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Intelligence is associated with important economic and health-related life outcomes?.
Despite substantial heritability? (0.54) and confirmed polygenic nature, initial genetic
studies were mostly underpowered3-5. Here we report a meta-analysis for intelligence of
78,308 individuals. We identify 336 single nucleotide polymorphisms (SNPs) (METAL
P<5x1078) in 18 genomic loci, of which 15 are novel. Roughly half are located inside a
gene, implicating 22 genes, of which 11 are novel findings. Gene-based analyses identified
an additional 30 genes (MAGMA P<2.73x107%), of which all but one have not been
implicated previously. We show that identified genes are predominantly expressed in brain
tissue, and pathway analysis indicates the involvement of genes regulating cell development
(MAGMA competitive P=3.5x1075). Despite the well-known difference in twin-based
heritability for intelligence in childhood (0.45) and adulthood? (0.80), we show substantial
genetic correlation (7,~=0.89, LD Score regression P=5.4x10729). These findings provide
novel insight into the genetic architecture of intelligence.

We combined GWAS data for intelligence in 78,308 unrelated individuals from 13 cohorts
(Online Methods). Of these, full GWAS results for intelligence on N=48,698 have been
published in two different studies®® (N=12,441 and N=36,257 respectively), while GWAS
results on the remaining 29,610 individuals have not been published previously. Across the
different cohorts, various tests to measure intelligence were used. Therefore — following
previous publications on combining intelligence phenotypes across different cohorts®’ — the
cohorts either calculated Spearman’s g or used a primary measure of fluid intelligence
(Supplementary Table 1), which is known to correlate highly with g8. Previous research has
shown that many different aspects of intelligence are highly correlated to each other, and that
Spearman’s g captures the latent general intelligence trait, irrespective of the specific tests
used to construct it%10,
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All association studies were performed on individuals of European descent; standard
quality-control procedures included correcting for population stratification and filtering on
minor allele frequency and imputation quality (Online Methods). As eight out of the 13
cohorts consisted of children (aged < 18; total N=19,509) and five of adults (N=58,799, aged
18-78), we first meta-analyzed the children- and adult-based cohorts separately using
METAL software!!, and subsequently calculated the rq using LD Score regression'?. The
estimated rq was 0.89 (SE=0.08, P=5.4x10729), indicating substantial overlap between the
genetic variants influencing intelligence in childhood and adulthood, and warranting a
combined meta-analysis. The genetic correlations between all individual cohorts were
generally larger than 0.80 except for those involving some of the smaller sized cohorts
(N<4,000), which, given the large standard errors of the ry’s, is likely due to the relatively
low sample sizes in some of the individual cohorts (Supplementary Table 2). The full meta-
analysis of all 13 cohorts (maximum N=78,308) included 12,104,294 SNPs. The quantile-
quantile (Q-Q) plot of all SNPs exhibited some inflation (A s =1.21; Supplementary Fig. 1;
Supplementary Table 3), which is within the expected range for a polygenic trait at the
current sample size and heritability3. We performed LD Score regression to quantify the
proportion of inflation in the mean ;(2 that was due to confounding biases. An intercept of
1.01 and mean ;(2 of 1.30 were obtained, suggesting that more than 95% of the inflation was
caused by true polygenic signal. SNP-based heritability was estimated at 0.20 (SE=0.01) in
the total sample, and this was comparable in adults (0.21, SE=0.01) and children (0.20;
SE=0.03). These estimates were obtained using LD Score regression and are likely to be
biased downwards.

The meta-analysis identified 18 independent genome-wide significant loci (Fig. 1; Fig. 2a;
Table 1), including 336 top SNPs (i.e. below the genome-wide threshold of significance;
Supplementary Table 4). Of the 18 identified loci, three have been implicated in intelligence
previously: 6g16.114, 7p14.3 and 22q13.2% (Supplementary Table 5). The top SNPs
implicated 22 genes of which 11 were novel. Functional annotation of the 336 genome-wide
significant SNPs showed that a large proportion was intronic (162/336) (Fig. 2b). Of the 18
lead SNPs, 10 were intronic (Fig 2b), all were in an active chromatin state (Fig. 2c;
Supplementary Fig. 2-4) and 8 SNPs were expression quantitative trait loci (eQTLs; Fig. 2d;
Supplementary Table 4; Supplementary Table 6). Lead SNPs 512928404 (located in the
intronic region of ATXNZ2L) had the highest probability of being a regulatory SNP based on
the Regulome database score!® and of the eight lead SNPs that were eQTLs, this SNP was
associated with differential expression of the largest number of genes (i.e.14). Focusing on
brain tissue, the T allele of this SNP, which was associated with higher intelligence scores,
was associated with lower expression of 7UFM (Supplementary Table 6).

We calculated the variance explained (/9 in intelligence by the GWAS results in four
independent samples, using LDpred® (Online Methods and Supplementary Table 7 and
Supplementary Fig. 5). Our results show that the current results explain up to 4.8% of the
variance in intelligence and that on average across the four samples there is a 1.9-fold
increase in explained variance compared to the most recent GWAS on intelligence®.

Apart from a SNP-by-SNP GWAS we conducted a genome-wide gene association analysis
(GWGAS) as implemented in MAGMAL” (Online Methods). GWGAS relies on converging
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evidence from multiple genetic variants in the same gene and can yield novel genome-wide
significant signals on a gene-based level that are not necessarily picked up by a standard
GWAS. The GWGAS identified 47 genes (Fig. 3a, Supplementary Table 8). The GWGAS
and GWAS identified 17 overlapping genes, thus the total number of implicated genes either
by a SNP hit or by GWGAS was 22+47-17=52. Twelve out of 52 genes have been
associated with intelligence previously (Supplementary Table 9). Tissue expression analyses
(Online Methods) of the 52 genes using the GTEX data resource showed that 14 out of 44
genes for which GTEXx data was available were more strongly expressed in the brain than in
other tissues (Fig. 3b). Epigenetic states were calculated for 51 out of 52 implicated genes
(Online Methods) and showed that 57% of genes were at least weakly transcribed in at least
50% of tissues (Fig. 3c; Supplementary Fig. 6). Pathway analysis for 6,166 gene ontology
(GO8) and 674 Reactomel® gene-sets (obtained from MSigDB20) resulted in one associated
gene-set (GO: regulation of cell development, which is defined as any process that
modulates the rate, frequency or extent of the progression of the cell over time, from its
formation to the mature structure.) (MAGMA competitive P=3.5x1076; corrected £=0.03,
Supplementary Tables 10, 11). This gene-set contains four genes that were genome-wide
significant: BMPRZ2, SHANK3, DCC and ZFHX3, and many other genes that showed
weaker association (Supplementary Table 12). Three of the genome-wide significant genes
are involved in neuronal function: SHANKS3 s involved in synapse formation, DCC encodes
a netrin receptor involved in axon guidance and is associated with putamen volume, and
ZFHX3is known to regulate myogenic and neuronal differentiation. The fourth gene,
BMPRZ, plays a role in embryogenesis and endochondral bone formation and has been
linked to pulmonary arterial hypertension. The four GO pathways with the subsequent
smallest P-values are not independent from the top associated gene-set and provide insight
in more specific functions of the genes driving the observed gene-set association. These four
gene-sets are: regulation of nervous system development (P=3.0x107°; 87% of genes
overlapping with the regulation of cell development pathway, including the four genome-
wide significant genes), negative regulation of dendrite development (P=7.9x1075; 100%
overlapping, thus a complete subset), myelin sheath (P=8.5x107°; 14% overlapping) and
neuron spine (P=1.5x10"%; 34% overlapping).

Intelligence has been associated with many socio-economic and health-related outcomes.
We used whole-genome LD Score Regressionl? to calculate the genetic correlation with 32
traits from these domains for which GWAS summary statistics were available for download.
Significant genetic correlations were observed with 14 traits. The strongest, positive genetic
correlation was with Educational attainment (rg=0.70, SE=0.02, ~=2.5x107287). Moderate,
positive genetic correlations were observed with smoking cessation, intracranial volume,
head circumference in infancy, Autism spectrum disorder and height. Moderate negative
genetic correlations were observed with Alzheimer’s disease, depressive symptoms, having
ever smoked, schizophrenia, neuroticism, waist-to-hip ratio, body mass index, and waist
circumference (Fig. 3d; Supplementary Table 13).

To examine the robustness of the 336 SNPs and 47 genes that reached genome-wide
significance in the primary analyses, we sought replication. Since there are no reasonably
large GWAS for intelligence available and given the high genetic correlation with
educational attainment, which has been used previously as a proxy for intelligence’, we used
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the summary statistics from the latest GWAS for educational attainment (EA21) for proxy-
replication (Online Methods). We first deleted overlapping samples, resulting in a sample of
196,931 individuals for EA. Out of the 336 top SNPs for intelligence, 306 were available for
look-up in EA, and 16 out of 18 independent lead SNPs. We found that the effects of 305 out
of 306 available SNPs in EA were sign concordant between EA and intelligence, and the
effects of all 16 independent lead SNPs (exact binomial A<10716; Supplementary Table 14).
This approach resulted in nine proxy-replicated loci (P<0.05/16): seven for which the lead
SNP was significant (16p11.2, 1p34.2, 2q11.2, 2022.3, 3p24.3, 6016.1 and 7g33) and two
for which another correlated top SNP in the same locus was significant (3p24.2 and 7p14.3).
Of the 47 genes that were significantly associated with intelligence in the GWGAS, 15 were
also significantly associated with EA (P<0.05/47, Supplementary Table 15). Given the high
(0.70) but not perfect genetic correlation between EA and intelligence, these results strongly
support the involvement of the proxy-replicated SNPs and genes in intelligence.

The strongest emerging association with intelligence is with 152490272 (6921) in an intronic
region of FOXO3and neighboring SNPs in the promotor of the same gene. This gene is part
of the insulin/insulin-like growth factor 1 signaling pathway and is believed to trigger
apoptosis, including neuronal cell death as a result of oxidative stress?2. Moreover, it has
been shown to be associated with longevity2324. The gene with the strongest association in
the GWGAS is CSE1L, which also plays a role in apoptosis and cell proliferation?®. Of all
52 genes that were implicated, 35 were reported in the GWAS catalog for a previous
association with at least one of 67 distinct traits. Nine genes (ATPZA1, NEGR1, SKAPI,
FOXO3, COL16A1, YIPF7, DCC, SHZB1and TUFM) were previously implicated with
body mass index?6-29, seven (CYP2D6, NAGA, NDUFA6, TCF20and SEPT3, FAM109B
and MEF2C) with schizophrenia3® and four (VEGR1, SH2B1, DCC and WNT4) with
obesity31-33, £XOC4and MEF2C have been associated previously with Alzheimer’s disease
(Supplementary Tables 16, 17). Many of the implicated genes are involved in neuronal
function: DCC, APBA1, PRR7, ZFHX3, HCRTR1, NEGRI1, MEF2C, SHANK3and
ATXNZAL (see Supplementary Note for the GeneCards summaries).

In conclusion, we conducted a meta-analysis GWAS and GWGAS for intelligence, including
13 cohorts and 78,308 individuals. We confirmed three loci and 12 genes, and identified 15
novel genomic loci and 40 novel genes for intelligence. Pathway analysis demonstrated the
involvement of genes regulating cell development. We showed genetic overlap with several
neuropsychiatric and metabolic disorders. These findings provide starting points for
understanding the molecular neurobiological mechanisms underlying intelligence, one of the
most investigated traits in humans.

Online Methods

Discovery sample

The current study was based on 78,308 individuals. The origin of the samples is as follows:

1. UK Biobank web-based measure (UKB-wb; N=17,862), GWAS results have not
yet been published previously, raw genotypic data is available for the present
study.
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2. UK Biobank touchscreen measure (UKB-ts; N=36,257, non-overlapping with
UKB-wb) has been published before8, raw genotypic data is available for the
present study.

3. CHIC consortium® (N=12,441) has been published before, meta-analysis
summary statistics are available for the present study.

4. Five additional cohorts (N=11,748), of which 69 SNP associations with 1Q have
previously been published as part of a lookup effort’, but full GWAS results have
not been published previously. Per cohort full GWAS summary statistics are
available for the present study.

We describe these datasets in more detail below.

UK Biobank samples (UKB-wb, UKB-ts)

We used the data provided by the UK Biobank Study3° resource (see URLS), which is a
major national health resource including >500,000 participants. All participants provided
written informed consent; the UK Biobank received ethical approval from the National
Research Ethics Service Committee North West—Haydock (reference 11/NW/0382), and all
study procedures were performed in accordance with the World Medical Association
Declaration of Helsinki ethical principles for medical research. The current study was
conducted under the UK Biobank application number 16406.

The study design of the UK Biobank has been described in detail elsewhere35:38, Briefly,
invitation letters were sent out in 2006—-2010 to ~9.2 million individuals including all people
aged 40-69 years who were registered with the National Health Service and living up to ~25
miles from one of the 22 study assessment centers. A total of 503,325 participants were
subsequently recruited into the study3°. Apart from registry based phenotypic information,
extensive self-reported baseline data have been collected by questionnaire, in addition to
anthropometric assessments and DNA collection. For the present study we used imputed
data obtained from UK Biobank (May 2015 release) including ~73 million genetic variants
in 152,249 individuals. Details on the data are provided elsewhere (see URLS). In summary,
the first ~50,000 samples were genotyped on the UK BiLEVE Axiom array, and the
remaining ~100,000 samples were genotyped on the UK Biobank Axiom array. After
standard quality control of the SNPs and samples, which was centrally performed by UK
Biobank, the dataset comprised 641,018 autosomal SNPs in 152,256 samples for phasing
and imputation. Imputation was performed with a reference panel that included the UK10K
haplotype panel and the 1000 Genomes Project Phase 3 reference panel.

We used two fluid intelligence phenotypes from the Biobank data set. These are based on
questionnaires that were taken either in the assessment center at the initial intake
(‘touchscreen’, field 20016) or at a later moment at home (‘web-based’, field 20191). The
measures indicate the number of correct answers out of 13 fluid intelligence questions. The
data distribution roughly approximates a normal distribution.

For the analyses in our study, we only included individuals of Caucasian descent. After
removal of related individuals, discordant sex, withdrawn consent, and missing phenotype
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data, 36,257 individuals remained for analysis for the fluid intelligence touchscreen measure
and 28,846 for the web-based version. As 10,984 individuals had taken both the touchscreen
and the web-based test, we only included the data from the touchscreen test for these
individuals. This resulted in 54,119 individuals with a score on either the fluid intelligence
web-based (UKB-wb) or touchscreen (UKB-ts) version (Supplementary Table 1). At the
time of taking the test, participants’ ages ranged between 40 and 78. Half of the participants
were between 40 and 60 years old, 44% between 60 and 70 and 6% were older than 70. The
mean age was 58.98 with a standard deviation of 8.19.

Summary statistics from CHIC consortium

We downloaded the publicly available combined GWAS results from the meta-analyses as
reported by CHICS (see URLS). Details on the included cohorts and performed analyses are
reported in the original publication®. Briefly, CHIC includes 6 cohorts totaling 12,441
individuals: the Avon Longitudinal Study of Parents and Children (ALSPAC, N =5,517), the
Lothian Birth Cohorts of 1921 and 1936 (LBC1921, N = 464; LBC1936, N = 947), the
Brisbane Adolescent Twin Study subsample of Queensland Institute of Medical Research
(QIMR, N =1,752), the Western Australian Pregnancy Cohort Study (Raine, N = 936), and
the Twins Early Development Study (TEDS, N = 2,825). All individuals are children aged
between 6-18 years. Within each cohort the cognitive performance measure was adjusted for
sex and age and principal components were included to adjust for population stratification.
See also Supplementary Table 1.

Full GWAS data from additional cohorts

We used the same additional (non-CHIC) cohorts as described in detail in ref.”, which
included 11,748 individuals from 5 cohorts. In ref.’, results were only reported for 69 SNPs,
as these served as a secondary analysis for a look-up effort. In the current study we use the
full genome-wide results from these cohorts. GWAS were conducted in 2013 and summary
statistics were obtained from the Pls of the 5 cohorts. The quality control protocol entailed
excluding SNPs with MAF < 0.01, imputation quality score < 0.4, Hardy-Weinberg P-value
< 1078 and call rate < 0.957. The five cohorts included the Erasmus Rucphen Family Study
(ERF, N = 1,076), the Generation R Study (GenR, N = 3,701), the Harvard/Union Study
(HU, N = 389), the Minnesota Center for Twin and Family Research Study (MCTFR, N =
3,367) and the Swedish Twin Registry Study (STR, N = 3,215). Detailed descriptions of
these cohorts are provided in ref.”, and summarized in Supplementary Table 1. Within each
cohort the cognitive performance measure was adjusted for sex and age and principal
components were included to adjust for population stratification.

SNP analysis in UK Biobank sample

Association tests were performed in SNPTEST37 (see URLS), using linear regression. Both
phenotypes were corrected for a number of covariates, including age, sex and a minimum of
five genetically determined principal components, depending on how many were associated
with the phenotype (i.e. 5 for the web-based test and 15 for the touchscreen version, tested
by linear regression). Additionally we included the Townsend deprivation index as a
covariate, which is based on postal code and measures material deprivation. The touchscreen
version of the phenotype was also corrected for assessment center and genotyping array.
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SNPs with imputation quality < 0.8 and MAF < 0.001 (based on all Caucasians present in
the total sample) were excluded after the association analysis, resulting in 12,573,858 and
12,595,966 SNPs for the touchscreen and web-based test respectively.

Gene analysis

The SNP based A-values from the meta-analysis were used as input for the gene-based
analysis. We used all 19,427 protein-coding genes from the NCBI 37.3 gene definitions as
basis for a genome-wide gene association analysis (GWGAS) in MAGMA (see URLS).
After SNP annotation there were 18,338 genes that were covered by at least one SNP. Gene-
association tests were performed taking LD between SNPs into account. We applied a
stringent Bonferroni correction to account for multiple testing, setting the genome-wide
threshold for significance at 2.73x107,

Pathway analysis

We used MAGMA to test for association of predefined gene-sets with intelligence. A total of
6166 Gene Ontology and 674 Reactome gene-sets were obtained (see URLS). We computed
competitive A-values, which are less likely to be below the threshold of significance
compared to self-contained A-values. Competitive P-values are the outcomes of the test that
the combined effect of genes in a gene-set is significantly larger than the combined effect of
all other genes, whereas self-contained P-values are informative when testing against the

null hypothesis of no association. Self-contained P-values are not interpreted and not
reported by us. Competitive P-values were corrected for multiple testing using MAGMA'’s
built in empirical multiple testing correction with 10,000 permutations.

Meta-analysis

Meta-analysis of the results of the 13 cohorts was performed in METAL! (see URLS). We
did not include SNPs that were not present in the UK Biobank sample. The analysis was
based on P-values, taking sample size and direction of effect into account using the
samplesize scheme.

Genetic correlations

Genetic correlations (rg) were calculated between intelligence and 32 other traits for which
summary statistics from GWAS were publicly available, using LD Score regression (see
URLSs). This method corrects for sample overlap, by estimating the intercept of the bivariate
regression. A conservative Bonferroni-corrected threshold of 1.56x1073 was used to
determine significant correlations.

Functional annotation

We identified all SNPs that had an r2 of 0.1 or higher with the 18 independent lead SNPs and
were included in the METAL output. We used the 1000G phase 3 reference panel to
calculate r2. We further filtered on SNPs with a A-value < 0.05. In addition, we only
annotated SNPs with MAF > 0.01.

Positional annotations for all lead SNPs and SNPs in LD with the lead SNPs were obtained
by performing ANNOVAR gene-based annotation using refSeq genes. In addition, CADD

Nat Genet. Author manuscript; available in PMC 2017 November 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Sniekers et al.

Page 9

scores38, and RegulomeDB1® scores were annotated to SNPs by matching chromosome,
position, reference and alternative alleles. For each SNP eQTLs were extracted from GTExX
(44 tissue types)39, Blood eQTL browser?0 and BIOS gene-level eQTLs*L. The eQTLs
obtained from GTEXx were filtered on gene P-value < 0.05 and eQTLs obtained from the
other two databases were filtered on FDR < 0.05. The FDR values were provided by GTEX,
BIOS and Blood eQTL browser. For GTEx eQTLs, there is one FDR value available per
gene-tissue pair. As such, the FDR is identical for all eQTLs belonging to the same gene-
tissue pair. For BIOS and Blood eQTL browser, an FDR value was computed per SNP.

To test whether the SNPs were functionally active by means of histone modifications, we
obtained epigenetic data from the NIH Roadmap Epigenomics Mapping Consortium?2 and
ENCODE?3. For every 200bp of the genome a 15-core chromatin state was predicted by a
Hidden Markov Model based on 5 histone marks (i.e. H3K4me3, H3K4mel, H3K27me3,
H3K9me3, and H3K36me3) for 127 tissue/cell types*. We annotated chromatin states (15
states in total) to SNPs by matching chromosome and position for every tissue/cell type. We
computed the minimum state (1: the most active state) and the consensus state (majority of
states) across 127 tissue/cell types for each SNP.

Chromatin states were also determined for the 52 genes (47 from the gene-based test + 5
additional genes implicated by single SNP GWAS). For each gene and tissue, the chromatin
state was obtained per 200 bp interval in the gene. We then annotated the genes by means of
a consensus decision when multiple states were present for a single gene; i.e. the state of the
gene was defined as the modus of all states present in the gene.

Tissue expression of genes

RNA sequencing data of 1,641 tissue samples with 45 unique tissue labels was derived from
the GTEx consortium3°. This set includes 313 brain samples over 13 unique brain regions
(see Supplementary Table 18 for sample size per tissue). Of the 52 genes implicated by
either the GWAS or the GWGWAS, 44 were included in the GTEXx data. Normalization of
the data was performed as described previously#®. Briefly, genes with RPKM (Reads Per
Kilobase Million) value smaller than 0.1 in at least 80% of the samples were removed. The
remaining genes were log, transformed (after using a pseudocount of 1), and finally a zero-
mean normalization was applied.

Proxy-replication in educational attainment

For the replication analysis we used a subset of the data from ref. 21. In particular, we
excluded the Erasmus Rucphen Family, the Minnesota Center for Twin and Family Research
Study, the Swedish Twin Registry Study, the 23andMe data and all individuals from UK
Biobank, to make sure there was no sample overlap with our 1Q dataset. Genetic correlation
between intelligence and EA in this non-overlapping subsample was ry=0.73, SE=0.03,
P=1.4x107163_ The replication analysis was based on the phenotype Eal Years, which
measures the number of years of schooling completed. A total of 306 out of our 336 top
SNPs (and 16 out of 18 independent lead SNPs) was available in the educational attainment
sample. We performed a sign concordance analysis for the 16 independent lead SNPs, using
the exact binomial test. For each independent signal we determined whether either the lead
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SNP had a P-value smaller than 0.05/16 in the educational attainment analysis, or another
(correlated) top SNP in the same locus if this was not the case. All 47 genes implicated in
the GWGAS for intelligence were available for look-up in the EA sample. For each gene we
determined whether it had a P-value smaller than 0.05/47 in the EA analysis.

Polygenic Risk Score analysis

We used LDpred?® to calculate the variance explained in intelligence in independent samples
by a polygenic risk score based on our discovery analysis, as well as based on two previous
GWAS studies for intelligence®8. LDpred adjusts GWAS summary statistics for the effects
of linkage disequilibrium (LD) by using an approximate Gibbs sampler that calculates
posterior means of effects, conditional on LD information, when calculating polygenic risk
scores. We used varying priors for the fraction of SNPs with non-zero effects (prior: 0.01,
0.05, 0.1, 0.5, 1, and an infinitesimal prior). Independent datasets available for PRS analyses
are described in the Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Regional association and linkage disequilibrium plots for 18 genome-wide significant loci
The y-axis represents the negative logarithm (base 10) of the SNP P-value and the x-axis the

position on the chromosome, with the name and location of genes in the UCSC Genome
Browser in the bottom panel. The SNP with the lowest ~P-value in the region is marked by a
purple diamond. The colors of the other SNPs indicate the r2 of these SNPs with the lead
SNP. Plots are generated with LocusZoom34,
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Fig. 2. Results of SNP-based meta-analysis for intelligence based on 78,308 individuals
Association results from the GWAS meta-analysis pertaining to individuals of European

descent. (a) Negative logyg-transformed P-values for each SNP (y~axis) are plotted by
chromosomal position (x-axis). The red and blue lines represent the thresholds for genome-
wide statistical significant associations (P=5x1078) and suggestive associations (P=1x107°)
respectively. Green dots represent the independent hits. (b) Functional categories for 336
genome-wide significant SNPs. (c) The minimum (most active) chromatine state across 127
tissues for 336 genome-wide significant SNPs. (d) The Regulome database score for 336
genome-wide significant SNPs. The lower the score the more likely it is that a SNP has a
regulatory function. For b—d the numbers in brackets in the legends refer to the number of
lead SNPs for that category.
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Fig. 3. Gene-based genome wide analysis for intelligence and genetic overlap with other traits
(a). Negative logqg-transformed P-values for each gene are plotted. Green dots represent

significantly associated genes from GWGAS. The threshold for gene-wide statistical
significant associations was set at the Bonferroni threshold of P=2.73x1078, the suggestive
threshold was set at P=2.73x107°. (b) Heatmap of gene-expression levels of genes for
intelligence in 45 tissue types (see Supplementary Table 18 for N per tissue). A value above
zero (red) depicts a relatively high expression level with respect to the mean expression level
of the gene over all tissues, whereas a value below zero (blue) depicts a relatively low
expression level. (c) Epigenetic states of genes. The bars denote the proportions of
epigenetic states across 127 tissue types. (d) Genetic correlations between intelligence and
32 health-related outcomes. Error bars show 95% confidence intervals for estimates of rg.
Red bars represent the traits that showed a significant genetic correlation after correction for
multiple testing (P<1.56x1073), pink bars the traits that showed a nominal significant
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correlation (A<0.05), and blue bars the traits that did not show a genetic correlation
significantly different from zero. Note: as Alzheimer’s disease is an age-related disorder we
calculated the rg with this phenotype across three age groups and found no difference in ry’s
(Supplementary Note).
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