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Abstract

Microglia are resident immune cells of the brain that play important roles in mediating
inflammatory responses in several neurological diseases via direct and indirect mechanisms.
One indirect mechanism may involve extracellular vesicle (EV) release, so that the molecular
cargo transported by microglia-derived EVs can have functional effects by facilitating
intercellular communication. The molecular composition of microglia-derived EVs, and how
microglial activation states impacts EV composition and EV-mediated effects in
neuroinflammation, remain poorly understood. We hypothesize that microglia-derived EVs have
unique molecular profiles that are determined by microglial activation state. Using size-exclusion
chromatography to purify EVs from BV2 microglia, combined with proteomic (label-free
guantitative mass spectrometry or LFQ-MS) and transcriptomic (mMRNA and non-coding RNA
seq) methods, we obtained comprehensive molecular profiles of microglia-derived EVs. LFQ-
MS identified several classic EV proteins (tetraspanins, ESCRT machinery, and heat shock
proteins), in addition to over 200 proteins not previously reported in the literature. Unique mRNA
and microRNA signatures of microglia-derived EVs were also identified. After treating BV2
microglia with lipopolysaccharide (LPS), interleukin-10, or transforming growth factor beta, to
mimic pro-inflammatory, anti-inflammatory, or homeostatic states, respectively, LFQ-MS and
RNA seq revealed novel state-specific proteomic and transcriptomic signatures of microglia-
derived EVs. Particularly, LPS treatment had the most profound impact on proteomic and
transcriptomic compositions of microglia-derived EVs. Furthermore, we found that EVs derived
from LPS-activated microglia were able to induce pro-inflammatory transcriptomic changes in
resting responder microglia, confirming the ability of microglia-derived EVs to relay functionally-
relevant inflammatory signals. These comprehensive microglia-EV molecular datasets represent
important resources for the neuroscience and glial communities, and provide novel insights into

the role of microglia-derived EVs in neuroinflammation.
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Background

Microglia are the resident immune cells of the central nervous system (CNS). Given their major
role in the innate immune system, the cell surface of microglia contains transporters, channels,
and receptors for neurotransmitters, cytokines, and chemokines®. Microglia are constantly
surveying their environment and can rapidly become activated to initiate immune responses®.
Detection of immune activators and stimulating agents can cause microglia to alter their
morphology and adopt heterogenous molecular profiles which can exert complex functions in
different disease contexts. For example, microglia play an important role in neurodegenerative
disease and neuroinflammation®. In the context of neurodegeneration, chronically activated
microglia release inflammatory cytokines, such as tumor necrosis factor (TNF), IL-6, and
reactive oxygen species. Furthermore, to detect immune activators, microglia are equipped with
toll-like receptors (TLRs). Activation of TLRs on microglia can lead to the production of pro-
inflammatory cytokines and release of chemokines®. Comprehensive single-cell RNA
sequencing analyses have revealed novel microglia types associated with neurodegenerative
diseases, also referred to as disease associated microglia (DAM)°. This subset of microglia
displays unique transcriptional features, expressing typical microglial protein markers, such as
Ibal and Hexb but with a decrease in signature microglia homeostatic genes, such as Cx3crl
and P2ryl12/13, and upregulation of genes involved in lipid metabolism and phagocytic
pathways, such Apoe, Lpl, CD9, Cst7, and Trem2. Furthermore, DAM can play dual roles in
Alzheimer's disease (AD) pathogenesis, involving the production and release of pro-
inflammatory factors including cytokines and toxic factors as well as neuroprotective, anti-
inflammatory functions®. While distinguishing the function of microglia as either “protective” or
“detrimental” is difficult, there is accumulating evidence that microglia can dynamically switch
phenotypes in response to stimuli. However, further investigation is needed to fully understand

the involvement of different microglia states in CNS diseases.
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A newly identified mechanism of microglia-mediated neuroinflammatory responses in
neurodegenerative disease involves secretion of extracellular vesicles (EVs)’. EVs are lipid
bound vesicles that are composed of lipids, proteins, metabolites, and nucleic acids. EVs can be
classified as microvesicles, apoptotic bodies, or exosomes®. EV subtype is determined by
biogenesis, release pathway, size, density, function, and cargo. However, due to significant
overlap in protein profiles and size, along with difficulty in proving the origin of EVs, it is often
preferred to refer to exosomes as EVs within a particular size range® *°. Exosomes are small
EVs (30-150 nm) of endocytic origin and are secreted by almost all cell types. Exosomes
transport specific cargo such as proteins, messenger RNAs (mRNAs), and microRNAs
(miRNAs) between cells to facilitate intercellular communication and influence downstream
signaling events®. Exosomes can interact with recipient cells through endocytosis, fusion with
the plasma membrane, or ligand receptor interaction'>. Accumulating studies have
demonstrated that microglia-derived exosomes can serve as key mediators in pathologies
associated with neurodegenerative diseases. However, the molecular compositions of

microglia-derived small EVs remain poorly understood.

Classical hallmarks of AD are abnormal aggregation of amyloid beta (AB) proteins into
plaques and tau misfolding™®. Microglia-derived exosomes in tau models of AD, release and
spread pathologic tau between neurons. Recent evidence suggests that depleting microglia and
inhibiting the synthesis of exosomes significantly suppresses pathologic tau propagation*. This
study indicates the role microglia-derived exosomes may have in the pathological spread of tau.
Verderio et al. found that microvesicles and exosomes derived from LPS-preactivated cultured
microglial cells, induced a dose-dependent activation of resting astrocytes and microglia™. The
findings of this study suggest that the cargo from EVs can transfer an inflammatory signal to

recipient cells, thus exacerbating neuroinflammatory conditions.
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Proteomic analysis of exosomes derived from the N9 microglial cell line identified the
proteomic composition of microglia-derived exosomes from cell culture medium®®. Several
hallmark EV proteins previously identified from EVs derived from cell types were found in the
N9-derived EV proteome; such as, cytoskeletal proteins, heat shock proteins, integrins, and
tetraspanin proteins. Of particular interest, was the aminopeptidase N (CD13) found in microglial
exosomal proteins but not in exosomes derived from B cells and DC cells. Functional assays
looking at aminopeptidase activity revealed that microglia exosomal CD13 is active in

neuropeptide degradation.

Yang et al. characterized microglial EV protein cargo following lipopolysaccharide (LPS)
and TNF inhibitor treatment®’. Following 12-hour LPS stimulation of BV2 microglia, EVs were
found to have significantly higher levels of pro-inflammatory cytokines TNF and interleukin (IL-
10), seen by ELISA. Furthermore, inhibition of the TNF signaling pathway resulted in a reduction
of EVs released from LPS activated microglia. Mass spectrometry (MS)-based experiments
identified 49 unique proteins in EVs derived from LPS activated microglia compared to control,
with a majority of the proteins associated with transcription and translation. From this study, it
can be inferred that microglia respond to an LPS challenge by releasing EVs with unique
cargoes that may be implicated in inflammatory mechanisms. The data from both these studies
suggest that microglia derived EVs have distinct proteomic profiles which may play a role in
inflammatory responses in neurodegenerative diseases. However, low-depth of proteomic

coverage remains a limitation of these studies.

Additionally, accumulating evidence suggests that EV miRNAs have the potential to
influence disease pathogenesis and treatment outcomes. MiRNAs are small non-coding RNAs
that regulate the expression of specific gene targets'®. Release of miRNAs from EVs can
influence target cell function®®. Huang et al. found that increased miR-124-3p expression in

microglia-derived exosomes after traumatic brain injury can inhibit neuronal inflammation and
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contribute to neurite outgrowth in recipient neurons®. Even though miRNAs are more abundant
in EVs than larger species of RNA, mRNAs have also been found to be loaded into EVs and

transferred to recipient cells*" #

. Ratajcazk et al. provided the first evidence that mRNAs
transferred to recipient cells are functional and can be translated into proteins, leading to
biological changes in recipient cells®®. Overall, several studies have highlighted that the
activation of microglia can have both a direct or indirect influence on neuroinflammation and
disease progression. The uptake of EVs from recipient cells appears to mediate the indirect
mechanisms by which microglia can affect disease progression. However, there is a lack of
proteomic and transcriptomic characterization of EVs from distinct microglia states. Identification

of the proteomic and transcriptomic cargo in EVs from distinct microglia states may elucidate

key targets and pathways that are involved in EV mediated neuroinflammation.

In this study, we have generated comprehensive datasets of proteomics and
transcriptomics from BV2 microglia cells and BV2-derived EVs under resting states as well as
following inflammatory challenge with either LPS, IL-10, or transforming growth factor B (TGF-
B)**2?®, which have been documented to induce distinct molecular phenotypes in vitro. Using
label-free quantitative mass spectrometry (LFQ-MS) and RNA sequencing of mMRNA and miRNA
species, we identified unique molecular signatures of EVs at the proteomic and transcriptomic
levels, including several features not previously described. We also identified unique state-
dependent molecular characteristics of microglia-derived EVs, in which LPS-effects were most
predominant at the level of proteins, mMRNA and miRNA. Next, we asked whether EV cargo from
distinct microglia states can impact the gene expression profile of resting (responder) BV2 cells.
To address this, we isolated EVs from the cell culture media (CCM) of four BV2 cell conditions
(control, LPS, IL-10, TGF-B) and then equally dosed individual wells of BV2 cells with those EVs
to assess gene expression changes in recipient microglia using RNA sequencing. Taken

together, our study provides several comprehensive molecular datasets on microglia-derived
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EVs and provides novel insights into the role of microglia-derived EVs in neuroinflammation,

including increased packaging of mRNAs into EVs following inflammatory activation.
Results
Verification of EV purification from BV2 cell culture medium

We applied size exclusion chromatography (Izon gEV) based methods to isolate EVs from BV2
microglia culture supernatants. Prior to MS and RNA seq studies of BV2 microglia-derived EVs,
we performed several quality control studies to confirm successful enrichment of EVs from cell
culture media. We characterized EV morphology, size, concentration, and classical markers
using transmission electron microscopy (TEM), immunogold TEM, nanoparticle tracking
analysis (NTA), and western blot analyses (Figure 1A). To characterize the morphology of BV2-
derived EVs, isolated EVs were examined using high resolution TEM following negative
staining. TEM revealed vesicles with consistent round and cup-shaped morphology within ~50-
150nm size range, as would be expected for EVs (Figure 1B). Immunogold-labeled TEM
studies using 6nm gold particles confirmed CD9 labeling on the surface of EVs (Figure 1C).
NTA of several EV preparations also verified that our isolated EVs are typically within the range
50-200nm in diameter (mean particle size =87.9 +/- 6.1 nm, mode patrticle size = 44.2 +/- 9.0
nm) (Figure 1D). Lastly, we performed western blot analyses of cell lysates and EVs from BV2
microglia and found that canonical EV protein markers CD9 and TSG101 were enriched in EV
lysates, in contrast with enrichment of Calnexin in BV2 cell lysates (Figure 1E). These results
using complimentary validation methods as recommended by the International Society for
Extracellular Vesicles?, confirm the validity of our EV isolation approach and its suitability for

subsequent molecular characterization studies.

Identification of proteomic sighatures of microglia-derived EVs by quantitative MS
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We performed LFQ-MS on 16 cell lysates and 16 EV lysates derived from BV2 microglia. These
included four groups of BV2 cells (n=4/group) that were treated (72 hours) with either LPS (100
ng/mL) to polarize to a pro-inflammatory state, IL-10 (50 ng/mL) to polarize to a protective state,
TGF-B (50 ng/mL) to polarize to a homeostatic state or untreated controls (Figure 3A). LFQ-MS
identified 533 proteins in the EV proteome and 1,882 proteins in BV2 cell proteome, across all
conditions (Additional file 1 and Additional file 2). To contrast the EV proteome with the
whole cell proteome, we first compared BV2 EVs (n=533 proteins) with BV2 cell lysate
proteomes (n=1,882 proteins). The effect of treatment was not considered when comparing all
EVs to all cell lysates. Forty-six proteins were differently enriched in EVs while 1,178 proteins
were differentially enriched in cell lysates (Figure 2A, Additional file 3). Canonical
exosome/EV related proteins expected to be present in all EVs independent of cell type of origin
(including SDCBP, IGSF8 and three tetraspanins namely CD9, CD81, and CD63) were
significantly enriched in the EV proteome compared to the whole cell proteome (Figure 2A). In
contrast, endoplasmic reticulum proteins expected to be present in cell lysates but not in EVs,
namely SSR1 and Calnexin, were highly enriched in the cell proteome but not the EV proteome.
Gene set enrichment (GSEA) of EV-abundant proteins showed enrichment of extracellular
region (APOE, SAA), membrane organization (CD9, ITGB1, MFGES), and localization (RAB6B,
SLC1A5, SLC38A2) terms while cytosolic and intracellular organelle terms were enriched in the

cellular proteomes (Figure 2B).

Next, we compared our BV2 microglia-derived EV proteome to existing lists of proteins
previously detected in proteomic studies of EVs from any mouse cell types (1,015 EV proteins in
ExoCarta) (Figure 2C), the Exocarta protein list for mouse microglia (Figure 2F, 56 proteins),
and the Yang et al. 2018 BV2-derived EV proteome (Figure 2G, 74 proteins) (Additional file 4).
Our BV2-derived EV proteome (533 proteins) shared 326 proteins with the ExoCarta protein list

of 1,015 EV proteins detected across all mouse cell types (207 novel proteins), 39 proteins with
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the Exocarta protein list of 56 mouse microglia (494 novel proteins) and 44 proteins with Yang
et al. 2018 BV2-derived EV proteome that included 74 proteins (489 novel proteins). We also
performed GSEA (Additional file 4) on three groups of proteins based on these analyses (207
novel BV2 microglial EV proteins not reported in other EV proteomes, 689 proteins reported in
non-microglial EV proteomes but not in our data, and 326 proteins common to both microglial
and non-microglial EV proteomes). Proteins unique to BV2 microglia-derived EVs were enriched
in ontologies related to positive regulation of transporter activity, regulation of RNA splicing,
cytosolic large ribosomal subunit, and aminoacyl-tRNA synthetase complex (Figure 2D). On the
other hand, the 689 proteins not captured in our BV2-derived EV proteome showed enrichment
of proteins related to protein heterodimerization activity, chromosome organization, and protein
kinase activity (Figure 2D). We also identified networks of known direct (protein-protein) and
indirect (functional) interactions (STRING) within these core protein signatures related to RNA
metabolism and protein translation, that are unique to our BV2 microglia-derived EVs as

compared to other cell type-derived EVs (Figure 2E).

Taken together, these analyses verify the validity of our EV proteomes by confirming
enrichment abundances of canonical EV markers, highlight the increased depth of our EV
proteome as compared to prior microglial studies, and identify novel proteomic characteristics of
microglia-derived EVs that are distinct from non-microglial EVs which may have functional

implications.

Microglial activation state impacts proteomic characteristics of EVs

Three groups of BV2 cells (n=4/group) were treated with either LPS (100 ng/mL) to polarize to a
pro-inflammatory state, IL-10 (50 ng/mL) to polarize to a protective state, or TGF-g (50 ng/mL)
to polarize to a homeostatic state (Figure 3A). Untreated BV2 cells served as a control group.
To ensure that any state-related differences in EV proteomes are not related to impacts of EV

yield, we used NTA to compare EV concentrations across treatment conditions and observed no
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significant differences across treatment groups (Figure 3B). To confirm that in vitro conditions
induced distinct microglial activation states, we analyzed BV2 cell LFQ-MS proteomes and 334
differentially enriched proteins (DEPs) across polarization states, as compared to control (one-
way ANOVA FDR-adjusted p<0.05 & log,FC>0) (Supplementary Figure 1, Additional file 1).
Principal component analysis (PCA) using these DEPs showed that 56% of variance was
explained by 2 principal components (PCs), of which PC1 explained 33% of variance while PC2
explained 23% of variance. Notably, the PCA identified four distinct proteomic clusters (Figure
3B). As compared to untreated control BV2 microglia, LPS treatment increased levels of several
pro-inflammatory proteins (e.g., OAS1L, IRG1, ACSI1) (Supplementary Figure 1A). For the
BV2 cell proteome, GSEA using the generated up and down lists for each treatment against the
background list (1,882 proteins) showed unique enrichment patterns across treatment groups
(Supplementary Figure 1B). For example, LPS treated cells demonstrated an enrichment in
proteins related to antigen processing, defense response, and immune response, whereas there
was an observed decreased abundance in proteins lipid binding and phospholipase inhibitor
activity. These results agree with prior proteomic studies of BV2 microglia using similar in vitro
conditions, thereby confirming successful polarization of BV2 microglia to distinct molecular
states® ?°. We also found that TGF-B treated cells demonstrated an enrichment in proteins
related to positive regulation of homeostatic regulation and gluconeogenesis following, while IL-
10 treated cells showed enrichment of proteins related to lipid binding and lipase inhibitor

activity.

We next examined BV2-derived EV proteomes to determine whether microglial
polarization state impacts proteomic composition of EVs. To account for unequal protein loading
per sample, we performed our analyses of EV proteomes after normalizing MS data to total
protein content in each sample, based on sum intensities across all quantified proteins. Our

analyses of EV proteomes also accounted for batch effects since 4 different batches of
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experiments were performed, each with 1 replicate per condition (Supplementary Figure 2).
We identified 83 DEPs across microglia states compared to control (p<0.05 & log,FC>0)
(Additional file 2). PCA based on these DEPs identified four clusters among EVs (Figure 3C).
Interestingly, all polarized BV2 microglia-derived EVs clustered away from control BV2-derived
EVs and majority of these DEPs showed lower levels in polarized conditions as compared to the
control group. Distinct signatures across polarization states compared to control are shown in

Figure 3D and 3E.

We performed GSEA based on the DEPs for each treatment (compared to the control
group), against the background list of 533 proteins identified in the EV proteome. We identified
“Biological processes” and “Molecular function” terms along with KEGG pathways (Figure A-C)
enriched in EV signatures from distinct BV2 microglial polarization states. GSEA of increased
DEPs were limited due to small numbers of proteins that showed increased levels. EVs derived
from BV2 cells treated with LPS demonstrated an enrichment in proteins related to proteasome
activity (e.g., PSMB3) and reduction in proteins related to chromosomal organization (e.g.,
CLTC, HIST2H2AAL1,TCP1), and clathrin/receptor mediated endocytosis (e.g., CLTC, DNM2).
Conversely, EVs derived from BV2 cells treated with IL-10 and TGFB demonstrated a reduction
in cytosolic chaperonin Cct ring complex proteins (e.g., CCT3, CCT4), microtubule related
proteins and ATP/nucleotide binding (e.g., CCT4, TCP1, TUBA1B). EVs derived from BV2 cells
treated with TGFB showed enrichment of proteins related to membrane bound vesicle and
receptor binding (CD9 AND SDCBP). These proteomic analyses of EVs confirm that microglial

activation states can determine the proteomic compositions of EVs.

Novel transcriptomic signatures of microglia-derived EVs in resting and pro-

inflammatory states

Beyond proteins, EVs carry mRNA and miRNA cargo which may be important mediators of

microglia-mediated mechanisms of neuroinflammation. It is also possible that microglia state-
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dependent effects on EVs are more likely to be more pronounced at the levels of mMRNA and
MiRNA levels. Therefore, we performed RNA seq to quantify mRNA and miRNA compositions
of EVs and their corresponding cell lysates, after polarizing stimuli. Three groups of BV2 cells
(n=3/group) were treated with either LPS (100 ng/mL), IL-10 (50 ng/mL) or TGF- (50 ng/mL) to
mimic conditions used for proteomic studies. Untreated BV2 cells served as a control group.
Following 72 hours of treatment, whole cells and EVs were isolated from cell culture media,
lysed in Trizol, followed by RNA extraction, purification and quality control steps. To assess
length of RNA from BV2 cells and their EVs, RNA was characterized through capillary
electrophoresis using two separate analyses kits: Pico and small RNA kits for bioanalyzer.
These analyses (Additional file 5) revealed that cells display peaks at the ~2,000 nt (18s) and
~4,000 nt (28s), while EVs displayed peaks predominately between ~20-100 nt which
correspond to small RNAs. To characterize the different subtypes of RNAs in EV and whole
cells, we proceeded with mRNA sequencing and small RNA sequencing. We first discuss our

MRNA sequencing results.

Sequencing of mRNAs identified over 12,000 mRNA species (transcripts) in EVs and
cells across all conditions. As we observed at the proteomic level, different polarizing conditions
induced distinct transcriptomic states in BV2 microglial cells, as evidenced by PCA in which
PC1 explained 73% of variance while PC2 explained 19% of variance (Figure 5A). Similarly,
PCA revealed a large effect of LPS on EV transcriptomic composition as compared to other
polarizing stimuli (Figure 5B). We first assessed unique transcriptomic signatures of EVs as
compared to whole cells (control BV2 microglia only) (Figure 5C). EVs contain higher levels of
over 1,000 mRNA species, including Pak7, Arhgef40, and Saa3. In contrast, cellular
transcriptomes had higher expression of over 1,500 mRNAs including Cebpb, Prkaca, and
Pip5klc. Interestingly, Cebpb is a transcription factor known to regulate immune genes

including genes critical for microglia switch from homeostatic to DAM®*. GSEA of highly-
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enriched mRNAs (>=2-fold change in EVs or whole cells) showed enrichment of translation,
ribosome, and cytokine activity in EVs, while we observed enrichment of terms such as ion

binding and homeostasis and transmembrane receptor activity (Figure 5D, Additional file 6).

Pro-inflammatory genes (e.g., ll1b, I16) and ontologies related to defense and immune
response were increased in LPS-treated BV2 microglia. Interestingly, genes (e.g. G3bp2) and
ontologies related to MRNA transport were also enriched in LPS treated cells (Figure 5E). TGF-
B increased expression of several genes (e.g., Cx3crl, Fltl) and ontologies related to
homeostatic microglial function and biological regulation. IL-10 also increased expression of
genes (e.g., Clgc, Saa3) and ontologies related to protein activation cascade and response to

wounding and other organisms (Additional file 7).

Transcriptomic analyses of EVs identified over 3,000 differentially expressed genes
(DEGs - mRNA species) across treatment groups (Additional file 8). As compared to TGF-3
and IL-10, LPS polarization had the strongest impact on BV2 microglia-derived EV
transcriptomes; therefore, we focused on LPS effects on the whole cell and EV transcriptomes.
As discussed above, LPS polarization resulted in enrichment of pro-inflammatory genes (e.g.,
II1b, 116) related to immune response (Figure 5E). EVs from LPS-treated BV2 microglia showed
increased levels of 2,949 mRNAs and decreased levels of 413 mRNAs (Figure 5F).
Interestingly, transcriptomic alterations induced by LPS (DEGs upregulated with LPS, p<0.05,
>1-fold change) on the whole cell (n=1,040) and EVs (n=2,949) showed modest overlap, with
only 10% of EV transcriptomic changes overlapping with cellular changes (Figure 5G). 359
MRNAs showed shared differential expression in whole cells and EVs (Figure 5G) and majority
of these DEGs were related to lipopolysaccharide-mediated signaling pathway, positive
regulation of cell activation, and regulation of immune response. The 2,591 DEGs related to EV

only showed enrichment of RNA metabolic process and nucleic acid binding terms. While the
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682 DEGs related to cell only showed enrichment of terms such as cell cycle and mature B cell

differentiation (Supplementary Figure 3).

To take a deeper look at LPS effects on the cellular and EV transcriptomes, we
performed GSEA based on identified DEGs. We found that LPS treated BV2 cells showed
enrichment in immune response, RNA binding, and metabolism, whereas we observed a
decreased expression in signal transduction and GTPase activity (Figure 5H). In contrast, EV
transcriptomes from LPS treated BV2 cells, showed enrichment in terms such as signaling and
ion channel activity (Figure 51). Conversely, the downregulated DEGs in EVs from LPS treated

BV2 cells showed enrichment in terms such as ATPase activity and transmembrane activity.

Furthermore, we found that the majority of EV transcriptomic changes induced by LPS
are not observed in the whole cell transcriptomes. This suggests that pro-inflammatory
activation of microglia not only induces whole cell gene expression changes, but also likely
impacts mechanisms that govern mRNA export into EVs, consistent with our observation of
LPS-induced altered expression of genes involved in mRNA transport at the whole cell level

(Figure 5H).

Taken together, these analyses identify novel transcriptomic signatures of EVs that are
distinct from whole cell transcriptomes. Our studies also reveal distinct effects of pro-
inflammatory activation on EV transcriptomic signatures, confirming microglial state-dependent
effects on EV composition at the mRNA level, many of which do not occur at the whole-cell

level.

Microglia-derived EVs exhibit unique microRNA signatures under resting and LPS-

treated conditions

We obtained sufficient RNA for sequencing of small RNA species from BV2 whole cell and EV

RNA extracts. Small RNA sequencing identified ~100 miRNAs in EVs and ~270 miRNAs in
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whole cells (Additional files 9 and 10). In addition to miRNA, we also identified other small
RNA species (circRNA, piRNA, snoRNA, snRNA, and tRNA), included in Additional file 11.
PCA of post-filtered, lowly expressed miRNA molecules in the whole cell (PC1 63%, PC2 12%
of variance) (Figure 6A) identified four distinct clusters based on polarization state, with the
LPS effect showing the strongest effect (along PC1), a pattern similar to our mRNA-based
results. PCA of post-filtered, lowly expressed miRNA molecules in the EVs (PC1 43%, PC2 16%

of variance) (Figure 6B) also showed group-based clustering primarily based on LPS treatment.

When comparing the whole cell and EV miRNA transcriptomes (Figure 6C, Additional
file 12), we found that EVs contained very high levels of miRNAs mmu-mir-6240, mmu-mir-
1983, and mmu-mir-1896. Interestingly, mir-6240 has been previously reported to be found at

higher than expected levels in EVs compared to cell, in both human and mouse samples®.

Focusing on LPS treatment effects, we observed that LPS-treated BV2 cells and their
EVs enrich for unique miRNA signatures. More specifically, we see increased expression of
mmu-mir-320, mmu-mir-5126, and mmu-mir-466h. Interestingly, mir-320 has been found to be
upregulated in plasma EVs from individuals at high risk of lung cancer®. Furthermore, one study
found that mmu-mir-5126 was dysregulated in IFN-y primed mesenchymal stromal/stem cells
(MSC) and mmu-mir-466qg found in MSC-derived exosomes modulated the pro-inflammatory
phenotype of activated N9 microglia cells®*®. Overall, these results implicate that miRNAs in EVs

from LPS treated BV2 cells could play a role in modulating inflammation.

Given that miRNA binds with target mRNA to direct gene silencing via mRNA cleavage
or translation®, we used the miRDB*® online database to generate a list of predicted targets
from our differentially expressed miRNAs in EVs following LPS treatment. We found that
significantly enriched miRNAs that are increased with LPS treatment in EVs (mir-664, mir-5126,
and mir-320) had 462 predicted targets (target prediction score > 80) which showed an

enrichment in ontologies related to androgen and corticosteroid receptor signaling pathway and
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cytoplasmic mRNA processing pathway (Figure 6F). On the other hand, we found that
significantly enriched miRNAs that are decreased with LPS treatment in EVs (mir-6240, mir-
5108, mir-5119, and mir-6345) had 487 predicted targets (target prediction score > 80) which
showed an enrichment in ontologies related to regulation of cell proliferation, chromatin
remodeling structure and regulation of glycolysis. Overall, these results demonstrate that EVs
from LPS activated BV2 cells could contain a set of miRNAs that target distinct mRNAs, thus

modulating gene expression in a responder cell.

EVs derived from LPS-treated microglia induce pro-inflammatory changes in responder

microglia

Our results from proteomic and transcriptomic characterization of microglia-derived EVs
demonstrate EV-specific molecular changes induced by microglial polarization state, particularly
by LPS induced pro-inflammatory activation. Since EVs carry these protein and RNA cargo to
other cells, we hypothesized that state-dependent alterations in EV composition by LPS can
relay inflammatory signals to responder cells and impact their transcriptomic state. To
accomplish this, we isolated EVs from untreated and LPS-treated BV2 microglia, estimated EV
concentration by NTA, and then dosed resting responder BV2 microglia with equal amounts of
EVs and assessed the transcriptomic alterations induced by EVs using RNA seq. To ensure that
LPS (endotoxin) contamination of EV preparations does not confound these EV transfer assays,
we measured endotoxin levels in cell culture supernatants as well as in EV preparations. Cell
culture supernatants from LPS-treated BV2 microglia contained 80-90 ng/mL of LPS, consistent
with the dose of 100 ng/mL that was added. EV preparations from control and LPS-treated BV2
cells had equal endotoxin levels (approximately 4ng/mL, p=0.511060, not significant),
confirming that prior to addition to responder cells, any endotoxin contamination in the EV
preparations was equal in both groups. EVs were dosed at 2,000,000 EVs/well (2mL of

media/well) across all conditions, and the estimated final endotoxin concentration added to
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responder cells was minimal (p=0.103, not significant) and also similar in control and LPS-
treated conditions (Figure 7B). These results confirm that any potential effects of EVs in our
transfer experiments cannot be explained by spurious endotoxin contamination of EV

preparations.

PCA of post-filtered, lowly expressed genes showed 74% of variance was explained by
2 PCs, of which PC1 explained 57% of variance while PC2 explained 17% of variance (Figure
7C). The PCA identified two distinct clusters. RNA sequencing analyses of responder BV2
microglia exposed to control or LPS-treated BV2-derived EVs identified 148 genes that were
differently expressed at the FDR<0.10 level (n=71 increased DEG including Ddx54 and MIit1;
n=73 decreased DEGs including Atpévle2 and Cd72) (Figure 7D, Additional file 13). GSEA
revealed enrichment of terms such as G-protein coupled receptor protein signaling and
regulation of synaptic plasticity for the down list; whereas, there was enrichment of GTPase

activity for the up list (Figure 7E).

We also conducted FET analyses to determine whether gene expression changes
induced by transfer of EVs from pro-inflammatory microglia overlap with specific homeostatic,
pro-inflammatory and disease-associated microglial gene signatures previously identified by
weighted gene co-expression network analyses of microglial transcriptomes® (Figure 7F). We
found that genes that were increased in responder cells following exposure to EVs from LPS-
polarized microglia were enriched (unadjusted FET p=0.005) in a LPS-induced pro-inflammatory
gene module (Red Module), including genes 4932438A13Rik, Dst, Fyb, Gnai, Heatr6, Slc25a22,
and Tmem72. These results from EV transfer experiments demonstrate the ability of EVs to

relay the inflammatory state of microglia of origin to responder microglia.

Conclusions


https://doi.org/10.1101/2023.07.28.551012
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.28.551012; this version posted July 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

19

Microglia, the resident immune cell type of the brain, play an essential role in mediating
inflammatory responses in the CNS. Microglia can alter their morphology, molecular profile, and
function in response to immune activators, thus exerting different functions in different
diseases®. Microglia-mediated neuroinflammation is a key pathological component of several
neurodegenerative diseases®. Compelling evidence has suggested that EVs can have an
indirect role in regulation of inflammatory signals and propagation of pathogenic cargo™® *.
Since microglia demonstrate heterogenous states in response to stimuli and signals from other
brain cell types, it is possible that microglia-derived EVs may also exhibit state-related
heterogeneity. However, the characterization of microglia-derived EVs at the proteomic and
transcriptomic level, and how these are impacted by microglial state, have not been well
studied. In the present study, we have characterized the proteomic and transcriptomic
signatures of EVs from distinct microglia states using in vitro models. Our results demonstrate
that upon treatment with LPS, TGF-f3, or IL-10 to elicit distinct microglial states, BV2 cells and
their EVs indeed demonstrate unique proteomic and transcriptomic signatures; indicating
polarization of BV2 cells impacts the cargo of EVs. LPS treatment, in particular, had the most
profound impact on transcriptomic compositions of microglia-derived EVs, and interestingly,
these changes in EV mRNA cargo were not apparent at the whole cell level, suggesting unique
effects of LPS on mechanisms that direct mRNA to EVs. Lastly, EVs derived from LPS-activated
microglia were able to induce pro-inflammatory transcriptomic changes in resting responder
microglia, confirming the ability of microglia-derived EVs to relay functionally-relevant
inflammatory signals. Collectively, our results provide a critical resource of microglia-specific EV
signatures, many of which are distinct from EVs from other cell types. State-specific EV
signatures at the levels of proteins, mMRNA, miRNA as well as other non-coding RNA species,

will serve as important resources for the fields of EV biology as well as neuroscience.
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The microglial EV proteomes in our study are also deeper than current microglial EV
proteomes, identifying 494 proteins not previously reported. Over 207 proteins in microglia EVs
were also identified that have not been reported in proteomic studies of EVs from other cell
types. This increased depth of the microglia EV proteome was not due to non-EV
contamination, because we verified EV enrichment via several complimentary methods,
including TEM, Western blotting, as well as high-level enrichment of canonical EV surface
proteins such as CD9. Our proteomic studies of EVs identified unique functional groups of
proteins as compared to the whole cell proteome of BV2 microglia. We found that BV2
microglia-derived EVs were enriched in ontologies related to positive regulation of transporter
activity, regulation of RNA splicing, cytosolic large ribosomal subunit, and aminoacyl-tRNA
synthetase complex in comparison to non-microglial EV proteomes. This suggests that proteins
contained within microglia-derived EVs could play a role in mRNA processing as well as protein
synthesis in the recipient cell. Furthermore, Oh et al. 2022 reported that Aminoacyl tRNA
synthetase (ARS) complex-interacting multifunctional protein 1 (AIMP1), a structural component
of the multienzyme ARS complex, can induce microglial activation and has been associated
with several inflammatory diseases®’. Based on this, microglia specific-EV signatures could be

related to protein-synthesis machinery and influence activation of recipient cells.

Another major finding in our study is that microglial state influences EV proteomic
composition. Specifically, we show that EVs derived from BV2 cells treated with IL-10 and TGF-
B demonstrated a reduction in cytosolic chaperonin Cct ring complex proteins (e.g., Cct3, Cct4).
Given that IL-10 is supposed to induce a protective response in microglia cells and TGF- a
homeostatic response, we would expect a decrease abundance in proteins related to
pathogenic pathways. Previous studies have shown that chaperonins Cct subunits show
increased quantities in disease states. For example, studies with glioblastomas have

demonstrated an increase in the Cct subunits in EVs derived from tumor tissues®. Since Cct
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proteins (as part of the TRIC complex) also participate is regulation of protein folding of actin
and tubulin as well as pathological protein aggregation, it is also plausible that CCT changes in
microglia-derived EVs could impact pathogenic mechanisms of neurodegeneration®. The
results of these studies align well with the reduction in Cct ring complex proteins following
treatment with IL-10 and TGF-B. Furthermore, we found that EVs derived from LPS activated
BV2 microglia demonstrated an enrichment in proteins related to proteasome activity (e.g.,
PSMB3). Prior work has demonstrated that proteasome systems are involved in regulating pro-
inflammatory pathways®. Thus, EVs derived from LPS-activated microglia can potentially
enhance inflammation through enrichment of proteasomes. These findings together with our

results suggest that microglial EVs from distinct microglia states have unique proteomic profiles.

Beyond elucidating proteomic features of microglia-derived EVs, we also
comprehensively characterized RNA cargo of microglia-derived EVs and the corresponding
RNA content from whole cells as well. Our RNA sequencing studies (mMRNA and miRNA)
showed that microglia-derived EVs had a relatively larger number of miRNA species relative to
MRNA, when compared to whole cell mMRNA and miRNA profiles. This aligns with the general
consensus that smaller RNAs are more abundant than mRNAs in exosomes. Interestingly,
following LPS activation of BV2 cells we noticed an increase in mRNA transcripts in EVs
compared to cells. Furthermore, we found that LPS activated BV2 microglia demonstrated an
enrichment in genes related to mRNA transport and RNA binding. Given the accumulating
evidence showing that mRNAs in EVs could serve as templates for novel protein translation in

recipient cells*" **

, it is possible that there is a specific mechanism involved in the shuttling of
MRNAs into EVs that is increased following LPS microglial activation. We also found that a
majority of EV transcriptomic changes induced by LPS activation are not observed in the whole

cell transcriptomes. This suggests that pro-inflammatory activation of microglia not only induces

whole cell gene expression changes, but also likely impacts mechanisms that govern mRNA
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export into EVs. However, further investigation is necessary to determine whether these mRNAs
in EVs are translated into proteins in responder cells thereby influencing the phenotype of the

cell.

Next, we sought to explore the miRNA contents of microglia-derived EVs given their role
in regulating the expression of specific gene targets'®. In our studies, we observed that LPS-
treated BV2 microglia and their EVs bear unique miRNA signatures that may be important in
modulating inflammation. Specifically, mir-320, which was increased in EVs from LPS-treated
BV2 cells, has been previously found to be upregulated in the cortex of human sporadic AD
cases®. Furthermore, we identified several miRNAs that are contained at very high levels in
EVs but not cells (e.g. mir-6240 and mir-6236). Focusing on the miRNAs that are differentially
expressed in EVs from the LPS treated group versus control, we found that miRNAs in the EVs
from LPS treated group target unique mRNAs compared to control, which are involved in
androgen and corticosteroid receptor signaling pathway and the cytoplasmic mRNA processing
pathway. By targeting distinct mRNAs, the miRNA cargo in these EVs could impact gene
expression and modulate inflammation in a recipient cell. However, further mechanistic studies

are needed to test this hypothesis.

The complementary multi-omics characterization of microglia-derived EVs and microglial
state-dependent effects on EVs suggest that EVs from distinct microglia states have unique
protein and RNA cargo, which may be able to impact other cells. Therefore, we hypothesized
that state-dependent alterations in EV composition by LPS can relay inflammatory signals to
responder cells and impact their transcriptomic state. To accomplish this, we dosed resting
responder BV2 microglia with equal amounts of EVs from untreated and LPS-treated BV2
microglia and then assessed the transcriptomic alterations induced by EVs using RNA seq. Our
RNA sequencing analyses revealed that responder BV2 microglia exposed to LPS-treated BV2-

derived EVs display upregulation of genes related to GTPase activity and downregulation of
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genes related to G-protein coupled receptor protein signaling and regulation of synaptic
plasticity. Mukai et al. reported that LPS stimulation significantly increased Rho-GTPase activity
levels in microglia**. These results from EV transfer experiments demonstrate the ability of EVs
to relay the inflammatory state of microglia of origin to responder microglia. Although these
transcriptomic effects were not very large, the overall effect of LPS-microglia-derived EVs on
responder microglia was consistent with a pro-inflammatory profile previously reported in mouse
microglia. Importantly, we confirmed that the observed effects of EVs cannot be explained by
passive transfer of LPS itself. We attribute the smaller effect size on responder transcriptomes

to dosing of EVs and duration of exposure.

Despite the strengths of our in vitro studies, some limitations of our work should be
considered. For our study we chose to use BV2 microglia cells, a well characterized
immortalized murine microglial cell line*, because of their ability to capture major cellular
phenotypes of microglia, suitability as an alternative model for primary microglia culture®®, and
feasibility with obtaining sufficient EVs for EV proteomics and transcriptomics analyses.
However, it should be noted that BV2 cells represent transformed cells which could change their
phenotype compared to primary microglia cells in the central nervous system*’. Therefore,
further studies will be needed in either human iPSC-induced microglia cells or primary mouse
microglia to confirm that there are similar proteomic and transcriptomic changes as observed in
our BV2 cell studies. While we chose untreated BV2 microglia as responder cells for our EV
dosing studies, other cell types (e.g. neurons and astrocytes) may be considered in future
studies to understand the effects of microglia-derived EVs on non-microglial cellular
phenotypes. Another potential limitation of our study is the sensitivity to detect low quantities of
protein, mRNA, and miRNAs from EVs; however, we employed several steps in our

experimental design and data analysis pipeline to account for low input.
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To conclude, our findings suggest EVs from distinct microglia states have unique
proteomic and transcriptomic profiles. Furthermore, we have identified novel EV proteins in
microglia not seen in other EVs, thereby increasing the depth of the microglia-derived EV
proteome that has not been previously reported on. Through our transcriptomic analysis, we
discovered that LPS activation of BV2 cells has the strongest impact on EV composition,
possibly increasing the amount of mMRNAs transported and packaged into the EVs. Lastly, our
data suggests that EVs from LPS-activated microglia can elicit a transcriptomic change in
resting recipient microglia that mimics that of a pro-inflammatory response. Our study highlights
the value of characterizing the cargo of EVs from distinct cell types. EVs are a promising
therapeutic as well as diagnostic tool for neurodegenerative disease. Given that microglia are
highly dynamic cells and can polarize to multiple phenotypes in response to their environment, it
is to be inquired if their EVs might have distinct functions and contents. Therefore, the uptake of
microglia-derived EVs by other cells could mediate indirect downstream signaling events. More
research is needed to wunderstand the mechanisms of microglia-derived EVs in
neurodegenerative disease, specifically whether the presence or absence of certain cargo can

impact disease progression.

Abbreviations

EV: Extracellular vesicles

CNS: Central nervous system

AD: Alzheimer's disease

LPS: Lipopolysaccharide

IL-10: Interleukin-10

TGF-B: Transforming growth factor beta
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TEM: Transmission electron microscopy

NTA: Nano tracking analysis

LFQ-MS: Label free mass spectrometry

MRNA: messenger RNA

mMiRNA: micro RNA

TLR: Toll-like receptor

TNF: Tumor necrosis factor

CCT: Chaperonin containing TCP1 (CCT/TRIC)

GSEA: Gene set enrichment analysis

GO: Gene ontology

KEGG: Kyoto Encyclopedia of Genes and Genomes

DEP: Differentially expressed protein

DEG: Differentially expressed gene

DEX: Differential expression

PCA: Principal component analysis

Methods

Antibodies, buffer, and reagents

A complete table of antibodies & reagents are provided (Tables 1 & 2).

Table 1. Antibodies used and their corresponding dilutions
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Antibody Manufacturer Catalog # Dilution/ Duration
Anti-CD9 Antibody System Biosciences EXOAB-CD9A-1 1:500 / overnight
Anti-CD9 Antibody Abcam ab223052 1:500 / overnight
Anti-TSG101 Antibody | Abcam ab30871 1:500 / overnight
Anti-Calnexin (AF18) Santa Cruz sc-23954 1:200/ 1 hour
Donkey anti Rabbit 800 | Invitrogen Al11374 1:10,000/ 1 hour
Goat Anti-Rabbit IgG Abcam ab41498
H&L (6nm Gold)

Table 2. Reagents used and their manufacturer and catalog numbers

Reagent Manufacturer Catalog #
StartingBlockT20 Thermofisher 37543

HALT protease & phosphatase inhibitor cocktail | Thermofisher 78446

Dulbecco’s Modified Eagle Medium (DMEM) Gibco 11965-092
Penicillin-Streptomycin Gibco 15140-122

Fetal Bovine Serum (FBS) Gibco 26140-079
Lipopolysaccharide (LPS) Sigma-Aldrich L4391, 1 mg
Recombinant Mouse IL-10 Protein R&D Systems 417-ML-005, 5 ug
Recombinant Mouse TGF-beta 1 Protein R&D Systems 7666-MB-005, 5 ug
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0.05% Trypsin-EDTA Gibco 253000054
Reagent A Thermofisher 23222
Reagent B Thermofisher 23224
Bovine Serum Albumin Standards Thermofisher 23208
gEVoriginal / 35 nm Gen 2 Column Izon ICO-35
Amicon Ultra-2 Centrifugal Filter Units Millipore UFC210024, 100 KDa
Amicon Ultra-15 Centrifugal Filter Units Millipore UFC910024, 100 KDa
Pierce Protein Concentrator PES, 100K MWCO, | Thermofisher 88524
2-6 mL
Lys-C Wako 127-06621
Trypsin Thermofisher 90058
HLB columns Waters 186003908
Carbon Film Grids 400 Mesh-copper-thick Electron CFU400-CU-TH
Microscopy
Sciences
miRNeasy Mini Kit Qiagen 217004

Cell culture studies

BV2, an immortalized murine microglial cell line, were cultured in filtered Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with high glucose and L-glutamine containing 1%

penicillin/streptomycin, and 10% Fetal Bovine Serum (FBS). All media was vacuum-filtered with
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0.2 um filters. The cells were incubated at 37 degrees Celsius (°C) and 5% CO2 until reaching
80% confluency. The splitting regimen took place twice weekly, plating one million cells onto a
100 mm culture plate to a final volume of 12 mL culture media. In preparation for experiments,
one million cells were plated in 100 mm plates with 12 mL of media. 24 hours after plating,
existing media was swapped for filtered serum-free media (DMEM containing 1%
penicillin/streptomycin) and BV2 cells were treated with either TGF-8 (50 ng/mL), IL-10 (50
ng/mL), and LPS (100 ng/mL) for 72 hours**?®. Control cells were left untreated. For dosing
resting recipient cells, EVs were isolated from cell culture media following treatment of BV2 as
described above. The concentration of isolated EVs for each sample were determined using
NTA. Recipient BV2 cells (n=3/condition) in a 6 well plate were dosed for 24 hours with 2 million
EVs/well from either TGF-8, IL-10, or LPS treated BV2 cells. Cell culture media in 6 well plates

was swapped with serum-free media prior to dosing recipient cells with EVSs.

After 72 hours in culture, cell culture medium was collected from the plates, transferred into 15
mL tubes, and placed on ice. Next, the plates were washed twice with ice-cold 1x phosphate
buffer saline (PBS). Cell pellets were harvested in 500 pyL Urea lysis buffer (8 M Urea, 10 mM
Tris, 100 mM NaH2PO4, pH 8.5) with 1x HALT protease & phosphatase inhibitor cocktail
without EDTA. Cell lysates were then sonicated at 30% amplitude thrice in 5-second on-off
pulses to disrupt nucleic acids and cell membrane. All cell lysates were centrifuged at 4°C for 2
minutes at 12,700 rpm. The supernatants were transferred to a fresh 1.5 mL LoBind Eppendorf
tube. The protein concentrations of whole cell lysates were determined by Bicinchoninic acid

(BCA) assay reagents using Bovine Serum Albumin Standards.

EV isolation

[*8, Cell culture media underwent

EV isolation was conducted as per Izon manufacturer’s protoco
several centrifugation steps to remove cellular debris (10 min at 500xg and 10 min 10,000xg).

After each spin, the supernatant was collected and subjected to the subsequent spin. The final
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supernatant was collected and added to an Amicon Ultra-15 Centrifugal Filter (molecular weight
cut-off 100 kDa) to concentrate the sample and then was added to a gEV column resin column
for size exclusion chromatography using the 1zon qEV system with a geVoriginal / 35 nm Gen 2
Column. Sterile PBS was used as the flushing buffer. The second fraction containing the most
abundant amount of EVs was then concentrated using a Amicon Ultra-2 Centrifugal Filter
(molecular weight cut-off 100 kDa) or Pierce Concentrator 0.5mL, PES (molecular weight cut-off
100 kDa). The resulting concentrate was used for any downstream analysis (TEM,

immunoblotting, NTA, proteomics, or transcriptomic analyses).

Transmission Electron Microscopy (TEM) of EVs

For electron microscopic analysis, 5 yL from the EV samples were loaded onto the carbon side
of charged copper/carbon-coated electron microscopic grids. After 5 minutes, sample loaded
grids were washed 3 times in distilled water and then stained with 1-3% uranyl acetate for 1
minute in the dark. Once grids were dry, EVs were observed under TEM at 80 kV. TEM grids
were stored in the appropriate grid storage boxes for future use. Hitachi HT7700 transmission

electron microscope operating at 80 kV was used for imaging.

Immunogold labeling of EVs with CD9

For the preparation of samples for immunogold electron microscopy, purified EVs were fixed for
1 hour in a mixture of 0.1% glutaraldehyde, 2.5% paraformaldehyde, 0.03% picric acid, and
0.03% CaCl2 in 0.01 M cacodylate buffer at a pH of 7.2. Fixed samples were then adsorbed for
1 hour to freshly glow discharged copper Formvar-coated grids. For immunogold staining, grids
with adsorbed EVs were incubated sample-side down on drops of blocking buffer for 30 minutes
(a mixture of 0.1% BSA and 0.01 M glycine in 0.01 M PBS). They were then transferred to drops
containing rabbit polyclonal antibody to CD9 (Abcam ab223052) diluted in diluent buffer (1%

BSA in 0.01 M PBS) at a dilution of 1:20 and incubated for 1 hour at room temperature and then
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overnight at 4°C. Next, grids were washed through a series of drops of blocking buffer and
subsequently transferred to drops containing gold-labeled secondary antibodies. Secondary
antibodies were goat polyclonal antibody to rabbit IgG labeled with 6-nm gold particles (Abcam
ab41498), at a dilution of 1:20 in diluent buffer. After EVs were incubated with secondary
antibodies for 1 hour at room temperature, they were once again washed by transferring them
through a series of drops of blocking buffer, then through a series of drops of 0.01 M PBS, and
finally, through a series of drops of deionized water. Grids were then fixed for 15 min on drops
of 2.5% aqueous glutaraldehyde. EVs were subsequently negatively stained with 2% aqueous
uranyl acetate and examined in a JEOL JEM 1400 transmission electron microscope operated

at 80 kV.
Nano tracking Analysis (NTA) of isolated EVs

The size and total number of EVs were measured by using NanoSight NS300 (Malvern, UK)
with the technology of Nanoparticle Tracking Analysis (NTA). Size distribution and concentration
of EVs in an aqueous buffer was obtained by utilizing Brownian motion and light scattering
properties®. Samples were diluted with 1X PBS to obtain optimal concentration for detection
(10°-10° particles/ml) and injected with a continuous syringe system for 60 s[1x 13 times at
speed 100 pl/min. Data acquisition was undertaken at ambient temperature and measured 3
times by NTA. Data were analyzed with NTA 3.2 software (Malvern, UK) with minimum

expected particle size 10 nm.
Immunoblotting studies

In each well, 15 pg of protein from cell lysates and 21 yL of EV lysate resolved in a 4-12%
polyacrylamide gel and transferred onto iBlot 2 Transfer Stack containing nitrocellulose
membrane using the BOLT transfer system. The membranes incubated for 1 hour at room

temperature in StartingBlockT20 before receiving rabbit anti CD9 primary antibody overnight at
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4 °C. After primary antibody incubation, the membranes underwent three 5-minute washes with
1x TBS-T. The membranes incubated for 1 hour at room temperature in a secondary antibody
cocktail of donkey anti rabbit 800. The membranes were then washed again as previously
described before undergoing imaging via the Odyssey infrared Imaging System (LI-COR

Biosciences).

Proteomic studies of BV2 microglia and EVs

Protein digestion

Sample preparation for MS was performed according to our laboratory protocols modified from
previous publications®®*?. To prepare enriched samples for mass spectrometry analysis, EV
fractions and cells were lysed in 8M urea containing protease and phosphatase inhibitors. 100
pg of protein from the cell lysates and the entire volume of the EV lysates were then reduced
with 1 mM dithiothreitol (DTT) at room temperature for 30Cmin and alkylated with 5 mM
iodoacetamide (IAA) in the dark for 300min with rotation. Proteins were digested overnight with
27Jug of lysyl (Lys-C) endopeptidase (Wako, 127-06621) at RT on shaker. Samples were then
diluted (7-fold) with 507TmM ammonium bicarbonate (ABC) to bring the urea concentration to 1
M. Samples were then digested overnight with 271ug of trypsin (Thermo, 90058) at RT on
shaker. The resulting peptide solutions were acidified to a final concentration of 1% formic acid
(FA) and 0.1% triflouroacetic acid (TFA), desalted with a HLB columns (Waters, 186003908),

and dried down in a vacuum centrifuge (SpeedVac Vacuum Concentrator).

Mass spectrometry (MS)

Dried peptides were resuspended in 15 1uL of loading buffer (0.1% FA and 0.03% TFA in
water), and 7-811uL was loaded onto a self-packed 25(icm (100[ Ium internal diameter packed
with 1.7(1uym Water's CSH beads) using an Easy-nLC 1200 or Dionex 3000 RSLCnano liquid

chromatography system. The liquid chromatography gradient started at 1% buffer B (80%
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acetonitrile with 0.1% FA) and ramps to 5% in 107s>3. The spectrometer was operated in data
dependent mode in top speed mode with a cycle time of 3s. Survey scans were collected in
the Orbitrap with a 60,000 resolution, 400 to 1600 m/z range, 400,000 automatic gain control
(AGC), 50 Ims max injection time and RF lens at 30%. Higher energy collision dissociation
(HCD) tandem mass spectra were collected in the ion trap with a collision energy of 35%, an
isolation width of 1.6 7m/z, AGC target of 10000, and a max injection time of 350Jms. Dynamic

exclusion was set to 300]s with a 10 Ippm mass tolerance window.

Protein identification and quantification

MS raw files were searched using the search engine Andromeda, integrated into MaxQuant,
against 2020 mouse Uniprot database (91,441 target sequences). Methionine oxidation
(+15.99491'Da) and protein N-terminal acetylation (+42.0106/ Da) were variable modifications
(up to 5 allowed per peptide); cysteine was assigned as a fixed carbamidomethyl modification
(+57.0215 Da). Only fully tryptic peptides were considered with up to 2 missed cleavages in the
database search. A precursor mass tolerance of +200ppm was applied prior to mass accuracy
calibration and x4.50ppm after internal MaxQuant calibration. Other search settings included a
maximum peptide mass of 46007Da, a minimum peptide length of 6 residues, 0.051Da
tolerance for orbitrap and 0.611Da tolerance for ion trap MS/MS scans. The false discovery rate
(FDR) for peptide spectral matches, proteins, and site decoy fraction were all set to 1 percent.
Quantification settings were as follows: re-quantify with a second peak finding attempt after
protein identification has completed; match MS1 peaks between runs; a 0.7Jmin retention time
match window was used after an alignment function was found with a 20 Zmin RT search space.
Quantitation of proteins was performed using summed peptide intensities given by MaxQuant.
The quantitation method only considered razor plus unique peptides for protein level

guantitation.
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The MaxQuant output data were uploaded onto Perseus (Version 1.6.15) for analyses. The
categorical variables were removed, and intensity values were log (base 2) transformed. The
data were filtered based on 50% missingness values and missing values were further imputed
from normal distribution (width: 0.3, down shift: 1.8). The MaxQuant output data (LFQ
intensities) from the EV samples were first normalized based on column sum weight (column
sum of given sample divided by average sum across all samples) for each sample to account
for volumetric loading of EV samples. The data was then processed as described above with

Perseus.

Data Analysis related to proteomic studies

Proteomic data analysis involved several approaches including differential expression analysis,
gene ontology (GO) analysis, principal component analysis (PCA), and hierarchical clustering
using the average linkage method with one minus Pearson correlation. To visualize the data,
heat maps of the normalized data were generated using Morpheus from the Broad Institute
(https://software.broadinstitute.org/morpheus), and additional graphical representations were

created using R software (version R-4.2.0) and Prism (GraphPad, version 9) software.

Cell Proteome: Data Normalization, Log Transformation, and Filtering

LFQ intensities and raw intensity values were uploaded onto Perseus (version: 1.6.15) for
analyses. Categorical variables were removed, LFQ intensity values were log-2 transformed,
and data were in general filtered based on 50% missingness across the group of samples that
were selected for each analysis. Missing values were imputed from normal distribution.

Cell Proteome: PCA and Differential Expression Analysis

The inputted data was then preprocessed to remove duplicates. The code used for this
preprocessing is referenced from the Supplemental materials. Post processing, the inputted

data file from the cell proteome contained 1882 proteins. To identify patterns, relationships, and
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important variables in the dataset and gain insight into the main sources of variation, we
performed principal component analysis (PCA), a widely used statistical technique for analyzing
high-dimensional datasets. To identify significantly differentially enriched proteins (with an
unadjusted p-value < 0.05), we conducted an unpaired t-test comparing the treatment groups
against the control group. Furthermore, to identify proteins of interest that were differentially
expressed, we performed a one-way analysis of variance (ANOVA) on all samples (h = 16),
comparing the control, LPS, IL-10, and TGF- groups (n = 4 each). The code for the one-way
ANOVA analysis was adapted from the "parANOVA" repository on GitHub
(https://github.com/edammer/parANOVA). Based on the one-way ANOVA calculation, we

calculated the PCA (https://rdrr.io/bioc/M3C/src/R/pca.R) for the differentially expressed gene

"cleanDat." To determine whether a gene was differentially expressed, we used a threshold of a
p-value < 0.05 in the one-way ANOVA analysis. Out of the 1882 proteins in cleanDat, we
identified 333 proteins that met this criterion.

Additionally, we generated one-way ANOVA significant proteins and created heatmap

(https://nmf.r-forge.r-project.org/aheatmap.html) and PCA plots to identify patterns in the

dataset. Differentially enriched proteins were presented as volcano plots. Overall, these
methods allowed us to analyze the proteomic data, identify differentially enriched and
differentially expressed proteins, and gain insights into the underlying structure and variation
within the dataset.

EV Proteome: Data Normalization, Log Transformation, and Filtering Missingness

Before conducting any analysis, protein abundances in the EV samples were normalized. This
involved calculating the column sum (LFQ intensities) for each sample in the raw file and
determining weights by dividing the column sum of a given sample by the average sum across
all samples. The LFQ data was then normalized to the column sum weight for each sample.

Following normalization, LFQ intensities and raw intensity values were uploaded onto Perseus

(version: 1.6.15) for analyses. Categorical variables were removed, LFQ intensity values were
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log-2 transformed, and data were in general filtered based on 50% missingness across group of
samples that were selected for each analysis. Missing values were imputed from normal
distribution.

EV Proteome: Batch Regression, Differential Expression Analysis, and PCA

The EV analysis involved 533 proteins divided into Control, TGF-B, IL10, and LPS groups, each
with four samples. For statistical analysis, batch regression was performed using bootstrap
regression to minimize the impact of batch on sample variance. Variance partitioning was
employed to generate violin plots illustrating the contributions of treatment and batch to the
observed variance in the data. The primary objective was to reduce the variance caused by
batch and eliminate the batch effect. Volcano plots were then generated to visualize the
differentially enriched or depleted proteins. The regressed data, obtained after applying batch
regression, was used in an unpaired t-test comparing the control group to the treatment groups.
The top proteins identified from the volcano plots were further examined for their ontologies.
Principal component analysis (PCA) was conducted, incorporating one-way ANOVA (P < 0.05)
and batch regression. Throughout the EV analysis, the "parANOVA" repository on GitHub
(https://github.com/edammer/parANOVA) was referenced for the one-way ANOVA code. These
analyses allowed for a comprehensive investigation of the proteomic data, encompassing
normalization, statistical tests, visualization, ontological analysis, and enrichment analysis,
providing valuable insights into the characteristics and differential expression patterns of the
proteins under study.

Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis (GSEA) was conducted using AltAnalyze (http:/altanalyze.orq)

(Version 2.0). Three treatment groups were compared to the Control group. Specific parameters
were employed for the analysis. Additionally, differentially enriched proteins with unadjusted p-

values < 0.05 and fold change = 2 from the differential analyses were included in the input lists.
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The background gene list consisted of unique gene symbols for all proteins identified and

guantified in the mouse brain.

Transcriptomic studies of BV2 microglia and EVs

RNA extraction, library prep, and RNA sequencing

Total RNA was extracted from BV2 cells and BV2 cell-derived extracellular vesicles using the
Qiagen miRNeasy Mini Kit (Cat. No. 217004). 20 pL of EV fraction was resuspended in 700 pL
of TRIzol lysis buffer. BV2 cell pellets were harvested in 700 yL of TRIzol lysis buffer. Added
140ul of chloroform was added to each sample and shook vigorously. Samples were then
centrifuged for 15 min at 12,000 x g at 4°C. After centrifugation, the sample separated into 3
phases: an upper, colorless, aqueous phase containing RNA; a white interphase; and a lower,
red, organic phase. The top aqueous phase was carefully isolated without disturbing the other
phases. The top aqueous phase was transferred to a new collection tube and 1.5 volumes of
100% ethanol was added and mixed by pipetting up and down. 700 pL of the sample was
added to the provided spin column in collection tubes. Samples were spin at 28000 x g for 15 s
at room temperature and the flow-through was discarded. This was repeated for the rest of the

sample.

Bound RNA was washed 2 times using the included wash solution (Buffer RPE). Finally, elution
solution (RNase-free water) was used to elute the RNA in 40 uL volume for cells and 20 pL for
extracellular vesicles. RNA was stored at -80°C and RNA quality was assessed by Bioanalyzer
(Agilent 2100 Bioanalyzer, RNA 6000 Nano Kit for cells, RNA 6000 Pico Kit for EVs, Agilent

Technologies).

cDNA Libraries were prepared for small RNAs using the SMARTer smRNA-seq kit and for
MRNAs using the SMART-Seq v4 and Nextera XT kit. A total of 18 cycles of PCR were carried

out to obtain a good yield of cDNA from cells and EVs. Final library quality was verified with
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Qubit and Bioanalyzer. Negative (no RNA) and positive controls provided expected results.
Next-generation RNA sequencing was performed using a HiSeq X lllumina 2x150, 40M total

reads per sample (20M each direction) at Admera Health.

Data Analysis related to RNA seq studies of BV2 microglia and EVs: mRNA and non-coding

RNA RNA sequencing analysis was conducted to identify genes exhibiting differential
expression. The counts data provided information on the abundance of reads mapped to the
reference genome or the number of fragments assigned to each gene. The primary objective
was to identify systematic changes between the conditions of interest, specifically Control vs
Treatment. The analysis utilized the DESeq2 package, developed by Michael I. Love, Simon
Anders, and Wolfgang Huber (Package Authors). A DESeqg2DataSetFromMatrix object was
created, and the design parameter was set to ~Treatment, which captured the information on
how the traits file was structured. For instance, in the case of n=4 Control vs n=4 LPS, the
design matrix reflected these conditions. To ensure data quality, the raw counts data were
aligned to the traits file, following the documentation guidelines. Lowly expressed genes were
filtered out based on the criterion of rowSums(counts(dds)) = 30, meaning that only genes with
30 reads in total across all samples (5 X 6 samples = 30) were retained. This step was
performed to remove genes with insufficient expression levels. Additionally, if required by the
dataset, Ensembl IDs were converted to gene names for ease of downstream analysis. The
control condition was designated as the reference for comparison, and genes exhibiting
differential expression were identified using the criteria of adjusted p-value < 0.05 and log2 fold
change (LFC > O for upregulated genes and LFC < O for downregulated genes). It should be
noted that in the comparison of Bulk RNA-seq on responder BV2 cells, the LPS samples were
contrasted against the control (n = 4), deviating from the general protocol. Principal component
analysis (PCA)

(https://www.rdocumentation.org/packages/netresponse/versions/1.32.2/topics/plotPCA) was
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employed as an initial analysis step to identify patterns, relationships, and important variables in

the high-dimensional dataset.

The RNA-seq analysis, utilizing the DESeq2 package, allowed for the identification of
differentially expressed genes, subsequent gene enrichment analysis, and visualization of the
results through various plots. This comprehensive approach provided valuable insights into the

expression patterns and functional characteristics of the genes under investigation.

GSEA of transcriptomic data

Gene enrichment analysis was performed on the lists of differentially expressed genes using
AltAnalyze, with specific parameters specified. Volcano plots

(https://github.com/kevinblighe/EnhancedVolcano) and heatmaps (https://cran.r-

project.org/web/packages/pheatmap/index.html)based on the top 50 genes with adjusted p-

values were generated to visualize the results of the differential expression analysis. For gene
enrichment analysis of the predicted targets for specific miRNAs, we used miRDB* and
MirTarget™. Input lists were relaxed to an adjusted p-value of 0.10, as opposed to the usual
0.05, in order to enhance the coverage of genes for Bulk RNA-seq on responder BV2 cells, and
the LPS samples were contrasted against the control (h=4). To assess the statistical

significance between two categorical variables, a Fisher's exact test was conducted.
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Availability of data and materials

R code associated with the data analyses for the manuscript are published to GitHub

(https://github.com/adityanatul/proteomic-and-transcriptomic-signatures-of-microglia-

derived-extracellular-vesicles-.git)

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the dataset identifier PXD043959.

The RNA sequencing data have been deposited to the NCBI Gene Expression Omnibus (GEO).

GEO accession number is pending.

Additional datasets supporting the conclusions of this article are included within the article as

Additional files (13).

ExoCarta® (http://www.exocarta.org) was used for lists of proteins previously identified in EVs

from different mouse tissues and cell types.

Rangaraju et al. 2018° was used for WGCNA module membership data used for analyses
comparing the transcriptomes of responder BV2 microglia to known microglial transcriptomic
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Figure 1: Purification of BV2 microglia-derived extracellular vesicles (EVs). A. lllustration
outlining the process for isolating EVs from cell culture media. Created with BioRender. B.
Transmission electron microscopy (TEM) image of isolated EVs from BV2 cells. Scale bar is
100nm. C. TEM immunogold labeling of EVs (6nm gold particles) shows CD9 protein on the
surface of EVs. CD9 is a canonical EV surface marker. D. Nanoparticle tracking analysis (NTA)
shows size and concentration of isolated EVs from BV2 cell culture media. E. Western blot

analyses of EVs and cell lysate, probed with antibodies to detect EV-enriched and cytosolic
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markers. CD9 and TSG101 are positive EV markers and Calnexin is a negative EV marker. Two

biologically-independent experimental samples were blotted for each condition.
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Figure 2: Comparison of BV2 whole-cell proteome and BV2-derived EV proteome. A.
Enrichment of EV related proteins in EV proteome compared to BV2 cell proteome. Red labeled
circles are in the Exocarta top 100 list. B. Heatmap representation, based on enrichment Z-
scores, of GOSIlim for list of differentially enriched proteins (DEPs) from Figure 2A. C.
Comparison of 533 identified proteins from BV2-derived extracellular vesicles across all
conditions to online database Exocarta mouse, all cell types, protein. D. Heatmap
representation, based on enrichment Z-scores, of Gene Ontology for list of 207 proteins and list
of 689 proteins from Figure 2B. E. STRING protein-protein-interaction network highlighting
protein groups related to RNA metabolism and protein translation, that are unique to BV2
microglia-derived EVs as compared to other cell type-derived EVs. Edges represent protein-
protein associations. Line thickness represents edge confidence. F. Comparison of 533
identified proteins from BV2 derived extracellular vesicles across all conditions to online
database Exocarta mouse, microglia, protein. G. Comparison of 533 identified proteins from
BV2 derived extracellular vesicles across all conditions to Yang et al. 2018 BV2-derived EV

proteome.
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Figure 3: BV2 cells of distinct states and their EVs have unique protein signatures. A.
llustration outlining the experimental setup. Created with BioRender. B. Comparison of EV vyield
from BV2 cell culture media, across different treatment conditions. One-way ANOVA, p-value is
not significant (p=0.4684). C. Principal component analysis (PCA) plot of BV2 cell proteome —

p<0.05, one-way ANOVA (n=333 proteins). D. PCA plot of BV2-derived EV proteome — p<0.05,
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one-way ANOVA (n=84 proteins). E. Heatmap of DEPs — p<0.05, one-way ANOVA (n=84
proteins). F. Volcano plots showing DEPs in EV proteome comparing each treatment group to

the control group (p<0.05).
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Figure 5: BV2 cells of distinct states and their EVs have unique mRNA signatures. A. PCA
plot on mRNA seq data from BV2 cells — p<0.05, one-way ANOVA. B. PCA plot on mRNA seq
data from BV2-dervied EVs — p<0.05, one-way ANOVA. C. Volcano plot showing differentially
expressed genes (DEGs — mRNA species) in EVs compared to BV2 cells (p <0.05).
Upregulated and downregulated numbers correspond to red dots (p< 0.05 and log2 fold change
LFC>1 for upregulated genes and LFC<-1 for downregulated genes). D. Heatmap
representation, based on enrichment Z-scores, of Gene Ontology for highly enriched mRNAs
(>=2-fold change) in EVs or whole cells. (p<0.05). E. Volcano plots showing DEGs in cell
mMRNAseq data — LPS vs Control (p<0.05). Upregulated and downregulated numbers
correspond to red dots (p-value < 0.05 and log2 fold change LFC > 1 for upregulated genes and
LFC<-1 for downregulated genes). F. Volcano plots showing DEGs in EV mRNAseq data — LPS
vs Control (p<0.05). Upregulated and downregulated numbers correspond to red dots (p<0.05
and log2 fold change LFC>1 for upregulated genes and LFC<-1 for downregulated genes). G.
Comparison of 1,040 upregulated mRNAs from BV2 cells treated with LPS to 2,949 upregulated
MRNAs from LPS treated BV2-derived EVs. H. Heatmap representation, based on enrichment
Z-scores, of Gene Ontology for BV2 cells (p<0.05). I. Heatmap representation, based on

enrichment Z-scores, of Gene Ontology for BV2-dervied EVs (p<0.05).
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Figure 6: BV2 cells of distinct states and their EVs have unique microRNA signatures. A.
PCA plot miRNA seq data from BV2 cells — p<0.05, one-way ANOVA. B. PCA plot miRNA seq

data from BV2-dervied EVs — p<0.05, one-way ANOVA. C. Volcano plot — EV differentially
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expressed (DEX) miRNAs vs. Cell DEX miRNAs (p<0.05). Upregulated and downregulated
numbers correspond to red dots (p<0.05 and log2 fold change LFC>1 for upregulated genes
and LFC<-1 for downregulated genes). D. Volcano plot — Cell miRNAs: LPS vs. CTL (p<0.05).
Upregulated and downregulated numbers correspond to red dots (p<0.05 and log2 fold change
LFC>1 for upregulated genes and LFC<-1 for downregulated genes). E. Volcano plot — EV
mMiRNAs — LPS vs. CTL (p<0.05) Upregulated and downregulated numbers correspond to red
dots (p<0.05 and log2 fold change LFC>1 for upregulated genes and LFC<-1 for downregulated
genes). F. Top DEX miRNAs in EVs comparing LPS vs. CTL (p<0.05 and log2 fold change
LFC>2 or LFC<-2) and the number of mRNA targets (target prediction score > 80 on miRDB) for
those miRNAs. Heatmap representation, based on enrichment Z-scores, of Gene Ontology for

MRNA targets.
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Figure 7: State specific effects of LPS treated microglia-derived EVs on resting BV2 cells.
A. lllustration outlining experimental setup. Created with BioRender. B. The endotoxin
concentrations (ng/mL) of cell culture media (untreated and treated with LPS 100ng/mL)
p<0.000001, significant, EVs from CCM (untreated and treated with LPS) p=0.511, not
significant, and cells treated with EVs from CCM (untreated and treated with LPS) p=0.103, not

significant. C. PCA plot on bulk RNA seq data from responder cells dosed with EVs derived
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from LPS treated BV2 cells or Control BV2 cells — p value <0.05, one-way ANOVA. D. Heatmap
of DEGs in responder cells (LFC < or >0, p<0.05). E. Heatmap representation, based on
enrichment Z-scores, of Gene Ontology in responder cells (LFC < or >0, p<0.10). F. FET
Analysis demonstrating overlap between Up list (p<0.10) and microglia microarray analysis in

Rangaraju et al. 2018. Bar color indicates microglial module color from referenced paper.
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