

1 Growth media affects susceptibility of air-lifted human nasal epithelial cell cultures to SARS-CoV2, but
2 not Influenza A, virus infection.

3 Jessica D. Resnick^{1,2}, Jo L. Wilson^{1,3}, Eddy Anaya¹, Abigail Conte¹, Maggie Li¹, William Zhong¹, Michael A.
4 Beer², and Andrew Pekosz¹

5 ¹W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins
6 Bloomberg School of Public Health, Baltimore, Maryland, USA

7 ²McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
8 Baltimore, Maryland, USA

9 ³Department of Pediatric Allergy and Immunology, Johns Hopkins Hospital, Baltimore, MD, United States
10

11 *Corresponding author: apekosz1@jhu.edu; 615 North Wolfe Street, rm W2116, Baltimore, MD 21205-
12 2103. (410)502-9306

13
14 Abstract: 280
15 Text: 4714

16 Figure number: 7

17 Supplemental Figure number: 5

18 Table number: 1

19

20

21 Author Contributions

22 Conceptualization, A.P. and J.D.R.; methodology, A.P. and J.D.R.; acquisition of data, J.D.R, J.L.W., E.A.,
23 A.C., M.L., and W.Z.; formal analysis, J.D.R., J.L.W. and E.A.; resources, A.P.; data curation, J.D.R.;
24 writing—original draft preparation, J.D.R., E.A. and A.P.; writing—review and editing, J.D.R., E.A. and
25 A.P.; visualization, J.D.R.; supervision, A.P.; funding acquisition, A.P. All authors have read and agreed to
26 the published version of the manuscript.

27

28

29 ABSTRACT

30 Primary differentiated human epithelial cell cultures have been widely used by researchers to
31 study viral fitness and virus-host interactions, especially during the COVID19 pandemic. These cultures
32 recapitulate important characteristics of the respiratory epithelium such as diverse cell type
33 composition, polarization, and innate immune responses. However, standardization and validation of
34 these cultures remains an open issue. In this study, two different expansion medias were evaluated and
35 the impact on the resulting differentiated culture was determined. Use of both Airway and Ex Plus
36 media types resulted in high quality, consistent cultures that were able to be used for these studies.
37 Upon histological evaluation, Airway-grown cultures were more organized and had a higher proportion
38 of basal progenitor cells while Ex Plus- grown cultures had a higher proportion terminally differentiated
39 cell types. In addition to having different cell type proportions and organization, the two different
40 growth medias led to cultures with altered susceptibility to infection with SARS-CoV-2 but not Influenza
41 A virus. RNAseq comparing cultures grown in different growth medias prior to differentiation uncovered
42 a high degree of differentially expressed genes in cultures from the same donor. RNAseq on
43 differentiated cultures showed less variation between growth medias but alterations in pathways that
44 control the expression of human transmembrane proteases including *TPRSS11* and *TPRSS2* were
45 documented. Enhanced susceptibility to SARS-CoV-2 cannot be explained by altered cell type
46 proportions alone, rather serine protease cofactor expression also contributes to the enhanced
47 replication of SARS-CoV-2 as inhibition with camostat affected replication of an early SARS-CoV-2 variant
48 and a Delta, but not Omicron, variant showed difference in replication efficiency between culture types.
49 Therefore, it is important for the research community to standardize cell culture protocols particularly
50 when characterizing novel viruses.

51

52

53 INTRODUCTION

54 Primary differentiated respiratory epithelial cell cultures have been widely used by researchers to study
55 viral fitness and virus-host interactions, especially during the COVID19 pandemic ¹⁻⁸. These cultures
56 recapitulate important characteristics of the respiratory epithelium such as diverse cell type
57 composition, polarization, and innate immune responses while maintaining desirable *in vitro*
58 characteristics such as being relatively quick and easy to grow¹⁻⁸. While immortalized cell cultures can be
59 useful for studying molecular virological phenotypes, differentiated primary cell cultures are preferred
60 for investigations of host-virus interactions, receptor usage, cell tropism, and innate responses ⁹.
61 However, standardization and validation of these cultures remains an open issue ^{10,11}.

62 The upper respiratory tract is made up of five major epithelial cell types- basal, suprabasal, club, goblet,
63 and ciliated ¹². These cell types represent a continuum of differentiation states and proportions of each
64 vary throughout the respiratory tract ^{9,12}. The cell tropism of respiratory viruses can vary across the
65 respiratory tract and is usually based on expression of their preferred entry factors ^{9,13}. For example,
66 Influenza A viruses (IAV) which use sialic acid glycan receptors predominantly target ciliated cells where
67 these are most highly expressed, while the most susceptible cell types to SARS-CoV-2 (SCV2) virus
68 infection are ciliated and goblet cells which are not necessarily the highest expressors of the ACE2
69 receptor SCV2 uses for entry ^{14,15}.

70 The most commonly used media for establishing cultures at the air-liquid interface is BEGM, but a more
71 recently available media, Pneumacult, is gaining popularity due to the fact that it promotes
72 development of goblet cells ¹². Precise components and concentrations of commercial media are not
73 available to most investigators, necessitating direct comparisons of cultures that have been propagated
74 and differentiated using different media and growth conditions. Previous work has shown that
75 differentiation media influences final culture morphology and cellular responses to viral infection but
76 has no impact on infectious virus production or ciliation phenotypes ¹⁶⁻¹⁸. Other studies have shown that
77 expansion media can impact the number of successful passages of progenitor cells ¹⁹.

78 Due to the impact of the ongoing COVID19 pandemic on the availability of patient-derived airway
79 epithelial cultures, our laboratory turned to commercial sources of respiratory epithelial cells. In this
80 study, we compared two different ways of expanding these cells prior to differentiation and measured
81 the resulting impact on final culture organization, cell type proportions, and response to respiratory
82 virus infection. We find that the effects of growth media persist through the differentiation process,
83 leading to culture differences that contribute to differential susceptibility to SCV2, but not IAV, infection,
84 likely through expression of key entry cofactors. This work highlights the importance of independent
85 comparisons of cell culture reagents, and the need for standardization between studies when using this
86 data to inform public health decisions.

87 METHODS

88 *Cell Culture*

89 Vero-E6 over expressing TMPRSS2 cells (VT; Japanese Collection of Research Bioresources Cell Bank,
90 JCRB1819) ²⁰. VT cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco) with 10%
91 fetal bovine serum (FBS, Gibco Life Technologies), 100 U penicillin/mL with 100 µg streptomycin/mL
92 (Quality Biological), 2 mM L-Glutamine (Gibco Life Technologies), and 1mM Sodium Pyruvate (Sigma) at

93 37°C with air supplemented with 5% CO₂. Infectious medium specific for SCV2 (IM-SCV2) was used in all
94 infections and consists of DMEM with 2.5% FBS, 100U penicillin/mL with 100 µg streptomycin/mL, 2 mM
95 L-Glutamine, and 1 mM Sodium Pyruvate.

96 Madin-Darby canine kidney (MDCK) cells were cultured in Dulbecco's Modified Eagle Medium (DMEM,
97 Sigma-Aldrich) with 10% fetal bovine serum (FBS, Gibco Life Technologies), 100U penicillin/mL with 100
98 µg streptomycin/mL (Quality Biological), and 2 mM L-Glutamine (Gibco Life Technologies) at 37 °C with
99 air supplemented with 5% CO₂. Infectious medium for IAV (IM-IAV) was used in all infections and
100 consists of DMEM with 4 µg/mL N-acetyl trypsin (NAT), 100 u/ml penicillin with 100 µg/ml streptomycin,
101 2 mM L-Glutamine and 0.5% bovine serum albumin (BSA) (Sigma).

102 Human nasal epithelial cells (hNEC) (Promocell, lot 466Z007, 466Z004, and 453Z019) were grown to
103 confluence in 24-well Falcon filter inserts (0.4-µM pore; 0.33 cm²; Becton Dickinson) using
104 PneumaCult™-Ex Plus Medium (Stemcell) or the Airway Epithelial Cell Grow Medium Kit (Promocell).
105 Hereafter, the two medias will be referred to as Ex Plus and Airway media respectively. Donor 466Z007
106 was a 48-year-old Caucasian male, never smoker, and SARS-CoV-2 negative one day before collection.
107 Donor 453Z019 was a 32-year-old Caucasian male. Donor 466Z004 was a 43-year-old Caucasian male.
108 Confluence was determined by a transepithelial electrical resistance (TEER) reading above 250Ω by
109 Ohm's law method ²¹ and by examination using light microscopy and a 10x objective. The cells were then
110 differentiated at an air- liquid interface (ALI) before infection, using ALI medium as basolateral medium
111 as previously described ^{1,10}. Briefly, both apical and basolateral media were removed and ALI
112 differentiation media (Stem Cell Technologies, Pneumacult ALI Basal Medium) supplemented with 1X ALI
113 Maintenance Supplement (StemCell Technologies), 0.48 µg/mL Hydrocortisone solution (StemCell
114 Technologies), and 4 µg/mL Heparin sodium salt in PBS (StemCell Technologies) was replaced on the
115 basolateral side only. Fresh media was given every 48 hours. Hereafter, differentiation media will be
116 referred to as ALI media. Once mucus was visible, apical washes were performed weekly with PBS to
117 remove excess mucus. Cells were considered fully differentiated after 3 weeks and when cilia were
118 visible using light microscopy and 10x objective. All cells were maintained at 37°C in a humidified
119 incubator supplemented with 5% CO₂.

120 *Virus Seed Stock and Working Stock Generation.*

121 The SARS-CoV-2 virus used in this study, designated SARS-CoV-2/USA/ DC-HP00080/2020 (B.1; GISAID
122 EPI_ISL_438237), was isolated from samples obtained through the Johns Hopkins Hospital network ²².
123 For virus working stocks, VT cells in a T75 or T150 flask were infected at an MOI of 0.001 with virus
124 diluted in IM. After a one-hour incubation at 33 °C , the inoculum was removed and IM was added (10
125 ml for T75 and 20 ml for a T150 flask). When cytopathic effect was seen in approximately 75% of the
126 cells, the supernatant was harvested, clarified by centrifugation at 400 g for 10 minutes, aliquoted and
127 stored at -65C. Delta B.1.617.2 (AY.106) (SARS-CoV2/USA/MD-HP05660/2021; GISAID EPI_ISL_2331507)
128 and Omicron B1.1.529 (BA.1) (hCoV19/USA/MD-HP20874/2022; GISAID EPI_ISL_7160424) viruses used
129 were generated in the same manner.

130 The Influenza A Virus used was A/Baltimore/R0243/2018 (H3N2 clade 3C.3a) (GISAID EPI_ISL_17034889)
131 was also isolated from samples obtained through the Johns Hopkins Hospital network as part of the
132 CEIRS network ²³. For virus working stocks, MDCK cells in a T150 flask were infected at an MOI of 0.001
133 with virus diluted in IM. After one hour, the inoculum was removed, and fresh IM was added. When

134 cytopathic effect was seen in approximately 50% of cells, the supernatant was harvested, aliquoted, and
135 stored at -65 °C.

136 *TCID₅₀ Assay*

137 VT or MDCK cells were grown to 90-100% confluence in 96- well plates. After being washed twice with
138 PBS+, ten-fold serial dilutions of the viruses in IM were made and each dilution was added to 6 wells.
139 The plates were incubated at 37 °C with 5% CO₂ for 5 days. The cells were fixed by adding 75 µL of 4%
140 formaldehyde in PBS per well overnight and then stained with Naphthol Blue Black solution overnight.
141 Endpoint values were calculated by the Reed- Muench method ²⁴.

142 *Low Multiplicity of Infection (MOI) infections*

143 For hNEC infections, an MOI of 0.1 and 1 TCID50 per cell was used for IAV and SCV2 respectively. The
144 basolateral media was collected, stored at -65 °C, and replaced with fresh media every 48 hours. The
145 apical side of the transwell was washed 3 times with IM, with a 10-minute incubation at 37 °C in
146 between each. The virus inoculum was diluted in its matched virus IM (mock used SCV2 IM) and 100 µL
147 was added to the apical side of cells and allowed to incubate for 2 hours. The inoculum was then
148 removed, the cells washed 3 times with PBS-, and returned to the incubator. At 48 hours post infection,
149 a 10-minute apical wash was performed with IM and collected and stored at -65 °C. Infectious virus
150 particle production in apical washes was quantified using TCID50 on VT or MDCK cells for SARS-CoV2
151 and Influenza A Viruses respectively.

152 *Cytokine Secretion*

153 Secreted interferons, cytokines, and chemokines were quantified from the basolateral samples at 0 and
154 48 hours post infection from the hNEC infections. Measurements were performed using the V-Plex
155 Human Chemokine Panel 1 (CCL2, CCL3, CCL4, CCL11, CCL17, CCL22, CCL26, CXCL10, and IL-8) (Meso
156 Scale Discovery) and the DIY Human IFN Lambda 1/2/3 (IL-29/28A/28B) ELISA (PBL Assay Science)
157 according to the manufacturer's instructions. Each sample was analyzed in duplicate. Heatmaps were
158 generated and hierarchical clustering was performed using the R package "pheatmap".

159 *Imaging*

160 The hNEC cultures were infected with SARS-CoV-2 and IAV at an MOI of 1 and 0.1 respectively. At 48
161 hours post infection, the wells were washed twice with PBS- and then fixed using 4% paraformaldehyde
162 in PBS on both the apical and basolateral sides for 20 minutes at room temperature. The wells were
163 then washed twice with PBS- and stored at 4 °C in PBS- until ready to be stained.

164 hNEC wells were then permeabilized and blocked with PBS containing 0.5% Triton X-100 and 5% BSA.
165 The samples were incubated with 2.25 µg/ml anti-TMPRSS2 (Proteintech, Cat# 14437-1-AP), anti-ACE2
166 1 µg/ml (Genetex, Cat# GTX101395), anti-TMPRSS11E protein 9 µg/ml (Invitrogen, PA5-50809), and anti-
167 β-Tubulin IV 5 µg/ml (Novus, Cat# NBP2-00812), 1.65 µg/ml SCV2 (GTX135357), or 2.15 µg/ml IAV
168 (GTX125989) primary antibodies overnight at 4 °C . Fluorescently labeled secondary antibodies AF488 (4
169 µg/ml) (ThermoFisher, A11013) and AF647 (4 µg/ml)(ThermoFisher, A21235) were used as secondary
170 stains for 1 hour at room temperature. After washing, hNECs were incubated with Hoechst 33258 (2
171 µg/ml) (Invitrogen, H3569) and Rhodamine Phalloidin (100 nM)(Cytoskeleton, #PHDR1) for 30 minutes
172 at room temperature. The slides were sealed with a coverslip using Prolong glass antifade medium

173 (Invitrogen, P36984). Images were acquired using a Zeiss LSM700 at 63x magnification with 1 μ m z-stack
174 sections. Mean fluorescence intensity per section was quantified using ImageJ.

175 Individual transwells containing hNEC were submerged in 10% Neutral Buffered Formalin (Leica
176 3800598) for 30 mins and went through a series of dehydration processes in 70%- 100% ethanol (Fisher
177 BioReagents BP2818500), and xylenes (Fisher Chemical X5-500). The dehydrated hNEC transwell
178 membrane was then separated using a surgical blade and incubated in 65 °C paraffin (Leica EM-400
179 3801320) for 30 mins. Samples were then embedded and sectioned at 4.5 μ M (Leica HistoCore
180 149AUTO00C1) and transferred to a 42 °C distilled water bath and collected using positively charged
181 slides. Sections later were processed using routine H&E staining (Vector Laboratories H3502) and cover
182 slipped for imaging. Images were obtained using EVOS XL Core microscope at 20X magnification.

183 *Flow Cytometry*

184 Fully differentiated hNECs with either differentiation condition (Airway or Ex-Plus Media) were
185 harvested from the apical membrane into a single cell suspension with a 30-minute incubation in 1X
186 TrypLE (Gibco 12563011). After cells are trypsinized and resuspended in a trypsin stop solution (10% FBS
187 in PBS, ThermoFisher, Gibco, Lot:2193952RP). The cells were then washed three times in 1X PBS and
188 resuspended in 1 mL PBS (centrifuge at 2500 RPM between wash steps). Appropriate control and
189 sample tubes were then stained with AQUA viability dye (Invitrogen L34965) 1 μ L/1x10⁶ cells for 30
190 minutes at room temperature. Cells were then washed and resuspended in BD
191 Fixation/Permeabilization solution (BD Biosciences 554714) and incubated for at least 30 minutes at 4
192 °C. Cells were washed with BD Perm/Wash Buffer x2 and centrifuged at 2500 RPM at 4 °C for 5 minutes.
193 Cells were then resuspended in BD Perm/Wash Buffer with 7% NGS (Sigma Aldrich G9023) and
194 incubated for 1 hour at 4 °C. Cells were washed with BD Perm/Wash Buffer x2 and centrifuged at 2500
195 RPM at 4 °C for 5 minutes. Appropriate sample tubes were incubated with primary antibodies for one
196 hour at room temperature. Antibodies are diluted into BD Perm/Wash buffer at appropriate
197 concentrations. Final staining volume is 200 μ L. Cells were washed with BD Perm/Wash Buffer x2 at
198 2500 RPM and centrifuged at 4 °C for 5 minutes. Appropriate sample tubes were incubated with
199 secondary antibodies for 30 minutes at room temperature. Cells were washed with BD Perm/Wash
200 Buffer x2 at 2500 RPM and centrifuged at 4 °C for 5 minutes. Appropriate sample tubes were incubated
201 with conjugated antibodies for 30 minutes at room temperature. Cells were washed with BD
202 Perm/Wash Buffer x2 and centrifuged at 2500 RPM at 4 °C for 5 minutes. Cells were resuspended in
203 FACS Buffer (0.3% BSA in 1X PBS, BSA: Sigma Aldrich A9418, PBS PH 7.4: Gibco 10010072) and filtered
204 through a 35 μ M strainer cap into FACS tubes just prior to the run. Cell suspensions were run on a BD
205 LSRII Flow Cytometer using DIVA software. Single stained cells were used as controls and fluorescence
206 minus one controls were used to assist in gating. Data analysis was completed on FlowJo V10. Gating
207 strategy employed was as follows: exclusion of debris, single cells, and Aqua – cells (LIVE cells) (supp Fig
208 1).

209

210 Antibody List:

211

Instrument: BD LSRII			
Antibody/Probe/Clone	Fluorophore	Catalog #	Staining Concentration
Anti-Acetylated α -	AF647	Santa-Cruz Biotechnology SC-	200 ng/mL

Tubulin		23950	
Rabbit anti-ACE2	Primary	Proteintech Cat. No 21115-1-AP	0.5 µg/mL
Rabbit anti-TMPRSS2	Primary	Proteintech Cat. No 14437-I-AP	0.5 µg/mL
Mouse IgG 1 Anti-TMPRSS11E Clone TM191	Primary	392002	0.01 mg/mL
MUC5AC Monoclonal Antibody Clone: 45M1	Primary	Invitrogen MA5-12178	2 µg/mL
CD271 (NGF Receptor) Monoclonal Antibody (ME20.4), PE, eBioscience	Conjugated-PE	Invitrogen 12-9400-42	0.5 µg/mL
Goat Anti-Mouse (Secondary Ab for MUC5AC probe) Clone: Poly4503	BV605	Biolegend 405327	0.2 µg/mL
Mouse Anti-Beta Tubulin-IV	AF488	Novus Bio NBP2-74713AF488	0.78 µg/mL
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody	AF488	Catalog # A-11008	1 µg/mL
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody	AF488	Catalog # A32723	1 µg/mL
Live/Dead Discriminator	AQUA	Invitrogen L34965	1 µL/10 ⁶ cells

212 Table 1: Antibodies used for Flow cytometry.

213 *RNA- Sequencing*

214 Total RNA was extracted and purified from hNECs using Trizol reagent and the PureLink RNA Mini kit,
215 including on-column DNase treatment (Invitrogen/ThermoFisher). Quantitation of Total RNA was
216 performed with the Qubit BR RNA Assay kit and Qubit Flex Fluorometer (Invitrogen/ThermoFisher), and
217 quality assessment performed by RNA ScreenTape analysis on an Agilent TapeStation 2200. Unique
218 Dual-index Barcoded libraries for RNA-Seq were prepared from 100 ng Total RNA using the Universal
219 Plus Total RNA-Seq with NuQuant Library kit (Tecan Genomics), according to manufacturer's
220 recommended protocol. Library amplification was performed for 16 cycles, as optimized by qPCR.

221 Quality of libraries was assessed by High Sensitivity DNA Lab Chips on an Agilent BioAnalyzer 2100.
222 Quantitation was performed with NuQuant reagent, and confirmed by Qubit High Sensitivity DNA assay,
223 on Qubit 4 and Qubit Flex Fluorometers (Invitrogen/ThermoFisher). Libraries were diluted, and
224 equimolar pools prepared, according to manufacturer's protocol for appropriate sequencer. An Illumina
225 iSeq Sequencer with iSeq100 i1 reagent V2 300 cycle kit was used for final quality assessment of the
226 library pool. For deep RNA sequencing, a 200 cycle (2x100bp) Illumina NovaSeq S2 run was performed at
227 Johns Hopkins Genomics, Genetic Resources Core Facility, RRID:SCR_018669.

228 iSeq and NovaSeq data files were uploaded to the Partek Server and analysis with Partek Flow NGS
229 software, with RNA Toolkit, was performed as follows: pre-alignment QA/QC and trimming of reads.
230 Following this, sequences were uploaded to the Beer lab cluster for further analysis²⁵.

231 Sequences were first checked for quality using FastQC²⁶. All sequences were determined to be of good
232 quality and were then aligned using HISAT2 to the GRCH38 genome²⁷. SAM files were then converted to
233 BAM using samtools²⁸. A gene- count matrix was then generated from BAM files using featureCounts,
234 and differential expression analysis was performed using DESeq2 in R^{29,30}. Pathway analysis of
235 differentially expressed genes was also performed using clusterProfiler and gProfiler^{31,32}. For detailed
236 methods and a full list of packages used please see https://github.com/JRes9/Resnicketal_Media_2023
237 (Accessed on July 24, 2023).

238 All sequence files and sample information are available at NCBI Sequence Read Archive, NCBI BioProject:
239 PRJNA946012 .

240 *RNA extraction and qPCR*

241 RNA was extracted from hNECs using Trizol (Invitrogen, 15596026) and the PureLink RNA Mini Kit with
242 on column DNase treatment (Invitrogen, 12183018A) according to manufacturer protocol. RNA was
243 then converted to cDNA using the High-Capacity cDNA Reverse Transcription Kit (ThermoFisher,
244 4368814) according to manufacturer protocol. cDNA was diluted 1:10. qPCR was then run using Taqman
245 reagents according to manufacturer protocol (Master Mix: applied biosystems, 4369016). Probes used
246 were as follows: TMPRSS2 (applied biosystems, Hs00237175_m1), TMPRSS11E (applied biosystems,
247 Hs01070171_m1), ACE2 (applied biosystems, Hs01085333_m1), and GAPDH (applied biosystems,
248 hs02786624_g1).

249 *Drug Inhibition Assays*

250 The drugs used for inhibition were as follows:

251 Aloxistatin (E64D, cathepsin inhibitor)- 25 mg from MedChem Express (CAT HY-100229/CS-5996, LOT
252 114325), Molecular weight 342.43

253 Camostat mesylate (TTSP inhibitor) -10 mg from SIGMA (CAT SML0057, Batch 0000114299), Molecular
254 weight 494.52

255 The vehicle used for both drugs was DMSO. Drugs were maintained at -20 °C in both high concentration
256 (10 mM) and low concentration (100 µM) stocks.

257 Fully differentiated hNEC wells were first treated with a range of drug concentrations for 72 hours to
258 determine cytotoxicity. Fresh dilutions of each drug in media were made daily. Cell viability was

259 measured using alamarBlue (ThermoFisher) according to manufacturer instructions. Briefly, for each
260 timepoint alamarBlue was added to the basolateral media at 10% of the total volume, then incubated at
261 37 °C for 4 hours. The basolateral media replaced with fresh media containing drug, and the old media
262 was then aliquoted into 3 wells of a 96 well plate and absorbance read in triplicate. Results were
263 normalized to both an untreated well and a media only well as positive and negative controls
264 respectively.

265 Once baseline viability was determined (supp figure 2), cells were pretreated with the indicated
266 concentrations of drug in the basolateral media for 24 hours prior to infection. Basolateral media was
267 then replaced with fresh media containing drug and infection was performed as described above.
268 Viability was determined by alamarBlue at 48 hours post infection after collection of the apical wash.
269 Infectious virus production in apical wash was determined by TCID50.

270

271 RESULTS

272 Matched lots of hNECs were grown to confluence on aTranswell in either Airway or Ex Plus media before
273 being differentiated using ALI media. Approximately 21 days post establishment of the air-liquid
274 interface (ALI), when cultures were producing mucus and had visible cilia under the microscope, wells
275 were section and stained by H & E to observe cell type proportions and overall organization (Fig 1 A and
276 B). Airway grown cultures had a more distinct basal cell layer, greater overall organization, and less
277 terminally differentiated cells. Ex plus grown cultures had more cells overall (despite air lift occurring at
278 equal confluence) and a greater proportion of terminally differentiated ciliated and mucus producing
279 cells. Cell type proportions were also evaluated by flow cytometry (Fig 1C) which confirmed that while
280 Airway grown cultures had a greater proportion of basal progenitor cells, Ex Plus grown cultures had a
281 higher proportion of terminally differentiated cell types, particularly ciliated and goblet cells.

282 To investigate whether growth media impacts susceptibility to infection, matched Airway and Ex Plus
283 cultures were infected with a clinical isolate of either Influenza A (H3N2, IAV) or SARS-CoV-2 (B.1, SCV2)
284 virus. At 48 hours post infection (HPI), there were no apparent differences seen in the number of IAV
285 infected cells between cultures, but there were more SCV2 infected cells in Ex Plus grown cultures than
286 Airway grown (Fig 2A). Additionally, Ex Plus grown cultures produced significantly more infectious SCV2
287 virus 48 HPI than Airway cultures but there was no difference in IAV production between the cultures
288 (Fig 3).

289 To determine whether growth media was altering virus infection induced cytokine production,
290 basolateral supernatant was collected from mock infected, IAV infected, and SCV2 infected cultures and
291 a panel of pro-inflammatory cytokines, chemokines and interferon lambda production was measured
292 (Fig 4)^{33,34}. Samples appear to cluster by treatment, rather than growth media, suggesting that induced
293 cytokine and chemokine patterns are not significantly altered by growth media.

294 RNA- sequencing was then performed to identify expression differences between cultures from the
295 same donor that were propagated in different growth media. Both Airway and Ex Plus grown cultures
296 were maintained in the same ALI media for 3 weeks prior to collection, so differences were expected to
297 be minimal and highly impactful. Cultures were collected on the last day of growth media (day 10-12)
298 and when fully differentiated (~3 weeks post air lift). Differential expression analysis between fully

299 differentiated cultures revealed that Ex Plus grown cultures had higher expression of TMPRSS11E than
300 Airway grown, a serine protease that can prime the SCV2 spike protein and is most highly expressed in
301 the upper airway (Figure 5)³⁵. Differential cofactor expression was confirmed using qPCR (supp fig 3).
302 Additionally, Airway grown cells showed increased expression of Pax6, which has been shown to
303 negatively regulate TMPRSS2 in eye cells³⁶. Ex plus cells also have upregulated Six3, which regulates
304 Pax6³⁷. Taken together, these data indicated that SCV2 cofactor expression can be altered by the
305 growth media used in the propagation phase of culturing.

306 In cultures that were harvested before ALI differentiation, the two growth media showed vastly
307 different patterns of differentially expressed genes (Supp. Fig. 4). Pathway analysis showed an
308 upregulation of pathways involved in ciliate-related functions and abnormal pulmonary functions in Ex
309 Plus cultures (Supp. Fig. 5A) while pathways involved in cell adhesion dominated cultures grown in
310 Airway media (Supp. Fig. 5B). The downregulated pathways also differed markedly depending on growth
311 factor (Supp. Fig. 5 C and D). This data indicate that while growth media can lead to markedly different
312 gene expression patterns, the differentiation at ALI tends to minimize most but not all transcriptional
313 differences.

314 SCV2 can use two different routes of viral entry. The late cleavage pathway, predicted to mostly be used
315 in immortalized cells like Vero E6, involves endocytosis followed by priming of the S protein in the
316 endosome by cathepsins^{35,38,39}. In contrast, the early cleavage pathway, predicted to be favored in the
317 respiratory tract, involves priming by membrane- associated serine proteases and direct membrane
318 fusion leading to genome release^{35,38,39}. To test which pathway (and related cofactor) is being utilized in
319 the hNEC cultures, hNEC cultures were pretreated with either a cathepsin (E64D) or serine protease
320 (Camostat) inhibitor and then infected with either IAV or SCV2 (Figure 6)³⁵. Treatment with the serine
321 protease, but not cathepsin, inhibitor significantly reduced infectious virus production during SCV2
322 infection in both cultures (Figure 6A). However, Airway grown cultures were more sensitive to lower
323 concentrations of camostat and showed a more significant reduction in infectious virus production (2.14
324 fold change reduction at high concentrations) than Ex Plus grown cultures treated the same (1.42 fold
325 change reduction), with many wells having undetectable infectious virus. Additionally, while we see a
326 similar trend of IAV infectious virus production being reduced by serine protease inhibition, it is to a
327 significantly smaller extent (~1.2 fold for both media types). This is likely due to the fact that while IAV
328 utilizes serine proteases for cleavage and viral entry, it is far more promiscuous in utilizing trypsin-like
329 proteases in respiratory epithelial cells⁴⁰.

330 Finally, different SARS-CoV-2 variants of concern have different entry pathway preferences⁴¹. Delta
331 variant viruses tend to use the early cleavage pathway, while omicron tend to use the late cleavage
332 pathway⁴¹. To further test that the early, but not late, cleavage pathway factors are impacted by growth
333 media, airway or ex plus grown cultures were infected with either a parental, delta, or omicron variant
334 virus and infectious virus production after 48 hours was determined. Infection with a parental or delta
335 variant virus, predicted to prefer entry via the early cleavage pathway, produced more infectious virus in
336 Ex plus grown cultures compared to airway grown (Fig 7). However, infection with omicron variant virus
337 produced similar amounts of infectious virus in both culture types. These data again suggest that
338 differences in serine protease expression or activity is likely driving differential susceptibility to and
339 infectious virus production of SCV2 but not IAV virus.

340 DISCUSSION

341 In this study, two different expansion medias were evaluated and the impact on the resulting
342 differentiated culture was determined. Use of both Airway and Ex Plus media types resulted in high
343 quality, consistent cultures that were able to be used for these studies. Upon histological evaluation,
344 airway-grown cultures were more organized and had a higher proportion of basal progenitor cells while
345 ex plus- grown cultures had a higher proportion of susceptible, terminally differentiated cell types.
346 These differences may be a characteristic of different regions of the respiratory tract which should be
347 taken into account during studies^{9,42,43}.

348 In addition to having different cell type proportions and organization, the two different growth medias
349 led to cultures with altered susceptibility to infection with SCV2 but IAV. This cannot be explained by cell
350 type proportion alone or we would expect that IAV would replicate more efficiently in Ex Plus grown
351 cells which have a higher number of ciliated cells, its preferred host¹⁴. RNA-seq analysis suggested that
352 serine protease cofactor, rather than receptor or antiviral factor expression, led to this difference in
353 replication of SCV2. Cofactor expression has previously been shown to impact viral entry pathway usage
354 in immortalized cell types and is emerging as an important consideration during therapeutic
355 development for COVID19 after the failure of hydroxychloroquine⁴⁴⁻⁴⁶. Utilization of serine- protease
356 cofactors in the hNEC culture system was confirmed using inhibitors of both cathepsins and serine
357 proteases. Only treatment with the serine protease inhibitor impacted IAV or SCV2 replication, and it
358 had a higher effect in the SCV2 infection setting. Furthermore, Airway grown cultures were more
359 sensitive to lower concentrations of the serine protease inhibitor, again highlighting that there may be
360 difference in either cofactor expression or activity between cultures. Finally, infection efficiencies of
361 different SCV2 variants that have been previously shown to have different entry pathway preferences
362 follow the predicted cofactor expression profiles of the different cultures⁴¹. A representative delta
363 variant, which have been shown to predominantly use the early cleavage pathway, replicate to
364 significantly higher titers in Ex Plus grown compared to Airway grown cultures. In contrast, a
365 representative omicron variant, which has been shown to predominately use the late cleavage pathway,
366 shows no difference in infectious virus production when grown on either culture type, again suggesting
367 that it is specifically the serine protease- dependent entry pathway that differs between the culture
368 conditions.

369 Due to the proprietary nature of commercially available media types, we are unable to determine the
370 factors that drive the differences observed between media types. However, RNA-sequencing of
371 undifferentiated cultures just before ALI shows large differences between cultures grown in either
372 media type, and pathway analysis suggests the growth media is leading to epigenetic differences that
373 persist throughout the differentiation process (supp fig 4). Additionally, the two different media- grown
374 cultures become more similar over the course of differentiation, likely due to identical genetic
375 background and environment, however the trajectories taken to arrive at the final differentiated culture
376 differ. During differentiation, Ex plus grown cultures upregulate more pathways related to cilia
377 formation and pathways associated with abnormal pulmonary conditions than Airway grown cultures
378 (supp Fig 5A). In contrast, Airway grown cultures upregulate more adhesion related pathways (supp fig
379 5B). Additionally, airway-grown cultures specifically downregulate more COVID-19 related pathways
380 during differentiation. Taken together, these data suggest that the epigenetic remodeling both before
381 and after differentiation is impacting the resulting final culture. Future work should investigate the
382 mechanisms of these epigenetic changes to identify factors that may be driving cell fate determination
383 and modulating expression of surface factors.

384 In conclusion, in this study we show that expansion media influences differentiation patterns and final
385 culture characteristics of airway epithelial cells. We show that this has important implications for SCV2,
386 but not IAV, replication success and is likely due to differences in serine protease cofactor expression.
387 When using these airway culture models for virus studies, and especially therapeutic development,
388 great care should be taken to control for known factors that can influence conclusions- cell type
389 proportion, expression of key proteins, etc ^{9,44-46}. However, when working with novel viruses where not
390 much is known, collaboration and independent validation is key to identify confounding variables in
391 these studies and to gain high confidence in conclusions and public health recommendations. While
392 differentiated airway epithelial cell cultures are excellent surrogates for studying the respiratory tract, it
393 is also important to remember that the model has limitations and does not perfect recapitulate the
394 heterogeneity of the respiratory tract ¹². Therefore, future studies and optimizations will no doubt
395 continue to refine this tool.

396

397 Acknowledgments

398 We thank the members of the Nicole Baumgarth, Kimberly Davis, Sabra Klein and Andrew Pekosz
399 laboratories for insightful comments and discussion pertaining to this manuscript. This work was
400 supported by T32GM007814-37 (JR), T32AI007417 (JR), the Johns Hopkins Centers of Excellence for
401 Influenza Research and Surveillance (NIAID N272201400007C), the Johns Hopkins Centers of Excellence
402 in Influenza Research and Response (NIAID N7593021C00045) and the Richard Eliasberg Family
403 Foundation (AP). We thank the Bloomberg Flow Cytometry and Immunology Core for use of the MSD
404 instrument. We also thank Anne Jedlicka and Amanda Dziedzic of the Johns Hopkins Bloomberg School
405 of Public Health Genomic Analysis and Sequencing Core Facility for their help with preparing and
406 sequencing samples.

407

408

References

- 409 1. Fischer, W. A., King, L. S., Lane, A. P. & Pekosz, A. Restricted Replication of the Live Attenuated
410 Influenza A Virus Vaccine during Infection of Primary Differentiated Human Nasal Epithelial Cells.
411 *Vaccine* **33**, 4495 (2015).
- 412 2. Powell, H., Liu, H. & Pekosz, A. Changes in Sialic Acid Binding Associated with Egg Adaptation
413 Decrease Live Attenuated Influenza Virus Replication in Human Nasal Epithelial Cell Cultures.
414 *Vaccine* **39**, 3225 (2021).
- 415 3. Powell, H. & Pekosz, A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus
416 replication, enzymatic activity and inhibitory antibody binding. *PLoS Pathog* **16**, e1008411 (2020).
- 417 4. Canaday, L. M. *et al.* HA and M2 sequences alter the replication of 2013–16 H1 live attenuated
418 influenza vaccine infection in human nasal epithelial cell cultures. *Vaccine* **40**, 4544–4553 (2022).
- 419 5. Hawksworth, A. *et al.* Replication of live attenuated influenza vaccine viruses in human nasal
420 epithelial cells is associated with H1N1 vaccine effectiveness. *Vaccine* **38**, 4209–4218 (2020).
- 421 6. Wohlgemuth, N. *et al.* The M2 protein of live, attenuated influenza vaccine encodes a mutation
422 that reduces replication in human nasal epithelial cells. *Vaccine* **35**, 6691 (2017).
- 423 7. Stölting, H. *et al.* Distinct airway epithelial immune responses after infection with SARS-CoV-2
424 compared to H1N1. *Mucosal Immunol* **15**, 952 (2022).
- 425 8. Robinot, R. *et al.* SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and
426 impairs mucociliary clearance. *Nature Communications* **2021 12:1** **12**, 1–16 (2021).
- 427 9. Rijsbergen, L. C., van Dijk, L. L. A., Engel, M. F. M., de Vries, R. D. & de Swart, R. L. In Vitro
428 Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells – A Systematic Review.
429 *Front Immunol* **12**, (2021).
- 430 10. Wilson, J. L. *et al.* Antigenic alteration of 2017-2018 season influenza B vaccine by egg-culture
431 adaption. *Frontiers in Virology* **2**, 73 (2022).
- 432 11. Lacroix, G. *et al.* Air-Liquid Interface in Vitro Models for Respiratory Toxicology Research:
433 Consensus Workshop and Recommendations. *Appl In Vitro Toxicol* **4**, 91–106 (2018).
- 434 12. Garcíá, S. R. *et al.* Novel dynamics of human mucociliary differentiation revealed by single-cell
435 RNA sequencing of nasal epithelial cultures. *Development* **146**, (2019).
- 436 13. Lukassen, S. *et al.* SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial
437 transient secretory cells. *EMBO J* **39**, (2020).
- 438 14. Van Riel, D. *et al.* Human and Avian Influenza Viruses Target Different Cells in the Lower
439 Respiratory Tract of Humans and Other Mammals. *Am J Pathol* **171**, 1215 (2007).
- 440 15. Hao, S. *et al.* Long-term modeling of SARS-CoV-2 infection of in vitro cultured polarized human
441 airway epithelium. *mBio* **11**, 1–17 (2020).

442 16. Broadbent, L. *et al.* Comparative primary paediatric nasal epithelial cell culture differentiation
443 and RSV-induced cytopathogenesis following culture in two commercial media. *PLoS One* **15**,
444 (2020).

445 17. Lee, D. D. H., Petris, A., Hynds, R. E. & O'Callaghan, C. Ciliated epithelial cell differentiation at air-
446 liquid interface using commercially available culture media. *Methods Mol Biol* **2109**, 275 (2020).

447 18. Awatade, N. T. *et al.* Comparison of commercially available differentiation media on cell
448 morphology, function, and anti-viral responses in conditionally reprogrammed human bronchial
449 epithelial cells. *Scientific Reports* **2023** *13*:1 **13**, 1–11 (2023).

450 19. Rayner, R. E., Makena, P., Prasad, G. L. & Cormet-Boyaka, E. Optimization of Normal Human
451 Bronchial Epithelial (NHBE) Cell 3D Cultures for in vitro Lung Model Studies. *Scientific Reports*
452 **2019** *9*:1 **9**, 1–10 (2019).

453 20. Matsuyama, S. *et al.* Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. *Proc Natl
454 Acad Sci U S A* **117**, 7001–7003 (2020).

455 21. Srinivasan, B. *et al.* TEER measurement techniques for in vitro barrier model systems. *J Lab
456 Autom* **20**, 107 (2015).

457 22. Gniazdowski, V. *et al.* Repeated Coronavirus Disease 2019 Molecular Testing: Correlation of
458 Severe Acute Respiratory Syndrome Coronavirus 2 Culture With Molecular Assays and Cycle
459 Thresholds. *Clin Infect Dis* **73**, e860 (2021).

460 23. Ursin, R. L. *et al.* Differential Antibody Recognition of H3N2 Vaccine and Seasonal Influenza Virus
461 Strains Based on Age, Vaccine Status, and Sex in the 2017–2018 Season. *J Infect Dis* **222**, 1371
462 (2020).

463 24. Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. *Am J Epidemiol*
464 **27**, 493–497 (1938).

465 25. Resnick, J. D., Beer, M. A. & Pekosz, A. Early transcriptional responses of human nasal epithelial
466 cells to infection with Influenza A and SARS-CoV-2 virus differ and are influenced by physiological
467 temperature. *bioRxiv* (2023) doi:10.1101/2023.03.07.531609.

468 26. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data.
469 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

470 27. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and
471 genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology* **2019** *37*:8 **37**, 907–915
472 (2019).

473 28. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, 1–4 (2021).

474 29. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning
475 sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).

476 30. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
477 seq data with DESeq2. *Genome Biol* **15**, 1–21 (2014).

478 31. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The
479 Innovation* **2**, (2021).

480 32. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: An R package for comparing biological
481 themes among gene clusters. *OMICS* **16**, 284–287 (2012).

482 33. Sohn, S. Y. *et al.* Interferon-Lambda Intranasal Protection and Differential Sex Pathology in a
483 Murine Model of SARS-CoV-2 Infection. *mBio* **12**, (2021).

484 34. Broadbent, L. *et al.* An endogenously activated antiviral state restricts SARS-CoV-2 infection in
485 differentiated primary airway epithelial cells. *PLoS One* **17**, e0266412 (2022).

486 35. Hoffmann, M. *et al.* Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related
487 proteases and its metabolite GBPA exerts antiviral activity. *bioRxiv* (2020)
488 doi:10.1101/2020.08.05.237651.

489 36. Sasamoto, Y. *et al.* Regulation of SARS-CoV2 viral entry-related proteins in human ocular surface
490 epithelium. *Invest Ophthalmol Vis Sci* **62**, 930–930 (2021).

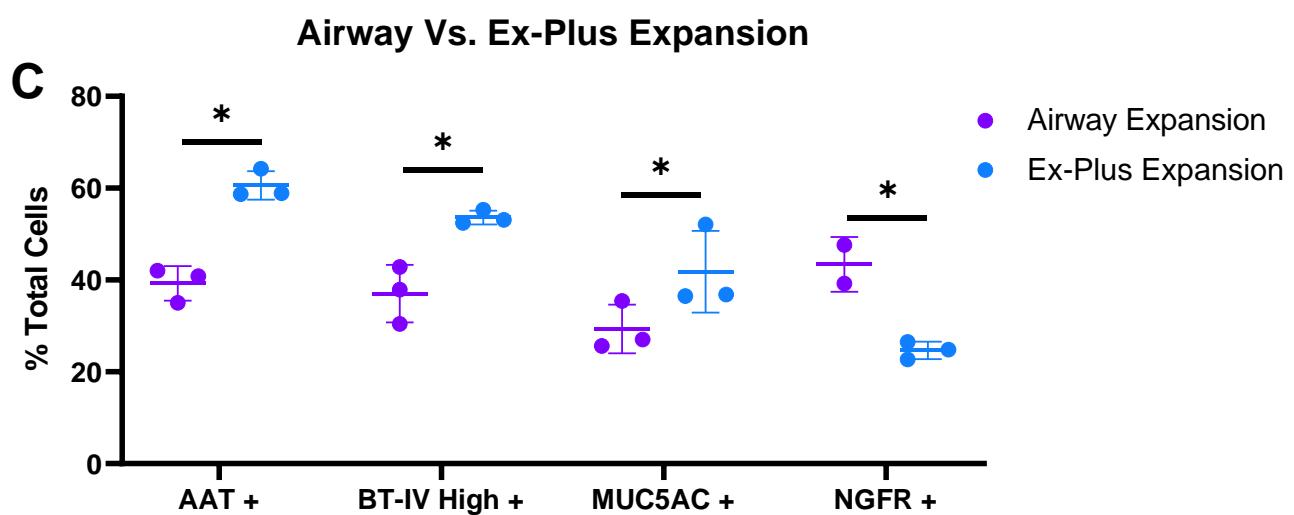
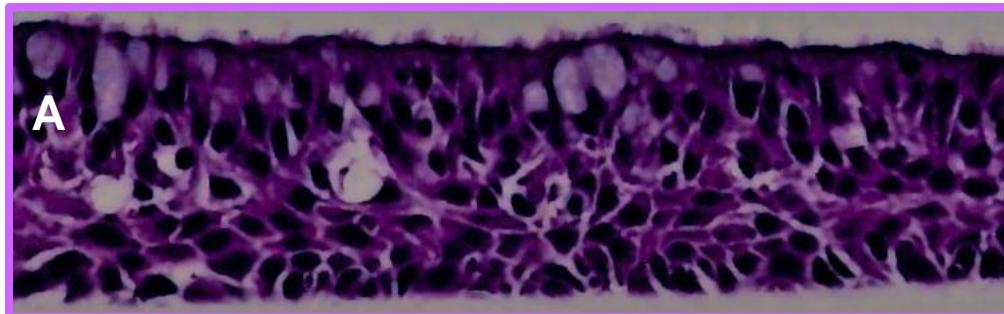
491 37. Liu, W., Lagutin, O. V., Mende, M., Streit, A. & Oliver, G. Six3 activation of Pax6 expression is
492 essential for mammalian lens induction and specification. *EMBO J* **25**, 5383–5395 (2006).

493 38. Breining, P. *et al.* Camostat mesylate against SARS-CoV-2 and COVID-19—Rationale, dosing and
494 safety. *Basic Clin Pharmacol Toxicol* **128**, 204–212 (2021).

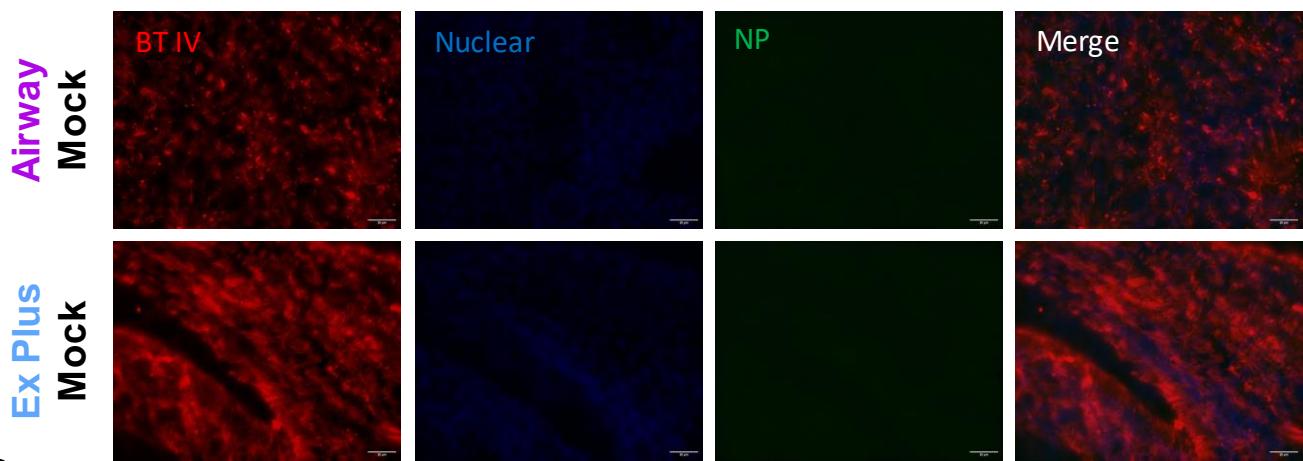
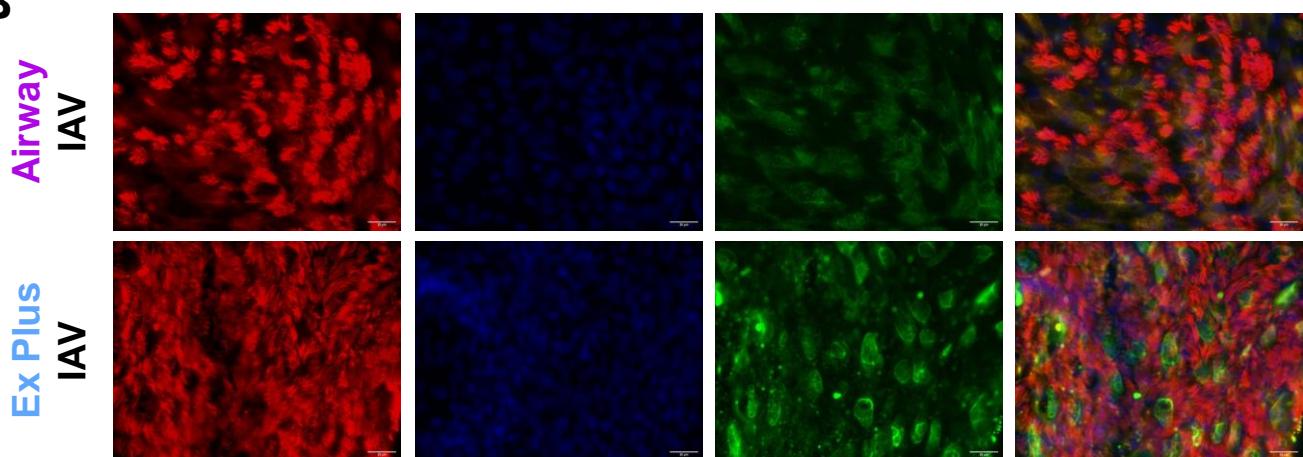
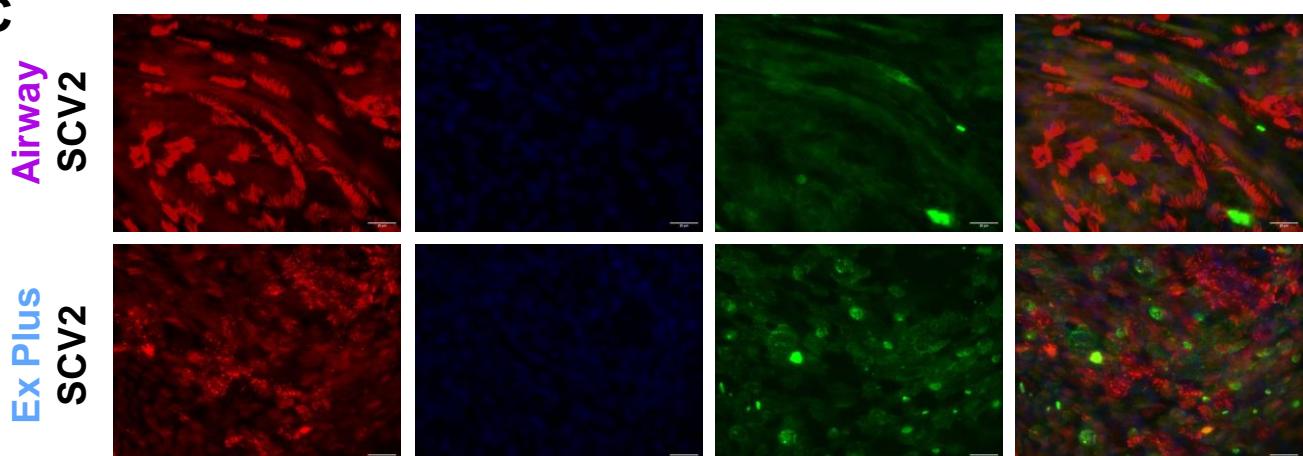
495 39. Tang, T. *et al.* Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of
496 Proteases beyond Furin. *ACS Infect Dis* **7**, 264–272 (2021).

497 40. Kido, H., Okumura, Y., Yamada, H., Quang Le, T. & Yano, M. Proteases essential for human
498 influenza virus entry into cells and their inhibitors as potential therapeutic agents. *Curr Pharm
499 Des* **13**, 405–414 (2007).

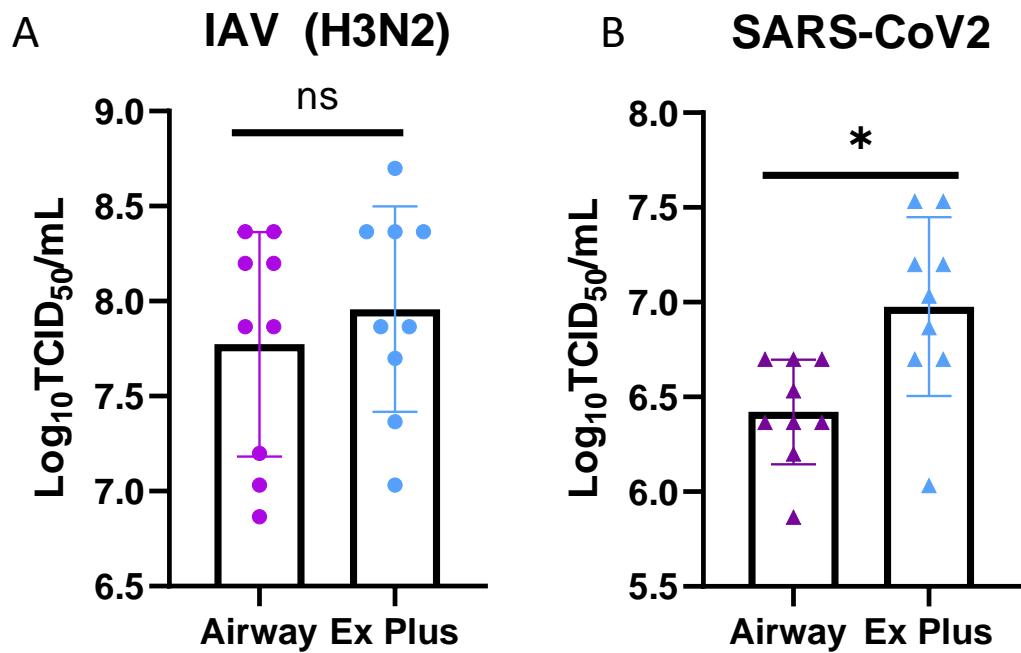
500 41. Du, X. *et al.* Omicron adopts a different strategy from Delta and other variants to adapt to host.
501 *Signal Transduction and Targeted Therapy* **2022 7:1** **7**, 1–3 (2022).

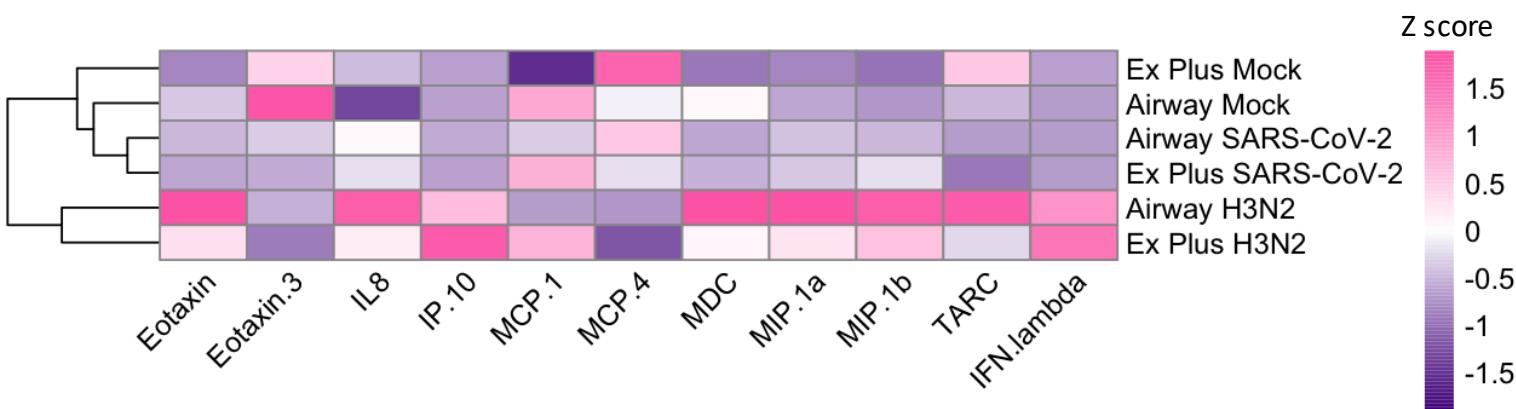


502 42. Wilk-Blaszcak, M. Respiratory system.

503 43. Giovannini-Chami, L. *et al.* The “one airway, one disease” concept in light of Th2 inflammation.
504 *European Respiratory Journal* **52**, (2018).




505 44. Andreani, J. *et al.* In vitro testing of combined hydroxychloroquine and azithromycin on SARS-
506 CoV-2 shows synergistic effect. *Microb Pathog* **145**, 104228 (2020).

507 45. Gautret, P. *et al.* Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an
508 open-label non-randomized clinical trial. *Int J Antimicrob Agents* **56**, 105949 (2020).


509 46. Hoffmann, M. *et al.* Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2.
510 *Nature* **2020 585:7826** **585**, 588–590 (2020).


Figure 1. Cell organization and proportions present after differentiation. Fully differentiated human nasal epithelial cellcultures that had been expanded with either Airway (A) or Ex Plus (B) media were fixed, sectioned, and H & E stained. Cell-type proportions were determined in separate wells using flow cytometry (C). Cells were gated by excluding debris and single cells, then staining for the markers indicated. Percent of total cells staining with each marker was calculated to account for different cell numbers between conditions. Data is pooled from 3 wells of each condition, with each experiment performed two times. Data from one representative experiment is shown. *p<0.05 by two-way ANOVA with Tukey's posttest.

A**B****C**

Figure 2. Infection of cultures with Influenza A Virus (IAV) or SARS-CoV-2 (SCV2). Airway or Ex Plus grown cultures were either uninfected (A) or infected with IAV (B) or SCV2 (C) at an MOI of 0.5 for 48 hours before being fixed and stained for cell and viral markers. Three wells per condition were used in each experiment and the experiment was repeated once. Representative data is shown.

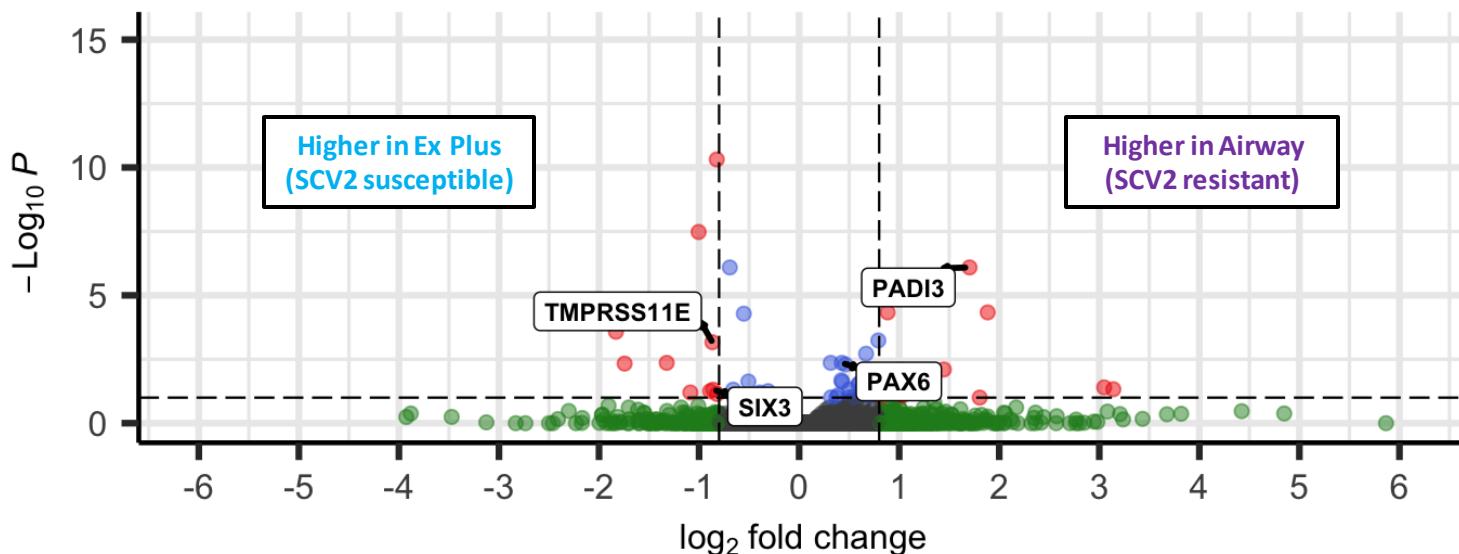
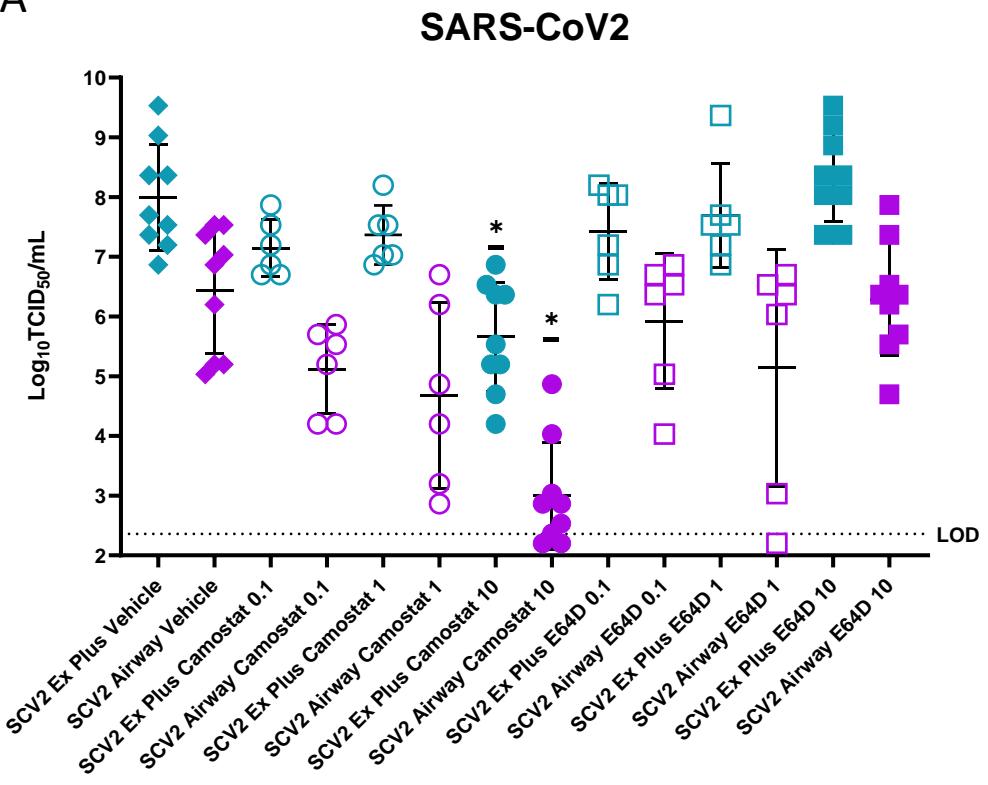


Figure 3. Infection of cultures with Influenza A Virus (IAV) or SARS-CoV-2 (SCV2). Cultures were infected with either IAV (A) or SCV2 (B) at an MOI of 0.1 or 1.0, respectively. Apical washes were collected, and infectious virus was determined by TCID₅₀ at 48 hpi. Data are pooled from three independent experiments each with n=3 wells per virus (total n=9 wells per virus). *p<0.05 one-way ANOVA with Bonferroni correction.


Figure 4. Basal and induced cytokine production in cultures. Basolateral secretions of cytokines, chemokines, and interferon lambda were measured 0 and 48HPI during infections with either IAV or SCV2 (n=3 wells per replicate, 9 wells total). Values were averaged and then scaled to calculate z-score. Hierarchical clustering was performed based on sample.

Airway vs Ex Plus Differentiated

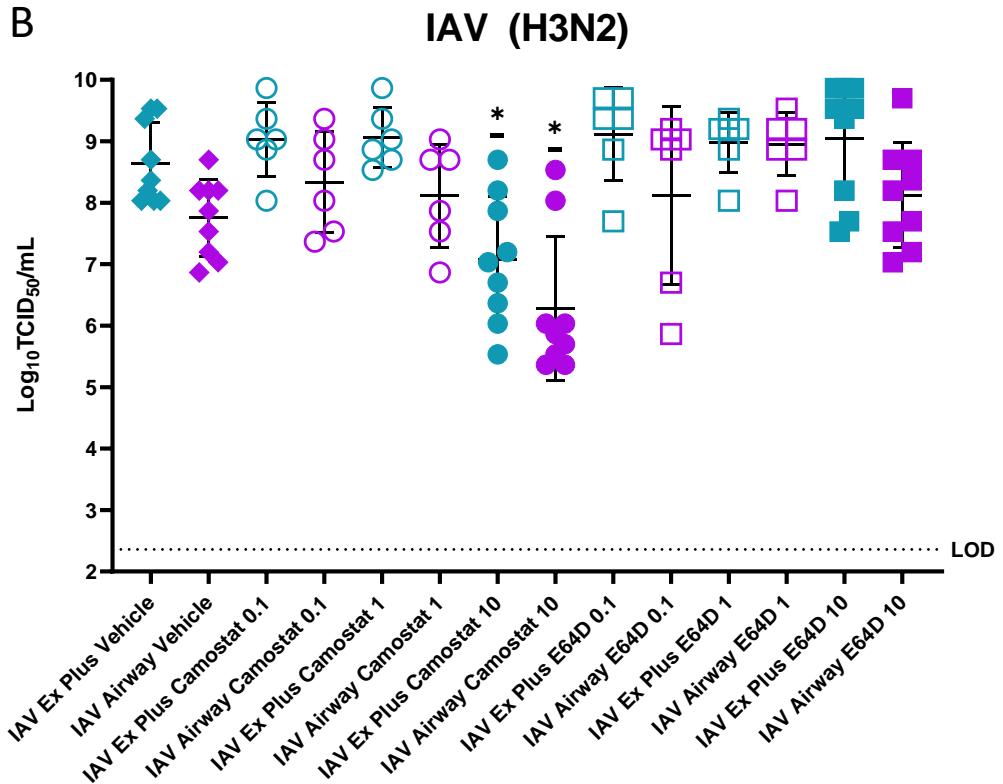
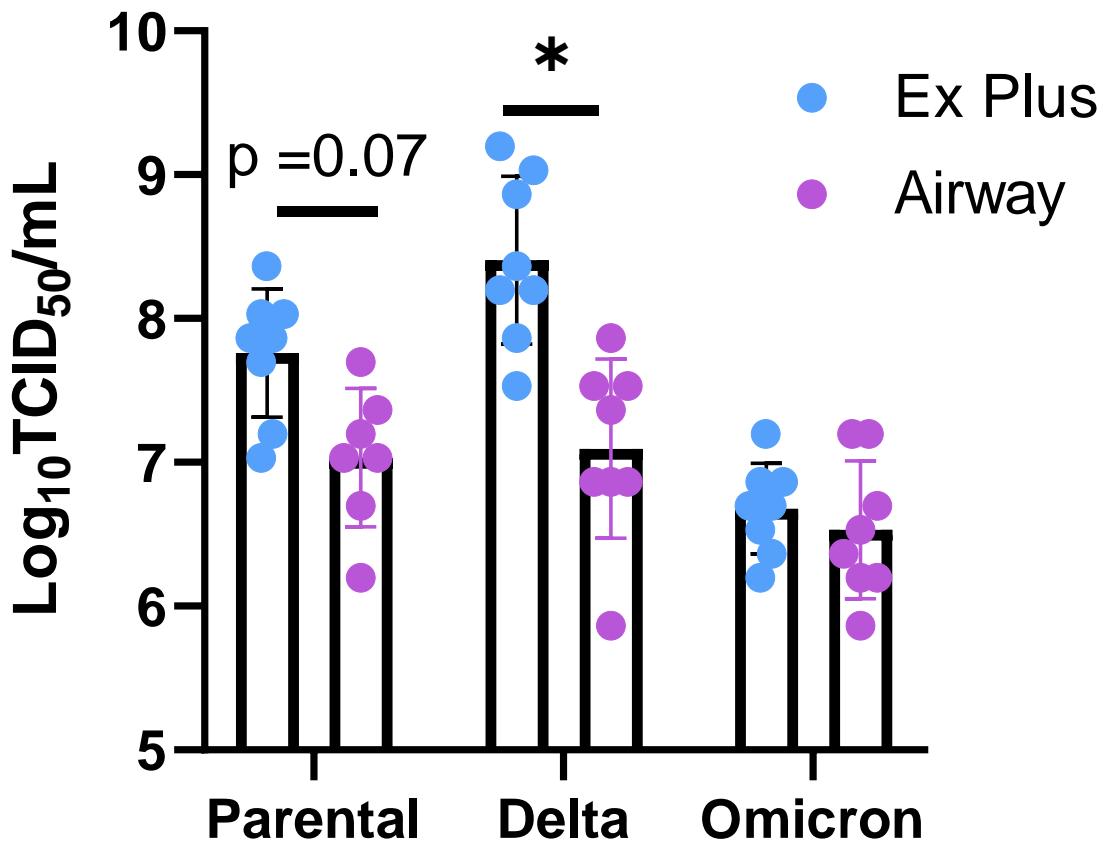
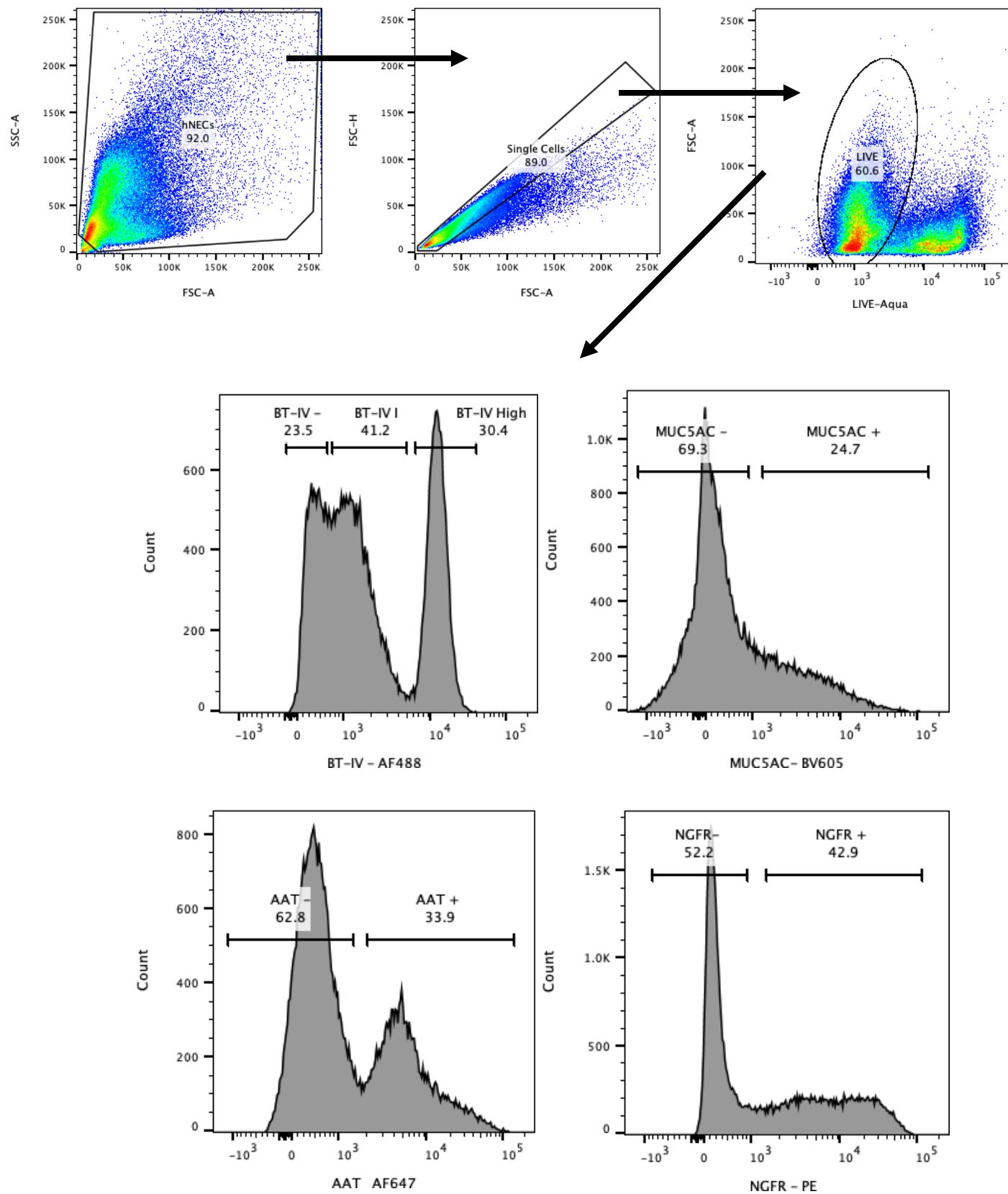
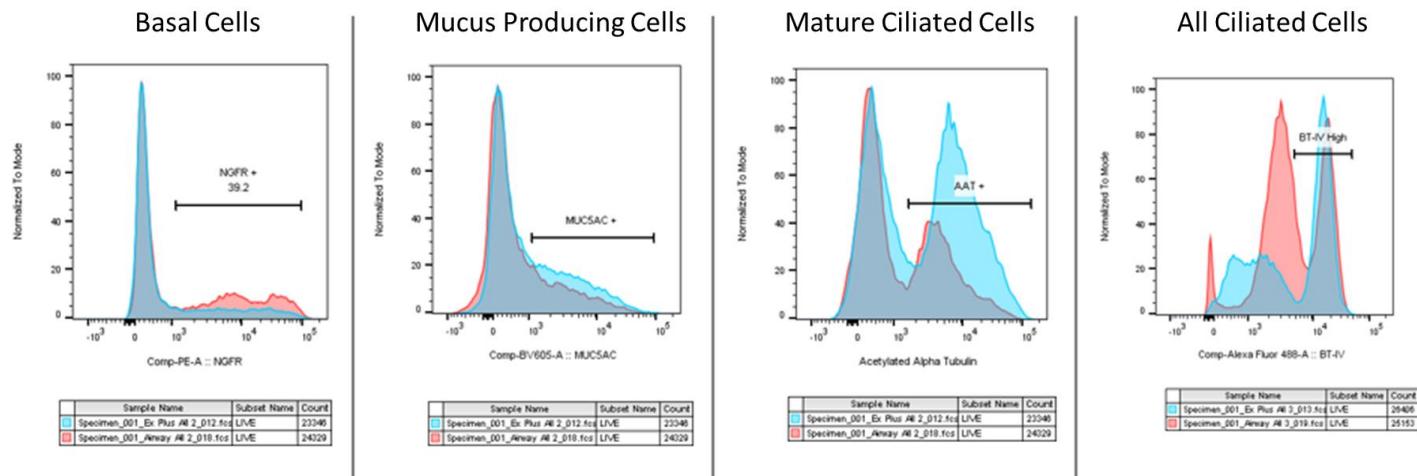


Figure 5. *Differentially expressed genes between fully differentiated Ex Plus and Airway expanded cultures.* Fully differentiated cultures were collected for bulk RNA-sequencing at day 21 post ALI. Data were pooled from three replicate wells. Log 2 fold change indicates the mean expression for a gene. Each dot represents one gene. Black dots indicate no significantly differential expression between Airway and Ex Plus expanded cultures. Blue dots indicate an adjusted p value <0.05 . Green dots indicate an absolute log 2 fold change higher than 0.8. Red dots indicate both a significant p value and log 2 fold change.

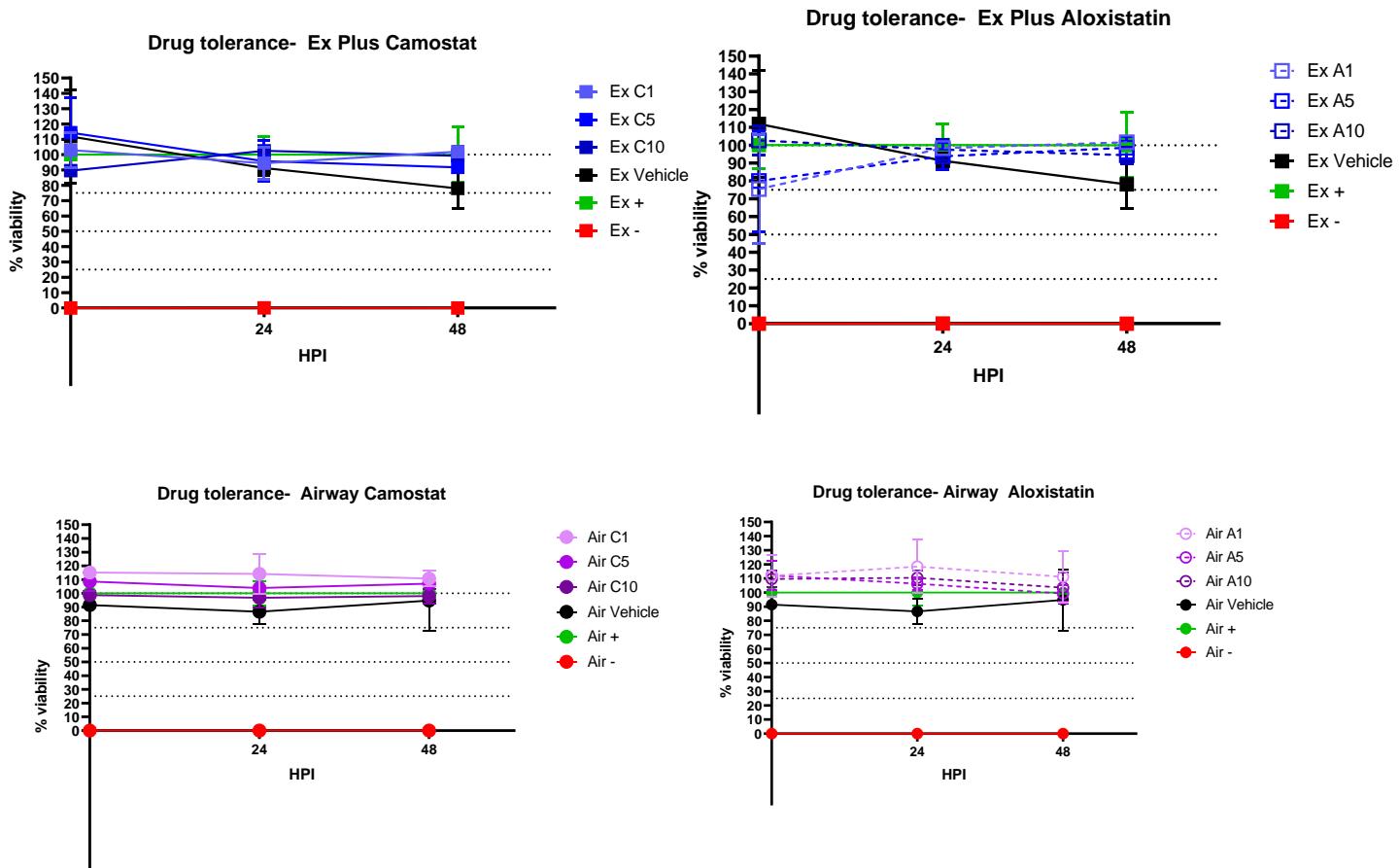

A

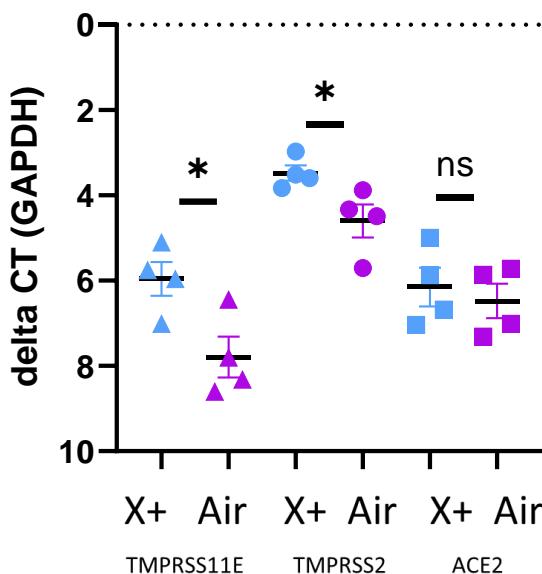
B


Figure 6. Protease inhibition during SCV2 or IAV infection of either Airway or Ex Plus expanded cultures. Cultures were pretreated with varying concentrations of either Camostat or E64D for 4 hours before being infected with the indicated virus. Apical washes were taken and infectious virus produced was quantified by TCID50 48 hours post infection. *p<0.05 (One-way ANOVA with Tukey's posttest, compared to matched vehicle). Experiments were performed with n=3 replicates and the data from three experiments is shown.

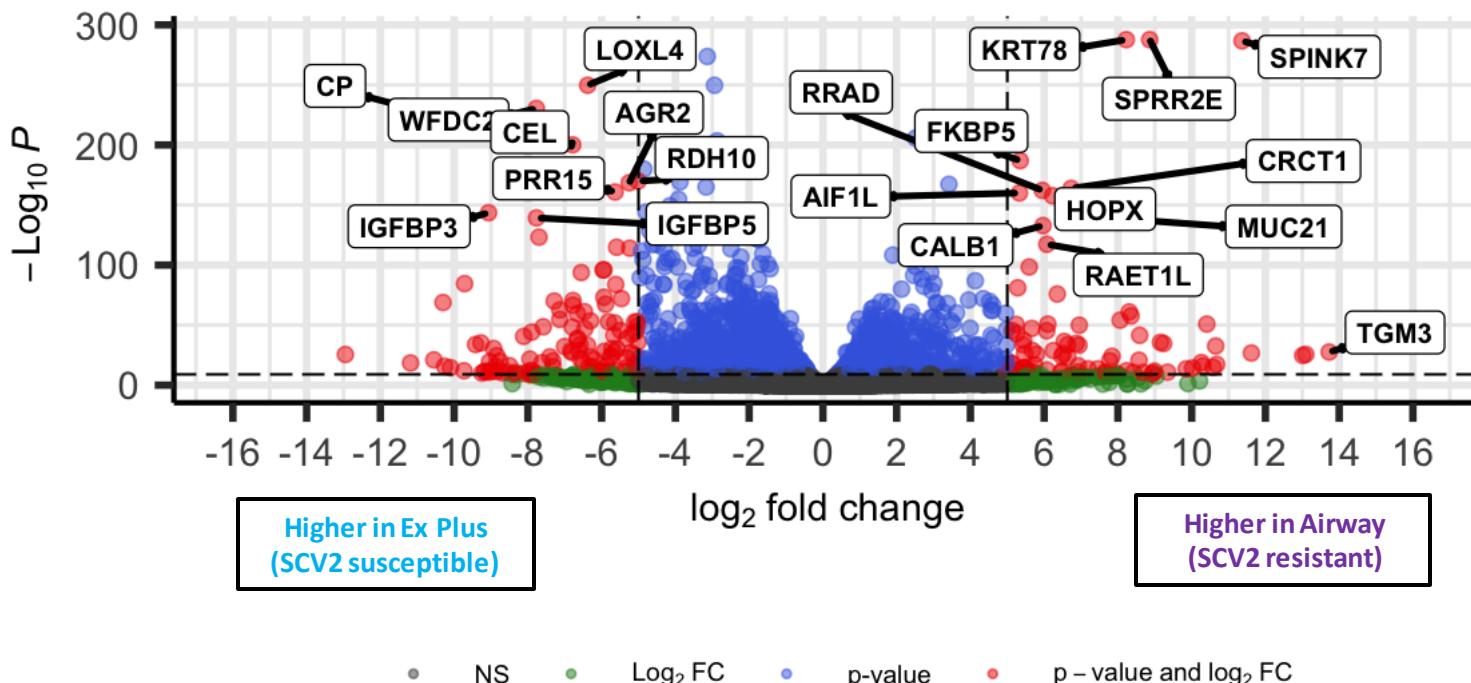

Figure 7. Comparison of susceptibility of Airway or Ex Plus expanded cultures to different SARS-CoV-2 variants of concern. Cultures were infected at an MOI of 0.1 with the indicated virus. Apical washes were taken 48 HPI and infectious virus was quantified by TCID₅₀. Data are pooled from two independent experiments each with n=4 wells per virus (total n=8 wells per virus). *p<0.05 one-way ANOVA with Tukey's posttest. Experiments were performed with n=3 replicates and the data from three experiments is shown.

supplement


A

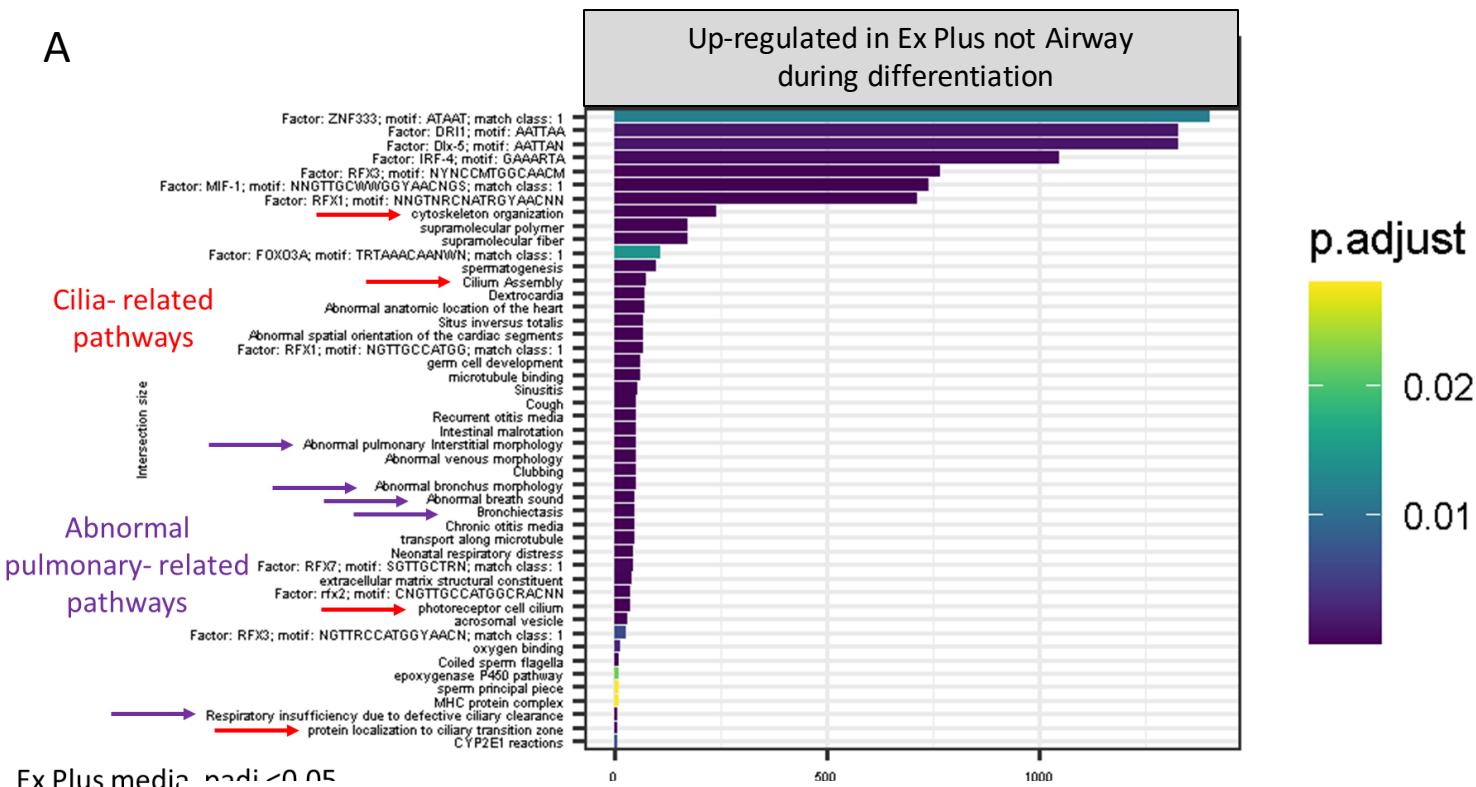

B

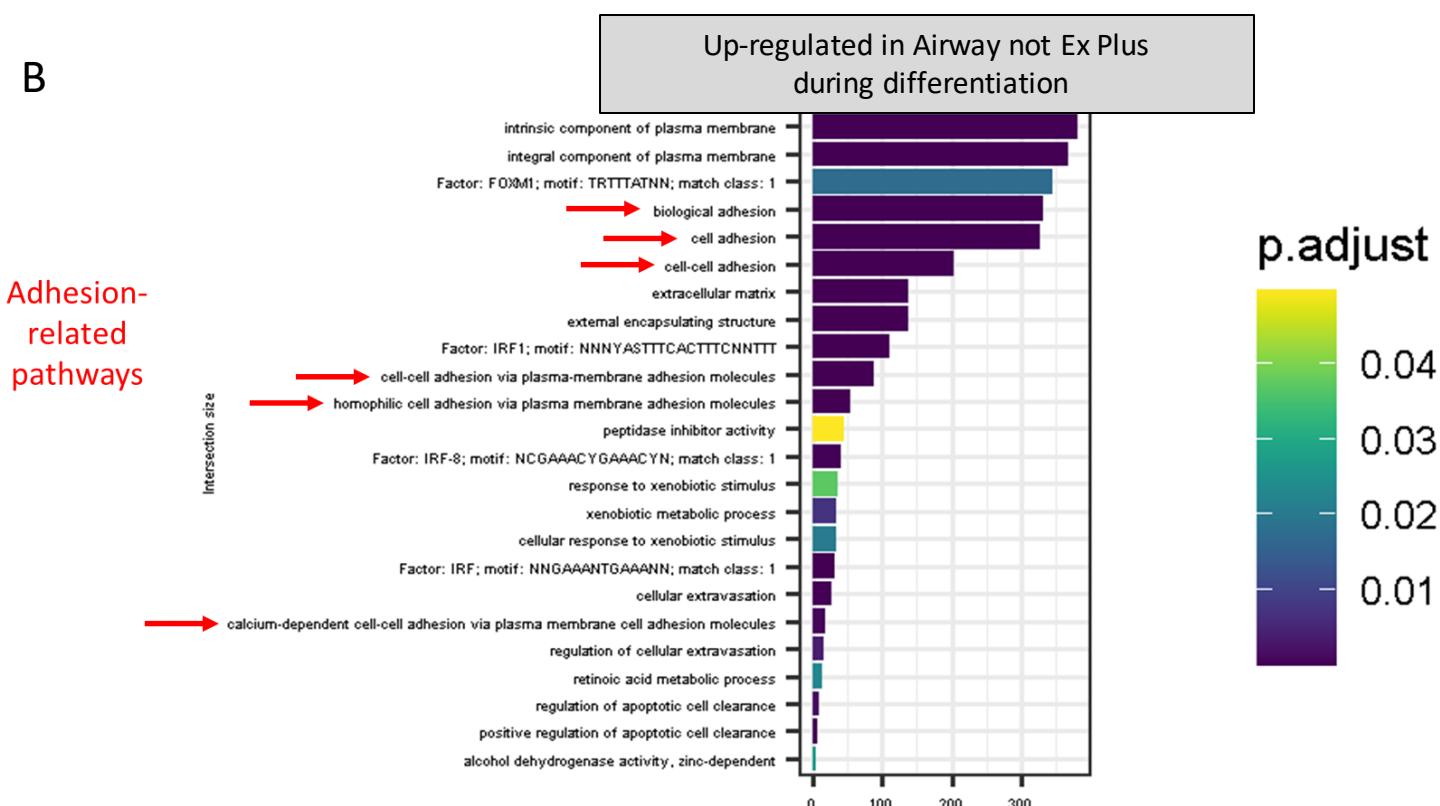
Supp Fig 1: Flow cytometry gating strategy and histogram of shifts in cell type proportion. Ex Plus or Airway cultures were collected for flow cytometry as described. Gating strategy is as shown, first gating on single cells then live cells then presence of cell type markers (A). Proportions of cell types were calculated using histograms of expression (B).



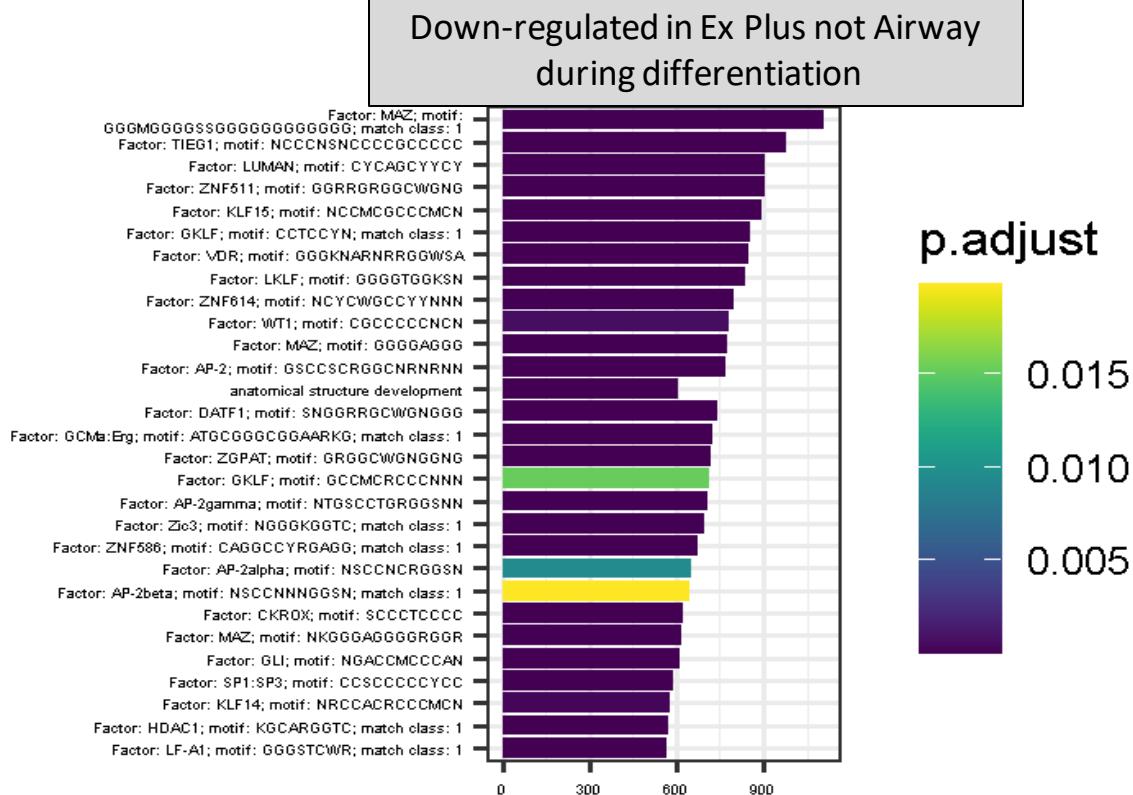
Supp Fig 2: Cell viability after treatment with Camostat or Aloxistatin. Ex Plus (A,C) or Airway(B,D) cultures were pretreated with the indicated concentration of each drug for 24 hours and then viability was measured every subsequent 24 hours until 72 hours had passed. Viability was determined by alamarBlue and based off of a media only and untreated well. Data are pooled from 3 wells per condition and the experiment was repeated once.

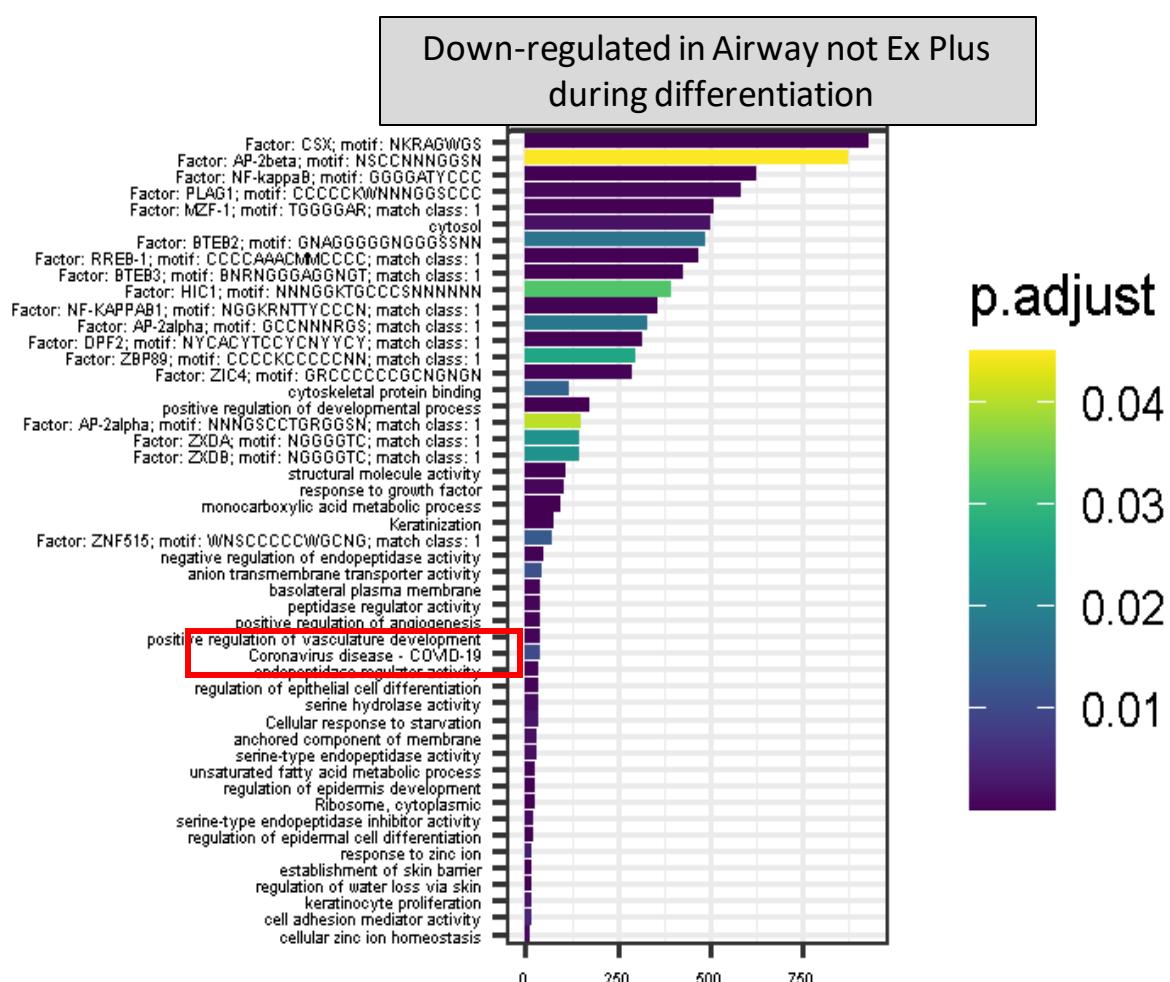
Supp Fig 3: *qPCR validation of cofactor and receptor expression in either Airway or Ex Plus grown cultures.* Fully differentiated cultures were collected in Trizol and expression of indicated genes was determined using qPCR. N=4 wells from one of two replicate experiments is shown. *P <0.05 (One way ANOVA with Tukey's posttest)


Airway vs Ex Plus Undifferentiated


total = 28395 variables

Supp Figure 4. Differentially expressed genes between undifferentiated Ex Plus and Airway expanded cultures. Undifferentiated cultures were collected for bulk RNA-sequencing at day 10-12 when the TEER reading was above 250Ω and transwell was confluent by eye. Data were pooled from three replicate wells. Log 2 fold change indicates the mean expression for a gene. Each dot represents one gene. Black dots indicate no significantly differential expression between Airway and Ex Plus expanded cultures. Blue dots indicate an adjusted p value $<10e-10$. Green dots indicate an absolute log 2 fold change higher than 5. Red dots indicate both a significant p value and log 2 fold change.


A


B

C

D

Supp Figure 5. Pathways differentially regulated during differentiation within each culture condition. Undifferentiated cultures were collected for bulk RNA-sequencing at day 10-12 when the TEER reading was above 250 Ω cm and transwell was confluent by eye. Data were pooled from three replicate wells. Significantly differentially expressed genes between undifferentiated and differentiated samples within each expansion media group (p adj <0.05) were used for pathway analysis. Enrichmed pathways were compared between Airway and Ex Plus and pathways unique to each were determined in each direction- up regulated during differentiation (A and B) or down regulated during differentiation (C and D).