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Intelligence is associated with important economic and health-related life outcomes1. 

Despite substantial heritability2 (0.54) and confirmed polygenic nature, initial genetic 

studies were mostly underpowered3–5. Here we report a meta-analysis for intelligence of 

78,308 individuals. We identify 336 single nucleotide polymorphisms (SNPs) (METAL 

P<5×10−8) in 18 genomic loci, of which 15 are novel. Roughly half are located inside a 

gene, implicating 22 genes, of which 11 are novel findings. Gene-based analyses identified 

an additional 30 genes (MAGMA P<2.73×10−6), of which all but one have not been 

implicated previously. We show that identified genes are predominantly expressed in brain 

tissue, and pathway analysis indicates the involvement of genes regulating cell development 

(MAGMA competitive P=3.5×10−6). Despite the well-known difference in twin-based 

heritability for intelligence in childhood (0.45) and adulthood2 (0.80), we show substantial 

genetic correlation (rg=0.89, LD Score regression P=5.4×10−29). These findings provide 

novel insight into the genetic architecture of intelligence.

We combined GWAS data for intelligence in 78,308 unrelated individuals from 13 cohorts 

(Online Methods). Of these, full GWAS results for intelligence on N=48,698 have been 

published in two different studies5,6 (N=12,441 and N=36,257 respectively), while GWAS 

results on the remaining 29,610 individuals have not been published previously. Across the 

different cohorts, various tests to measure intelligence were used. Therefore – following 

previous publications on combining intelligence phenotypes across different cohorts5,7 – the 

cohorts either calculated Spearman’s g or used a primary measure of fluid intelligence 

(Supplementary Table 1), which is known to correlate highly with g8. Previous research has 

shown that many different aspects of intelligence are highly correlated to each other, and that 

Spearman’s g captures the latent general intelligence trait, irrespective of the specific tests 

used to construct it9,10.

Sniekers et al. Page 2

Nat Genet. Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All association studies were performed on individuals of European descent; standard 

quality-control procedures included correcting for population stratification and filtering on 

minor allele frequency and imputation quality (Online Methods). As eight out of the 13 

cohorts consisted of children (aged < 18; total N=19,509) and five of adults (N=58,799, aged 

18–78), we first meta-analyzed the children- and adult-based cohorts separately using 

METAL software11, and subsequently calculated the rg using LD Score regression12. The 

estimated rg was 0.89 (SE=0.08, P=5.4×10−29), indicating substantial overlap between the 

genetic variants influencing intelligence in childhood and adulthood, and warranting a 

combined meta-analysis. The genetic correlations between all individual cohorts were 

generally larger than 0.80 except for those involving some of the smaller sized cohorts 

(N<4,000), which, given the large standard errors of the rg’s, is likely due to the relatively 

low sample sizes in some of the individual cohorts (Supplementary Table 2). The full meta-

analysis of all 13 cohorts (maximum N=78,308) included 12,104,294 SNPs. The quantile-

quantile (Q-Q) plot of all SNPs exhibited some inflation (λALL=1.21; Supplementary Fig. 1; 

Supplementary Table 3), which is within the expected range for a polygenic trait at the 

current sample size and heritability13. We performed LD Score regression to quantify the 

proportion of inflation in the mean χ2 that was due to confounding biases. An intercept of 

1.01 and mean χ2 of 1.30 were obtained, suggesting that more than 95% of the inflation was 

caused by true polygenic signal. SNP-based heritability was estimated at 0.20 (SE=0.01) in 

the total sample, and this was comparable in adults (0.21, SE=0.01) and children (0.20; 

SE=0.03). These estimates were obtained using LD Score regression and are likely to be 

biased downwards.

The meta-analysis identified 18 independent genome-wide significant loci (Fig. 1; Fig. 2a; 

Table 1), including 336 top SNPs (i.e. below the genome-wide threshold of significance; 

Supplementary Table 4). Of the 18 identified loci, three have been implicated in intelligence 

previously: 6q16.114, 7p14.3 and 22q13.26 (Supplementary Table 5). The top SNPs 

implicated 22 genes of which 11 were novel. Functional annotation of the 336 genome-wide 

significant SNPs showed that a large proportion was intronic (162/336) (Fig. 2b). Of the 18 

lead SNPs, 10 were intronic (Fig 2b), all were in an active chromatin state (Fig. 2c; 

Supplementary Fig. 2–4) and 8 SNPs were expression quantitative trait loci (eQTLs; Fig. 2d; 

Supplementary Table 4; Supplementary Table 6). Lead SNPs rs12928404 (located in the 

intronic region of ATXN2L) had the highest probability of being a regulatory SNP based on 

the Regulome database score15 and of the eight lead SNPs that were eQTLs, this SNP was 

associated with differential expression of the largest number of genes (i.e.14). Focusing on 

brain tissue, the T allele of this SNP, which was associated with higher intelligence scores, 

was associated with lower expression of TUFM (Supplementary Table 6).

We calculated the variance explained (R2) in intelligence by the GWAS results in four 

independent samples, using LDpred16 (Online Methods and Supplementary Table 7 and 

Supplementary Fig. 5). Our results show that the current results explain up to 4.8% of the 

variance in intelligence and that on average across the four samples there is a 1.9-fold 

increase in explained variance compared to the most recent GWAS on intelligence6.

Apart from a SNP-by-SNP GWAS we conducted a genome-wide gene association analysis 

(GWGAS) as implemented in MAGMA17 (Online Methods). GWGAS relies on converging 
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evidence from multiple genetic variants in the same gene and can yield novel genome-wide 

significant signals on a gene-based level that are not necessarily picked up by a standard 

GWAS. The GWGAS identified 47 genes (Fig. 3a, Supplementary Table 8). The GWGAS 

and GWAS identified 17 overlapping genes, thus the total number of implicated genes either 

by a SNP hit or by GWGAS was 22+47−17=52. Twelve out of 52 genes have been 

associated with intelligence previously (Supplementary Table 9). Tissue expression analyses 

(Online Methods) of the 52 genes using the GTEx data resource showed that 14 out of 44 

genes for which GTEx data was available were more strongly expressed in the brain than in 

other tissues (Fig. 3b). Epigenetic states were calculated for 51 out of 52 implicated genes 

(Online Methods) and showed that 57% of genes were at least weakly transcribed in at least 

50% of tissues (Fig. 3c; Supplementary Fig. 6). Pathway analysis for 6,166 gene ontology 

(GO18) and 674 Reactome19 gene-sets (obtained from MSigDB20) resulted in one associated 

gene-set (GO: regulation of cell development, which is defined as any process that 

modulates the rate, frequency or extent of the progression of the cell over time, from its 

formation to the mature structure.) (MAGMA competitive P=3.5×10−6; corrected P=0.03, 

Supplementary Tables 10, 11). This gene-set contains four genes that were genome-wide 

significant: BMPR2, SHANK3, DCC and ZFHX3, and many other genes that showed 

weaker association (Supplementary Table 12). Three of the genome-wide significant genes 

are involved in neuronal function: SHANK3 is involved in synapse formation, DCC encodes 

a netrin receptor involved in axon guidance and is associated with putamen volume, and 

ZFHX3 is known to regulate myogenic and neuronal differentiation. The fourth gene, 

BMPR2, plays a role in embryogenesis and endochondral bone formation and has been 

linked to pulmonary arterial hypertension. The four GO pathways with the subsequent 

smallest P-values are not independent from the top associated gene-set and provide insight 

in more specific functions of the genes driving the observed gene-set association. These four 

gene-sets are: regulation of nervous system development (P=3.0×10−5; 87% of genes 

overlapping with the regulation of cell development pathway, including the four genome-

wide significant genes), negative regulation of dendrite development (P=7.9×10−5; 100% 

overlapping, thus a complete subset), myelin sheath (P=8.5×10−5; 14% overlapping) and 

neuron spine (P=1.5×10−4; 34% overlapping).

Intelligence has been associated with many socio-economic and health-related outcomes. 

We used whole-genome LD Score Regression12 to calculate the genetic correlation with 32 

traits from these domains for which GWAS summary statistics were available for download. 

Significant genetic correlations were observed with 14 traits. The strongest, positive genetic 

correlation was with Educational attainment (rg=0.70, SE=0.02, P=2.5×10−287). Moderate, 

positive genetic correlations were observed with smoking cessation, intracranial volume, 

head circumference in infancy, Autism spectrum disorder and height. Moderate negative 

genetic correlations were observed with Alzheimer’s disease, depressive symptoms, having 

ever smoked, schizophrenia, neuroticism, waist-to-hip ratio, body mass index, and waist 

circumference (Fig. 3d; Supplementary Table 13).

To examine the robustness of the 336 SNPs and 47 genes that reached genome-wide 

significance in the primary analyses, we sought replication. Since there are no reasonably 

large GWAS for intelligence available and given the high genetic correlation with 

educational attainment, which has been used previously as a proxy for intelligence7, we used 
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the summary statistics from the latest GWAS for educational attainment (EA21) for proxy-

replication (Online Methods). We first deleted overlapping samples, resulting in a sample of 

196,931 individuals for EA. Out of the 336 top SNPs for intelligence, 306 were available for 

look-up in EA, and 16 out of 18 independent lead SNPs. We found that the effects of 305 out 

of 306 available SNPs in EA were sign concordant between EA and intelligence, and the 

effects of all 16 independent lead SNPs (exact binomial P<10−16; Supplementary Table 14). 

This approach resulted in nine proxy-replicated loci (P<0.05/16): seven for which the lead 

SNP was significant (16p11.2, 1p34.2, 2q11.2, 2q22.3, 3p24.3, 6q16.1 and 7q33) and two 

for which another correlated top SNP in the same locus was significant (3p24.2 and 7p14.3). 

Of the 47 genes that were significantly associated with intelligence in the GWGAS, 15 were 

also significantly associated with EA (P<0.05/47, Supplementary Table 15). Given the high 

(0.70) but not perfect genetic correlation between EA and intelligence, these results strongly 

support the involvement of the proxy-replicated SNPs and genes in intelligence.

The strongest emerging association with intelligence is with rs2490272 (6q21) in an intronic 

region of FOXO3 and neighboring SNPs in the promotor of the same gene. This gene is part 

of the insulin/insulin-like growth factor 1 signaling pathway and is believed to trigger 

apoptosis, including neuronal cell death as a result of oxidative stress22. Moreover, it has 

been shown to be associated with longevity23,24. The gene with the strongest association in 

the GWGAS is CSE1L, which also plays a role in apoptosis and cell proliferation25. Of all 

52 genes that were implicated, 35 were reported in the GWAS catalog for a previous 

association with at least one of 67 distinct traits. Nine genes (ATP2A1, NEGR1, SKAP1, 
FOXO3, COL16A1, YIPF7, DCC, SH2B1 and TUFM) were previously implicated with 

body mass index26–29, seven (CYP2D6, NAGA, NDUFA6, TCF20 and SEPT3, FAM109B 
and MEF2C) with schizophrenia30 and four (NEGR1, SH2B1, DCC and WNT4) with 

obesity31–33. EXOC4 and MEF2C have been associated previously with Alzheimer’s disease 

(Supplementary Tables 16, 17). Many of the implicated genes are involved in neuronal 

function: DCC, APBA1, PRR7, ZFHX3, HCRTR1, NEGR1, MEF2C, SHANK3 and 

ATXN2L (see Supplementary Note for the GeneCards summaries).

In conclusion, we conducted a meta-analysis GWAS and GWGAS for intelligence, including 

13 cohorts and 78,308 individuals. We confirmed three loci and 12 genes, and identified 15 

novel genomic loci and 40 novel genes for intelligence. Pathway analysis demonstrated the 

involvement of genes regulating cell development. We showed genetic overlap with several 

neuropsychiatric and metabolic disorders. These findings provide starting points for 

understanding the molecular neurobiological mechanisms underlying intelligence, one of the 

most investigated traits in humans.

Online Methods

Discovery sample

The current study was based on 78,308 individuals. The origin of the samples is as follows:

1. UK Biobank web-based measure (UKB-wb; N=17,862), GWAS results have not 

yet been published previously, raw genotypic data is available for the present 

study.
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2. UK Biobank touchscreen measure (UKB-ts; N=36,257, non-overlapping with 

UKB-wb) has been published before6, raw genotypic data is available for the 

present study.

3. CHIC consortium5 (N=12,441) has been published before, meta-analysis 

summary statistics are available for the present study.

4. Five additional cohorts (N=11,748), of which 69 SNP associations with IQ have 

previously been published as part of a lookup effort7, but full GWAS results have 

not been published previously. Per cohort full GWAS summary statistics are 

available for the present study.

We describe these datasets in more detail below.

UK Biobank samples (UKB-wb, UKB-ts)

We used the data provided by the UK Biobank Study35 resource (see URLs), which is a 

major national health resource including >500,000 participants. All participants provided 

written informed consent; the UK Biobank received ethical approval from the National 

Research Ethics Service Committee North West–Haydock (reference 11/NW/0382), and all 

study procedures were performed in accordance with the World Medical Association 

Declaration of Helsinki ethical principles for medical research. The current study was 

conducted under the UK Biobank application number 16406.

The study design of the UK Biobank has been described in detail elsewhere35,36. Briefly, 

invitation letters were sent out in 2006–2010 to ~9.2 million individuals including all people 

aged 40–69 years who were registered with the National Health Service and living up to ~25 

miles from one of the 22 study assessment centers. A total of 503,325 participants were 

subsequently recruited into the study35. Apart from registry based phenotypic information, 

extensive self-reported baseline data have been collected by questionnaire, in addition to 

anthropometric assessments and DNA collection. For the present study we used imputed 

data obtained from UK Biobank (May 2015 release) including ~73 million genetic variants 

in 152,249 individuals. Details on the data are provided elsewhere (see URLs). In summary, 

the first ~50,000 samples were genotyped on the UK BiLEVE Axiom array, and the 

remaining ~100,000 samples were genotyped on the UK Biobank Axiom array. After 

standard quality control of the SNPs and samples, which was centrally performed by UK 

Biobank, the dataset comprised 641,018 autosomal SNPs in 152,256 samples for phasing 

and imputation. Imputation was performed with a reference panel that included the UK10K 

haplotype panel and the 1000 Genomes Project Phase 3 reference panel.

We used two fluid intelligence phenotypes from the Biobank data set. These are based on 

questionnaires that were taken either in the assessment center at the initial intake 

(‘touchscreen’, field 20016) or at a later moment at home (‘web-based’, field 20191). The 

measures indicate the number of correct answers out of 13 fluid intelligence questions. The 

data distribution roughly approximates a normal distribution.

For the analyses in our study, we only included individuals of Caucasian descent. After 

removal of related individuals, discordant sex, withdrawn consent, and missing phenotype 
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data, 36,257 individuals remained for analysis for the fluid intelligence touchscreen measure 

and 28,846 for the web-based version. As 10,984 individuals had taken both the touchscreen 

and the web-based test, we only included the data from the touchscreen test for these 

individuals. This resulted in 54,119 individuals with a score on either the fluid intelligence 

web-based (UKB-wb) or touchscreen (UKB-ts) version (Supplementary Table 1). At the 

time of taking the test, participants’ ages ranged between 40 and 78. Half of the participants 

were between 40 and 60 years old, 44% between 60 and 70 and 6% were older than 70. The 

mean age was 58.98 with a standard deviation of 8.19.

Summary statistics from CHIC consortium

We downloaded the publicly available combined GWAS results from the meta-analyses as 

reported by CHIC5 (see URLs). Details on the included cohorts and performed analyses are 

reported in the original publication5. Briefly, CHIC includes 6 cohorts totaling 12,441 

individuals: the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 5,517), the 

Lothian Birth Cohorts of 1921 and 1936 (LBC1921, N = 464; LBC1936, N = 947), the 

Brisbane Adolescent Twin Study subsample of Queensland Institute of Medical Research 

(QIMR, N = 1,752), the Western Australian Pregnancy Cohort Study (Raine, N = 936), and 

the Twins Early Development Study (TEDS, N = 2,825). All individuals are children aged 

between 6–18 years. Within each cohort the cognitive performance measure was adjusted for 

sex and age and principal components were included to adjust for population stratification. 

See also Supplementary Table 1.

Full GWAS data from additional cohorts

We used the same additional (non-CHIC) cohorts as described in detail in ref.7, which 

included 11,748 individuals from 5 cohorts. In ref.7, results were only reported for 69 SNPs, 

as these served as a secondary analysis for a look-up effort. In the current study we use the 

full genome-wide results from these cohorts. GWAS were conducted in 2013 and summary 

statistics were obtained from the PIs of the 5 cohorts. The quality control protocol entailed 

excluding SNPs with MAF < 0.01, imputation quality score < 0.4, Hardy-Weinberg P-value 

< 10−6 and call rate < 0.957. The five cohorts included the Erasmus Rucphen Family Study 

(ERF, N = 1,076), the Generation R Study (GenR, N = 3,701), the Harvard/Union Study 

(HU, N = 389), the Minnesota Center for Twin and Family Research Study (MCTFR, N = 

3,367) and the Swedish Twin Registry Study (STR, N = 3,215). Detailed descriptions of 

these cohorts are provided in ref.7, and summarized in Supplementary Table 1. Within each 

cohort the cognitive performance measure was adjusted for sex and age and principal 

components were included to adjust for population stratification.

SNP analysis in UK Biobank sample

Association tests were performed in SNPTEST37 (see URLs), using linear regression. Both 

phenotypes were corrected for a number of covariates, including age, sex and a minimum of 

five genetically determined principal components, depending on how many were associated 

with the phenotype (i.e. 5 for the web-based test and 15 for the touchscreen version, tested 

by linear regression). Additionally we included the Townsend deprivation index as a 

covariate, which is based on postal code and measures material deprivation. The touchscreen 

version of the phenotype was also corrected for assessment center and genotyping array. 

Sniekers et al. Page 7

Nat Genet. Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNPs with imputation quality < 0.8 and MAF < 0.001 (based on all Caucasians present in 

the total sample) were excluded after the association analysis, resulting in 12,573,858 and 

12,595,966 SNPs for the touchscreen and web-based test respectively.

Gene analysis

The SNP based P-values from the meta-analysis were used as input for the gene-based 

analysis. We used all 19,427 protein-coding genes from the NCBI 37.3 gene definitions as 

basis for a genome-wide gene association analysis (GWGAS) in MAGMA (see URLs). 

After SNP annotation there were 18,338 genes that were covered by at least one SNP. Gene-

association tests were performed taking LD between SNPs into account. We applied a 

stringent Bonferroni correction to account for multiple testing, setting the genome-wide 

threshold for significance at 2.73×10−6.

Pathway analysis

We used MAGMA to test for association of predefined gene-sets with intelligence. A total of 

6166 Gene Ontology and 674 Reactome gene-sets were obtained (see URLs). We computed 

competitive P-values, which are less likely to be below the threshold of significance 

compared to self-contained P-values. Competitive P-values are the outcomes of the test that 

the combined effect of genes in a gene-set is significantly larger than the combined effect of 

all other genes, whereas self-contained P-values are informative when testing against the 

null hypothesis of no association. Self-contained P-values are not interpreted and not 

reported by us. Competitive P-values were corrected for multiple testing using MAGMA’s 

built in empirical multiple testing correction with 10,000 permutations.

Meta-analysis

Meta-analysis of the results of the 13 cohorts was performed in METAL11 (see URLs). We 

did not include SNPs that were not present in the UK Biobank sample. The analysis was 

based on P-values, taking sample size and direction of effect into account using the 

samplesize scheme.

Genetic correlations

Genetic correlations (rg) were calculated between intelligence and 32 other traits for which 

summary statistics from GWAS were publicly available, using LD Score regression (see 

URLs). This method corrects for sample overlap, by estimating the intercept of the bivariate 

regression. A conservative Bonferroni-corrected threshold of 1.56×10−3 was used to 

determine significant correlations.

Functional annotation

We identified all SNPs that had an r2 of 0.1 or higher with the 18 independent lead SNPs and 

were included in the METAL output. We used the 1000G phase 3 reference panel to 

calculate r2. We further filtered on SNPs with a P-value < 0.05. In addition, we only 

annotated SNPs with MAF > 0.01.

Positional annotations for all lead SNPs and SNPs in LD with the lead SNPs were obtained 

by performing ANNOVAR gene-based annotation using refSeq genes. In addition, CADD 
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scores38, and RegulomeDB15 scores were annotated to SNPs by matching chromosome, 

position, reference and alternative alleles. For each SNP eQTLs were extracted from GTEx 

(44 tissue types)39, Blood eQTL browser40 and BIOS gene-level eQTLs41. The eQTLs 

obtained from GTEx were filtered on gene P-value < 0.05 and eQTLs obtained from the 

other two databases were filtered on FDR < 0.05. The FDR values were provided by GTEx, 

BIOS and Blood eQTL browser. For GTEx eQTLs, there is one FDR value available per 

gene-tissue pair. As such, the FDR is identical for all eQTLs belonging to the same gene-

tissue pair. For BIOS and Blood eQTL browser, an FDR value was computed per SNP.

To test whether the SNPs were functionally active by means of histone modifications, we 

obtained epigenetic data from the NIH Roadmap Epigenomics Mapping Consortium42 and 

ENCODE43. For every 200bp of the genome a 15-core chromatin state was predicted by a 

Hidden Markov Model based on 5 histone marks (i.e. H3K4me3, H3K4me1, H3K27me3, 

H3K9me3, and H3K36me3) for 127 tissue/cell types44. We annotated chromatin states (15 

states in total) to SNPs by matching chromosome and position for every tissue/cell type. We 

computed the minimum state (1: the most active state) and the consensus state (majority of 

states) across 127 tissue/cell types for each SNP.

Chromatin states were also determined for the 52 genes (47 from the gene-based test + 5 

additional genes implicated by single SNP GWAS). For each gene and tissue, the chromatin 

state was obtained per 200 bp interval in the gene. We then annotated the genes by means of 

a consensus decision when multiple states were present for a single gene; i.e. the state of the 

gene was defined as the modus of all states present in the gene.

Tissue expression of genes

RNA sequencing data of 1,641 tissue samples with 45 unique tissue labels was derived from 

the GTEx consortium39. This set includes 313 brain samples over 13 unique brain regions 

(see Supplementary Table 18 for sample size per tissue). Of the 52 genes implicated by 

either the GWAS or the GWGWAS, 44 were included in the GTEx data. Normalization of 

the data was performed as described previously45. Briefly, genes with RPKM (Reads Per 

Kilobase Million) value smaller than 0.1 in at least 80% of the samples were removed. The 

remaining genes were log2 transformed (after using a pseudocount of 1), and finally a zero-

mean normalization was applied.

Proxy-replication in educational attainment

For the replication analysis we used a subset of the data from ref. 21. In particular, we 

excluded the Erasmus Rucphen Family, the Minnesota Center for Twin and Family Research 

Study, the Swedish Twin Registry Study, the 23andMe data and all individuals from UK 

Biobank, to make sure there was no sample overlap with our IQ dataset. Genetic correlation 

between intelligence and EA in this non-overlapping subsample was rg=0.73, SE=0.03, 

P=1.4×10−163. The replication analysis was based on the phenotype EduYears, which 

measures the number of years of schooling completed. A total of 306 out of our 336 top 

SNPs (and 16 out of 18 independent lead SNPs) was available in the educational attainment 

sample. We performed a sign concordance analysis for the 16 independent lead SNPs, using 

the exact binomial test. For each independent signal we determined whether either the lead 
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SNP had a P-value smaller than 0.05/16 in the educational attainment analysis, or another 

(correlated) top SNP in the same locus if this was not the case. All 47 genes implicated in 

the GWGAS for intelligence were available for look-up in the EA sample. For each gene we 

determined whether it had a P-value smaller than 0.05/47 in the EA analysis.

Polygenic Risk Score analysis

We used LDpred16 to calculate the variance explained in intelligence in independent samples 

by a polygenic risk score based on our discovery analysis, as well as based on two previous 

GWAS studies for intelligence5,6. LDpred adjusts GWAS summary statistics for the effects 

of linkage disequilibrium (LD) by using an approximate Gibbs sampler that calculates 

posterior means of effects, conditional on LD information, when calculating polygenic risk 

scores. We used varying priors for the fraction of SNPs with non-zero effects (prior: 0.01, 

0.05, 0.1, 0.5, 1, and an infinitesimal prior). Independent datasets available for PRS analyses 

are described in the Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Regional association and linkage disequilibrium plots for 18 genome-wide significant loci
The y-axis represents the negative logarithm (base 10) of the SNP P-value and the x-axis the 

position on the chromosome, with the name and location of genes in the UCSC Genome 

Browser in the bottom panel. The SNP with the lowest P-value in the region is marked by a 

purple diamond. The colors of the other SNPs indicate the r2 of these SNPs with the lead 

SNP. Plots are generated with LocusZoom34.
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Fig. 2. Results of SNP-based meta-analysis for intelligence based on 78,308 individuals
Association results from the GWAS meta-analysis pertaining to individuals of European 

descent. (a) Negative log10-transformed P-values for each SNP (y-axis) are plotted by 

chromosomal position (x-axis). The red and blue lines represent the thresholds for genome-

wide statistical significant associations (P=5×10−8) and suggestive associations (P=1×10−5) 

respectively. Green dots represent the independent hits. (b) Functional categories for 336 

genome-wide significant SNPs. (c) The minimum (most active) chromatine state across 127 

tissues for 336 genome-wide significant SNPs. (d) The Regulome database score for 336 

genome-wide significant SNPs. The lower the score the more likely it is that a SNP has a 

regulatory function. For b–d the numbers in brackets in the legends refer to the number of 

lead SNPs for that category.
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Fig. 3. Gene-based genome wide analysis for intelligence and genetic overlap with other traits
(a). Negative log10-transformed P-values for each gene are plotted. Green dots represent 

significantly associated genes from GWGAS. The threshold for gene-wide statistical 

significant associations was set at the Bonferroni threshold of P=2.73×10−6, the suggestive 

threshold was set at P=2.73×10−5. (b) Heatmap of gene-expression levels of genes for 

intelligence in 45 tissue types (see Supplementary Table 18 for N per tissue). A value above 

zero (red) depicts a relatively high expression level with respect to the mean expression level 

of the gene over all tissues, whereas a value below zero (blue) depicts a relatively low 

expression level. (c) Epigenetic states of genes. The bars denote the proportions of 

epigenetic states across 127 tissue types. (d) Genetic correlations between intelligence and 

32 health-related outcomes. Error bars show 95% confidence intervals for estimates of rg. 

Red bars represent the traits that showed a significant genetic correlation after correction for 

multiple testing (P<1.56×10−3), pink bars the traits that showed a nominal significant 
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correlation (P<0.05), and blue bars the traits that did not show a genetic correlation 

significantly different from zero. Note: as Alzheimer’s disease is an age-related disorder we 

calculated the rg with this phenotype across three age groups and found no difference in rg’s 

(Supplementary Note).
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