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Abstract

We introduce a novel methodology for differential abundance analysis in sparse high-throughput
marker gene survey data. Our approach, implemented in the metagenomeSeq Bioconductor
package, relies on a novel normalization technique and a statistical model that accounts for under-
sampling: a common feature of large-scale marker gene studies. We show, using simulated data
and several published microbiota datasets, that metagenomeSeq outperforms the tools currently
used in this field.

Marker gene surveys have recently been applied to clinical settings with the intent of
understanding the structure and function of healthy microbial communities and the
association of the microbiota with diseases such as: Crohn’s diseasel, bacterial vaginosis?,
diabetes3 4, eczema®, obesity® and periodontal disease.” The identification of potentially
pathogenic or probiotic bacteria, characterized by significant differences in their abundance
within a disease population, is critical in this setting. While methods for whole-scale
community comparisons are commonly used® 9 there is a need for tools that discern taxon-
specific disease associations in marker gene surveys.

We focus here on the targeted sequencing of the 16S ribosomal RNA gene from selected
samples. ‘Universal’ primers amplify specific hyper-variable regions within the 16S rRNA
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gene, and the corresponding segments are sequenced. Sequence reads are first clustered into
operational taxonomic units (OTUs)10 and representative sequences from each cluster are
then annotated against a database of 16S rDNA reference sequences.!!

While data preprocessing and differential abundance analysis have been extensively studied
in high-throughput experiments measuring gene expression with microarray technology and
sequencing-based assays (e.g., SAGE, RNAseq), marker gene data have specific
characteristics that need to be considered, leading to the development of specialized
analytical tools'2-14, Principally, most taxonomic features in marker gene studies are rare
(absent from a large number of samples) in contrast to RNAseq studies where a much more
complete representation of features is encountered.

Here, we present two complementary methods for the analysis of large-scale marker gene
microbial survey data implemented in the publicly available metagenomeSeq Bioconductor
package (http://cbcb.umd.edu/software/metagenomeSeq). Our first contribution is a novel
normalization technique, the cumulative sum scaling (CSS) normalization, which corrects
the bias in the assessment of differential abundance introduced by total-sum normalization
(TSS), the most commonly used approach. TSS normalizes count data by dividing feature
read counts by the total number of reads in each sample, i.e., converts feature counts to
appropriately scaled ratios. TSS has been shown to incorrectly bias differential abundance
estimates in RNAseq data derived through high-throughput technologies!® 16 since a few
measurements (e.g., taxa or genes) are sampled preferentially as sequencing yield increases,
and have an undue influence on normalized counts. A recent proposal for normalization of
RNAseq data is to scale counts by the 75th percentile of each sample’s non-zero count
distribution1®. The percentile cutoff that appropriately captures the segment of the count
distribution that is relatively invariant across samples varies across 16S rDNA datasets
(Supplementary Fig. 1). Our CSS method is an adaptive extension of the quantile
normalization approach that is better suited for marker gene survey data whereby raw counts
are divided by the cumulative sum of counts up to a percentile determined using a data-
driven approach.

We applied the CSS normalization procedure on data from a longitudinal study tracking the
gut microbial community of twelve gnotobiotic mice.1” To assess the effect of normalization
on distinguishing samples by phenotypic similarity we performed a multi-dimensional
scaling analysis of data normalized using CSS, DESeq?8 size factors, TMM?® and total-sum
normalization (Fig. LA-D). CSS normalization was able to best separate samples based on
diet while controlling within-group variance. We quantified this observation using linear
discriminant analysis (Online Methods) and observed that CSS normalization performed the
best in distinguishing samples by phenotypic similarity (Fig. 1E). We observed similar
results when comparing CSS normalization to other frequently used normalization methods
(Supplementary Fig. 2).

Our second contribution is a zero-inflated Gaussian distribution mixture model that accounts
for biases in differential abundance testing resulting from under-sampling of the microbial
community. We found a strong correlation between the number of OTUs detected in a
sample and the corresponding sequencing depth in high-throughput 16S rDNA studies
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(R2=0.92-0.97, Supplementary Fig. 3) consistent with previous reports.29-22 This suggests
that measurements of differential abundance suffer from biases resulting from the
misinterpretation of zero counts in samples with low coverage as taxonomic features not
present in the microbial community, as opposed to interpreting their absence as the result of
under-sampling. The degree of sparsity observed in marker gene experiments (1-3%) is
much higher than usually seen in other abundance assays such as transcriptome profiling
from single genomes?3 (15-85%, Supplementary Fig. 4).

To explicitly account for under-sampling, we include in our analysis a mixture model that
implements a zero-inflated Gaussian (ZIG) distribution of mean group abundance for each
taxonomic feature (Supplementary Fig. 5). The effect of this model is exemplified on one
OTU from the Human Microbiome Project?4 (Supplementary Fig. 6). Using posterior
probability estimates that account for community under-sampling as weights to estimate
count distribution parameters reduces the estimated fold-change between the two groups
under study. Furthermore, counts after accounting for under-sampling are better fit by a log-
normal distribution (Shapiro-Wilks test P=0.78) than normalized counts (Shapiro-Wilks test
P=0.08).

We evaluated metagenomeSeq using simulated data and compared it to existing tools for
metagenomic analysis: Metastats!3, Xipel2, and a Kruskal-Wallis test as used in Lefse.14
We also compared to representative methods for RNAseq analysis. MetagenomeSeq and, to
a lesser degree, the Kruskal-Wallis test consistently produced high area under the curve
(AUC) scores across most simulation settings (Fig. 2). However, metagenomeSeq obtains
the highest AUC compared to all other methods (includings Lefse’s Kruskal-Wallis test) in
datasets with high sparsity similar to actual metagenomic datasets (greater than 85%, Fig.
2A). Metastats, edgeR1® and DESeq!® have similar performance characteristics with smaller
AUC scores. Xipe performed poorly across most simulation settings, as expected, since this
method does not account for population variability.

Our ZIG model uses linear modeling following standard conventions in methods for testing
differential abundance in gene expression2® that control for confounding factors. In contrast,
Lefse uses an ad-hoc heuristic approach to account for subpopulations in large marker
studies that is overly conservative and prone to low sensitivity. We observed by simulation
(Supplementary Fig. 7, Supplementary Table 1) that metagenomeSeq was more sensitive
than Lefse (0.95, 0.01 respectively) while retaining high specificity (0.96 vs. 1) in settings
where groups tested include confounding subpopulations.

We also compared these methods using oral microbiota data from the Human Microbiome
Project?* (Supplementary Fig. 8) to identify OTUs that are differentially abundant between
tongue and subgingival plaque samples. Metastats and edgeR identified the largest number
of OTUs to be significant (533 and 524, respectively), while metagenomeSeq (360) and,
especially, DESeq (20) and Lefse (8) identified much fewer significant OTUs
(Supplementary Table 2). Organisms found enriched in subgingival plaque by
metagenomeSeq but missed by DESeq or Lefse are fairly abundant well-known members of
the periodontal microbiome and include sulfate-reducing bacteria, which have been
proposed as potential pathogenicity factors in periodontal disease.2% In general, the poor
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performance of Metastats and Lefse was due to their lack of robust modeling of confounding
factors, while for DESeq and edgeR the assumptions upon which these models are based are
not met by these data. We provide a detailed comparison of these results in Supplementary
Note and Supplementary Figs. 9-11.

We further compared our results at the species level with those obtained by Segata, et al.2’
who applied Lefse to the same oral dataset. While we confirmed all species detected as
differentially abundant by Lefse, we also identified three additional differentially abundant
species missed by their analysis. Specifically, we find Atopobium parvulum, Lautropia sp.,
and Desulfotomaculum sp. to be enriched in subgingival plaque (Supplementary Fig. 12).
All of these were fairly abundant in the samples, representing at least 4% the population, and
represent previously characterized members of the normal subgingival microbiota.26: 28, 29

In summary, our methods yield a more precise biological interpretation of the data — in
mouse stool data the CSS normalization helps distinguish clinical phenotypes that are
confounded by commonly used normalization methods, while in the oral microbiome, the
combined differential abundance modeling approach identifies additional associations that
were missed by commonly used tools. To accurately estimate differential abundance, we
explicitly model the effect of under-sampling on the ability to detect a particular feature.
Although under-sampling is ubiquitous in marker gene survey data, to our knowledge, the
approach presented here is the first to correct for this phenomenon. While our focus is on
data generated in microbial community surveys, sparsity may also be an issue in some
RNAseq experiments, and thus our methods may have broader applicability (Fig. 2A). The
evaluation of our methods in that context is, however, beyond the scope of this work and
will be addressed in future studies.

This work directly addresses some of the main challenges to robust analysis of marker gene
surveys in clinical and epidemiological settings: variable depth of coverage across samples
and the resulting rarefaction effect; and confounding due to technical and population
characteristics. We have demonstrated that our methods outperform approaches that are
widely used in the field, and expect that the improved analysis approaches we propose will
help practitioners achieve the full promise of marker gene surveys in clinical research.

Online Methods

Cumulative sum scaling normalization: Assume raw data is given as count matrix M(m,
n) where m and n are the number of features and samples, respectively. The raw data in this
matrix is represented by counts c;j representing the number of times taxonomic feature i was
observed in sample j. Denote the sum of counts for sample i as sj = ¥ cjj. The usual
normalization procedure for marker gene survey data corresponds to producing normalized

— Gy
counts Cij—s_j. We refer to this procedure as total-sum normalization.

We introduce a new normalization method, cumulative sum scaling normalization (CSS), to
remove biases in the count data. The biases come from features that are preferentially

amplified in a sample-specific manner. Denote the I quantile of sample j as q_?,-, that is, in
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sample j there are | taxonomic features with counts smaller than qj—. Forl=[.95*m]|, qé—

corresponds to the 95t percentile of the count distribution for sample j.

Also denote Si_zﬂq_qug €ij as the sum of counts for sample j up to the I quantile. Using

this notation, the total sum s;=s}". Our normalization chooses a value | < m to define a

—  Cij

- - - - C =~
normalization scaling factor for each sample to produce normalized counts Sé where
N is an appropriately chosen normalization constant. We scale all samples using the same

constant N so normalized counts have interpretable units. We recommend using the median

scaling factor sé across samples. Counts for samples with scaling factor close to N can be
interpreted as reference samples, and counts for other samples are interpreted relative to the

reference. In our datasets the median sé was close to 1,000 and thus used this value in our
analysis. Note that ratios are also used in this procedure, assuming there is a finite capacity
to the size of microbial communities. This is the same assumption that underlies total-sum
normalization. However, our method seeks to avoid placing undue influence on features that
are preferentially sampled. The relative proportion of the features is unaffected by the

¢ —Xicii e %itoi &

- - S - T - - - = v
normalization as s; = % ¢ij and "’ sk, this implies ’

Sj :si * Z-c--:?j:pi-

7 1]
The choice of the appropriate quantile given by | above is critical for ensuring that the
normalization approach does not introduce normalization-related artifacts in the data. At a
high level, the count distribution of samples should all be roughly equivalent and
independent of each other up to this quantile under the assumption that, at this range, counts
are derived from a common distribution. The specific value for the chosen quantile is
project-specific and likely depends on the complete experimental details (including all the
sample preparation, sequencing, and subsequent bioinformatics analysis).

We use an adaptive, data-driven, method to determine | based on the observation above. We
find a value | where sample-specific count distributions deviate from an appropriately

defined reference distribution. Specifically, denote ?zmedj{qé-}, the median 1 quantile
across samples, as the I quantile of the reference distribution. Note that this is exactly the
way a reference distribution is defined in the commonly used quantile normalization

approach.15 Denote as i=med; ‘fé-—ql ‘ This is the median absolute deviation of sample-
specific quantiles around the reference. Under the methods assumptions, this quantity d; is
stable for low quantiles and shows high instability in high quantiles. Our method defines | as
the smallest value where high instability is detected (Supplementary Figure 1). We measure
instability in this case by using relative first differences. Specifically, we set | to the smallest
| that satisfies d'*1 - d' = 0.1 d'. The value 0.1 is set arbitrarily and may be substituted by
another value to determine high instability.

We found that CSS-normalized sample abundance measurements are well approximated by
a log-normal distribution in studies with large number of samples (Supplementary Fig. 13A)
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and therefore applied a logarithmic transform to the normalized count data. This
transformation controls the variability of taxonomic feature measurements across samples
(Supplementary Fig. 13B).

Assessment of normalization methods: To assess the effect of normalization on
distinguishing samples by phenotype we performed a multi-dimensional scaling analysis of
count data normalized by using CSS, total-sum scaling, logged total-sum scaling, geometric
mean, trimmed mean by M values, quantile scaling, and quantile normalization.

We calculated the 1000 taxonomic features with largest variance after each normalization
method and used those normalized feature counts in the MDS analysis. We also used linear
discriminant analysis (LDA) to distinguish samples by diet. We calculated the log-ratio of
class posterior probabilities for each sample x using leave-one-out cross-validation:

fw(-r)ﬂ'w

P95 ) )

where 7, is the proportion of samples on the “Western” diet, and f,, and f; are normal
densities for each of the diets, with a common variance. Parameters in each leave-one-out
fold are estimated from the remaining samples. The class posterior probability should be
large and positive for “Western” samples and small and negative for samples in the other
group. We measure the performance of each normalization method by the difference in the
distribution of the class posterior probabilities (Figure 1E and Supplementary Fig. 2E).

Zero-inflated Gaussian Model: Our zero-inflated Gaussian (ZIG) mixture model is
motivated by the observed relationship between depth of coverage and the number of OTUs
detected (Supplementary Fig. 3). The components of the mixture model correspond to
normally distributed log-abundances in each group of interest, e.g., case or control
(represented as the count distribution in Supplementary Fig. 5) and a spike-mass at zero
indicating absence of the feature due to under-sampling (represented as the detection
distribution in Supplementary Fig. 5). Our model seeks to directly estimate the probability
that an observed zero is generated from the detection distribution due to under-sampling or
from the count distribution (absence of the taxonomic feature in the microbial community).
We estimate the expected value of latent component indicators based on sample sequencing
depth of coverage using an expectation maximization algorithm (see Supplementary note).
A detailed description of the model is available in the Supplementary note.

Simulation study: We simulated OTU level datasets with 1,000 features. A sample’s total
count was sampled from a log-normal distribution with 1 = 7.5 and a standard deviation of
0.3. These values represent similar total counts to those observed in data. The first 50
features were chosen to be “significant”. In one of the populations, for the first 25 significant
features, we changed the proportion of the total counts for those features by adding 1x1073 .
d percentage of the particular sample’s total counts. For the remaining 25 we subtracted
1x1073 . Spercentage of the sample’s total counts. We used a logistic regression model of
the proportion of zeros as a function of depth of coverage in a standard marker gene survey
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to build a plausible simulation model for sparsity. Given a sample’s depth of coverage s an
expected proportion of zero features 7 is obtained from the logistic regression fit. For each
feature we randomly drew from a Bernoulli trial with probability 7; to spuriously set the
feature to zero. Finally, we assigned randomly to 5% of the data an additional 1.3% (a value
obtained from a standard marker gene survey) of the mean of the total counts to introduce
extremely abundant features.

Subgroup Simulation: We simulated data from two populations where each population
consisted of two subpopulations. This example represents a case-control study where cases
and controls were collected from differing sites. We simulated OTU level datasets with
1,000 features. A sample’s total count was sampled from a log-normal distribution with p =
7.5 and a standard deviation of 0.3. These values represent similar total counts to those
observed in data. The first 50 features were chosen to be “significant”. In one of the
populations, for the first 25 significant features, we changed the proportion of the total
counts for those features by adding 1x1073 - & percentage of the particular sample’s total
counts. For the remaining 25 we subtracted 1x1073 - §percentage of the sample’s total
counts. The second subgroup had a relatively larger expression of the significant features.
This represents potential greater feature enrichment in a site’s sub population. The trend
though across populations in either subgroup is to either increase or decrease in cases or
controls. Finally, 5% of the data is randomly given an additional 1.3% (a value obtained
from a standard marker gene survey) of the mean of the total counts to introduce extremely
abundant features.

Marker gene survey data

Humanized gnotobiotic mouse gut: Twelve germ-free adult male C57BL/6J mice were fed
a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult human
fecal material. Following the fecal transplant, mice remained on the low-fat, plant
polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a
high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through
PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of
experimental protocols and further details of the data can be found in Turnbaugh et al.1’
OTUs were classified by RDP1! and annotated (minimum confidence level of 0.8).
Sequences can be found at: http://gordonlab.wustl.edu/TurnbaughSE_10 09/
STM_2009.html.

Subgingival plague and tongue dorsum: Subgingival plague and tongue dorsum samples
were a part of the Human Microbiome Project?4 dataset used in this analysis. The samples
were part of a larger study aimed at cataloging the healthy human microbiome. Reads were
deposited into the Data Analysis and Coordination Center (DACC) at http://
www.hmpdacc.org/. In particular, reads and metadata were downloaded from http://
www.hmpdacc.org/HMR16S/. Further information on data collection protocol and samples
is available at http://www.hmpdacc.org/ and in HMP. Only patients from their earliest visit
were considered as were only samples properly annotated. Following OTU propagation
(described below), singletons (up to 5 positive samples) were trimmed. To consider solely
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differential abundance estimates, we report on OTUs present in at least approximately 2% of
the population. For each differential abundance method compared, differentially abundant
OTUs were determined at FDR<0.05 where the OTU is at least twice as abundant in one
group compared to the other (absolute estimated fold-change greater than 1). We used
Lefse’s default detection method (as no fold-change estimate is provided).

Human Microbiome Project data: Data used in Supplementary Figure 3 was a part of the
Human Microbiome Project?* dataset used in this analysis. The samples were a catalog of
the healthy human microbiome. Reads were organized into OTUs by QIIMES and deposited
in the Data Analysis and Coordination Center (DACC) at http://www.hmpdacc.org/. In
particular, OTUs and metadata was downloaded from http://www.hmpdacc.org/HMQCP/.
Further information on data collection protocol and samples is available at http://
www.hmpdacc.org/ and in HMP.

L ung microbiome: The lung microbiome consisted of respiratory flora sampled from six
healthy individuals. Three healthy nonsmokers and three healthy smokers. The upper lung
tracts were sampled by oral wash and oro-nasopharyngeal swabs. Up to a patients’ glottis,
samples were taken using two bronchoscopes a serial bronchoalveolar lavage and lower
airway protected brushes. More detailed information about the lung Microbiome samples,
collection and protocols is available in Charlson et al.3! Reads and barcodes were provided
by Frederic Bushman. Following OTU propagation (described below), OTUs were trimmed
if they were not present in approximately 8% of the population.

Analysis pipeline

OTU identification and annotation: 454 SFF files and barcode dictionaries were
downloaded and run through the same pipeline. Conservative Operational Taxonomic Units
(OTUs) were constructed by pooling together the sequences from all samples, then clustered
using DNAclust!® with default parameters (99% identity clusters) to ensure that the
definition of an OTU is consistent across all samples. To obtain taxonomic identification, a
representative sequence from each OTU was aligned to Ribosomal Database
(rdp.cme.msu.edu, release 10.4) using Blastn with long word length (-W 100) in order to
only detect nearly-identical sequences. Sequences without a nearly-identical match to RDP
were marked as having “no match” and assigned an OTU identifier. The resulting data was
organized into a collection of tables at many different taxonomic levels containing each
taxonomic group as a row and each sample as a column. These tables formed the substrate
for the statistical analyses described. This process was performed for the human microbiome
project and the human lung microbiome datasets. After removing OTUs present in less than
5 samples, the HMP dataset consisted of 23,685 OTUs, whereas the human lung
microbiome consisted of 2,365 OTUs. We explored the effect of ambiguosly assigned reads
(sequences that have good matches to two or more OTUS) by running DNAclust in ‘non-
overlapping’ mode — a mode that ensures high separation between clusters and eliminates
ambiguous reads. We also ran the HMP dataset using this option and confirmed all results
shown in the paper (Supplementary Figs. 14A-B, 15A-B). We provide further discussion of
the ambiguity of mapping reads to OTUs in the supplementary material.

Nat Methods. Author manuscript; available in PMC 2014 June 01.


http://www.hmpdacc.org/
http://www.hmpdacc.org/HMQCP/
http://www.hmpdacc.org/
http://www.hmpdacc.org/

1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Paulson et al.

Page 9

RNAseq data: RNA sequencing counts were downloaded from ReCount23, http://bowtie-
bio.sourceforge.net/recount/. Only datasets with at least 15 samples were considered.

Software: The following software versions were used for analysis on the following
platform.

DESeq version 1.8.318 and edgeR version 2.6.1219 and limma version 3.12.32° were used in
the comparisons. Personalized R scripts were written for the other methods and all analyses
were performed on R version 2.15.1 on a Red Hat Enterprise Linux Server release 5.9
(Tikanga) 64-bit platform.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clustering analysisisimproved substantially by CSS normalization
We plot the first two principal coordinates in a multi-dimensional scaling analysis of mouse

stool data normalized by (A) CSS, (B) DESeq size factors, (C) trimmed mean of M-values,
and (D) total-sum. Colors indicate clinical phenotype (diet). CSS normalization data
successfully separates samples by diet while controlling within-group variability. (E) Class
posterior probability log-ratio for Western diet obtained from linear discriminant analysis
(LDA). Each box corresponds to the distribution of leave-one-out posterior probability of
assignment to the “Western” cluster across normalization methods (whiskers indicate 1.5
times inter-quartile range). Samples were best distinguished by phenotypic similarity using

CSS normalization.
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Figure 2. Simulation resultsindicate that metagenomeSeq has greater sensitivity and specificity
in avariety of settings

We use area under the receiver operating characteristic curve (AUC) to compare
Metastats13, Xipel2, Kruskal-Wallis test as used in Lefsel4, a non-zero inflated log-normal
model30, edgeR1® and DESeq8. (A) AUC as dataset sparsity decreases. MetagenomeSeq
achieves larger AUC values than any other method in datasets with high sparsity (vertical
dashed line represents the least sparse metagenomic dataset). (B) AUC as the effect-size
between two conditions increases. Both metagenomeSeq and Lefse are better at detecting
features with small effect size. (C) AUC as the variability in depth of sequencing increases.
MetagenomeSeq and Kruskal-Wallis are robust to high variability in sequencing depth. (D)
AUC as average sequencing depth increases. All models (except the non-zero inflated log-
normal model and XIPE) perform similarly well at sufficient depth of coverage.
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