrichment score (NES) and colors indicate –log10(false discovery rate). g, Log2(fold 926 

change) in protein expression per time-point (rows; relative to 0h) for the proteins (columns) 927 

contributing to enriched GO term “GO:0001216 DNA-binding transcription activator activity” in 928 

Extended Data Fig. 8f. AP-1 transcription factors are labeled in red. h, Connected protein-protein 929 

interaction network of differentially abundant phosphoproteins upon Vortioxetine treatment (20µM; 930 

n=3 replicates/condition) in LN-229 cells at any time-point. 22 out of 67 connected and significantly 931 

enriched phosphoproteins are shown (asterisks; black labels) with high confidence STRING protein 932 

interactions (grey labels). Cluster IDs (node colors) are based on the MCL algorithm with annotated 933 

biological pathways. Heatmap depicts protein abundance- normalized phosphopeptide (rows) 934 

intensities of JUN and HSPB1 across time-points (columns). Both genes are also significantly 935 

upregulated at the transcript level across all time-points.  936 
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Extended Data Fig. 9: Top neuroactive drugs confer a significant survival benefit in 937 

orthotopic in vivo mouse models of glioblastoma 938 

a, Complete survival analysis across three independent in vivo trials: Trial I: LN-229, Trial II: ZH-161, 939 

and Trial III: ZH-161, each with n=6-7 tumour-bearing mice per drug treatment group and n=7 drug 940 

treatments per trial. Mice were treated with their respective drugs for each trial intraperitoneally (i.p.) 941 

between days 5-21 after tumour implantation. PCY-HIT NADs: Vortioxetine (VORT; 10mg/kg; Trial I, 942 

P=0.0001; Trial II, P=0.0016; Trial III, P=0.0006); Brexpiprazole (BREX; 1mg/kg; Trial I, P=0.0249; Trial II, 943 

ns; Trial III, P=0.0002); Aprepitant(APRE; 20mg/kg; Trial I, ns; Trial II, ns; Trial III, P=0.0006); 944 

Apomorphine (APOM; 5mg/kg; Trial I, ns ; Trial II, ns; Trial III, P=0.0005); Chlorpromazine(CHLO; 945 

10mg/kg; Trial III, P=0.011). Positive control (+): Temozolomide (TMZ; 50mg/kg; Trial I, P=0.0009 ; Trial 946 

II, P=0.0002; Trial III, P=0.0011). PCY-NEG NAD: Paliperidone (PALI; 5mg/kg; Trial I, ns; Trial II, ns), and 947 

a negative vehicle control. Drug names with asterisk (*) denote drugs used in a subset of the three in 948 

vivo trials. Survival plotted as Kaplan–Meier curves and P-values calculated using log-rank (Mantel-949 

Cox) test. Censored mice denoted as tick marks. b, Representative MRI images of three ZH-161 950 

transplanted mice (columns) after 15 days per drug treatment (n=7 drugs). Tumour perimeters are 951 

indicated in yellow. c, Quantification of tumour perimeters corresponding to Extended Data Fig. 9b. 952 

Dots represent the perimeter in mm (y-axis) for individual mice per drug (columns), red lines indicate 953 

mean value. Two-sided t-test. P-values: Apomorphine (APOM; P=0.0014); Vortioxetine (VORT; 954 

P=0.034); Temozolomide (TMZ; P=0.0284). P-values: not significant (ns) P > 0.05, *P < 0.05, **P < 0.01. 955 

d, Survival analysis of in vivo Trial IV: ZH-161-iRFP720 comparing the efficacy of the antidepressant 956 

Vortioxetine (10mg/kg; P=0.0008) with a PCY-NEG antidepressant Citralopram (10mg/kg) and a 957 

negative vehicle control (n=6 mice/treatment group). Drug treatment schedule and statistical analysis 958 

was performed as in Extended Data Fig. 9a. e, Quantification of tumour perimeters of drug-treated 959 

mice in d, at multiple time-points (left panel; n=6 mice/treatment group) post tumour implantation by 960 

MRI. Right panel illustrates individual data points (mice) at day 38 post-implantation. f, Representative 961 

MRI images of four ZH-161-iRFP720 transplanted mice (columns) after 25 days (top) and 38 days 962 

(bottom) of drug treatment (n=3 drugs). Tumour perimeters are indicated in yellow. g, Representative 963 

immunohistochemistry images of horizontal sections of mouse brains (n=3 mice/treatment group) 964 

stained with human-specific Ki67 and Vimentin (VIM). h, Quantification of Ki67 tumour intensity 965 

normalized to background per treatment group (n=3-4 mice analyzed per treatment).   966 
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Extended Data Fig. 10: The multi-faceted anti-glioblastoma effects of Vortioxetine 967 

a, Mean cell migration distance per condition (n=5 replicate wells) and b, number of migrated cells 968 

measured in a collagen-based spheroid invasion assay after 36 hours of Vortioxetine treatment (2, 3.5, 969 

5µM) across four glioblastoma cell lines; LN-229 (n=560-1125 cells/well), LN-308 (n=137-426 970 

cells/well), ZH-161 (n=200-574 cells/well), ZH-562 (n=38-253 cells/well). c, Clonogenic survival 971 

measured by a resazurin-based cell viability assay after 11-13 days of Vortioxetine treatment (7 972 

concentrations; 0.625-20µM, n=6 replicate wells/concentration, n=50-500 cells/well) across four 973 

glioblastoma cell lines; LN-229 LN-308, ZH-161, ZH-562. Dose-response fitted with a two-parameter 974 

log-logistic distribution with 95% confidence intervals (light grey) and ED50 (dashed lines). d, Spheroid 975 

formation analyzed by the 2D area of the ZH-562 line measured after 12 days of Vortioxetine treatment 976 

(0.1-5µM). Approximately 5 cells/well initially seeded. DMSO; 0µM, n=45 replicate wells; 0.1µM, n=46, 977 

P=0.005; 1µM, n=47, P=0.00027; 5µM, n=46, P<0.0001. Data is shown per concentration as a boxplot, 978 

individual data points, and histogram. Boxplots as in Fig. 1c.  979 
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Methods 980 

Patient sample processing 981 

Surgically removed tumours were collected at the University Hospital of Zurich (Universitätsspital 982 

Zürich, USZ) with approval by the Institutional Review Board, ethical approval number KEK-StV-983 

Nr.19/08, BASEC number 2008-02002. Metadata of the prospective and retrospective glioblastoma 984 

patient cohorts including clinical parameters, experiment inclusion, and genetics summary can be 985 

found in Supplementary Table 1. The prospective cohort consists of patients where fresh tissue was 986 

processed directly within 4 hours after surgery (n=27 patients for drug screening, plus an additional 987 

n=9 patients for validation experiments). For progression-free-survival (PFS) analysis of the prospective 988 

cohort, only patients with newly diagnosed glioblastoma that received concomitant Temozolomide 989 

(TMZ) chemotherapy were included. The retrospective cohort (n=18 patients) consists of patients for 990 

which snap-frozen bio-banked tissue was available. All retrospectively studied patients included 991 

received maintenance TMZ with overall-survival (OS) documented as a clinical endpoint. Retrospective 992 

samples were selected to cover a broad spectrum of progression-free survival outcomes, and were 993 

further selected based on quality control measures including cell viability, cell number, and the amount 994 

of debris present in the sample. 995 

Patient sample dissociation for ex vivo drug screening 996 

Tissue samples were first washed with PBS and cut into small pieces using single-use sterile scalpels. 997 

Subsequent dissociation was performed in reduced serum media (DMEM media; #41966 with 2% FBS; 998 

#10270106, 1% Pen-strep; #15140122, and 25mM HEPES; #15630056, all products from Gibco) 999 

supplemented with Collagenase IV (1mg/ml) and DNaseI (0.1mg/ml) using the gentle MACS Octo 1000 

Dissociator (Miltenyi Biotec, 130-096-427) for maximally 40 minutes. Homogenates were filtered 1001 

through a 70µm Corning cell strainer (Sigma-Aldrich, #CLS431751) and washed once with PBS 1002 

containing 2mM EDTA. Myelin and debris removal was performed by a gradient centrifugation of the 1003 

cell suspension in a 7:3 mix of PBS:Percoll (Sigma-Aldrich, #P4937), with an additional PBS wash. In 1004 

case the cell pellet visibly contained a significant portion of red blood cells (RBCs), RBC lysis was 1005 

performed with 1X RBC lysis buffer (Biolegend, #420301) at room temperature for 10 minutes prior to 1006 

the PBS wash. Subsequently, cells were resuspended in reduced serum media, filtered once more 1007 

through a 70µm Corning cell strainer, and counted using the Countess II Automated Cell Counter 1008 

(Invitrogen). In case sufficient cell numbers remained after cell seeding for ex vivo drug testing (see 1009 

also ‘Pharmacoscopy’ methods), cells were cryopreserved in 10% DMSO-containing cryopreservation 1010 

media, and/or cultured in DMEM media supplemented with 10% fetal bovine serum, 1% Pen-strep, 1011 

and 25mM HEPES to obtain low-passage patient-derived cell lines (PDCs) maintained as adherent cell 1012 

cultures.   1013 

Patient in situ tissue characterization by H&E staining and immunohistochemistry (IHC) 1014 

Patient tissue samples obtained directly from surgery were fixed using 4%  formalin and embedded in 1015 

paraffin. The paraffin embedded tissue was sliced in 5 µm sections. Deparaffinized tissue sections were 1016 

subsequently stained with hematoxylin (Artechemis AG, Switzerland) and eosin (Sigma-Aldrich, USA) 1017 

using the Tissue-Tek Prisma automated staining system. Imaging of H&E stained patient tissue sections 1018 

(Supplementary Data Fig. S3) was performed by bright-field imaging at 40x using the Pannoramic 250 1019 

Slide Scanner (3DHISTECH). Based on nuclei and cell morphologies observed in the H&E images, non-1020 
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necrotic tumour regions were annotated and confirmed by a board-certified neuropathologist (D.K., 1021 

E.R.). 1022 

For immunohistochemistry (IHC) of patient tissue sections, deparaffinization and rehydration was 1023 

performed using an automated continuous linear stainer (Medite, COT20) containing xylene and serial 1024 

dilutions of EtOH (100%, 95%, 70%). Tissue sections were immediately subjected to heat-mediated 1025 

antigen retrieval at 95°C for 10 minutes in 1X pH6.0 sodium citrate buffer (Sigma-Aldrich, #21545) using 1026 

Micromed T/T Mega Multifunctional Microwave Rapid Histoprocessor (Milestone). Tissue sections 1027 

were subsequently fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS, blocked in 5% FBS and 0.1% 1028 

Triton containing PBS, and stained overnight at 4°C in blocking solution with the following primary 1029 

antibodies and dilutions: anti-Nestin (1:150, Biolegend, #656802, clone 10C2), anti-EGFR (1:300, 1030 

Abcam, #ab98133), anti-S100 beta antibody (1:300, Abcam, #ab215989, clone EP1576Y). Secondary 1031 

antibodies used include the following: donkey anti-sheep IgG (H+L) cross-adsorbed secondary 1032 

antibody, Alexa Fluor™ 488 (Thermo Scientific, #A11015), goat anti-mouse IgG (H+L) highly cross-1033 

adsorbed secondary antibody, Alexa Fluor™ Plus 555 (Thermo Scientific, #A32727), goat anti-rabbit IgG 1034 

(H+L) highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (Thermo Scientific, #A32733). 1035 

Confocal imaging of tissue sections was performed at 100x magnification with the Nikon Spinning Disk 1036 

SoRa microscope where z-stack images compiling 31 series of 0.2 μm z-steps were taken. Maximum 1037 

intensity projection of z-stacks were obtained by ImageJ and single cells were segmented based on 1038 

their nuclei (DAPI channel) and cytoplasm (binarized Nestin channel) using CellProfiler 2.2.0. 1039 

Downstream image analysis was performed with MATLAB R2019a-R2020a based on ‘Nuclei’ and 1040 

associated ‘Cell’ features from CellProfiler. Nestin+ cells were filtered based on the intensity histogram 1041 

of the Nestin channel. Manual tracing of single-cell morphologies (Extended Data Fig. 2j) was 1042 

performed in Adobe Illustrator from binarized Nestin channel images by creating vectorized objects 1043 

using the ‘Image Trace’ tool and visually verified traces selected for display purposes.   1044 

Cell culture 1045 

The adherent human glioblastoma cell lines LN-229 (ATCC, #CRL-2611) and LN-308, and patient-1046 

derived cell cultures (P022.C, P024.C, P030.C) were cultured in Dulbecco’s modified Eagle medium 1047 

(DMEM, #41966, Gibco) supplemented with 10% fetal bovine serum (FBS, #10270106, Gibco). 1048 

Adherent human glioblastoma cell lines and patient-derived cell cultures were passaged using Trypsin-1049 

EDTA (0.25%, Gibco, #25200056). For DRUG-seq, RNA-Seq, siRNA knockdown, and proteomics 1050 

measurements using LN-229 cells, low-passage cells below passage 15 were used. The spheroid human 1051 

glioblastoma-initiating cell lines ZH-161 and ZH-562 was generated from freshly isolated tumour tissue 1052 

and cultured in Neurobasal medium (NB, #21103049, Gibco) supplemented with B27 (Gibco, 1053 

#17504044), 20 ng/mL b-FGF (Peprotech, #AF-100-18B), 20 ng/mL EGF (Peprotech, #AF-100-15), 2 mM 1054 

L-glutamine (Gibco, #25030081). ZH-161 and ZH-562 cells were passaged using Accutase (Stemcell 1055 

Technologies, #07920). Glioblastoma cell lines were authenticated at the Leibniz Institute DSMZ 1056 

(Braunschweig, Germany) and regularly tested negative for mycoplasma. All cell cultures were 1057 

maintained at 37°C, 5% CO2 in a humidified incubator. 1058 

Pharmacoscopy (drug testing, immunocytochemistry, confocal microscopy, image analysis) 1059 

The method of ‘pharmacscopy’ refers to high-content image-based drug testing including the following 1060 

steps of cell seeding, drug testing, immunocytochemistry, confocal microscopy, image analysis, and 1061 

pharmacoscopy score calculation for each tested drug.  1062 
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Cell seeding and drug testing 1063 

To perform pharmacoscopy of glioblastoma patient samples, freshly dissociated cells from resected 1064 

tissue (see also methods relating to ‘Patient sample processing’) were seeded into clear-bottom, 1065 

tissue-culture treated, CellCarrier-384 Ultra Microplates (Perkin Elmer, #6057300) with 0.5-1.5x10^4 1066 

cells/well, typically within 4 hours of surgery. For cultured glioblastoma cell lines and patient derived 1067 

cell cultures, trypsinized or accutase-treated cells were seeded at 0.5-2.5x10^3 cells/well in 384 well 1068 

plates. Prior to cell seeding, drugs were re-suspended as 5mM stock solutions and dispensed into 384 1069 

well plates using an Echo 550 liquid handler (Labcyte) at their respective concentrations in a 1070 

randomized plate layout to control for plate effects. Detailed information regarding drugs used in this 1071 

study can be found in Supplementary Table 3. Different drug libraries included glioblastoma drugs 1072 

(GSDs, n=3 drugs), oncology drugs (ONCDs, n=65 drugs), and neuroactive drugs (NADs, n=67 drugs). 1073 

GSDs were tested at the following concentrations: Temozolomide (TMZ; 1st-line glioblastoma 1074 

chemotherapy; 50, 100, 250, 500µM) and Lomustine/Carmustine (CCNU and BCNU respectively; 2nd-1075 

line glioblastoma chemotherapies; 10, 50, 100, 250µM). All ONCDs were tested at 1 and 10μM 1076 

concentrations. All NADs were tested at 20μM and for select NADs (Extended Data Fig.4a,b and 1077 

Supplementary Data Fig. S4) a concentration range of 0.1-100μM was tested. Drug plates included the 1078 

following number of replicate wells per drug/concentration: GSD plate, drug, n=3 wells, DMSO, n=16 1079 

wells; NAD plate, drug, n=4 wells, DMSO, n=16-24 wells; ONCD plate, drug, n=4 wells, DMSO, n=16 1080 

wells. Cells were incubated for 48 hours with drugs in reduced serum media at 37°C, 5% CO2 before 1081 

proceeding to cell fixation.  1082 

Immunocytochemistry 1083 

Cells were fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS and blocked in 5% FBS and 0.1% Triton 1084 

containing PBS. For characterization of cellular and morphological composition across glioblastoma 1085 

patient samples, cells were stained overnight at 4°C in blocking solution with the following antibodies 1086 

and dilutions: Alexa Fluor® 488 anti-S100 beta (1:1000, Abcam, #ab196442, clone EP1576Y), PE anti-1087 

Nestin (1:150, Biolegend, #656806, clone 10C2), Alexa Fluor® 488 anti-CD3 (1:300, Biolegend, #300415, 1088 

clone UCHT1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538, clone 2D1) and DAPI (1:1000, 1089 

Biolegend, #422801, stock solution 10mg/ml). Due to the manufacturer discontinuation of the Alexa 1090 

Fluor® 488 anti-S100 beta antibody, from patient sample P030 and onwards in the prospective cohort, 1091 

samples were either stained with a self-conjugated Alexa Fluor® 488 anti-S100 beta antibody, where 1092 

Alexa Fluor™ 488 NHS Ester (Thermo Scientific, #A20000) was conjugated to the anti-S100 beta 1093 

antibody (Abcam, #ab215989, clone EP1576Y) or the following antibody panel where the 488 and 555 1094 

channel markers were swapped: Alexa Fluor® 488 anti-Nestin (1:150, Biolegend, #656812, clone 10C2), 1095 

Alexa Fluor® 555 anti-S100 beta (1:1000, Abcam, #ab274881, clone EP1576Y), PE anti-CD3 (1:300, 1096 

Biolegend, #300441, clone UCHT1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538, clone 1097 

2D1).  1098 

Other conjugated antibodies used in this study include the following: Alexa Fluor® 647 anti-Tubulin 1099 

Beta 3 (1:1000, Biolegend, #657406, clone AA10), Alexa Fluor® 488 anti-Vimentin (1:500, Biolegend, 1100 

#677809, clone O91D3), Alexa Fluor® 555 anti-Cleaved Caspase-3 (1:500, Cell Signaling Technology, 1101 

#9604S), Alexa Fluor® 546 anti-HOMER (1:300, Santa Cruz Biotechnology, #sc-17842 AF546, clone D-1102 

3), PE anti-CFOS (1:300, Cell Signaling Technology, #14609S, clone 9F6), FITC anti-ATF4 (1:300, Abcam, 1103 

#ab225332), Alexa Fluor® 488 anti-JUND (1:300, Santa Cruz Biotechnology, #sc-271938 AF488, clone 1104 

D-9), Alexa Fluor® 594 anti-CD45 (1:300, Biolegend, #368520, clone 2D1). 1105 
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Other unconjugated antibodies used in this study include the following: anti-Connexin43 (1:500, Cell 1106 

Signaling Technology, #83649T), anti-EGFR (1:300, Abcam, #ab98133), anti-CHI3L1 (1:300, Cell 1107 

Signaling Technology, #47066S, clone E2L1M), anti-Nestin (1:150, Biolegend, #656802, clone 10C2), 1108 

anti-S100 beta antibody (1:300, Abcam, #ab215989, clone EP1576Y), anti-Ki67 (1:300, Cell Signaling 1109 

Technology, #9129S, clone D3B5). For unconjugated primary antibodies, the following secondary 1110 

antibodies were used: donkey anti-sheep IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor™ 1111 

488 (Thermo Scientific, #A11015), goat anti-mouse IgG (H+L) highly cross-adsorbed secondary 1112 

antibody, Alexa Fluor™ Plus 555 (Thermo Scientific, #A32727), goat anti-rabbit IgG (H+L) highly cross-1113 

adsorbed secondary antibody, Alexa Fluor Plus 647 (Thermo Scientific, #A32733). 1114 

Confocal imaging and image analysis 1115 

Imaging of the 384 well plates was performed with an Opera Phenix automated spinning-disk confocal 1116 

microscope (Perkin Elmer, HH14000000) at 20x magnification for all drug screening assays with the 1117 

exception of 3D glioblastoma cell lines (ZH-161, ZH-562) where drug screening was performed at 10x 1118 

magnification. Select images were imaged at 40x for visualization. Single cells were segmented based 1119 

on their nuclei (DAPI channel) using CellProfiler 2.2.0. Downstream image analysis was performed with 1120 

MATLAB R2019a-R2020a. Fractions of marker positive cells for each drug condition were derived for 1121 

each patient sample based on the histograms of the local background corrected intensity 1122 

measurements across the whole drug plate. In patient samples, marker positive populations were 1123 

defined as following: glioblastoma cells ([Nestin+ or S100B+] and CD45-) and four Nestin+CD45- GSC 1124 

morphotypes: M1 polygonal with extensions (M1:PE), M2 elongated with extensions (M2:EE), M3 1125 

round big cells (M3:RB), and M4 round small cells (M4:RS). Other cell types include immune cells 1126 

(CD45+ and S100B-Nestin-) and marker-negative cells (S100B-Nestin-CD45-). Marker positive fractions 1127 

were averaged across each well/drug. Deep learning analysis of Nestin+ glioblastoma stem cell (GSC) 1128 

morphologies was performed at baseline (DMSO) and upon neuroactive drug (NAD) treatment for each 1129 

patient, where the methodology is further detailed in the methods section ‘Deep learning of 1130 

glioblastoma stem cell morphologies’. 1131 

Pharmacoscopy score calculation 1132 

The pharmacoscopy score (PCY score) quantifies the drug-induced relative reduction of any marker- 1133 

or morphology-defined cell population by measuring the change of a defined target population upon 1134 

drug treatment compared to DMSO (-) vehicle control. In patient samples, the PCY score is calculated 1135 

based on the fraction of ([Nestin+ or S100B+] and CD45- cells) out of all cells, or the fraction of 1136 

[Nestin+CD45-] GSC morphotypes (M1-M4) out of all cells. In patient-derived cell lines, the score is 1137 

based on [Nestin+] cells out of all cells. By all cells, we refer to any detected cell with a DAPI+ nucleus.  1138 

PCY score = 1 − { [TPDRUG] ÷  [TPDMSO] }   1139 

where:  TPDRUG = fraction of the target population in a given DRUG condition of all cells 1140 

 TPDMSO = fraction of the target population in the DMSO control condition of all cells 1141 

PCY scores are averaged across technical replicates for each drug or control condition. For example, a 1142 

positive PCY score of 0.5 can be interpreted as a drug-induced 50% reduction of the target population 1143 

relative to the DMSO vehicle control. Additionally, in cases where the drug is cytotoxic and non-1144 

selectively kills every cell population equally or the drug does not exert an effect, the PCY score will be 1145 
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0, and in cases where the target population proliferates upon drug-treatment, or exhibits higher 1146 

toxicity to other cell populations other than the target population, the PCY score will be negative. In 1147 

summary, a positive PCY score of 1 represents the strongest possible “on-target” response, a PCY score 1148 

of 0 indicates no effect/equal cytotoxicity, and a negative PCY score indicates higher toxicity to other 1149 

cell populations other than the defined target population. In cases where a target population is not 1150 

defined as such for the glioblastoma cell lines, drug response and cell viability is measured as total cell 1151 

number reduction in LN-229 and LN-308 lines and a reduction of 2D-projected total spheroid area in 1152 

ZH-161 and ZH-562 lines.  1153 

Demonstration of pharmacoscopy score robustness to apoptotic cells 1154 

To experimentally validate the robustness of the PCY score to apoptotic cells, we performed complete 1155 

ex vivo neuroactive drug (NAD, n=67 drugs) screens in two validation patient samples (P048 and P049) 1156 

by explicitly staining the entire drug plate for cleaved CASP3 by immunofluorescence. Presented in 1157 

Extended Data Fig. 4c-e, the drug response results show excellent reproducibility, both when 1158 

comparing the original PCY scores with the PCY scores obtained after excluding CASP3+ cells by 1159 

immunofluorescence, as well as when comparing the PCY scores after excluding CASP3+ cells defined 1160 

either by IF or by the CNN apoptotic classifier (see also Methods ‘Image-based deep learning - Deep 1161 

learning of apoptotic cell morphologies’). Finally, we re-calculated the PCY scores by excluding the 1162 

CNN-classified apoptotic cells measured across all 27 patient samples and 67 neuroactive drugs and 1163 

compared it to the original PCY scores reported in the manuscript (Fig. 2f). The drug response 1164 

correlation with or without the inclusion of apoptotic cells was 0.988, demonstrating that the PCY score 1165 

is highly robust to the presence of apoptotic cells (Extended Data Fig. 4e), and can be expected to be 1166 

equally robust to other forms of cell death.  1167 

Targeted Next Generation Sequencing (NGS, Oncomine Comprehensive Assay v3) 1168 

Tissue blocks from patient-matched glioblastomas were used to determine genetic alterations 1169 

including mutations, copy number variations and gene fusions. Formalin-fixed paraffin-embedded 1170 

(FFPE) tissue blocks were collected from the Tissue Biobank at the University Hospital Zurich (USZ). 1171 

Tumour area was marked on the H&E slide and relative tumour cell content was estimated by a trained 1172 

pathologist. 1-3 cores cylinders (0.6 mm diameter) from the tumour area of the FFPE blocks were used 1173 

for DNA and RNA isolation. DNA was isolated with the Maxwell 16 FFPE Tissue LEV DNA Purification Kit 1174 

(Promega, #AS1130). The double-strand DNA concentration (dsDNA) was determined using the 1175 

fluorescence-based Qubit dsDNA HS Assay Kit. RNA was extracted with the Maxwell 16 FFPE Tissue LEV 1176 

RNA Purification Kit (Promega, #AS1260). To avoid genomic DNA contamination, samples were 1177 

pretreated with DNase1 for 15 min at room temperature (RT). Library preparation with 20 ng DNA or 1178 

RNA input was conducted using the Oncomine Comprehensive Assay v3. Adaptor/barcode ligation, 1179 

purification and equilibration was automated with Tecan Liquid Handler (EVO-100). NGS libraries were 1180 

templated using Ion Chef and sequenced on a S5 (Thermo Fisher Scientific), and data were analyzed 1181 

using Ion Reporter Software 5.14 with Applied Filter Chain: Oncomine Variants (5.14) settings and 1182 

Annotation Set: Oncomine Comprehensive Assay v3 Annotations v1.4.  1183 

For NGS data analysis, the Ion Reporter Software within Torrent Suite Software was used, enabling 1184 

detection of small nucleic variants (SNVs), copy number variations (CNVs), gene fusions and indels from 1185 

161 unique cancer driver genes. Detected sequence variants were evaluated for their pathogenicity 1186 

based on previous literature and the ‘ClinVar’ database 82. Gene alterations described as benign or 1187 
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likely benign were not included in our results. Non-pathogenic mutations harboring a Minor Allele 1188 

Frequency higher than 0.01 were not selected. The Default Fusion View parameter was selected. For 1189 

CNV confidence range, the default filter was used to detect gains and losses using the confidence 1190 

interval values of 5% confidence interval for Minimum Ploidy Gain over the expected value and 95% 1191 

confidence interval for Minimum Ploidy Loss under the expected value. CNV low confidence range was 1192 

defined for gain by copy number from 4 to 6 (lowest value observed for CNV confidence interval 1193 

5%:2.9) and loss from 0.5 to 1 (highest value observed for CNV confidence interval 95%:2.43). High 1194 

confidence range was defined by gain up to 6 copy number (lowest value observed for CNV confidence 1195 

interval 5%:4.54) and loss below 0.5 copy number (highest value observed for CNV confidence interval 1196 

95%:1.37). 5% and 95% interval confidence of all selected loss and gain are available in Supplementary 1197 

Table 2. The minimum number of tiles required was eight. Results are reported as detected copy 1198 

number. 1199 

Single-cell RNA-Seq and re-analysis of other published datasets  1200 

Generation of cohort-matched scRNA-Seq datasets of glioblastoma patient samples 1201 

Cryopreserved single-cell suspensions of glioblastoma patient samples that were part of the 1202 

prospective cohort were thawed in reduced serum media (DMEM containing 2% FBS) and used for 1203 

single-cell RNA-Seq experiments. Viability markers SYTOX Blue (1 μM, Thermo Fisher, #S11348) and 1204 

DRAQ5 (1 μM, Biolegend, #424101) were added to the cell suspension at least 15 minutes before 1205 

sorting. FACS gates were set based on CD45 (Alexa Fluor® 594 anti-CD45, 1:20, Biolegend, #368520, 1206 

clone 2D1), SYTOX Blue and DRAQ5 intensities to isolate live CD45+ and CD45- populations as shown 1207 

in Supplementary Fig. S1 using the BD FACSAriaTM Fusion Cell Sorter. Cells were sorted into DNA 1208 

LoBind® Eppendorf tubes (VWR, #525-0130), then CD45- cells were mixed with CD45+ cells at 2:1 to 1209 

10:1 ratios depending on cell availability to enrich for glioblastoma cells. Single-cell transcriptomes 1210 

from four patient samples (P007, P011, P012, P013; n=7684 cells) visualized in Fig. 1b, Extended Data 1211 

Fig. 1b, and Supplementary Fig. S1 are referred to as ‘Lee et al.; this study’. For patient sample P024 1212 

that was used to measure the effect of Vortioxetine drug treatment, FAC-sorted cells were incubated 1213 

for 3 hours with or without 20µM Vortioxetine before proceeding to library preparation. Single-cell 1214 

RNA-Seq library preparation was performed using the Chromium Next GEM Single Cell 3' v3.0 and v3.1 1215 

kits (10x Genomics). Libraries were sequenced on the Novaseq 6000 (Illumina). Read alignment to the 1216 

GRCh38 human reference genome, generation of feature-barcode matrices, and aggregation of 1217 

multiple samples were performed using the Cell Ranger analysis pipeline (10x genomics, versions 3.0.1 1218 

and 6.1.1). Four patient samples (P007, P011, P012, P013) were processed in November 2019 with the 1219 

earlier version of 10x Genomics library prep kits and Cell Ranger analysis pipeline while the later sample 1220 

(P024) was processed in September 2021. Quality control for this in-house dataset was performed by 1221 

only analyzing high-quality cells with fewer than 10% of mitochondrial transcripts and genes that had 1222 

at least a count of 2 in at least 3 cells. For the Lee et al. dataset, an expression threshold of 1223 

log2(count+1) > 3 was applied to consider a gene expressed in a given cell. Only patient samples with 1224 

more than 50 positive cells for a given gene were considered in Fig. 1c and Extended Data Fig. 1g.  1225 

UMAP clusters in Fig. 1b are based on Leiden community detection and cell types are assigned by 1226 

marker expression. Top marker genes per scRNA-Seq cluster in Fig. 1b  that are expressed in more than 1227 

10 percent of cells per cluster are shown in Supplementary Fig. S1b,c. Glioblastoma (GBM) clusters are 1228 

numbered in descending order based on cluster-averaged expression of the Gene Ontology term “stem 1229 

cell differentiation” (GO:0048863).  1230 
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Re-analysis of other published scRNA-Seq datasets 1231 

To analyze additional glioblastoma patient cohorts by single-cell RNA-Seq, we utilized two published 1232 

datasets: (Neftel et al. 2019) and (Yu et al. 2020). For Neftel et al., we removed cells with less than 2^9 1233 

detected genes and/or more than 15% of mitochondrial transcripts. For Yu et al. the data was already 1234 

prefiltered, but patient samples (7-9, 14-15) that did not correspond to glioblastoma (grade IV 1235 

astrocytomas) were not included. For both datasets only genes that had at a count of 2 in at least 2 1236 

cells were included in the analysis. For the Neftel et al. and Yu et al. datasets, expression thresholds of 1237 

log2(count+1) over 5 and 3, respectively, were applied to consider a gene expressed in a given cell. 1238 

Only patient samples with more than 50 positive cells for a given gene were considered in Fig. 1c and 1239 

Extended Data Fig. 1g.   1240 

Cell-type specific enrichment analysis (CSEA) of gene modules enriched in Nestin/S100B/CD45-negative 1241 

cells (‘All Neg’) 1242 

To determine putative cell types represented in Nestin-S100B-CD45- cells (‘All Neg’) by scRNA-Seq we 1243 

analyzed the log2(fold change) of ‘All Neg’ enriched genes compared to  ‘([Nestin+ or S100B+] and 1244 

CD45-)’ glioblastoma cells. First, we created an aggregated average ‘metacell’ for each patient and 1245 

subpopulation (either ‘All Neg’ or glioblastoma cells) by summing the counts across each patient-1246 

subpopulation and dividing this by the number of cells in the corresponding patient-subpopulation. 1247 

This generated an aggregated average ‘All Neg’ metacell and glioblastoma metacell for each patient. 1248 

Next, considering only genes where the aggregate-averaged expression is above 1 in at least one 1249 

metacell type, we calculated the log2(fold change) of [‘All Neg’ metacell]/[glioblastoma metacell] per 1250 

gene and per patient.  Manhattan distance-based clustering of the top-10 log2(fold change) of ‘All Neg’ 1251 

enriched genes per patient are visualized in Extended Data Fig. 1k across the three scRNA-Seq patient 1252 

cohorts. Finally, dendrogram tree cutting of ‘All Neg’ enriched genes yielded gene modules (Modules 1253 

1-3) that were analyzed by WebCSEA (cell-type specific enrichment analysis; across 111 scRNA-Seq 1254 

panels of human tissues and 1,355 tissue cell types; 83) to determine most likely cell types represented 1255 

by the respective gene modules. The top-7 most likely cell types representing each ‘All Neg’ gene 1256 

module ranked by the lowest combined p-values are shown in Extended Data Fig. 1l.  1257 

Neural and patient specificity score analysis 1258 

Neural specificity scores and patient specificity scores for each gene were defined as follows: using the 1259 

in-house dataset, we identified putative cell types by unsupervised clustering using Monocle 84 and 1260 

annotated the clusters based on known marker genes as being either immune or neural cells. We then 1261 

obtained a list of differentially expressed genes between immune and neural cells using DESingle 85, 1262 

using a logFC cutoff of 0.5. This yielded a list of 11571 neural-specific and 1157 immune specific genes. 1263 

Using these lists as cell-type specific gene sets, we calculated an immune- and a neural score for each 1264 

cell using singscore, and classified every cell in the additional datasets as either neural or immune 1265 

based on a linear combination of both scores. To assess how specifically a gene is expressed in neural 1266 

cells, we defined a ‘neural specificity score’ as follows: [neural specificity = fraction of neural cells 1267 

expressing gene – fraction of immune cells expressing gene] where we define expression of a gene in 1268 

a cell as having any non-zero count. Thus, a positive score indicates that a gene is more often found in 1269 

neural cells than in immune cells, and vice versa for negative scores. This score ranges from -1 (gene is 1270 

expressed in all immune cells and no neural cells) to =1 (gene is expressed in all neural cells and no 1271 

immune cells). Note that for low expressed genes, this score will be close to 0, reflecting the fact that 1272 

we cannot make clear statements about cell type specificity for genes with expression values close to 1273 
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the detection limit of scRNA-Seq. To assess how much gene expression for a single gene varies across 1274 

patients, we defined a ‘patient specificity score’ as follows: First, for every gene gi and every patient pj 1275 

we calculated a cell type composition independent fraction of cells expressing gene gi as 1276 

[Fraction_expressing_ij = fraction_expressing_immune_ij + fraction_expressing_neural_ij]. We then 1277 

defined patient specificity as the median absolute deviation (MAD) of fraction_expressing across all 1278 

patients, thus defining [Patient_specificity_i = mad(Fraction_expressing_i,:)].  1279 

Deep learning-based image analysis 1280 

Deep learning of glioblastoma stem cell (GSC) morphotypes 1281 

To generate a training dataset, Nestin+CD45- cells identified by immunofluorescence (IF) across the 1282 

whole prospective glioblastoma patient cohort (n=27 patients) were cropped as 5-channel 150x150 1283 

pixel images. These single-cell image crops were then manually-curated and labeled as four 1284 

morphological classes (M1-M4 GSC morphotypes) based on their shape, size, and presence of tumour 1285 

extensions. A convolutional neural network (CNN) with a modified AlexNet architecture 86 with the 1286 

number of output classes set to 4 was then trained on this manually-curated training data with 12,757 1287 

images per class and 51,028 images in total. CNN training included usage of the Adam optimizer, with 1288 

a mini-batch size of 150 and a maximum number of 30 epochs. The initial learning rate was set to 0.001 1289 

with a piecewise learning rate schedule and a drop factor of 0.01 every 6 epochs. 1290 

Network performance on a manually-curated test image dataset consisting of 10,204 Nestin+ single-1291 

cell crops is shown as a confusion matrix in Extended Data Fig. 2a. All Nestin+ single-cell images were 1292 

subsequently classified by this pre-trained CNN to determine GSC morphotype abundances across 1293 

patients and drug conditions. For visualization of the CNN-based GSC morphotypes, UMAP plots were 1294 

generated based on the CNN feature space that consists of ten dimensional activations taken from the 1295 

2nd-last fully connected layer of the network. The CNN feature space of 84,180 cells (maximally 1000 1296 

cells per class and patient, n=27 patients) was projected on the UMAP using the following parameters: 1297 

distance metric, seuclidean; number of neighbors, 10; minimal distance, 0.06. Different morphological 1298 

and marker-based features from the original cell segmentation determined by CellProfiler 2.2.0 such 1299 

as cell area, eccentricity, and roundness, and mean marker intensity were selected for visualization. 1300 

Deep learning of multicellular IHC images 1301 

For deep learning of multicellular IHC images of DAPI- and Nestin-stained patient tissue sections a pre-1302 

trained version of the AlexNet CNN available in MATLAB R2023a was used. 50 full size IHC images (2304 1303 

x 2304 pixels; n=5 images/patient across 10 patients) at 100x magnification were automatically resized 1304 

using an augmented image datastore and analyzed by this AlexNet for unsupervised clustering of 1305 

image features. Dimensionality reduction on the activations from the last fully connected layer ‘fc8’ 1306 

was performed by principal component analysis (PCA) as shown in Fig. 1j.   1307 

Deep learning of apoptotic cell morphologies  1308 

To generate a training dataset, across 6 glioblastoma patient samples, cleaved CASP3+/- cells by IF 1309 

were cropped as 5-channel 50x50 pixel images. 6,072 single-cell image crops were then manually-1310 

curated and labeled as two classes (CASP3+ or CASP3-) based on their cleaved CASP3 staining. A 1311 

convolutional neural network (CNN) with a modified AlexNet architecture 86 with the image input size 1312 

set as 50x50x2 (2-channel classifier; including only the brightfield (BF) and DAPI channels) and number 1313 

of output classes set to 2 (CASP3+/CASP3-) was then trained on this manually-curated image dataset 1314 
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(n=6,072 single-cell images; split by a 8:2 ratio into training and test data, respectively). CNN training 1315 

included usage of the Adam optimizer, with a mini-batch size of 64 and a maximum number of 30 1316 

epochs. The initial learning rate was set to 0.01 with a piecewise learning rate schedule and a drop 1317 

factor of 0.1 every 10 epochs. 1318 

Network performance on a manually-curated test image dataset consisting of 1,214 single-cell crops is 1319 

shown as a confusion matrix in Extended Data Fig. 1i. All DAPI+ nuclei detected in patient samples were 1320 

retrospectively classified by this apoptotic classifier CNN based on the BF and DAPI channels to quantify 1321 

apoptotic fractions across the prospective patient cohort, marker-based subpopulations, GSC 1322 

morphotypes, and drug conditions. Cells were classified as apoptotic (CASP3+) based on a CNN 1323 

confidence threshold of 87%, close to the True Positive Rate (TPR) of the classifier.  1324 

siRNA knockdown and quantitative real-time PCR  1325 

All siRNAs used in the study were part of the MISSION® esiRNA (Sigma-Aldrich, Euphoria Biotech) 1326 

library (Supplementary Table 5) and ordered as custom gene arrays (esiOPEN, esiFLEX). FLUC esiRNA 1327 

(EHUFLUC) targeting firefly Luciferase was used as a negative control, and KIF11 esiRNA (EHU019931) 1328 

was used as a positive control for transfection and viability. For all siRNA experiments, low-passage LN-1329 

229 cells were used. siRNAs were transfected at 10ng/well in 384 well plates and 40ng/well in 96 well 1330 

plates using Lipofectamine RNAiMAX (Invitrogen, #13778075). Imaging and drug incubation 1331 

experiments were conducted in 384 well plates, while Incucyte live cell imaging and cell lysis 1332 

preparation for RNA extraction and quantitative real-time PCR was performed in 96 well plates. For 1333 

384 well plates, both the siRNAs and Lipofectamine transfection reagent were dispensed using a 1334 

Labcyte Echo liquid handler in a randomized plate layout to control for plate effects when possible. For 1335 

data presented in Extended Data Fig. 5c,d, and Extended Data Fig. 8b, cells were incubated at 37°C, 1336 

5% CO2 for 48 hours following siRNA transfection before fixing, immunohistochemistry, and RNA 1337 

extraction. For data presented in Fig. 4j, following 48 hours of siRNA transfection, cells were incubated 1338 

for an additional 24 hours with either DMSO vehicle control or Vortioxetine (10µM) before fixing and 1339 

subsequent analysis.  1340 

siRNA knockdown efficiency and relative abundance for the following target genes; BTG1, BTG2, JUN, 1341 

and MKI67 was measured by TaqMan™ Array plates (Applied Biosystems, Standard, 96-well Plate; 1342 

Format 16 with candidate endogenous controls) using the TaqMan™ Fast Advanced Master Mix 1343 

(Thermo Scientific, #A44360) on a QuantStudio™ 3 Real-Time PCR System (Applied Biosystems, 1344 

#A28567). Total RNA from LN-229 cells was extracted using the Direct-zol RNA MicroPrep Kit (Zymo 1345 

Research, #R2062), RNA concentration was measured using the Qubit 4 Fluorometer (Thermo 1346 

Scientific), and cDNA synthesized with the iScript™ cDNA Synthesis Kit (Bio-Rad, #1708890). For each 1347 

TaqMan biological replicate assay (n=3 replicates) 25ng of cDNA per sample was used. To calculate the 1348 

relative abundance of each target gene, the geometric mean Ct value of four endogenous control 1349 

genes (18s rRNA, GAPDH, HPRT, GUSB) was subtracted from each [sample-target gene] Ct value to 1350 

derive the deltaCt (dCt) value. Then, the mean deltaCt value from FLUC negative control samples was 1351 

subtracted from each [sample-target gene] deltaCt value to derive the delta-deltaCt (ddCt) value. 1352 

Finally, relative abundance (fold-difference) of each [sample-target gene] was calculated as the 2^(-1353 

ddCt). 1354 

COSTAR: Convergence of secondary drug-targets analyzed by regularized regression 1355 
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COSTAR is an interpretable molecular machine learning approach that utilizes logistic LASSO regression 1356 

in a cross-validation setting to learn a multi-linear model that identifies the minimal set of drug-target 1357 

connections that maximally discriminates PCY-hit drugs from PCY-negative drugs.  1358 

Drug-target connections were retrieved from the Drug Target Commons (DTC) 50. DTC is a crowd-1359 

sourced platform that integrates drug-target bioactivities curated from both literature and public 1360 

databases such as PubChem and ChEMBL. Drug-target annotations (DTC bioactivities) listed as of 1361 

August 2020 were included, with the target organism limited to Homo sapiens. Among PCY-tested 1362 

drugs in our NAD and ONCD libraries, 127 out of 132 drugs had DTC ‘bioactivity’ annotations. PTGs 1363 

with biochemical associations to a given drug correspond to bioactivities with the inhibitory constant 1364 

‘KI’ as the ‘End Point Standard Type’. Extended PTGs (ePTGs) include all annotated drug bioactivities. 1365 

Secondary target genes (STGs) down-stream of ePTGs were retrieved by high-confidence protein-1366 

protein interactions annotated in the STRING database (interaction score≥0.6). The final drug-target 1367 

connectivity map that was used for COSTAR consisted of 127 PCY-tested drugs, 975 extended primary 1368 

targets, 10,573 secondary targets, and 114,517 network edges. The 127 drugs were labeled either as 1369 

PCY-hits (n=30, equally split across NADs and ONCDs) or PCY-negative drugs (n=97) based on the 1370 

ranked mean PCY score across patients.  1371 

A 20-fold cross-validated LASSO generalized linear model was trained in Matlab with the drug-target 1372 

connectivity map as the predictor variable and PCY-hit status (hit vs. neg) as the binomially-distributed 1373 

response variable to identify the optimal regularization coefficient (lambda) across a geometric 1374 

sequence of 60 possible values. Final model coefficients were fitted using the lamba value 1375 

corresponding to the minimum deviance in the cross-validation analysis shown in Extended Data Fig. 1376 

6a. COSTAR performance was first evaluated on the training dataset, represented as a confusion matrix 1377 

in Fig. 3h. Using this trained linear model, COSTAR was next utilized as an in silico drug screening tool 1378 

to predict the PCY-hit probability (COSTAR score) based on the connectivity of 1,120,823 compounds 1379 

annotated in DTC (Supplementary Table 6). For interpretability, COSTAR subscores, defined as the 1380 

individual connectivity to target genes multiplied by their respective coefficients (betas) in the linear 1381 

model, can be investigated in Extended Data Fig. 6b,c. COSTAR predictions from this in silico screen 1382 

were further experimentally validated in glioblastoma patient samples on a set of new drugs predicted 1383 

as either COSTAR-hits or COSTAR-negs (n=48 drugs total; n=23 COSTAR-hits; n=25 COSTAR-negs).  1384 

DRUG-Seq 1385 

High-throughput multiplexed RNA sequencing was performed with the Digital RNA with pertUrbation 1386 

of Genes (DRUG-Seq) method as described in 79 with a few modifications. Modifications to the 1387 

published method are the following: 1) extraction of RNA prior to cDNA reverse transcription with the 1388 

Zymo Direct-zol-96 RNA isolation kit (Zymo, #R0256) 2) change of reverse transcription primers for 1389 

compatibility with standard Illumina sequencing primers 3) cDNA clean-up prior to library amplification 1390 

performed with the DNA Clean & Concentrator-5 kit (Zymo, #D4013) 4) tagmentation was performed 1391 

with 2ng input and sequencing library generated using the Nextera XT library prep kit (Illumina, #FC-1392 

131-1024). In short, 1x10^4 LN-229 cells were plated in CellCarrier-96 Ultra Microplates (PerkinElmer, 1393 

#6055302) and incubated overnight in reduced serum media at 37°C, 5% CO2 prior to drug treatment. 1394 

A total of 20 drugs (Supplementary Table 3) were profiled across two different time-points (6 hours 1395 

and 22 hours; n=4 replicates per drug and time-point). These 20 drugs were selected to include PCY-1396 

hit NADs spanning diverse drug classes (n=11), PCY-hit ONCDs (n=7), PCY-negative NADs (n=2), and a 1397 

DMSO control. Cells in drug-treated 96-wells were lysed with TRIzol™ Reagent (ThermoFisher, 1398 
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#15596018) and then subsequent cDNA and library prep was performed as described above. 100bp 1399 

(80:20) paired-end reads were generated using Illumina’s NextSeq 2000 platform.  1400 

Calcium assays on the FLIPR platform 1401 

For calcium assays, 24 hours prior to the experiment, LN-229 cells were seeded at a density of 70,000 1402 

cells/well on poly-D-Lysine-coated ViewPlateTM-96 F TC 96-well black polystyrene clear bottom 1403 

microplates (PerkinElmer, #6005182) in 100µl full medium. Calcium 6 dye stock solution was prepared 1404 

by dissolving a vial from Calcium 6 assay kit (Molecular Devices, #5024048) in 10 ml sterile-filtered 1405 

nominal Ca2+ free (NCF), modified Krebs buffer containing 117mM NaCl, 4.8mM KCl, 1mM MgCl2, 5mM 1406 

D-glucose, 10mM HEPES (pH 7.4) and 500µl aliquots were stored at -20°C. Before each experiment, 1407 

the dye stock was freshly diluted 1:10 in NCF Krebs buffer and after removing the medium from the 1408 

cells, 50µl of the diluted dye was applied per well. In order to allow the cells to absorb the dye into 1409 

their cytosol, they were incubated at 37°C for 2 hours in the dark. For assay setup outlined in Fig. 4e, 1410 

cells were treated with their respective PCY-drug after a period of equilibration in 2mM calcium-1411 

containing buffer. The fluorescence Ca2+ measurements were carried out using FLIPR Tetra® (Molecular 1412 

Devices) where cells were excited using a 470–495nm LED module and the emitted fluorescence signal 1413 

was filtered with a 515–575nm emission filter according to the manufacturer’s guidelines. For fold 1414 

change calculations presented in Fig. 4f, normalized calcium levels for each drug were calculated by 1415 

averaging calcium levels after drug treatment (400-600 seconds interval) divided by the basal level of 1416 

calcium prior to drug administration (200-300 seconds interval). 1417 

In the ER Ca2+ store release assay, the stable baselines were established for 50 seconds before 50µl of 1418 

2µM (2X) Thapsigargin (Sigma-Aldrich, #T9033) or 40µM (2X) drug solutions freshly prepared in NCF 1419 

Krebs buffer were robotically dispensed to the cells to determine whether the drugs impact the ER Ca2+ 1420 

stores. Next, the cells were incubated and fluorescence was monitored in the presence of Thapsigargin 1421 

or drugs for another 5 min. In the extracellular Ca2+ uptake assay, after initial recording of the baseline, 1422 

50µl of 4mM CaCl2 (2X) prepared in NCF Krebs buffer was dispensed onto the cells to re-establish a 1423 

physiological 2mM calcium concentration and the fluorescence was monitored for 5 min. Next, 60µM 1424 

(3X) drug solutions freshly prepared in Krebs buffer containing 2mM CaCl2 were robotically dispensed 1425 

to the cells and the fluorescence was recorded for an additional 4 min. The raw data was extracted 1426 

with the ScreenWorks software version 3.2.0.14. The values represent average fluorescence level of 1427 

the Calcium 6 dye measured over arbitrary selected and fixed time frames. 1428 

Time-course RNA-Seq library preparation and sequencing 1429 

LN-229 cells were seeded at 2x10^5 cells/well into in 6-well Nunc™ Cell-Culture Treated Multidishes 1430 

(ThermoFisher, #140675) and incubated overnight in reduced serum media at 37°C, 5% CO2 prior to 1431 

drug treatment. The following day, Vortioxetine (Avachem Scientific, #3380) was manually added to 1432 

each well at a final concentration of 20µM. At the start of the experiment, LN-229 cells that were not 1433 

treated with Vortioxetine were collected as the 0 hour time-point. After 3, 6, 9, 12, and 24 hours 1434 

following Vortioxetine treatment, drug-containing media was removed and cells were collected in 1435 

TRIzol™ Reagent (ThermoFisher, #15596018). Total RNA was isolated using Direct-zol RNA MicroPrep 1436 

Kit (Zymo Research, #R2062) and RNA quality and quantity was determined with the Agilent 4200 1437 

TapeStation. Sample RIN scores ranged from 5.9-10 (mean: 9.33). RNA input was normalized to 300-1438 

400 ng and RNA libraries were prepared using the Illumina Truseq stranded mRNA library prep. 100bp 1439 

single-end reads were generated using Illumina’s Novaseq 6000 platform with an average sequencing 1440 

depth of approximately 50 million reads per replicate. Reads were mapped and aligned to the 1441 
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reference human genome assembly (GRCh38.p13) using STAR/2.7.8a and counts were extracted using 1442 

featureCounts. Subsequent read normalization (variance stabilizing transformation, vsd-normalized 1443 

counts) and RNA-Seq analysis including differential expression (DE) analysis was performed with the R 1444 

package ‘DESeq2’ 87. 1445 

Time-course proteomics and phosphoproteomics 1446 

Cell preparation and Vortioxetine treatment was performed as in ‘Time-course RNA-Seq library 1447 

preparation’ except cell numbers were scaled to be seeded in T-150 culture flasks and 3 time-points 1448 

were measured (0, 3, 9 hours). Peptides for mass spectrometry measurements were prepared using 1449 

the PreOmics iST kit (PreOmics) on the PreON (HSE AG). The robot was programmed to process 8 1450 

samples in parallel. During the first step of processing, cell pellets were resuspended in 50µl of lysis 1451 

buffer and denatured for 10 minutes at 95°C. This step was followed by 3 hours of digestion with 1452 

trypsin and Lys-C. Peptides were dried in a speed-vac (Thermo Fisher Scientific) for 1 hour before being 1453 

resuspended in LC- Load buffer at a concentration of 1 μg/μl with iRT peptides (Biognosys). 1454 

Samples were analyzed on an Orbitrap Lumos mass spectrometer (Thermo Fisher Scientific) equipped 1455 

with an Easy-nLC 1200 (Thermo Fisher Scientific). Peptides were separated on an in-house packed 30 1456 

cm RP-HPLC column (Michrom BioResources, 75 μm i.d. x 30 cm; Magic C18 AQ 1.9 μm, 200 Å). Mobile 1457 

phase A consisted of HPLC-grade water with 0.1% formic acid, and mobile phase B consisted of HPLC-1458 

grade ACN (80%) with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were eluted at a flow 1459 

rate of 250 nl/min using a non-linear gradient from 4% to 47% mobile phase B in 228 min. For data-1460 

independent acquisition (DIA), DIA-overlapping windows were used and a mass range of m/z 396-1005 1461 

was covered. The DIA isolation window size was set to 8 and 4 m/z, respectively, and a total of 75 or 1462 

152 DIA scan windows were recorded at a resolution of 30,000 with an AGC target value set to 1200%. 1463 

HCD fragmentation was set to 30% normalized collision. Full MS were recorded at a resolution of 1464 

60,000 with an AGC target set to standard and the maximum injection time set to auto. DIA data were 1465 

analyzed using Spectronaut v14 (Biognosys). MS1 values were used for the quantification process, 1466 

peptide quantity was set to mean. Data were filtered using Qvalue sparse with a precursor and a 1467 

protein Qvalue cut-off of 0.01 FDR. Interference correction and local cross-run normalization was 1468 

performed. For PRM measurements, peptides were separated by reversed-phase chromatography on 1469 

a 50 cm ES803 C18 column (Thermo Fisher Scientific) that was connected to a Easy-nLC 1200 (Thermo 1470 

Fisher Scientific). Peptides were eluted at a constant flow rate of 200 nl/min with a 117 min non-linear 1471 

gradient from 4–52% buffer B (80% ACN, 0.1% FA) and 25-50%B. Mass spectra were acquired in PRM 1472 

mode on an Q Exactive HF-X Hybrid Quadrupole-Orbitrap MS system (Thermo Fisher Scientific). The 1473 

MS1 mass range was 340–1,400 m/z at a resolution of 120,000. Spectra were acquired at 60,000 1474 

resolution (automatic gain control target value 2.0*10e5); Normalized HCD collision energy was set to 1475 

28%, maximum injection time to 118 ms. Monitored peptides were analyzed in Skyline v20 and results 1476 

were uploaded to PanoramaWeb. Targeted MS experiments can be accessed via Panorama 1477 

(https://panoramaweb.org/GlioB.url). DIA and phosphopeptide enrichment datasets are available 1478 

from MASSIVE under ftp://massive.ucsd.edu/MSV000090357/. 1479 

For phosphopeptide enrichment, protein lysate from LN-229 cells was prepared using a deoxycholate-1480 

based buffer. 500 μg of Vortioxetine-treated cells (time course of 0 mins, 30mins, 1h, 3h in triplicates) 1481 

were used as starting material. A tryptic digest was performed for 16h. Samples were then purified on 1482 

Macrospin C18 columns (Harvard Apparatus). Phosphopeptides were specifically enriched using IMAC 1483 

cartridges on the Bravo AssayMAP liquid handling platform (Agilent). In short, samples were dissolved 1484 
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in 160 μl of loading buffer (80% ACN, 0.1% TFA). Then, the AssayMAP phosphoenrichment protocol 1485 

was performed with slight modifications in terms of washing volume and speed. After purification, 1486 

dried peptides were resuspended in LC buffer and subjected to DDA-MS on a QExactive H-FX mass 1487 

spectrometer (Thermo Fisher Scientific) equipped with an Easy-nLC 1200 (Thermo Fisher Scientific). 1488 

Peptides were separated on an ES903 column (Thermo Fisher Scientific, 75 μm i.d. x 50 cm; particle 1489 

size 2 μm). Mobile phase A consisted of HPLC-grade water with 0.1% formic acid, and mobile phase B 1490 

consisted of HPLC-grade ACN (80%) with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were 1491 

eluted at a flow rate of 250 nl/min using a non-linear gradient from 3% to 56% mobile phase B in 115 1492 

min. MS1 spectra were acquired at a resolution of 60,000 with an AGC target value of 3e6 and a 1493 

maximum injection time of 56 ms. The scan range was between m/z 350-1650. A data-dependent top 1494 

12 method was used with a precursor isolation window of 1.3 m/z. MS/MS scans were acquired with 1495 

normalized collision energy of 27 at a resolution of 15,000. AGC target was 1e5 with a maximum 1496 

injection time of 22 ms. Dynamic exclusion was set to 30s. Data analysis was performed using FragPipe 1497 

(v19.1) with the LFQ-phospho workflow 88. Min site localization probability was set to 0.75 in Ionquant 1498 
89. Statistical analysis was performed on the phosphoprotein-filtered combined protein output in 1499 

FragPipe-Analyst. Benjamini-Hochberg adjusted p-value cutoff was set to 0.05, log-fold change cutoff 1500 

was 1. No imputation was selected. 1501 

Incucyte live cell imaging 1502 

To measure cell proliferation in real-time, 2.5x10^3 LN-229 cells/well were plated in CellCarrier-96 1503 

Ultra Microplates (PerkinElmer, #6055302) 24 hours prior to the experiment, and transfected with 1504 

BTG1, BTG2, and FLUC (-) MISSION® esiRNAs (Sigma-Aldrich, Euphoria Biotech, 40ng/well) using 1505 

Lipofectamine RNAiMAX (Invitrogen, #13778075). Further details regarding siRNAs can be found in 1506 

Supplementary Table 5 and Methods related to ‘siRNA knockdown and quantitative real-time PCR’. 1507 

Real-time confluence of cell cultures (n=4 replicate wells/condition) was monitored by imaging every 1508 

2 hours for 7 days at 10x magnification with the ‘phase’ channel using the Incucyte live-cell analysis 1509 

system S3 (Sartorius). Automatic image segmentation and analysis of the phase contrast images was 1510 

performed by the Incucyte base analysis software (version 2020B). 1511 

Clonogenic survival assay 1512 

Adherent cells (LN-229: 50 cells; LN-308: 300 cells) were seeded in six replicates in 100 µL per well in 1513 

96-well plates and incubated overnight. On the following day, medium was replaced by fresh medium 1514 

containing indicated final concentrations of Vortioxetine or DMSO. Glioblastoma-initiating cells (500 1515 

cells) were seeded in 75 µL medium and incubated overnight. Treatment was initiated by addition of 1516 

75 µL medium containing 2x concentrated Vortioxetine or DMSO to reach indicated final 1517 

concentrations. DMSO concentration was kept at 0.5% for all treatments and controls. Following 1518 

treatment addition, cells were cultured for 11 (LN-229) to 13 days (other cell lines) and clonogenic 1519 

survival was estimated from a resazurin-based assay 90 using a Tecan M200 PRO plate reader (λEx = 1520 

560 nm / λEm = 590 nm). 1521 

Collagen-based spheroid invasion assay 1522 

Spheroid invasion assay was performed as described (Kumar et al. 2015). Briefly, 2000 cells were 1523 

seeded in six replicates into cell-repellent 96 U-bottom well plates (Greiner, #650979) and incubated 1524 

for 48 hours to allow spheroid formation. Subsequently, 70 µl medium were removed, spheroids were 1525 

overlaid with 70 µl 2.5% Collagen IV (Advanced Biomatrix, #5005-B) in 1xDMEM containing sodium 1526 
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bicarbonate (Sigma-Aldrich #S8761) and collagen was solidified in the incubator for 2 hours. Collagen-1527 

embedded spheroids were then overlaid with 100 µl chemoattractant (NIH-3T3-conditioned medium) 1528 

containing 2x concentrated Vortioxetine/DMSO (0.5% final DMSO concentration across conditions) 1529 

and incubated for 36 hours. Spheroids were stained with Hoechst and images were acquired on a 1530 

MuviCyte imaging system (Perkin Elmer, #HH40000000) using a 4x objective. Images were contrast-1531 

enhanced and converted to binary using ImageJ/Fiji and quantified with the automated Spheroid 1532 

Dissemination/Invasion counter software (aSDIcs), which quantifies the migration distance from the 1533 

center of the spheroid for each detected cell nucleus 91. 1534 

In vivo drug testing 1535 

All animal experiments were done under the guidelines of the Swiss federal law on animal protection 1536 

and were approved by the cantonal veterinary office (ZH98/2018). CD1 female nu/nu mice (Janvier, Le 1537 

Genest-Saint-Isle, France) of 6 to 12 weeks of age were used in all experiments and 100’000 LN-229-1538 

derived- or 150’000 ZH-161-derived cells were implanted 92. Tumour-bearing mice were treated from 1539 

day 5 – day 21 after tumour implantation with intraperitoneally (i.p.) administered Vortioxetine daily 1540 

10mg/kg, Citalopram daily 10mg/kg, Paliperidone daily 5mg/kg, Apomorphine daily 5mg/kg, 1541 

Aprepitant daily 20mg/kg, Brexpiprazole daily 1mg/kg, Chlorpromazine three time per week 10mg/kg, 1542 

Temozolomide 50mg/kg for five consecutive days, CCNU 20mg/kg at day 7 and 14 after tumour 1543 

implantation, or daily DMSO control. Magnetic resonance imaging (MRI) was performed with a 4.7T 1544 

imager (Bruker Biospin, Ettlingen, Germany) when the first mouse became symptomatic for in vivo 1545 

Trials I-III or a 7T imager (Bruker BioSpin) at days 12, 25, 38 and 48 after tumor implantation for in vivo 1546 

Trial IV. Coronal T2-weighted images were acquired using ParaVision 360(Bruker BioSpin). Tumor 1547 

regions were identified manually by two independent raters and maximum perimeter was outlined 1548 

and quantified using MIPAV (11.0.7).  1549 

Mouse brains were embedded in Shandon Cryochrome™ (Thermo Scientific) and were cut horizontally 1550 

by 8μm steps until reaching the tumour. Sections were stained for 1 second with 0.4% methylene blue 1551 

and rinsed with deionized water (2x10 dips) to confirm tumours (when present) under the microscope. 1552 

Tissue sections were stored in the dark, in dry boxes overnight before being stored at -80°C. Tissue 1553 

sections were subsequently fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS, blocked in 5% FBS and 1554 

0.1% Triton containing PBS, and stained overnight at 4°C in blocking solution with DAPI and the 1555 

following antibodies and dilutions: Alexa Fluor® 488 anti-Vimentin (1:500, Biolegend, #677809, clone 1556 

O91D3), anti-Ki67 (1:300, Cell Signaling Technology, #9129S, clone D3B5), goat anti-rabbit IgG (H+L) 1557 

highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (Thermo Scientific, #A32733). Imaging 1558 

was performed by 20x fluorescence imaging using the Pannoramic 250 Slide Scanner (3DHISTECH).   1559 
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