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Abstract

Large language models typically undergo two training stages, pretraining and
finetuning. Despite that large-scale pretraining endows the model with strong
capabilities to generate natural language responses, these pretrained models can
still fail to understand human instructions at times. To enhance language models’
ability of interpreting and responding to instructions, instruction finetuning has
emerged as a critical method in this area. Recent studies found that large language
models can be finetuned to perform well even with a small amount of high-quality
instruction-following data. However, the selection of high-quality datasets for
finetuning language models still lacks clear guidelines to follow. In this paper,
we propose INSTRUCTMINING, a linear rule for evaluating instruction-following
data quality. We formulate INSTRUCTMINING using specific natural language
indicators. To investigate the relationship between data quality and these indicators,
we further conduct extensive finetuning experiments. The experiment results are
then applied to estimating parameters in INSTRUCTMINING. To further investigate
its performance, we use INSTRUCTMINING to select high-quality data from unseen
datasets. Results demonstrate that INSTRUCTMINING can help select relatively
high-quality samples from various instruction-following datasets. Compared to
models finetuned on unfiltered datasets, models finetuned on INSTRUCTMINING
selected datasets perform better on 42.5% cases.

1 Introduction

As the cutting edge of natural language processing advances, large language models (LLMs) have
demonstrated transformative capabilities, powering numerous applications with the strong ability
in automatically generating responses according to human instructions. Nevertheless, it is hard
sometimes for language models to capture the meaning of human instructions and respond to them
even if they are pretrained with large amount of data. To counter this challenge, instruction tuning
emerged as a paramount method in tailoring the behaviours of LLMs (Wei et al., 2021; Ouyang et al.,
2022; Chung et al., 2022; Wang et al., 2022a). Instruction tuning leverages instruction-response
pairwise data (henceforce referred to as instruction data) during finetuning. It facilitates the alignment
of models with human preferences and their knowledge base, enabling the generation of desired
outputs in response to various instructions. However, obtaining a large corpus of diverse, human-
crafted instructions could be very expensive. To solve this problem, Wang et al. (2022a) proposed a
methodology that prompts the model to generate its own instruction-following data for finetuning.
Similarly, Taori et al. (2023) proposes Alpaca that employs GPT-3.5 (Ouyang et al., 2022) to
create these instruction-following examples. Even though these methods could scale up the size of
instruction-following data, they still inevitably consume a lot of resources.
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This problem makes researchers begin to explore whether using small quantity of high-quality
instruction-following data can yield robust performance. Encouragingly, recent studies confirm that
this approach holds promising potential. Zhou et al. (2023) proposes LIMA, which is instruction
finetuned with human selected high-quality data. This study demonstrates its robust improvement
over other language models of comparable size that are finetuned with unfiltered data. However,
LIMA still requires human or machine experts to help set up a rule for selecting data from a large
amount of data, which is time-consuming and expensive.

In this paper, we propose INSTRUCTMINING, a linear rule for selecting high-quality instruction
data, which does not require human or machine annotation. We first propose our quality evaluation
hypothesis that the quality of instruction data can be estimated using the loss generated by the
finetuned model on a fair evaluation set, which contains unbiased human written instructions and
high-quality responses. Under this hypothesis, we are able to quantify instruction dataset’s quality
using inference loss. However, estimating the inference loss requires us to actually finetune a language
model, which could be time-consuming. To overcome this obstacle, we introduce a set of selected
natural language indicators, which can be leveraged to predict the inference loss without actually
finetuning an LLM.

To investigate the indicators’ relationship with instruction data quality, we first sample 78 distinct
subdatasets from a diverse data pool. Subsequently, we record each finetuned models’ inference
loss on the evaluation set. We then compute the indicator values across each subdataset. Finally
we apply a statistical regression model to determine the relationship between the inference loss and
indicator values, based on the rich experimental data we have obtained. We further demonstrate that
INSTRUCTMINING is valid and scalable by comparing the inference performance between models
finetuned using INSTRUCTMINING and random sampled datasets.

Our contributions are summarized as follows:

• In this paper, we are the first to provide a simple and explainable recipe for quantifying and
selecting high-quality instruction-following data.

• We propose INSTRUCTMINING, a linear quality rule and bag of indicators for evaluat-
ing instruction-following data quality, and estimate the parameters in INSTRUCTMINING
through extensive finetuning experiments on LLAMA-7B models.

• Comprehensive results show that INSTRUCTMINING can significantly improve finetuning
performance. The model fine-tuned on filtered data performs better in 42.5% of the cases.

2 Methodology

2.1 What is Instruction Quality?

In this paper, we follow the superficial alignment hypothesis proposed by Zhou et al. (2023) that
a model’s knowledge is mostly learnt during pretraining, while instruction-following data teaches
the model to follow a certain pattern when interacting with users. Hence, the quality of these
instruction-following data could be viewed as its ability to efficiently steer language models in
learning to generate responses in a particular manner. Based on this assumption, we further propose
our instruction quality evaluation hypothesis as follows,

Instruction Quality Evaluation Hypothesis: Given an instruction dataset D, we finetune a
language model on D, denoted as M̃ . The instruction quality of D can be estimated through
the inference loss of M̃ on a evaluation dataset Deval.

To ensure the inference loss provides a valid measure for evaluating data quality, the evaluation set
should comprise a selected collection of unbiased and high-quality instruction-following samples.

In particular, given an instruction-following dataset D, we finetune a base language model M using
D with model training settings S. S normally refers to training batch size, epochs, etc. The obtained
finetuned language model is denoted as M̃ . We define the dataset D’s quality QD|M,S as below,

QD|M,S ∝ −L(M̃,Deval) (1)
where Deval refers to the high-quality and unbiased evaluation set, and ∝ means a direct proportion.
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Indicator Notation Explanation

Length Len The average length of every response in the dataset.

Reward score Rew
The average reward model inference score of every pair in the dataset.
(Köpf et al., 2023)

Perplexity PPL The exponentiated average negative log-likelihood of response.

MTLD MTLD Measure of Textual Lexical Diversity McCarthy and Jarvis (2010)

KNN-i KNNi
Distance to approximate ith-nearest neighbors (Dong et al., 2011) in
SentenceBERT(Reimers and Gurevych, 2019) embedding space.

Unieval-naturalness Nat
The score of whether a response is like something a person would naturally
say, provided by the UniEval (Zhong et al., 2022) dialogue model.

Unieval-coherence Coh
The score of whether this response serves as a valid continuation of
the previous conversation, provided by the UniEval (Zhong et al., 2022)
dialogue model.

Unieval-understandability Und
The score of whether the response is understandable, provided by the
UniEval (Zhong et al., 2022) dialogue model.

Table 1: Natural language indicators for instruction quality evaluation. Every data example is viewed
as a pair of instruction(input) and response(output). Unless otherwise specified, the indicator value
on a dataset is the average value of each sample on the indicator.

2.2 Quality Evaluation

According to Equation 1, we utilize the inference loss to evaluate instruction quality. However,
finetuning an LLM for evaluation can be inefficient. To solve this problem, we introduce a set of
natural language indicators and use the indicators to predict the inference loss. In this paper, We
have a set of indicators I = {Ii, i ∈ N∗}1, which is detailed in Table 1. For every given instruction-
following dataset D, we compute the corresponding indicator values I(D) = {Ii(D), i ∈ N∗}.
There exists a function F such that the aforementioned model inference loss L(M̃,Deval) can be
approximated using F (I(D)). The relationship between the finetuned model inference loss L and
these computed indicators can be formulated as in Equation 2.

Instruction Quality

−𝑄!|#,%	∝ log𝐿 𝑀*,𝐷&'() ∝ 𝐿* + 𝐹( 𝐼+ 𝐷 , 𝐼, 𝐷 ,⋯ 𝐼- 𝐷 ,⋯ , 𝐼. 𝐷 )	

Model Evaluation Loss

Minimal Loss Constant

𝑖th indicator on data 𝐷

Bag of 𝑛 indicators
(2)

In this paper, we assume that there exists a multivariate linear function of Ii, i ∈ {1, · · · , n} that is
proportional to the logarithmic loss. Consequently, Equation 2 can be reparameterized as Equation 3:

logL(M̃,Deval) ∝ L0 + F{I(D)}
∝ L0 + β0 + β1I1(D) + β2I2(D) + · · ·+ βnIn(D) + ϵ

(3)

where β0 signifies the linear constant and βi, i ∈ N∗ represent a sequence of linear coefficients. ϵ
refers to the random error term.

To investigate the relationship between these indicators and the overall dataset quality, it becomes
necessary to accumulate experimental results to estimate the unknown parameters βi, i ∈ N . In
this study, we employ the Least Squares method (Björck, 1990) to estimate the parameters in the
multivariate function. The Least Squares method is a standard approach in regression analysis for the
approximate solution of overdetermined systems. The technique minimizes the sum of the square
residuals, thus providing the optimal fit between the observed and predicted data in terms of reducing
the overall prediction error. Our experiment result and analysis are detailed in Section 4.

1N∗ refers to natural numbers starting from 1, and N refers to natural numbers starting from 0.
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Figure 1: Our empirical study procedure. We first select several candidate datasets. Then we fuse
and sample from them to form datasets of different quality levels. For each dataset, we finetune a
language model on it and evaluate the model on a shared evaluation set. We also calculate bag of
indicator values on the dataset. Finally, we perform a linear regression analysis based on our curated
experiment results to estimate the linear rule parameters.

2.3 Empirical Study Design

In this paper, we design experiments to investigate both multivariate and univariate correlations
between indicators and dataset quality. The key distinction between the two exists in the finetune
data sampling strategy. For multivariate evaluation experiments, we randomly sample subdatasets
from several candidate datasets of different preassumed quality levels. Conversely, for univariate
experiments, we sample fine-grained subdatasets according to their indicator values.

2.3.1 Multivariate Evaluation

The general procudure of our multivariate evaluation experiment is shown in Figure 1. To estimate
the correlation between evaluation loss L and bag of indicators I and promise the scalability of
our method, we need to get datasets of different indicator values. To achieve this, we commence
by selecting several commonly used datasets with different presumed quality levels and fuse them
together with randomly sampled percentages to create finetune datasets. These sampled finetune
datasets should encompass varying proportions of preassumed high quality and low quality examples.
For each of these sampled datasets Di, we compute its respective indicator values I(Di) and finetune
a base language model M using Di. Following Equation 1, the quality QDi

for dataset Di is
approximated using the evaluation loss of finetuned model M̃i on a fair evaluation dataset Deval.
Following the collection of a range of results correlating QDi

with I(Di), we undertake a statistical
regression analysis to discern patterns and relationships within the compiled data.

2.3.2 Univariate Evaluation

In addition to multivariate evaluation, we also study the individual correlation between each indicator
and instruction data quality. Except for the randomly selected datasets from multivariate experiments,
we also conduct fine-grained sampling here, wherein subdatasets are sampled based on their specific
indicator values. For a given indicator Ij , we sample a series of subdatasets of the same size with
fine-grained indicator values. To illustrate, consider indicator Rew. We compute the score for each
sample in the dataset and then rank them from lowest to highest. Subsequently, these data samples
are separated into K tiers, according to their respective Rew scores. For each dataset, we finetune
a base model and conduct the evaluation to obtain a quality estimation of the sampled instructiond
dataset. The correlation analysis tools are then employed to evaluate the quality value of each dataset
in relation to the indicator value.

3 Empirical Settings

3.1 Datasets

Candidate Training Datasets. In order to create diverse training datasets, we collect data from
various sources with differing collection standards. This approach ensures that the datasets exhibit
theoretical differences in quality and maintain diversity among sources. For this purpose, we have
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selected the following datasets as candidate datasets: ALPACA (Taori et al., 2023), OPEN-ASSISTANT
(Köpf et al., 2023), STACKEXCHANGE, and WIKIHOW. Due to the varying formats, sizes, and
distributions of different datasets, we have applied distinct processing procedures to each dataset.
For detailed processing procedures, please refer to Appendix A. Table 2 provides an overview of the
candidate training datasets after preprocessing.

Datasets Sourced from Size Quality
ALPACA Generated w/ davinci 52.0k Normal

OPEN-ASSITANT human-generated 3.4k Both
STACKEXCHANGE human-generated 3.0k High

WIKIHOW human-generated 2.0k High

Table 2: Overview of the candidate training datasets after preprocessing.

Evaluation Datasets. To address real-world requirements, we diversified the instructions by com-
bining test data from different evaluation datasets, which includes 252 instructions from Wang et al.
(2022a) and 80 from Zheng et al. (2023).

In our study, we employed gpt-3.5-turbo from OPENAI to generate five unique outputs for
each instruction. We chose gpt-3.5-turbo due to its superior performance in instruction-
following compared to LLAMA-7B. To account for the possibility of multiple valid outputs for
a given instruction, we generated multiple outputs to represent better the output distribution of
gpt-3.5-turbo.

Sampling Candidate Datasets. As mentioned in section 2.3, we leverage two different fusing
method for multivariate and univariate analysis. We merged candidate training datasets, resulting
in each dataset containing 2,000 instruction-output pairs.

Sampling strategy for multivariate analysis. We generated a random number ri for each dataset
and randomly selecting 2000 ∗ ri/

∑
i ri samples from each dataset for combination.

Sampling strategy for univariate analysis. We merged all the data and sorted it according to the
target indicator. We then evenly selected K quantiles as starting points on sorted data and extracted
2000 following consecutive data to form a new dataset. This selection process ensures diverse results
of the target indicator on these datasets. We used K=8 in our experiments.

Considering the significant size difference between the ALPACA and other datasets used, we randomly
sampled 2000 data from ALPACA to maintain scale consistency across all the candidate datasets.

3.2 Finetuning Settings

We conduct all instruction tuning on the same base model LLAMA-7B (Touvron et al., 2023). All
finetuning datasets are of the same size, 2000 examples in each. We apply 8bit QLORA (Dettmers
et al., 2023) on Wq,Wk,Wv in the attention module with LoRA (Hu et al., 2021) r = 8, α = 32.
We run model finetuning for 3 epochs, with per step batch size set to 8. We use Adam with
β1 = 0.9, β2 = 0.999, and linear learning rate scheduler starts from 5e− 5, decays to 0.

Each finetuned model is evaluated on the evaluation dataset mentioned in section 3.1. We run all
finetuning and evaluation experiments on 6 NVIDIA RTX A6000.

4 Empirical Results

In this section, we detail our core findings with experiment results. Following section 2.3, we
analysis the relationship between indicators and data quality from two perspectives, multivariate
and univariate. Section 4.1 presents our experimentation results and analysis on randomly sampled
subdatasets. Section 4.2 elaborates on our analysis on the correlation between single indicator and
instruction quality, and section 4.3 shows how to use our resulted quality evaluation function to select
high-quality data, and compare our method with baselines.
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Variable Coef. Std err. t value P > |t|
β0 0.1840 0.565 0.325 0.746
βPPL 0.0236 0.022 1.080 0.283
βMTLD 0.0003 0.004 0.086 0.932
βRew

∗∗ -0.0828 0.035 -2.361 0.020
βLen

∗ 0.0001 7e-5 1.907 0.060
βNat 0.9149 1.442 0.635 0.527
βCoh 0.3784 0.647 0.585 0.560
βUnd -0.3409 1.618 -0.211 0.834
βKnn6

∗∗∗ -1.0611 0.340 -3.124 0.002

[1] R2=0.848, Adjusted R2=0.835, F -statistic=64.99.
[2] Prob(F -statistic)=9.75e-35, Log-Likelihood=272.77.
[3] *: p ≤0.1, **:p ≤0.05, ***:p ≤0.01.

(a) OLS regression results including all variables.

Variable Coef. Std err. t value P > |t|
β0

∗∗∗ 1.0694 0.070 15.338 0.000
βPPL - - - -
βMTLD - - - -
βRew

∗∗∗ -0.1498 0.007 -21.141 0.000
βLen

∗∗∗ 8e-5 8e-6 9.759 0.000
βNat - - - -
βCoh - - - -
βUnd - - - -
βKnn6

∗∗∗ -0.9350 0.072 -12.992 0.000

[1] R2=0.838, Adjusted R2=0.833, F -statistic=169.3.
[2] Prob(F -statistic)=1.24e-38, Log-Likelihood=268.52.
[3] *: p ≤0.1, **:p ≤0.05, ***:p ≤0.01.

(b) Stepwise OLS regression results.

Table 3: Linear regression parameter estimation results using ordinary least squares (OLS). P > |t|
represents p value under student test on each coeficient. Lower p value indicating that the coeficient
for this variable is more significant and acceptable. R2 and adjusted R2 represents how well the data
is fit using the estimated linear function.

4.1 Multivariate Analysis

We randomly sampled 78 datasets from candidate dataset with different percentages.Each comprises
varying proportions of high-quality and low-quality examples. The experiment results is shown in
Appendix B. We first analyze the distribution of each indicator to make sure that our data satisfies
multivariate linear regression assumptions. The distribution figures for each indicator is shown in
Appendix B. We also run Kolmogorov-Smirnov test (Massey Jr, 1951) on each indicator and collected
loss values to make sure that all variables follow normal distribution.

We use stepwise regression to perform the analysis. Stepwise regression is a step-by-step iterative
method applied to multivariate linear regression, to help find significant variables. We run the
regression on variables mentioned in Table 1. The regression results before and after stepwise
regression are available in Table 3.

As shown in Table 3, we delineate our estimated evaluation function, which is articulated as Equation 4.
According to the analysis result, reward score and nearest neighbour score, which is a metric of
dataset diversity, are the most significant indicators to the general instruction data quality.

QD|M,S ∝ −L(M̃,Deval)

logL(M̃,Deval) ∝ 1.0694− 0.1498Rew + 8.257 ∗ 10−5Len− 0.9350Knn6 + ϵ
(4)

4.2 Univariate Analysis

For every indicator, we analyze its linear correlation with evaluation loss. The univariate analysis
results are shown in Figure 2. The two series demonstrate similar patterns. Variables PPL, MTLD,
Nat, and Und exhibit positive correlations with the anticipated evaluation loss, suggesting an increase
in these variables may result in a higher evaluation loss. Conversely, Rew and Coh showcase negative
correlations with the evaluation loss, implying that an increase in these variables might lead to a
reduction in loss. Comparing to randomly selecting examples from the data pool, it is obvious that
selecting datasets directly according to PPL, MTLD, Rew are more preferable. Notably, this does
not conflict with our analysis in multivariate analysis, since there are multiple indicators which are
prominent to the fluctuation of inference loss and these indicators can share multicollinearity.

4.3 Quality-Guided Instruction Selection

In this section, we follow the regression result in Equation 4 to select high quality examples from an
unseen dataset, databricks-dolly-15k 2.

2https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
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Figure 2: Univariate analysis regression plot. For every indicator, we plot its indicator value w.r.t.
the actual inference loss. Series cyan represents data collected from multivariate analysis (randomly
sampled) while series yellow represents data collected from univariate analysis (hierarchically
sampled). For every cluster we estimate a univariate linear function between loss and indicator. The
regression confidence level is 95%.

Sampling Method Notation exp(Rule) Rule Loss(epoch 1) Loss(epoch 2) Loss(epoch 3)

Fine-grained

E1 1.026 0.0260 1.383 1.375 1.371
E2 0.975 -0.025 1.377 1.368 1.370
E3 0.850 -0.163 1.366 1.364 1.359
E4 0.749 -0.289 1.362 1.352 1.349

Random E5 1.205 0.187 1.384 1.372 1.367
E6 1.193 0.177 1.368 1.363 1.357

Table 4: Quality-guided instruction selection experiment result. Rule refers to the expected evaluation
loss estimated using our quality rule. We train three epochs on each dataset, and record the actual
loss value after each epoch.
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the exp(Rule) value for each experiment. The experi-
ments are ranked in descending order according to their
estimated quality values. The left axis refers to loss
different and the right axis refers to actual loss values.

For selected datasets, we finetune the base
model LLAMA-7B and compare our fine-
tuned model to baseline models. Experi-
ment results show that our formulation of
instruction data quality is valid and is scal-
able to other instruction-following datasets.
We present our experiment results in Ta-
ble 4 and Figure 3. To be noticed, Ta-
ble 4 shows the results of multiple mod-
els finetuned on selected datasets, and Fig-
ure 3 presents the GPT evaluated compari-
son result between the selected high-quality
dataset and randomly sampled dataset. All
evaluation experiments are done on the
evaluation set mentioned in section 3.1.

From Table 4, we can see that with higher
expected evaluation loss, the actual loss is
also higher, which indicates that the instruc-
tion data is be of lower quality. Notably,
the loss gap among E2, E3 and E4 is com-
paratively larger than the gap among E1,
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Figure 4: GPT evaluation comparison between rule selected dataset and randomly sampled dataset.
In the context of this figure, Win, Fail and Tie here denote comparative outcomes when the generation
results of selected dataset finetuned model are evaluated against those of a randomly sampled dataset
finetuned model.

E2 and E3. We specifically study the pattern of the loss difference among the fine-grained datasets.
As shown in Figure 3, change of loss difference between the datasets of high quality is significantly
larger than which between datasets of low quality. This reveals that the performance of instruction
finetuning on LLAMA-7B models might be very sensitive of very high quality data.

Except for analysis based on fine-grained datasets, we also evaluate our method by comparing the
finetuning performance between the seleted data and randomly sampled data. Results are shown in
Table 4 and Figure 3. Table 4 evaluates from the perspective of inference loss while Figure 3 leverages
gpt-3.5-turbo and gpt-4 to compare the answer generated by the two finetuned models. The
results show that our selected datasets perform better than the randomly sampled dataset. However,
the difference between the two is not very large according to gpt-4. This may be attributable to
the relative diminutiveness of our base model, implying that its foundational knowledge may be
insufficient for addressing relatively complex instructions. Except for this, our method leverages
gpt-3.5-turbo to generate responses for the golden evaluation set, which make our method more
aligned with gpt-3.5-turbo.

5 Related Work

Recent studies have proposed instruction tuning methods for fine-tuning Large Language Models
(LLMs), demonstrating their generalization capabilities for unseen instructions Wei et al. (2021). To
enhance instruction tuning, some researchers have focused on increasing the data size through various
methods Honovich et al. (2022)Wang et al. (2022a). In contrast, others have shown that a smaller
amount of high-quality instruction data can yield effective models Zhou et al. (2023). Reinforcement
learning from human feedback (RLHF) has been used to align language models with human intent
Ouyang et al. (2022). Our method focuses on limited data and leverages the reward model from
RLHF to estimate instruction quality.

The field has seen growth with the publication of numerous instruction datasets(Taori et al. (2023),
Köpf et al. (2023), Honovich et al. (2022)). Several works(Chung et al. (2022)) have combined
multiple datasets to increase the amount and diversity of instruction data, resulting in performance
gains. Evidence from Iyer et al. (2023), Wang et al. (2023), Wang et al. (2022b), and Longpre et al.
(2023) suggests that enhancing instruction diversity can significantly improve instruction tuning
performance. A quality gap exists between different data sources due to varying data collection
methods across instruction datasets. Some studies, such as Gunasekar et al. (2023), have demonstrated
that increasing the proportion of high-quality data can enhance performance.

Lee et al. (2023) shows that the recently proposed Task2Vec Achille et al. (2019) diversity is a reliable
diversity coefficient for LLMs’ dataset, an aspect of quality assessment. Our work aims to present an
instruction quality evaluation method for measuring the quality of instruction datasets.

Other works have focused on estimating the quality of prompts, such as Gonen et al. (2022), which
uses perplexity for prompt selection. Similarly, we test the perplexity with instruction quality.
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6 Discussion and Future Work

In this paper, we propose a quality evaluation rule specifically for instruction finetuning. Extensive
experiments have been conducted to estimate the parameter in this rule and to prove that our evaluation
rule is valid and scalable to other datasets. However, limitations still exist in this work. First of all, in
our experiments, we only include limited amount of simple indicators from previous works. Recently,
many researchers are beginning to explore instruction diversity, which we could later include into our
future work. Secondly, our method is only experimented on single-turn instruction-following and
mostly human written datasets. We haven’t tested on multi-turn and more complex conversational
datasets. Finally, in this paper, we only study the relationship between indicator values and inference
loss value on fixed base model, LLAMA-7B. As the next step of this work, we will expand our
analysis to larger models, e.g. LLAMA-13B and LLAMA-65B. We will also include more evaluation
sets and instruction datasets for further analysis.
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Appendix

A Instruction Datasets Details

Alpaca (Taori et al., 2023) is a dataset of 52,000 instructions generated by OpenAI’s text-davinci-003
engine. We use the same prompt template as ALPACA.

Open Assistant (Köpf et al., 2023) is a project of a chat-based and open-source assistant. We use
"timdettmers/openassistant-guanaco" dataset from HuggingFace (Wolf et al., 2020). We then filter
out instances containing multiple turns to focus on single-turn dialogues and retain only English
dialogues. The content following "### Human: " serves as the instruction, while the content after
"### Assistant: " is considered the output.

Stack Exchange1 is a network of question-and-answer websites. The voting mechanism on the site
(upvote or downvote) is leveraged to maintain content quality. We started with "HuggingFaceH4/stack-
exchange-preferences" on HuggingFace datasets. Referring to Zhou et al. (2023), We process the data
considering both quality and diversity. We selected answers with the highest votes while filtering out
those with less than or equal to 5 votes. We also removed HTML tags in the answers and excluded
responses with character counts below 200 or above 4000. Applying these processes ensures the
selected data’s quality. To control diversity, only 20 answers per exchange from the total 179 on
Stack Exchange were chosen based on meeting the quality criteria.

wikiHow 2 is a worldwide collaborative platform to teach people how to do anything. We employed
a dataset sourced from Huggingface datasets. We utilized titles as prompts and the corresponding
bodies as responses. To ensure dataset diversity, we extracted embeddings from the titles using the
sentence transformer (Reimers and Gurevych, 2019), subsequently applying K-means clustering to
group them into 19 categories. We then randomly select a category and select a data sample from that
category, resulting in a dataset comprising 2000 instructions dataset.

Dolly (Databricks, 2023) is a dataset contain 15,000 human-generated insturction-following authored
by Databricks employees. We use "databricks/databricks-dolly-15k" from Huggingface datasets and
apply the prompt template from ALPACA

B Descriptive Analysis

We present our descriptive analysis on 78 randomly sampled results here.

Variable Mean Std. Min Median Max
Loss 1.126 0.049 1.053 1.115 1.303
PPL 4.734 0.745 3.080 4.680 6.591
Knn6 1.009 0.034 0.921 1.009 1.082
Len 1313.762 258.823 746.074 1309.738 1932.745

MTLD 64.406 3.891 55.752 64.047 74.190
Rew 0.776 0.285 0.017 0.785 1.328
Coh 0.939 0.022 0.882 0.935 0.979
Nat 0.738 0.039 0.645 0.736 0.833
Und 0.785 0.035 0.711 0.781 0.879

Table 5: Descriptive statistical analysis results on linear regression variables.

1https://stackexchange.com/
2https://www.wikihow.com/Main-Page
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The distribution for every indicator is shwon in Figure 5. To make sure our OLS result is valid,
we also perform Kolmogorov–Smirnov test to see whether the variables follow normal distribution.
Results show that all variables in our analysis follow normal distribution, which satisfies the OLS
regression assumption.
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Figure 5: Distribution for all indicators.

Variable Statistic p Value
PPL 0.999 0.000

MTLD 1.000 0.000
Rew 0.583 0.000
Len 1.000 0.000
Nat 0.740 0.000
Coh 0.811 0.000
Und 0.761 0.000

KNN6 0.821 0.000
Loss 0.854 0.000

Table 6: KS test results for all variables in linear regression. Smaller p value indicates that the variable
is highly possible to follow normal distribution.
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