

1 **Genomic Surveillance of SARS-CoV-2 Using Long-Range PCR Primers**

2 Sangam Kandel¹, Susanna L. Hartzell², Ashton K. Ingold², Grace A. Turner², Joshua L.

3 Kennedy^{2, 3, 4}, David W. Ussery^{1, #}

4

5 ¹ Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301

6 West Markham Street (slot 782), Little Rock, AR 72205, USA

7 ² Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA.

8 ³ Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR,

9 72202, USA

10 ⁴ Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock,

11 AR 72205, USA

12

13 # Corresponding author: David W. Ussery

14 University of Arkansas for Medical Science

15 Department of Biomedical Informatics

16 4301 West Markham, Room 361-2, BioMed 2

17 Little Rock, AR 72205

18 865-266-3451 (mobile)

19 DWUssery@uams.edu

20

21 **Funding:** This work was supported by the Center for Translational Pediatric Research

22 (NIH/NIGMS P20GM121293) at Arkansas Children's Hospital, the Translational Research

23 Institute (NIH/NCATS UL1TR003107) at the University of Arkansas for Medical Sciences, an

24 NSF award (no. OIA-1946391), and funding from the Arkansas Children's Research Institute and
25 the Arkansas Research Alliance.

26

27 **Competing Interest:** None of the authors have competing financial interests or other conflicts of
28 interest.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **Abstract**

48 Whole Genome Sequencing (WGS) of the SARS-CoV-2 virus is crucial in the surveillance
49 of the COVID-19 pandemic. Several primer schemes have been developed to sequence the
50 ~30,000 nucleotide SARS-CoV-2 genome that use a multiplex PCR approach to amplify cDNA
51 copies of the viral genomic RNA. Midnight primers and ARTIC V4.1 primers are the most popular
52 primer schemes that can amplify segments of SARS-CoV-2 (400 bp and 1200 bp, respectively)
53 tiled across the viral RNA genome. Mutations within primer binding sites and primer-primer
54 interactions can result in amplicon dropouts and coverage bias, yielding low-quality genomes with
55 'Ns' inserted in the missing amplicon regions, causing inaccurate lineage assignments, and making
56 it challenging to monitor lineage-specific mutations in Variants of Concern (VoCs). This study
57 uses seven long-range PCR primers with an amplicon size of ~4500 bp to tile across the complete
58 SARS-CoV-2 genome. One of these regions includes the full-length S-gene by using a set of
59 flanking primers. Using a small set of long-range primers to sequence SARS-CoV-2 genomes
60 reduces the possibility of amplicon dropout and coverage bias.

61

62 **Introduction**

63 Whole Genome Sequencing (WGS) is widely used for the surveillance of Severe Acute
64 Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic disease
65 COVID-19 (Wu *et al.* 2020, Zhou *et al.* 2020, Huang *et al.* 2020). At the time of writing (May 23,
66 2023), there are more than 15 million genomes available in the GISAID database
67 (<https://gisaid.org/>) and more than 7 million genomes in GenBank
68 (<https://www.ncbi.nlm.nih.gov/sars-cov-2/>). Sequencing SARS-CoV-2 genomes is crucial in
69 tracking viral mutations that can affect viral transmission (Carabelli *et al.* 2023, Escalera *et al.*
70 2020, Kupferschmidt and Wadman, 2021, Brito *et al.* 2022), disease pathogenesis (Bakhshandeh
71 *et al.* 2021), vaccine efficacy (Chatterjee *et al.* 2023, Madhi *et al.* 2021, Hoffmann *et al.* 2021),
72 and virulence (Carabelli *et al.* 2023, Issa *et al.* 2020). A variety of methods, including metagenomic
73 sequencing, hybridization capture, direct RNA sequencing, and target enrichment using multiplex
74 PCR have been used for sequencing SARS-CoV-2 (Gerber *et al.* 2022, Liu *et al.* 2021, Rehn *et al.*
75 2021, Butler *et al.* 2020, Carbo *et al.* 2020, Charre *et al.* 2020, Deng *et al.* 2020, Wu *et al.* 2020,
76 Xiao *et al.* 2020, Vacca *et al.* 2022). Most of the target enrichment methods require reverse
77 transcription to generate a double-stranded cDNA copy of the genomic RNA (gRNA) and then
78 utilize this cDNA as a template for DNA sequencing, using multiplex primers to cover the whole
79 genome of SARS-CoV-2 (Grubaugh *et al.* 2019).

80 Target enrichment using PCR amplicons and subsequent Oxford Nanopore Sequencing is
81 extremely popular and relatively inexpensive (~\$10 per sample), with a quick turnaround time
82 (~24 hours from sample to GenBank file). Target enrichment using publicly available ARTIC
83 Network PCR primers (Tyson *et al.* 2020), Entebbe primers (1.5kb-2Kb) (Cotten *et al.* 2021),
84 MRL primers (1.5kb-2.5kb) (Arana *et al.* 2022), and Midnight Primers (Freed *et al.* 2020) are used

85 to sequence SARS-CoV-2 with Oxford Nanopore flow cells. Among these primer schemes,
86 ARTIC primers and Midnight primers are the most commonly used to sequence clinical isolates
87 of SARS-CoV-2. ARTIC primers V4 includes 98 primer pairs, each amplifying ~400bp fragments
88 along the viral genome, which can be sequenced on either Illumina or Oxford Nanopore platforms.
89 The 'Midnight primers' have 30 primer pairs that generate amplicons with a targeted size of 1200
90 base pairs, taking advantage of the longer read lengths of third-generation sequencing, including
91 Oxford Nanopore flow cells. Generation of full-length high-quality consensus sequences depends
92 upon the quality and quantity of the viral load in clinical samples, as well as the mutations
93 occurring within the primer binding regions of the viral genome (Kuchinski *et al.* 2021, Liu *et al.*
94 2021, Davis *et al.* 2021). Amplicon dropouts and coverage bias at different amplicon regions have
95 been observed with the sequencing protocols based on ARTIC (Kuchinski *et al.* 2021, Itokawa *et*
96 *al.* 2020) as well as Midnight primers (Kuchinski *et al.* 2021, Bei *et al.* 2022). Mutations within
97 the primer binding site can prevent primer-annealing and result in 'dropout' or loss of that
98 amplicon, leading to incomplete genome sequences (Bei *et al.* 2022, Sanderson and Barret 2021).
99 Furthermore, primer-primer interactions could result in amplification bias of interacting amplicons
100 (Itokawa *et al.* 2020), resulting in coverage bias and affecting the identification of mutations in the
101 viral genome that are key in the nomenclature of emerging variants.

102 The variants of SARS-CoV-2 are determined by a combination of several mutations that
103 occur mainly within the Spike gene. For example, in the Alpha variant (B.1.1.7), there are 14
104 critical lineage-defining mutations within the S gene (Galloway *et al.* 2021). Similarly, Omicron
105 subvariant B.1.1.529 has 60 mutations within the viral genome, including 15 key mutations within
106 the receptor binding domain (He *et al.* 2021). The characteristic mutation within the S gene for the
107 Alpha variant B.1.1.7 (Clark *et al.* 2021, Meng *et al.* 2021) and the Omicron variants B.1.1.529,

108 BA.1, BA.1.1 (Clark *et al.* 2021) is the deletion of two amino acids at positions 69 and 70 (del
109 H69/V70) (<https://covariants.org>). This deletion inhibits the PCR amplification of the S-gene (S-
110 Gene Target Failure, or SGTF) in diagnostic PCR assays such as the ThermoFisher TaqPath™
111 COVID-19 Combo Kit RT-PCR (Clark *et al.* 2021, Davies *et al.* 2021) that targets the N, ORF1ab,
112 and S gene regions. This deletion (del H69/V70) results in a false-negative result for the S-gene
113 targeted diagnostic test. SGTF became a proxy for early detection of Alpha and Omicron B.1.1.529
114 variants (Galloway *et al.* 2021). In addition, a mutation at position 27,807 (Cytosine substituted to
115 Thymine) within amplicon 28, also a primer annealing site (Primer 28_LEFT, pool B of Midnight
116 primer) (Supplementary figure 1, IGV plot), caused a common dropout in the Delta variant genome
117 when using Midnight Primers (Kuchinski *et al.* 2021). Spiking Primer pool B with a custom primer
118 designed by substituting Cytosine with Thymine base not only corrected the dropout but also
119 increased the coverage at this region (Constantinides *et al.* 2022). Furthermore, the genome
120 sequences of two BA.2 Omicron variants from Arkansas (GenBank Accession: OM863926,
121 ON831693) sequenced using Midnight Primers in Oxford Nanopore GridION have a complete
122 dropout at amplicon region 21 (20,677-21,562). The Omicron and the Alpha variant waves taught
123 us that tests and primers designed towards regions within the S gene could result in false-negative
124 tests because this gene encodes a surface protein, subjecting it to varying selectional pressures
125 (Julenius and Pedersen 2006). Variations can lead to problems that are troublesome in deciding
126 the public health interventions needed to control the transmission and spread of COVID-19
127 disease.

128 Multiplex primers used to sequence SARS-CoV-2 viral isolates must be targeted to bind
129 regions that are conserved with little variance to avoid dropout failures secondary to the primers
130 not binding. Long-range PCR primers targeting the amplification of 4500bp can prevent the 'S-

131 gene dropouts', as the primer binding sites flanking the S-gene region are located within highly
132 conserved regions on either side of the S gene. The S gene is approximately 3,822 base pairs long
133 and stretches between the nucleotide position 21,563 to 25,384 along the viral genome. Therefore,
134 these long-range PCR primers can generate amplicons around 4500bp that will cover the entire S
135 gene, making the chances of amplicon dropout within the S-gene minimal. We have previously
136 demonstrated whole-genome cDNA sequences from Mumps genomes using long-range PCR
137 yielding fragments of ~ 5000 bp in length from buccal samples (Alkam *et al.* 2019). Through our
138 work in SARS-CoV-2, we have identified conserved regions that flank the S gene (Wassenaar *et*
139 *al.* 2022). In this study, we designed long-range PCR primers to target these conserved S gene
140 areas and sequence SARS-CoV-2 isolates. Our objective was to improve the quality of the
141 sequences generated and minimize the amplicon dropouts, as the designed primers are outside the
142 highly variable regions.

143

144 **Results**

145 Long-range primers were used to sequence four samples identified as: V05476 _11.6,
146 V05450 _15.1, V06110 _14.3, V06106 _18.3 with cycle threshold (CT) values of 11.6, 15.1, 14.3,
147 and 18 .3 respectively on an Oxford Nanopore GridION machine. A total of 4.8 million reads were
148 generated from 4 samples with N50 of 2,640 bases after 28 hours of sequencing. The mean read
149 coverage was approximately the same (7529, 7646, 7673, and 7725, respectively) for the four
150 samples (Table 2). All the samples had high genome coverage (>98%; see Figure 2), and each was
151 assigned the BA.5 variant of Omicron. The number of reads mapped to each amplicon position is
152 summarized in Figure 3 and Table 3. Out of seven amplicons, amplicon 4 had the highest number
153 of reads mapped to the reference.

154 A 96-well plate containing samples with different CT values spanning from 11 to 16
155 (n=19), 17 to 20 (n=14), 21 to 25 (n=15), 26 to 30 (n=15), 31 to 35 (n=15), and 36 to 42 (n=16)
156 were sequenced using long-range and Midnight primers for comparison. With long-range primers,
157 100% of the samples with CT values 11 to 16 passed quality, whereas 95 % of samples within the
158 range of this CT value passed quality when sequenced with midnight primers. Long-range primers
159 were as good as midnight primers for sequencing samples with CT values between 17-20 (Long-
160 range: 73% and Midnight: 88% passing quality). For samples with CT values of 21-25, 47% passed
161 quality with Midnight primers, whereas 33% passed quality with long-range primers. With
162 midnight primers, only two samples passed quality with CT values greater than 26. The long-range
163 and the midnight primers generated no quality sequences in those samples with CT values greater
164 than 26 (Figures 4,5, 6, and Table 4).

165 Although the samples from a 96-plex sequencing run that passed quality were accurately
166 assigned to a lineage, we have found, in some cases, there was low coverage of some regions. For
167 this reason, we developed alternative primers to address the low coverage of these amplicons
168 (Supplementary Figure 3) and to target the recent Omicron variant XBB. With optimized PCR
169 conditions, this alternative primer generated high-quality genomes with a lineage assigned to the
170 consensus sequence of the genome (Supplementary Table 1, Supplementary Figure 4). As the virus
171 continues to mutate, it will likely be necessary to adjust the primers to maintain optimal coverage
172 for all regions.

173
174

175 **Discussion**

176 We have developed and evaluated novel long-range primers to sequence SARS-CoV-2
177 clinical isolates using Oxford Nanopore sequencing. These novel primers can amplify regions of

178 ~4,500 base pairs. Using our primer set, the entire S-gene was sequenced using a single primer set.
179 We compared the performance of long-range primers with midnight primers and found that long-
180 range primers work as good as the midnight primers regarding the quality of genome sequences
181 and coverage. This finding depends upon the amount of viral RNA in the sample.

182 We used 7,000 reference genomes from GISAID to generate a consensus sequence to
183 design these long-range primers. Genome coverage is improved when primer schemes are created
184 using multiple reference genome sequences compared to those designed using a single reference
185 genome (Bei *et al.* 2022). ARTIC v3 and Midnight-1200 primers were designed using just one
186 reference genome of SARS-CoV-2. In contrast, other primer schemes, such as the updated ARTIC
187 (ARTIC v4.1), VarSkip Short v2, and VarSkip Long primers, were designed using multiple
188 reference genomes. Long-range PCR primers can minimize the amplicon dropout due to mutations
189 within the primer binding site (Bei *et al.* 2022).

190 After the ARTIC protocol was made public on January 22, 2020, these primers were
191 adopted globally to sequence millions of SARS-CoV-2 genomes. After the introduction, there have
192 been several improvements and updates to these primers to resolve dropouts and improve
193 sequencing coverage (Grubaugh *et al.* 2019, Tyson *et al.* 2020, Davis *et al.* 2020). In addition to
194 ARTIC primers, midnight primers that are extremely popular for sequencing SARS-CoV-2 clinical
195 isolates using Nanopore sequencing were also updated to resolve amplicon dropouts and coverage
196 bias along different regions of the viral genome (Constantinides *et al.* 2021). Several studies have
197 been conducted to compare different sequencing protocols, using multiplex PCR primers to
198 increase the genome coverage, improve the sequencing reading quality, eliminate amplicon
199 dropouts, and improve coverage bias at different amplicon regions (Lambisia *et al.* 2022,
200 Constantinides *et al.* 2022, Bei *et al.* 2022). As the virus mutates and spreads throughout

201 communities, the primers and protocols need to be updated to avoid amplicon dropouts and avoid
202 coverage bias.

203 Long-range primers to sequence SARS-CoV-2 have not been developed apart from a few
204 primer schemes amplifying regions up to 2,500 base pairs (Arana *et al.* 2022). Because the S-gene
205 is approximately 3,821 base pairs, amplifying the entire S-gene requires more than one primer.
206 Therefore, mutations within S-gene could result in dropout within S-gene. As an alternative to this
207 problem, leveraging the long-read sequencing available with Oxford Nanopore flow cells, we have
208 developed long-range primers, which sequence the entire S-gene using just one primer pair,
209 thereby eliminating the possibility of amplicon dropout due to mutations within S-gene.

210 A limitation of this approach is that a mutation within the primer binding sites can result
211 in a drop out of that entire region, leading to a more significant gap in the consensus sequence that
212 significantly affects the quality of the genome sequence. However, since the primer sites were
213 designed using conserved regions, we anticipate that this will continue to work, although, as
214 necessary, it is easy to update the primers for novel strains. Another limitation is associated with
215 viral load in the sample. We have found that although these long-range primers can amplify larger
216 segments of the viral genome, these primers are not well suited to sequence samples with higher
217 CT values (greater than 25).

218 Although WHO lifted the global health emergency due to a significant reduction in positive
219 cases, we are entering into a new phase of COVID-19 as 1 out of 10 people have long-haul COVID
220 (Thaweethai *et al.* 2023). Looking back to historical epidemics due to coronavirus and the
221 evolutionary relatedness of the SARS-CoV-2 with previous outbreaks of SARS and MERS, future
222 pandemics are inevitable. COVID-19 is still circulating as local outbreaks continue. The long-
223 range PCR method outlined here can help with surveillance of community infections through

224 wastewater monitoring. With single reads over the entire S-gene region, it is possible to quantitate
225 variant diversity within a sample. This will allow monitoring of emerging variants as well as
226 keeping track of known variants of concern.

227

228 **Methods**

229 *Primer design*

230 A total of 7,046 Omicron sub-variants (BA.2, BA.3, BA.4, BF.5, BA.5.1, BA.5.2.1,
231 BA.5.2) genomes were downloaded from GISAID on August 12, 2022. Pangolin v4.0.6 (O'Toole
232 *et al.* 2021) was used to assign lineages to the genomes, and any 'unclassified' genomes were
233 removed. Genome sequences that were 100 % identical were then filtered out to avoid redundancy,
234 and genome sequences having gaps of 5Ns or more in their sequences were removed that resulted
235 in 1,205 high-quality genomes that were used for multiple sequence alignment using MAFT
236 (Katoh *et al.* 2019). MSA Viewer (<https://www.ncbi.nlm.nih.gov/projects/msaviewer/>) was used
237 to visualize the alignment, and consensus sequences were downloaded from MSA Viewer.
238 PrimalScheme (Quick *et al.* 2017) was used to generate primer schemes using the consensus
239 genome generated from the alignment of 1205 high-quality genomes, including different sub-
240 variants of Omicron. Primers were designed using the PrimalScheme tool using the command line:
241 `primalscheme multiplex <fasta-file> -a 4500 -o <path-to-output> -n <primers_name> -t 30 -p -g`
242 Primers were ordered from Integrated DNA Technology (IDT) (Coralville, IA) in lab-ready form.
243 Individual primers in each pool were mixed and resuspended to a final concentration of 100 μ M.
244 Each primer was normalized to 3 nmol during synthesis. Primers were diluted in Nuclease-free
245 water (Sigma) to use in a final concentration of 10 μ M.

246 High-quality genomes were downloaded from GenBank, and a consensus sequence was
247 generated using the most recent dominant variants of SARS-CoV-2 from GenBank collected
248 between December 2022 and March 2023. Quality filtering was done to include only those
249 genomes that did not contain any non-ATCGN bases and those that did not have any 'N's in the
250 genome sequence. The consensus sequence from this set of genomes was used to manually design
251 the alternative primers, including amplicons 2, 3, 5, 6, and 7.

252 *In-vitro validation of primers:*

253 MFEprimer tool was used to predict the various quality metrics of the primer scheme designed
254 using PrimalScheme. Primers 5_LEFT and 7_LEFT were predicted to form bases complementarity
255 at the 3' ends at five bases (Supplementary figure 2). Since these primers do not interact with each
256 other, this did not affect the coverage (Figure 2: IGV plot of 4 samples).

257

258 *Detection and quantification of SARS-CoV-2 viral mRNA:*

259

260 All the samples used in this study were collected at Arkansas Children's Hospital and the
261 University of Arkansas for Medical Sciences as routine surveillance between (November 2022 –
262 Jan 2023). Nasal swab samples were collected in a 3 mL M4RT transport media (Remel, San
263 Diego, CA). Samples were tested for the SARS-CoV-2 using the Aptima® SARS-CoV-2
264 (Panther® System, Hologic, San Diego, CA) nucleic acid amplification assay. Positive samples
265 were stored frozen at –80°C until they could be further processed.

266

267 *RNA extraction, Library Preparation, and Whole genome sequencing:*

268

269 Two hundred fifty microliters of viral transport media from clinical nasal swabs were used
270 for viral RNA extraction using the MagMax Viral/Pathogen Nucleic Isolation Kit (Applied
271 Biosystems) on the Kingfisher Flex automated instrument (Thermofisher). Viral RNA was reverse
272 transcribed using LunaScript RT SuperMix (NEB #E3010) to generate cDNA as described (Freed
273 *et al.* 2020). Each reverse transcription reaction contained 8 μ L template RNA and 2 μ L LunaScript
274 RT SuperMix (NEB #E3010). The reaction condition for reverse transcription was: 25 °C for 10
275 min, followed by 50 °C for 10 min and 85 °C for 5 min. Subsequent cDNA amplification and
276 sequencing were done using a modified Midnight protocol. In brief, viral cDNA was used in the
277 tiling PCR method to amplify the SARS-CoV-2 viral genome using long-range PCR primers in 2
278 reaction pools. These primers generate PCR amplicons of around 4,500 bp size. Pool A consisted
279 of the primers specific to amplicon regions 1, 3, 5, and 7, whereas Pool B consisted of the primers
280 specific to amplicon regions 2, 4, and 6. A 25 μ L PCR reaction mixture contained 2.5 μ L template
281 cDNA, 8.9 μ L RNase-free water, 1.1 μ L Primer pool A or Primer pool B (10 μ M), 12.5 μ l Q5 Hot
282 Start HF 2x Master Mix (NEB # M0494X). The PCR conditions used were: 98 °C for 30 seconds
283 (Initial denaturation), 40 cycles of: 98 °C for 10 seconds (Denaturation), 65 °C for 30 seconds
284 followed by 72 °C for 5 minutes (Annealing and extension), and a final extension of 72°C for 5
285 minutes. Pool 1 and Pool 2 amplicons were pooled together, and 7.5 μ L of each sample were
286 barcoded using 2.5 μ L of rapid barcodes available with the kit SQK-RBK004 (ONT). Barcoded
287 samples were pooled together and cleaned using 0.8 X AMPure beads (Beckman Coulter, USA)
288 to retain larger DNA fragments. The sequencing library was prepared using sequencing kit SQK-
289 RBK004 (ONT), loaded onto a MinION flow cell (ONT), and sequenced for 28 hours using a
290 Minion R9.4.1 flow cell on GridION with the MinKNOW application.

291

292 *Bioinformatics analysis:*

293 Basecalling and demultiplexing the sequencing reads in FAST5 format was done in real-
294 time using Guppy v5.0.7 (Wick *et al.* 2019) with a high-accuracy model. A minimum quality score
295 of 9 was used to remove low-quality bases. Demultiplexed FASTQ files were processed using the
296 ARTIC Network Bioinformatics pipeline ([https://artic.network/ncov-2019/ncov2019-
297 bioinformatics-sop.html](https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html)). Sequencing reads were quality filtered using artic gupplyplex method,
298 and reference-based genome assembly was done using medaka from the artic minion method of
299 the ARTIC bioinformatics pipeline. ONTdeCIPHER (Cherif *et al.* 2022) was used for generating
300 visualization plots for genome coverage at different amplicon regions. The consensus sequence
301 was generated by mapping to NC_045512.2 as a reference. Read depth was calculated using
302 samtools depth (Li *et al.* 2009). Pangolin v4.0.6 was used to assign lineages to the genomes
303 sequenced (O'Toole *et al.* 2021). Nextclade (Aksamentov *et al.* 2020) was used for assigning
304 lineage as well as visualization and comparison of mutations within the viral genome.

305

306 **Data availability**

307 The samples used in this study were sequenced for SARS-CoV-2 variant surveillance at Arkansas
308 Children's Hospital and Arkansas Children's Research Institute. They were sequenced on either
309 Nanopore GridION machine with the Midnight primers or on the Illumina NextSeq using ARTIC
310 v.4 primers. The samples and their GenBank accession numbers are summarized in Table 5.

311

312 **Author Contributions**

313 SK, DWU, and JLK designed the project. AKI, SLH, GAT, JLK processed the sample and did
314 RNA extraction. SK did the sequencing, analyzed data, and wrote the first draft of the manuscript.

315 DU and JLK supervised the project and participated in data analysis and manuscript preparation.

316 All authors approved the submitted version.

317 **References**

318 Aksamentov, Ivan, Cornelius Roemer, Emma B. Hodcroft, and Richard A. Neher. "Nextclade:
319 Clade Assignment, Mutation Calling and Quality Control for Viral Genomes." *Journal of*
320 *Open Source Software* 6, no. 67 (November 30, 2021): 3773.
321 <https://doi.org/10.21105/joss.03773>.

322

323 Alkam, Duah, Piroon Jenjaroenpun, Thidathip Wongsurawat, Zulema Udaondo, Preecha
324 Patumcharoenpol, Michael Robeson, Dirk Haselow, et al. "Genomic Characterization of
325 Mumps Viruses from a Large-Scale Mumps Outbreak in Arkansas, 2016." *Infection,*
326 *Genetics, and Evolution* 75 (November 1, 2019): 103965.
327 <https://doi.org/10.1016/j.meegid.2019.103965>.

328

329 Arana, Carlos, Chaoying Liang, Matthew Brock, Bo Zhang, Jinchun Zhou, Li Chen, Brandi
330 Cantarel, Jeffrey SoRelle, Lora V. Hooper, and Prithvi Raj. "A Short plus Long-Amplicon
331 Based Sequencing Approach Improves Genomic Coverage and Variant Detection in the
332 SARS-CoV-2 Genome." *PLOS ONE* 17, no. 1 (January 13, 2022): e0261014.
333 <https://doi.org/10.1371/journal.pone.0261014>.

334

335 Bakhshandeh, Behnaz, Zohreh Jahanfrooz, Ardeshir Abbasi, Matin Babaee Goli, Mahya
336 Sadeghi, Mohammad Sadeq Mottaqi, and Maryam Zamani. "Mutations in SARS-CoV-2;
337 Consequences in Structure, Function, and Pathogenicity of the Virus." *Microbial*
338 *Pathogenesis* 154 (May 1, 2021): 104831. <https://doi.org/10.1016/j.micpath.2021.104831>.

339

340 Bei, Yanxia, Kaylinnette Pinet, Kyle B. Vrtis, Janine G. Borgaro, Luo Sun, Matthew Campbell,
341 Lynne Apone, Bradley W. Langhorst, and Nicole M. Nichols. "Overcoming Variant
342 Mutation-Related Impacts on Viral Sequencing and Detection Methodologies." *Frontiers in*
343 *Medicine* 9 (2022). <https://www.frontiersin.org/articles/10.3389/fmed.2022.989913>.

344

345 Brito, Anderson F., Elizaveta Semenova, Gytis Dudas, Gabriel W. Hassler, Chaney C. Kalinich,
346 Moritz U. G. Kraemer, Joses Ho, et al. "Global Disparities in SARS-CoV-2 Genomic
347 Surveillance." *Nature Communications* 13, no. 1 (November 16, 2022): 7003.
348 <https://doi.org/10.1038/s41467-022-33713-y>.

349

350 Butler, Daniel, Christopher Mozsary, Cem Meydan, Jonathan Foox, Joel Rosiene, Alon Shaiber,
351 David Danko, et al. "Shotgun Transcriptome, Spatial Omics, and Isothermal Profiling of
352 SARS-CoV-2 Infection Reveals Unique Host Responses, Viral Diversification, and Drug
353 Interactions." *Nature Communications* 12, no. 1 (March 12, 2021): 1660.
354 <https://doi.org/10.1038/s41467-021-21361-7>.

355

356 Carabelli, Alessandro M., Thomas P. Peacock, Lucy G. Thorne, William T. Harvey, Joseph
357 Hughes, Thushan I. de Silva, Sharon J. Peacock, et al. "SARS-CoV-2 Variant Biology:
358 Immune Escape, Transmission and Fitness." *Nature Reviews Microbiology*, January 18,
359 2023, 1–16. <https://doi.org/10.1038/s41579-022-00841-7>.

360

361 Carbo, Ellen C., Igor A. Sidorov, Jessika C. Zevenhoven-Dobbe, Eric J. Snijder, Eric C. Claas,
362 Jeroen F. J. Laros, Aloys C. M. Kroes, and Jutte J. C. de Vries. "Coronavirus Discovery by
363 Metagenomic Sequencing: A Tool for Pandemic Preparedness." *Journal of Clinical
364 Virology* 131 (October 1, 2020): 104594. <https://doi.org/10.1016/j.jcv.2020.104594>.

365

366 Charre, Caroline, Christophe Ginevra, Marina Sabatier, Hadrien Regue, Grégory Destras,
367 Solenne Brun, Gwendolyne Burfin, et al. "Evaluation of NGS-Based Approaches for
368 SARS-CoV-2 Whole Genome Characterisation." *Virus Evolution* 6, no. 2 (July 1, 2020):
369 veaa075. <https://doi.org/10.1093/ve/veaa075>.

370

371 Chatterjee, Srijan, Manojit Bhattacharya, Sagnik Nag, Kuldeep Dhama, and Chiranjib
372 Chakraborty. "A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations
373 and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape,
374 and Therapies." *Viruses* 15, no. 1 (January 2023): 167. <https://doi.org/10.3390/v15010167>.

375

376 Cherif, Emira, Fatou Seck Thiam, Mohammad Salma, Georgina Rivera-Ingraham, Fabienne
377 Justy, Theo Deremarque, Damien Breugnot, Jean-Claude Doudou, Rodolphe Elie Gozlan,
378 and Marine Combe. "ONTdeCIPHER: An Amplicon-Based Nanopore Sequencing Pipeline
379 for Tracking Pathogen Variants." *Bioinformatics* 38, no. 7 (March 28, 2022): 2033–35.
380 <https://doi.org/10.1093/bioinformatics/btac043>.

381

382 Clark, Cyndi, Joshua Schrecker, Matthew Hardison, and Michael S. Taitel. "Validation of
383 Reduced S-Gene Target Performance and Failure for Rapid Surveillance of SARS-CoV-2
384 Variants." *PLOS ONE* 17, no. 10 (October 3, 2022): e0275150.
385 <https://doi.org/10.1371/journal.pone.0275150>.

386

387 Constantinides, Bede, Hermione Webster, Jessica Gentry, Jasmine Bastable, Laura Dunn, Sarah
388 Oakley, Jeremy Swann, et al. "Rapid Turnaround Multiplex Sequencing of SARS-CoV-2:
389 Comparing Tiling Amplicon Protocol Performance." *medRxiv*, January 1, 2022.
390 <https://doi.org/10.1101/2021.12.28.21268461>.

391

392 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. "The
393 Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCov
394 and Naming It SARS-CoV-2." *Nature Microbiology* 5, no. 4 (April 2020): 536–44.
395 <https://doi.org/10.1038/s41564-020-0695-z>.

396 Cotten, Matthew, Dan Lule Bugembe, Pontiano Kaleebu, and My V.T. Phan. "Alternate Primers
397 for Whole-Genome SARS-CoV-2 Sequencing." *Virus Evolution* 7, no. 1 (January 20,
398 2021): veab006. <https://doi.org/10.1093/ve/veab006>.

399

400 Davies, Nicholas G., Christopher I. Jarvis, W. John Edmunds, Nicholas P. Jewell, Karla Diaz-
401 Ordaz, and Ruth H. Keogh. "Increased Mortality in Community-Tested Cases of SARS-
402 CoV-2 Lineage B.1.1.7." *Nature* 593, no. 7858 (May 2021): 270–74.
403 <https://doi.org/10.1038/s41586-021-03426-1>.

404

405 Davis, James J., S. Wesley Long, Paul A. Christensen, Randall J. Olsen, Robert Olson, Maulik
406 Shukla, Sishir Subedi, Rick Stevens, and James M. Musser. "Analysis of the ARTIC
407 Version 3 and Version 4 SARS-CoV-2 Primers and Their Impact on the Detection of the
408 G142D Amino Acid Substitution in the Spike Protein." *Microbiology Spectrum* 9, no. 3
409 (December 8, 2021): e01803-21. <https://doi.org/10.1128/Spectrum.01803-21>.

410

411 Deng, Xianding, Asmeeta Achari, Scot Federman, Guixia Yu, Sneha Somasekar, Inês Bártoolo,
412 Shigeo Yagi, et al. "Metagenomic Sequencing with Spiked Primer Enrichment for Viral
413 Diagnostics and Genomic Surveillance." *Nature Microbiology* 5, no. 3 (2020): 443–54.
414 <https://doi.org/10.1038/s41564-019-0637-9>.

415

416 Escalera, Alba, Ana S. Gonzalez-Reiche, Sadaf Aslam, Ignacio Mena, Manon Laporte, Rebecca
417 L. Pearl, Andrea Fossati, et al. "Mutations in SARS-CoV-2 Variants of Concern Link to
418 Increased Spike Cleavage and Virus Transmission." *Cell Host & Microbe* 30, no. 3 (March
419 9, 2022): 373-387.e7. <https://doi.org/10.1016/j.chom.2022.01.006>.

420

421 Freed, Nikki E, Markéta Vlková, Muhammad B Faisal, and Olin K Silander. "Rapid and
422 Inexpensive Whole-Genome Sequencing of SARS-CoV-2 Using 1200 Bp Tiled Amplicons
423 and Oxford Nanopore Rapid Barcoding." *Biology Methods and Protocols* 5, no. 1 (January
424 1, 2020): bpaa014. <https://doi.org/10.1093/biomet/bpaa014>.

425

426 Galloway, Summer E., Prabasaj Paul, Duncan R. MacCannell, Michael A. Johansson, John T.
427 Brooks, Adam MacNeil, Rachel B. Slayton, et al. "Emergence of SARS-CoV-2 B.1.1.7
428 Lineage — United States, December 29, 2020–January 12, 2021." *Morbidity and Mortality
429 Weekly Report* 70, no. 3 (January 22, 2021): 95–99.
430 <https://doi.org/10.15585/mmwr.mm7003e2>.

431

432 Gerber, Zuzana, Christian Daviaud, Damien Delafoy, Florian Sandron, Enagnon Kazali
433 Alidjinou, Jonathan Mercier, Sylvain Gerber, et al. "A Comparison of High-Throughput
434 SARS-CoV-2 Sequencing Methods from Nasopharyngeal Samples." *Scientific Reports* 12,
435 no. 1 (July 22, 2022): 12561. <https://doi.org/10.1038/s41598-022-16549-w>.

436

437 Grubaugh, Nathan D., Karthik Gangavarapu, Joshua Quick, Nathaniel L. Matteson, Jacqueline
438 Goes De Jesus, Bradley J. Main, Amanda L. Tan, et al. "An Amplicon-Based Sequencing
439 Framework for Accurately Measuring Intrahost Virus Diversity Using PrimalSeq and IVar."
440 *Genome Biology* 20, no. 1 (January 8, 2019): 8. <https://doi.org/10.1186/s13059-018-1618-7>

441

442 He, Xuemei, Weiqi Hong, Xiangyu Pan, Guangwen Lu, and Xiawei Wei. "SARS-CoV-2
443 Omicron Variant: Characteristics and Prevention." *MedComm* 2, no. 4 (2021): 838–45.
444 <https://doi.org/10.1002/mco.2110>.

445

446 Hoffmann, Markus, Prerna Arora, Rüdiger Groß, Alina Seidel, Bojan F. Hörnich, Alexander S.
447 Hahn, Nadine Krüger, et al. "SARS-CoV-2 Variants B.1.351 and P.1 Escape from
448 Neutralizing Antibodies." *Cell* 184, no. 9 (April 29, 2021): 2384-2393.e12.
449 <https://doi.org/10.1016/j.cell.2021.03.036>.

450

451 Huang, Chaolin, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, et al.
452 "Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China." *The*
453 *Lancet* 395, no. 10223 (February 15, 2020): 497–506. [https://doi.org/10.1016/S0140-6736\(20\)30183-5](https://doi.org/10.1016/S0140-6736(20)30183-5).

455

456 Issa, Elio, Georgi Merhi, Balig Panossian, Tamara Salloum, and Sima Tokajian. "SARS-CoV-2
457 and ORF3a: Nonsynonymous Mutations, Functional Domains, and Viral Pathogenesis."
458 *MSystems* 5, no. 3 (May 5, 2020): e00266-20. <https://doi.org/10.1128/mSystems.00266-20>.

459

460 Itokawa, Kentaro, Tsuyoshi Sekizuka, Masanori Hashino, Rina Tanaka, and Makoto Kuroda.
461 "Disentangling Primer Interactions Improves SARS-CoV-2 Genome Sequencing by
462 Multiplex Tiling PCR." Edited by Ruslan Kalendar. *PLOS ONE* 15, no. 9 (September 18,
463 2020): e0239403. <https://doi.org/10.1371/journal.pone.0239403>.

464

465 Katoh, Kazutaka, John Rozewicki, and Kazunori D Yamada. "MAFFT Online Service: Multiple
466 Sequence Alignment, Interactive Sequence Choice and Visualization." *Briefings in*
467 *Bioinformatics* 20, no. 4 (July 19, 2019): 1160–66. <https://doi.org/10.1093/bib/bbx108>.

468

469 Kuchinski, Kevin S., Jason Nguyen, Tracy D. Lee, Rebecca Hickman, Agatha N. Jassem, Linda
470 M. N. Hoang, Natalie A. Prystajecky, and John R. Tyson. "Mutations in Emerging Variant
471 of Concern Lineages Disrupt Genomic Sequencing of SARS-CoV-2 Clinical Specimens."
472 *International Journal of Infectious Diseases* 114 (January 1, 2022): 51–54.
473 <https://doi.org/10.1016/j.ijid.2021.10.050>.

474

475 Kupferschmidt, Kai, and Meredith Wadman. "Delta Variant Triggers New Phase in the
476 Pandemic." *Science* 372, no. 6549 (June 25, 2021): 1375–76.
477 <https://doi.org/10.1126/science.372.6549.1375>.

478

479 Julenius, Karin, and Anders Gorm Pedersen. "Protein Evolution Is Faster Outside the Cell."
480 Molecular Biology and Evolution 23, no. 11 (November 2006): 2039–48.
481 <https://doi.org/10.1093/molbev/msl081>.

482

483 Lambisia, Arnold W., Khadija S. Mohammed, Timothy O. Makori, Leonard Ndwiga, Maureen
484 W. Mburu, John M. Morobe, Edidah O. Mora, et al. "Optimization of the SARS-CoV-2
485 ARTIC Network V4 Primers and Whole Genome Sequencing Protocol." *Frontiers in
486 Medicine* 9 (February 17, 2022): 836728. <https://doi.org/10.3389/fmed.2022.836728>.

487

488 Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
489 Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup.
490 "The Sequence Alignment/Map Format and SAMtools." *Bioinformatics* 25, no. 16 (August
491 15, 2009): 2078–79. <https://doi.org/10.1093/bioinformatics/btp352>.

492

493 Liu, Tiantian, Zhong Chen, Wanqiu Chen, Xin Chen, Maryam Hosseini, Zhaowei Yang, Jing Li,
494 et al. "A Benchmarking Study of SARS-CoV-2 Whole-Genome Sequencing Protocols
495 Using COVID-19 Patient Samples." *IScience* 24, no. 8 (August 20, 2021): 102892.
496 <https://doi.org/10.1016/j.isci.2021.102892>.

497

498 Madhi, Shabir A., Vicky Baillie, Clare L. Cutland, Merryn Voysey, Anthonet L. Koen, Lee
499 Fairlie, Sherman D. Padayachee, et al. "Efficacy of the ChAdOx1 NCoV-19 Covid-19
500 Vaccine against the B.1.351 Variant." *The New England Journal of Medicine*, March 16,
501 2021, NEJMoa2102214. <https://doi.org/10.1056/NEJMoa2102214>.

502

503 Meng, Bo, Steven A. Kemp, Guido Papa, Rawlings Datir, Isabella A. T. M. Ferreira, Sara
504 Marelli, William T. Harvey, et al. "Recurrent Emergence of SARS-CoV-2 Spike Deletion
505 H69/V70 and Its Role in the Alpha Variant B.1.1.7." *Cell Reports* 35, no. 13 (June 29,
506 2021). <https://doi.org/10.1016/j.celrep.2021.109292>.

507

508 O'Toole, Áine, Emily Scher, Anthony Underwood, Ben Jackson, Verity Hill, John T McCrone,
509 Rachel Colquhoun, et al. "Assignment of Epidemiological Lineages in an Emerging
510 Pandemic Using the Pangolin Tool." *Virus Evolution* 7, no. 2 (December 1, 2021): veab064.
511 <https://doi.org/10.1093/ve/veab064>.

512

513 Quick, Josh. "NCoV-2019 Sequencing Protocol," January 22, 2020.
514 <https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w>.

515
516 Quick, Joshua, Nathan D. Grubaugh, Steven T. Pullan, Ingra M. Claro, Andrew D. Smith,
517 Karthik Gangavarapu, Glenn Oliveira, et al. "Multiplex PCR Method for MinION and
518 Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples."
519 *Nature Protocols* 12, no. 6 (June 2017): 1261–76. <https://doi.org/10.1038/nprot.2017.066>.
520
521 Rehn, Alexandra, Peter Braun, Mandy Knüpfer, Roman Wölfel, Markus H. Antwerpen, and
522 Mathias C. Walter. "Catching SARS-CoV-2 by Sequence Hybridization: A Comparative
523 Analysis." *MSystems* 6, no. 4 (August 3, 2021): e00392-21.
524 <https://doi.org/10.1128/mSystems.00392-21>.
525
526 Sanderson, Theo, and Jeffrey C. Barrett. "Variation at Spike Position 142 in SARS-CoV-2 Delta
527 Genomes Is a Technical Artifact Caused by Dropout of a Sequencing Amplicon." *Wellcome*
528 *Open Research* 6 (November 10, 2021): 305.
529 <https://doi.org/10.12688/wellcomeopenres.17295.1>.
530
531 Thaweethai, Tanayott, Sarah E. Jolley, Elizabeth W. Karlson, Emily B. Levitan, Bruce Levy,
532 Grace A. McComsey, Lisa McCorkell, et al. "Development of a Definition of Postacute
533 Sequelae of SARS-CoV-2 Infection." *JAMA*, May 25, 2023.
534 <https://doi.org/10.1001/jama.2023.8823>.
535
536 Tyson, John R, Phillip James, David Stoddart, Natalie Sparks, Arthur Wickenhagen, Grant Hall,
537 Ji Hyun Choi, et al. "Improvements to the ARTIC Multiplex PCR Method for SARS-CoV-2
538 Genome Sequencing Using Nanopore." *BioRxiv*, September 4, 2020. 2020.09.04.283077.
539 <https://doi.org/10.1101/2020.09.04.283077>.
540
541 Vacca, Davide, Antonino Fiannaca, Fabio Tramuto, Valeria Cancila, Laura La Paglia, Walter
542 Mazzucco, Alessandro Gulino, et al. "Direct RNA Nanopore Sequencing of SARS-CoV-2
543 Extracted from Critical Material from Swabs." *Life (Basel, Switzerland)* 12, no. 1 (January
544 4, 2022): 69. <https://doi.org/10.3390/life12010069>.
545
546 Wang, Kun, Haiwei Li, Yue Xu, Qianzhi Shao, Jianming Yi, Ruichao Wang, Wanshi Cai, et al.
547 "MFEprimer-3.0: Quality Control for PCR Primers." *Nucleic Acids Research* 47, no. W1
548 (July 2, 2019): W610–13. <https://doi.org/10.1093/nar/gkz351>.
549
550 Wassenaar, Trudy M, Visanu Wanchai, Gregory Buzard, and David W Ussery. "The First Three
551 Waves of the Covid-19 Pandemic Hint at a Limited Genetic Repertoire for SARS-CoV-2."
552 *FEMS Microbiology Reviews* 46, no. 3 (May 1, 2022): fuac003.
553 <https://doi.org/10.1093/femsre/fuac003>.
554

555 Wick, Ryan R., Louise M. Judd, and Kathryn E. Holt. "Performance of Neural Network
556 Basecalling Tools for Oxford Nanopore Sequencing." *Genome Biology* 20, no. 1 (June 24,
557 2019): 129. <https://doi.org/10.1186/s13059-019-1727-y>.

558

559 Wu, Fan, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, et al. "A New
560 Coronavirus Associated with Human Respiratory Disease in China." *Nature* 579, no. 7798
561 (March 2020): 265–69. <https://doi.org/10.1038/s41586-020-2008-3>.

562

563 Xiao, Minfeng, Xiaoqing Liu, Jingkai Ji, Min Li, Jiandong Li, Lin Yang, Wanying Sun, et al.
564 "Multiple Approaches for Massively Parallel Sequencing of SARS-CoV-2 Genomes
565 Directly from Clinical Samples." *Genome Medicine* 12, no. 1 (June 30, 2020): 57.
566 <https://doi.org/10.1186/s13073-020-00751-4>.

567

568 Zhou, Peng, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, et
569 al. "A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin."
570 *Nature* 579, no. 7798 (March 2020): 270–73. <https://doi.org/10.1038/s41586-020-2012-7>.

571

572

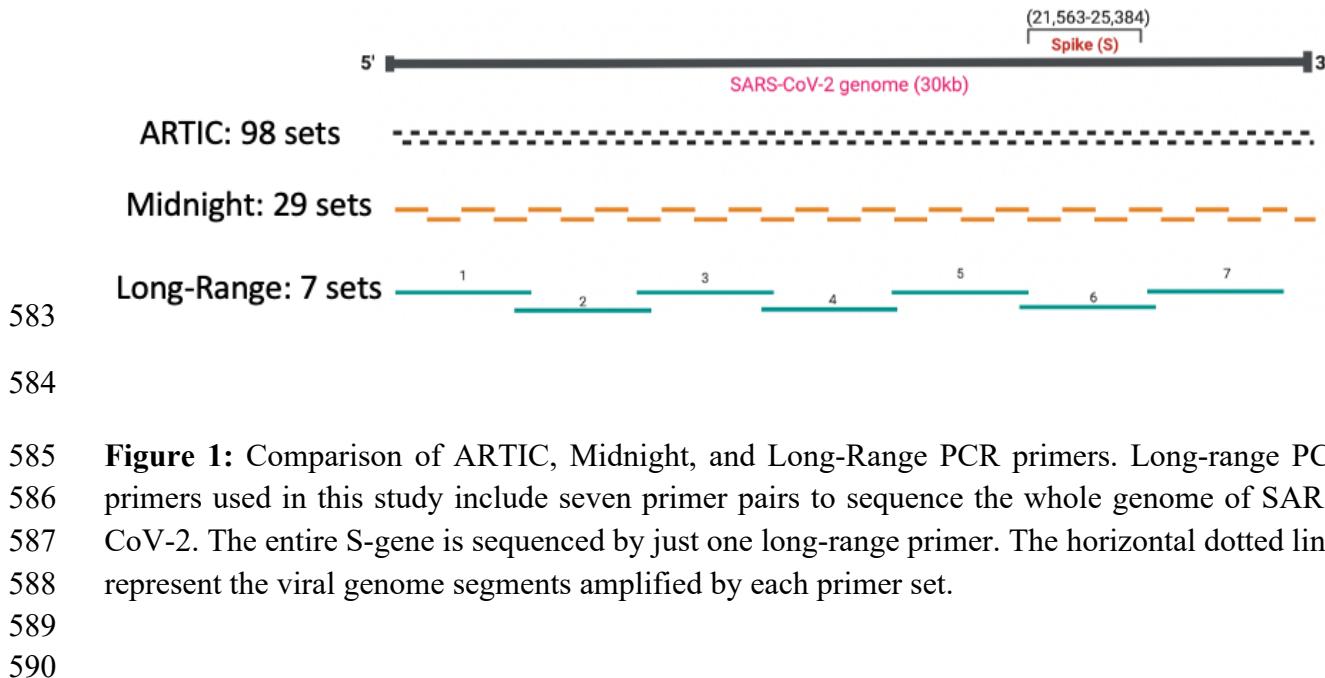
573

574

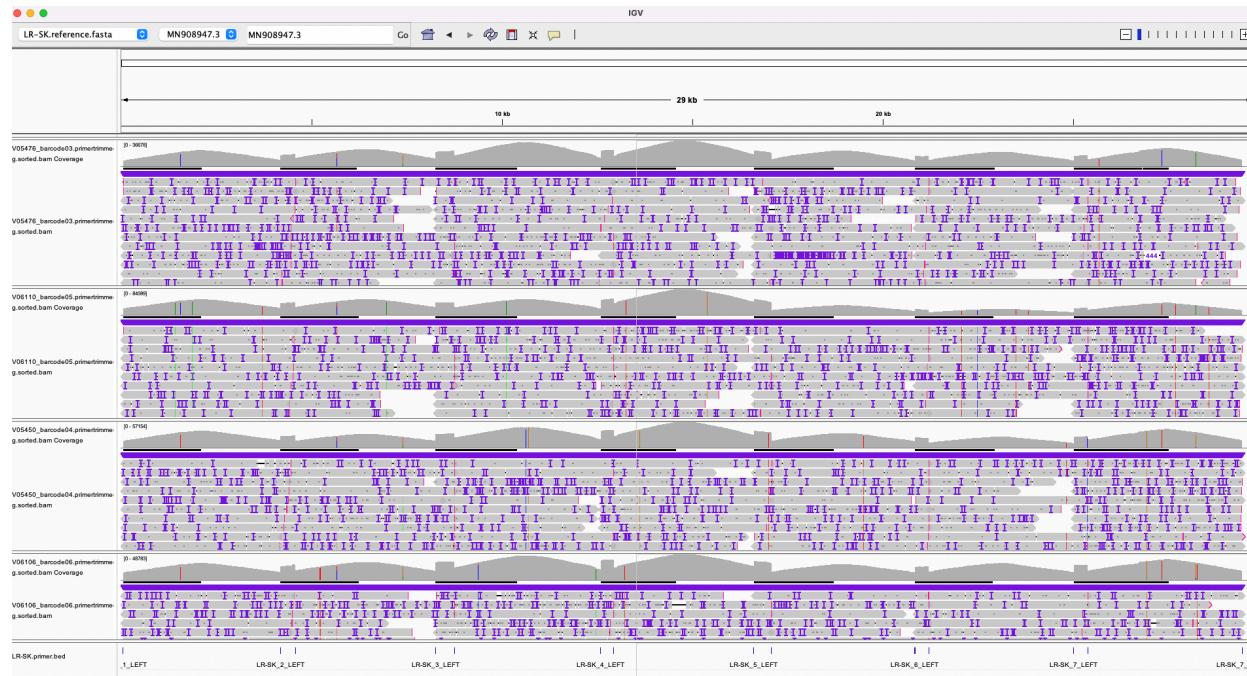
575

576

577

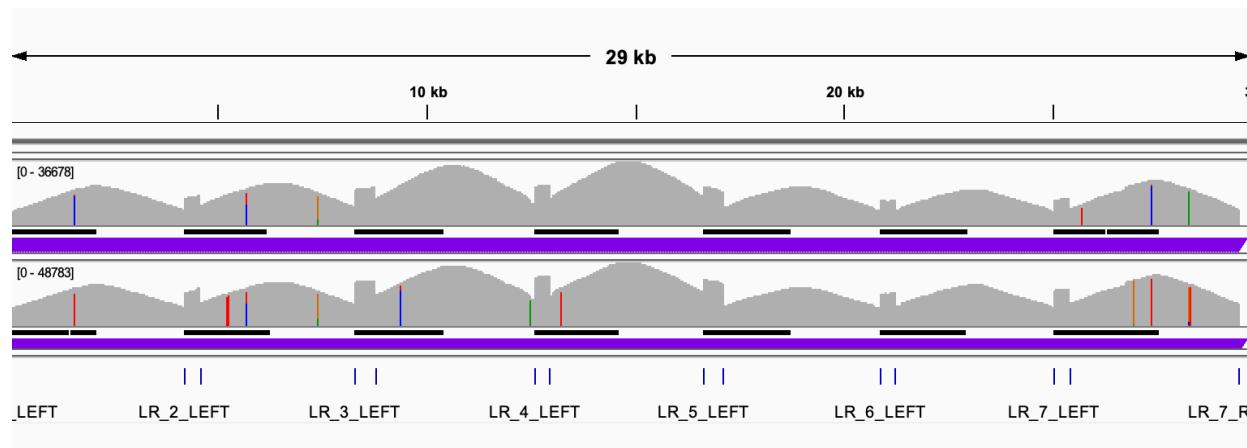

578

579


580

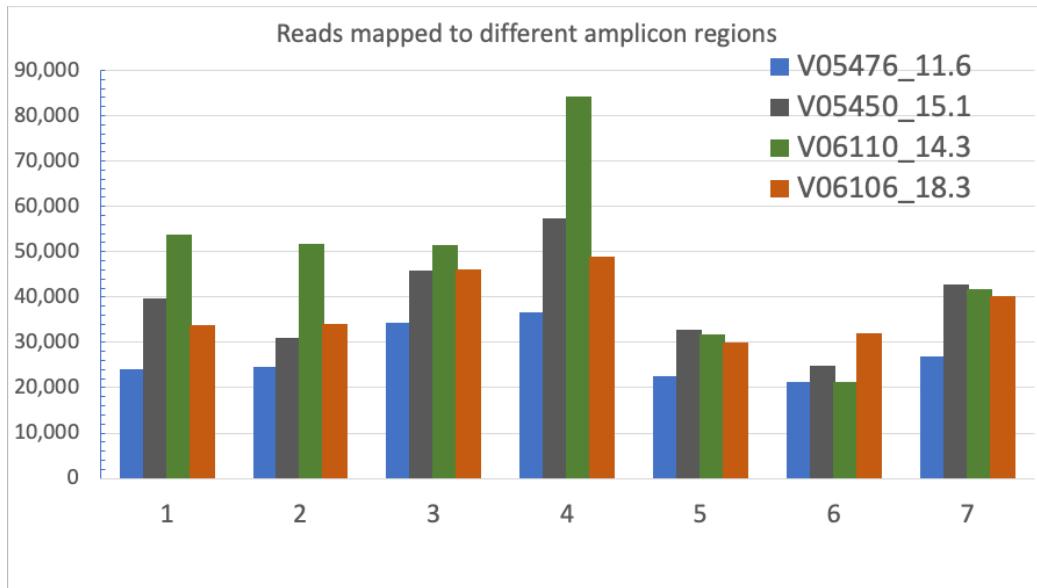
581

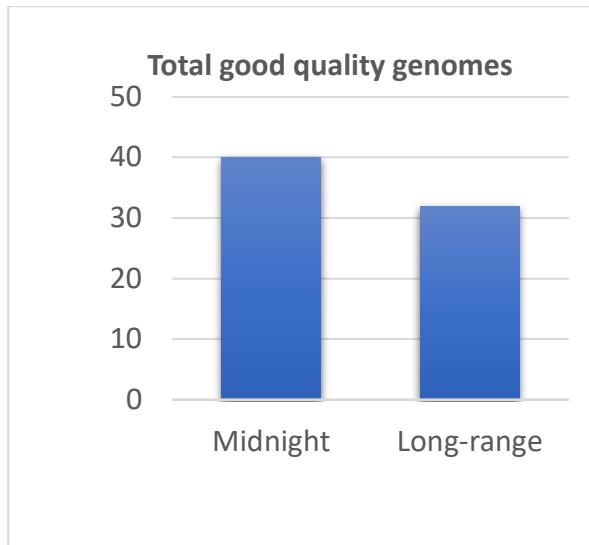
582



591 A)

592


593 B)


594

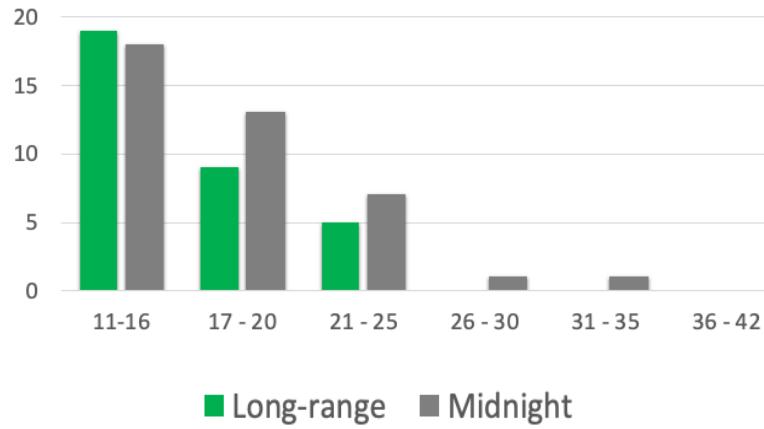
595 **Figure 2:** IGV plot showing seven different amplicons mapped to the SARS-CoV-2 reference
596 genome for four samples with low CT values. A) Samples with CT values 11.6, 15.1, 14.3, and
597 18.3 from top to bottom, respectively. B) IGV plot for two samples (zoomed for the sample with
598 CT values of 11.6 and 18.3 from top to bottom, respectively. The scale [0-36678] for the top and
599 [0-48783], respectively, represents the range of the total number of the quality filtered reads that
600 mapped to each amplicon region. The details of the reads mapped to different amplicon regions
601 for four samples sequenced are summarized in Table 3 and Figure 3.

602

613

614

615 **Figure 4:** Bar chart showing the total number of samples passing quality. A 96-well plate with
616 samples of different CT values was sequenced using Long-range and Midnight primers for
617 comparison. Long-range primers and midnight primers work to accurately assign lineages and
618 generate good-quality genomes for GenBank.


619

620

621

622
623

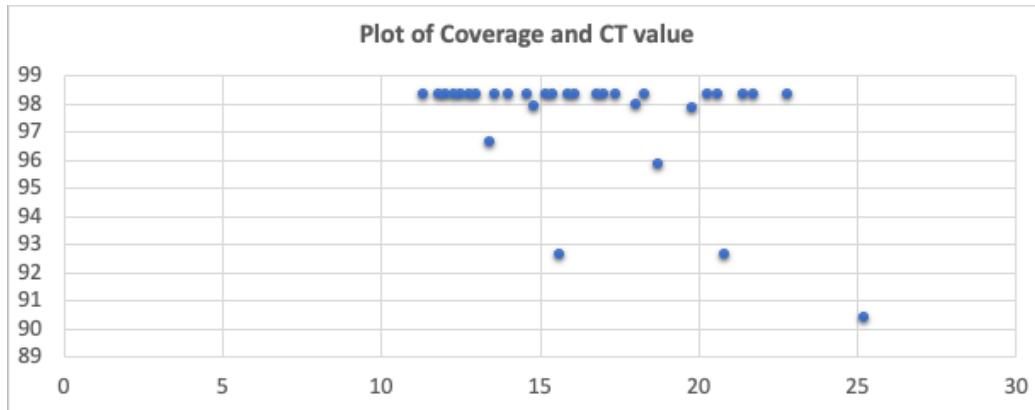
Total Genomes for GenBank

624

625

626

627 **Figure 5:** Bar chart showing samples sequenced with Midnight and Long-range primers with
628 different CT values that passed quality. X-axis: CT value range, Y-axis Number of genomes
629 passing quality.


630

631

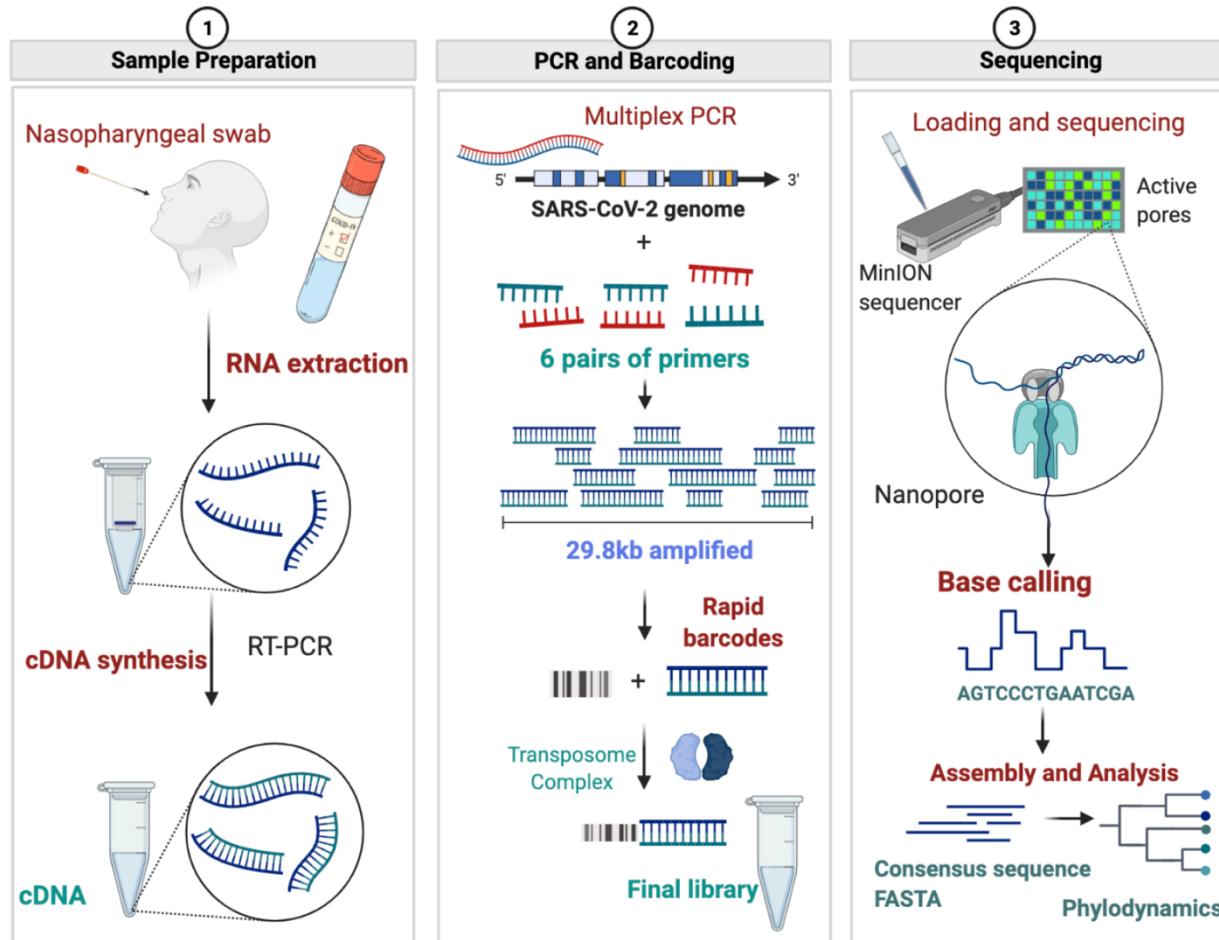
632

633

634

635

636

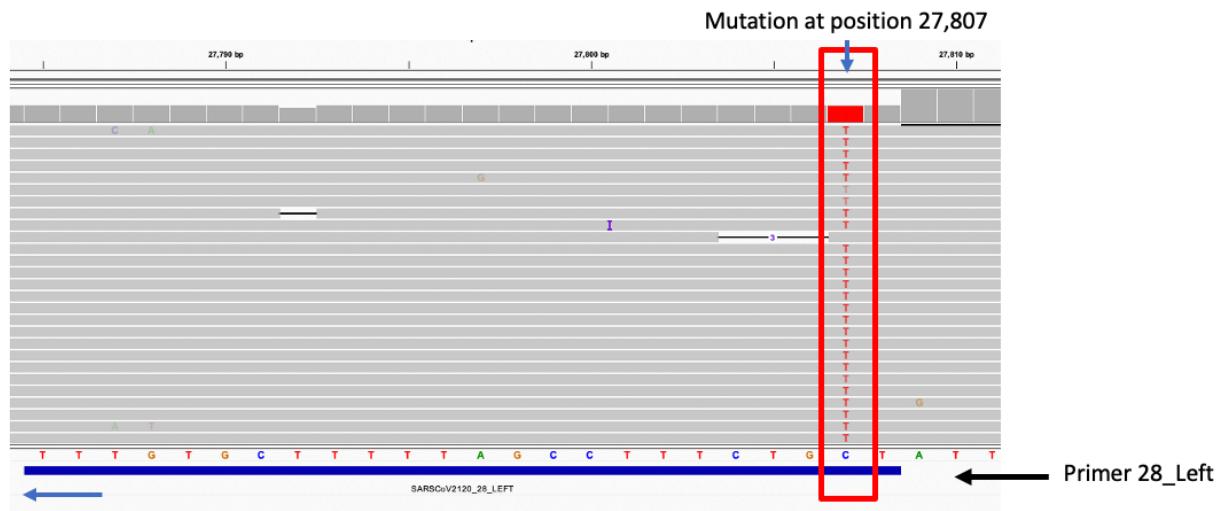

637 **Figure 6:** Plot of genome coverage and CT values for the genomes that passed quality when
 638 sequenced using long-range primers. Long-range primers are effective in sequencing samples
 639 with CT values less than 20 to get at least 99 % genome coverage.

640

641

642

643


644

645

646 **Figure 7:** Diagrammatic representation of Oxford Nanopore Sequencing of SARS-CoV-2 using
647 long-range PCR primers. (Figures made using BioRender.com)

648

649

650
651

652 **Supplementary Figure 1:** Screenshot of IGV plot showing mutations at position 27,897 of a
653 Delta variant sample sequenced in Nanopore using Midnight primers. This mutation is within the
654 primer binding region for the amplicon 28 (28_LEFT). This is one of the early dropouts observed
655 in most genome sequences generated using Midnight primers.

656
657
658
659
660
661
662
663
664
665
666
667

Dimer list (2)

Dimer 1: P5 x P5

Score: 9, $T_m = 27.41$ °C, $\Delta G = -8.51$ kcal/mol

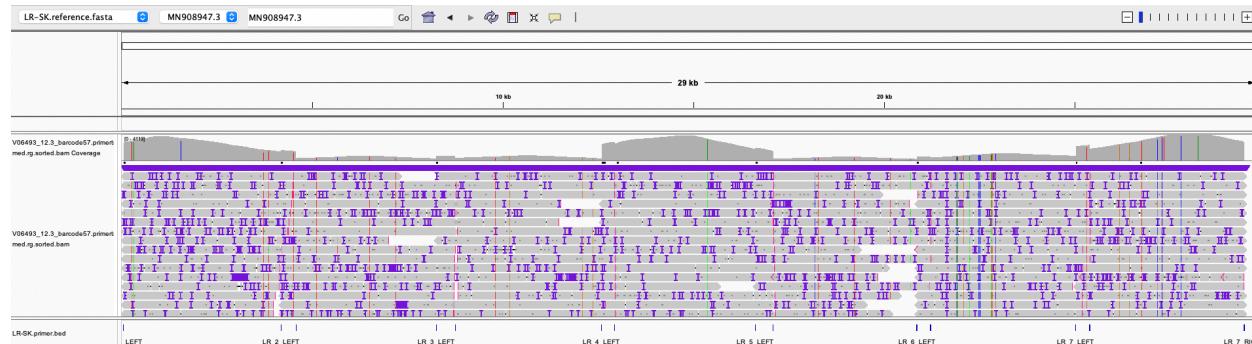
```
ACGTGAAGTGCTGTCTGACAG
:::.
GACAGTCTGTCGTGAAGTGCA
```

Dimer 2: P7 x P7

Score: 9, $T_m = 22.11$ °C, $\Delta G = -7.59$ kcal/mol

```
GAAATTGACCGCCTCAATGAGG
:::.
GGAGTAACTCCGCCAGTTAAAG
```

668


669 **Supplementary Figure 2:** Primer self-interaction for 5_LEFT and 7_LEFT as predicted by
670 MFEprimer.

671

672

673

674

675

676

677 **Supplementary Figure 3:** IGV plot showing coverage at different amplicon regions for the
678 sample sequenced using long-range primers. Primers for amplicon regions 2, 3, 5, and 6 were
679 redesigned to increase the coverage at these regions, using reference genomes from GenBank
680 that were collected from December 2022 to March 2023.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

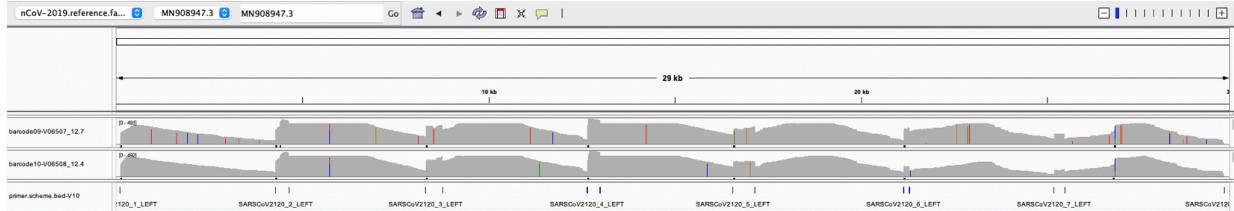
696

697

698

699

700


701

702

703

704

705
706
707

708
709
710 **Supplementary Figure 4:** IGV plot showing coverage for three samples with CT values
711 sequenced using updated primer schemes. The samples were accurately assigned a lineage and
712 passed quality.
713

714

715
716
717
718

Table 1: Comparison of ARTIC, Midnight, and Long-range primers used to sequence SARS-CoV-2 clinical isolates

	ARTIC	Midnight	Lon-range
Number of primers sets	98	30	7
Amplicon size (base pairs)	400	1,200	4,500

719
720
721

Table 2: Sequencing summary of four samples showing different quality metrics.

Sample	Raw reads	Filtered reads	Mapped to reference	Mean read coverage	Variant
V05476_11.6	646,100	263,335	98.4 %	7,529 X	BA.5.1
V05450_15.1	817,300	373,648	98.4 %	7,646 X	BA.5.2.1
V06110_14.3	974,000	452,910	98.4 %	7,672 X	BA.5.3.1
V06106_18.3	759,000	355,864	98.4 %	7,725 X	BA.5.2.1

722
723
724
725

Table 3: Total number of raw reads, filtered reads, and reads that mapped to the reference genome at seven amplicon regions.

Sample	V05476_11.6	V05450_15.1	V06110_14.3	V06106_18.3
Amplicon 1	24006	39741	53725	33702
Amplicon 2	24656	30882	51645	34150
Amplicon 3	34223	45931	51497	46092
Amplicon 4	36750	57256	84273	48869
Amplicon 5	22471	32822	31826	29876
Amplicon 6	21170	24926	21167	31987
Amplicon 7	26924	42728	41629	40237
Total mapped	190,200	274,286	335,762	264,913
Total raw reads	646.1 K	817.3 K	974 K	759.7 K
Filtered reads	263,335	373648	452910	355864

726
727

728

Table 4: Comparison of total samples passing quality standards by CT values.

729

CT values	Samples	GenBank (Long-range)	GenBank (Midnight)
11 - 16	19	19 (100%)	18 (95%)
17 - 20	14	9 (73%)	13 (88%)
21 - 25	15	5 (33%)	7 (47%)
26 - 30	15	0	1 (0.07 %)
31 - 35	15	0	1 (0.07%)
36 - 42	16	0	0
Total	94	32	40

730

731

732

Table 5: List of 7 primer pairs designed using PrimalScheme.

Name	Pool	Sequence (5'-3')	Size	GC%	Tm (use 65)
1 LEFT	1	GCTTAGTGCACTCACGCAGT	20	55	61
1 RIGHT	1	ACCGAGCAGCTTCTTCCAAA	20	50	60
2 LEFT	2	AACCACTTACCCGGGTCAAGG	20	60	62
2 RIGHT	2	ACTGCAGCAATCAATGGGCA	20	50	61
3 LEFT	1	CATGACACCCCGTGACCTTG	20	60	61
3 RIGHT	1	TGTAGACGTACTGTGGCAGC	20	55	60
4 LEFT	2	AGGGCCAATTCTGCTGTCAA	20	50	60
4 RIGHT	2	ATCAACAGCGGCATGAGAGC	20	55	61
5 LEFT	1	ACGTGAAGTGCTGTCTGACAG	21	52	61
5 RIGHT	1	TTCGGTGGTTGCCAAGAT	20	50	61
6 LEFT	2	CTACGGGTACGCTGCTTGT	20	60	61
6 RIGHT	2	GTATCGTTGCAGTAGCGCGA	20	55	61
7 LEFT	1	GAAATTGACCGCCTCAATGAGG	22	50	61
7 RIGHT	1	CCCATCTGCCTTGTGGTC	20	60	61

733

734

735

736

737

738

739
740
741

Table 6: Optimized PCR conditions for cDNA amplification to sequence SARS-CoV-2 clinical isolates.

Steps	Temperature	Time	Cycles
Initial denaturation	98°C	30 seconds	1
Denaturation	98°C	10 seconds	40
Annealing and extension	65°C	30 seconds	
	72 °C	5 minutes	
Final Extension	72°C	5 minutes	1
Hold	4°C	∞	

742

743

744

Table 7: GenBank accession number of the samples used to validate this study's long-range primers.

Sample ID	GenBank Accession
V05450_15.1	OP576060
V06110_14.3	OQ079743
V06106_18.3	OQ079740
V06501_12.1	OQ938311
V06507_12.7	OQ938315
V06508_12.4	OQ938316

747
748

749

750

751

752

753

754

755

756 **Supplementary Table 1:** Nextclade results for three samples sequencing using updated long-
757 range primers. The samples had a CT value of 12.
758

Sample	Clade	Pango lineage	Mutation s	Read coverage	Ns	Coverage	Gaps
V06501_12.1	22B	BW.1	76	1349.4	345	98.8%	36
V06507_12.7	22B	BA.5.2.1	81	2701.3	278	99.1%	33
V06508_12.4	22E	BQ.1.1	78	2338.7	251	99.2%	33

759

760