

1 **Coordinated inheritance of extrachromosomal DNA species in human cancer**
2 **cells**
3

4 King L. Hung^{1, #}, Matthew G. Jones^{1, #}, Ivy Tsz-Lo Wong^{2,3, #}, Joshua T. Lange^{2,3}, Jens
5 Luebeck⁴, Elisa Scanu⁵, Britney Jiayu He¹, Lotte Brückner^{6,7}, Rui Li¹, Rocío Chamorro
6 González^{7,8}, Rachel Schmargon^{7,8}, Jan R. Dörr^{7,8}, Julia A. Belk¹, Vineet Bafna⁴,
7 Benjamin Werner⁹, Weini Huang^{5,10}, Anton G. Henssen^{7,8,11,12}, Paul S. Mischel^{2,3,*},
8 Howard Y. Chang^{1,13,14,*}
9

10 ¹ Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305,
11 USA.

12 ² Sarafan ChEM-H, Stanford University, Stanford, CA, USA.

13 ³ Department of Pathology, Stanford University, Stanford, CA, USA.

14 ⁴ Department of Computer Science and Engineering, University of California at San
15 Diego, La Jolla, CA, 92093, USA.

16 ⁵ Department of Mathematics, Queen Mary University of London, London, UK.

17 ⁶ Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.

18 ⁷ Experimental and Clinical Research Center (ECRC), Max Delbrück Center for
19 Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80,
20 13125, Berlin, Germany.

21 ⁸ Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin,
22 Augustenburger Platz 1, 13353, Berlin, Germany.

23 ⁹ Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational
24 Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.

25 ¹⁰ Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life
26 Science, Sun Yat-sen University, Guangzhou, China.

27 ¹¹ German Cancer Consortium (DKTK), partner site Berlin, and German Cancer
28 Research Center DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

29 ¹² Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.

30 ¹³ Department of Genetics, Stanford University, Stanford, CA, USA.

31 ¹⁴ Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford,
32 CA 94305, USA.

33

34 # These authors contributed equally

35 * Correspondence should be addressed to H.Y.C (howchang@stanford.edu) and P.S.M.
36 (pmischel@stanford.edu)

37 **ABSTRACT**

38 The chromosomal theory of inheritance has dominated human genetics, including
39 cancer genetics. Genes on the same chromosome segregate together while genes on
40 different chromosomes assort independently, providing a fundamental tenet of Mendelian
41 inheritance. Extrachromosomal DNA (ecDNA) is a frequent event in cancer that drives
42 oncogene amplification, dysregulated gene expression and intratumoral heterogeneity,
43 including through random segregation during cell division. Distinct ecDNA sequences,
44 herein termed ecDNA species, can co-exist to facilitate intermolecular cooperation in
45 cancer cells. However, how multiple ecDNA species within a tumor cell are assorted and
46 maintained across somatic cell generations to drive cancer cell evolution is not known.
47 Here we show that cooperative ecDNA species can be coordinately inherited through
48 mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs
49 encoding distinct oncogenes co-occur and are correlated in copy number in human
50 cancer cells. EcDNA species are coordinately segregated asymmetrically during mitosis,
51 resulting in daughter cells with simultaneous copy number gains in multiple ecDNA
52 species prior to any selection. Computational modeling reveals the quantitative principles
53 of ecDNA co-segregation and co-selection, predicting their observed distributions in
54 cancer cells. Finally, we show that coordinated inheritance of ecDNAs enables co-
55 amplification of specialized ecDNAs containing only enhancer elements and guides
56 therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated
57 inheritance of ecDNAs confers stability to oncogene cooperation and novel gene
58 regulatory circuits, allowing winning combinations of epigenetic states to be transmitted
59 across cell generations.

60 INTRODUCTION

61 Oncogene amplification drives cancer development by increasing the copies of
62 genetic sequences that encode oncogene products. Oncogenes are frequently amplified
63 on megabase-sized circular extrachromosomal DNA (ecDNA), which is detected in half
64 of human cancer types¹. Patients with tumors containing ecDNA have shorter survival
65 than those with tumors harboring other types of focal amplification^{2,3}, suggesting that
66 ecDNA-driven oncogene amplification may make tumors more aggressive. This
67 aggressive behavior may be attributed to the ability of ecDNA-containing cancer cells to
68 rapidly adapt to selective pressures. EcDNA is replicated in each cell cycle and
69 transmitted through cell division. However, as it lacks centromeres, ecDNA segregates
70 randomly to daughter cells during mitosis, leading to copy number heterogeneity⁴⁻⁶. This
71 copy number heterogeneity enables more rapid changes to the DNA contents of cells and
72 supports adaptation to new selective pressures such as metabolic stress and drug
73 treatment^{4,7,8}.

74 EcDNAs exhibit a remarkable level of genetic sequence diversity in parallel to their
75 copy number diversity^{3,9-13}. First, multiple ecDNAs that are originally derived from
76 different chromosomal loci can co-exist in the same cancer cells. These ecDNAs can
77 congregate in micron-sized hubs in the nucleus and enable intermolecular gene
78 activation, where enhancer elements on one ecDNA molecule can activate coding
79 sequences on another ecDNA⁹. Second, ecDNAs harbor clustered somatic mutations that
80 suggest APOBEC3-mediated mutagenesis^{14,15}. These unique, subclonal mutations within
81 oncogenes or other functional elements on ecDNAs increase the diversity of ecDNA
82 sequence and function with potential impacts on tumor evolution^{8,10,15}. Third, ecDNAs can
83 contain complex structural rearrangements, resulting from recombination of genomic
84 sequences originating from various genomic sites or different chromosomes^{2,9-13,16}.
85 These complex circularization events can give rise to diverse ecDNA species co-existing
86 in a cancer cell population, including ecDNAs with distinct oncogene loci^{3,9-13} or ecDNAs
87 encompassing only enhancers or oncogene coding sequences¹⁰.

88 EcDNAs may represent specialized molecules that cooperate to increase cancer
89 cell fitness. It has been reported that additional ecDNA species can form after recurrence
90 or drug treatment of ecDNA-carrying cancers¹⁰⁻¹²; the original ecDNA amplicons were

91 retained in the recurrent cancer cells in these studies, suggesting that multiple ecDNA
92 species may arise independently and provide fitness advantages to cancer cells.
93 Heterogeneous ecDNA species co-occurring in the same cell can contain distinct
94 oncogenes^{9–13}. These ecDNAs carrying oncogenes as well as non-coding regulatory
95 elements can interact with each other and with chromosomes in an intermolecular,
96 combinatorial manner to promote gene expression^{9,17,18}. These observations suggest that
97 the co-occurrence of multiple ecDNA sequences in a cell may have combinatorial and
98 synergistic effects on transcriptional programs.

99 This diversity of ecDNA genetic sequences in a cancer cell population raises the
100 following questions: 1) How are heterogeneous ecDNA species distributed in a cell
101 population? 2) As ecDNAs are segregated unequally during mitosis, how are these
102 mixtures of ecDNAs inherited by daughter cells? 3) How do the dynamics of multiple
103 ecDNA species affect cancer evolution? To address these questions, we used a
104 combination of image analysis, single-cell and bulk sequencing, and computational
105 modeling to elucidate the principles and consequences of ecDNA co-evolution in cancer.

106

107 **RESULTS**

108 **EcDNAs encoding distinct oncogenes co-occur in human cancers and single 109 cancer cells**

110 To interrogate how frequently ecDNA molecules with distinct sequences co-exist
111 in the same tumors, we first analyzed the structures of focal amplifications in whole-
112 genome sequencing (WGS) data from 1513 patient tumors from The Cancer Genome
113 Atlas (TCGA)². 289 of 1513 patient tumors contained ecDNA, carrying coding sequences
114 of well-characterized oncogenes such as *EGFR*, *MDM2* and *CDK4*^{1,2} (**Figure 1a,b**;
115 Methods). Of tumors that contained ecDNA, more than 25% (81 samples) contained two
116 or more ecDNA species in the same tumor (**Figure 1a**). Many of these ecDNA species
117 were amplified at high copy numbers and contained canonical oncogenes (**Figure 1b**).
118 This result supports the idea that heterogeneous ecDNA sequences can be found in the
119 same tumor and their co-occurrence may provide distinct selective advantages. As we
120 only considered highly abundant and genetically non-overlapping ecDNA sequences as
121 distinct species, this analysis likely underestimates the true diversity of ecDNA species.

122 The frequent co-amplification of distinct ecDNA species in tumors raised the
123 question of whether multiple ecDNA species can co-occur in the same cells. To address
124 this question, we examined a panel of cancer cell line and neurosphere models
125 representing colorectal cancer, neuroblastoma, glioblastoma, and stomach cancer that
126 have previously been characterized as containing ecDNA species with distinct amplified
127 oncogenes (**Figure 1c**). Using DNA fluorescent *in situ* hybridization (FISH) of metaphase-
128 spread chromosomes, we validated three cell lines previously characterized to contain
129 multiple amplified oncogenes on ecDNA: the monoclonal SNU16m1 stomach cancer line
130 contained *FGFR2* and *MYC* ecDNAs, the TR14 neuroblastoma cell line contained *MYCN*,
131 *CDK4*, *ODC1* and *MDM2* ecDNAs, and the GBM39-KT glioblastoma neurospheres, a
132 subline of the well-characterized GBM39 culture with *EGFR* amplified on ecDNA that also
133 developed *MYC* amplification on ecDNA (**Figure 1d,e**). Importantly, metaphase FISH
134 confirmed that the vast majority of individual cells have very little overlap in FISH signals
135 from distinct oncogenes, showing that they are not covalently linked on the same ecDNA
136 molecule and therefore are expected to be inherited independently from one another in
137 dividing cancer cells (**Figure 1e, Extended Data Figure 1a-c**).

138 We next examined distributions of ecDNA copy numbers in single cells using three
139 orthogonal methods (**Figure 1d**): 1) metaphase chromosome spreading followed by DNA
140 FISH; 2) isolation of single nuclei followed by droplet-based single-cell assay for
141 transposase-accessible chromatin using sequencing (scATAC-seq) and RNA
142 sequencing; and 3) enrichment and sequencing of ecDNAs in individual cells via
143 exonuclease digestion and rolling circle amplification^{19,20} (single-cell Circle-seq; scCircle-
144 seq; Methods). Remarkably, in the cell lines with distinct ecDNA species, FISH imaging
145 revealed that pairs of ecDNA species had significantly correlated copy numbers
146 (Spearman correlation $R = 0.39-0.52$, $p < 0.01$ in all cases; **Figure 1f, Extended Data**
147 **Figure 1c**). Next, we assessed the significance of these correlations in a larger cell
148 population by adapting a copy number quantification method for genomic background
149 coverage from scATAC-seq data^{9,21,22} to calculate ecDNA copy numbers in these cell
150 lines in an integrated analysis of 71,804 cells (**Figure 1d,g, Extended Data Figure 2a**;
151 Methods). Strikingly, we observed positive correlations between distinct ecDNA species
152 in each of the three cell lines with multiple ecDNA species (**Figure 1h,l, Extended Data**

153 **Figure 2b**; Pearson correlation $R = 0.26-0.46$, $p < 1e10^{-15}$ in all cases). As expected,
154 genic sequences that are covalently linked on the same ecDNA molecule (as
155 demonstrated by isolation from the same molecular size fractions by CRISPR-CATCH¹⁰;
156 **Extended Data Figure 2c**) showed strong copy number correlation in this analysis,
157 validating this approach for measuring distributions of ecDNA molecules in a cell
158 population (**Figure 1i, Extended Data Figure 2b**). EcDNA copy numbers were positively
159 correlated with the RNA expression of the correspondingly amplified oncogenes,
160 validating that the copies of ecDNA species drive transcriptional outcomes (**Extended**
161 **Data Figure 2d**). Importantly, we did not observe copy number correlations between gene
162 pairs located on different chromosomes, suggesting that this relationship between
163 different ecDNA species cannot simply be explained by differences in sequencing depth
164 or sequencing quality between single cells (**Figure 1i, Extended Data Figure 2b**). Finally,
165 single cell Circle-seq confirmed co-enrichment of the *MYCN*, *MDM2* and *CDK4* ecDNA
166 species in individual TR14 neuroblastoma cells (**Extended Data Figure 2e**). These
167 results show that distinct ecDNA species tend to co-occur with correlated copy numbers
168 far more than expected by chance in human cancer cells.

169

170 **Distinct ecDNA species co-segregate to daughter cells during mitosis**

171 In principle, our observations of co-occurrence and correlation of two distinct
172 ecDNA species can be the result of 1) co-selection of both species, given that both
173 species provide fitness advantages and/or engage in synergistic intermolecular
174 interactions, or 2) co-segregation of both species into daughter cells during cell division.
175 As different ecDNA species can carry different oncogenes and mixed ecDNAs can
176 interact with each other to increase gene expression^{9,18}, co-selection can reasonably
177 explain co-occurrence of ecDNA species. However, unlike the faithful segregation of
178 chromosomes, ecDNAs lack centromeres and are randomly inherited during mitosis⁴⁻⁶.
179 Therefore, it is unclear how a population of ecDNA species and their cooperative
180 interactions are preserved over successive cell divisions (**Figure 2a**).

181 To address this question, we assessed the distribution of multiple ecDNA species
182 during each single cell division. Specifically, we used DNA FISH combined with
183 immunofluorescence staining for Aurora kinase B, a component of the mitotic midbody,

184 to quantify copy numbers of ecDNA inherited among pairs of daughter cells undergoing
185 mitosis^{4,23} (**Figure 2b**). Interestingly, in all three cancer cell types that showed copy
186 number correlations of multiple ecDNAs at the population level, we observed significant
187 co-segregation of distinct ecDNA species to daughter cells in mitosis ($R = 0.42\text{--}0.64$, $p <$
188 $1\text{e}10^{-4}$ in each case; **Figure 2c**; Methods), contrary to the Mendelian principle of
189 independent assortment. In other words, the daughter cell that inherits more copies of
190 ecDNA species 1 tends to inherit more copies of species 2, and vice versa. Close
191 inspection of the FISH images suggested that the co-segregating ecDNAs remain largely
192 distinct despite being in the same nuclei. Computer simulations of segregating ecDNAs
193 showed that this correlation of ecDNA species in daughter cells is far greater than
194 expected from random segregation and scales linearly with the level of co-segregation of
195 ecDNAs (**Extended Data Figure 3**; Methods). Together, these data show that while
196 individual ecDNAs segregate in a random manner^{4,6}, collectives of ecDNA species may
197 co-segregate during mitosis (**Figure 2d**).
198

199 **Evolutionary modeling infers the principles of ecDNA co-assortment**

200 Next, we used evolutionary modeling to assess the contributions of co-selection
201 and co-segregation in shaping the patterns of ecDNA co-assortment. Similar to previous
202 work⁴, we implemented an individual-based, forward-time evolutionary algorithm to study
203 ecDNA evolution in a growing tumor population (**Figure 3a**; Methods). This model is
204 instantiated with a single parent cell carrying two distinct ecDNA species with the same
205 copy number. The simulation proceeds by choosing cells to divide (or, optionally, die)
206 according to a “fitness” function that determines the birth rate of a cell based on the
207 presence of each ecDNA species. During cell division, ecDNA copies are inherited
208 amongst daughter cells according to a “co-segregation” parameter: a value of 0 indicates
209 independent, random segregation and a value of 1 indicates perfectly correlated
210 segregation.

211 Under fixed selection for individual ecDNA species, we first studied how varying
212 co-segregation and co-selection parameters affected the co-assortment of two ecDNA
213 species in simulations of one million tumor cells (**Figure 3b-e**; **Extended Data Figure 4**).
214 Though ecDNA copy numbers rose in all simulations (**Extended Data Figure 4a**), these

215 simulations revealed specific principles of ecDNA co-evolution arising from co-
216 segregation and co-selection: 1) co-occurrence (the frequency of cells carrying both
217 ecDNA species) was predominantly driven by co-selection pressure that acts over
218 multiple generations to select for cells carrying both ecDNA species (**Figure 3b**), though
219 both co-segregation and co-selection could synergize to achieve high-levels of co-
220 occurrence (**Figure 3c**); and 2) copy-number correlation in cells appeared to be entirely
221 driven by co-segregation alone, where proportional amounts of ecDNA copies can be
222 inherited in a single cell division (**Figure 3d,e**). These trends were validated using an
223 alternative model of ecDNA evolution (**Extended Data Figure 5**). Our simulations
224 additionally suggested that ecDNA co-occurrence may be longer-lasting once the cancer
225 cell population reaches high copy numbers (**Extended Data Figure 4b-d**).

226 Because co-selection and co-occurrence left distinct signatures on the joint
227 distribution of ecDNA (**Figure 3f, Extended Data Figure 4a**), we hypothesized that our
228 evolutionary model could infer levels of ecDNA co-selection and co-segregation from
229 observed single-cell copy number distributions. Pairing our evolutionary model with
230 ecDNA copy number distributions obtained with scATAC-seq, we used Approximate
231 Bayesian Computation (ABC)^{24,25} to infer posterior distributions for individual selection,
232 co-selection, and co-segregation in the three cell lines containing distinct ecDNA species
233 (**Figure 3g, Extended Data Figure 6a,b**; Methods). As validation, we found that the
234 inferred levels of co-segregation closely matched those observed in paired daughter cells
235 undergoing mitosis using DNA FISH (**Figure 3g**). In line with our previous simulations,
236 we inferred high levels of co-selection of ecDNA species relative to individual selection
237 (**Figure 3f, Extended Data Figure 6b**). Also consistent with our previous simulations, we
238 observed that co-selection coefficients became less critical as we increased the initial
239 copy number for our inference procedure in the population size that we simulated (in
240 effect widening the 95% credible interval for inferred co-selection), while the inferred 95%
241 credible interval of the co-segregation parameter remained stable (**Extended Data**
242 **Figure 6c**). Together, these results suggest that co-selection and co-segregation
243 underpin the coordinated assortment of ecDNAs in cancer cell populations (**Figure 3h**).
244

245 **Behavior of an “altruistic” enhancer-only ecDNA**

246 As our evolutionary model supports the observed distributions and changes in
247 oncogene-encoding ecDNAs, we next asked whether it can also explain the behavior of
248 ecDNAs that do not themselves encode oncogenes but interact with other ecDNA
249 molecules. We recently identified an ecDNA species in the parental SNU16 stomach
250 cancer cell line that did not contain oncogene coding sequences but instead contained a
251 non-coding sequence between *WDR11* and *FGFR2* with accessible chromatin marked
252 by histone H3 lysine 27 acetylation (H3K27ac), suggesting the presence of active
253 enhancers¹⁰ (**Figure 4a, Extended Data Figure 7a**). These enhancers are required for
254 activation of the *FGFR2* gene and intermolecular activation of the *MYC* gene on ecDNA⁹.
255 Long-read sequencing of the parental cell line revealed that this enhancer ecDNA
256 resulted from two DNA segments joining together by inversions to create a circular
257 molecule (**Extended Data Figure 7a**). As intermolecular interactions of regulatory
258 elements between different ecDNA molecules can drive oncogene expression^{9,17}, the
259 presence of amplified, active enhancer elements in the pool of ecDNA molecules may
260 support enhancer-promoter interactions *in trans* and further upregulate oncogene
261 expression – i.e. an “altruistic” ecDNA. An enhancer-only ecDNA may be especially
262 sensitive to the co-occurrence of oncogene-coding ecDNAs in the same ecDNA hubs to
263 exert its regulatory effect, and presents a unique opportunity to test the predictive
264 framework of our evolutionary model. Simulations under our model of ecDNA co-evolution
265 suggested that co-segregation and co-selection synergize to maintain enhancer-only
266 ecDNAs in a majority of individual cancer cells (**Figure 4b,c**), and that co-selection is
267 particularly important to maintain enhancer-only ecDNAs at substantial copy number in a
268 population (**Extended Data Figure 7b,c**).

269 To quantify the frequency of enhancer-only ecDNA species, we performed
270 metaphase DNA FISH with separate, non-overlapping probes targeting *MYC*, *FGFR2*
271 coding sequences, as well as the enhancer sequence, followed by unbiased
272 colocalization analysis of imaging data (Methods). This analysis showed that
273 approximately 20% of ecDNA molecules in SNU16 cells contained this enhancer
274 sequence without either oncogene and that the vast majority of individual cells (98%, 63
275 of 64 cells examined) harbored the enhancer-only ecDNA species (**Figure 4d,e**). Analysis
276 of pairs of daughter cells undergoing mitosis further showed co-segregation of the

277 enhancer sequence with both *MYC* and *FGFR2* ecDNA molecules significantly above
278 levels that can be explained by covalent linkages alone ($R > 0.80$, $p < 1e10^{-6}$ for each
279 comparison, **Figure 4f,g**; Methods). These results support the theory that specialized
280 ecDNAs without oncogenes can arise and be stably maintained by virtue of synergistic
281 interaction with oncogene-carrying ecDNA.

282

283 **Pharmacological co-regulation of two interacting ecDNA species**

284 ecDNAs can drive rapid genome evolution in response to pharmacological
285 treatment, including through modulation of ecDNA copy number¹² and generation of new
286 ecDNAs containing resistance-promoting genes^{10,11}. We hypothesized that co-
287 segregation and co-selection of separate ecDNA species that interact *in trans* could also
288 couple changes in copy number of both ecDNA species in response to targeted drug
289 treatment. Simulations of interventions targeting a single ecDNA species under our
290 evolutionary model predicted a continuous, dose-dependent decrease in copy numbers
291 of co-existing ecDNAs only in the presence of co-segregation (**Figure 4h,i, Extended**
292 **Data Figure 8a**; Methods). We previously showed that the *MYC* and *FGFR2* ecDNAs
293 engage in intermolecular enhancer-promoter interactions in the SNU16m1 stomach
294 cancer cell line⁹, providing a model in which to test the hypothesis that their copy numbers
295 may be coordinately modulated. We thus hypothesized that treatment of these cells with
296 high dose Pemigatinib, an *FGFR2* inhibitor^{26,27}, would remove the selective advantage of
297 cells with amplified *FGFR2* expression and would lead to a loss of *FGFR2* and *MYC*
298 copies over time due to their co-segregating inheritance. This hypothesis is supported by
299 evolutionary modeling (**Figure 4i, Extended Data Figure 8a**). In contrast, in the absence
300 of co-segregation, evolutionary modeling indicates that *FGFR2* and *MYC* ecDNAs would
301 dramatically diverge in their copy numbers, with *MYC* gaining rather than losing copy
302 number upon *FGFR2* inhibitor treatment. Experimental treatment of SNU16m1 cells with
303 Pemigatinib over the course of 20 days showed that the *FGFR2* ecDNA copy number
304 decreased progressively in response to drug treatment and in a dose-dependent manner
305 as expected (**Figure 4h,j, Extended Data Figure 8b**). Furthermore, we found that the
306 *MYC* ecDNA species, while not directly targeted by the drug, also decreased in copy
307 number during the course of Pemigatinib treatment (**Figure 4h,j, Extended Data Figure**

308 **8b**), supporting the idea that the two ecDNA species are coordinately inherited despite
309 not being covalently linked. Metaphase DNA FISH of drug-treated cells validated the
310 presence of *MYC* and *FGFR2* on separate ecDNAs after Pemigatinib treatment
311 (**Extended Data Figure 8c**), demonstrating that these coordinated decreases in copy
312 number cannot be explained by covalent fusion between ecDNAs. In contrast,
313 Pemigatinib did not result in *MYC* ecDNA loss in the COLO320DM colorectal cancer cell
314 line which does not contain *FGFR2* ecDNAs (**Figure 1c, Extended Data Figure 8d**).
315 Consistent with the coordinated change in SNU16m1 cells, targeting *MDM2* ecDNA with
316 Nutlin-3a in TR14 neuroblastoma cells also led to concomitant depletion of co-
317 segregating *MDM2* and *MYCN* ecDNAs, demonstrating the generality of this principle
318 (**Extended Data Figure 8e,f**). Together, these results demonstrate that pharmacological
319 targeting of an oncogene contained on one ecDNA species can coordinately regulate the
320 level of an oncogene on a separate ecDNA species if they co-segregate during mitosis.
321

322 **DISCUSSION**

323 Extrachromosomal amplifications in cancer are highly heterogeneous, involving
324 mixtures of species that evolve and increase in complexity over time and in response to
325 selective pressures such as drug treatments^{20,28}. The population of ecDNA species can
326 include amplification of multiple oncogenes, the combination of which provides a fitness
327 advantage to the growing tumor^{3,9–13}. Through single-cell sequencing, DNA FISH, and
328 evolutionary modeling across multiple cancer types, we have shown that diverse ecDNA
329 species co-occur in cancer cells, that they co-segregate with one another during mitosis,
330 and that these evolutionary associations contribute to ecDNA specialization and response
331 to targeted therapy. EcDNAs exhibit aggressive behavior in cancer cells as they can
332 rapidly shift in copy number and evolve novel gene regulatory relationships^{4,9}. This
333 accelerated evolution and ability to explore genetic and epigenetic space is challenged
334 by its potentially transient nature – a winning combination of ecDNAs may not be present
335 in the next daughter cell generation if they are randomly transmitted. EcDNA co-
336 inheritance allows cancer cells to balance accelerated evolution with a measure of genetic
337 and epigenetic memory across cell generations.

338 While individual ecDNAs are randomly inherited during mitosis^{4,6}, strong co-
339 segregation and co-selection of distinct ecDNAs collaborate to maintain a population of
340 cooperating ecDNAs across generations of cancer cells. Mitotic co-segregation of
341 ecDNAs is imperfect (**Figure 2**); nonetheless, it substantially increases the probability that
342 combinations of ecDNA species will be transmitted together to daughter cells (**Figure 3e**).
343 This coordinated behavior of ecDNA collectives present implications for our
344 understanding of cancer evolution and development of cancer therapies. First, our
345 observation that enhancer-only ecDNAs are co-amplified with *FGFR2* and *MYC* ecDNAs
346 in the SNU16 stomach cancer cells suggests that co-selection of structurally diverse
347 ecDNAs can lead to functional specialization. In light of our recent work describing
348 synergistic intermolecular hubs of ecDNAs^{9,17,29}, these results suggest that interactive
349 modules of ecDNAs may exist. Second, our findings that ecDNAs can be indirectly
350 depleted through acute inhibition of their co-segregating ecDNA partners (e.g. *FGFR2*
351 and *MYC* ecDNAs or *MDM2* and *MYCN* ecDNAs, respectively) implies that therapeutic
352 interventions targeting the gene product of one ecDNA species can also impact co-
353 amplified oncogenes on other ecDNAs. Importantly, these results do not necessarily imply
354 that oncogene-targeted therapies can “cure” tumor cells of ecDNA, as new ecDNAs
355 carrying resistance-promoting cargo can be selected under targeted therapy. Rather,
356 these results demonstrate that acute targeted therapy can induce rapid, potentially
357 therapeutically advantageous, genomic remodeling as a consequence of ecDNA co-
358 segregation. This indirect targeting of oncogenes may present unique therapeutic
359 opportunities for tumors with co-amplified oncogenes, and we anticipate that the modeling
360 framework described in this study will be a useful resource for understanding when these
361 strategies will be effective. Third, our computational model now enables quantification of
362 ecDNA co-segregation and co-selection from genomic or imaging data, including FISH
363 analysis that is widely used in the clinical setting. This advance should enable future
364 research to understand how ecDNAs co-evolve in patient tumors.

365 The molecular mechanism of ecDNA co-segregation warrants future investigation.
366 As ecDNAs congregate in micron-sized hubs during interphase and interact with one
367 another in an intermolecular manner⁹, one hypothesis is that spatially proximal ecDNAs
368 may co-segregate into daughter cells during mitosis. While ecDNAs lack centromeres and

369 are not attached to the mitotic spindle assembly, they appear to co-localize with mitotic
370 chromosomes and may actively tether to them^{5,9,30–33}. Many viral episomes tether to
371 mitotic chromosomes during segregation, typically via endogenous and viral protein
372 mediators^{34–40}. Non-chromosomal DNA circles in yeast are also retained in the mother
373 cell during mitosis by interacting with protein factors, including nuclear pore complexes⁴¹.
374 Thus, an alternative and not mutually exclusive hypothesis of the mechanism of ecDNA
375 co-segregation is that ecDNA may rely on a protein or RNA mediator for chromosome
376 tethering and segregation, and asymmetric partitioning of one or more mediators may
377 determine inheritance of multiple ecDNA species by a daughter cell. Future work may
378 search for such mediators by screening for small molecules or genetic perturbations that
379 alter ecDNA co-segregation.

380 Together, our work identifies the principles of how intermolecular interactions
381 between distinct ecDNAs are preserved amidst asymmetric segregation. The
382 consequence is a jackpot effect that supports cooperation among heterogeneous
383 ecDNAs, enabling the co-selection and co-amplification of multiple oncogenes and
384 continued diversification of cancer genomes. Just as quantitative understanding of
385 chromosome assortment provided the basis of genetic linkage analysis, a quantitative
386 understanding of ecDNA inheritance and deviations from expected patterns may have
387 additional dividends. Beyond cancer evolution, our general framework for coordinated
388 asymmetric inheritance may be applicable to viral episomes, subcellular organelles, or
389 biomolecular condensates that control cell fates.

390

391 **Acknowledgements**

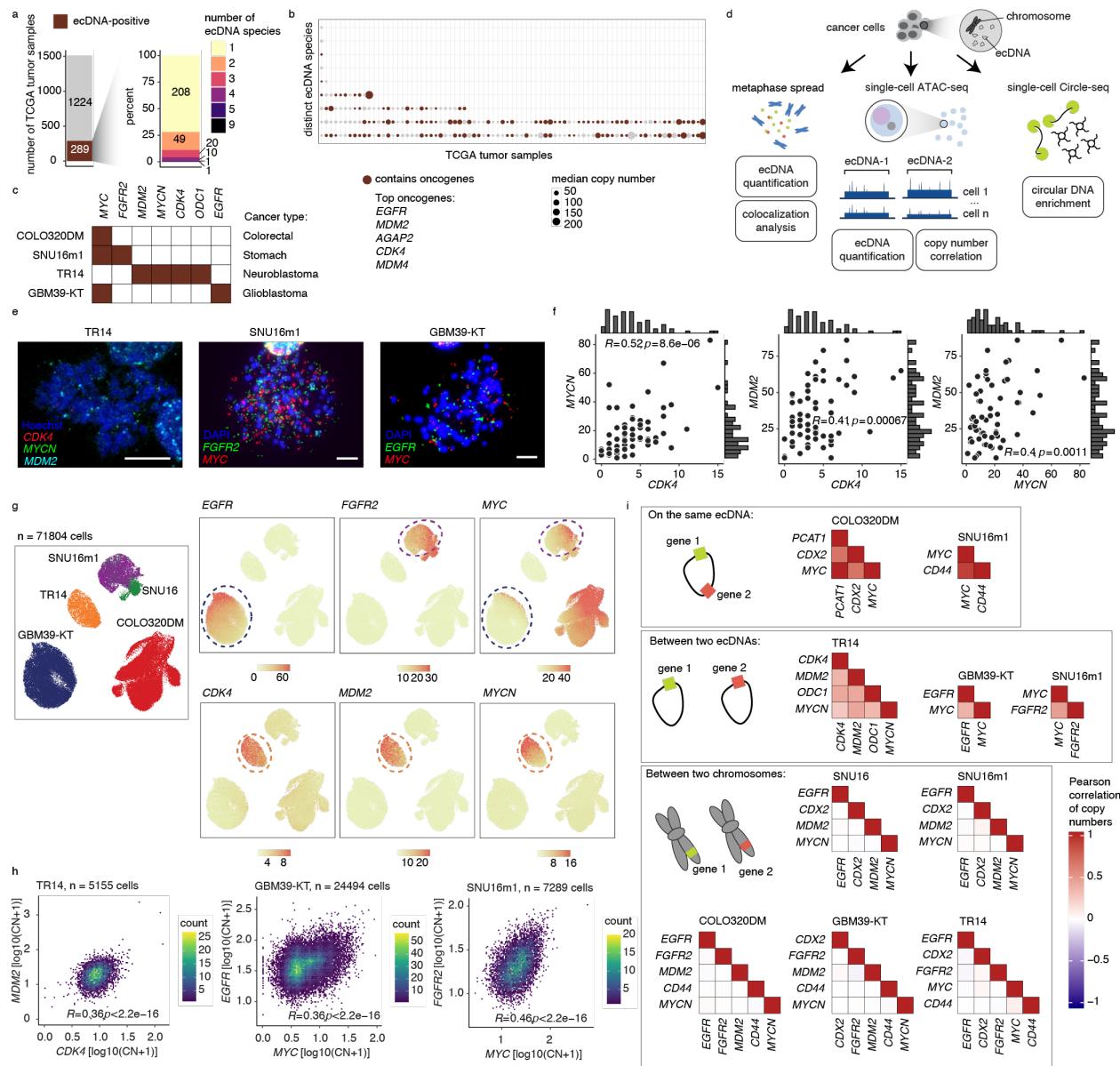
392 We thank members of the Chang and Mischel labs for discussion, as well as Jeremy
393 D'Silva for helpful suggestions in developing an evolutionary model of ecDNA co-
394 inheritance. This project was supported by Cancer Grand Challenges CGCSDF-
395 2021\100007 with support from Cancer Research UK and the National Cancer Institute
396 (H.Y.C., V.B., P.S.M., A.G.H.); NIH R35-CA209919 (H.Y.C.); U24CA264379,
397 R01GM114362, OT2CA278635, and CGCATF-2021/100025 (V.B.). K.L.H. was
398 supported by a Stanford Graduate Fellowship and an NCI Predoctoral to Postdoctoral
399 Fellow Transition Award (NIH F99CA274692). J.A.B. was supported by NIH training grant

400 T32HL120824. A.G.H. is supported by the Deutsche Forschungsgemeinschaft (DFG,
401 German Research Foundation) – 398299703 and the European Research Council (ERC)
402 under the European Union’s Horizon 2020 research and innovation programme (grant
403 agreement No. 949172). B.W. is supported by a Barts Charity Lectureship (MGU045) and
404 a UKRI Future Leaders Fellowship (MR/V02342X/1). H.Y.C. is an Investigator of the
405 Howard Hughes Medical Institute.

406

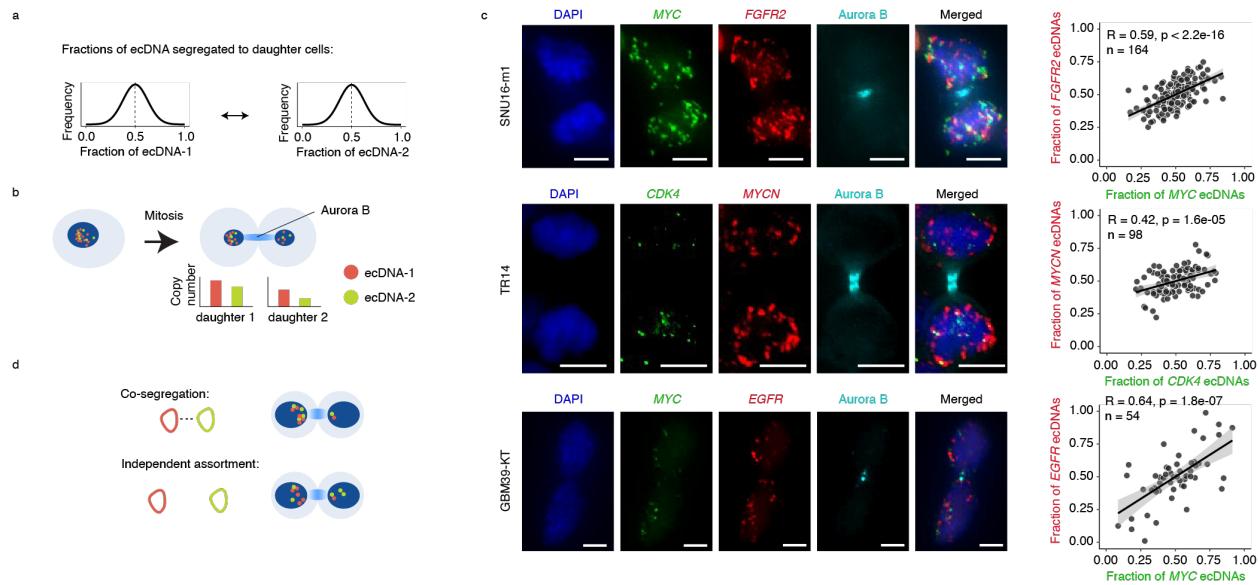
407 **Author Contributions**

408 K.L.H., J.T.L., P.M. and H.Y.C. conceived the project. K.L.H. analyzed single-cell ATAC-
409 seq and RNA-seq data, analyzed ecDNA copy number and colocalization using
410 metaphase DNA FISH images, analyzed ecDNA segregation in mitotic
411 immunofluorescence and DNA FISH images, performed simulations of ecDNA
412 segregation in paired daughter cells, performed CRISPR-CATCH experiments and
413 analyses, integrated ATAC-seq and ChIP-seq data, and analyzed WGS data. M.G.J.
414 performed evolutionary modeling, conducted Pemigatinib treatments in cell culture and
415 performed Nanopore sequencing of SNU16 genomic DNA. I.T.L.W. and J.T.L. performed
416 immunofluorescence staining and DNA FISH in mitotic cells and imaging. J.L. analyzed
417 ecDNA amplicon sequences in TCGA patient tumors using AmpliconClassifier. E.S.
418 created the alternative model of ecDNA co-evolution. K.L.H., B.J.H. and R.L. prepared
419 sequencing libraries for WGS and CRISPR-CATCH. K.L.H. and R.L. prepared
420 sequencing libraries for single-cell ATAC-seq and RNA-seq. I.T.L.W., L.B., R.S., J.R.D.
421 performed DNA FISH and imaging experiments. R.C.G. analyzed scCircle-seq data.
422 J.A.B., B.W., W.H., V.B., A.G.H., P.S.M. and H.Y.C. guided data analysis and provided
423 feedback on experimental design. K.L.H., M.G.J. and H.Y.C. wrote the manuscript with
424 input from all authors.

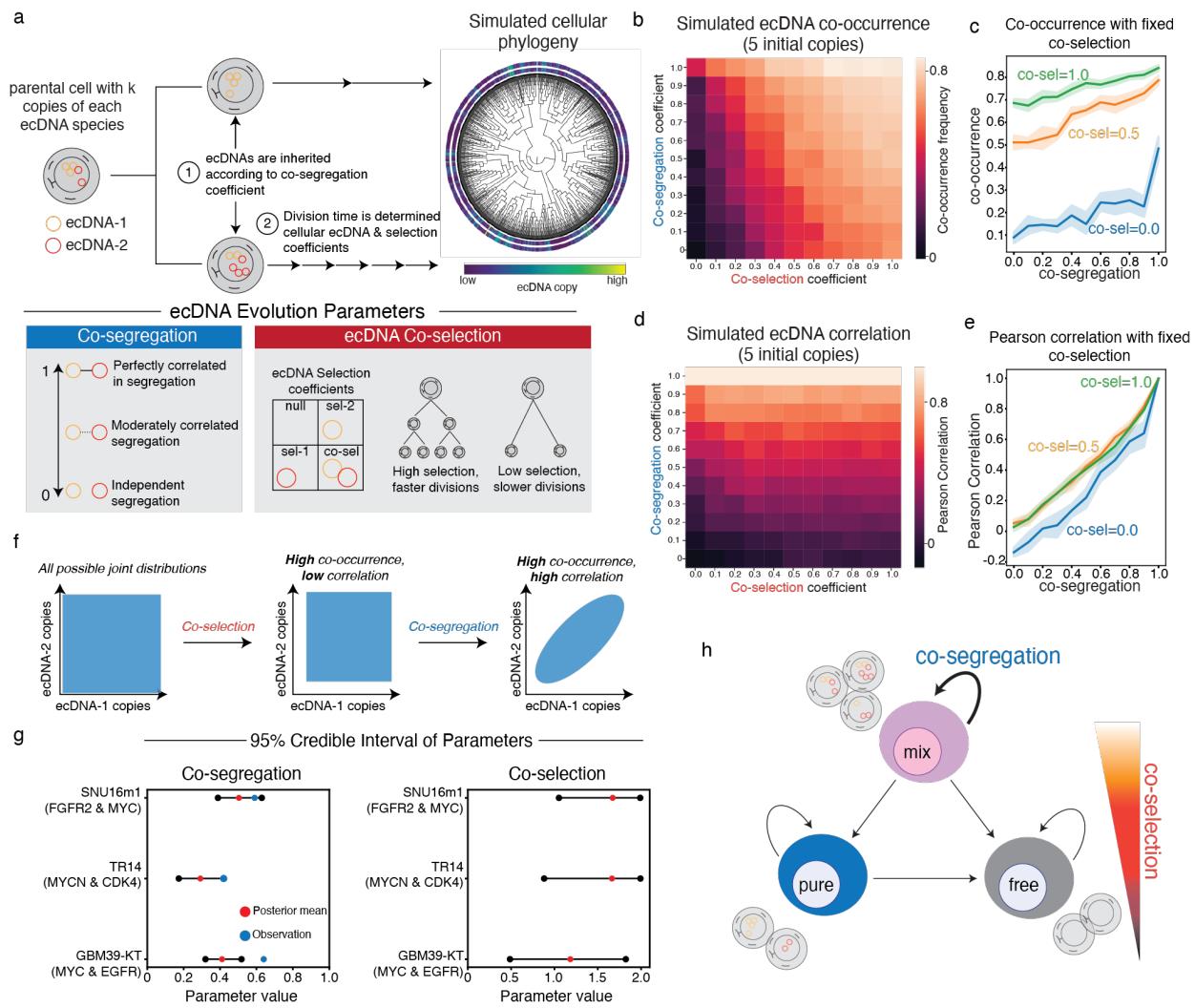

425

426 **Competing Interests**

427 H.Y.C. is a co-founder of Accent Therapeutics, Boundless Bio, Cartography Biosciences,
428 Orbital Therapeutics, and an advisor of 10x Genomics, Arsenal Biosciences, Chroma
429 Medicine, and Spring Discovery. V.B. is a co-founder, paid consultant, SAB member and
430 has equity interest in Boundless Bio, inc. and Abterra, Inc. The terms of this arrangement

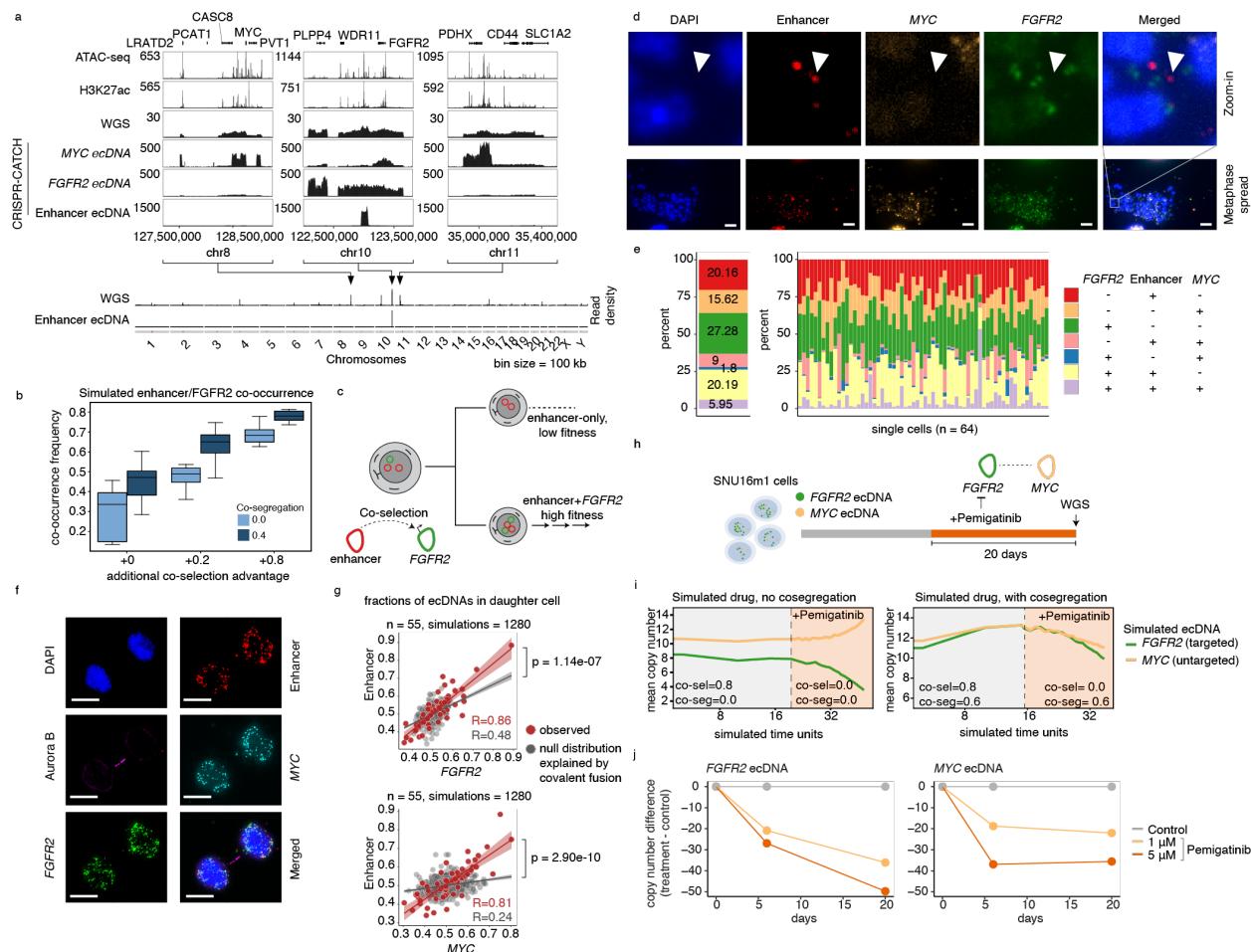

431 have been reviewed and approved by the University of California, San Diego in
432 accordance with its conflict-of-interest policies. M.G.J. consults for and holds equity in
433 Vevo Therapeutics. P.S.M. is a co-founder and advisor of Boundless Bio. The remaining
434 authors declare no competing interests.

FIGURES



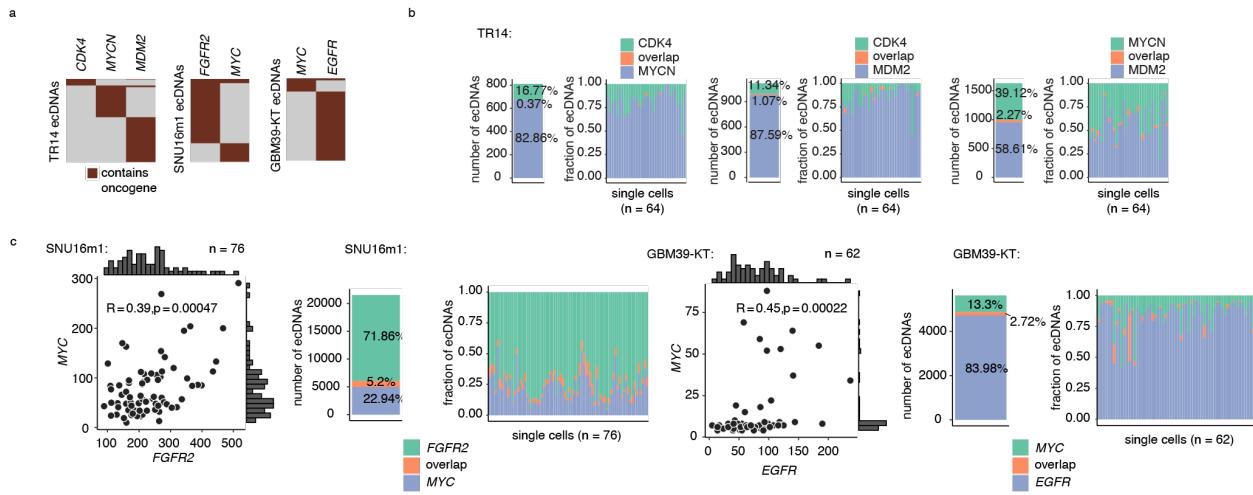
435 **Figure 1. EcDNA species encoding distinct oncogene sequences are correlated in**
436 **individual cancer cells. (a)** Summary of ecDNA-positive tumors (left) and number of
437 ecDNA species (right) identified in TCGA tumor samples. **(b)** Median copy numbers and
438 oncogene statuses of distinct ecDNA species in TCGA tumors identified to have more
439 than one ecDNA species. **(c)** A panel of cell lines with known oncogene sequences on
440 ecDNA. **(d)** Schematic of ecDNA analyses using three orthogonal approaches:
441 metaphase spread, scATAC-seq, and scCircle-seq. **(e)** Representative DNA FISH

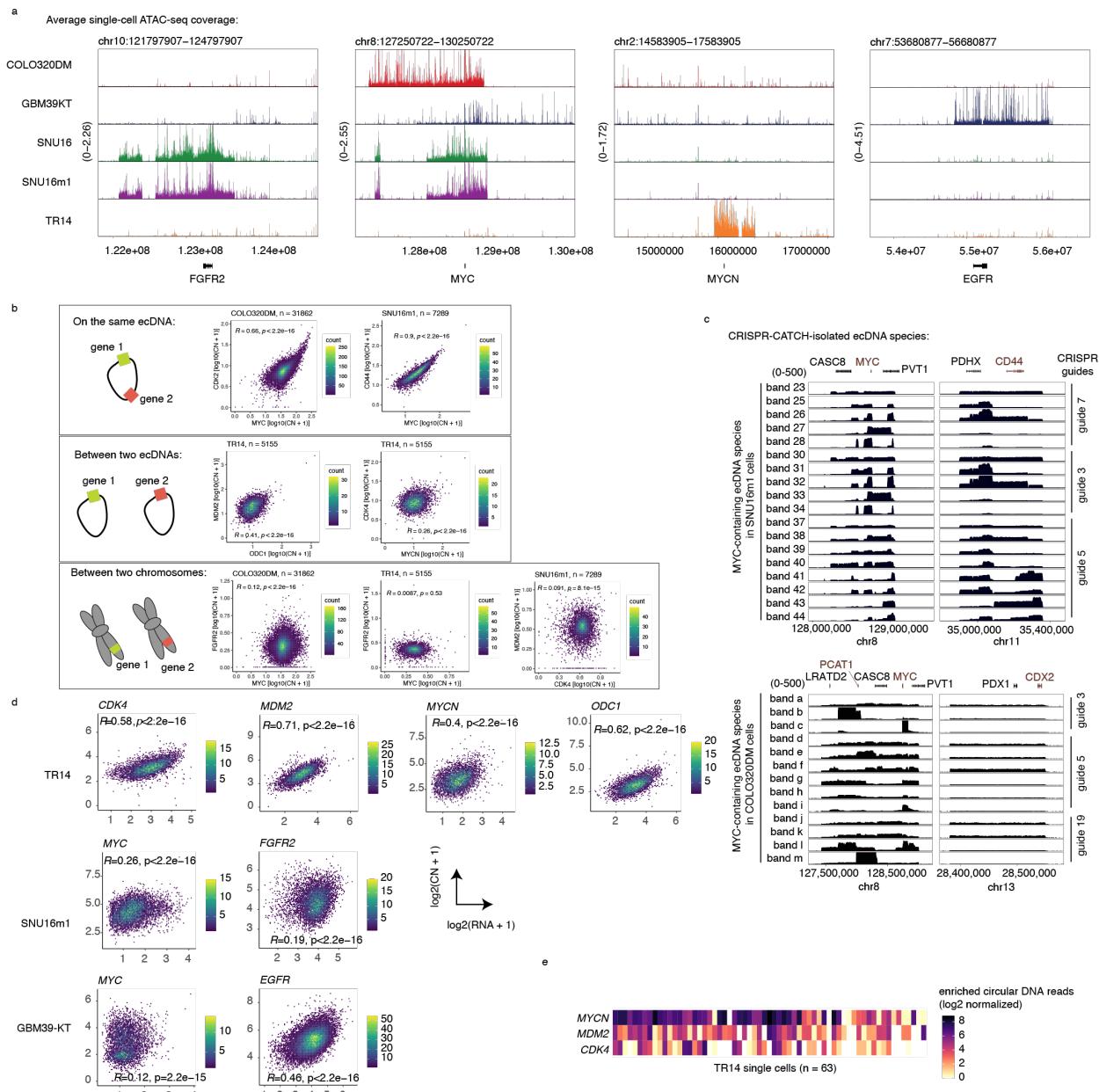
442 images of metaphase spreads with FISH probes targeting various oncogene sequences
443 as indicated. Scale bars are 10 μ m. **(f)** Oncogene copy number scatter plots, histograms
444 and Spearman correlations between pairs of oncogenes in TR14 cells. **(g)** UMAP from
445 scATAC-seq showing cell line annotations (left) and copy number calculations of
446 indicated oncogenes (right panels). **(h)** Density scatter plots of log-transformed oncogene
447 copy numbers and Pearson correlations between pairs of oncogenes in the indicated cell
448 lines. **(i)** Pearson correlation heatmaps of gene pairs on the same ecDNA (top), between
449 two ecDNAs (middle), and between two chromosomes (bottom).



450 **Figure 2. Distinct ecDNA species are co-segregated into daughter cells during**
451 **mitosis. (a)** Copy numbers of individual ecDNA species in a daughter cell after
452 segregation are predicted to follow a Gaussian distribution due to random segregation.
453 **(b)** Pairs of daughter cells undergoing mitosis are identified by immunofluorescence for
454 Aurora kinase B (Aurora B). Individual ecDNA species are visualized using FISH probes
455 targeting specific oncogene sequences for copy number quantification. **(c)**
456 Representative images of pairs of daughter cells undergoing mitosis (left). Scatter plots
457 showing Pearson correlations of per-cell ecDNA contents containing the indicated
458 oncogene sequences in daughter cells (right). Scale bars are 5 μ m. **(d)** Schematic of co-
459 segregation and independent assortment of multiple ecDNA species in mitosis.

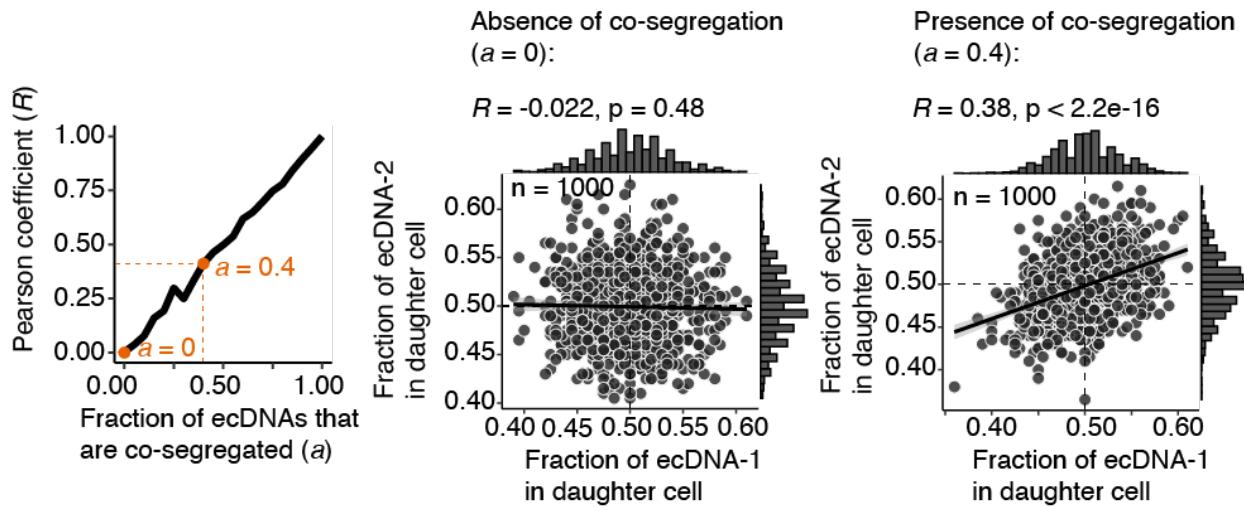
460 **Figure 3. Evolutionary modeling of ecDNA dynamics reveals the principles of**
461 **ecDNA co-inheritance. (a)** The evolutionary modeling framework used in this study.
462 Cancer populations are simulated starting from a single parent cell carrying k different
463 ecDNA species (here, $k=2$) with user-defined initial copy-numbers. Cells divide according
464 to a fitness function, parameterized by user-defined selection coefficients. During cell
465 division, ecDNA is inherited according to a co-segregation coefficient. **(b-e)** Summary
466 statistics of one-million-cell populations and 10 replicates across varying co-selection and
467 co-segregation coefficients beginning with a parental cell with 5 copies of each ecDNA
468 species. The average frequency of cells carrying both ecDNA species (b) and the
469 Pearson correlation of ecDNA copy number within cells (d) are shown across all
470 simulations. The mean frequency of cells carrying both ecDNA species (c) and Pearson's
471 correlation of ecDNA copy number within cells (e) are shown as a function of co-


472 segregation level for fixed levels of co-selection: 0.0, 0.5, and 1.0 (shaded area
473 represents the 95% confidence interval across the experimental replicates). Selection
474 acting on cells carrying one but not both ecDNAs is maintained at 0.2 and selection acting
475 on cells without either ecDNA is maintained at 0.0 across all simulations. **(f)** Schematic
476 representation of the effects of co-selection and co-segregation on the joint distribution of
477 ecDNA copy numbers in cancer cells. **(g)** 95% credible interval for inferred co-segregation
478 and co-selection values for SNU16m1, TR14, and GBM39-KT cell lines. **(h)** Conceptual
479 summary of ecDNA co-evolutionary dynamics.

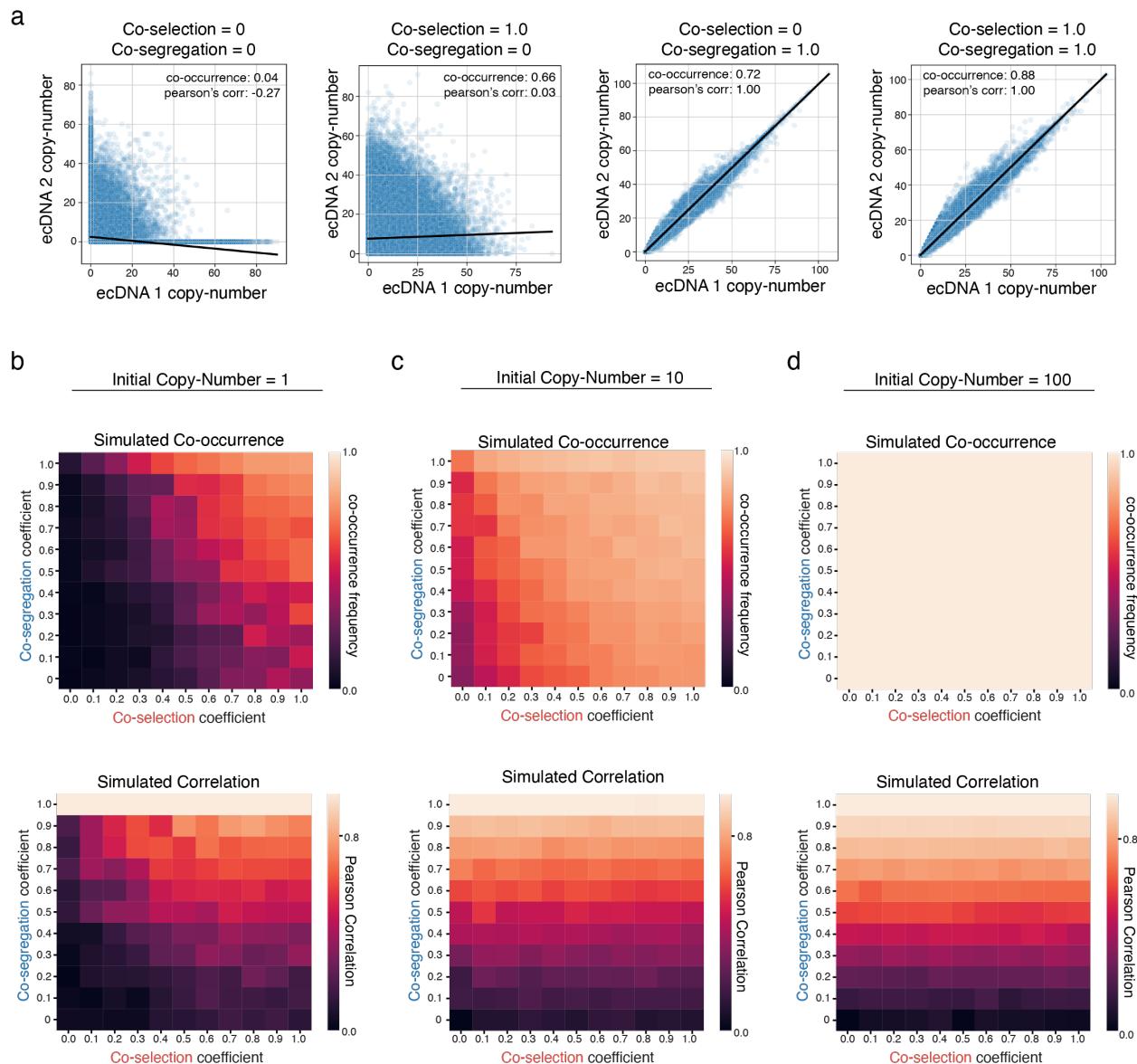

480 **Figure 4. Specialization and therapeutic remodeling of ecDNA species. (a)** From top
481 to bottom: ATAC-seq, H3K27ac ChIP-seq, WGS, CRISPR-CATCH sequencing of *MYC*,
482 *FGFR2* and enhancer ecDNA species in SNU16 cells; whole-genome read density plots
483 of WGS and CRISPR-CATCH sequencing for enhancer ecDNA. **(b)** Simulated
484 frequencies of cells carrying both *FGFR2* and enhancer-only ecDNA species (i.e., co-
485 occurrence) across varying co-selection and co-segregation values. Co-selection
486 advantage is reported as additive on top of selection acting on cells carrying only *FGFR2*
487 ecDNA. Boxplots show the quartiles of the distribution, and whiskers extend to 1.5x the
488 interquartile range. **(c)** Schematic of co-selection of enhancer ecDNA with *FGFR2*
489 ecDNA. **(d-e)** Representative DNA FISH images of metaphase spreads of SNU16 cells
490 with probes targeting the enhancer, *MYC* and *FGFR2* sequences (d), and quantification
491 of the frequency of each ecDNA species (e). Scale bars are 10 μm. **(f)** Representative
492 images of pairs of SNU16 daughter cells undergoing mitosis identified by
493 immunofluorescence for Aurora kinase B (Aurora B). Individual ecDNA species are

494 visualized using FISH probes targeting specific oncogene or enhancer sequences for
495 copy number quantification. Scale bars are 10 μ m. **(g)** Correlation of fractions of ecDNA
496 species in one of each daughter cell pair compared to simulated null distribution explained
497 by covalent fusion (Methods). **(h)** Schematic of *FGFR2* inhibition with Pemigatinib in
498 SNU16m1 cells. **(i)** Computational modeling of *FGFR2* and *MYC* copy numbers in
499 simulated Pemigatinib inhibition experiment with and without co-segregation. Drug
500 efficacy is modeled using decreasing co-selection values. **(j)** Copy-number estimates of
501 *FGFR2* and *MYC* ecDNA in SNU16m1 cells with Pemigatinib treatment or control.
502 Enhancer DNA FISH probe targets the following hg19 genomic coordinates:
503 chr10:123023934-123065872 (WI2-2856M1).

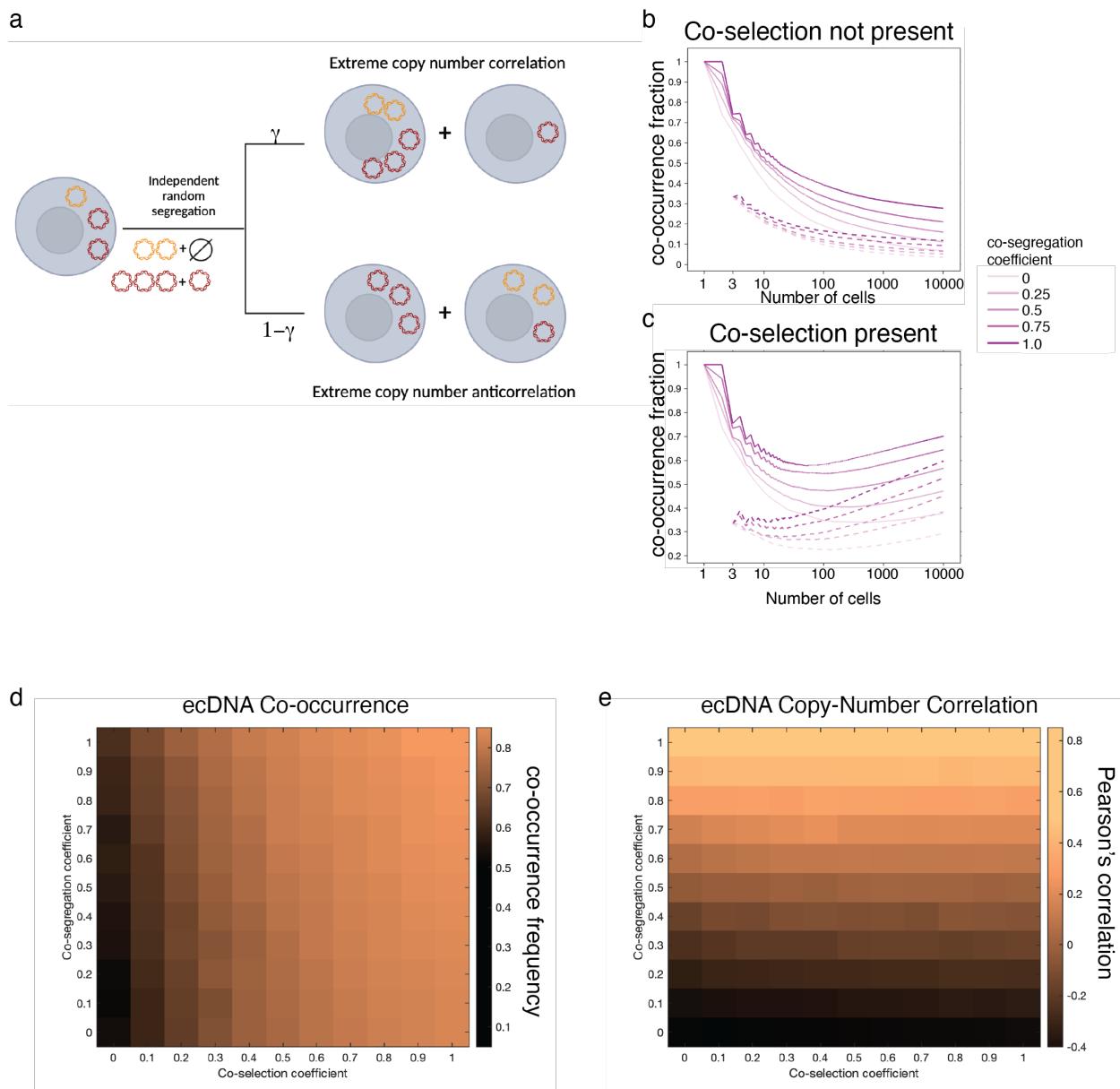
EXTENDED DATA FIGURES


504 **Extended Data Figure 1. Oncogenes are harbored on distinct ecDNA species but**
505 **are correlated in copy number. (a)** Heatmaps showing non-overlapping oncogene
506 presence on distinct ecDNA species in metaphase DNA FISH. Rows represents individual
507 ecDNA molecules. **(b)** Bar plots showing the fractions of ecDNAs containing combinations
508 of MYCN, CDK4 or MDM2 and demonstrating little overlap between these oncogenes on
509 the same ecDNA molecules. **(c)** Copy number correlations and distributions of oncogene
510 ecDNAs in metaphase DNA FISH images (left), and bar plots showing the fractions of
511 ecDNAs containing combinations of *FGFR2* and *MYC* in SNU16m1 cells and
512 combinations of *MYC* and *EGFR* in GBM39-KT cells, demonstrating little overlap between
513 these oncogenes on the same ecDNA molecules (right).

514


515 **Extended Data Figure 2. Distinct ecDNA amplifications co-occur and correlate at**
 516 **the single-cell level and their copy numbers affect transcriptional outcomes of**
 517 **oncogenes. (a)** Elevated scATAC-seq background coverages of oncogene loci in
 518 correspondence to ecDNA copy number amplification in the various indicated cell lines.
 519 **(b)** Density scatter plots showing levels of copy number correlation between gene pairs
 520 on the same ecDNA, on different ecDNAs, and on different chromosomes. **(c)**
 521 Sequencing coverages of ecDNA species isolated by CRISPR-CATCH from SNU16m1
 522 cells and COLO320DM cells, identifying genes that are frequently linked on the same

523 ecDNA species (Methods). Each row represents a distinct ecDNA species isolated by
524 molecular size fractionation using CRISPR-CATCH. Gene annotations in red are gene
525 pairs classified as being on the same ecDNA in Figure 1. All guide sequences are
526 provided in **Supplementary Table 1**. (d) Density scatter plots showing correlation
527 between oncogene copy number and RNA expression in paired scATAC-seq and RNA-
528 seq. Cells with zero values were filtered. (e) Heatmap showing co-enrichment of circular
529 DNA species containing *MYCN*, *MDM2* or *CDK4* in individual TR14 neuroblastoma cells
530 in scCircle-seq.



531

532 **Extended Data Figure 3. Copy number correlation between ecDNA species in**
533 **daughter cells undergoing mitosis suggests co-segregation.** Segregation of two
534 ecDNA species with 100 copies each was simulated by random sampling with varying
535 levels of co-segregation (1000 simulations per co-segregation fraction a ; Methods). As
536 the fraction (a) of ecDNAs that are co-segregated increases from 0.00 (no co-
537 segregation) to 1.00 (each copy of one ecDNA species is perfectly co-segregated with a
538 copy of another species) in increments of 0.05, the Pearson coefficient R of the copy
539 numbers of two ecDNA species in individual daughter cells increases linearly (left panel).
540 Thus, in the absence of co-segregation, no copy number correlation in mitotic daughter
541 cells is expected (middle panel), while in the presence of a modest level of co-segregation
542 (a fraction of 0.4, or 40% of one ecDNA species co-segregating with 40% of another), a
543 Pearson coefficient R of 0.38 is expected (right panel).

553 only one but not both ecDNA species is maintained at 0.2 and selection acting on cells
554 without either ecDNA is maintained at 0.0 for all simulations.

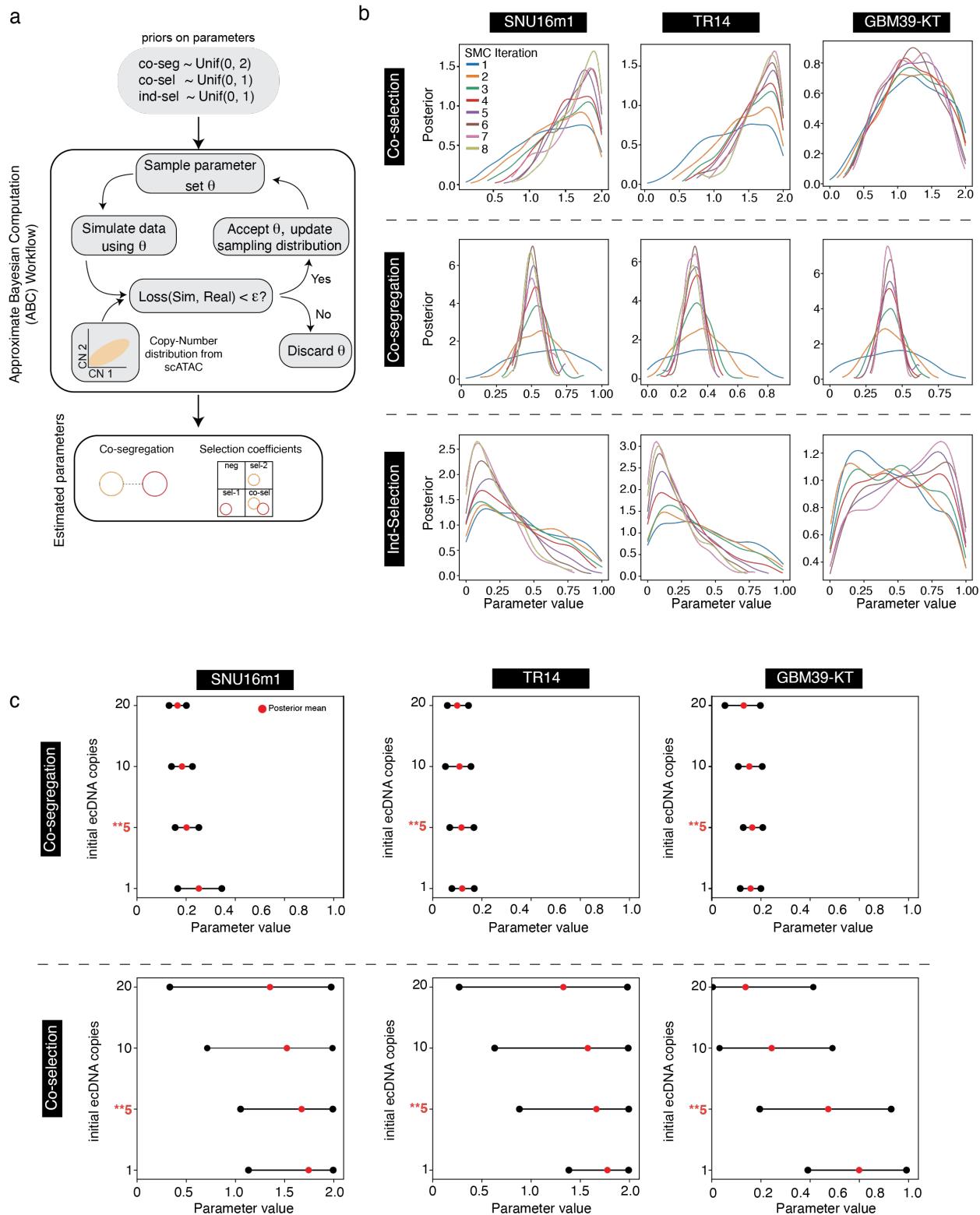
555

556 **Extended Data Figure 5. EcDNA co-inheritance dynamics using an alternative**

557 **model of ecDNA evolution. (a)** A schematic illustrating an alternative model of ecDNA

558 evolution, parameterized by selection acting on cells carrying no, both, or either ecDNA as

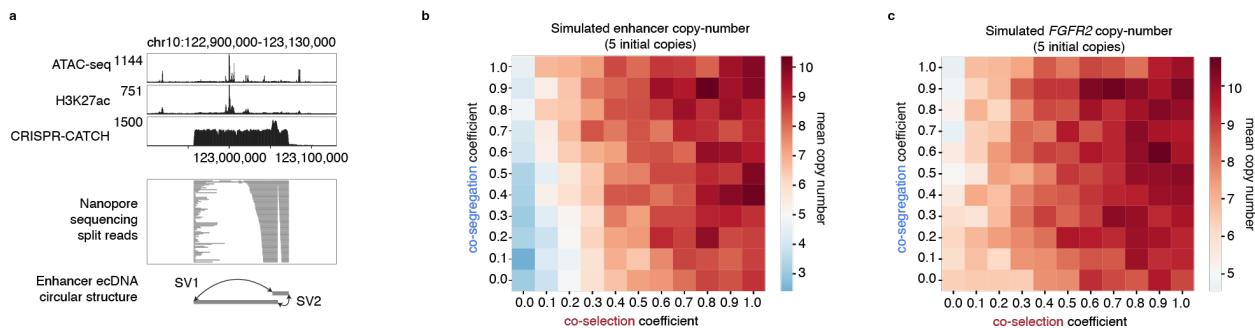
559 well as a co-segregation parameter γ . **(b-c)** Frequency of cells carrying both ecDNA


560 species reported as a function of number of cells during a simulation for variable levels of

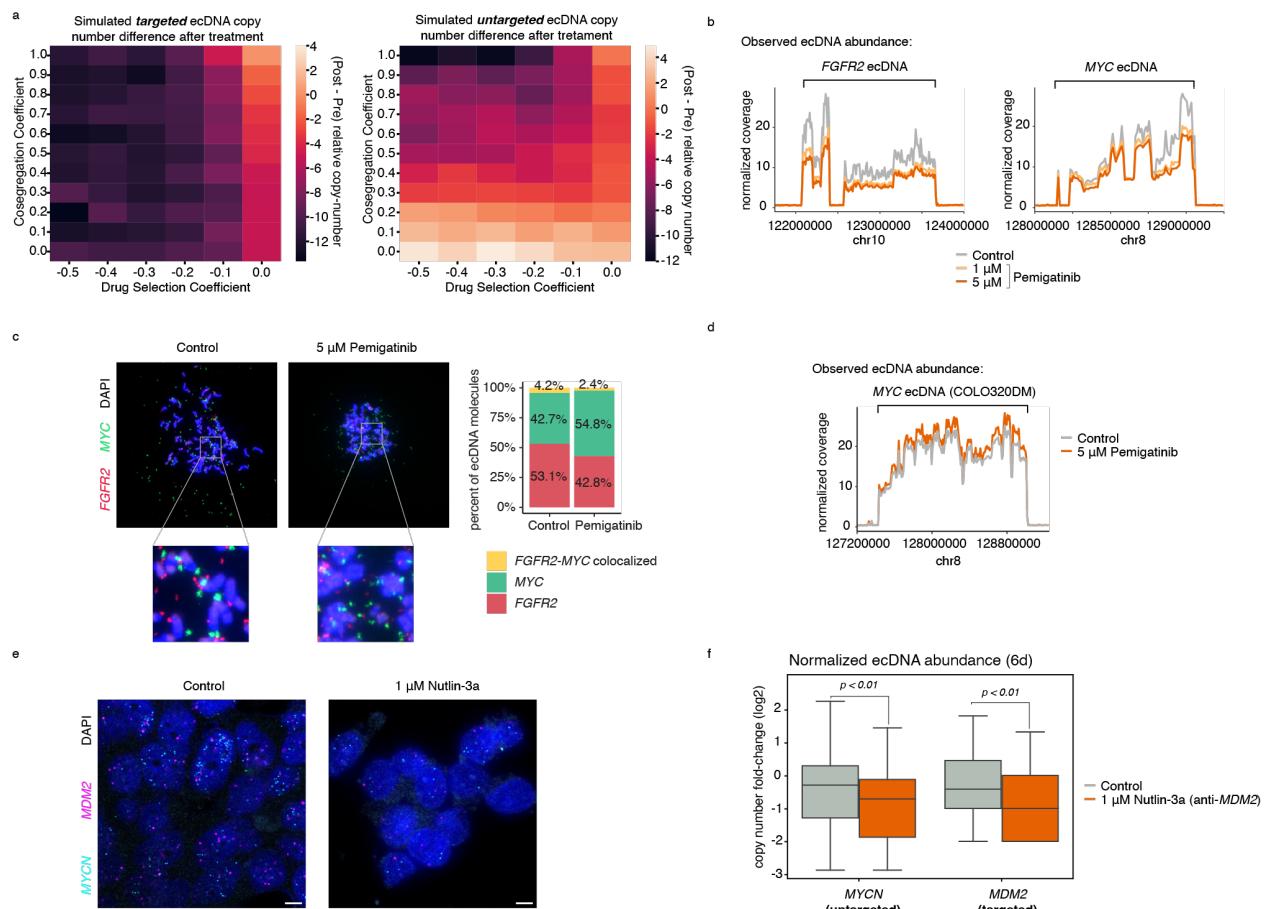
561 co-segregation and with **(b)** or without **(c)** co-selection. **(d-e)** Average frequencies of cells

562 carrying both ecDNA species **(d)** and the Pearson's correlation of ecDNA copy numbers

563 across 500 replicates of simulations of 10,000 cells while varying co-selection and co-


564 segregation values.

565


566 **Extended Data Figure 6. Analysis of Approximate Bayesian Computation (ABC)**
 567 **inference stability. (a)** Schematic of ABC inference workflow: posterior distributions over

568 parameters are inferred from user-defined priors and observed single-cell copy-number
569 data using sequential model fitting on our evolutiony model. **(b)** Posterior distributions
570 of co-selection, co-segregation, and individual selection values for inferences in
571 SNU16m1, TR14, and GBM39-KT across sequential iterations of Approximate Bayesian
572 Inference Sequential Monte Carlo (ABC-SMC). **(c)** 95% credible interval of inferred co-
573 segregation and co-selection values from ABC-SMC across the cell lines studied in this
574 report with variable initial ecDNA copy numbers (1, 5, 10, 20). The initial ecDNA copy
575 number (5) used in the main text is highlighted in red.

576

577 **Extended Data Figure 7. Structure and dynamics of the enhancer ecDNA. (a)** From
578 top to bottom: ATAC-seq, H3K27ac ChIP-seq, CRISPR-CATCH sequencing of enhancer-
579 only ecDNA species in SNU16 cells, individual split reads in Nanopore sequencing
580 supporting the circular enhancer-only ecDNA species, and structural variants (SV1 and
581 SV2) that create a circular structure. SV1: precise inversion between chr10:122957191
582 and chr10:123051954; SV2: precise inversion between chr10:123058196 and
583 chr10:123071737. **(b-c)** Simulated copy number of enhancer-only ecDNA **(b)** and *FGFR2*
584 ecDNA **(c)** under various settings of co-selection and co-segregation. Individual selection
585 on the enhancer-only species was kept at 0.0, and individual selection on the *FGFR2*
586 ecDNA was kept at 0.2. One million cells were simulated from a parent cell carrying 5
587 copies of both species. 10 replicates were simulated and the average value was reported.

588

589 **Extended Data Figure 8. Pemigatinib results in coordinated decreases in ecDNA**
 590 **copy numbers but not via oncogene fusion or direct targeting of MYC.** (a) Simulated
 591 changes in copy number after targeted treatment for the ecDNA directly or indirectly being
 592 targeted under various parameters of co-segregation and drug selection. 500,000 cells
 593 were simulated, and average values were reported across 10 replicates. (b) WGS
 594 coverage of *FGFR2* and *MYC* ecDNA genomic intervals after 20 days of Pemigatinib
 595 treatment at 1 μ M and 5 μ M compared to PBS control. (c) Representative metaphase
 596 DNA FISH images showing distinct *FGFR2* and *MYC* ecDNA species in SNU16m1 cells
 597 after 20 days of treatment with 5 μ M Pemigatinib or PBS control (left), and quantification
 598 of distinct and colocalized *FGFR2*-*MYC* DNA FISH signals (right). (d) WGS coverage of
 599 *MYC* ecDNA genomic interval in COLO320DM cells after 20 days of treatment with 5 μ M
 600 Pemigatinib compared to PBS control. (e) Representative images of DNA FISH on
 601 interphase TR14 cells with and without 1 μ M Nutlin-3a treatment after 6 days. Scale bars
 602 are 5 μ m. (f) Normalized copy number of *MDM2* and *MYCN* in TR14 cells after 6 days of

603 1 μ M Nutlin-3a or DMSO control treatment (p-values computed with a one-sided Wilcoxon
604 rank-sums test). Boxplots show the quartiles of the distribution, and whiskers extend to
605 1.5x the interquartile range.

606 **METHODS**

607 **Cell culture**

608 The TR14 neuroblastoma cell line was a gift from J. J. Molenaar (Princess Máxima
609 Center for Pediatric Oncology, Utrecht, Netherlands). Cell line identity for the master stock
610 was verified by STR genotyping (IDEXX BioResearch, Westbrook, ME). The GBM39-KT
611 cell line was derived from a patient with glioblastoma as described previously⁷. Parental
612 SNU16 was obtained from ATCC. The monoclonal SNU16m1 was a subline of the
613 parental SNU16 cells generated from a single cell after lentiviral transduction and stable
614 expression of dCas9-KRAB as we previously described⁹. SNU16 and SNU16m1 cells
615 were maintained in Dulbecco's modified Eagle's medium/nutrient mixture F-12
616 (DMEM/F12 1:1; Gibco, 11320-082), 10% fetal bovine serum (FBS; Hyclone,
617 SH30396.03) and 1% pen-strep (Thermo Fisher Scientific, 15140-122). COLO320-DM
618 cells were maintained in DMEM (Thermo Fisher Scientific, 11995073) supplemented with
619 10% FBS and 1% pen-strep. GBM39-KT cells were maintained in DMEM/F12 1:1, B-27
620 supplement (Gibco, 17504044), 1% pen-strep, GlutaMAX (Gibco, 35050061), human
621 epidermal growth factor (EGF, 20 ng ml⁻¹; Sigma-Aldrich, E9644), human fibroblast
622 growth factor (FGF, 20 ng ml⁻¹; Peprotech) and heparin (5 µg ml⁻¹; Sigma-Aldrich,
623 H3149-500KU). TR14 cells were grown in RPMI 1640 with 20% FBS and 1% pen-strep.
624 For the mitotic cell imaging experiments in Figure 2, SNU16m1 cells were grown in
625 Roswell Park Memorial Institute (RPMI) 1640 with 10% FBS. All cells were cultured at
626 37 °C with 5% CO₂. All cell lines tested negative for mycoplasma contamination.

627

628 **WGS**

629 WGS libraries were prepared by DNA fragmentation. We first transposed it with Tn5
630 transposase produced as previously described⁴², in a 50-µl reaction with TD buffer⁴³, 50
631 ng DNA and 1 µl transposase. The reaction was performed at 50°C for 5 minutes, and
632 transposed DNA was purified using MinElute PCR Purification Kit (Qiagen, 28006).
633 Libraries were generated by 5-7 rounds of PCR amplification using NEBNext High-Fidelity
634 2× PCR Master Mix (NEB, M0541L), purified using SPRIselect reagent kit (Beckman
635 Coulter, B23317) with double size selection (0.8× right, 1.2× left) and sequenced on the
636 Illumina Nextseq 550 or the Illumina NovaSeq 6000 platform. Reads were trimmed of

637 adapter content with Trimmomatic⁴⁴ (version 0.39), aligned to the hg19 genome using
638 BWA MEM⁴⁵ (0.7.17-r1188), and PCR duplicates removed using Picard's MarkDuplicates
639 (version 2.25.3). WGS data from bulk SNU16 cells were previously generated
640 (SRR530826, Genome Research Foundation).

641

642 **Analysis of ecDNA sequences in TCGA patient tumors**

643 We utilized AmpliconArchitect (v1.0) outputs from Kim et al. 2020², and classified
644 focal amplifications types present in these outputs using AmpliconClassifier (v0.4.14) with
645 the “—filter_similar” flag set and otherwise default settings. The “—filter_similar” option
646 removes likely false positive focal amplification calls which contain far greater-than-
647 expected levels of overlapping SVs and shared genomic boundaries between ecDNAs of
648 unrelated samples. Of 8810 AA amplicons in the Kim et al. TCGA dataset, 45 were
649 removed by this filter. Individual samples were considered to have a number of ecDNA
650 species equal to the total number of ecDNA species predicted in each AA amplicon,
651 across all AA amplicons detected in the sample. A list of oncogenes was created using
652 genes in the the ONGene database (<https://pubmed.ncbi.nlm.nih.gov/28162959/>) and
653 COSMIC (<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450507/>).

654

655 **Paired single-cell ATAC-seq and RNA-seq library generation**

656 Single-cell paired RNA and ATAC-seq libraries were generated on the 10x Chromium
657 Single-Cell Multiome ATAC + Gene Expression platform following the manufacturer's
658 protocol and sequenced on an Illumina NovaSeq 6000. Data for COLO320DM were
659 generated previously in Hung et al. 2021⁹ and published under GEO accession
660 GSE159986.

661

662 **Paired single-cell ATAC-seq and RNA-seq analysis**

663 A custom reference package for hg19 was created using cellranger-arc mkref (10x
664 Genomics, version 1.0.0). The single-cell paired RNA and ATAC-seq reads were aligned
665 to the hg19 reference genome using cellranger-arc count (10x Genomics, version 1.0.0).

666 Subsequent analyses on RNA were performed using Seurat (version 3.2.3)⁴⁶, and
667 those on ATAC-seq were performed using ArchR (version 1.0.1)⁴⁷. Cells with more than

668 200 unique RNA features, less than 20% mitochondrial RNA reads, less than 50,000 total
669 RNA reads were retained for further analyses. Doublets were removed using ArchR. Raw
670 RNA counts were log-normalized using Seurat's NormalizeData function and scaled using
671 the ScaleData function. Dimensionality reduction for the ATAC-seq data were performed
672 using Iterative Latent Semantic Indexing (LSI) with the addIterativeLSI function in ArchR.

673 We then calculated amplicon copy numbers based on background ATAC-seq
674 signals as we previously described and validated^{9,48}. Briefly, we determined read counts
675 in large intervals across the genome using a sliding window of three megabases moving
676 in one-megabase increments across the reference genome. Genomic regions with known
677 mapping artifacts were filtered out using the ENCODE hg19 blacklist. For each interval,
678 insertions per base pair were calculated and compared to 100 of its nearest neighbors
679 with matched GC nucleotide content. Mean \log_2 (fold change) was computed for each
680 interval. Based on a diploid genome, copy numbers were calculated using the formula
681 $CN = 2 * [2 ^ \log_2(FC)]$, where CN denotes copy number and FC denotes mean fold
682 change compared to neighboring intervals. To query the copy numbers of a gene, we
683 obtained all genomic intervals that overlapped with the annotated gene sequence and
684 and computed the mean copy number of those intervals.

685

686 **Single-cell Circle-seq**

687 TR14 scCircle-seq data were deposited in the European Genome-phenome
688 Archive (EGA) under the accession number: EGAS00001007026. A detailed description
689 of the single-cell extrachromosomal circular DNA and transcriptome sequencing
690 (scEC&T-seq) protocol is available on *Nature protocol exchange* (DOI:
691 10.21203/rs.3.pex-2180/v1). In short, single cells were separated into individual wells of
692 a 96-well plates using FACS. Separation of genomic DNA and mRNA was performed as
693 described in the G&T-seq protocol by Macaulay et al. 2015⁴⁹. Genomic DNA of single
694 cells was purified using 0.8× AMPure XP beads and subjected to exonuclease digestion
695 and rolling-circle amplification as described in Chamorro González et al, 2023 (in press).
696 All single-cell libraries were prepared using the NEBNext Ultra II FS kit (New England
697 Biolabs) following the manufacturer's instructions but using one-fourth volumes. Unique
698 dual index primer pairs (New England Biolabs) were used to barcode single-cell libraries.

699 Pooled libraries were sequenced on the Illumina HiSeq 4000 or the NovaSeq 6000
700 platform with 2 × 150bp paired-end reads for genomic DNA and circular DNA libraries
701 and 2 × 75 bp paired-end reads for cDNA libraries.

702

703 **ecDNA isolation by CRISPR-CATCH**

704 Molecular isolation of ecDNA by CRISPR-CATCH was performed as previously
705 described¹⁰. Briefly, molten 1% certified low melt agarose (Bio-Rad, 1613112) in PBS was
706 equilibrated to 45°C. 1 million cells were pelleted per condition, washed twice with cold
707 1× PBS, resuspended in 30 µl PBS, and briefly heated to 37°C. 30 µl agarose solution
708 was added to cells, mixed, transferred to a plug mold (Bio-Rad Laboratories, Cat
709 #1703713) and incubated on ice for 10 minutes. Solid agarose plugs containing cells were
710 ejected into 1.5-ml Eppendorf tubes, suspended in buffer SDE (1% SDS, 25 mM EDTA
711 at pH 8.0) and placed on a shaker for 10 minutes. The buffer was removed and buffer ES
712 (1% N-lauroylsarcosine sodium salt solution, 25 mM EDTA at pH 8.0, 50 µg/ml proteinase
713 K) was added. Agarose plugs were incubated in buffer ES at 50°C overnight. On the
714 following day, proteinase K was inactivated with 25 mM EDTA with 1 mM PMSF for 1
715 hour at room temperature with shaking. Plugs were then treated with RNase A (1 mg/ml)
716 in 25 mM EDTA for 30 minutes at 37°C, and washed with 25 mM EDTA with a 5-minute
717 incubation. Plugs not directly used for ecDNA enrichment were stored in 25 mM EDTA at
718 4°C.

719 To perform *in-vitro* Cas9 digestion, agarose plugs containing DNA were washed
720 three times with 1× NEBuffer 3.1 (New England BioLabs) with 5-minute incubations. Next,
721 DNA was digested in a reaction with 30 nM single-guide RNA (sgRNA, Synthego) and 30
722 nM spCas9 (New England BioLabs, M0386S) after pre-incubation of the reaction mix at
723 room temperature for 10 minutes. Cas9 digestion was performed at 37°C for 4 hours,
724 followed by overnight digestion with 3 µl proteinase K (20 mg/ml) in a 200 µl reaction. On
725 the following day, proteinase K was inactivated with 1 mM PMSF for 1 hour with shaking.
726 plugs were then washed with 0.5× TAE buffer three times with 5-minute incubations.
727 Plugs were loaded into a 1% certified low melt agarose gel (Bio-Rad, 1613112) in 0.5×
728 TAE buffer with ladders (CHEF DNA Size Marker, 0.2–2.2 Mb, *Saccharomyces cerevisiae*
729 Ladder: Bio-Rad, 1703605; CHEF DNA Size Marker, 1–3.1 Mb, *Hansenula wingei*

730 Ladder: Bio-Rad, 1703667) and PFGE was performed using the CHEF Mapper XA
731 System (Bio-Rad) according to the manufacturer's instructions and using the following
732 settings: 0.5× TAE running buffer, 14°C, two-state mode, run time duration of 16 hours
733 39 minutes, initial switch time of 20.16 seconds, final switch time of 2 minutes 55.12
734 seconds, gradient of 6 V/cm, included angle of 120°, and linear ramping. Gel was stained
735 with 3× Gelred (Biotium) with 0.1 M NaCl on a rocker for 30 minutes covered from light
736 and imaged. Bands were then extracted and DNA was isolated from agarose blocks using
737 beta-Agarase I (New England BioLabs, M0392L) following the manufacturer's
738 instructions. All guide sequences are provided in **Supplementary Table 1**.

739

740 **Short-read sequencing of ecDNA isolated by CRISPR-CATCH**

741 Sequencing of ecDNA isolated by CRISPR-CATCH was performed as previously
742 described¹⁰. Briefly, we transposed DNA with Tn5 transposase produced as previously
743 described⁴², in a 50-μl reaction with TD buffer⁴³, 10 ng DNA and 1 μl transposase. The
744 reaction was performed at 50°C for 5 minutes, and transposed DNA was purified using
745 MinElute PCR Purification Kit (Qiagen, 28006). Libraries were generated by 7-9 rounds
746 of PCR amplification using NEBNext High-Fidelity 2× PCR Master Mix (NEB, M0541L),
747 purified using SPRIselect reagent kit (Beckman Coulter, B23317) with double size
748 selection (0.8× right, 1.2× left) and sequenced on the Illumina Nextseq 550 or the Illumina
749 NovaSeq 6000 platform. Sequencing data were processed as described above for WGS.
750 CRISPR-CATCH sequencing data for SNU16m1 (bands 29-34) and COLO320DM
751 (bands a-m) used in **Extended Data Figure 1** were generated previously in Hung et al.
752 2021⁹ and deposited in NCBI Sequence Read Archive (SRA) under BioProject accession
753 PRJNA670737; CRISPR-CATCH sequencing data for SNU16 (*MYC*, *FGFR2* and
754 enhancer ecDNAs) used in **Figure 4** were generated previously in Hung et al. 2022¹⁰ and
755 deposited in NCBI SRA under BioProject accession PRJNA777710.

756

757 **Metaphase DNA FISH**

758 TR14 neuroblastoma cells were grown to 70% confluence in a 15 cm dish and
759 treated with KaryoMAX™ Colcemid™ (Gibco) for four hours. A mitotic shake off was
760 preformed and the media of the cells was collected. The remaining cells were washed

761 with PBS and treated with Trypsin-EDTA 0,05 % (Gibco) for 2 minutes. The cells were
762 washed again with the collected media and spun down at 300 g for 10 minutes. The pellet
763 was resuspended at 0.075M KCl and left at 37°C for 20 minutes. The sample was spun
764 down at 300 g for 5 minutes. The cell pellet was resuspended carefully in 10 mL Carnoy's
765 solution and spun down at 300 g for 5 minutes. This washing step was repeated 4 times
766 using 5 mL of Carnoy's solution. The remaining pellet was resuspended in 400 µl of
767 Carnoy's solution. 12 µl of the suspension was dropped on preheated slides from a height
768 of approximately 15 cm. The slides were held over a heated water bath (55 °C) for one
769 minute. Slides were aged overnight at room temperature. Slides were prepared for
770 staining following the probe manufacturer's protocol (DNA FISH Metaphase Chromosome
771 spreads, Arbor Biosciences). Before staining, slides were firstly washed in PBS, followed
772 by a wash in 65°C SSCT (5 mL 20x SSC, 500 µl 10% Tween 20, bring up to 50 mL with
773 molecular grade H2O) for 15 minutes. Afterwards, slides were washed 2 times for 2
774 minutes with room temperature SSCT. Dehydration of the slides was done in 70% and
775 90% ethanol for 5 minutes each. After airdrying, slides were transferred into 0.07 N NaOH
776 for 3 minutes for chemical denaturation. After 2 washes for 5 minutes in SSCT, the
777 dehydration step was repeated, and slides were airdried. The probes used for staining
778 were designed to target the *MYCN*, *MDM2* and *CDK4* gene by myTags® (Arbor),
779 conjugated as following: CDK4- Alexa 488, MYCN- Atto 550, MDM2- Atto 633. 10 µl of
780 the hybridization buffer (in SSCT: 50 % formamide, 10% dextran sulphate, 40 ng/µl
781 RNase A) were mixed with 1,5 µl of each resuspended probe. This mixture was headed
782 to 70 °C for 5 minutes and stored on ice. 14,5 µl were added to the slide, covered by a
783 cover glass, and sealed with rubber cement. The slides were incubated in a hybridization
784 chamber (Abbott Molecular) overnight at 37 °C. On the next day, rubber cement and cover
785 glass were removed, and the sample was washed in prewarmed (37 °C) SSCT for 30
786 minutes. Afterwards, slides were washed at room temperature with 2 times SSCT for 5
787 minutes each followed by a 5 minutes wash with PBS. The air-dried slide was stained
788 with Hoechst (1: 4000 for 2 minutes) and washed with PBS for another 5 minutes. After
789 drying, the slides were mounted using ProLong Glass Antifade Mountant (ThermoFisher
790 Scientific) and sealed with a coverglass. Imaging of TR14 metaphase spreads was done
791 on the Leica Stellaris 8 (Advanced light microscopy facility, Max- Delbrück Center for

792 molecular medicine) using a 63x oil objective with a 2x zoom. Excitation was done using
793 the 405, 488, 561 and 538 lasers and detection was done using two HyD S and one HyD
794 X and HyD R detectors. 4x line averaging was applied to each channel.

795 For the GBM39-KT, SNU16 and SNU16m1 cell lines, cells were treated with
796 KaryoMAX Colcemid (Gibco) at 100 ng ml⁻¹ for 3 hours, and single cell suspensions were
797 then collected by centrifugation and washed once in 1× PBS. The cells were treated with
798 0.75M KCl hypotonic buffer for 20 minutes at 37 °C, and fixed with Carnoy's fixative (3:1
799 methanol:glacial acetic acid) followed by three additional washes with the same fixative.
800 The samples were then dropped onto humidified glass slides and air-dried. The glass
801 slides were then briefly equilibrated in 2× SSC buffer, dehydrated in ascending ethanol
802 concentrations of 70%, 85% and 100% for 2 minutes each. FISH probes (Empire
803 Genomics) were diluted in hybridization buffer in 1:6 ratio and covered with a coverslip.
804 Samples were denatured at 75 °C for 3 minutes and hybridized at 37 °C overnight in a
805 humidified slide moat. The samples were washed with 0.4× SSC for 2 minutes, and 2×
806 SSC 0.1% Tween 20 for another 2 minutes. The nuclei were stained with 4,6-Diamidino-
807 2-phenylindole (DAPI) (50 ng ml⁻¹) diluted in 2× SSC for about a minute, and washed
808 once briefly in ddH₂O. Air-dried samples were mounted with ProLong Diamond. Images
809 were acquired on a Leica DMi8 widefield microscope using a 63× oil objective.
810

811 Metaphase DNA FISH image analysis

812 Colocalization analysis for two- and three-color metaphase FISH described in
813 **Figure 1** and **Extended Data Figure 1** was performed using Fiji (version 2.1.0/1.53c)⁵⁰.
814 Images were split into the individual FISH colors + DAPI channels, and signal threshold
815 set manually to remove background fluorescence. Overlapping FISH signals were
816 segmented using watershed segmentation. FISH signals were counted using particle
817 analysis. XY coordinates of pixels containing FISH signals were saved along with image
818 dimensions and coordinates of regions of interest (ROIs) as distinct particle identities (e.g.
819 distinct ecDNA molecules). Colocalization was then quantified in R. Each pixel containing
820 FISH signal was assigned to the nearest overlapping ROI using XY coordinates. Unique
821 ROIs in all color channels were summarized such that ROIs in different channels that

822 overlap with one another by one pixel or more in the same image were considered as
823 colocalized.

824 Colocalization analysis for two-color metaphase FISH data for ecDNAs in SNU16
825 cells described in **Extended Data Figure 8c** was performed using Fiji (version
826 2.1.0/1.53c)⁵⁰. Images were split into the two FISH colors + DAPI channels, and signal
827 threshold set manually to remove background fluorescence. Overlapping FISH signals
828 were segmented using watershed segmentation. Colocalization was quantified using the
829 ImageJ-Colocalization Threshold program and individual and colocalized FISH signals
830 were counted using particle analysis.

831

832 **Immunofluorescence staining and DNA FISH in mitotic cells**

833 For assessing mitotic segregation of ecDNA in GBM39-KT, TR14 and SNU16m1
834 cells shown in Figure 2, asynchronous cells were grown on poly-L-lysine-coated
835 coverslips (laminin for GBM39-KT). Cells were washed once with PBS and fixed with cold
836 4% paraformaldehyde (PFA) at room temperature for 10-15 minute. Samples were
837 permeabilized with 0.5% Triton X-100 in PBS for 10 minutes at room temperature and
838 then washed with PBS. Samples were then blocked with 3% BSA in PBS 0.05% Triton
839 X-100 for 30 minutes at room temperature. Samples were incubated in primary antibody
840 (Aurora B Polyclonal Antibody (catalog no. A300-431A; ThermoFisher Scientific), diluted
841 in blocking buffer (1:100–1:200) for either 1 hour at room temperature or overnight at 4
842 °C. Samples were washed three times in PBS 0.05% Triton X-100. Samples were
843 incubated in secondary antibody, diluted in blocking buffer for 1h at room temperature (all
844 subsequent steps in the dark) and then washed three times in PBS 0.05% Triton X-100.
845 Cells were washed once with PBS and refixed with cold 4% PFA for 20 minutes at room
846 temperature. Cells were washed once with PBS then once with 2× SSC buffer. They were
847 then dehydrated in ascending ethanol concentrations of 70%, 85% and 100% for
848 approximately 2 minutes each. FISH probes (Empire Genomics) were diluted 1:4 in
849 hybridization buffer (Empire Genomics) and added to the sample with the addition of a
850 slide. Samples were denatured at 80 °C for 15-20 minutes and then hybridized at 37 °C
851 overnight in a humid and dark chamber. Samples were then washed with 0.4× SSC then
852 2× SSC 0.1% Tween 20 (all washes lasting approximately 2 minutes). 4,6-Diamidino-2-

853 phenylindole (DAPI) (100ng/ml) was applied to samples for 10 minutes. Samples were
854 then washed again with 2× SSC 0.1% Tween 20 then 2× SSC. Samples were briefly
855 washed in double-distilled H₂O and mounted with ProLong Gold. Slides were sealed with
856 nail polish. Samples were imaged using a DeltaVision Elite Cell Imaging System (Applied
857 Precision) and microscope (model IX-71; Olympus) controlled by the SoftWoRx software
858 v.6.5.2 (Applied Precision) and a 60x objective lens with a CoolSNAP HQ2 camera
859 (Photometrics). Z-stacks were acquired and used to generate maximum intensity
860 projections (ImageJ) for downstream analysis.

861 For assessing mitotic segregation of oncogene and enhancer ecDNAs in SNU16
862 cells as shown in Figure 4, cells were seeded onto fibronectin-coated 22×22 coverslips
863 contained in a 6-well culture plate at about 70% confluence. 24 hours after cell seeding,
864 the cells were fixed with 4% PFA and permeabilized with 1× PBS containing 0.25% Triton-
865 X 100. Samples were blocked with 3% BSA-1× PBS for 1 hour at room temperature,
866 followed by primary antibody incubation (Aurora B Kinase antibody; catalog no. A300-
867 431A; Thermo Fisher Scientific) (1:200 in 3% BSA) overnight at 4°C. The sample was
868 washed thrice in 1× PBS followed by incubation with diluted an anti-rabbit Alexa Fluor
869 647 antibody (1:500 in 3% BSA) for 1 hour at room temperature. The sample is then
870 washed thrice in 1× PBS and fixed with 4% PFA for 20 minutes at room temperature.
871 DNA FISH was performed as described under 'Metaphase DNA FISH', with the conditions
872 to heat denaturation changed to 80°C for 20 minutes. Images were acquired on a Leica
873 DMi8 widefield microscope using a 63× oil objective, and each z plane was post-
874 processed by Small Volume Computational Clearing on LAS X prior to generating max
875 projection images.

876

877 **Mitotic cell imaging analysis**

878 To quantify fractions of ecDNAs segregated to each daughter cell in pairs of
879 dividing cells as shown in **Figure 2**, ecDNA pixel intensity were quantified from maximum
880 intensity projections using the ImageJ software. ecDNA pixel intensity was measured
881 using the "Integrated Density" measurement from ImageJ. Prior to quantification,
882 background signal from FISH probes was removed uniformly for the entire image until all
883 background signal from the daughter cell nuclei was removed.

884 To measure fractions of oncogene and enhancer ecDNAs segregated to daughter
885 cells in dividing cells as shown in **Figure 4**, Images were split into the different FISH
886 colors + DAPI channels, and signal threshold set manually to remove background
887 fluorescence using Fiji (version 2.1.0/1.53c)⁵⁰. Overlapping FISH signals were segmented
888 using watershed segmentation. All FISH color channels except DAPI were stacked and
889 ROIs were drawn manually to identify the two daughter cells, after which the color
890 channels were split again and image pixel areas occupied by FISH signals were analyzed
891 using particle analysis. Fractions of ecDNAs in each daughter cell were estimated by
892 fractions of FISH pixels in the given daughter cell.

893

894 **Simulations of ecDNA segregation in pairs of daughter cells**

895 To understand how co-segregation dynamics of ecDNAs in dividing cells may
896 affect copy number correlations in daughter cells, we simulated distributions of ecDNA
897 copies among two daughter cells by random sampling using the sample function in R, for
898 which the sample size is the total copy number of an ecDNA species multiplied by two
899 (as a result of DNA replication). For a given fraction of one ecDNA species that co-
900 segregates with the same fraction of another ecDNA species, The corresponding ecDNA
901 copies were randomly distributed among two daughter cells but at the same ratio for both
902 ecDNA species.

903 To compare observed ecDNA segregation with these simulations given a nonzero
904 frequency of covalent fusions between two ecDNAs such as those between the enhancer
905 and oncogene sequences shown in **Figure 4**, the fraction of fused ecDNAs was treated
906 as co-segregating ecDNAs in the simulations. Thus, for each mitotic immunofluorescence
907 and FISH image collected, the fractions of enhancer ecDNAs, oncogene ecDNAs, and
908 fused enhancer-oncogene ecDNAs were used to simulate 20 segregation events in which
909 a fraction of ecDNAs corresponding to the fused molecules were perfectly co-segregated.
910 The resulting copy number correlations in simulated daughter cells represent the null
911 distribution of ecDNAs explained by covalent fusion alone with no additional co-
912 segregation between distinct ecDNA molecules.

913

914 **ATAC-seq**

915 ATAC-seq data for SNU16 were previously published under GEO accession
916 GSE159986⁹. Adapter-trimmed reads were aligned to the hg19 genome using Bowtie2
917 (2.1.0). Aligned reads were filtered for quality using samtools (version 1.9)⁵¹, duplicate
918 fragments were removed using Picard's MarkDuplicates (version 2.25.3), and peaks were
919 called using MACS2 (version 2.2.7.1)⁵² with a q-value cut-off of 0.01 and with a no-shift
920 model.

921

922 **ChIP-seq**

923 ChIP-seq data for SNU16 were previously published under GEO accession
924 GSE159986⁹. Paired-end reads were aligned to the hg19 genome using Bowtie2⁵³
925 (version 2.3.4.1) with the --very-sensitive option following adapter trimming with
926 Trimmomatic⁴⁴ (version 0.39). Reads with MAPQ values less than 10 were filtered using
927 samtools (version 1.9) and PCR duplicates removed using Picard's MarkDuplicates
928 (version 2.20.3-SNAPSHOT). ChIP-seq signal was converted to bigwig format for
929 visualization using deepTools bamCoverage⁵⁴ (version 3.3.1) with the following
930 parameters: --bs 5 --smoothLength 105 --normalizeUsing CPM --scaleFactor 10.

931

932 **Evolutionary modeling of ecDNA copy-number framework**

933 EcDNA copy number was simulated over growing cell populations using a forward-
934 time simulation implemented in Cassiopeia⁵⁵ (<https://github.com/yoseflab/cassiopeia>). All
935 simulations performed in this study were of 2 distinct ecDNA species in a growing cell
936 population. Simulations were parameterized with (i) initial ecDNA copy numbers (initial
937 copy number for ecDNA species j is denoted as k_{init}^j); (ii) selection coefficients for cells
938 carrying no ecDNA ($s_{-, -}$), both ecDNAs ($s_{+, +}$), or either ecDNA ($s_{-, +}$ or $s_{+, -}$; in this study,
939 selection coefficients are treated as constant functions of the types of ecDNA species
940 present in a cell); (iii) a base birth rate ($\lambda_{base} = 0.5$); (iv) and a co-segregation coefficient
941 (γ). Optionally, a death rate can also be specified (μ).

942 Starting with the parent cell, a birth rate is defined based on the selection
943 coefficient acting on the cell, $s \in \{s_{-, -}, s_{-, +}, s_{+, -}, s_{+, +}\}$ as $\lambda_1 = \lambda_{base} * (1 + s)$. Then, a
944 waiting time to a cell division event is drawn from an exponential distribution: $t_b \sim$
945 $\exp(-\lambda_1)$. When a death rate is also specified, a time to a death event is also drawn from

946 an exponential distribution: $t_d \sim \exp(-\mu)$. If $t_b < t_d$, a cell division event is simulated and
947 a new edge is added to the growing phylogeny with edge length t_b ; otherwise, the cell
948 dies and the lineage is stopped. This process will continue until a user-defined stopping
949 condition is specified – either a target cell number (e.g., 1 million) or a target time limit.

950 During a cell division, ecDNAs are split amongst daughter cells (d_1 and d_2)
951 according to the co-segregation coefficient, γ , and the ecDNA copy numbers of the parent
952 cell p . In this study, this co-segregation is simulated using two different strategies to
953 determine the effects of co-segregation (see section below entitled “Alternative model of
954 ecDNA co-evolution”). In the following description, let $n_j^{(i)}$ indicate the copy number of
955 ecDNA species j in daughter cell i and let N_j indicate the copy number of ecDNA species
956 j in the parent cell.

957

958 ecDNA species 1 is randomly split distributed to each daughter cell:

$$959 n_1^{(1)} \sim \text{Binomial}(2N_1, 0.5)$$

$$960 n_1^{(2)} = 2N_1 - n_1^{(1)}$$

961 Where *Binomial* is the binomial probability distribution. To simulate co-segregation, for
962 the second ecDNA species, copies are distributed to the daughter cells in proportion to
963 the segregation coefficient γ and the copy number of first ecDNA species in each
964 daughter cell:

$$965 n_2^{(1),\gamma} = \gamma * 2N_2 * \frac{n_1^{(1)}}{2N_1}$$

$$966 n_2^{(2),\gamma} = \gamma * 2N_2 * \frac{n_1^{(2)}}{2N_1}$$

967 Then, the remainder of copies left over that were not passed with co-segregation are
968 randomly distributed between daughter cells:

969

$$970 n_2^{(1),r} \sim \text{Binomial}(2N_2 - n_2^{(1),\gamma} - n_2^{(2),\gamma}, 0.5)$$

$$971 n_2^{(2),r} = 2N_2 - n_2^{(1),r} - n_2^{(1),\gamma} - n_2^{(2),\gamma}$$

972

973 After this simulation, the output is a phylogeny T over l leaves (denoted by L) with ecDNA
974 copy numbers k_j^i for ecDNA species j in leaf i .

975

976 **Evolutionary modeling of ecDNA co-assortment trends**

977 To simulate the trends of ecDNA copy-number dynamics, we employed the
978 evolutionary modeling framework described previously (see section entitled “Evolutionary
979 modeling of ecDNA copy-number framework”). We used the following fixed parameters:
980 selection acting on individual ecDNA ($s_{-,+}, s_{+-}$) of 0.2, selection acting on cells without
981 ecDNA (s_{--}) of 0.0, a base birth rate (λ_{base}) of 0.5, and initial ecDNA copy numbers for
982 both species ($k_{init}^1 = k_{init}^2$) of 5 in the parental cell. We varied co-selection ($s_{++,}$) and co-
983 segregation (γ) between 0 and 1.0 and reported the fraction of cells reporting a copy-
984 number of both ecDNAs above a threshold m (by default 1) and the Pearson correlation
985 between ecDNA copy numbers in cells:

986
$$C = \frac{1}{|L|} \sum_{l \in L} I(k_l^1 > m, k_l^2 > m)$$

987
$$\rho = \text{Pearson}(k_L^1, k_L^2)$$

988

989 Where k_l^i is the copy number of ecDNA species i in leaf l and k_L^i is the vector of copy
990 numbers of ecDNA species i across all cells.

991 For results presented in **Figure 3b-e** and **Extended Figure 4b-d**, we simulated
992 populations of 1 million cells and reported the average co-occurrence and correlation
993 across 10 replicates.

994

995 **Inference of evolutionary parameters**

996 Approximate Bayesian Computation (ABC) was used to determine evolutionary
997 parameters in cell line data, specifically selection acting on individual ecDNAs (assumed
998 to be equal between ecDNAs ($s_{-,+}, s_{+-}$)), the level of co-selection ($s_{++,}$), and the co-
999 segregation coefficient (γ). Briefly, ABC takes a parameter set θ from a prior or proposal
1000 distribution and simulates a dataset y_0 from this parameter set. If the simulated dataset
1001 matches the observed dataset within specified error tolerance ϵ , then we accept the

1002 parameter set and update our posterior distribution $\pi(\theta|y_0)$. In our case, we defined the
1003 priors over each parameter as follows:

1004

1005 $\pi(s_{-,+}), \pi(s_{+,-}) \sim \text{Unif}(0, 1)$

1006 $\pi(s_{+,+}) \sim \text{Unif}(0, 2)$

1007 $\pi(\gamma) \sim \text{Unif}(0, 1)$

1008

1009 We used the evolutionary model presented above (see section titled “Evolutionary
1010 modeling of ecDNA copy-number framework”) to simulate datasets y_0 from the proposed
1011 parameter set θ , no death rate, a base birth rate $\lambda_{base} = 0.5$, and selection acting on cells
1012 without ecDNA $s_{-,-} = 0$.

1013 Here, our goal is to infer a posterior distribution over each evolutionary parameter
1014 given single-cell copy-numbers observed from scATAC-seq data in a target cell line,
1015 denoted as y_{obs} (see above section titled “Paired single-cell ATAC-seq and RNA-seq
1016 analysis”). To accomplish this, we chose to derive summary statistics describing the co-
1017 occurrence (proportion of cells carrying more than 2 copies of each gene amplified as
1018 ecDNA) and the Pearson correlation between the log copy numbers of ecDNAs for
1019 guiding our inference, denoted by C_{obs} and ρ_{obs} respectively. In each round of ABC, we
1020 simulated a dataset y_0 of 500,000 cells and compared the summary statistics of this
1021 simulated dataset to the observed summary statistics using the following distance
1022 function:

1023
$$D(y_{obs}, y_0) = |C_{obs} - C_0| + |\rho_{obs} - \rho_0|$$

1024

1025 where C_0 and ρ_0 are the simulated co-occurrence and Pearson correlation, respectively.
1026 We used an tolerance of $\epsilon = 0.05$ as our target error. Each simulation was initialized with
1027 a parental cell with equal copy-number of initial ecDNA ($k_{init}^1 = k_{init}^2$): in **Figure 3g** this
1028 initial copy number was 5 though alternative initial conditions are explored in **Extended**
1029 **Data Figure 7**. We used the following summary statistics for each cell line: SNU16m1:
1030 $(C_{obs} = 0.99, \rho_{obs} = 0.46)$; TR14: $(C_{obs} = 0.96, \rho_{obs} = 0.26)$; GBM39-KT: $(C_{obs} =$
1031 $0.67, \rho_{obs} = 0.36)$.

1032 The specific implementation of this procedure was performed using a Sequential
1033 Monte Carlo scheme (ABC-SMC) using the python package *pyabc* (version 0.12.8).
1034 Briefly, this approach performs sequential rounds of inference while computing a weight
1035 for the accepted parameters for each iteration. For a more detailed treatment of this
1036 procedure, we refer the reader to Sission et al.⁵⁶, Beaumont et al.⁵⁷, Toni et al.⁵⁸ and
1037 Lintusaari et al.⁵⁹

1038

1039 **Cell-level co-segregation model of ecDNA co-evolution (Extended Data Figure 5)**

1040 Previously, we introduced the co-segregation on the ecDNA element level inside
1041 of each cells, where an ecDNA element carrying one species is linked to another element
1042 with a probability defined as the co-segregation parameter. Here, we introduce an
1043 alternative model, where ecDNA co-segregation is implemented on a cellular level . In
1044 each cell division, if a cell is chosen for proliferation, the number of ecDNA copies in that
1045 cell are doubled. We first have the randomly segregation of both ecDNA species following
1046 a binomial distribution seperately, and then pair those with high copy numbers into the
1047 same daughter cells with a probability $\gamma \in [0,1]$. More precisely, γ describes the likelihood
1048 of extreme copy number correlation, and $1 - \gamma$ describes the likelihood of extreme copy
1049 number anticorrelation. If $\gamma = 0.5$, it is related to unbiased likelihood for both extreme
1050 scenarios, and it results in the modeling of standard random ecDNA proliferation without
1051 co-segregation.

1052 In this model, the population growth is also modeled as a birth-death stochastic
1053 process and implemented by a standard Gillespie algorithm⁴. We starting from a small
1054 initial population (a single cell or three cells) carrying a certain amount of ecDNA elements
1055 and recording the exact number of ecDNA copies for each cell through the simulation.
1056 Cells are chosen randomly but proportional to their fitness ($1+s$) for proliferation, where s
1057 is the selection coefficient. Neutral proliferation is defined compared to fitness of cells
1058 without ecDNA ($s = 0$). If there is a fitness effect by carrying ecDNA, $s > 0$. For simplicity,
1059 in our models, we give a fixed selection coefficient for cells carrying either ecDNA and
1060 vary the selection coefficient for cells with both ecDNA to investigate the impact of co-
1061 selection in ecDNA co-evolution. For reporting, we discretise the population into three
1062 subpopulations, named pure, mix and free (no) ecDNA cells (**Figure 3h**), which represent

1063 cells carrying just one type of ecDNA, both types or no ecDNA at all respectively. For the
1064 results presented in **Extended Data Figure 5**, we simulated populations of 10,000 cells
1065 and reported summary statistics across 500 replicates.

1066

1067 **Evolutionary modeling of drug intervention**

1068 The evolutionary model described previously (see section titled “Evolutionary
1069 modeling of ecDNA copy-number framework”) was used to evaluate the effect of
1070 Pemigatinib treatment on SNU16m1 cells. To do so, we modified the framework to allow
1071 for a “burn-in” period to simulate population growth without drug and then introduced a
1072 perturbation to selection coefficients at a defined time point.

1073 Specifically, we allowed the cell population to grow to 5000 cells under the
1074 following conditions: base birth rate (λ_{base}) of 0.5, a death rate (μ) of 3, an initial ecDNA
1075 copy number for both species ($k_{init}^1 = k_{init}^2$) of 10, the following selection coefficients:
1076 $s_{-, -} = 0$; $s_{-, +} = 0.15$; $s_{+, -} = 0.15$; $s_{+, +} = 0.8$ (here, let cells carrying only *FGFR2* ecDNA
1077 be denoted by $s_{+, -}$ and cells only carrying *MYC* ecDNA by $s_{-, +}$). We allowed co-
1078 segregation to vary 0 and 1.

1079 After a population of 5000 cells was obtained, we simulated Pemigatinib treatment
1080 by changing the selection pressures acting on cells. Specifically, we set $s_{+, +} = s_{-, -} \in$
1081 $\{0, -0.1, -0.2, -0.3, -0.4, -0.5\}$. We then simulated 500,000 cells from the pre-treatment
1082 group of 5,000 cells while maintaining the same values for $\gamma, \mu, \lambda_{birth}, s_{-, -}$, and $s_{-, +}$. For
1083 time-dependent functions of copy-number reported in **Figure 4i**, mean copy-number of
1084 both ecDNA species were computed in time bins of 5 up until the introduction of
1085 Pemigatinib and bins of 1 afterwards.

1086

1087 **Evolutionary modeling of enhancer-only ecDNA**

1088 To explore the evolutionary principles of enhancer-only ecDNA, we used the
1089 previously described evolutionary model (see above “Evolutionary modeling of ecDNA
1090 copy-number framework”) without death and fixed the following evolutionary parameters:
1091 $s_{+, -} = 0.2$, $s_{-, +} = 0$, $\lambda_{base} = 0.5$, and $k_{init}^1 = k_{init}^2 = 5$. We simulated 10 replicates of 1M
1092 cell populations a modulated co-selection coefficient $s_{+, +}$ from [0, 1] and co-segregation

1093 coefficient γ from [0,1]. In Figure 4, we report the distribution of co-occurrence summary
1094 statistics C across these 10 replicates.

1095

1096 **Nanopore sequencing of SNU16 genomic DNA**

1097 Genomic DNA from approximately 2 million SNU16 cells was extracted using the
1098 MagAttract HMW DNA Kit (Qiagen 67563) and prepared for long-read sequencing using
1099 a Ligation Sequencing Kit V14 (Oxford Nanopore Technologies SQK-LSK114) according
1100 to the manufacturer's instructions. Libraries were sequenced on a PromethION (Oxford
1101 Nanopore Technologies) using a 10.4.1 flow cell (Oxford Nanopore Technologies FLO-
1102 PRO114M).

1103 Basecalling from raw POD5 data was performed using Dorado (Oxford Nanopore
1104 Technologies, version 0.2.1+c70423e). Reads were aligned using Winnowmap2⁶⁰
1105 (version 2.03) with the following parameters: -ax map-ont. Structural variants were called
1106 using Sniffles⁶¹ (version 2.0.7) using the following additional parameters: --output-
1107 rnames.

1108

1109 **Pemigatinib treatment of SNU16m1 and COLO320-DM cell lines**

1110 SNU16m1 cells were treated with 1 μ M or 5 μ M Pemigatinib (Selleckchem:
1111 INCB054828), or with an equal volume of PBS. COLO320-DM cells were treated with 5
1112 μ M Pemigatinib or an equal volume of PBS. Fresh Pemigatinib was replenished
1113 approximately every 7 days. Approximately 2 million SNU16m1 cells were sampled from
1114 each condition at day 0, 6 and 20, genomic DNA was extracted using the Quick DNA
1115 MiniPrep kit (Zymo Research; D0325), and subjected to WGS (see above, section entitled
1116 "WGS"). Approximately 2 million COLO320-DM cells were sampled at day 20 and
1117 genomic DNA was prepared for sequencing using the same procedure as above.

1118

1119 **Nutlin-3a treatment of TR14 cells and interphase DNA FISH**

1120 175,000 TR-14 cells were seeded per well in 12-well plates. Cells were treated
1121 either with 0.1% DMSO or with 1 μ l Nutlin-3a (Sigma Aldrich, SML0580) for 6 days,
1122 without an additional wash-out period.

1123 Samples were fixed using Carnoy's Solution (3:1 Methanol:Acetic Acid). Fixed
1124 samples on coverslips or slides were briefly equilibrated in 2× SSC buffer. They were
1125 then dehydrated in ascending ethanol concentrations of 70%, 90% and 100% for
1126 approximately 2 minutes each. FISH probes were diluted in Probe Hybridization Buffer
1127 and added to the sample with the addition of a coverslip or slide. Samples were denatured
1128 at 78 °C for 5 min and then hybridized at 37 °C overnight in a humid and dark chamber.
1129 Samples were washed twice in 0.4X SSC with 0.3% IGEPAL CA-630 for 2 min with
1130 agitation for the first 10-15 seconds. They were then washed once in 2X SSC with 0.1%
1131 IGEPAL CA-630 at room temperature for 2 minutes, again with agitation for the first 10-
1132 15 sec. 4,6-Diamidino-2-phenylindole (DAPI) (100 ng ml⁻¹) was applied to samples for
1133 10 minutes. Samples were then washed again with 2× SSC and mounted with ProLong
1134 Antifade Mountant.

1135 FISH and microscopy was carried out in the same manner as TR14 was processed
1136 as described above (see section entitled "Metaphase DNA FISH image analysis").
1137 Normalized copy numbers n_i for ecDNA i were computed from raw copy numbers c_i as:

$$1138 n_i = \log_2\left(\frac{c_i}{\mu_i}\right)$$

1139
1140 where μ_i is the mean copy number of ecDNA i in the DMSO control condition. Statistical
1141 significance was assessed with the Wilcoxon rank sums test.
1142

1143 **Data Availability**

1144 WGS data from bulk SNU16 cells were previously generated (SRR530826, Genome
1145 Research Foundation). Paired single-cell ATAC-seq and RNA-seq data for COLO320DM
1146 were generated previously and published under GEO accession GSE159986. TR14
1147 scCircle-seq data were deposited in the European Genome-phenome Archive (EGA)
1148 under the accession number: EGAS00001007026. CRISPR-CATCH sequencing data
1149 integrated from previous studies were deposited in NCBI Sequence Read Archive (SRA)
1150 under BioProject accessions PRJNA670737 and PRJNA777710. ATAC-seq and ChIP-
1151 seq data for SNU16 were previously published under GEO accession GSE159986.
1152

1153 **Code Availability**

1154 The ecDNA evolutionary modelling framework used in this study is publicly available
1155 through Cassiopeia⁴⁰ at <https://github.com/YosefLab/Cassiopeia>. AmpliconClassifier is
1156 available at <https://github.com/jluebeck/AmpliconClassifier>.

1157

1158 **Materials & Correspondence**

1159 Correspondence and requests for materials should be addressed to Howard Y. Chang
1160 (howchang@stanford.edu) and Paul S. Mischel (pmischel@stanford.edu).

1161 **REFERENCES**

1. Turner, K. M. *et al.* Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. *Nature* **543**, 122–125 (2017).
2. Kim, H. *et al.* Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. *Nature Genetics* **52**, 891–897 (2020).
3. Chapman, O. S. *et al.* *The landscape of extrachromosomal circular DNA in medulloblastoma.* <http://biorxiv.org/lookup/doi/10.1101/2021.10.18.464907> (2021) doi:10.1101/2021.10.18.464907.
4. Lange, J. T. *et al.* The evolutionary dynamics of extrachromosomal DNA in human cancers. *Nat Genet* 1–7 (2022) doi:10.1038/s41588-022-01177-x.
5. Levan, A. & Levan, G. Have double minutes functioning centromeres? *Hereditas* **88**, 81–92 (1978).
6. Lundberg, G. *et al.* Binomial Mitotic Segregation of MYCN-Carrying Double Minutes in Neuroblastoma Illustrates the Role of Randomness in Oncogene Amplification. *PLOS ONE* **3**, e3099 (2008).
7. Nathanson, D. A. *et al.* Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA. *Science* **343**, 72–76 (2014).
8. Nikolaev, S. *et al.* Extrachromosomal driver mutations in glioblastoma and low-grade glioma. *Nature Communications* **5**, 5690 (2014).
9. Hung, K. L. *et al.* ecDNA hubs drive cooperative intermolecular oncogene expression. *Nature* **600**, 731–736 (2021).
10. Hung, K. L. *et al.* Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. *Nat Genet* 1–9 (2022) doi:10.1038/s41588-022-01190-0.
11. deCarvalho, A. C. *et al.* Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. *Nature Genetics* **50**, 708 (2018).
12. Deshpande, V. *et al.* Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. *Nature Communications* **10**, 392 (2019).
13. L'Abbate, A. *et al.* Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. *Nucleic Acids Res* **42**, 9131–9145 (2014).
14. Mas-Ponte, D. & Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. *Nat Genet* **52**, 958–968 (2020).
15. Bergstrom, E. N. *et al.* Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. *Nature* (2022) doi:10.1038/s41586-022-04398-6.
16. Stephens, P. J. *et al.* Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. *Cell* **144**, 27–40 (2011).
17. Hung, K. L., Mischel, P. S. & Chang, H. Y. Gene regulation on extrachromosomal DNA. *Nat Struct Mol Biol* 1–9 (2022) doi:10.1038/s41594-022-00806-7.
18. Zhu, Y. *et al.* Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. *Cancer Cell* **39**, 694–707.e7 (2021).
19. Møller, H. D., Parsons, L., Jørgensen, T. S., Botstein, D. & Regenberg, B. Extrachromosomal circular DNA is common in yeast. *PNAS* **112**, E3114–E3122 (2015).

1205 20. Koche, R. P. *et al.* Extrachromosomal circular DNA drives oncogenic genome
1206 remodeling in neuroblastoma. *Nature Genetics* 1–6 (2019) doi:10.1038/s41588-019-
1207 0547-z.

1208 21. Satpathy, A. T. *et al.* Massively parallel single-cell chromatin landscapes of human
1209 immune cell development and intratumoral T cell exhaustion. *Nat Biotechnol* 37,
1210 925–936 (2019).

1211 22. Kumar, P. *et al.* ATAC-seq identifies thousands of extrachromosomal circular DNA
1212 in cancer and cell lines. *Science Advances* 6, eaba2489 (2020).

1213 23. Fuller, B. G. *et al.* Midzone activation of aurora B in anaphase produces an
1214 intracellular phosphorylation gradient. *Nature* 453, 1132–1136 (2008).

1215 24. Chkhaidze, K. *et al.* Spatially constrained tumour growth affects the patterns of
1216 clonal selection and neutral drift in cancer genomic data. *PLOS Computational
1217 Biology* 15, e1007243 (2019).

1218 25. Marjoram, P. & Tavaré, S. Modern computational approaches for analysing
1219 molecular genetic variation data. *Nat Rev Genet* 7, 759–770 (2006).

1220 26. Wu, L. *et al.* Discovery of Pemigatinib: A Potent and Selective Fibroblast Growth
1221 Factor Receptor (FGFR) Inhibitor. *J. Med. Chem.* 64, 10666–10679 (2021).

1222 27. Liu, P. C. C. *et al.* INCB054828 (pemigatinib), a potent and selective inhibitor of
1223 fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically
1224 defined tumor models. *PLOS ONE* 15, e0231877 (2020).

1225 28. Shoshani, O. *et al.* Chromothripsis drives the evolution of gene amplification in
1226 cancer. *Nature* 591, 137–141 (2021).

1227 29. Yi, E. *et al.* Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal
1228 DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in
1229 Cancer. *Cancer Discovery* 12, 468–483 (2022).

1230 30. Kanda, T., Otter, M. & Wahl, G. M. Mitotic segregation of viral and cellular acentric
1231 extrachromosomal molecules by chromosome tethering. *Journal of Cell Science*
1232 114, 49–58 (2001).

1233 31. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables
1234 sensitive analysis of chromosome dynamics in living mammalian cells. *Current
1235 Biology* 8, 377–385 (1998).

1236 32. Hamkalo, B. A., Farnham, P. J., Johnston, R. & Schimke, R. T. Ultrastructural
1237 features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line.
1238 *Proceedings of the National Academy of Sciences* 82, 1126–1130 (1985).

1239 33. Tanaka, T. & Shimizu, N. Induced detachment of acentric chromatin from mitotic
1240 chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation
1241 by lamin reorganization at S phase. *J Cell Sci* 113, 697–707 (2000).

1242 34. Lehman, C. W. & Botchan, M. R. Segregation of viral plasmids depends on tethering
1243 to chromosomes and is regulated by phosphorylation. *PNAS* 95, 4338–4343 (1998).

1244 35. Marechal, V. *et al.* Mapping EBNA-1 Domains Involved in Binding to Metaphase
1245 Chromosomes. *Journal of Virology* 73, 4385–4392 (1999).

1246 36. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. Efficient Persistence of
1247 Extrachromosomal KSHV DNA Mediated by Latency-Associated Nuclear Antigen.
1248 *Science* 284, 641–644 (1999).

1249 37. Baiker, A. *et al.* Mitotic stability of an episomal vector containing a human
1250 scaffold/matrix-attached region is provided by association with nuclear matrix. *Nat*
1251 *Cell Biol* **2**, 182–184 (2000).

1252 38. Botchan, M. Hitchhiking without Covalent Integration. *Cell* **117**, 280–281 (2004).

1253 39. You, J., Croyle, J. L., Nishimura, A., Ozato, K. & Howley, P. M. Interaction of the
1254 Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic
1255 Chromosomes. *Cell* **117**, 349–360 (2004).

1256 40. Kapoor, P., Lavoie, B. D. & Frappier, L. EBP2 Plays a Key Role in Epstein-Barr
1257 Virus Mitotic Segregation and Is Regulated by Aurora Family Kinases. *Molecular*
1258 *and Cellular Biology* **25**, 4934–4945 (2005).

1259 41. Denoth-Lippuner, A., Krzyzanowski, M. K., Stober, C. & Barral, Y. Role of SAGA in
1260 the asymmetric segregation of DNA circles during yeast ageing. *eLife* **3**, e03790
1261 (2014).

1262 42. Picelli, S. *et al.* Tn5 transposase and tagmentation procedures for massively scaled
1263 sequencing projects. *Genome Res.* **24**, 2033–2040 (2014).

1264 43. Corces, M. R. *et al.* An improved ATAC-seq protocol reduces background and
1265 enables interrogation of frozen tissues. *Nature Methods* **14**, 959–962 (2017).

1266 44. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1267 sequence data. *Bioinformatics* **30**, 2114 (2014).

1268 45. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler
1269 transform. *Bioinformatics* **25**, 1754–1760 (2009).

1270 46. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
1271 transcriptomic data across different conditions, technologies, and species. *Nature*
1272 *Biotechnology* **36**, 411–420 (2018).

1273 47. Granja, J. M. *et al.* ArchR: An integrative and scalable software package for single-
1274 cell chromatin accessibility analysis. *bioRxiv* 2020.04.28.066498 (2020)
1275 doi:10.1101/2020.04.28.066498.

1276 48. Satpathy, A. T. *et al.* Massively parallel single-cell chromatin landscapes of human
1277 immune cell development and intratumoral T cell exhaustion. *Nat Biotechnol* **37**,
1278 925–936 (2019).

1279 49. Macaulay, I. C. *et al.* G&T-seq: parallel sequencing of single-cell genomes and
1280 transcriptomes. *Nat Methods* **12**, 519–522 (2015).

1281 50. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis.
1282 *Nature Methods* **9**, 676–682 (2012).

1283 51. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
1284 2078–2079 (2009).

1285 52. Zhang, Y. *et al.* Model-based Analysis of ChIP-Seq (MACS). *Genome Biology* **9**,
1286 R137 (2008).

1287 53. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nature*
1288 *Methods* **9**, 357–359 (2012).

1289 54. Ramírez, F. *et al.* deepTools2: a next generation web server for deep-sequencing
1290 data analysis. *Nucleic Acids Res* **44**, W160–W165 (2016).

1291 55. Jones, M. G. *et al.* Inference of single-cell phylogenies from lineage tracing data
1292 using Cassiopeia. *Genome Biology* **21**, 92 (2020).

1293 56. Sisson, S. A., Fan, Y. & Tanaka, M. M. Sequential Monte Carlo without likelihoods.
1294 *Proceedings of the National Academy of Sciences* **104**, 1760–1765 (2007).

1295 57. Beaumont, M. A., Cornuet, J.-M., Marin, J.-M. & Robert, C. P. Adaptive approximate
1296 Bayesian computation. *Biometrika* **96**, 983–990 (2009).

1297 58. Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate
1298 Bayesian computation scheme for parameter inference and model selection in
1299 dynamical systems. *Journal of The Royal Society Interface* **6**, 187–202 (2008).

1300 59. Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S. & Corander, J. Fundamentals
1301 and Recent Developments in Approximate Bayesian Computation. *Systematic
1302 Biology* **66**, e66–e82 (2017).

1303 60. Jain, C., Rhie, A., Hansen, N. F., Koren, S. & Phillippy, A. M. Long-read mapping to
1304 repetitive reference sequences using Winnowmap2. *Nat Methods* **19**, 705–710
1305 (2022).

1306 61. Sedlazeck, F. J. *et al.* Accurate detection of complex structural variations using
1307 single-molecule sequencing. *Nat Methods* **15**, 461–468 (2018).

1308