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Speech brain-computer interfaces (BCls) have the potential to restore rapid
communication to people with paralysis by decoding neural activity evoked by
attempted speech into text'? or sound**. Early demonstrations, although promising,

have not yet achieved accuracies sufficiently high for communication of unconstrained
sentences froma large vocabulary”’. Here we demonstrate a speech-to-text BCl that
records spiking activity fromintracortical microelectrode arrays. Enabled by these
high-resolution recordings, our study participant—who can no longer speak intelligibly
owing to amyotrophic lateral sclerosis—achieved a 9.1% word error rate on a 50-word
vocabulary (2.7 times fewer errors than the previous state-of-the-art speech BCI?)

and a23.8% word error rate on a125,000-word vocabulary (the first successful
demonstration, to our knowledge, of large-vocabulary decoding). Our participant’s
attempted speech was decoded at 62 words per minute, whichis 3.4 times as fast as
the previous record® and begins to approach the speed of natural conversation

(160 words per minute®). Finally, we highlight two aspects of the neural code for
speech that are encouraging for speech BCls: spatially intermixed tuning to speech
articulators that makes accurate decoding possible from only a small region of cortex,
and adetailed articulatory representation of phonemes that persists years after
paralysis. These results show a feasible path forward for restoring rapid communication
to people with paralysis who can no longer speak.

Itis not yet known how orofacial movement and speech productionare
organized in motor cortex at single-neuron resolution. To investigate
this, we recorded neural activity from four microelectrode arrays—
two in area 6v (ventral premotor cortex)'’ and two in area 44 (part
of Broca’s area)—while our study participant in the BrainGate2 pilot
clinicaltrial attempted to make individual orofacial movements, speak
single phonemes or speak single words in response to cues shown on
a computer monitor (Fig. 1a,b; Extended Data Fig. 1 shows recorded
spike waveforms). Implant locations for the arrays were chosen using
the Human Connectome Project multimodal cortical parcellation pro-
cedure'® (Extended Data Fig. 2). Our participant (T12) has bulbar-onset
amyotrophiclateral sclerosis (ALS) and retains some limited orofacial
movement and an ability to vocalize, but is unable to produce intel-
ligible speech.

We found strong tuning to all tested categories of movement in
area 6v (Fig.1c shows an example electrode). Neural activity in 6v was
highly separable between movements: using a simple naive Bayes
classifier applied to 1s of neural population activity for each trial, we
could decode from among 33 orofacial movements with 92% accu-
racy, 39 phonemes with 62% accuracy and 50 words with 94% accuracy
(Fig.1d and Extended DataFig. 3). By contrast, although area 44 has pre-
viously beenimplicated in high-order aspects of speech production™**

it appeared to contain little to no information about orofacial move-
ments, phonemes or words (classificationaccuracy below 12%; Fig. 1d).
The absence of production-related neural activity in area 44 is consist-
ent with some recent work questioning the traditional role of Broca’s
areainspeech™,

Next, we examined how information about each movement cat-
egory was distributed across area 6v. We found that speech could be
moreaccurately decoded from the ventral array, especially during the
instructed delay period (Fig. 1e), whereas the dorsal array contained
moreinformation about orofacial movements. This resultis consistent
with resting-state functional magnetic resonance imaging (fMRI) data
from the Human Connectome Project' and from T12 that situates the
ventral region of 6v as part of a language-related network (Extended
Data Fig. 2). Nevertheless, both 6v arrays contained rich informa-
tion about all movement categories. Finally, we found that tuning to
speecharticulators (jaw, larynx, lips or tongue) was intermixed at the
single-electrode level (Fig. 1f and Extended Data Fig. 4) and that all
speecharticulators were clearly represented within both 3.2 x 3.2 mm?
arrays. Although previous work using electrocorticographic grids has
suggested that there may be a broader somatotopic organization
along precentral gyrus, these results suggest that speech articulators
are highly intermixed at a single-neuron level.
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Fig.1|Neuralrepresentation of orofacialmovementand attempted speech.
a,Microelectrodearray locations (cyan squares) are shown on top of
MRI-derived brainanatomy (CS, central sulcus). b, Neural tuning to orofacial
movements, phonemes and words was evaluatedin aninstructed delay task.
c,Exampleresponsesofanelectrodein area 6v that was tuned to a variety of
speecharticulator motions, phonemes and words. Each line shows the mean
threshold crossing (TX) rate across all trials of asingle condition (n =20 trials
for orofacial movements and words, n =16 for phonemes). Shaded regions
show 95% confidence intervals (Cls). Neural activity was denoised by convolving
with a Gaussian smoothing kernel (80 mss.d.).d, Bar heights denote the
classification accuracy of anaive Bayes decoder applied tolsof neural
populationactivity fromarea 6v (red bars) or area 44 (purple bars) across all

In sum, robust and spatially intermixed tuning to all tested move-
ments suggests that the representation of speecharticulationis prob-
ably sufficiently strongto supportaspeech BCI, despite paralysis and
narrow coverage of the cortical surface. Because area 44 appeared to
containlittleinformationabout speech production, all further analyses
were based on area 6v recordings only.

Decoding attempted speech

Next, we tested whether we could neurally decode whole sentences
inreal time. We trained a recurrent neural network (RNN) decoder to
emit, at each 80 ms time step, the probability of each phoneme being
spoken at that time. These probabilities were then combined with a
language model to infer the most probable underlying sequence of
words, given both the phoneme probabilities and the statistics of the
English language (Fig. 2a).

At the beginning of each RNN performance-evaluation day we first
recorded training data during which T12 attempted to speak 260-
480 sentences at her own pace (41 + 3.7 min of data; sentences were
chosen randomly from the switchboard corpus? of spoken English).
A computer monitor cued T12 when to begin speaking and what
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movement conditions (33 orofacial movements, 39 phonemes, 50 words).
Black lines denote 95% Cls. e, Red and blue lines represent classification
accuracy acrosstime for each of the four arrays and three types of movement.
Classification was performed with a100 ms window of neural population
activity for each time point. Shaded regions show 95% Cls. Grey lines denote
normalized speech volume for phonemes and words (indicating speech onset
and offset). f, Tuning heatmaps for botharraysin area 6v, for each movement
category. Circlesaredrawnifbinnedfiring rateson thatelectrode were
significantly different across the given set of conditions (P<1x 107 assessed
with one-way analysis of variance; bin width, 800 ms). Shading indicates the
fraction of variance accounted for (FVAF) by across-condition differences in
mean firing rate.

sentence to speak. The RNN was then trained on these data in com-
bination with all previous days’ data, using custom machine learning
methods adapted from modern speech recognition? 2 to achieve high
performance on limited amounts of neural data. In particular, we used
unique input layers for each day to account for across-day changes in
neural activity, and rolling feature adaptation to account for within-day
changes (Extended Data Fig. 5 highlights the effect of these and other
architecture choices). By the final day our training dataset consisted
0f10,850 total sentences. Data collection and RNN training lasted for
140 min per day on average (including breaks).

After training, the RNN was evaluated in real time on held-out sen-
tences that were never duplicated inthe training set. For each sentence,
T12 first prepared to speak the sentence during an instructed delay
period. When the ‘go’ cue was given, neural decoding was automatically
triggered tobegin. As T12 attempted to speak, neurally decoded words
appeared on the screenin real time reflecting the language model’s
current best guess (Supplementary Video 1). When T12 had finished
speaking she pressed a button to finalize the decoded output. We
used two different language models: a large-vocabulary model with
125,000 words (suitable for general English) and a small-vocabulary
model with 50 words (suitable for expressing some simple sentences
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Fig.2|Neuraldecoding of attempted speechinreal time.a, Diagramof the
decodingalgorithm. First, neural activity (multiunit threshold crossings and
spike band power) istemporally binned and smoothed on each electrode.
Second, anRNN converts atime series of thisneural activity intoatime series
of probabilities for each phoneme (plus the probability of aninterword
‘silence’ token and a ‘blank’ token associated with the connectionist temporal
classification training procedure). The RNNis a five-layer, gated recurrent-unit
architecturetrained using TensorFlow 2. Finally, phoneme probabilities are
combined with alarge-vocabulary language model (a custom,125,000-word
trigram model implemented in Kaldi) to decode the most probable sentence.
Phonemesin this diagram are denoted using the International Phonetic
Alphabet. b, Opencircles denote word error rates for two speaking modes

usefulin daily life). Sentences from the switchboard corpus? were used
toevaluate the RNN with the125,000-word vocabulary. For the 50-word
vocabulary we used the word set and test sentences from Moses et al.%.

Performance was evaluated over 5 days of attempted speaking with
vocalization and 3 days of attempted silent speech (‘mouthing’ the
words with no vocalization, which T12 reported she preferred because
it was less tiring). Performance was consistently high for both speak-
ing modes (Fig. 2b,c and Table 1). T12 achieved a 9.1% word error rate
for the 50-word vocabulary across all vocalizing days (11.2% for silent)
and a 23.8% word error rate for the 125,000-word vocabulary across
all vocalizing days (24.7% for silent). To our knowledge, this is the first
successful demonstration of large-vocabulary decoding and is also a
significantadvanceinaccuracy for small vocabularies (2.7 times fewer
errorsthaninaprevious work?). These accuracies were achieved at high
speeds: T12 spoke at an average pace of 62 words per minute, which

(vocalized versussilent) and vocabulary size (50 versus 125,000 words). Word
error rates were aggregated across 80 trials per day for the125,000-word
vocabulary and 50 trials per day for the 50-word vocabulary. Vertical lines
indicate 95% Cls. c, Same asinb, but for speaking rate (words per minute).

d, Aclosed-loop example trial demonstrating the ability of the RNN to decode
sensible sequences of phonemes (represented in ARPABET notation) without
alanguage model. Phonemes are offset vertically for readability, and ‘<sil>’
indicates the silence token (which the RNN was trained to produce at the

end of allwords). The phoneme sequence was generated by taking the
maximum-probability phonemes at each time step. Note that phoneme
decodingerrorsare often corrected by the language model, whichstill infers
the correctword.Incorrectly decoded phonemes and words are denoted inred.

morethantriplesthe speed of the previous state of the art for any type
of BCI (18 words per minute for a handwriting BCI®).

Encouragingly, the RNN often decoded sensible sequences of pho-
nemes before alanguage model was applied (Fig. 2d). Phoneme error
rates computed on the raw RNN output were 19.7% for vocal speech
(20.9% for silent; see Table 1) and phoneme decoding errors followed
a pattern related to speech articulation, in which phonemes that
are articulated similarly were more likely to be confused by the RNN
decoder (Extended DataFig. 6). These results suggest that good decod-
ing performance is not overly reliant on alanguage model.

We also examined how information about speech production was
distributed acrossthe electrode arrays (Extended DataFig. 7). We found
that, consistent with Fig.1, the ventral 6v array appeared to contribute
moreto decoding. Nevertheless, both arrays were useful and low word
errorrates could be achieved only by combining both (offline analyses
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Table 1| Mean phoneme and word error rates (with 95% Cls)
for the speech BCl across all evaluation days

Word error
rate, % (95% Cl)

Phoneme error
rate, % (95% Cl)

Online
125,000-word, vocal
125,000-word, silent

50-word, vocal

19.7 (18.6,20.9)
20.9 (19.3,22.6)
21.4(19.6,23.2)
221(19.9,24.3)

23.8(21.8,25.9)
247(22.0,27.4)
91(7.2,11.2)
11.2(8.3,14.4)

50-word, silent
Offline
125,000-word, improved LM

125,000-word, improved LM +
proximal test set

19.7 (18.6, 20.9)
17.0 (15.7,18.3)

17.4(15.4,19.5)
11.8(9.8,13.9)

Phoneme error rates assess the quality of the RNN decoder’s output before a language model
is applied, whereas word error rates assess the quality of the combined RNN and language
model (LM) pipeline. Cls were computed with the bootstrap percentile method (resampling
over trials 10,000times). Online refers to what was decoded in real time whereas offline refers
to post hoc analysis of data using an improved language model (improved LM) or different
partitioning of training and testing data (proximal test set). In the proximal test set, training
sentences occur much closer in time to testing sentences, mitigating the effect of within-day
neural non-stationarities.

showed areductioninword error rate from 32 to 21% when adding the
dorsal to the ventral array).

Finally we explored the ceiling of decoding performance offline by
(1) making furtherimprovements to the language model and (2) evalu-
atingthe decoder ontest sentences that occurred closerintime to the
training sentences (to mitigate the effects of within-day changes in
the neural features acrosstime). We found that animproved language
model could decrease word error rates from23.8 t0 17.4%, and that test-
ing onmore proximal sentences further decreased word error rates to
11.8% (Table 1). These results indicate that substantial gains in perfor-
mance are probably still possible with further language modelimprove-
ments and more robust decoding algorithms that generalize better to

non-stationary data (for example, unsupervised methods that track
non-stationarities without the requirement for new training data®*%).

Preserved representation of speech

Next we investigated the representation of phonemesin area 6vduring
attempted speech. This is a challenging problem because we do not
have ground-truth knowledge of when each phoneme is being spoken
(because T12 cannot speak intelligibly). To estimate how each phoneme
was neurally represented, we analysed our RNN decoders to extract
vectors of neural activity (‘saliency’ vectors) that maximized RNN
probability output for each phoneme. We then asked whether these
saliency vectors encode details about how phonemes are articulated.

First we compared the neural representation of consonants to
their articulatory representation, as measured by electromagnetic
articulography in an able-bodied speaker. We found a broadly similar
structure, which is especially apparent when ordering consonants by
place of articulation (Fig. 3a); the correlation between electromag-
neticarticulography (EMA) and neural datawas 0.61, far above chance
(Fig.3b). More detailed structure canalso be seen—for example, nasal
consonants are correlated (M, Nand NG)—and Wis correlated with both
labial consonants and velar/palatal consonants (because it contains
aspects of both). Examining a low-dimensional representation of the
geometry of bothneuraland articulatory representation shows a close
match in the top two dimensions (Fig. 3c).

Next we examined the representation of vowels, which have a two-
dimensional articulatory structure: a high versus low axis (height of the
tongue in the mouth, corresponding to the first formant frequency)
andafrontversusback axis (whether the tongue isbunched up towards
the front or back of the mouth, corresponding to the second formant
frequency). We found that the saliency vectors for vowels mirror this
structure, with vowels that are articulated similarly having a similar
neural representation (Fig. 3d,e). Additionally, neural activity contains a
plane that reflects the two dimensions of vowels inadirect way (Fig. 3f).

Finally we verified these results using additional ways of estimat-
ing neural and articulatory structure and with additional able-bodied
speakers (Extended Data Fig. 8). Taken together, these results show
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Fig.3|Preserved articulatory representation of phonemes.

a, Representational similarity across consonants for neural data (left) and
articulatory datafrom an example subject who can speak normally, obtained
from the USC-TIMIT database (right). Each square in the matrix represents
pairwise similarity for two consonants (as measured by cosine angle between
neural or articulatory vectors). Ordering consonants by place of articulation
shows ablock-diagonal structure in neural data thatisalsoreflectedin
articulatory data. b, Neural activity is significantly more correlated with an
articulatory representation than would be expected by chance. The blue
distribution shows correlations expected by chance (estimated from
10,000 reshufflings of phoneme labels). ¢, Low-dimensional representation
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(Pearson’s r) PC2 Front F2 Back

of phonemes articulatorily (left) and neurally (right). Neural datawere rotated
within the top eight principal components (PC), using cross-validated
Procrustes, to show visual alignmentwith articulatory data. d, Representational
similarity for vowels, ordered by articulatory similarity. Diagonal bandingin the
neural similarity matrix indicates asimilar neural representation. For reference,
thefirstand second formants of each vowel are plotted below the similarity
matrices®. e, Neural activity correlates with the known two-dimensional
structure of vowels. f, Same as cbut for vowels, with an additional within-plane
rotation applied to align the (high versus low) and (front versus back) axes along
theverticaland horizontal.
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error rates were aggregated over the 250 available trials (50 for each of the five
evaluation days). The shaded regionindicates 95% Cl (computed by bootstrap
resampling across trials, n=10,000 resamplings). b, Word error rateasa
function ofthenumber of electrodesincluded in an offline decoding analysis
(eachfilled circlerepresents the average word error rate of RNNs trained with
that number of electrodes, and each thin line shows s.d. across ten RNNs).
Thereappearstobealog-linearrelationship between the number of electrodes
and performance, such that doubling the electrode count cuts word error rate
by nearly half (factor of 0.57; dashed line represents the log-linear relationship
fitwithleastsquares). ¢, Evaluation data fromthe five vocalized speech-
evaluation days werereprocessed offline using RNNs trained in the same

way, but with fewer (or no) training sentences taken from the day on which
performance was evaluated. Word error rates averaged across ten RNN seeds
(blueline) are reasonable even when no training sentences are used from
evaluation day (thatis, when training on previous days’ data only). The shaded
regionshows 95% Clacross the ten RNN seeds (bootstrap resampling method,
n=10,000resamplings). The dashed linerepresents online performance for
reference (23.8% word errorrate).d, The correlation (Pearsonr) in neural
activity patterns representing a diagnostic set of wordsis plotted for each
pair of days, showing high correlations for nearby days.

that a detailed articulatory code for phonemes is still preserved even
years after paralysis.

Design considerations for speech BCls

Finally we examined three design considerations for improving the
accuracy and usability of speech BCls: language model vocabulary
size, microelectrode count and training dataset size.

To understand the effect of vocabulary size we reanalysed the
50-word-set data by reprocessing the RNN output using language
models of increasingly larger vocabulary size (Fig. 4a). We found that
only very small vocabularies (for example, 50-100 words) retained the
large improvement in accuracy relative to a large-vocabulary model.
Word error rates saturated at around 1,000 words, suggesting that
use of an intermediate vocabulary size may not be a viable strategy
forincreasingaccuracy.

Next we investigated how accuracy improved as a function of the
number of electrodes used for RNN decoding. Accuracy improved
monotonically with alog-linear trend (Fig. 4b; doubling the electrode
accountappearsto cut the error rate nearly in half). This suggests that
intracortical devices capable of recording from more electrodes (for
example, denser or more extensive microelectrode arrays) may be able
to achieve improved accuracies in the future, although the extent to
which this downward trend will continue remains to be seen.

Finally, in this demonstration we used a large amount of training
data per day (260-440 sentences). Retraining the decoder each day
helps the decoder to adapt to neural changes that occur across time.
We examined offline whether this amount of data per day was neces-
sary by reprocessing the datawith RNNs trained with fewer sentences.
We found that performance was good even without using any training
data on the new day (Fig. 4c; word error rate was 30% with no retrain-
ing). Furthermore, we found that neural activity changed at agradual
rate over time, suggesting that unsupervised algorithms for updating
decoders to neural changes should be feasible** % (Fig. 4d).

Discussion

People withneurological disorders such as brainstem stroke or ALS fre-
quently face severe speech and motorimpairmentand, insome cases,
completeloss of the ability to speak (locked-insyndrome?®). Recently,
BCls based on hand movement activity have enabled typing speeds
of between eight and 18 words per minute in people with paralysis®®.
Speech BCls have the potential to restore natural communication at
amuch faster rate but have not yet achieved high accuracies on large
vocabularies (that is, unconstrained communication of any sentence
the user may want tosay)'”’. Here we demonstrate aspeech BCl that can
decode unconstrained sentences from a large vocabulary at a speed
of 62 words per minute, using microelectrode arrays to record neural
activity at single-neuronresolution. To our knowledge, this s the first
time a BCI has substantially exceeded the communication rates that
canbe provided by alternative technologies for people with paralysis
(for example, eye tracking®).

Our demonstration is a proof of concept that decoding attempted
speaking movements with a large vocabulary is possible using neu-
ral spiking activity. However, it is important to note that it does not
yet constitute a complete, clinically viable system. Work remains to
be done to reduce the time needed to train the decoder and adapt
to changes in neural activity that occur across several days without
requiring the user to pause and recalibrate the BCI (see refs. 24-27,31
forinitial promising approaches). In addition, intracortical microelec-
trode array technology is still maturing®* and is expected to require
further demonstrations of longevity and efficacy before widespread
clinical adoption (although recent safety data are encouraging** and
next-generation recording devices are under development®?). Fur-
thermore, the decoding results shown here must be confirmed in
additional participants, and their generalizability to people with more
profound orofacial weakness remains an open question. Variability
in brain anatomy is also a potential concern, and more work must be
done to confirm that regions of precentral gyrus containing speech
information can be reliably targeted.

Importantly, a 24% word error rate is probably not yet sufficiently
low for everyday use (for example, compared with a 4-5% word error
rate for state-of-the-art speech-to-text systems**). Nevertheless, we
believe that our results are promising. First, word error rate decreases
as more channels are added, suggesting that intracortical technolo-
gies that record more channels may enable lower word error rates in
the future. Second, scope still remains for optimization of the decod-
ing algorithm; with further language model improvements and,
when mitigating the effect of within-day non-stationarities, we were
able to reduce word error rate to 11.8% in offline analyses. Finally we
showed that ventral premotor cortex (area 6v) contains arich, inter-
mixed representation of speech articulators even within a small area
(3.2 x 3.2 mm?), and that the details of how phonemes are articulated
are still faithfully represented even years after paralysis in someone
who cannolonger speakintelligibly. Taken together, these findings sug-
gest thatahigher channel count system that records from only a small
area of 6v is a feasible path towards the development of a device that
can restore communication at conversational speeds to people with
paralysis.
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Extended DataFig.1|Examplespikingactivity recorded fromeach
microelectrode array. Example spike waveforms detected duringal0-stime
window are plotted for each electrode (data were recorded on post-implant
day119).Each 8x8grid correspondsto asingle 64-electrode array, and each
rectangular panelinthe grid corresponds to asingle electrode. Blue traces
show example spike waveforms (2.1-ms duration). Neural activity was
band-pass filtered (250-5000 Hz) with an acausal, 4™ order Butterworth filter.
Spiking events were detected using a—4.5root mean square (RMS) threshold,
thereby excluding almost all background activity. Electrodes with amean

threshold crossing rate of at least 2 Hz were considered to have ‘spiking
activity’and are outlined inred (note that thisis aconservative estimate that is
meanttoinclude only spiking activity that could be from single neurons, as
opposed to multiunit ‘hash’). Theresults show that many electrodes record
large spiking waveforms that are well above the noise floor (the y axis of each
panel spans 580 pV, whereas the background activity has an average RMS value
ofonly30.8uV).Inarea6v,118 electrodes out of 128 had athreshold crossing
rateof atleast 2 Hzon this particular day (113 electrodes out of 128 inarea 44).



Extended DataFig.2|Arrayimplantlocations and fMRIdatashownrelative
to HCP-identified brainareas. (a) Array implants shown directly on the brain
surface duringsurgery. (b) Array locations shownona3D reconstruction of
thebrain (array centersshowninblue, yellow, magenta, and orange circles)
inStealthStation (Medtronic, Inc.). (c) approximate array locations on the
participant’sinflated brain using Connectome Workbench software, overlaid
onthecortical arealboundaries (double black lines) estimated by the Human

Connectome Project (HCP) cortical parcellation. (d) approximate array
locations overlaid on the confidence maps of the areal regions. (e) Alanguage-
related resting state network identified in the Human Connectome Project
data (N =210) and aligned to T12’s brain (f) the same resting state network
showninT12’sindividual scan. The ventral part of 6v appears to beinvolved
inthisresting state network, while the dorsal partis not. This resting state
networkincludes language-related area 55b, Broca’s areaand Wernicke’s area.
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Extended DataFig. 3| Classification confusion matrices for orofacial
movements, individual phonemes, and individual words. (a,b) Confusion
matrices froma cross-validated, Gaussian naive Bayes classifier trained to
classify amongst orofacial movements using threshold crossing rates averaged
inawindow from 0 to 1000 ms after the go cue. Eachentry (i,j) in the matrix is
colored accordingto the percentage of trials where movement jwas decoded
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(of all trials where movementiwas cued). (c,d) Same as a,b but forindividual
phonemes. (e,f) Same as a,bbut for individual words. Matrices on the left show
results fromusing only electrodes inarea 6v, while matrices on the right show
results fromusingelectrodesinarea44. Although good classification
performance canbe observed fromarea 6v, area44 appearsto containlittle

to no information about most movements, phonemes and words.
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Extended DataFig. 4 |Individual microelectrodes are tuned to multiple
categories of orofacial movement. (a) Pie charts summarizing the number of
electrodes that had statistically significant tuning to each possible number of
movement categories (from 0 to 6), as assessed with al-way ANOVA (p < 1e-5).
Onthe 6varrays, many electrodes are tuned to more than one orofacial
movement category (forehead, eyelids, jaw, lips, tongue, and larynx). (b) Bar

plots summarizing the number of tuned electrodes to each movement
category and each array. The ventral 6v array contains more electrodes tuned
to phonemes and words, while the dorsal 6v array contains more electrodes
tuned to orofacial movement categories. Nevertheless, both 6v arrays contain
electrodes tuned toall categories of movement.
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Extended DataFig. 5| Offline parameter sweeps show the effect of RNN
parameters and architecture choices. Black arrows denote the parameters
used for real-time evaluation. Blue open circles show the performance of single
RNN sseeds, while thin blue bars denote the mean across all seeds. (a) Rolling
z-scoring improves performance substantially relative to no feature adaptation
(whentesting on held-outblocks that are separated in time from the training
data). (b) Training RNNs with day-specific input layersimproves performance
relative tousing ashared layer across all days. (c) RNN performance using
different neural features asinput (SP=spike band power, TX=threshold
crossing). Combining spike band power with threshold crossings performs
better thaneitheralone.Itappearsthat performance could have been
improved slightly by usinga-3.5RMS threshold instead of -4.5. (d) RNN
performance using audio-derived mel frequency cepstral coefficients (“audio

# of RNN Units

MFCC”) or neural features from the area 44 arrays. While the MFCCs yield poor
butabove-chance performance, word error rates from IFG recordings appear
tobeatchancelevel (-100%). (e) RNN performance as a function of “kernel size”
(i.e.,thenumber of 20 ms bins stacked together asinput and fed into the RNN at
eachtimestep).Itappearsthat performance could have beenimproved by
using larger kernelsizes. (f) RNN performance as a function of “stride” (astride
of Nmeans the RNN steps forward only every N time bins). (g) RNN performance
asafunctionofthe number of stacked RNN layers. (h) RNN performanceasa
function of the number of RNN units per layer. (i) RNN performance as a
function of the number of prior daysincluded as training data. Performance
improves by adding prior days, but with diminishing returns. The blue line
shows the average word error rate across 10 RNN seeds and 5 evaluation days.
Vertical lines show standard deviations across the 10 seeds.
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Extended DataFig. 6 | Phoneme substitution errors observed acrossall theminimum number of insertions, deletions, and substitutions required to
real-time evaluationsentences. Entry (i.j) in the matrix represents the make the decoded phoneme sequence match the true phoneme sequence.
substitution count observed for true phoneme iand decoded phoneme;. Most substitutions appear to occur between phonemes thatare articulated

Substitutions wereidentified using an edit distance algorithmthat determines  similarly.
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decoding performance. (a) Word error rates for aretrospective offline
decodinganalysis using just the ventral 6v array (left column), dorsal 6v array
(middle column), or both arrays (right column). Each circle indicates the word
errorrate for one of 10 RNN seeds. Word error rates were aggregated across
400 trials. Horizontal lines depict the mean across all 10 seeds. (b) Heatmaps
depictingthe (offline) increase in phoneme error rate whenremoving each
electrode from the decoder by setting the values of its corresponding features
tozero.Results were averaged across 10 RNN seeds that were originally trained
touseevery electrode. Almost all electrodes seem to contribute to decoding
performance, although the mostinformative electrodes are concentrated onthe
ventral array. The effect of removing any one electrodeis small (<1% increase in
phonemeerror rate), owing to theredundancy across electrodes.
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Extended DataFig. 8| Additional methods and able-bodied subjects provide
further evidence for anarticulatory neural code. (a) Representational
similarity across consonants (top) and vowels (bottom) for different
quantifications of the neural activity (“Saliency Vectors”, “Decoder Labels”,
and “Single Phoneme Task”) and articulator kinematics (“Haskins M01”,
“USC-Timit M1”, “Place + Formants”). Each squareina matrix represents
pairwise similarity for two phonemes (as measured by the cosine angle
between the neural or articulatory vectors). Consonants are ordered by place
of articulation (but with approximants grouped separately) and vowels are
ordered by articulatory similarity (as measured by “USC-TIMIT M1”). These
orderingsreveal block-diagonal structurein the neural data thatis also
reflectedinarticulatory data. “Haskins M01” and “USC-Timit M1” refer to
subjects MO1and M1in the Haskins and USC-Timit datasets. “Place + Formants”
refers to coding consonants by place of articulation and to representing vowels

using their two formant frequencies. (b) Correlations between the neural
representations and the articulator representations (each panel corresponds
toonemethod of computing the neural representation, while each column
corresponds toone EMA subject or the place/formants method). Orange dots
show the correlation value (Pearsonr), and blue distributions show the null
distribution computed with ashuffle control (10,000 repetitions).Inall cases,
thetruecorrelationlies outside the null distribution, indicating statistical
significance. Correlation values were computed between consonants and
vowels separately and then averaged together to produce asingle value.

(c) Representational similarity matrices computed using the “Decoder labels”
method on 6 differentindependent folds of the neural data. Very similar
representations across folds indicates that the representations are statistically
robust (average correlation across folds=0.79).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The software for running th experimental tasks, recording data and real-time sentence decoding was a custom developed system using
MATLAB, Simulink Real-Time, and Python. Software packages used included tensorflow 2.10.0, gp2_en 2.1.0, WeNet, SRILM and Kaldi.
Data analysis Data was analyzed using custom MATLAB and Python code. Code is publicly available on GitHub here: https://github.com/fwillett/speechBCl

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All neural data needed to reproduce the findings in this study are publicly available on Dryad here: (link & DOI to be added - under review at Data Dryad now). The
dataset contains neural activity recorded during the attempted speaking of 10,850 sentences, as well as instructed delay experiments designed to investigate the
neural representation of orofacial movement and speech production. As part of this study, we also analyzed publicly available electromagnetic articulography data:




the USC-TIMIT database (https://sail.usc.edu/span/usc-timit/) and the Haskins Production Rate Comparison (HRPC) database (https://yale.app.box.com/s/
cfn8hj2puveo65fq54rpImi2mk7moj3h).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study included data from one participant, T12, who is a biological female and identifies as a woman. This information
was self-reported. No sex or gender based analyses were performed given there was only a single participant and the study
was assessing brain-computer interface performance.

Reporting on race, ethnicity, or  This study assessed brain-computer interface performance for a single participant. No variables relating to race, ethnicity or

other socially relevant other socially relevant groupings were reported or analyzed.
groupings
Population characteristics This study includes data from one participant (identified as T12) who gave informed consent and was enrolled in the

BrainGate2 Neural Interface System clinical trial (CliniclaTrials.gov Identifier: NCT00912041, registered June 3, 2009) but this
study did not report clinical trial results. T12 is a left-handed woman, 67 years old during data collection with bulbar ALS that
began approximately 9 years prior to enrollment.

Recruitment Participant T12 was enrolled in the BrainGate 2 clinical trial after meeting inclusion criteria based in part on disease
characteristics. Inclusion and exclusion criteria are available online (ClinicalTrials.gov).

Ethics oversight The BrainGate2 Neural Interface System clinical trial was approved under an Investigational Device Exemption (IDE) by the US
Food and Drug Administration (IDE #G09003). Permission was also granted by teh Institutional Review
Board of Stanford University (protocol #20804). All research was performed in accordance with relevant guidelines/
regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. Data were collected in a single participant to characterize the performance of a brain-computer
interface. Uncertainty in performance estimates were quantified with confidence intervals, and show a robust result.

Data exclusions  This study is based on brain-computer interface performance evaluation data collected over a series of days. All days are reported in the
study and all relevant data is included.

Replication This study assessed brain-computer interface performance with a single participant. Results were replicated across eight independent days of
performance evaluation.

Randomization  Randomization into groups is not relevant for this study as only one participant is included in the study.

Blinding Blinding is not relevant to this study as only one participant was included to asses the performance of a brain-computer interface.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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