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ABSTRACT 

Schizophrenia (SCZ) is a highly heritable, polygenic neuropsychiatric disease, which disables 

the patients as well as decreases their life expectancy and quality of life. Common and Rare 

variants studies on SCZ subjects have provided more than 100 genomic loci that hold 

importance in the context of SCZ pathophysiology. Transcriptomic studies from clinical 

samples have informed about the differentially expressed genes (DEGs) and non-coding RNAs 

in SCZ patients. Despite these advancements, no causative genes for  SCZ were found and 

hence SCZ is difficult to recapitulate in animal models. In the last decade, induced Pluripotent 

Stem Cells (iPSCs)-based models have helped in understanding the neural phenotypes of SCZ  

by studying patient iPSC-derived  2D neuronal cultures and 3D brain organoids. Here, we have 

aimed to provide a simplistic overview of the current progress and advancements after 

synthesizing the enormous literature on SCZ genetics and SCZ iPSC-based models. Although 

further understanding of SCZ genetics and mechanisms using these technological 

advancements is required, the recent approaches have allowed to delineate important cellular 

mechanisms and biological pathways affected in SCZ. 

Keywords: Schizophrenia, GWAS, Transcriptomics, Non-coding RNAs,  iPSC, Patient-iPSC-

derived neurons 
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1. INTRODUCTION 

Schizophrenia (SCZ) is a complex neurological disease that manifests mainly in adulthood 

although reported to have a neurodevelopment origin (Bloom 1993; Fatemi and Folsom 2009; 

Ahmad et al. 2018; Schultz, North, and Shields 2007).  According to the WHO report, globally 

approximately 24 million people are affected with SCZ with a worldwide prevalence of around 

1% (Stilo and Murray 2010; Rhoades, Jackson, and Teng 2019). SCZ patients are more likely 

to die younger than the general population mainly due to co-morbid conditions like 

cardiovascular, diabetes and communicable diseases (Wildgust, Hodgson, and Beary 2010). 

With the rise in global life expectancy and aging populations, psychiatric disorders like SCZ 

will further increase the socio-economic liability (Lee et al. 2018), particularly in low and 

middle-income countries. A few reports have also highlighted the worldwide increase in the 

incidence of mental disorders like anxiety and depression including psychosis with the 

COVID-19 pandemic (Xie, Xu, and Al-Aly 2022; Brown et al. 2020; Chacko et al. 2020).  

SCZ is characterized by positive symptoms like hallucinations and delusions, negative 

symptoms like social and emotional withdrawal, and cognitive symptoms like confusion and 

lack of decision-making (Tandon et al. 2013; Kahn et al. 2015; Page et al. 2022). SCZ is 

clinically diagnosed according to the criteria mentioned in the DSM V manual based on the 

characteristic symptoms of hallucinations and delusions; personal and work-related 

relationships; duration of symptoms and a pre-existing psychiatric condition etc. (Tandon et al. 

2013; Kahn et al. 2015). SCZ was observed in relatives and families of patients and is believed 

to be inherited even before the advent of newer technologies like Genome-Wide association 

studies (GWAS) and Next-Generation sequencing (NGS) (Henriksen, Nordgaard, and Jansson 

2017). Meta-analytical studies of monozygotic and dizygotic twins have suggested an 80% 

heritability factor for SCZ (Cardno and Gottesman 2000; Sullivan, Kendler, and Neale 2003). 

Although both candidate gene approaches and high-throughput genomics approaches have 
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identified approximately 170 genomic loci associated with SCZ but the majority are not useful 

for clinical applications (Henriksen, Nordgaard, and Jansson 2017; Lam et al. 2019; Trubetskoy 

et al. 2022). An increasing number of reports have formidably associated environmental risk 

factors in the development of SCZ. Environmental risk factors such as maternal infections and 

stress as well as maternal malnutrition, which leads to pregnancy and birth complications, also 

support the neuro-developmental hypothesis (Stilo and Murray 2010; Fatemi and Folsom 

2009). Other risk factors for SCZ include socioeconomic status, urban living, increased 

paternal age, migration status, head injury, autoimmune diseases, epilepsy, and drug abuse 

(Cannon, Jones, and Murray 2002; Malaspina et al. 2001; Lederbogen et al. 2011). 

SCZ is primarily managed clinically with first and second-generation antipsychotics that are 

known to act on the dopamine D2 receptor and are more effective for positive symptoms (Kane 

and Correll 2010; Tandon, Nasrallah, and Keshavan 2010). Recent reports show that second-

generation antipsychotics, despite being thought to have better efficacy and fewer neurological 

adverse effects, show comparable efficacy to first-generation antipsychotics and equally 

increase the incidences of metabolic diseases in SCZ patients  (De Hert et al. 2011; Nielsen et 

al. 2015; Leucht et al. 2013). Treatment-resistant schizophrenia (TRS), which accounts for 30% 

of all SCZ cases, is treated with Clozapine, which is successful in reducing antipsychotic 

symptoms, especially in TRS patients, even though the mechanism of action of Clozapine is 

not fully understood (Potkin et al. 2020; Meltzer et al. 2003). The current gap in the treatment 

of SCZ and other psychiatric diseases (Kohn et al. 2004) is mainly in the development of drugs 

that could treat the negative and cognitive symptoms effectively with minimal side effects 

(Kane and Correll 2010).  

Neuroimaging techniques have highlighted structural abnormalities in the brain of SCZ 

patients. Enlargement of lateral ventricles, thinner cortical areas and reduced hippocampal 

volumes are established changes found in SCZ patients (van Haren et al. 2011; Haijma et al. 
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2013). Combining neuroimaging tools with the genetic variants data has been a new field of 

research to further validate and understand the function of the genetic variants in the SCZ 

patient subgroups (Callicott et al. 2005). Neuroimaging tools have also been used to validate 

two environmental risk factors – urban life and migration status (Akdeniz et al. 2014).  

Animal models have significantly aided in the understanding of brain development, particularly 

in informing about evolutionarily conserved cellular and molecular pathways (Pinnapureddy 

et al. 2015). Although transgenic models have helped in unraveling some aspects of monogenic 

diseases, the complexity and heterogeneity of polygenic diseases are difficult to replicate in 

such model systems (Kaiser, Zhou, and Feng 2017). Because of the interactions of multiple 

genetic and environmental risk factors, neuropsychiatric diseases such as SCZ, Bipolar disorder 

(BD), and Autism spectrum disorders (ASD) are difficult to study entirely in an animal model 

system (Nestler and Hyman 2010).  At the cellular and molecular level, the use of iPSC 

technology in neuropsychiatric diseases has provided an alternative strategy to understand the 

complexity of patient-specific cell lines albeit with limitations as reviewed previously (Soliman 

et al. 2017; De Los Angeles et al. 2021; Nayak et al. 2021).   

In this paper, we present a collective update of the findings from SCZ-iPSC model systems and 

knowledge gained through GWAS & transcriptomic studies on SCZ clinical samples. Although 

previous reports and reviews have discussed SCZ iPSC models, GWAS and transcriptomic 

studies in detail, our goal is to present a quantitative meta-analytic overview of the overall 

prevailing knowledge to understand the current advancements in the field of SCZ disease 

pathogenesis and progression. 

2. DISCUSSION 

2.1. What insights do genomic studies in SCZ provide? 
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Recent studies have established the existence of interaction between multiple genetic and 

environmental factors in the SCZ disease epidemiology (Kahn et al. 2015). Nonetheless, the 

contribution of genetic factors is large as SCZ is among the highly heritable neuropsychiatric 

disorder (more than BD and ASD) although without definite causative genes (Sullivan, Daly, 

and O'Donovan 2012; Schizophrenia Working Group of the Psychiatric Genomics 2014). 

Using classical genetics techniques some genes were found to be associated with SCZ but in 

very small sample sizes and which do not follow the Mendelian form of inheritance (Farrell et 

al. 2015; Sullivan, Daly, and O'Donovan 2012; Trifu et al. 2020). Over the last decade, GWAS 

has revolutionized the field of complex genetic diseases such as SCZ, by massively genotyping 

large sample sizes of patients to find genotype-phenotype relationships (Schizophrenia 

Working Group of the Psychiatric Genomics 2014; Uffelmann et al. 2021). GWAS and NGS 

have helped in capturing genetic variants, which constitute to partially reveal SCZ genetics 

(Rhoades, Jackson, and Teng 2019). 

2.1.1. Common Variants  

Psychiatric genomics consortium (PGC) published studies in large sample sizes to provide 

common gene variants associated with SCZ. Surprisingly, miR 137, a micro-RNA that 

regulates neural development, was shown to have the highest association with SCZ in the 

analysis of populations with European ancestry in 2011(Schizophrenia Psychiatric Genome-

Wide Association Study 2011a). Their subsequent paper in 2014 with samples from both 

European and Asian ancestry reported SNPs linked to genes associated with glutamatergic 

neurotransmission and synaptic plasticity (Schizophrenia Working Group of the Psychiatric 

Genomics 2014). DRD2 gene, which encodes for the dopamine D2 receptor that is also the 

known SCZ drug target, was also reported to be significantly associated with SCZ 

(Schizophrenia Working Group of the Psychiatric Genomics 2014). MHC (Major 

histocompatibility Complex) region, another important genetic variant, was first found to be 
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associated with SCZ by the Stefansson group (Purcell et al. 2009)  and was also reported by 

subsequent studies (Irish Schizophrenia Genomics and the Wellcome Trust Case Control 2012; 

Ripke et al. 2013). A recent paper by the PGC consortium has found 120 genes to be involved 

in fundamental processes such as synaptic organization, neuronal differentiation, and neuronal 

transmission.  Among these genes were the glutamate receptor subunit GRIN2A and 

transcription factor SP4 and other genes that were linked to rare disruptive coding variants in 

patients with SCZ (Trubetskoy et al. 2022).  

To search for consensus genetic variants across different studies, we have performed a meta-

analysis of SCZ GWAS as mentioned in the methods section. The majority of the GWAS on 

SCZ populations to date has been performed in European and East Asian populations (Fig1.a.). 

A few studies have also been done on African, Latin American, and South Asian populations 

among others. Our analysis resulted in a list of highly significant genes that were repeatedly 

reported as significant across different GWAS publications (p-value <0.01, see Methods) 

(Fig1.b). CACNA1C was found to be reported in most of the studies along with the HLA locus 

of the MHC region. CACNA1C is a calcium channel known to have a role in various 

neurodegenerative diseases (Indelicato and Boesch 2021). It has also been found to be 

associated with BD in GWAS analysis of common variants (Schizophrenia Psychiatric 

Genome-Wide Association Study 2011a). NOTCH 4, which has a role in inflammatory 

pathways, was also found to be highly replicated in multiple studies (Harb et al. 2021). 

Together with the MHC region, it highlights the important role that the immune system plays 

in SCZ. Some long intergenic non-coding RNAs were also reported by several studies, further 

reinforcing the role of non-coding RNAs in regulating gene expression as well as mechanisms 

that have not yet been fully understood (Fig1.b). TRIM 26 is another important gene that is 

known to regulate interferon-gamma signaling pathways and is associated with neural tube 

defects (Zhang et al. 2015; Zhao et al. 2021). However, the discovery of common genetic 
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variants in SCZ has only provided insights into a fraction of SCZ genetics and fuelled a debate 

about the missing heritability in complex diseases (van Dongen and Boomsma 2013; Zuk et al. 

2012; Maher 2008). This has also led to the hypothesis of the presence of undiscovered rare 

variants with high penetrance (Rhoades, Jackson, and Teng 2019). 

2.1.2. Rare variants  

Over the years, genetic studies in SCZ patients have been able to identify eleven effective rare 

structural variants in the genomic region, which have been associated with SCZ and reported 

to increase the risk of SCZ (Rees et al. 2014). These rare structural variants have neither very 

high penetrance, nor specificity, as they are also associated with other neurodevelopmental 

disorders. (Rees et al. 2014; Sullivan, Daly, and O'Donovan 2012) (Table 3). Among these rare 

variants, the copy number variation of 22q11.21 is well studied and increases the SCZ risk by 

20 times but is also associated with Di-George syndrome, developmental delays, and 

intellectual disability (Cleynen et al. 2021). Most of these structural variants span a large 

genomic region and are difficult to study in model systems (Table 3). iPSC models of some of 

these variations have been studied and discussed below.  

In addition to the rare structural variants, other rare variants have been identified recently using 

exome sequencing studies and Whole-genome sequencing approaches.  RELN mutations were 

found to be associated with SCZ in Whole-genome sequencing of a Chinese family with SCZ-

affected members. SETD1A loss of function gene variant was found to be significantly 

associated with SCZ and other developmental disorders in an exome study (Singh et al. 2016).  

A recent large study on exome sequencing by SCHEMA has found 10 ultra-rare variants in 10 

genes, which included representative populations from all seven continents (Singh et al. 2022). 

Hence, more research using exome sequencing and NGS is required for the exploration of 

further important genes. Despite these findings, the major portion of SCZ genetics remains 

undiscovered (Singh et al. 2022). Moreover, the discovered genetic variants have not been 
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helpful in clinical management although recent development of Polygenic risk scores (PRS) 

profiling for estimating the cumulative effect of small effect-common genetic variants along 

with rare variants could be helpful in the prediction and intervention of SCZ in clinics in the 

future (Iyegbe et al. 2014).  

2.1.3. Gene expression studies 

The lack of discovery of causal genes by GWAS in SCZ makes the study of gene expression 

pertinent (Rhoades, Jackson, and Teng 2019; Stern, Zhang, et al. 2022). Technological 

advancements in RNA sequencing have replaced the incomprehensive microarrays-based gene 

expression assays and allowed for the study of the whole transcriptome of the cells and tissues. 

A meta-analytical review (Merikangas et al. 2022) has recently reported the list of shortlisted 

differentially expressed genes in SCZ after analyzing the transcriptomic studies performed 

from SCZ samples to date. These studies were performed mostly on post-mortem brain tissues 

and blood of SCZ patients (Fig.1.c). A few studies were also done on LCLs, skin fibroblasts, 

and iPSCs from SCZ clinical samples (Fig.1.c). The differentially expressed genes were 

shortlisted by Merikangas et al. (Merikangas et al. 2022) based on their three or more reports 

of the genes in different studies. We analyzed to find the overlapping shared genes between the 

highly reported genetic variants as determined by us in Fig 1.b. and the list of 160 differentially 

expressed genes (DEGs) in SCZ as mentioned by Merikangas et al (Merikangas et al. 2022). 

We found a list of 14 genes that were common between the highly reported common variant 

genes and the list of DEGs (Fig1.d). Further analysis of such genes could help in understanding 

their biological role in SCZ pathophysiology. 

Noncoding RNAs have emerged as important biological regulators in brain development and 

disorders (Qureshi and Mehler 2012) (Salta and De Strooper 2012). As mentioned earlier, SNP 

associated with miR-137 has been shown to have a strong statistical association with SCZ in 

GWAS (Schizophrenia Psychiatric Genome-Wide Association Study 2011b) (Fig1.b).  In our 
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analysis, we found miR-137 to be differentially expressed in PBMCs and blood of SCZ patients 

(Fig1.e). Furthermore, miR-7, miR-9, miR-26b, miR-34a, miR-132, miR-181b, and miR-212 

were observed to be differentially expressed in a variety of tissues, including PBMCs, blood, 

and postmortem-brain samples from SCZ patients (Fig1.e). Some iPSC studies have also 

suggested the role of miRNAs in SCZ iPSC-derived NPCs and Neurons  (Fig 1. e). GWAS 

datasets have also shown an association with long intergenic non-coding RNAs in several 

studies (Fig1.b). Recently, several lncRNAs have been reported to be differentially expressed 

in the SCZ clinical samples  (Barry et al. 2014; Tian et al. 2018; Liu et al. 2018). Some of the 

lncRNAs reported in multiple publications have also been listed in Fig 1e. Circular RNAs, a 

new class of non-coding RNAs, also were shown to be involved in SCZ (Mahmoudi et al. 2019) 

but not enough studies have been published for meta-analysis according to our criteria (see 

Methods).  

2.2. iPSC-based models and how they have helped in understanding SCZ 

pathophysiology  

Since its discovery in the previous decade (Takahashi and Yamanaka 2006), iPSC technology 

has been utilized to model a variety of diseases, including neurodegenerative and 

neuropsychiatric disorders(Stern, Sarkar, Galor, et al. 2020; Stern, Sarkar, Stern, et al. 2020; 

Stern, Zhang, et al. 2022; Brant et al. 2021; Quraishi et al. 2019; Stern, Lau, et al. 2022; Rowe 

and Daley 2019). It has a considerable advantage in the research of fundamental mechanisms 

and pathways affecting neuropsychiatric illnesses such as SCZ, BD, and ASD that are 

otherwise difficult to model due to a lack of causative genes (Soliman et al. 2017; Stern, Sarkar, 

Stern, et al. 2020; De Los Angeles et al. 2021). Chiang et al. first reported the generation of 

iPSCs from an SCZ patient harboring a DISC1 mutation (Chiang et al. 2011).  We have 

performed a quantitative meta-analysis for iPSC-based models of SCZ in Fig 2a (i-iii) and Fig 

2b. as described in the Methods section by analyzing the findings of more than 50 papers 
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published since the first report in 2011. The relevant phenotypes observed among the different 

SCZ-iPSC models are plotted in Fig. 2. b. iPSCs can be derived from a variety of somatic tissue 

but the majority of the research groups have utilized fibroblasts for reprogramming control and 

SCZ patient samples (Fig.2a.i.). The seminal articles used both lentiviral and episomal vectors 

to derive iPSCs for SCZ-iPSC models (Chiang et al. 2011; Brennand et al. 2011). Integration-

free reprogramming approaches such as Sendai virus vectors and mRNA reprogramming 

methods have also been successfully employed for reprogramming into iPSCs (Fig.2.a.ii.).  

Different techniques related to transcriptomic analysis (RNA-seq, scRNA-seq), gene editing 

(CRISPR/Cas9, TALENs), high-resolution microscopy, and functional analysis 

(Multielectrode arrays, Calcium imaging, and Patch-clamp) have been used with iPSCs, neural 

progenitor cells (NPCs), and neurons derived from SCZ patients to study the mechanisms 

underlying  SCZ pathology. iPSCs are typically differentiated into neural cells through 

Embryoid Bodies (EBs), neuronal rosettes, and NPCs using specific chemicals and small 

molecules, and thereafter terminally differentiated into neuronal subtypes using neurotrophic 

and specific growth factors to obtain neural cell types. For NPC/ Neural Stem Cell (NSC) 

induction from iPSCs, dual SMAD inhibition has become the preferred method (Chambers et 

al. 2009).  The majority of the studies were conducted on cortical glutamatergic neurons or 

mixed populations containing both excitatory and inhibitory neurons (Fig.2.a.iii.). A few 

reports also used overexpression of specific transcription factors to directly induce excitatory 

or inhibitory neurons from iPSCs to study the SCZ disease mechanisms (Li et al. 2019; Sellgren 

et al. 2019; Pak et al. 2021). Some studies generated cerebral brain organoids to further 

understand the SCZ disease pathology in a model, which better mimics brain structure 

(Fig.2.a.iii) (Kathuria et al. 2020; Stachowiak et al. 2017; Sawada et al. 2020). Here, we briefly 

discuss the disease relevant findings from SCZ-iPSC-based models, which are also presented 

in Fig.2.b in the form of a heatmap (described in the Methods section). The heatmap 
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summarizes SCZ phenotypes, which were found to be either upregulated or downregulated 

among various neural cell types studied in SCZ-iPSC-based model studies.  

2.2.1. Disease-relevant phenotypes observed in SCZ iPSC models 

Abnormal NPCs, Neurites, and Synaptic connections  

Brennand et al. conducted the first detailed study using an iPSC-based model to investigate 

SCZ in 2011, reporting reduced connectivity and neurite extension as well as lower expression 

of post-synaptic density protein 95 (PSD95) in iPSC-derived cortical neurons from patients 

with a family history of SCZ (Brennand et al. 2011). Transcriptomic analysis pointed towards 

significant changes in gene expression related to glutamate, Wnt and cAMP signaling pathways 

(Brennand et al. 2011). Furthermore, treatment with the antipsychotic drug loxapine improved 

neuronal connectivity and restored altered gene expression to some extent (Brennand et al. 

2011).  In vitro studies using iPSC-derived neurons and monocyte-derived microglia-like cells 

from SCZ patients have shown defective synaptic pruning in addition to abnormal 

synaptogenesis (Sellgren et al. 2019).  Synaptic deficits, as well as change in redox state, were 

also observed in iPSC-derived cortical interneurons of idiopathic SCZ patients (Kathuria et al. 

2019a). Treatment with N-acetyl serine, an antioxidant, was found to restore the observed 

synaptic deficits in SCZ patient-specific cortical interneurons (Kathuria et al. 2019a).  In a 

recent study of discordant monozygotic twin pairs with SCZ, abnormal dendritic arborization 

resulted in hypoexcitable neurons and synaptic deficits in iPSC-derived dentate gyrus (DG) 

neurons of co-twin affected with SCZ compared to unaffected co-twin siblings. Moreover, gene 

expression analysis showed alteration of the DG development pathway, Wnt signaling 

pathway, and synapse-related pathways in the iPSC-derived DG neurons of SCZ-affected co-

twins (Stern, Zhang, et al. 2022).  

SCZ-iPSCs-based models with highly penetrant genetic risk factors have shed some light on 

the cellular phenotypes and genetic pathways.  As previously stated, a chromosome 22q11.2 
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deletion is a known high-risk factor for SCZ. iPSCs derived from the 22q11.2 deletion 

possessed decreased differentiation ability (Pedrosa et al. 2011; Toyoshima et al. 2016). In 

addition,   smaller neurosphere size and relatively poor neurite extension were also observed 

after differentiation of the patient iPSCs with 22q11.2 deletion compared to controls (Pedrosa 

et al. 2011; Toyoshima et al. 2016). In the 15q11.2 deletion iPSC model, another known SCZ 

risk factor, NPCs lacked apical polarity and adherent junctions indicating a disruption in 

neuronal development (Yoon et al. 2014). Additionally, iPSC-based cell models were used to 

study DISC1 mutation as it also carries an increased risk of SCZ (Wen et al. 2014). Synaptic 

vesicle release was observed to be dysfunctional in iPSC patient-derived neurons with mutant 

DISC1 compared to controls, and this was rescued when DISC1 was selectively edited in the 

patient cell line using TALENs, indicating that this mutation affects synaptic activity (Wen et 

al. 2014). In addition, TALEN and CRISPR-Cas9 editing were employed to introduce the 

DISC1 mutation into iPSCs resulting in an aberrant neuronal differentiation and a 

dysregulation of the Wnt signaling pathway as reported earlier by other groups (Srikanth et al. 

2015). Exonic deletions of Reelin (RELN) have been linked to SCZ (Costain et al. 2013). In a 

recent study, glutamatergic and GABAergic iPSC-derived neurons from an SCZ patient with a 

RELN deletion were reported to have dendritic shortening and fewer synapse counts(Ishii et 

al. 2019). Those patient-derived neurons were compared to neurons differentiated from 

isogenic iPSCs specifically edited to have RELN deletion using CRISPR/Cas9 technology 

(Ishii et al. 2019). The cellular phenotypes of neurons differentiated from genetically edited 

iPSCs with RELN deletion were comparable with iPSCs of SCZ patients with RELN deletion, 

confirming the involvement of this gene in SCZ (Ishii et al. 2019).  Another study investigating 

the role of SCZ risk factor, NRXN1 deletion in SCZ-related phenotypes, found altered 

neurotransmitter release in neurons directly induced from SCZ patient iPSC. They also found 

neurotransmitter release impairment in induced neurons when iPSCs were edited to have a 
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heterozygous deletion of NRXN1 using TALENs. Importantly, no such defects were observed 

in mouse neurons deficient of NRXN1 gene reinforcing the importance of human iPSC model 

for SCZ disease phenotypes (Pak et al. 2021). 

Mitochondrial dysfunction 

An increasing number of reports have linked mitochondrial dysfunction to SCZ (Dror et al. 

2002; Prabakaran et al. 2004; Iwamoto, Bundo, and Kato 2004; Rosenfeld et al. 2011). 

Mitochondrial protein expression and a reduction in membrane potential were reported in SCZ 

iPSC NPCs, which suggested a compromised mitochondrial function (Robicsek et al. 2013). 

Altered mitochondrial morphology in SCZ iPSC-NPCs such as smaller and less connected 

mitochondria and a reduction in mitochondrial density around the nucleus has also been 

observed (Brennand et al. 2015). Other researchers reported a higher mitochondrial oxygen 

consumption (Da Silveira Paulsen et al. 2012) and increased reactive oxygen species (ROS) 

levels (Robicsek et al. 2013; Brennand et al. 2015) in SCZ iPSC-derived NPCs.  Robicsek et 

al. in a subsequent study used isolated active normal mitochondria (IAN-MIT) technology to 

transfer healthy mitochondria to SCZ iPSCs which rescued the impaired differentiation of 

SCZ-iPSCs into glutamatergic neurons (Robicsek et al. 2017). A study found a reduction in 

ATP levels due to reduced oxidative phosphorylation at mitochondrial complexes I and IV in 

the forebrain excitatory neurons directly induced from iPSCs from 22q11.2 SCZ subjects (Li 

et al. 2019). Furthermore, mitochondrial protein expression was specifically altered and not the 

nuclear-encoded protein in those neurons (Li et al. 2019).  Ni et al. found dysregulation of 

oxidative phosphorylation genes and altered mitochondrial function in cortical interneurons 

differentiated from SCZ patient-derived iPSCs compared to iPSCs derived from the control 

group (Ni et al. 2020). Surprisingly, they observed no such significant changes in glutamatergic 

neurons derived from the same SCZ patient iPSCs. Furthermore,  Alpha Lipoic Acid/Acetyl-

L-Carnitine (ALA/ALC) was found to restore the observed dysregulation of oxidative 
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phosphorylation genes in cortical interneurons (Ni et al. 2020). These observations suggest that 

alterations in Mitochondria structure and function may play an important role in SCZ 

pathology. 

Altered Neuronal functions 

Evidence for aberrant glutamate and GABA signaling in neurons derived from SCZ iPSC have 

been provided by several studies. Both transcriptomic and proteomic analyses have found 

dysregulation in receptor proteins as well as differential expression of glutamate and GABA 

signaling pathway genes (Brennand et al. 2011; Brennand et al. 2015; Kathuria et al. 2019b; 

Kathuria et al. 2020; Narla et al. 2017; Tiihonen et al. 2019). Calcium imaging and 

microelectrode array experiments have been used to measure the altered excitatory and 

inhibitory responses of SCZ patient-specific neurons in several studies (Tiihonen et al. 2019; 

Kathuria et al. 2019b; Kathuria et al. 2020; Hathy et al. 2020; Stern, Zhang, et al. 2022; Sarkar 

et al. 2018). Electrophysiological recordings have found reduced activity in iPSC-derived 

neurons from SCZ patients as well as changes in excitatory and inhibitory synaptic activity 

(Fig 2b). Clozapine was found to affect the differential calcium response to glutamate and 

GABA observed in SCZ iPSC-derived neurons (Tiihonen et al. 2019). Recent studies have 

found associations between electrophysiological measures and SCZ clinical status in iPSC-

based models (Page et al. 2022). Cortical neurons derived from SCZ patients had altered 

sodium channel function and firing potential and increased GABA transmission as compared 

to controls (Page et al. 2022). 

Findings from 3D models of SCZ brain organoid 

Cortical malformation was observed in brain organoids of three SCZ patients and linked to 

FGFR1 signaling (Stachowiak et al. 2017). In addition, expression of the Reelin protein, known 

to have an important role in corticogenesis and earlier reported to be deficient in SCZ patients 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.18.504397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504397
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

and 2D SCZ-based models, was found to be decreased in the SCZ patient-derived organoids 

(Stachowiak et al. 2017). The brain organoid studies from monozygotic twins with SCZ 

revealed changes in the excitatory and inhibitory balance with an increase in GABAergic 

synaptic genes compared to healthy controls (Sawada et al. 2020). NPC proliferation and 

changes in the ventricles/rosettes per organoid were observed in DISC1 deficient SCZ brain 

organoids as compared to controls (Srikanth et al. 2018). Also, WNT signaling genes were 

found to be dysregulated in the transcriptomic analysis of these SCZ-iPSC brain organoids 

providing mechanistic clues to these observed cellular phenotypes (Srikanth et al. 2018). A 

recent transcriptomic study of cerebral organoids from SCZ patients found dysregulation of a 

few SCZ-associated genes that were previously found in related GWAS as well as the alteration 

in the genes related to mitochondrial function (Kathuria et al. 2020).  The mitochondrial 

functional assay revealed alteration in Mitochondria-oxygen consumption rate in SCZ brain 

organoids along with changes in excitatory and inhibitory synaptic function measured via 

microelectrode arrays (Kathuria et al. 2020).  Another recent proteomic study using brain 

organoids derived from SCZ patients found proteins involved in axonal pathways and 

morphogenesis to be depleted in SCZ. Two proteins (Pleiotrophin and Podocalyxin)reported 

earlier in GWAS studies were also found to be altered (Notaras et al. 2021). Together, these 

studies suggest alterations in NPC proliferation/differentiation, alterations of neurites and 

synaptic connections, and dysregulation of mitochondrial function in SCZ.   

Insights from Environmental risk factor studies  

Prenatal stress is known to be an important environmental risk factor for SCZ. Maternal 

immune activation (MIA) is a form of prenatal stress that can result from microbe infection 

during pregnancy (Brown and Derkits 2010; Estes and McAllister 2016).  MIA has been 

associated with an increase in the copy number of LINE-1 retrotransposons in animal models 

as well as SCZ iPSC-derived neurons from 22q.11 deletion patients (Bundo et al. 2014). LINE-
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1 retrotransposons are known to create somatic heterogeneity in neurons and were found to be 

dysregulated in SCZ postmortem brain samples (Doyle et al. 2017). Herpes simplex virus type 

1 (HSV-1) infection of SCZ iPSC-derived neurons altered the expression of genes related to 

glutamatergic signaling and mitochondrial function compared to control iPSC-derived neurons 

which discloses the aggravating role of viral infection on SCZ genetic background (D’Aiuto et 

al. 2014). Rodent models have shown induction of several cytokines in the fetal brain after 

MIA indicating a neuro-inflammatory response (Estes and McAllister 2016). In experiments 

mimicking neuro-inflammation, IFN gamma treatment to the human iPSC-derived NPCs 

reflected the similar transcriptomic response reported in SCZ and Autism (Warre-Cornish et 

al. 2020). Another report studying the effect of activated microglia conditioned media on SCZ- 

iPSC-derived neurons found differential responses in cortical interneurons and glutamatergic 

neurons  (Park et al. 2020). Cortical interneurons showed changes in gene expression related 

to metabolic pathways as well as mitochondrial dysfunction, reduced arborization, and synapse 

deficits when exposed to activated microglia conditioned media while the glutamatergic 

neurons derived from the SCZ–iPSCs did not change significantly in the study (Park et al. 

2020).  Moreover, in the presence of mitochondrial function- enhancer compounds (Alpha 

Lipoic Acid/Acetyl-L-Carnitine), these deficits in cortical interneurons were found to be 

rescued (Park et al. 2020).  But besides these preliminary findings, more exhaustive iPSC-

based research into the impact of environmental risk factors on SCZ-relevant biological 

pathways is required. In addition, the 2D iPSC-based models do not recapitulate the in vivo 

scenario of immunological and inflammatory response that necessitates a coordinated response 

from neuronal, immunological, and glial cells (Balan, Toyoshima, and Yoshikawa 2019).  

2.2.2. Key cellular and molecular pathways identified  

As discussed above, several studies have reported phenotypes as well as molecular signatures 

relevant to SCZ pathology in NPCs and differentiated neural cells from SCZ iPSC-based 
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models (Fig .2.b). ) A WNT signaling pathway dysregulation has been consistently reported by 

various groups employing both 2D and 3D iPSC-derived culture and organoids as well as 

postmortem clinical samples through transcriptomic and proteomic studies (Sawada et al. 2020; 

Topol et al. 2015; Brennand et al. 2011; Srikanth et al. 2015; Srikanth et al. 2018; Panaccione 

et al. 2013). Prior cellular and animal model studies have established the role of WNT signaling 

in cortical neurogenesis (Wrobel et al. 2007; Mutch et al. 2009). Hence, the dysregulation of 

the WNT signaling pathway may contribute to the observations of aberrant NPC 

proliferation/migration and synaptic alterations.  

Another consistent observation in many studies has been mitochondrial dysfunction and 

oxidative stress (Brennand et al. 2015; Kathuria et al. 2020; Robicsek et al. 2013; Da Silveira 

Paulsen et al. 2012; Ni et al. 2020). Since normal mitochondrial function is important for 

neuritogenesis and axonogenesis, the alterations of the mitochondrial oxidative pathway may 

contribute to abnormal neurite and dysregulation of axonal pathways that were observed in 

SCZ-iPSC-based models (Leon et al. 2016). A few SCZ iPSC studies discussed above have 

also tested this proof of concept in rescue experiments by enhancing the mitochondrial function 

using compounds or transferring healthy mitochondria into iPSC-derived neurons (Park et al. 

2020; Robicsek et al. 2017; Ni et al. 2020). Moreover, oxidative stress was found to regulate 

the WNT signaling pathway in neuronal and non-neuronal cells (Zhang, Tannous, and Zheng 

2019; Almeida et al. 2007). In addition, oxidative stress is also known to regulate synaptic 

plasticity (Massaad and Klann 2011) and affect synaptic transmission in Alzheimer's' disease 

(Kamat et al. 2016). N-acetyl serine, an antioxidant, was found to rescue morphological 

alterations of synapses in SCZ patient-derived cortical interneurons indicating the role that 

oxidative stress plays in synaptic impairments in SCZ (Kathuria et al. 2019a). We, therefore, 

speculate that oxidative stress also plays an important role in the observed phenotypes in SCZ. 

However, these events may be interconnected and influence one another.  The contribution of 
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glial cells to SCZ pathology was not studied extensively but in a relatively small number of 

studies (Akkouh et al. 2020; Akkouh et al. 2021; Windrem et al. 2017; Szabo et al. 2021). Mice 

implanted with human iPSC-derived glial cells from SCZ patients were observed to have 

abnormal behavior including anxiety and reduced social interaction (Windrem et al. 2017). The 

transcriptome analysis of differentiated glial progenitor cells of SCZ patients grown in vitro 

also showed dysregulation of genes related to glial differentiation and synaptic pathways in the 

same study (Windrem et al. 2017).  

Although these lines of evidence point toward the underlying pathophysiology of SCZ, it is 

important to note that SCZ-based iPSC models have been derived from SCZ patients with 

different subtypes (Idiopathic or genetic)  and have varied clinical phenotypes. Hence, it is 

important to further stratify the SCZ clinical samples and delineate the important pathways in 

each clinical subgroup for the designing and discovery of better therapeutic alternatives.   

3. CONCLUSIONS 

Advancements in genomics have increased the understanding of complex polygenic diseases 

like SCZ.  GWAS and transcriptomic studies have significantly helped in the discovery of 

genetic variants and molecular pathways important in the pathophysiology of SCZ.  While the 

causative genes of SCZ are still obscure, the discovery of common genetic variants from 

GWAS can be utilized for calculating PRS for further stratifying the SCZ patients’ samples 

based on their association with clinical symptoms (Zheutlin et al. 2019; Page et al. 2022). Apart 

from patient-specific cell lines from clinically diagnosed individuals, rare but highly penetrant 

mutations discovered via genetic studies & implicated in SCZ have been modeled using iPSCs 

to study the SCZ disease-specific neural cells in vitro. Rare genetic variants have aided in 

understanding the crucial genetic and molecular pathways but some of them are known to have 

a pleiotropic effect and are also associated with other neuropsychiatric diseases. Genome 

editing tools are still technically challenging for large genomic deletions and allow currently 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.18.504397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504397
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

for the editing of small genomic regions that are relevant for SCZ; some of these small genomic 

regions mutations have already been modeled but much more work remains. 2D cultures 

derived from iPSCs can be used for differentiating into SCZ patient-specific neuronal subtypes 

but the lack of coherence between the different methods of iPSC reprogramming and 

differentiation can add confounding factors to the conclusions (Nayak et al. 2021). In addition, 

further methodological advancements in iPSC disease modeling are required to fully 

recapitulate the in vivo brain development system (Noh et al. 2017; Balan, Toyoshima, and 

Yoshikawa 2019). 

SCZ management necessitates a better understanding of the pathophysiology and progression 

of the disease, as well as improved diagnostic methods for prevention and treatment (Chien et 

al. 2013). Transcriptomic studies in response to drug treatment in SCZ cohorts may enable 

finding associations with genomic signatures and biological markers that can eventually help 

in SCZ patient stratification and the development of precision medicine (Stern et al. 2018).  

Future iPSC studies should further utilize the knowledge that was gained by the genetic studies 

to classify SCZ patient samples into subtypes that are based on the clinical phenotypes to better 

understand the underlying pathophysiology and mechanisms that is specific to the SCZ disease 

spectrum. 
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4. METHODS  

4.1 SCZ GWAS Genes analysis 

To collect the comprehensive data of GWAS on SCZ subjects, we used GWAS Catalog 

(https://www.ebi.ac.uk/gwas/) (Buniello et al. 2018) and searched the database with the term 

“Schizophrenia” and downloaded the resulting association data table (.tsv file). This data was 

imported to Matlab for analysis. We used the column SNP_GENE_IDS which contains the 

Ensembl ID of the genes that contain SCZ-related rs (SNP-risk allele) within their sequence. 

Ensembl ID was matched with HGNC approved gene symbol using the method described 

below. 

To count the number of publications for each ethnic group, we unified multiple studies from 

the same publication. The African sub-categories and the “Hispanic” category were unified 

into the “Hispanic or Latin American” category. For each gene, we determined the frequency 

by counting the number of times a gene variant was reported in a study with a p-value of  <0.01. 

Note that one research article may include several studies (see the (Buniello et al. 2018) for 

details).  This frequency was used to determine the font size in the word clouds in Figure 1 (b) 

and Figure 1 (d). Word-cloud figures were generated by Matlab’s word cloud function. Genes 

that are marked in red also appear in the list of 160 differentially expressed genes (DEGs) 

related to SCZ which was reported in the recent meta-analysis review (Merikangas et al. 2022).  

4.2. Common genes between SCZ GWAS and SCZ DEGs  

To intersect these two lists of genes, gene symbols were first standardized using HUGO Gene 

Nomenclature (https://www.genenames.org/) as described below and both the lists were 

searched for common genes among them and the word cloud was plotted using Matlab. The 

font size of the gene name is proportional to the number of times it has been reported as DEGs 

across different transcriptomic studies in SCZ clinical samples. 
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4.3. Standardization of Gene nomenclature 

We downloaded the list of Ensembl ID and their matching symbol from biomart: 

https://www.ensembl.org/biomart/martview/. We chose the “Ensembl Genes 106“ database 

and the “Human Genes (GRCh38.p13)” dataset. We chose the attributes “Gene Stable ID” and 

“ 

Gene name” and downloaded the result CSV file. We also downloaded the database of HGNC 

Gene symbols from 

http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/hgnc_complete_set.txt which includes 

for each gene: approved gene symbol, previous gene symbols, alias gene symbols, and the 

Ensembl ID 

For each Ensembl ID in the GWAS data, we did the following process to obtain its gene 

symbol. We searched for the ensemble ID both in the biomart results and in the HGNC 

database. If the Ensembl ID was found in the HGNC database we used the matching approved 

symbol from the HGNC database. If it didn’t match any ensemble ID in the HGNC database, 

we used the biomart symbol and compared it to the list of approved HGNC symbols. If the 

symbol was an approved HGNC symbol then we used it. If it was not an approved symbol, we 

searched it in the list of previous gene symbols in the HGNC database. If the symbol matched 

a previous symbol of a gene then we used the currently approved HGNC symbol of that gene 

(and not the previous symbol). This allowed matching HGNC approved nomenclature for all 

of the Ensembl IDs without ambiguity. However, three Ensembl IDs (ENSG00000145075, 

ENSG00000284548, ENSG00000284548 ) did not have a matching symbol either in biomart 

or in HGNC and were not used for the intersection. These three IDs are labeled as novel genes 

on the Ensembl website (using https://www.ensembl.org search). This process resulted in three 

gene symbols that were changed from their biomart symbol to the matching HGNC: 
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Table 1.  Gene variants from the GWAS database standardized according to 

HGNC approved nomenclature 

Previous symbol (biomart) HGNC approved nomenclature (used for intersection) 

CTB-178M22.2 TENM2-AS1 

GPR1-AS CMKLR2-AS 

LINC02163 NIHCOLE 

 

For the DEGs we did a similar process; if a gene symbol matched an approved HGNC gene 

symbol then we used it. If it did not match an approved HGNC gene, then we searched the 

previous gene names in the HGNC database and used the current symbol name. This process 

resulted in updating the following gene symbols: 

Table 2.  DEGs are standardized according to the HGNC approved nomenclature  

 

Previous symbol HGNC approved symbol (used for intersection) 

C2orf82  SNORC 

MARCH2 MARCHF2 

SMEK2  PPP4R3B 

APOPT1 COA8 

C10orf54  VSIR 

C9orf16  BBLN 
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CCDC130  YJU2B 

GPR56  ADGRG1 

H1FX-AS1  H1-10-AS1 

HIST1H2BD  H2BC5 

LINC00634  SMIM45 

MARCH7 MARCHF7 

SEPT5 SEPTIN5 

 

4.4. Pie-chart distribution  

All the pie charts were generated using Matlab from the collected data for respective figures. 

For Fig 1a and 1c, as mentioned above the respective data for ethnic groups in GWAS and the 

tissues used for transcriptomic studies were collected from the GWAS catalog and Merikangas 

et al.,2022. Fig1. a shows the number of publications that included each of the ethnic groups. 

Note that some papers included more than one ethnic group. For Fig 2a (i-iii), the pie charts 

show the distribution of data collected from approximately 52 papers, which used the iPSC-

based model of SCZ. Note that for Fig 2a (iii), a single paper may include several cell types. 

The article list was generated from Pubmed using the search term "Schizophrenia iPSCs" from 

the timeline of 2011 to 2022. The relevant original research articles were referred and the data 

was collected for the "Type of tissue used" for reprogramming and "reprogramming methods" 

used for derivation of iPSCs as well as the "neural cell type" studied. We did not count 

approximately 8-10 articles for our analysis that had worked with previously derived iPSCs.  

4.5. Heat maps  
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For Fig 1e, the differentially expressed miRNAs and lncRNAs from SCZ clinical samples 

including SCZ-iPSC-based models were listed. We analyzed for the presence of at least 2 

reports for the same miRNAs and lncRNAs in any SCZ clinical sample. The list was converted 

to a heatmap using Matlab. The analysis did not include non-coding RNAs reported from 

animal models of SCZ. Also, not enough reports of circular RNAs in SCZ for metanalysis were 

available. Dark shade indicates the presence of differentially expressed non-coding RNAs in 

particular tissue and white indicates an absence of differentially expressed noncoding RNAs. 

Darker shades indicate more than one report. The color bar represents the frequency of 

differentially expressed non-coding RNAs across different publications. 

For Fig 2b. The phenotypes reported from the SCZ-iPSC-related papers were listed and plotted 

into heat maps using Matlab. We also referred to data from the tables mentioned in (Räsänen 

et al. 2022). The blue color denotes the downregulation (↓) and the green upregulation (↑) of 

disease phenotypes. We have used arrows for simple representation. Both cortical 

glutamatergic neurons and induced glutamatergic neuron phenotypes have been unified in one 

cell type. A similar analysis was performed for GABAergic neurons. The color bar represents 

the frequency of phenotypes observed across different SCZ-iPSC-based models. 

4.6. Tables  

Table 1 and Table 2 are the list of genes for which the nomenclature was standardized according 

to HGNC approved symbols. Table 3 is based on previous literature reports on SCZ rare 

structural variants. We specifically also referred to the detailed meta-analysis report in (Rees 

et al. 2014) for rare structural variants reported for SCZ.  
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Table 3 . A list of eleven rare structural variants implicated in SCZ and reported to be 

significant in previous genetic meta-analysis studies (Rees et al. 2014). See methods for further 

details. ASD-Autism spectrum disease; ADHD-Attention deficit-hyperactivity disorder 

 

 

 

 

Variation Reference 

1q21.1 Deletion PMID: 18668039 

Duplication 

NRXN1 Deletion PMID: 18945720 

3q29 Deletion PMID: 20691406 

WBS Duplication PMID: 23871472 

15q11.2 Deletion PMID: 21324950, PMID: 

18668039 

AS/PWS Duplication PMID: 27153221 

15q13.3 Deletion PMID: 18668039 

16p13.11 Duplication PMID: 21614007 

16p11.2 Duplication PMID: 19855392 

22q11.2 Deletion PMID: 19181681 
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APPENDIX 1  

FIGURE LEGENDS 

Figure 1.  

(a) A pie chart distribution of GWAS performed from different populations/ethnic groups 

across different GWAS publications. The plotted GWAS datasets were extracted from 

the GWAS catalog as mentioned in the methods. The pie chart includes only the 

discovery cohorts and no replication cohorts as described in the methods. 

(b) Genes significantly associated with SCZ according to the GWAS catalog .The font size 

is proportional to the frequency of the reported gene variant across different studies. 

Only studies which reported p-value < 0.01 for a specific variant were counted. Gene 

variants that were also reported as DEGs are colored in red. 

(c) A pie chart distribution of tissue types used in different transcriptomic studies on SCZ 

clinical samples. The list of studies was chosen based on the analysis done by 

Merikangas et al., 2022. For details, see the Methods section. LCL-lymphoblasts cell 

lines; PFC- Prefrontal cortex; DLPFC-Dorsolateral prefrontal cortex; STG- Superior 

temporal gyrus regions; OFC: orbitofrontal cortex. 

(d) A list of Common genes between Fig.1 (b) and highly reported DEGs across multiple 

transcriptomic studies on SCZ clinical samples (Merikangas et al., 2022). The font size 

of the gene is proportional to the frequency of the reported genes across different 

GWAS studies.  

(e) A heatmap showing shortlisted differentially expressed noncoding RNAs (miRNAs and 

lncRNAs) in different SCZ clinical tissues and patient-specific iPSCs. The list of 

miRNAs and lncRNAs was shortlisted based on the report of miRNAs and lncRNAs in 

at least 2 studies done on SCZ clinical samples including SCZ patient iPSCs.  Dark 

shade indicates the presence of noncoding RNAs in particular tissue and white indicates 

the absence of noncoding RNAs. Darker shades indicate more than one report. PFC- 

Prefrontal cortex; DLPFC-Dorsolateral prefrontal cortex; STG- Superior temporal 

gyrus regions of postmortem brain.  The color bar represents the frequency of non-

coding RNAs across different publications. See the Methods section for more detail. 

 

Figure 2.  

(a) A pie chart showing the distribution of i. Different clinical tissues are used for deriving 

iPSCs in different SCZ-iPSC-based publications. ii. The type of reprogramming 
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method used for deriving SCZ patient-specific iPSCs in different publications. iii. 

Neural cell types studied in different SCZ-iPSC-based publications 

 

(b) A heatmap for the phenotypes observed during differentiation of SCZ-iPSCs into 

different cell types. The blue color denotes the downregulation (↓) and the green 

denotes an upregulation (↑) of disease phenotypes. No information or report is denoted 

by a black background. Differential gene expression observed in neural cell type has 

been denoted with both upregulation and downregulation (↑↓) symbol for DEGs and 

both blue and green colors has been used for DEGs. Both cortical glutamatergic neurons 

and induced glutamatergic neuron phenotypes have been unified in one cell type. A 

similar analysis has been done for GABAergic neurons. Proliferation-n stands for NPC 

proliferation while differentiation- N stands for neuronal subtype differentiation.  

 

Table 1.  Gene variants from the GWAS database standardized according to HGNC approved 

nomenclature 

Table 2.  DEGs standardized according to the HGNC approved nomenclature  

Table 3: A list of eleven rare structural variants implicated in SCZ and reported to be 

significant in previous genetic meta-analysis studies (Rees et al. 2014). See methods for further 

details. ASD-Autism spectrum disease; ADHD-Attention deficit-hyperactivity disorder 
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Figure 1.  

(a) A pie chart distribution of GWAS performed from different populations/ethnic 

groups across different GWAS publications. The plotted GWAS datasets were 

extracted from the GWAS catalog as mentioned in the methods. The pie chart 

includes only the discovery cohorts and no replication cohorts as described in 

the methods. 

(b) Genes significantly associated with SCZ according to the GWAS catalog .The 

font size is proportional to the frequency of the reported gene variant across 

different studies. Only studies which reported p-value < 0.01 for a specific 

variant were counted. Gene variants that were also reported as DEGs are colored 

in red. 

(c) A pie chart distribution of tissue types used in different transcriptomic studies 

on SCZ clinical samples. The list of studies was chosen based on the analysis 

done by Merikangas et al., 2022. For details, see the Methods section. LCL-

lymphoblasts cell lines; PFC- Prefrontal cortex; DLPFC-Dorsolateral prefrontal 

cortex; STG- Superior temporal gyrus regions; OFC: orbitofrontal cortex. 

(d) A list of Common genes between Fig.1 (b) and highly reported DEGs across 

multiple transcriptomic studies on SCZ clinical samples (Merikangas et al., 

2022). The font size of the gene is proportional to the frequency of the reported 

genes across different GWAS studies.  

(e) A heatmap showing shortlisted differentially expressed noncoding RNAs 

(miRNAs and lncRNAs) in different SCZ clinical tissues and patient-specific 

iPSCs. The list of miRNAs and lncRNAs was shortlisted based on the report of 

miRNAs and lncRNAs in at least 2 studies done on SCZ clinical samples 

including SCZ patient iPSCs.  Dark shade indicates the presence of noncoding 

RNAs in particular tissue and white indicates the absence of noncoding RNAs. 

Darker shades indicate more than one report. PFC- Prefrontal cortex; DLPFC-

Dorsolateral prefrontal cortex; STG- Superior temporal gyrus regions of 

postmortem brain.  The color bar represents the frequency of non-coding RNAs 

across different publications. See the Methods section for more detail. 
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Figure 2.  

(a) A pie chart showing the distribution of i. Different clinical tissues are used for 

deriving iPSCs in different SCZ-iPSC-based publications. ii. The type of 

reprogramming method used for deriving SCZ patient-specific iPSCs in 

different publications. iii. Neural cell types studied in different SCZ-iPSC-based 

publications 

 

(b) A heatmap for the phenotypes observed during differentiation of SCZ-iPSCs 

into different cell types. The blue color denotes the downregulation (↓) and the 

green denotes an upregulation (↑) of disease phenotypes. No information or 

report is denoted by a black background. Differential gene expression observed 

in neural cell type has been denoted with both upregulation and downregulation 

(↑↓) symbol for DEGs and both blue and green colors has been used for DEGs. 

Both cortical glutamatergic neurons and induced glutamatergic neuron 

phenotypes have been unified in one cell type. A similar analysis has been done 

for GABAergic neurons. Proliferation-n stands for NPC proliferation while 

differentiation- N stands for neuronal subtype differentiation.  
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