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Abstract

We introduce a novel methodology for differential abundance analysis in sparse high-throughput 

marker gene survey data. Our approach, implemented in the metagenomeSeq Bioconductor 

package, relies on a novel normalization technique and a statistical model that accounts for under-

sampling: a common feature of large-scale marker gene studies. We show, using simulated data 

and several published microbiota datasets, that metagenomeSeq outperforms the tools currently 

used in this field.

Marker gene surveys have recently been applied to clinical settings with the intent of 

understanding the structure and function of healthy microbial communities and the 

association of the microbiota with diseases such as: Crohn’s disease1, bacterial vaginosis2, 

diabetes3, 4, eczema5, obesity6 and periodontal disease.7 The identification of potentially 

pathogenic or probiotic bacteria, characterized by significant differences in their abundance 

within a disease population, is critical in this setting. While methods for whole-scale 

community comparisons are commonly used8, 9 there is a need for tools that discern taxon-

specific disease associations in marker gene surveys.

We focus here on the targeted sequencing of the 16S ribosomal RNA gene from selected 

samples. ‘Universal’ primers amplify specific hyper-variable regions within the 16S rRNA 
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gene, and the corresponding segments are sequenced. Sequence reads are first clustered into 

operational taxonomic units (OTUs)10 and representative sequences from each cluster are 

then annotated against a database of 16S rDNA reference sequences.11

While data preprocessing and differential abundance analysis have been extensively studied 

in high-throughput experiments measuring gene expression with microarray technology and 

sequencing-based assays (e.g., SAGE, RNAseq), marker gene data have specific 

characteristics that need to be considered, leading to the development of specialized 

analytical tools12–14. Principally, most taxonomic features in marker gene studies are rare 

(absent from a large number of samples) in contrast to RNAseq studies where a much more 

complete representation of features is encountered.

Here, we present two complementary methods for the analysis of large-scale marker gene 

microbial survey data implemented in the publicly available metagenomeSeq Bioconductor 

package (http://cbcb.umd.edu/software/metagenomeSeq). Our first contribution is a novel 

normalization technique, the cumulative sum scaling (CSS) normalization, which corrects 

the bias in the assessment of differential abundance introduced by total-sum normalization 

(TSS), the most commonly used approach. TSS normalizes count data by dividing feature 

read counts by the total number of reads in each sample, i.e., converts feature counts to 

appropriately scaled ratios. TSS has been shown to incorrectly bias differential abundance 

estimates in RNAseq data derived through high-throughput technologies15, 16 since a few 

measurements (e.g., taxa or genes) are sampled preferentially as sequencing yield increases, 

and have an undue influence on normalized counts. A recent proposal for normalization of 

RNAseq data is to scale counts by the 75th percentile of each sample’s non-zero count 

distribution15. The percentile cutoff that appropriately captures the segment of the count 

distribution that is relatively invariant across samples varies across 16S rDNA datasets 

(Supplementary Fig. 1). Our CSS method is an adaptive extension of the quantile 

normalization approach that is better suited for marker gene survey data whereby raw counts 

are divided by the cumulative sum of counts up to a percentile determined using a data-

driven approach.

We applied the CSS normalization procedure on data from a longitudinal study tracking the 

gut microbial community of twelve gnotobiotic mice.17 To assess the effect of normalization 

on distinguishing samples by phenotypic similarity we performed a multi-dimensional 

scaling analysis of data normalized using CSS, DESeq18 size factors, TMM19 and total-sum 

normalization (Fig. 1A–D). CSS normalization was able to best separate samples based on 

diet while controlling within-group variance. We quantified this observation using linear 

discriminant analysis (Online Methods) and observed that CSS normalization performed the 

best in distinguishing samples by phenotypic similarity (Fig. 1E). We observed similar 

results when comparing CSS normalization to other frequently used normalization methods 

(Supplementary Fig. 2).

Our second contribution is a zero-inflated Gaussian distribution mixture model that accounts 

for biases in differential abundance testing resulting from under-sampling of the microbial 

community. We found a strong correlation between the number of OTUs detected in a 

sample and the corresponding sequencing depth in high-throughput 16S rDNA studies 
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(R2=0.92–0.97, Supplementary Fig. 3) consistent with previous reports.20–22 This suggests 

that measurements of differential abundance suffer from biases resulting from the 

misinterpretation of zero counts in samples with low coverage as taxonomic features not 

present in the microbial community, as opposed to interpreting their absence as the result of 

under-sampling. The degree of sparsity observed in marker gene experiments (1–3%) is 

much higher than usually seen in other abundance assays such as transcriptome profiling 

from single genomes23 (15–85%, Supplementary Fig. 4).

To explicitly account for under-sampling, we include in our analysis a mixture model that 

implements a zero-inflated Gaussian (ZIG) distribution of mean group abundance for each 

taxonomic feature (Supplementary Fig. 5). The effect of this model is exemplified on one 

OTU from the Human Microbiome Project24 (Supplementary Fig. 6). Using posterior 

probability estimates that account for community under-sampling as weights to estimate 

count distribution parameters reduces the estimated fold-change between the two groups 

under study. Furthermore, counts after accounting for under-sampling are better fit by a log-

normal distribution (Shapiro-Wilks test P=0.78) than normalized counts (Shapiro-Wilks test 

P=0.08).

We evaluated metagenomeSeq using simulated data and compared it to existing tools for 

metagenomic analysis: Metastats13, Xipe12, and a Kruskal-Wallis test as used in Lefse.14 

We also compared to representative methods for RNAseq analysis. MetagenomeSeq and, to 

a lesser degree, the Kruskal-Wallis test consistently produced high area under the curve 

(AUC) scores across most simulation settings (Fig. 2). However, metagenomeSeq obtains 

the highest AUC compared to all other methods (includings Lefse’s Kruskal-Wallis test) in 

datasets with high sparsity similar to actual metagenomic datasets (greater than 85%, Fig. 

2A). Metastats, edgeR19 and DESeq18 have similar performance characteristics with smaller 

AUC scores. Xipe performed poorly across most simulation settings, as expected, since this 

method does not account for population variability.

Our ZIG model uses linear modeling following standard conventions in methods for testing 

differential abundance in gene expression25 that control for confounding factors. In contrast, 

Lefse uses an ad-hoc heuristic approach to account for subpopulations in large marker 

studies that is overly conservative and prone to low sensitivity. We observed by simulation 

(Supplementary Fig. 7, Supplementary Table 1) that metagenomeSeq was more sensitive 

than Lefse (0.95, 0.01 respectively) while retaining high specificity (0.96 vs. 1) in settings 

where groups tested include confounding subpopulations.

We also compared these methods using oral microbiota data from the Human Microbiome 

Project24 (Supplementary Fig. 8) to identify OTUs that are differentially abundant between 

tongue and subgingival plaque samples. Metastats and edgeR identified the largest number 

of OTUs to be significant (533 and 524, respectively), while metagenomeSeq (360) and, 

especially, DESeq (20) and Lefse (8) identified much fewer significant OTUs 

(Supplementary Table 2). Organisms found enriched in subgingival plaque by 

metagenomeSeq but missed by DESeq or Lefse are fairly abundant well-known members of 

the periodontal microbiome and include sulfate-reducing bacteria, which have been 

proposed as potential pathogenicity factors in periodontal disease.26 In general, the poor 
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performance of Metastats and Lefse was due to their lack of robust modeling of confounding 

factors, while for DESeq and edgeR the assumptions upon which these models are based are 

not met by these data. We provide a detailed comparison of these results in Supplementary 

Note and Supplementary Figs. 9–11.

We further compared our results at the species level with those obtained by Segata, et al.27 

who applied Lefse to the same oral dataset. While we confirmed all species detected as 

differentially abundant by Lefse, we also identified three additional differentially abundant 

species missed by their analysis. Specifically, we find Atopobium parvulum, Lautropia sp., 

and Desulfotomaculum sp. to be enriched in subgingival plaque (Supplementary Fig. 12). 

All of these were fairly abundant in the samples, representing at least 4% the population, and 

represent previously characterized members of the normal subgingival microbiota.26, 28, 29

In summary, our methods yield a more precise biological interpretation of the data – in 

mouse stool data the CSS normalization helps distinguish clinical phenotypes that are 

confounded by commonly used normalization methods, while in the oral microbiome, the 

combined differential abundance modeling approach identifies additional associations that 

were missed by commonly used tools. To accurately estimate differential abundance, we 

explicitly model the effect of under-sampling on the ability to detect a particular feature. 

Although under-sampling is ubiquitous in marker gene survey data, to our knowledge, the 

approach presented here is the first to correct for this phenomenon. While our focus is on 

data generated in microbial community surveys, sparsity may also be an issue in some 

RNAseq experiments, and thus our methods may have broader applicability (Fig. 2A). The 

evaluation of our methods in that context is, however, beyond the scope of this work and 

will be addressed in future studies.

This work directly addresses some of the main challenges to robust analysis of marker gene 

surveys in clinical and epidemiological settings: variable depth of coverage across samples 

and the resulting rarefaction effect; and confounding due to technical and population 

characteristics. We have demonstrated that our methods outperform approaches that are 

widely used in the field, and expect that the improved analysis approaches we propose will 

help practitioners achieve the full promise of marker gene surveys in clinical research.

Online Methods

Cumulative sum scaling normalization: Assume raw data is given as count matrix M(m, 

n) where m and n are the number of features and samples, respectively. The raw data in this 

matrix is represented by counts cij representing the number of times taxonomic feature i was 

observed in sample j. Denote the sum of counts for sample i as sj = Σi cij. The usual 

normalization procedure for marker gene survey data corresponds to producing normalized 

counts . We refer to this procedure as total-sum normalization.

We introduce a new normalization method, cumulative sum scaling normalization (CSS), to 

remove biases in the count data. The biases come from features that are preferentially 

amplified in a sample-specific manner. Denote the lth quantile of sample j as , that is, in 
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sample j there are l taxonomic features with counts smaller than . For l = ⌊.95 * m⌋, 

corresponds to the 95th percentile of the count distribution for sample j.

Also denote  as the sum of counts for sample j up to the lth quantile. Using 

this notation, the total sum . Our normalization chooses a value l̂ ≤ m to define a 

normalization scaling factor for each sample to produce normalized counts  where 

N is an appropriately chosen normalization constant. We scale all samples using the same 

constant N so normalized counts have interpretable units. We recommend using the median 

scaling factor  across samples. Counts for samples with scaling factor close to N can be 

interpreted as reference samples, and counts for other samples are interpreted relative to the 

reference. In our datasets the median  was close to 1,000 and thus used this value in our 

analysis. Note that ratios are also used in this procedure, assuming there is a finite capacity 

to the size of microbial communities. This is the same assumption that underlies total-sum 

normalization. However, our method seeks to avoid placing undue influence on features that 

are preferentially sampled. The relative proportion of the features is unaffected by the 

normalization as sj = Σi cij and , this implies .

The choice of the appropriate quantile given by l̂ above is critical for ensuring that the 

normalization approach does not introduce normalization-related artifacts in the data. At a 

high level, the count distribution of samples should all be roughly equivalent and 

independent of each other up to this quantile under the assumption that, at this range, counts 

are derived from a common distribution. The specific value for the chosen quantile is 

project-specific and likely depends on the complete experimental details (including all the 

sample preparation, sequencing, and subsequent bioinformatics analysis).

We use an adaptive, data-driven, method to determine l̂ based on the observation above. We 

find a value l̂ where sample-specific count distributions deviate from an appropriately 

defined reference distribution. Specifically, denote , the median lth quantile 

across samples, as the lth quantile of the reference distribution. Note that this is exactly the 

way a reference distribution is defined in the commonly used quantile normalization 

approach.15 Denote as . This is the median absolute deviation of sample-

specific quantiles around the reference. Under the methods assumptions, this quantity dl is 

stable for low quantiles and shows high instability in high quantiles. Our method defines l̂ as 

the smallest value where high instability is detected (Supplementary Figure 1). We measure 

instability in this case by using relative first differences. Specifically, we set l̂ to the smallest 

l that satisfies dl+1 − dl ≥ 0.1 dl. The value 0.1 is set arbitrarily and may be substituted by 

another value to determine high instability.

We found that CSS-normalized sample abundance measurements are well approximated by 

a log-normal distribution in studies with large number of samples (Supplementary Fig. 13A) 
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and therefore applied a logarithmic transform to the normalized count data. This 

transformation controls the variability of taxonomic feature measurements across samples 

(Supplementary Fig. 13B).

Assessment of normalization methods: To assess the effect of normalization on 

distinguishing samples by phenotype we performed a multi-dimensional scaling analysis of 

count data normalized by using CSS, total-sum scaling, logged total-sum scaling, geometric 

mean, trimmed mean by M values, quantile scaling, and quantile normalization.

We calculated the 1000 taxonomic features with largest variance after each normalization 

method and used those normalized feature counts in the MDS analysis. We also used linear 

discriminant analysis (LDA) to distinguish samples by diet. We calculated the log-ratio of 

class posterior probabilities for each sample x using leave-one-out cross-validation:

where πw is the proportion of samples on the “Western” diet, and fw and fl are normal 

densities for each of the diets, with a common variance. Parameters in each leave-one-out 

fold are estimated from the remaining samples. The class posterior probability should be 

large and positive for “Western” samples and small and negative for samples in the other 

group. We measure the performance of each normalization method by the difference in the 

distribution of the class posterior probabilities (Figure 1E and Supplementary Fig. 2E).

Zero-inflated Gaussian Model: Our zero-inflated Gaussian (ZIG) mixture model is 

motivated by the observed relationship between depth of coverage and the number of OTUs 

detected (Supplementary Fig. 3). The components of the mixture model correspond to 

normally distributed log-abundances in each group of interest, e.g., case or control 

(represented as the count distribution in Supplementary Fig. 5) and a spike-mass at zero 

indicating absence of the feature due to under-sampling (represented as the detection 

distribution in Supplementary Fig. 5). Our model seeks to directly estimate the probability 

that an observed zero is generated from the detection distribution due to under-sampling or 

from the count distribution (absence of the taxonomic feature in the microbial community). 

We estimate the expected value of latent component indicators based on sample sequencing 

depth of coverage using an expectation maximization algorithm (see Supplementary note). 

A detailed description of the model is available in the Supplementary note.

Simulation study: We simulated OTU level datasets with 1,000 features. A sample’s total 

count was sampled from a log-normal distribution with μ = 7.5 and a standard deviation of 

0.3. These values represent similar total counts to those observed in data. The first 50 

features were chosen to be “significant”. In one of the populations, for the first 25 significant 

features, we changed the proportion of the total counts for those features by adding 1×10−3 · 

δ percentage of the particular sample’s total counts. For the remaining 25 we subtracted 

1×10−3 · δ percentage of the sample’s total counts. We used a logistic regression model of 

the proportion of zeros as a function of depth of coverage in a standard marker gene survey 
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to build a plausible simulation model for sparsity. Given a sample’s depth of coverage sj an 

expected proportion of zero features πj is obtained from the logistic regression fit. For each 

feature we randomly drew from a Bernoulli trial with probability πj to spuriously set the 

feature to zero. Finally, we assigned randomly to 5% of the data an additional 1.3% (a value 

obtained from a standard marker gene survey) of the mean of the total counts to introduce 

extremely abundant features.

Subgroup Simulation: We simulated data from two populations where each population 

consisted of two subpopulations. This example represents a case-control study where cases 

and controls were collected from differing sites. We simulated OTU level datasets with 

1,000 features. A sample’s total count was sampled from a log-normal distribution with μ = 

7.5 and a standard deviation of 0.3. These values represent similar total counts to those 

observed in data. The first 50 features were chosen to be “significant”. In one of the 

populations, for the first 25 significant features, we changed the proportion of the total 

counts for those features by adding 1×10−3 · δ percentage of the particular sample’s total 

counts. For the remaining 25 we subtracted 1×10−3 · δ percentage of the sample’s total 

counts. The second subgroup had a relatively larger expression of the significant features. 

This represents potential greater feature enrichment in a site’s sub population. The trend 

though across populations in either subgroup is to either increase or decrease in cases or 

controls. Finally, 5% of the data is randomly given an additional 1.3% (a value obtained 

from a standard marker gene survey) of the mean of the total counts to introduce extremely 

abundant features.

Materials

Marker gene survey data

Humanized gnotobiotic mouse gut: Twelve germ-free adult male C57BL/6J mice were fed 

a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult human 

fecal material. Following the fecal transplant, mice remained on the low-fat, plant 

polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a 

high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through 

PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of 

experimental protocols and further details of the data can be found in Turnbaugh et al.17 

OTUs were classified by RDP11 and annotated (minimum confidence level of 0.8). 

Sequences can be found at: http://gordonlab.wustl.edu/TurnbaughSE_10_09/

STM_2009.html.

Subgingival plaque and tongue dorsum: Subgingival plaque and tongue dorsum samples 

were a part of the Human Microbiome Project24 dataset used in this analysis. The samples 

were part of a larger study aimed at cataloging the healthy human microbiome. Reads were 

deposited into the Data Analysis and Coordination Center (DACC) at http://

www.hmpdacc.org/. In particular, reads and metadata were downloaded from http://

www.hmpdacc.org/HMR16S/. Further information on data collection protocol and samples 

is available at http://www.hmpdacc.org/ and in HMP. Only patients from their earliest visit 

were considered as were only samples properly annotated. Following OTU propagation 

(described below), singletons (up to 5 positive samples) were trimmed. To consider solely 
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differential abundance estimates, we report on OTUs present in at least approximately 2% of 

the population. For each differential abundance method compared, differentially abundant 

OTUs were determined at FDR<0.05 where the OTU is at least twice as abundant in one 

group compared to the other (absolute estimated fold-change greater than 1). We used 

Lefse’s default detection method (as no fold-change estimate is provided).

Human Microbiome Project data: Data used in Supplementary Figure 3 was a part of the 

Human Microbiome Project24 dataset used in this analysis. The samples were a catalog of 

the healthy human microbiome. Reads were organized into OTUs by QIIME8 and deposited 

in the Data Analysis and Coordination Center (DACC) at http://www.hmpdacc.org/. In 

particular, OTUs and metadata was downloaded from http://www.hmpdacc.org/HMQCP/. 

Further information on data collection protocol and samples is available at http://

www.hmpdacc.org/ and in HMP.

Lung microbiome: The lung microbiome consisted of respiratory flora sampled from six 

healthy individuals. Three healthy nonsmokers and three healthy smokers. The upper lung 

tracts were sampled by oral wash and oro-nasopharyngeal swabs. Up to a patients’ glottis, 

samples were taken using two bronchoscopes a serial bronchoalveolar lavage and lower 

airway protected brushes. More detailed information about the lung Microbiome samples, 

collection and protocols is available in Charlson et al.31 Reads and barcodes were provided 

by Frederic Bushman. Following OTU propagation (described below), OTUs were trimmed 

if they were not present in approximately 8% of the population.

Analysis pipeline

OTU identification and annotation: 454 SFF files and barcode dictionaries were 

downloaded and run through the same pipeline. Conservative Operational Taxonomic Units 

(OTUs) were constructed by pooling together the sequences from all samples, then clustered 

using DNAclust10 with default parameters (99% identity clusters) to ensure that the 

definition of an OTU is consistent across all samples. To obtain taxonomic identification, a 

representative sequence from each OTU was aligned to Ribosomal Database 

(rdp.cme.msu.edu, release 10.4) using Blastn with long word length (-W 100) in order to 

only detect nearly-identical sequences. Sequences without a nearly-identical match to RDP 

were marked as having “no match” and assigned an OTU identifier. The resulting data was 

organized into a collection of tables at many different taxonomic levels containing each 

taxonomic group as a row and each sample as a column. These tables formed the substrate 

for the statistical analyses described. This process was performed for the human microbiome 

project and the human lung microbiome datasets. After removing OTUs present in less than 

5 samples, the HMP dataset consisted of 23,685 OTUs, whereas the human lung 

microbiome consisted of 2,365 OTUs. We explored the effect of ambiguosly assigned reads 

(sequences that have good matches to two or more OTUs) by running DNAclust in ‘non-

overlapping’ mode – a mode that ensures high separation between clusters and eliminates 

ambiguous reads. We also ran the HMP dataset using this option and confirmed all results 

shown in the paper (Supplementary Figs. 14A–B, 15A–B). We provide further discussion of 

the ambiguity of mapping reads to OTUs in the supplementary material.
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RNAseq data: RNA sequencing counts were downloaded from ReCount23, http://bowtie-

bio.sourceforge.net/recount/. Only datasets with at least 15 samples were considered.

Software: The following software versions were used for analysis on the following 

platform.

DESeq version 1.8.318 and edgeR version 2.6.1219 and limma version 3.12.325 were used in 

the comparisons. Personalized R scripts were written for the other methods and all analyses 

were performed on R version 2.15.1 on a Red Hat Enterprise Linux Server release 5.9 

(Tikanga) 64-bit platform.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clustering analysis is improved substantially by CSS normalization
We plot the first two principal coordinates in a multi-dimensional scaling analysis of mouse 

stool data normalized by (A) CSS, (B) DESeq size factors, (C) trimmed mean of M-values, 

and (D) total-sum. Colors indicate clinical phenotype (diet). CSS normalization data 

successfully separates samples by diet while controlling within-group variability. (E) Class 

posterior probability log-ratio for Western diet obtained from linear discriminant analysis 

(LDA). Each box corresponds to the distribution of leave-one-out posterior probability of 

assignment to the “Western” cluster across normalization methods (whiskers indicate 1.5 

times inter-quartile range). Samples were best distinguished by phenotypic similarity using 

CSS normalization.
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Figure 2. Simulation results indicate that metagenomeSeq has greater sensitivity and specificity 
in a variety of settings
We use area under the receiver operating characteristic curve (AUC) to compare 

Metastats13, Xipe12, Kruskal-Wallis test as used in Lefse14, a non-zero inflated log-normal 

model30, edgeR19 and DESeq18. (A) AUC as dataset sparsity decreases. MetagenomeSeq 

achieves larger AUC values than any other method in datasets with high sparsity (vertical 

dashed line represents the least sparse metagenomic dataset). (B) AUC as the effect-size 

between two conditions increases. Both metagenomeSeq and Lefse are better at detecting 

features with small effect size. (C) AUC as the variability in depth of sequencing increases. 

MetagenomeSeq and Kruskal-Wallis are robust to high variability in sequencing depth. (D) 
AUC as average sequencing depth increases. All models (except the non-zero inflated log-

normal model and XIPE) perform similarly well at sufficient depth of coverage.
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