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Abstract

Astrocyte activation is a common feature of neurodegenerative diseases. However, the
ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3
signaling has recently been described as a key regulator of neuroinflammation, but whether
this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied.
Here, we used the MPTP model of Parkinson’s disease to show that activation of astrocytic
RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that
astrocytic RIPK3 promoted gene expression associated with neuroinflammation and
movement disorders, and this coincided with significant engagement of DAMP signaling. Using
human cell culture systems, we show that factors released from dying neurons signal through
RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism
of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by
engaging inflammatory astrocyte activation via RIPK3.
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Introduction

Recent work has identified a central role for neuroinflammation in the pathogenesis of
neurological disease, including major neurodegenerative disorders such as Alzheimer’s and
Parkinson’s disease'2. Although glial cells are critical regulators of neuroinflammation,
activated glia serve complex roles during disease, including both protective and pathogenic
functions®. Among glial cells, astrocytes are the most abundant cell type in the central nervous
system (CNS), where they support homeostasis via wide-ranging effects on
neurotransmission, neurovascular function, and metabolism*. However, following an
inflammatory insult, astrocytes can enter “reactive” states associated with disease
pathogenesis®. While astrocyte activation is likely highly plastic and context-dependent, it is
now widely accepted that astrocytes can take on inflammatory transcriptional states during
disease that are associated with the conferral of neurotoxic activity and suppression of normal
homeostatic functions®. Despite this understanding, the molecular mechanisms that govern
astrocyte reactivity during neurodegenerative disease, and particularly those factors that most
directly exacerbate disease progression, remain poorly understood’.

We and others have recently identified receptor-interacting serine/threonine protein
kinase-3 (RIPK3) as a key regulator of inflammation in the CNS81°. RIPK3 signaling is
canonically associated with necroptotic cell death, which is induced via the activation of mixed
lineage kinase domain-like protein (MLKL)''. While RIPK3-dependent necroptosis has been
implicated in the pathogenesis of several neurological disorders, RIPK3 also appears to
promote neuroinflammatory processes via necroptosis-independent mechanisms, including the
coordination of inflammatory transcription in multiple CNS cell types'?-'8. While necroptosis-
independent roles for RIPK3 signaling in astrocytes have not been thoroughly studied, we
have previously shown that pathogenic a-synuclein fibrils activate RIPK3 signaling in human
midbrain astrocyte cultures, resulting in NF-xB-mediated transcriptional activation without
inducing astrocytic necroptosis'. However, whether RIPK3 controls astrocyte transcriptional
activation and function in models of neurodegenerative disease in vivo is unknown.

The importance of neuron-glia communication during CNS disease states has also
gained significant recognition in recent work'%-22, A particularly important goal in this area is
defining the stimuli that induce inflammatory signaling in the “sterile” setting of
neurodegeneration. One potential stimulus underlying inflammatory astrocyte activation during
neurodegeneration are factors derived from dead and dying neurons, themselves. These
factors include damage-associated molecular patterns (DAMPs), molecules released from
damaged cells that serve as endogenous danger signals that elicit potent innate immune
activation in neighboring cells?>24, DAMP release has been associated with numerous
inflammatory diseases, including neurodegenerative disorders?>-28, However, whether and how
neuron-derived DAMPs impact astrocyte function during neurodegenerative disease has not
been thoroughly studied to date.

Here, we define a new role for RIPK3 signaling in mediating astrocyte activation
downstream of neuronal DAMP release. We utilize the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) model of Parkinson’s disease, in which cell death can be selectively
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induced in dopaminergic neurons in vivo, to show that induction of neuronal cell death results
in RIPK3-dependent astrocyte activation, which in turn exacerbates ongoing
neurodegeneration. Transcriptional profiling revealed a robust RIPK3-dependent inflammatory
signature in astrocytes exposed to dying neuron-derived factors, and this occurred
independently of astrocytic MLKL. Mechanistically, we show that factors released from dying
dopaminergic neurons activate receptor for advanced glycation endproducts (RAGE) on
midbrain astrocytes. RAGE signaling, in turn, was required for RIPK3 activation, inflammatory
transcription, and the conferral of neurotoxic activity in midbrain astrocytes following exposure
to neuronal DAMPs. Our findings suggest a feed-forward mechanism that perpetuates
neurodegeneration via the DAMP-dependent activation of RIPK3-dependent inflammation and
neurotoxicity in astrocytes. These results highlight an important mechanism of neuron-glia
crosstalk, with implications for the prevention and treatment of neurodegenerative disease.

Results

Astrocytic RIPK3 signaling promotes pathogenesis in the MPTP model of Parkinson’s disease

To examine the impact of astrocytic RIPK3 signaling in response to neuronal cell death,
we subjected mice with astrocyte-specific deletion of Ripk3 (Ripk3"™ Aldh1/1°¢*) and littermate
controls to treatment with MPTP, a neurotoxin that selectively induces death in dopaminergic
neurons?%3%, MPTP administration resulted in significant loss of tyrosine hydroxylase (TH)
immunoreactivity in the substantia nigra pars compacta (SNpc) of control animals, consistent
with the depletion of dopaminergic neurons in this region (Figure 1A-B). Strikingly, however,
Ripk3"" Aldh1/1¢* mice exhibited greatly reduced dopaminergic neuron loss following MPTP
treatment, suggesting a role for astrocytic RIPK3 in exacerbating neuronal death in this model.
We also observed a significant loss of TH* dopaminergic axons in the striatum of control
animals (Figure 1C-D), along with increased frequencies of TH* axons immunoreactive for
SMI32, a marker of axonal degeneration3'-3® (Figure 1E). This phenotype was also greatly
ameliorated in Ripk3"" Aldh1/1°®* mice. To test whether these differences in dopaminergic
neuron loss were associated with differences in motor function, we next subjected mice to the
vertical grid maze, a motor task previously shown to be sensitive to perturbations of
dopaminergic circuits343°. Strikingly, MPTP-treated control mice exhibited significantly impaired
performance in the vertical grid maze (Figure 1F-G), while mice lacking astrocytic Ripk3 did
not. Improvements in dopaminergic neuron loss and motor performance in Ripk3"" Aldh1/1¢re*
mice were not due to differential metabolism of MPTP compared to Cre- littermates, as we
observed indistinguishable levels of the toxic metabolite of MPTP (MPP?*) in midbrain
homogenates derived from animals of both genotypes (Supplemental Figure 1). Together,
these data suggest that astrocytic RIPK3 signaling exacerbates neuronal cell death following a
neurotoxic insult.


https://doi.org/10.1101/2023.07.21.550097
http://creativecommons.org/licenses/by-nc-nd/4.0/

114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.550097; this version posted July 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RIPK3 drives inflammatory transcriptional activation but not proliferation in midbrain astrocytes

Given these findings, we next questioned how RIPK3 signaling influences the
phenotype of astrocytes in the setting of MPTP administration. Immunohistochemical (IHC)
staining of SNpc sections revealed increased GFAP staining in MPTP-treated control animals,
consistent with astrocyte activation, and this effect was blocked in Ripk3"" Aldh1/1¢"* mice
(Figure 2A-B). To test whether enhanced GFAP staining indicated proliferative astrogliosis, we
performed flow cytometric analysis of astrocytes in the midbrain of MPTP-treated animals,
which revealed no differences in GLAST™" astrocytes between genotypes (Figure 2C-D). These
data suggested that enhanced GFAP staining was not due to increased numbers of astrocytes
following MPTP administration, but rather a change in the astrocyte activation status. To test
this idea, we performed qRT-PCR analysis of a panel of transcripts that we and others have
shown to be associated with neurotoxic astrocyte activation in models of Parkinson’s
disease'*%637_ We observed upregulation of 10 out of 14 transcripts in our analysis panel in
midbrain homogenates derived from MPTP-treated littermate controls, while this activation
signature was essentially abolished in Ripk3"1 Aldh111¢"¢* mice (Figure 2E). In contrast, MPTP-
treated MIkI- mice showed equivalent levels of inflammatory transcript expression in the
midbrain (Supplemental Figure 2). These data suggest that astrocytic RIPK3 signaling
promotes an inflammatory transcriptional state in the midbrain following MPTP treatment,
independently of MLKL and necroptosis.

We next more carefully assessed this idea by using a mouse line expressing RIPK3
fused to two FKBPF*%Y domains that facilitate enforced oligomerization following treatment with
a dimerization drug. This protein is expressed in a cell type-specific manner under the control
of a lox-STOP-lox element in the Rosa26 locus, while the endogenous Ripk3 locus is left
intact. Thus, this mouse line can be used as both a cell type-specific overexpression system
while also facilitating forced chemogenetic activation of RIPKS3 in cell types of interest in
vivo'21338 \We first questioned whether simple overexpression of RIPK3 in astrocytes would
enhance the inflammatory transcriptional signature that occurs following MPTP administration.
We observed that 4 neurotoxic astrocyte-associated transcripts exhibited augmented
upregulation following MPTP administration in Ripk3-2xFV"" Aldh1/1¢7* mice, including Ccl5,
Cd14, Cxcl10, and Psmb8, while 2 others exhibited trends towards increased expression that
did not reach statistical significance (Cd109, H2-D1) (Figure 2F). To assess whether activation
of astrocytic RIPK3 was sufficient to induce an inflammatory gene signature, we enforced
RIPKS activation in astrocytes via stereotactic delivery of B/B homodimerizer to the ventral
midbrain of Ripk3-2xFV"" Aldh1/1¢¢* mice. B/B homodimerizer binds in a multivalent fashion
to the FKBP3¢V domains of RIPK3-2xFV proteins, driving their oligomerization, which is
sufficient to induce RIPK3 kinase activity in the absence of any other stimulus3%4° (Figure 2G-
H). Enforced activation of RIPK3 in midbrain astrocytes in vivo resulted in induced expression
of several neurotoxic astrocyte-associated transcripts, including Cd14, Emp1, Gbp2, Lcn2,
S100a10, and Srgn (Figure 2l). Together, these data show that activation of RIPK3 in midbrain
astrocytes drives their activation and the establishment of an inflammatory transcriptional
signature.
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Astrocytic RIPK3 signaling has minimal impact on microgliosis in the MPTP model

We next questioned whether the reduced expression of inflammatory genes observed in
mice lacking astrocytic RIPK3 was associated with cell non-autonomous effects on other cell
types in the setting of MPTP treatment. We thus performed IHC staining for IBA1, a marker of
myeloid cells that largely labels microglia in the setting of sterile neurodegeneration*'42. This
analysis revealed no differences in the overall coverage of IBA1 staining in the midbrain in
Ripk3"" Aldh111¢* mice compared to litermate controls, though IBA1* cells did appear to
exhibit a somewhat less ramified and more “activated” morphology following MPTP treatment
in controls, but not conditional knockout, animals (Figure 3A-B). To assess changes to immune
cells more carefully, we next performed flow cytometric analysis of leukocytes derived from the
midbrain of MPTP-treated mice. This revealed essentially identical frequencies of CD45™
CD11b* F4/80" microglia between genotypes (Figure 3C-D), confirming a lack of difference in
microglial proliferation. Microglia exhibited no differences in common activation markers,
including MHC-II (data not shown), between genotypes, although microglia derived from
MPTP-treated Ripk3"" Aldh1/1°®* mice exhibited diminished expression of the costimulatory
molecule CD80 compared to controls (Figure 3E-F), consistent with a less inflammatory
phenotype. We observed very low frequencies of CD45" infiltrating peripheral immune cells in
the MPTP model (Figure 3C), the overall numbers of which did not differ by genotype (Figure
3G). These data suggest that astrocytic RIPK3 signaling following MPTP administration likely
induces neuroinflammation primarily through cell-intrinsic mechanisms, with modest cell non-
autonomous effects on microglia.

Astrocytic RIPK3 activation drives a transcriptomic state associated with inflammation and
neurodegeneration in the midbrain

To characterize how astrocytic RIPK3 shapes the neuroinflammatory state of the brain
more thoroughly in the MPTP model, we also performed bulk RNA sequencing (RNA-seq) of
isolated midbrain tissues derived from Ripk3"" Aldh1/1¢¢* and littermate controls. Principle
component analysis revealed distinct separation of MPTP-treated control animals along PC1,
while MPTP-treated conditional knockouts largely clustered with vehicle-treated animals of
both genotypes (Figure 4A). Further analysis revealed a robust transcriptional response to
MPTP in midbrain tissues of littermate control animals, including 452 significantly upregulated
genes and 145 significantly downregulated genes (Figure 4B) compared to vehicle-treated
controls. This transcriptional response was blunted in Ripk3"" Aldh1/1¢¢* mice, which exhibited
only 195 significantly upregulated genes and 120 significantly downregulated genes compared
to genotype-matched vehicle-treated animals (Figure 4C), suggesting that astrocytic RIPK3
signaling drives a major portion of the tissue-wide transcriptional response to MPTP-induced
neuronal cell death. In support of this idea, comparison of differentially expressed genes
(DEGs) within MPTP-treated groups revealed 120 genes with significantly higher expression
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and 252 genes with significantly lower expression in conditional knockouts compared to
littermate controls (Figure 4D).

To better understand the functional relevance of these transcriptomic profiles, we
performed Ingenuity Pathway Analysis (IPA) of genes differentially expressed between
genotypes in MPTP-treated animals. This revealed significant enrichment of several disease
and function terms with relevance to our study, including “Inflammation of the Central Nervous
System,” “Progressive Neurological Disorder,” “Movement Disorders,” and others (Figure 4E).
Comparisons of differentially regulated canonical pathways showed significant enrichment of
pathways relating to programmed cell death and inflammation, as expected (Figure 4F).
Notably, terms related to DAMP signaling were also highly enriched, including signaling by
HMGB1 and S100 family proteins, both of which are factors released by dying and damaged
cells that induce inflammation. Further analysis revealed significant upregulation of genes
associated with astrocyte activation (Figure 4G), consistent with our previous qRT-PCR
analysis. Comparisons of individual gene expression profiles for 2 selected IPA terms
(Movement Disorders and DAMP signaling) revealed dozens of significant DEGs for both
terms, characterized by a mix of both up-and down-regulated gene expression. Together, our
RNA-seq analysis reveals a central role for astrocytic RIPK3 in promoting gene expression
associated with neurodegeneration and neuroinflammation in the midbrain. Our findings also
suggest a strong link between DAMP signaling and RIPK3-dependent neuroinflammation.

Secreted factors from dying neurons drive RIPK3-dependent astrocyte activation

Given the strong representation of DAMP signaling in our transcriptomic analysis, we
questioned whether factors released from dying neurons were important for driving RIPK3-
mediated astrocyte activation. To test this, we treated differentiated SH-SYS5Y neuroblastoma
cells, a commonly used model of catecholaminergic neurons*?, with the toxic MPTP metabolite
MPP* (5mM) for 24 hours, which resulted in around 50% cell death (Supplemental Figure 3A).
We harvested the conditioned media (NCM) from these cells, which contained DAMPs and
other factors released from dying SH-SY5Y cells, and added it to primary human midbrain
astrocyte cultures at a ratio of 1:1 with normal astrocyte culture media (Figure 5A). NCM-
treated astrocytes were also treated with the RIPK3 inhibitor GSK872 or DMSO vehicle. gRT-
PCR analysis following 24 hours of stimulation under these conditions revealed robust
induction of genes associated with inflammatory activation in midbrain astrocyte cultures
treated with NCM derived from MPP*-treated SH-SYSY cultures, hereafter referred to as MPP*
NCM (Figure 5B). However, pharmacologic inhibition of RIPK3 signaling in astrocytes largely
prevented this effect.

After these observations, we recognized that our NCM preparations may have
contained debris and floating “corpses” from dead SH-SY&Y cells. To assess whether soluble
factors or dead cell-associated material was the primary driver of RIPK3-dependent astrocyte
activation in our experiments, we carefully fractionated NCM samples to pellet out cellular
material from soluble factors in the media. Application of either clarified supernatant (Figure
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5C) or resuspended pellet material (Figure 5D) from MPP*-treated SH-SY5Y cells to midbrain
astrocyte cultures revealed that clarified supernatants stimulated expression of many
inflammatory genes in astrocytes in a largely RIPK3-dependent manner. In contrast, pellet-
derived material was only minimally stimulatory, and this stimulation was RIPK3-independent.
We also confirmed that exposure to residual MPP* in NCM was not the primary driver of
astrocyte activation, as direct application of MPP* to midbrain astrocyte cultures did not result
in either cell death or upregulation of inflammatory gene expression (Supplemental Figure 3B-
C).

We next wanted to confirm that inflammatory gene expression in our system
corresponded to a functional readout of astrocyte activation. We thus assessed whether
exposure to dying neuron-derived factors would confer neurotoxic activity to astrocytes. We
first treated human midbrain astrocytes for 24 hours with MPP* NCM with or without RIPK3
inhibitor (and respective controls), then washed the cells and replaced the astrocyte medium to
remove residual MPP*. We then cultured astrocytes for an additional 24h and collected their
conditioned media (ACM), which was then added to fresh cultures of SH-SY5Y cells at a 1:1
ratio with normal SH-SY5Y media (Figure 5E). We confirmed that astrocytes maintained
transcriptional activation for at least 24 hours following this wash step, confirming that
astrocytes remain activated after removal of MPP* NCM in this paradigm (Supplemental Figure
4). ACM derived from MPP* NCM-treated astrocytes induced around 80% cell death in fresh
SH-SYSY cultures after 24 hours, while this neurotoxic activity was completely abrogated when
astrocytic RIPKS3 signaling was inhibited (Figure 5F). Together, these data show that soluble
factors released from dying neuron-like cells are sufficient to induce inflammatory transcription
and neurotoxic activity in midbrain astrocytes and that this process requires, to a large degree,
cell-intrinsic RIPK3 activity within astrocytes.

DAMP signaling via RAGE drives inflammatory activation in midbrain astrocytes

We next sought to more precisely identify specific DAMP signals that stimulate midbrain
astrocyte activation. Our transcriptomic analysis revealed that both HMGB1 and S100 family
signaling were highly enriched in an astrocytic RIPK3-dependent manner in the midbrain
following MPTP treatment. As both of these DAMPs stimulate a common receptor, RAGE, we
assessed whether RAGE was required for astrocyte activation following exposure to MPP*
NCM. We thus treated human midbrain astrocyte cultures with MPP* or control NCM, along
with the RAGE inhibitor FPS-ZM1 for 24 hours and performed gRT-PCR profiling (Figure 6A).
Blockade of RAGE in astrocytes substantially reduced MPP* NCM-induced transcriptional
activation, effectively preventing upregulation of 6 out of 11 astrocyte activation-associated
transcripts (Figure 6B). Based on these findings, we confirmed that the RAGE ligand HMGB1
was, in fact, released by SH-SY5Y cells following induction of cell death by MPP* (Figure 6C).
We also observed significant accumulation of HMGB1 protein in midbrain homogenates of
mice treated with MPTP (Figure 6D), confirming that induction of dopaminergic cell death
results in the release of RAGE ligands in vivo. To assess whether RAGE ligands induced
astrocyte activation in a RIPK3-dependent manner, we next treated primary midbrain
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astrocytes with recombinant DAMPs and profiled gene expression. Strikingly, we observed that
stimulation of murine midbrain astrocytes with HMGB1 induced robust transcriptional activation
that was blocked in the presence of GSK 872. As a complimentary approach, we also
generated midbrain astrocyte cultures from Ripk3”- mice (and heterozygous littermate controls)
and stimulated with RAGE ligands. Treatment with either HMGB1 (Figure 6F) or S1008 (Figure
6G) induced inflammatory transcript expression in control but not Ripk3~ cultures. Together,
these data suggest that dying neurons release DAMPs that induce inflammatory astrocyte
activation through activation of astrocytic RAGE, which in turn drives transcription via RIPK3
signaling.

Activation of RIPK3 by DAMP signaling drives pathogenic functional changes in midbrain
astrocytes

To confirm that the transcriptional effects of DAMP signaling impacted astrocyte
function, we collected astrocyte conditioned media (ACM) from astrocytes treated for 24h with
MPP* NCM with or without RAGE inhibitor (and respective controls) and applied the ACM to
fresh cultures of SH-SY5Y cells (Figure 7A). ACM derived from MPP* NCM-treated astrocytes
induced significant cell death in fresh SH-SYSY cultures, while this neurotoxic activity was
completely abrogated when astrocytic RAGE signaling was inhibited (Figure 7B). We also
observed conferral of neurotoxic activity following direct stimulation of astrocytes with
recombinant DAMPs (Figure 7C), including HMGB1 (Figure 7D) and S1008 (Figure 7E).
However, this neurotoxic activity was also abrogated when RIPKS signaling was blocked,
further supporting a role for a RAGE-RIPKS axis in promoting neurotoxic astrocyte activation.
This neurotoxic activity was not due to residual recombinant DAMPs in ACM, as direct
application of either DAMP ligand to SH-SY5Y cells did not result in cell death (Supplemental
Figure 5). As previous work has shown that neurotoxic astrocytes downregulated key
homeostatic functions such as phagocytosis'#3¢, we also exposed midbrain astrocyte cultures
to labeled debris generated from SH-SYSY cells and measured phagocytic uptake of debris via
flow cytometry (Figure 7F). Direct stimulation of astrocytes with HMGB1 resulted in a
significant reduction in uptake of CSFE-labeled debris, while this suppression of phagocytic
function was blocked in the presence of a RIPK3 inhibitor (Figure 7G-H). We also observed
that MPP* NCM similarly reduced astrocytic phagocytosis in a RIPK3-dependent fashion
(Figure 71). These data further support the notion that DAMPs emanating from dying neurons
alter astrocytic function via activation of RIPK3 signaling.
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Discussion

Our study defines a previously unknown role for neuronal DAMPs in promoting
neurotoxic astrocyte activation. This effect was mediated by RIPK3-mediated transcriptional
activation, an effect that occurred independently of the necroptotic executioner protein MLKL.
Mechanistically, we found that astrocytic RAGE signaling was required for astrocyte activation
downstream of DAMP exposure, and this RAGE/RIPK3 signaling axis promoted inflammatory
transcription and neurotoxic functional activity. Intriguingly, these results suggest that neuronal
death, itself, potentiates a feed-forward process of astrocyte activation and further neuronal
cell death. These findings highlight an important mechanism of neuron-glia crosstalk in the
pathogenesis of neurodegeneration.

DAMPs have previously been implicated as drivers of inflammation in a broad variety of
disorders, including neurodegeneration, ischemic stroke, autoimmunity, cardiovascular
disease, and others*4+%5. RAGE ligands, in particular, have been associated with
neurodegenerative disease and have been the target of preclinical therapeutic development.
For example, S100p levels in serum and cerebrospinal fluid (CSF) has been shown to
correlate with disease severity in Parkinson’s disease?”-%. Mice deficient in S100B are also
resistant to MPTP-driven neurodegeneration?’, consistent with a role for this molecule in
perpetuating neuronal cell death. Similarly, antibody-mediated neutralization of HMGB1 has
been shown to attenuate glial cell activation and prevent neuron loss in models of both
Alzheimer's disease and Parkinson’s disease?5%". Despite these findings, other groups have
also described neuroprotective functions for RAGE ligands®®, including stimulation of
neurotrophic growth factor expression in amyotrophic lateral sclerosis®®, suppression of
amyloidosis®®, and direct anti-apoptotic effects in neurons®'¢2. These complex effects appear
to be highly context-dependent, differing by cell type, disease state, and even DAMP
concentration®16364 Qur data support a pathogenic role for RAGE signaling in the promotion of
neurotoxic astrocyte activation.

Astrocytes express RAGE and other DAMP sensors, although cell type-specific
functions for DAMP signaling in astrocytes have not been thoroughly studied®. Existing
studies suggest that astrocytic RAGE signaling is pathogenic, on balance®-%8. In Huntington’s
disease, RAGE-positive astrocytes have been shown to have high levels of nuclear NF-«B®”,
consistent with a role for this pathway in promoting inflammatory astrocyte activation.
Diminished levels of HMGB1 following berberine treatment was also correlated with diminished
astrocyte activation in a model of sepsis®®. Astrocytes are also major sources of RAGE ligands,
particularly S1003, and much work to date has focused on autocrine RAGE signaling in
astrocytes as a result’%72. We took advantage of the MPTP model, which induces death
selectively in neurons but not astrocytes’, as well as serial culture systems to more directly
assess the impact of paracrine RAGE signaling on astrocyte activation and function. Our study
suggests that DAMPs released from dying neurons potently induce inflammatory astrocyte
activation via RAGE, driving neurotoxic activation and perpetuating further neuronal cell death.
These findings identify RAGE as a promising target for modulating astrocytic responses to
neuronal cell death during neurodegenerative disease.


https://doi.org/10.1101/2023.07.21.550097
http://creativecommons.org/licenses/by-nc-nd/4.0/

350
351
352
353
354
355
356
357
358
359

360
361
362
363
364
365
366
367
368
369
370

371

372

373
374
375
376
377
378

379
380
381
382
383

384

385

386
387

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.550097; this version posted July 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RIPK3 signaling has previously been shown to drive pathogenic neuroinflammation and
neuronal cell death in several models of neurological disorders'1%7477 \While many studies
have reported neuronal necroptosis as a driver of neurodegeneration, we and others have
described necroptosis-independent functions for this kinase in the coordination of
neuroinflammation'?'8, To date, RIPK3 signaling in astrocytes has received relatively little
attention. Our findings here suggest that DAMP signaling activates astrocytic RIPK3 via RAGE
signaling, which drives an inflammatory transcriptional program, even in the absence of MLKL.
These data suggest that astrocytic RAGE signaling does not induce inflammation via
necroptosis, consistent with our prior work showing necroptosis-independent RIPK3 signaling
in astrocytes exposed to fibrillar a-synuclein’.

Future work will be needed to define the signaling events that mediate RAGE-
dependent RIPK3 activation. A recent study demonstrated co-immunoprecipitation of RIPK3
with RAGE in an endothelial cell line following stimulation with TNF-a.”8, but the nature of this
interaction and whether it happens under natural conditions in vivo remains to be established.
While some studies have observed RIPK3 activation downstream of HMGB1798, these effects
may have been mediated by non-RAGE HMGB1 receptors such as TLR4, which is known to
stimulate RIPK3 via its adaptor molecule TRIF8'-82. Both RAGE and RIPK3 signaling appear to
converge on the potent activation of NF-B38:83-92 which may provide clues concerning their
potential molecular interactions. In any event, delineating the molecular events that promote
pathogenic astrocyte activation downstream of DAMP signaling will likely be required to
effectively target this pathway for future therapeutic development.
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398 Figure 1. Astrocytic RIPK3 signaling promotes pathogenesis in the MPTP model of

399  Parkinson'’s disease. (A-B) IHC analysis of tyrosine hydroxylase (TH) staining in the

400 substantia nigra pars compacta (SNpc) in indicated genotypes 7 days following either saline or
401  MPTP treatment (scale bar = 200 um). (C) IHC analysis of TH* axons with colabeling with the
402 damaged axon marker SMI-32 in the striatum in indicated genotypes 7 days following either
403  saline or MPTP treatment (scale bar = 20 um). (F) Schematic diagram for the vertical grid test.
404  (G) Behavioral performance in the vertical grid test 6 days after injection with MPTP or saline.
405  *p<0.05, **p < 0.01, ***p < 0.001. See also Figure S1.
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Figure 2. RIPK3 drives inflammatory transcriptional activation but not proliferation in
midbrain astrocytes. (A-B) IHC analysis of GFAP staining in the substantia nigra pars compacta
(SNpc) in indicated genotypes 3 days post-MPTP treatment (scale bar = 200 um). (C-D) Flow
cytometric analysis of GLAST+ astrocytes in midbrain homogenates derived from indicated
genotypes 3 days post-MPTP treatment. (E-F) gRT-PCR analysis of indicated genes in midbrain
homogenates derived from astrocyte-specific Ripk3 knockouts (E) or astrocyte-specific Ripk3
overexpressing (F) mice 3 days post-MPTP treatment. (G-H) Schematic of inducible RIPK3
activation system (G) and stereotactic delivery of dimerization drug into the ventral midbrain (H). (1)
qRT-PCR analysis of indicated genes in midbrain homogenates derived from Ripk3-2xFV"f
Aldh111-Cre+ mice 24 hours following administration of B/B homodimerizer or vehicle control.
*p<0.05, **p < 0.01, ***p < 0.001. See also Figure S2.
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Figure 3. Astrocytic RIPK3 signaling has minimal impact on microgliosis in the MPTP
model. (A-B) IHC analysis of IBA1 staining in the substantia nigra pars compacta (SNpc) in
indicated genotypes 3 days post-MPTP treatment (scale bar = 200 um). (C) Representative
flow cytometric plot depicting leukocyte populations in midbrain homogenates derived from
indicated genotypes 3 days pos-MPTP treatment. (D) Quantification of absolute numbers of
microglia derived from flow cytometric analysis. (E-F) Representative histogram (E) and
quantification of geometric mean fluorescence intensity (GMFI) (F) derived from analysis of
CD80 expression on microglial populations in (D). (G) Quantification of absolute numbers of
CD45" leukocytes derived from flow cytometric analysis. **p < 0.01
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Figure 4. Astrocytic RIPK3 activation drives a transcriptomic state associated with
inflammation and neurodegeneration in the midbrain. (A-l) Midbrains were harvested from
mice of indicated genotypes 3 days post-treatment with MPTP or saline and subjected to bulk
RNA-seq. (A) Principal component analysis demonstrating separation of treatment groups and
genotypes in the RNA-seq dataset. (B-D) Volcano plots showing differentially expressed genes
derived from indicated comparisons. Data points in red are genes exhibiting upregulated
expression, while those in blue exhibit downregulated expression. Genes with an FDR <0.05
were considered significant. (E-F) Bubble plots showing selected significantly enriched disease
and function terms (E) or canonical pathways (F) derived from Ingenuity Pathway Analysis
comparing Cre- vs. Cre+ MPTP-treated groups. (G-1) Heatmaps showing significantly
differentially expressed genes for selected pathways.
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Figure 5. Secreted factors from dying neurons drive RIPK3-dependent astrocyte
activation. (A) Schematic of experimental design for DAMP transfer experiments.
Differentiated SH-SYS5Y cells were treated with MPP* or saline for 24h and media (NCM) was
then transferred to cultures of primary human midbrain astrocytes. Astrocytes were treated
with NCM in the presence of GSK 872 or control for 24h prior to qRT-PCR profiling. (B)
Heatmap showing expression of astrocyte activation-associated genes in astrocyte cultures
treated as in (A). (C-D) gRT-PCR profiling of indicated genes in astrocytes treated for 24h with
clarified NCM supernatants (C) or pelleted SH-SYS5Y debris (D). (E) Schematic of experimental
design for neurotoxicity assay. Astrocytes were treated with NCM as in (A) for 24h. Astrocytes
were then washed and media replaced for another 24h. This new astrocyte conditioned
medium (ACM) was then transferred to fresh SH-SYS5Y cells for cell viability measurement. (F)
Cell Titer Glo analysis of SH-SYSY viability 24h following treatment with ACM derived from
indicated conditions. *p<0.05, **p < 0.01, ***p < 0.001. See also Figures S3 and S4.
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Figure 6. DAMP signaling via RAGE drives inflammatory activation in midbrain
astrocytes. (A) Schematic of experimental design for DAMP transfer experiments.
Differentiated SH-SYS5Y cells were treated with MPP* or saline for 24h and media (NCM) was
then transferred to cultures of primary human midbrain astrocytes. Astrocytes were treated
with NCM in the presence of FPS-ZM1 or control for 24h prior to qRT-PCR profiling. (B) qRT-
PCR profiling of indicated genes in astrocytes treated for 24h with NCM derived from indicated
conditions. (C-D) ELISA analysis of HMGB1 protein levels in supernatants of SH-SY5Y cells
treated with MPP* (C) or midbrain homogenates from WT mice 3 days post-MPTP treatment
(D) n=4-8 replicates per time point in (C). (E-G) gRT-PCR analysis of indicated genes in WT
murine midbrain astrocytes (E) or midbrain astrocytes derived from indicated genotypes (F-G)
24h following treatment with recombinant HMGB1 (E-F) or S100B (G). *p<0.05, **p < 0.01, ***p

< 0.001.
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Figure 7. Activation of RIPK3 by DAMP signaling drives pathogenic functional changes
in midbrain astrocytes. (A) Schematic of experimental design for neurotoxicity experiments.
Differentiated SH-SYS5Y cells were treated with MPP* or saline for 24h and media (NCM) was
then transferred to cultures of primary human midbrain astrocytes. Astrocytes were treated
with NCM in the presence of FPS-ZM1 or control for 24h. Astrocytes were then washed and
media replaced for another 24h. This new astrocyte conditioned medium (ACM) was then
transferred to fresh SH-SYSY cells for cell viability measurement. (B) Cell Titer Glo analysis of
SH-SYSY viability 24h following treatment with ACM derived from indicated conditions. (C)
Schematic showing treatment of primary human midbrain astrocytes with recombinant DAMPs
for 24h prior to transfer of ACM to SH-SYS5Y cultures and measurement of cell viability. (D) Cell
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Titer Glo analysis of SH-SYSY viability 24h following treatment with ACM derived from
indicated conditions. (F) Schematic showing generation and transfer of CSFE-labeled neuronal
debris to midbrain astrocytes treated with recombinant DAMPs with or without GSK 872.
Astrocytes were cultured in the presence of labelled debris for 24h and then CSFE
internalization was measured via flow cytometry. (G-H) Representative histograms (G) and
quantification of GMFI (H) of CSFE signal in astrocytes treated as in (F). (I) GMFI of CSFE
internalization in astrocytes treated as in (F) but with NCM rather than recombinant DAMPs
and FPS-ZM1 rather than GSK 872. **p < 0.01, ***p < 0.001. See also Figure S5.
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Methods

Mouse lines

Mice were bred and housed under specific-pathogen free conditions in Nelson Biological Laboratories
at Rutgers University. Ripk3" and Ripk3"" mouse lines were generously provided by Genentech, Inc.
MikI'*3 and Ripk3-2xFV"™? ines were provided by Andrew Oberst (University of Washington). Aldh1/1-
Cre/ERT2 mice were obtained from Jackson Laboratories (Line 031008) and all animals expressing this
transgene were treated for five days with 60 mg/kg tamoxifen (Sigma-Aldrich, T5648) in sunflower oil
(Sigma-Aldrich, S5007) (i.p.) at least one week prior to further experimentation. All genotyping was
performed in house using ear punch tissue lysed overnight in DirectPCR Lysis Reagent (Viagen, 102-T)
and Proteinase K (Sigma, #3115828001). Sequences for genotyping primers are listed in the
Supplementary Table S1. PCR bands were visualized on 2% agarose (VWR, 97062) in TBE (VWR,
E442) and stained in Diamond Nucleic Acid Stain (Promega, H1181). All experiments were performed
in 8-12 week old animals, following protocols approved by the Rutgers University Institutional Animal
Care and Use Committee (IACUC). All MPTP experiments were performed in male animals, as female
animals experience high rates of toxicity and mortality in this model®®. Other experiments, including B/B
homodimerizer administration and primary cell culture, used balanced groups of both male and female
animals.

MPTP model

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered at 20 mg/kg (i.p.) once per day
for five days °. Animals were harvested three days following the final MPTP injection for gene
expression and flow cytometry experiments. Animals were harvested seven days after the last injection
for immunofluorescence (IF) and vertical grid maze studies.

Tissue collection

Mice were perfused transcardially with ice cold phosphate-buffered saline (PBS) followed by 4%
paraformaldehyde (PFA) for IF experiments. Perfused brains were stored in 4% PFA overnight followed
by 48 hours in 30% sucrose in PBS. For transcriptional and ELISA studies, mice were perfused with
PBS and midbrain and/or striatal tissues were collected and homogenized for downstream analyses.

Cell culture and treatment

Primary human midbrain astrocytes (ScienCell Research Laboratories) were cultured in astrocyte
media (ScienCell, 1801) supplemented with 2% heat-inactivated fetal bovine serum (FBS) (ScienCell,
0010), astrocyte growth supplement (ScienCell, 1852), and penicillin/streptomycin (ScienCell, 0503).
Cells from at least two distinct donors were used for all experiments. Human neuroblastoma SH-SY5Y
cells (ATCC, CRL-2266) were cultured in DMEM medium (VWR, 0101-0500) supplemented with 10%
FBS (Gemini Biosciences, 100-106), nonessential amino acids (Hyclone, SH30138.01), HEPES
(Hyclone, 30237.01), penicillin/streptomycin (Gemini Biosciences, 400-110), and amphotericin B
antifungal (Gemini Biosciences, 100—104). Differentiation and experimentation occurred in stocks
having undergone less than 15 passages. SH-SY5Y neuroblastoma cells were differentiated into
mature neuron-like cells by treating with retinoic acid (4 ug/mL; Sigma-Aldrich, R2625) and BDNF

(25 ng/mL; Sigma-Aldrich, B3795) in low serum (2%) SH-SY5Y media. Differentiated SH-SYS5Y cultures
were used for experiments five to seven days post-differentiation. MPP* iodide (Sigma-Aldrich, D048)
was formulated in water to a stock concentration of 500 mM. Recombinant HMGB1 (R&D Systems,
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1690-HMB-050) and S100B (Human: R&D Systems, 1820-SB; Mouse: Novus Biologicals, NBP2-
53070) were formulated according to manufacturer recommendations. For cell culture experiments, all
recombinant DAMPs were used at a final concentration of 100 ng/mL for 24 h before collection of
preconditioned media and cell lysates. GSK 872 was purchased from Millipore Sigma (530389). FPS-
ZM1 was purchased from Sigma-Aldrich (55030). All inhibitors were solubilized in DMSO and used at a
final concentration of 1 uM.

Primary mouse astrocyte isolation and culture

Primary mouse midbrain astrocytes were cultured from dissected midbrain tissues derived from mouse
pups on postnatal day three (P3). Tissue was dissociated using Miltenyi Neural Dissociation Kit (T)
following manufacturer’s instructions (Miltenyi, 130-093-231). Midbrain astrocytes were cultured on
fibronectin-coated flasks and non-astrocytic cells were removed via differential adhesion, as previously
described®. Astrocytes were expanded in AM-a medium (ScienCell, 1831) supplemented with 10%
FBS, Astrocyte Growth Supplement-animal (ScienCell, 1882) and Penicillin/Streptomycin Solution
(ScienCell, 0503).

Cell viability test

Cell viability was assessed with the CellTiter-Glo Luminescent Cell Viability Assay kit (Promega,
G7573), according to the manufacturer’s instructions. Luminescence signal was measured with a
SpectraMax iD3 plate reader (Molecular Devices).

Phagocytosis assay

Differentiated SH-SYS5Y neuronal cells were labeled with BioTracker CSFE Cell Proliferation Kit
(Millipore Sigma, SCT110) according to the manufacturer’s protocol. Cell death was induced by
exposure to TNF-a at 100 ng/mL and cycloheximide (Sigmal-Aldrich, 66-81-9) at 100 ug/mL for 24 h.
Labelled cell debris was collected by centrifugation. Unlabeled neuronal debris was used as a staining
control. To detect phagocytosis, CSFE-labeled neuronal debris was added to primary midbrain
astrocyte cultures at a ratio of 1:100 for 24 h. Excess neuronal debris was washed away with PBS.
Astrocytes were then harvested with cold 5mM EDTA in PBS followed by scraping of adherent cells.
Astrocytes were stained with Zombie NIR at 1:1000 in 1XPBS according to the manufacturer’s protocol,
followed by fixation in 1% PFA. Phagocytosed CSFE signal was detected using a Northern Lights flow
cytometer (Cytek). Analysis was performed by FlowJo software (FlowJo LLC).

Immunofluorescence

Brains were cryosectioned at 12 um per slice and mounted on a charged slide. Following thawing in a
humidified chamber, tissues were incubated in blocking solution consisting of 5% goat serum (Gibco,
16210) and 0.2% Triton X-100 for one hour at room temperature. Sections were then incubated with
primary antibody diluted in blocking solution overnight at 4°C in a humidified chamber. Slides were then
washed three times with PBS for 15 minutes followed by incubation in secondary antibody diluted in
blocking solution for one hour at room temperature. Slides were washed three times to remove
secondary antibody and were then stained with 4’,6-diamindino-2-phenylindole (DAPI; Biotium, 40011)
diluted in PBS for 20 minutes at room temperature, followed by another wash. Sections were cover-
slipped with Prolong Diamond Antifade Mountant medium (Invitrogen, P36930). Slides were allowed to
dry and images were acquired using Airyscan fluorescent confocal microscope (Carl Zeiss, LSM 800).

B/B homodimerizer and stereotactic injection
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B/B homodimerizer was purchased from Takara USA Inc. (AP20187) and was formulated according to
manufacturer’'s recommendations. Buprenorphine extended-release (3.25mg/kg) was administered
subcutaneously immediately prior to surgery. Mice were anaesthetized with isoflurane (4% induction,
1% maintenance) and positioned on a heating pad while the head was fixed for stereotactic injection.
Each animal received 500 nL of freshly formulated B/B homodimerizer or vehicle delivered by a glass
pipette using a Programmable Nanoject Il Nanoliter Injector (Drummond) unilaterally into the right
ventral lateral midbrain (relative to bregma: coordinates A/P: -3.00mm, M/L: -1.20mm, D/V: -4.50mm).
The scalp was sutured, and animals were allowed to recover for 24 h before transcriptional analyses.

Quantitative real-time PCR

Total RNA from homogenized midbrain tissues was extracted using Zymo Direct-zol RNA Miniprep kit,
following manufacturer’s instructions (Zymo, R2051). Total RNA from cultured cells was isolated using
Qiagen RNeasy Mini Kit according to the manufacture’s protocol (Qiagen, 74106). RNA yield and
quality of the samples were assessed using a NanoDrop spectrophotometer. cDNA was then
synthesized with qScript cDNA Synthesis Kit (Quantabio, 95047), followed by qRT-PCR with SYBR
Green Master Mix (Bio-Rad, 1725275). Cycle threshold (Ct) values were obtained using QuantStudio 5
instrument (Applied Biosystems). Delta Ct was calculated as normalized to Ct values of the
housekeeping gene 18S (Ctrarget — Ct1ss = ACt). Z-scores were calculated to graph heatmaps. Primer
sequences in our study are listed in Supplementary Table S2.

Flow Cytometry

After perfusing with ice-cold PBS, mouse midbrains were dissected and minced with a blade. Tissues
were then further homogenized via 30 minute incubation in pre-warmed digestion buffer consisting of
2% FBS, 1% glutamine, 1% non-essential amino acids, 1% penicillin/streptomycin/amphotericin, and
1.5% HEPES, with 0.7U/mL collagenase VIl and 50U/mL DNase | on an orbital shaker. Triturated
tissue homogenate was then passed through a 70 um cell strainer and centrifuged at 350xg at 4°C for
10 minutes to obtain a single-cell suspension. Cell gradient separation was then achieved by
resuspending the pellet in 20% bovine-serum albumin (BSA) in DMEM followed by 20 minute
centrifugation at 4°C. After removing the myelin layer, the cell gradient was disrupted by inverting in
additional FACS buffer that consisted of 1mM EDTA in PBS with 1% BSA. Resuspended cells were
then incubated in antibodies for 30 min at 4°C in the dark. After washing with cold FACS buffer, cold
1% paraformaldehyde was then used to fix the cells. Data collection and analysis were performed using
a Cytek Northern Lights Cytometer and FlowJo software. Data were normalized using standard
counting beads (ThermoFisher, #C36950).

HMGB1 enzyme-linked immunosorbent assay (ELISA)
HMBG1 ELISA (Novus Biologicals, NBP2-62766) was performed following the manufacturer’s protocol.
Liquid chromatography-mass spectrometry (LC-MS)

A single dosage of MPTP (40 mg/kg) was administered for LC-MS analysis of MPP™ in vivo. Mice were
transcardially perfused with ice-cold PBS 90 min after MPTP injection. Whole brain tissues were then
isolated and homogenized in CryoMill tubes containing cold 40:40:20 methanol:acetonitrile:water
solution with 0.5% Formic Acid. Following a 10 min incubation on ice, tissue homogenates were then
centrifuged in the cold room for 10 min for 16,000 xg. Supernatants were then transferred to a new
collection tube. The final sample was then treated with 15% NH4sHCO3; LC/MS was performed at the
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Metabolomics Shared Resource Core Facility at the Rutgers Cancer Institute of New Jersey (New
Brunswick, NJ).

Behavioral assessment

The vertical grid motor assessment task was adapted from previous work®*. Briefly, mice were
acclimated to the vertical grid apparatus 3 times a day for 2 consecutive days. On each day, each
mouse was placed on the inside of the apparatus 3 cm from the top, facing upward, and was allowed to
turn around and climb down. The trial was repeated whenever the mouse failed to climb down and/or
turn around within 60 seconds. The same trials were repeated on the day following acclimation and
video recorded for analysis.

Bulk RNA sequencing

Total RNA from midbrain tissues was extracted and assessed as described above. RNA samples were
sent to Azenta (Piscataway, NJ) for library preparation and Next Generation Sequencing. RNA yield
and sample quality were assessed with Qubit (Invitrogen) and TapeStation (Agilent). The lllumina
HiSeq platform and 2 x 150-bp paired-end reads were used for the RNA sequencing. Initial analysis
was processed by Azenta. The quality of raw RNA-seq data (FASTQ) files were evaluated using
FASTQC. Sequence reads were trimmed to remove possible adapter sequences and nucleotides with
poor quality using Trimmomatic v.0.36. Trimmed reads were then mapped to the mouse reference
genome (GRCm38) available on ENSEMBL using the STAR aligner v.2.5.2b. Unique gene hit counts
were calculated by using featureCounts from the Subread package v.1.5.2. The gene hit counts table
was used for downstream differential expression analysis via DESeq2. Further statistical analysis was
performed using R.

Image analysis

To quantify TH* and SMI32* puncta and co-localization, images were processed by Imaris software
(Oxford Instruments, Bitplane 9.5). Object based co-localization was used with the “Coloc” feature. For
TH*" and SMI32" particles, the spot detection function was used to define particles by first creating
‘vesicles’ in each channel. Input intensity for threshold was chosen to best represent the signal for both
channels. Colocalized particles were defined with the “classification” feature, where the distance
between TH* and SMI32" particles within 1 um or less is considered co-localization. The percentage
area and mean intensity of GFAP* and IBA1" signal were assessed using Fiji (ImageJ) software.

Statistical analysis

Statistical analysis was completed using GraphPad Prism 9 (GraphPad). Normally distributed data
were analyzed using appropriate parametric tests: student’s t test (2-tailed) or two-way analysis of
variance (ANOVA) with Tukey’s post hoc test used to determine significant differences between groups.
A p value less than 0.05 was considered statistically significant. All data points represent biological
replicates unless otherwise noted.
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