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Abstract: Water stress is notably a critical environmental condition restricting plant growth and
economic outputs in semi-arid and arid environments. In a pot experiment, we explored the potential
function of «-tocopherol (x-toc) and/or ascorbic acid (AsA) on the agronomic and physio-biochemical
features of oat grown in water-scarce conditions. Drought duration significantly reduced the soil
electrical conductivity and pH but increased the soil temperature, influencing the nutrient availability
and uptake. For example, post-drought (25 days) soil analysis indicated that electrical conductivity
decreased from 597 to 306 mS/m, total dissolved solids from 298 to 153 mg/L, and pH from 7.5 to
6.3 in 25 days of drought. Further, the drought-stressed leaves also contained significantly lower
metabolites, such as proline, protein, sugar, and glycine betaine, than the control leaves, indicat-
ing impaired plant defense mechanisms. Significantly increased enzymatic antioxidants in leaves
(e.g., superoxide dismutase, ascorbate peroxidase, and peroxidase) suggested the inability of oat
plants to overcome drought-induced oxidative damage. In contrast, AsA and/or «-toc significantly
amplified the seed germination rates and plant growth. Taken together, our results demonstrate that
AsA and a-toc have the capability to mitigate adverse effects of drought conditions on oat plants by
improving leaf relative water contents, photosynthetic pigments, and the antioxidant defense system.

Keywords: water stress; cereal crops; secondary metabolites; growth mediators; antioxidant
properties

1. Introduction

Avena sativa L. (Gramineae), commonly known as oat, is a cereal grain grown for its
seed and fodder. Oats have been globally cultivated for medicinal and food products for
two thousand years [1]. Based on world cereal production statistics, oats rank sixth in
production, after wheat, maize, rice, barley, and sorghum. Oats are an excellent source
of protein, fiber, and minerals, but as agricultural mechanization progressed in the 1930s
and 1950s, the global oat production declined [2]. In some ecosystems of developing and
developed nations, oats are a significant crop for people with specific usage. In many
parts of world, oats are grown for grain use, including feed, bedding straw, hay, silage,
and husks. Grain feed for livestock remains the main use of oat crops, accounting for
an average of approximately 74% of total global consumption between 1991 and 1992 [3].
For example, oats are cultivated throughout Pakistan and are now the primary source of
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winter and spring feed from the plains up to the highlands (1000-2300 m). In Pakistan,
oats occupy more than 35% of the feed area [4]. After decades of mass production, oats
are steadily declining as a result of the climate change consequences in emerging nations.
These impacts comprise long-term droughts, floods, high temperatures, rain, and seasonal
fluctuations in humidity. Unfavorable climate change makes it more difficult to meet the
growing global demand for oats. Among them, water scarcity is primarily an unfavorable
restrictive factor distressing the nutritional stage, pod filling, pollen viability, and oat yield.

Because water is a vital compound for various metabolites, it is important for yield and
growth and its absence impacts all physiological, agronomic, and biochemical characteris-
tics [5]. Oat harvesting under water-stressed conditions exhibits cell division restriction,
nutritional disparity, ion exchange, and variations in primary and secondary metabolism.
Due to complicated oxidative stress, plant cellular membranes are prone to water shortages
that may readily damage the lipids and biomolecules incorporated in these membranes.
Drought disrupts various molecular and physiological processes in plants, including the
suppression of transpiration, cell turgidity, stomatal and osmoregulation, water consump-
tion efficacy, growth of the deep roots system, and manufacture of osmolytes [6]. Defense
antioxidants help to capture unregulated reactive oxygen species (ROS) mediated by
drought. This reaction, however, varies from crop to crop, and is primarily determined
by the plant’s genetic composition and external environment. Various studies using a
leaf foliar spraying method to alleviate harmful impacts of drought stress, including the
exogenous administration of growth-stimulating chemicals, have been proposed [7].

Alpha-tocopherol (x-toc) and/or ascorbic acid (AsA) are the key growth mediators
that protect plant tissues from free oxygen radicals in plants. For example, AsA acts as a
cofactor for enzymes regulating hormones biosynthesis, renewing enzymatic antioxidants,
and modulating metabolism in plants [8]. Similarly, o-toc has a significant antioxidant effect
as a suppressor of lipid peroxidation, and it is beneficial in protecting cellular membranes
from oxidative stress. The most abundant of them are actively proliferating plant cells
or whole cellular divisions, and even cell walls. Abiotic stresses, particularly dryness,
influences the development and growth of cereals with a low «-toc and/or AsA content.
It works as a powerful metabolite or signaling modulator in a plant’s cellular activities or
defensive systems by detoxicating hydrogen peroxide or HyO, amid water scarcity [9]. The
previous research presented the intensifying effects of foliar spraying with «-toc and/or
AsA on the morphological, physiological, and biochemical characteristics of various crops,
including faba bean, mung bean, and maize [10-12].

Thus, with this background, the present research work is an effort to (i) evaluate the
agronomic, physio-biochemical and antioxidant properties of oat subjected to the foliar
application of AsA and/or «-toc under drought conditions, and (ii) test the hypothesis that,
under drought stress, better results can be achieved in oat crops that receive exogenously
applied AsA and «-toc.

2. Materials and Methods
2.1. Experiment Layout and Treatments

In growing season of 2021 (October—December), a randomized block design with
three replicates in each treatment or each replicate, comprising ten plants, was arranged
in the net house. The research area had a sub-humid environment and was located 450 m
above sea level, with a mild winter of 18.35 °C and hot summer of 40.8 °C [13]. The oat
seeds were obtained from the Cereal Crops Research Institute Persabaq, Nowshera. After
surface sterilizing with ethanol (95%), the seeds were sown in earthen pots (18 cm lower or
upper inside diameter, 20 cm height, or 2 cm thickness) filled with 2 kg of air-dried soil
and silt (2:1). After emergence of seedling, the plants were subjected to exogenous growth
mediators with continuous 15 and 25-day drought. After, those treatments were started
according to the following manner:

(TO) control: normal watering + 0 mg AsA and «-toc

(T1): 15 days drought + 0 mg AsA and o-toc
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(T2): 15 days drought + 200 mg AsA

(T3): 15 days drought + 200 mg «-toc

(T4): 15 days drought + 200 mg AsA and «x-toc

(T5): 25 days drought + 0 mg AsA and «-toc

(T6): 25 days drought + 200 mg AsA

(T7): 25 days drought + 200 mg «-toc

(T8): 25 days drought + 200 mg AsA and «-toc

Agronomic aspects of vegetative development, including data on germination, were
noted. After reaching a five-leaf stage, plants along with roots were collected and the exter-
nal materials along with soil particles adhering to the roots were removed. Half of the plants
were harvested after 15 days, and the remaining were after 25 days of drought stress for
further analysis. Fresh leaves were used to find out enzymatic activities while the remaining
plants were stored in the freezer at —4 °C to evaluate their physio-biochemical traits.

2.2. Post-Experiment Soil Analysis

After the experiment, the soil samples were analyzed for total dissolved solutes,
electrical conductivity, pH, dissolved oxygen, resistivity, soil moisture content, oxidation—
reduction potential, salinity, and field capacity. In a small glass with 50 mL of distilled
water, 10 g of air-dry soil was weighed in a 1:5 soil water suspension. The multiparameter
Bluetooth portable water quality meter HI98494 was utilized to quantify soil characteristics.

2.3. Agronomic Analysis

Following this, agronomic and germination characteristics were calculated via the
procedures of Nafees et al. [14] and Shah et al. [15] using following formulas.

Mean germination time (MGT) = (€fx)/(&f) 1)
Here, f is the frequency of seeds that emerged on day X.
Germination rate index (GRI) = G1/1+G2/2+G3/3 ... ... Gx/x )

Here, G1 or G2 are emergence rates on first and second days after propagating, and
Gx is final emergence rate on final day.

Germination energy (GE) = X1/Y1 + ((X2 — X1)/Y2) + (Xn — Xn — 1)/Yn) 3)

Here, X1, X2, and Xn are number of seeds germinated on the 1st day, 2nd, and so on,
Whereas Y1, Y2, and Yn are time from plating to 1st, 2nd, or up to day ten.

Timson’s germination index (TGI) = (€G)/T 4)

G represents the overall percent of emerging seeds for respective day, whereas T
denotes the emergence day.

Water use efficiency (WUE) = (Water used overall for the experiment (mL))/(Total Biomass (g)) 5)
Mean germination rate (MGR) = 1/MGT 6)
Seed vigor indice I (SVI-I) = (Mean root length + Mean shoot length) x % Germination 7)

Seed vigor indice II (SVI-II) = Dry root + shoot weight (mg) X % Germination  (8)

Root moisture content (RMC) = (Wet root weight — Dry root weight)/(Wet root weight) 9)

Time to 50% germination (T50%) = (ti + (N/2 — ni)(t] — ti))/((nj — ni)) (10)

Here, ni and nj are number of seeds germinated at time ti and tj, whereas N shows the
final number of germinated seeds.
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2.4. Physio-Biochemical Features
2.4.1. Leaf Pigment Contents

Chlorophyll (Chl. a and b) concentration was assessed by using procedure of
Sonobe et al. [16], and carotenoids concentration was determined through Ahmad et al. [17].
Fresh leaves of 0.2 g were grounded in 80% acetone with a pestle and mortar or incubated
in dark for 24 h then centrifugated for 10 min. Absorbance value of 645 nm was recorded
for Chl. a, 663 nm designed for Chl. b, and 470 nm for carotenoids via spectrophotometer
against 80% acetone blank. The following formula was used to calculate the parameters.

Chl. a= [127 (OD663) — 2.69 (OD645)] x V/1000 x W (11)
ChL b = [22.9 (ODgss) — 4.68 (ODgg3)] x V/1000 x W (12)
Carotenoid = OD480 + (0114 X DA663) — (0638 X DA645) (13)

Here, OD is optical density at specified wavelength, V is the extract level (in mL), and
W is weight of fresh leaves.

2.4.2. Soluble Sugar Content (S5C), Glycine Betaine (GB), Total Proline Content (TPC), and
Soluble Protein Content (SPC)

Sugar content of leaves was quantified using technique of Buysse and Merckx [18]. A
total of 0.5 g of plant material along with 10 mL of distilled water were ground and then
centrifuged at 2500 rpm for 5 min. One milliliter of phenol 80% (w/v) was mixed in 0.1 mL
of supernatant followed by addition of 3.0 mL concentrated H,SO4 kept at 25 °C for a few
hours, and optical density was recorded at 420 nm, while the Hitz and Hanson [19] method
was used to determine glycine betaine content. Proline content of leaves was determined
through procedure of Bates et al. [20]. A total of 0.25 g of leaves was crushed in 5 mL
of 3% aqueous sulpho-salicylic acid tailed by filtration. Then, 2 mL of acid ninhydrin or
2 mL of glacial acetic acid were reacted with 2 mL of filtrate in test tube for 60 min and
heated at 100 °C in water bath followed by addition of 4 mL toluene to the mixture. The
chromophore with toluene was extracted from aqueous part and warmed to 25 °C, and
sample was observed at 520 nm against toluene as blank, while protocol of Bradford [21]
was used to assess the amount of soluble protein. Through mortar and pestle, 0.2 g of fresh
leaves was ground in 1 mL of phosphate buffer (pH 7.5). A total volume of 1 mL was made
by adding 0.1 mL of the above-prepared extract and distilled water. A total of 3.0 mL of
reagent was added, it having 3 g sodium carbonate (Na,CO3) and 0.6 g sodium hydroxide
(NaOH) (0.1 N), while 150 mL distilled water was used to dissolve 1.5 g Na-K tartrate
and CuSO4.5H,0 (0.125 g) dissolved in 25 mL of distilled water. After shaking for 10 min,
0.1 mL of Folin phenol reagent was added. After 30 min incubation, absorbance of each
sample was recorded at 650 nm. Their contents were computed using Equation (14).

Protein% (W/W) =Cp x V x DF/wt (14)

where wt is weight of the leaves (mg), DF represent dilute factor, and Cp shows protein
concentration (mg/L).

2.4.3. Hydrogen Peroxide (H,O,) and Malondialdehyde (MDA)

The methodology by Velikova et al. [22] was followed to determine H,O; activity. The
MDA content was assessed according to assay of Sakaki et al. [23] or their OD was recorded
at 530 nm. The fresh leaf (0.25 g) was triturated in TCA (3 mL; 1%) or subsequently cen-
trifuged. Then, aliquot (1.0 mL) was homogenized with 4 mL of TBA (0.5% thiobarbituric
acid). Samples were incubated for 50 min at 95 °C.

2.4.4. Antioxidant Enzymatic Assays

The procedure of Ukeda et al. [24] was applied for the approximation of SOD level
at 560 nm using instrument spectrophotometer. Similarly, the activity of glutathione
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reductase (GR) and peroxidase (POD) was analyzed at 420 nm and 340 nm, respectively,
by the technique of Ahmad et al. [25]. The leaf tissue extract was furthermore utilized for
measurement of catalase (CAT) or ascorbate peroxidase (APOX) enzymes via the method
of Zhao et al. [26].

2.5. Analysis through Statistical Software

Microsoft Excel Software 2010 (Redmond, DC, USA), US was applied to compute
standard and mean error for obtained data. Using Co-Stat Window version 6.3, UK analysis
of variance (ANOVA) was performed to find significant differences between treatments.
Using XLSTAT software, the principal component analysis (PCA) was performed for
investigated parameters. Using R-Studio 8.1 software (Boston, MA, USA), US correlation
analysis was performed.

3. Results and Discussion

Recent years have seen a substantial increase in the effect of water shortage condi-
tions on agriculture, affecting the soil structure, function, plant physiology, and related
metabolism. In this study, long-term drought significantly changed the soil attributes, im-
pacting the soil organic matter, decomposition, and the release of excess CO; [27]. However,
the oat plants treated with AsA and/or a-toc could sustain their agronomic, physiological,
and biochemical properties under the stressed environments

3.1. Effect on Soil Physicochemical Properties

Electrical conductivity reduced to a maximal extent compared to the control, i.e., from
605 to 252 mS/m with the treatment of AsA for 15 days, pH declined from 7.6 to 6.3 after
25 days of drought. Total dissolved solutes decreased from 303 to 126 mg/L after 15 days
of dryness supplemented with AsA, according to the physicochemical examination of the
soil before and after seeding (Table 1). Furthermore, the soil temperature changed from
17.8 °C under control (T0) to 23.7 °C after 25 days of drought (T5). The alternations in
the soil’s physicochemical characteristics under drought and different treatments could
considerably influence the soil traits. In this context, the study by Rojas and Huang
revealed that the reductions in soil water cause a drop in crop nutrient absorption, which
directly impacts all water precursor activities and turgor pressure [28]. Still, drought has no
substantial alterations in resistivity or oxidation-reduction potential (Table 1). The study’s
findings revealed that extreme drought had negative impact on the structure, function, and
productivity of agricultural soil [29]. This section may be divided by subheadings. It should
provide a concise and precise description of experimental results and their interpretation,
as well as experimental conclusions that can be drawn.

3.2. Agronomic Features

Results from the growth and germination parameters demonstrated that different
levels of drought stress (15 days and 25 days) considerably reduced the morphological
performance of the oat plants (Tables 2 and 3). Under 15 and 25 days of drought stress,
the MGT, GE, GRI, FGP, TGI, CVG, SVI-], SVI-1I, and RMC were significantly reduced
(p < 0.05). These negative consequences might result from stomatal closure and increased
reactive oxygen species (ROS) generation, usually mediated by drought stress in plants.
Even the reduced stomatal conductance and cellular membrane integrity can progressively
slow the rate of CO, assimilation, disrupting water relations by lowering the plants’ water
use efficiency [30]. The highest MGT and CVG were observed in 15-day drought regimes
treated with o-toc (T3), while the highest GRI and TGI were observed at x-toc + 25 days
drought (T7) (Table 2). Furthermore, the foliar application of «-toc significantly boosted
WUE and GE in 25-day drought regimes (T5). Table 3 describes that SVI-I, SVI-II, RMC, and
T50% were recorded as maximum after 15 days of drought at T1, T4, T2, and T3, respectively,
while MGR at 25 days of drought (T5). These parameters decrease as the drought level
increases in the growth medium. Comparable results from the previous studies show the
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same decline in agronomic characteristics under water-deficit conditions in carrot [31],
maize [32], and common vegetables [33]. The AsA and/or «-toc can mitigate inhibiting
the oat growth performance and development by enhancing antioxidant enzymes and
osmolytes formation. In contrast, these parameters were recorded as maximum in plants
subjected to foliar sprays of AsA and/or o-toc (200 mg/L). The synergistic impact of AsA
and/or a-toc demonstrates that these PGRs have a favorable influence on oat agronomic
characteristics. However, AsA is found to be more effective than «-toc in alleviating
drought stress-induced adverse effects in oat. Exogenously administered AsA and/or «-toc
were successfully employed to improve tolerance against drought stress in several crops,
such as sunflower [34] and wheat [35].

Table 1. Impact of drought stress on soil physicochemical parameters after experiment.

ORP R EC TDS SDW

Treatments T (°C) pH (mV) (Q-m) mSm-1) (mgL) Salinity DO ) SMC FC
TO 17.8 7.6 109.2 1653 605 303 0.29 10.2 6.81 31.9 46.8
T1 20.5 7.1 96.1 2688 372 148 0.18 11.1 6.89 31.1 45.1
T2 19.6 7.1 82.5 3984 252 126 0.12 11.2 7.13 28.7 40.3
T3 19.6 7.2 88.2 3367 296 148 0.14 11.2 7.43 25.7 34.6
T4 19.6 7.0 83 3704 270 135 0.13 11.2 7.18 28.2 39.3
T5 23.7 6.3 108.7 1675 597 298 0.29 10.2 7.82 21.8 27.9
T6 194 7.2 103 2857 350 175 0.17 10.1 6.53 34.7 53.1
T7 194 7.5 87.9 3268 306 153 0.15 11.2 6.3 37 58.7
T8 19.4 7.2 91 3012 332 166 0.16 10.4 6.83 31.7 46.4
T = temperature, pH = power of hydrogen ion concentration, EC = electrical conductivity, TDS = total dissolved
solute, ORP = oxidation reduction potential, DO = dissolved oxygen, SDW = soil dry weight, R = resistivity,
SMC = soil moisture content, and FC = field capacity. (T0) control: normal watering + 0 mg AsA and «-toc, (T1):
15 days drought + 0 mg AsA and «-toc, (T2): 15 days drought + 200 mg AsA, (T3): 15 days drought + 200 mg
a-toc, (T4): 15 days drought + 200 mg AsA and «-toc, (T5): 25 days drought + 0 mg AsA and «-toc, (T6): 25 days
drought + 200 mg AsA, (T7): 25 days drought + 200 mg x-toc, (T8): 25 days drought + 200 mg AsA and o-toc.
Table 2. Effect of AsA and/or «-toc on A. sativa TGI, MGT, CVG, GE, MGT, GRI, and WUE under
water-deficit conditions.
Treatments TGI CVG GE MGT GRI WUE
TO 64.33 +3.02 3.82+04% 3.83+ 0423 45+032 130.3 £ 1152 5824.2 +£702.62
T1 5033 £3.43 5194052 3.04+05P 59+03P 96.8 +14.4°¢ 8295.7 + 2748.4°
T2 51.67 +2.6° 5.06 +0.42 3.08 +£0.32 5.8+ 022 99.4+822 5849.4 + 527.4 <4
T3 4933 +1.22 5.67 + 03P 2.65+0.3°¢ 6.0£0.1°¢ 88.4+754d 5479.2 + 1370.4 4
T4 50.33+£2.0b 497403 337 +0349 594029 104.6 + 9.5 de 8540.2 + 1877.2 <d
T5 54.00 4+ 3.7 4 454 +03° 338+ 0.2 5.6 +0.3de 107.0+72°  12,696.1 + 10,168.7 d¢
T6 51.67 +41°9  505+04P 321+03¢ 58 +042 1025+ 11.0P 7873.6 + 3189.1 ¢
T7 5467 £244 5.00+0.62 331+03d 55+02b 108.7 £9.24 6902 + 3802
T8 51.00 £2.1¢ 512+ 0.3d¢ 3.14 £ 04 de 59+02¢ 100.5 + 11.4 4 7270.9 4+ 1044.1 P

TGI = Timson germination index, CVG = coefficient of velocity of germination, GE = germination energy,
MGT = mean germination time, GRI = germination rate index, and WUE = water use efficiency. Superscript
letters (a—e) shows the significance in data, (T0) control: normal watering + 0 mg AsA and «-toc, (T1): 15 days
drought + 0 mg AsA and o-toc, (T2): 15 days drought + 200 mg AsA, (T3): 15 days drought + 200 mg «-toc,
(T4): 15 days drought + 200 mg AsA and a-toc, (T5): 25 days drought + 0 mg AsA and «-toc, (T6): 25 days
drought + 200 mg AsA, (T7): 25 days drought + 200 mg o-toc, (T8): 25 days drought + 200 mg AsA and «-toc.
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Table 3. Effect of AsA and/or a-toc on A. sativa RMC, MGR, T50%, SVI-I, and SVI-II under

drought condition.

Treatments RMC MGR T50% SVI-1 SVI-II
TO 47.7 +5.08P 022 +0.012 3.4 4 0.46b¢ 5516.6 + 812.923>  3760.0 + 371.57
T1 424 + 833 0.17 £ 0.02P 394029¢ 6110.0 & 10.00 P 3100.0 + 353.27 ab
T2 52.6 +8.73b 0.17 £ 0.01 be 3.9 +0.29 b¢ 5536.6 &= 609.29 b¢  3793.3 4 24554 ¢
T3 51.8 +£4.99 ¢ 0.16 + 0.00 4 42 +0.23°¢ 5713.3 +£990.079  4130.0 & 201.16 b€
T4 49.6 + 9.46 2 0.17 £0.01¢ 3.7 +0.29 de 5043.3 = 1110.20 9¢  4196.6 + 310.09 <4
T5 485 +10.88 «d 0.18 + 0.01 de 3740294 42433 +516.17 ¢ 3603.3 & 530.18 P
T6 30.6 +£9.33 4 0.17 +£0.00b 3.9+0.29ab 4316.6 + 343.85d¢  3603.3 + 575.63
T7 36.9 + 5.67 dc 0.18 £ 0.02 @b 3940292 4680.0 +980.15%  3346.6 & 616.68 9¢
T8 388+3.7¢ 0.17 £0.01b 3.9 +0.29 b¢ 46433 +914.40 2 3796.6 + 244.99

RMC = root moisture content, MGR = mean germination rate, T50% = time to 50% germination, SVI-I = seed
vigor index-I, and SVI-II = seed vigor index-II, Superscript letters (a—e) shows the significance in data, (T0)
control: normal watering + 0 mg AsA and a-toc, (T1): 15 days drought + 0 mg AsA and «-toc, (T2): 15 days
drought + 200 mg AsA, (T3): 15 days drought + 200 mg «-toc, (T4): 15 days drought + 200 mg AsA and «-toc, (T5):
25 days drought + 0 mg AsA and «-toc, (T6): 25 days drought + 200 mg AsA, (T7): 25 days drought + 200 mg
a-toc, (T8): 25 days drought + 200 mg AsA and «-toc.

3.3. AsA and/or a-toc Mitigate the Effect of Drought Stress on Photosynthetic Pigments

Photosynthesis is the most vital mechanism that is disrupted by plants that grow
in water-deficit environments. Impaired photosynthesis under drought is attributable to
non-stomata components as well as stomata closure, which lowers the intercellular CO,
concentration. After a 25-day drought, the leaf chlorophyll a content declined to 0.121 mg/L
and chlorophyll b to 0.112 mg/L compared to the control (T0) (Figure 1). On the contrary,
compared to the control, foliar applications of both AsA and x-toc increased the chlorophyll
content in both 15 or 25-day drought stress situations (T1, T5). By reducing hydrogen
peroxide production and raising phenolic levels, foliar applications were observed to
modify the photosynthetic pigments in plants, enabling them to function more effectively
under stressful conditions [36]. The predominant symptom of induced drought stress
was the photosynthetic pigments deprivation of plant because of their sensitivity to it. In
addition, another main contributing cue is the breakdown of the chloroplast thylakoid
membrane, which could be stimulated by the deterioration of amino acids and photosystem
2 (PSII), which is connected to the chloroplast membrane. A comparative study revealed
that «-toc improves all chlorophyll contents (T7) better than AsA. Drought significantly
(p < 0.005) decreases carotenoid contents from 1.802 in the control (T0) to 1.028 mg/g in
25 days of drought stress (T5). The literature shows that the exogenous application of AsA
and/or -toc has a vital role in the recovery of photosynthetic pigments i.e., Chl. a, b, or
carotenoids under drought stress in wheat [37] or pepper [29].

3.4. Impact of AsA and/or a-toc on Soluble Protein, Sugar, Proline, and GB under Drought Stress

As the interval of drought stress was increased from 15 to 25 days, the soluble protein
contents show a prominent reduction of 2.67 in the control to 0.777 in 25-day drought stress
(Table 4, Figure 2). At the same time, all of the treatments experienced a comparatively high
concentration of protein content that received the exogenous application of foliar sprays
(AsA and/or a-toc) (Table 4). Soluble proteins play an important role in osmotic adjustment
under drought stress and can provide a storage form of nitrogen [32]. However, the results
of protein accumulation in plants under stressful circumstances vary. According to Parida
et al., the protein content rises during drought [37], while Liu et al. revealed that it reduces in
plants cultivated in water-stressed environments [38]. Soluble sugar contents were recorded
as maximum (2.517 mg/g) under 15-day drought with the foliar application of a-toc (T3),
while they were minimum (1.053 mg/g) at 25-day drought conditions (T5) (Figure 2). A
considerable increase in proline content (2.597 mg/g) was detected in oat plants exposed
to 25 days of continuous drought stress treated with AsA (T6), whereas the lowest was
reported in 25-day drought plants (T5) (Figure 2). Many researchers have documented
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proline accumulation during drought stress [39,40]. It provides nutrients and serves as an
osmo-protectant by influencing membrane and protein structures. At the same time, under
drought stress conditions, the foliar application of «-toc and/or AsA results in a tremendous
decrease in its level. Water deficit conditions caused a considerable accumulation in GB
content in both T1 and T5 treatments. The maximum content (0.793 mg/g) was observed
in the T5 treatment whereas the minimum content was recorded in the T4 treatment
(0.545 mg/g) (Figure 2). According to research, GB protects the photosynthetic process,
inhibits the production of ROS, and activates stress-related genes. Additionally, it is well
known that GB protects protein structures from the effects of abiotic stressors [41].
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Figure 1. Effect of AsA and/or a-toc on chlorophyll (Chl. a, b) or carotenoid contents in fresh leaves
of A. sativa under drought stress. Different alphabetical letters indicate significant differences among
treatments at p < 0.05, according to the LSD test. (T0) control: normal watering + 0 mg AsA and «-toc,
(T1): 15 days drought + 0 mg AsA and a-toc, (T2): 15 days drought + 200 mg AsA, (T3): 15 days
drought + 200 mg «-toc, (T4): 15 days drought + 200 mg AsA and «-toc, (T5): 25 days drought + 0 mg
AsA and o-toc, (T6): 25 days drought + 200 mg AsA, (T7): 25 days drought + 200 mg o-toc, (T8):
25 days drought + 200 mg AsA and o-toc.

3.5. H202 and MDA

The accumulation of HyO, results from a reduction in soil water quantity or integration
of CO,. Antioxidants liquefy superoxide ions with H,O,, producing other enzymes in water
particles. Malonaldehyde formation in plants rose as a result of the plant’s loss of capacity to
control ROS, whereas hydrogen peroxide induced membrane damage through the creation
of hydroxyl radicals or lipid peroxidation. Figure 3 showed that water deficiency results in
a substantial accumulation in the H,O; level in the 15 and 25-day stress conditions. HyO,
has a maximum level of 2.27 mg/g observed in 25 days of drought and a minimum of
1.672 mg/g in 15-day drought sprayed with both AsA and «-toc. Thus, augmentation is
related to AsA and/or a-toc’s stress tolerance role. A substantial increase (p < 0.005) in
MDA levels was detected in all plants under drought conditions (Figure 3). The MDA
contents increased from 0.099 (T7) to 0.282 OD/mint/g in 25 days of drought. The upsurge
in the MDA level under drought conditions in oat plants is comparable to maize [42] and
wheat [43] reported previously.
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Table 4. Summary of analysis of variance (ANOVA) based on the physiological characteristics of A.
sativa grown under drought conditions.

Variables Source of Variation SS DF MS F P
Chl. a Treatment 0.169 12 0.435 4.374 0.001 ***
AsA + a-toc 0.125 5 0.767 3.685 0.002 **
Treatment x AsA + «-toc 0.182 12 1.434 7.574 0.000 **
Error 0.154 57 1.314 - -
Chl. b Treatment 0.672 12 0.985 14.335 0.002 ***
AsA + a-toc 0.212 5 1.085 7.465 0.001 **
Treatment x AsA + «-toc 0.169 12 1.442 10.905 0.000 ***
Error 0.191 57 1.404 - -
TCC Treatment 0.483 12 2.338 3.575 0.005 ***
AsA + a-toc 0.284 5 0.918 3.01 0.002 *
Treatment x AsA + x-toc 0.218 12 1.095 3.575 0.002 **
Error 0.769 57 0.318 - -
SSC Treatment 0.938 12 1.047 5.908 0.005 ***
AsA + a-toc 0.882 5 0.545 3.344 0.001 **
Treatment x AsA + «-toc 0.303 12 1.553 9.124 0.011 **
Error 0.154 57 1.424 - -
TPC Treatment 0.548 12 2.193 13.214 0.002 ***
AsA + a-toc 0.845 5 0.435 4.012 0.005 **
Treatment x AsA + x-toc 0.992 12 1.432 9.125 0.000 ***
Error 0.622 57 0.435 - -
SPC Treatment 0.769 12 0.871 9.453 0.005 ***
AsA + a-toc 0.313 5 1.767 10.454 0.002 **
Treatment x AsA + «-toc 0.422 12 1.435 3.901 0.000 ***
Error 0.622 57 1.993 - -
H,0, Treatment 0.391 12 2.656 12.465 0.011
AsA + a-toc 0.313 5 1.765 3.015 0.002 ***
Treatment x AsA + x-toc 0.958 12 2.096 4.01 0.016 **
Error 0.154 57 0.757 - -
GB Treatment 0.213 12 1.079 8.123 0.002 ***
AsA + x-toc 0.311 5 0.371 4.901 0.011 **
Treatment x AsA + x-toc 0.902 12 1 4125 0.002 **
Error 0.877 57 0.435 - -
MDA Treatment 0.655 12 0.427 10.224 0.002 **
AsA + a-toc 0.32 5 0.394 6.015 0.018 ***
Treatment X AsA + x-toc 0.146 12 1.435 4224 0.001 **
Error 0.664 57 1.885 - -
APOX Treatment 0.341 12 1.194 4121 0.011 *
AsA + a-toc 1.02 5 1.434 6.105 0.002 **
Treatment x AsA + x-toc 0.904 12 1.076 2.325 0.016 ***
Error 0.123 57 0.868 - -
SOD Treatment 0.324 12 0.536 4.232 0.005 **
AsA + a-toc 0.283 5 0.217 4.105 0.002 **
Treatment x AsA + «-toc 0.374 12 0.327 8.123 0.000 **
Error 0.755 57 0.975 - -
POD Treatment 0.662 12 0.214 19.104 0.002 **
AsA + a-toc 0.332 5 0.655 14.995 0.001 **
Treatment X AsA + x-toc 0.182 12 0.291 9.125 0.014 ***
Error 0.154 57 0.375 - -
CAT Treatment 0.623 12 1.075 5.885 0.005 ***
AsA + a-toc 0.359 5 0.98 5.215 0.001 **
Treatment x AsA + x-toc 0.973 12 2.085 4.225 0.002 **
Error 0.335 57 1.965 - -
GR Treatment 0.893 12 1.114 22.434 0.002 **
AsA + a-toc 0.372 5 0.538 14.034 0.005 **
Treatment x AsA + «-toc 0.182 12 0.212 - -
Error 0.553 57 0.634 5.104 0.002 ***

* Significant, ** More significant, *** Most significant.



Agronomy 2022, 12, 2296

10 of 16

SPC,SSC, TPC & GB content (mg g' FW)

3.5

2.5

1.5

0.5

CDEF

T0

uSPC uSSC mTPC uGB
o
=) m
T 9 <2 "
< I (¥ |59
:
@] ]
N <« frr 8 z 2
I m 5 I [a) (G} _I_ [84]
<« @ " <
E:
I I a s 6]
T1 T2 T3 T4 T5 T6 T7 T8
Treatments

Figure 2. Effect of AsA and/or «-toc on soluble protein content (SPC), soluble sugar content (SSC),
total proline content (TPC), and glycine betaine (GB) of A. sativa under drought stress. Different
alphabetical letters indicate significant differences among treatments at p < 0.05, according to the
LSD test. (T0) control: normal watering + 0 mg AsA and «-toc, (T1): 15 days drought + 0 mg AsA
and a-toc, (T2): 15 days drought + 200 mg AsA, (T3): 15 days drought + 200 mg «-toc, (T4): 15 days
drought + 200 mg AsA and o-toc, (T5): 25 days drought + 0 mg AsA and «a-toc, (T6): 25 days
drought + 200 mg AsA, (T7): 25 days drought + 200 mg «-toc, (T8): 25 days drought + 200 mg AsA
and «-toc.

3.6. Antioxidant Enzyme Activities

All physiological traits quickly decreased under the water deficit, while the activity of
protective antioxidant enzymes increased. GR also acts as a compatible molecule that aids
in moderating the antagonistic result of water scarcity by regulating the cytosol water level
or protecting biological cell membranes from ROS. A similar inclination was also detected
for GR, which improved from 0.548 in the control (T0) to 0.793 OD/mint/g in 25-day
drought stress (T5). The previous studies reported that the GB level amplified the drought
tolerance in wheat [44] and cauliflower [45]. SOD is responsible for the dismutation of
superoxide into HyO, or is considered to be first line of defense against ROS. Moreover,
the ability to adapt to drought conditions was linked to the maintenance of, or upsurges
in, the ability to detoxify superoxide radicals by SOD, which play a key role in protecting
plants from oxidative stress by increasing its activity. It is apparent that not only SOD but
also HyO, scavenging systems, as represented by CAT or APOX, are equally important
in preventing oxidative stress induced by water stress in bitter gourd. Oat plants grown
under water-deficit conditions showed pointedly high levels of APOX, POD, CAT, and
SOD in plants with no exogenous application of AsA and/or x-toc (Figure 4).
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Figure 3. Effect of AsA and/or a-toc on hydrogen peroxide (H,O;) or malondialdehyde (MDA) of
A. sativa under drought stress. Different alphabetical letters indicate significant differences among
treatments at p < 0.05, according to the LSD test. (T0) control: normal watering + 0 mg AsA and
a-toc, (T1): 15 days drought + 0 mg AsA and «-toc, (T2): 15 days drought + 200 mg AsA, (T3):
15 days drought + 200 mg o-toc, (T4): 15 days drought + 200 mg AsA and a-toc, (T5): 25 days
drought + 0 mg AsA and «-toc, (T6): 25 days drought + 200 mg AsA, (T7): 25 days drought + 200 mg
a-toc, (T8): 25 days drought + 200 mg AsA and «-toc.

The SOD was boosted from 0.193 in the control (T) to 0.253 OD/mint/g in 15 days
of drought (T1) and finally to 0.275 in 25 days of drought (T5) (Figure 4). In tolerant plant
species, antioxidant activities were found to be higher, enabling plants to protect them-
selves against oxidative stress [35], whereas such activities were not observed in sensitive
plants [46-54]. Similarly, POD or APOX activities also increased significantly (p < 0.05)
from 0.101 and 0.021 to 0.268 and 1.144 OD/mint/g in 25-day drought conditions (T5), re-
spectively. The catalase activity was reduced in all plants subjected to foliar applications of
AsA and «-toc and increased in plants subjected to drought stress with no foliar application
(T1 and T5) (Figure 4). Figure 4 shows that, as the water deficit period extended to 15 and
25 days, the GR content increased dramatically. The exogenous administration of AsA
and/or a-toc under induced drought stress significantly affected agronomic, physiological,
and defense system activation.

3.7. Pearson’s Correlation and Principal Component Analysis

With the exception of antioxidant activities, which were not interrelated with other pa-
rameters, the Pearson’s correlation coefficient demonstrates that all physiological variables
were positively associated with one another at p < 0.05 (Figure 5).



Agronomy 2022, 12, 2296

12 of 16

4.5 -

3.5 1

1.5 -

Enzyme activities (EU mg1)
N
(%)
1

AB

BCDE

CDE

CDE

= SOD

AB

BCDE

=POD

AB

BCDE

DE

= APOX

mCAT =GR

-]
<<

AB

AB

AB

DE

CD

BC

Q
0.5 4 << 08 m

TO T T2 T3 T4 T5 T6
Treatments

AB

BCD

DE

T8

Figure 4. Effect of AsA and/or «-toc on superoxide dismutase (SOD), peroxidase (POD), ascorbate

peroxidase (APOX), catalase (CAT), or glutathione reductase (GR) of A. sativa under drought stress.

Different alphabetical letters indicate significant differences among treatments at p < 0.05, according
to the LSD test. (T0) control: normal watering + 0 mg AsA and «-toc, (T1): 15 days drought + 0 mg
AsA and a-toc, (T2): 15 days drought + 200 mg AsA, (T3): 15 days drought + 200 mg x-toc, (T4):
15 days drought + 200 mg AsA and o-toc, (T5): 25 days drought + 0 mg AsA and «-toc, (T6): 25 days
drought + 200 mg AsA, (T7): 25 days drought + 200 mg x-toc, (T8): 25 days drought + 200 mg AsA

and o-toc.
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This connection demonstrates how these characteristics are highly dependent on one
another. The principal component analysis demonstrated the association of the physiologi-
cal parameters under drought stress. Leaf pigments and proline contents were negatively
correlated with most of the antioxidant enzymes, suggesting that oxidative stress reduced
leaf physiological processes. The projections of the cases on a factor-plane with the two prin-
cipal components (PC) were imaged as a consequence of the PCA, and the effectiveness
of separation in the case of the major factors was tested (Figure 6). PC1 in the experiment
demonstrated a distinct separation of AsA and/or a-toc treatments, accounting for 44.3%
of the total variance. The treatments and controls were apart, with minimal overlapping.
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Figure 6. Principal component analysis of different physio-biochemical characteristics of A. sativa
subjected to foliar sprays of AsA and/or a-toc under water deficit condition. Red squares indicate
the treatments from TO to T8.

4. Conclusions

Climatic change typified by global warming and drought is the primary impediment
to the productivity of many cereal crops, including A. sativa L. Researchers attempted
various traditional approaches and endogenous and exogenous applications to reduce
these implications. The current study shows that AsA and/or a-tocopherol can protect
the physiological functioning of oat crops from drought injury, with AsA being relatively
more effective. However, further studies are required to determine the best method of
AsA application. Furthermore, the present study carefully examined the physicochemical
parameters of water-constrained agricultural soil since there was a lack of research on the
effects of drought on soil properties.
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