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Abstract:

Neuroscientists rely on distributed spatio-temporal patterns of neural activity to
understand how neural units contribute to cognitive functions and behavior. However,
the extent to which neural activity reliably indicates a unit's causal contribution to the
behavior is not well understood. To address this issue, we provide a systematic
multi-site perturbation framework that captures time-varying causal contributions of
elements to a collectively produced outcome. Applying our framework to intuitive toy
examples and artificial neuronal networks revealed that recorded activity patterns of
neural elements may not be generally informative of their causal contribution due to
activity transformations within a network. Overall, our findings emphasize the
limitations of inferring causal mechanisms from neural activities and offer a rigorous

lesioning framework for elucidating causal neural contributions.
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Introduction:

The brain is a complex network of distributed computational units whose activity
profiles are assumed to reflect task-related variables, such as stimuli, or behavioral
responses, such as decision variables. Decades of neuroscientific research points
towards the abundance of task-relevant information in multiple spatial scales, from the
coordinated activity of large-scale brain networks (7, 2) to the firing pattern of individual
neurons (3, 4). For example, a line of research that started by the seminal work of Hubel
and Wiesel probing into the first regions in the cat’s visual cortex (5) suggests that
neuronal activity in the visual cortex adheres to a hierarchical organization (6). The
firing rate of neurons in the early visual cortices was found to be higher when simple
features, e.g., direction and movement, were presented in stimuli, while higher-order
regions are more engaged in increasingly complicated stimulus aspects such as faces
and objects (7). Moreover, recent studies with deep artificial neural networks (ANNs)
trained on images indicate a similar functional hierarchy, in which early layers encode
simpler features of the input image compared to the deeper layers (8). These findings,
supplemented by similar results from other sensory modalities such as the auditory
system (9, 70) further provide evidence that neural networks represent features of the
input in their activity profiles. An emerging line of work develops statistical and
machine learning methods to reconstruct the presented input using these encoded

representations (77).

In addition to this input-oriented view, which focuses on the relationship between the
given input and the neural activity, one can study the behavior-related representations.
In this case, the relationship between the activity pattern and the behavior is of interest
for finding units that represent variables related to the produced behavior (72). To name
one, the time point when a subject voluntarily moves her finger is decodable from the
single cell firing pattern of neurons in the cortical supplementary motor area (73). Just
as with the input-oriented view, emerging work develops algorithms to harness such
representations, providing accurate and fast Brain Machine Interfaces (74). Put
together, detailed analysis of neural activity patterns has proven fruitful in tackling a
fundamental question of how neural networks, be they artificial or biological, encode
and further use representations to produce relevant behaviors (75). Answering this

question, however, is challenging since there is yet to be a consensus to be derived on
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the meaning of representation (16). More relevant to this work, it is unclear whether and
to what extent recorded neural representations serve as a reliable indicator of which
unit is causally involved in the generated behavior (77-79). For instance, work by Schalk
and colleagues showed that the decodable information in the fusiform face area is
causally irrelevant to behavior (78). Additionally, a recent study by Tremblay et al. found
prevalent decodable task-related representations in causally irrelevant brain regions of
macaque monkeys (79). These findings imply a dissociation between what a region
represents and what it causally contributes to a given function. Said differently, it is not
yet clear to what extent recorded neural representations are informative for uncovering

which neural elements are causally contributing to a given function.

Other disciplines such as law (20, 217), economics (22), political, and military sciences
(23, 24), are similarly challenged by objectively quantifying to what extent members of
a coalition are effectively contributing to a commonly produced outcome. A game
theoretical solution known as the Shapley value was proposed by Lloyd Shapley that
addresses this issue (25). Defined simply, the Shapley value of a coalition member
represents the member’s fair share of the outcome produced by the whole coalition.
This value is calculated by adding the member to all possible combinations of other
members and averaging the value it adds to each grouping across all these
combinations (26, 27). To build an intuition of what the Shapley value represents,
assume an orchestra in which some members contribute similarly by forming sections
of similar instruments, e.g., strings, while others make distinct contributions by playing
solo instruments or by coordinating others, i.e., the conductor (Fig 1. B). Assume that we
can rearrange the orchestra by adding and removing all possible combinations of
players and using an objective metric to evaluate the performed piece for every

arrangement.
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Figure 1: Intuition behind the notion of causal contribution. A) The hypothetical performance score
given multiple arrangements of the orchestra. The intact network has the highest value while removing
the conductor produces the largest deficit. B) The hypothetical orchestra in which some members have
similar contributions, e.g., the string ensemble while others have distinct contributions given their role
in the performed piece. C) Hypothetical assignment of contributions to each member given
counterfactual scenarios where they were excluded from the orchestra. D) The hypothetical scenario
where a member could have a significant contribution during a limited time period, e.g., by performing a
short solo piece. The isometric orchestra of the panel B is adopted from the asset designed by
macrovector and is available on:
freepik.com/free-vector/orchestra-isometric-composition_5967228.htm

A higher value indicates a flawless performance, while a low value indicates an
unsatisfactory and erroneous performance (Fig 1. A). The Shapley value of each band
member is their effective or causal contribution to this measured metric, given their
contribution to every arrangement, such that the more they contribute to the
performance, the larger their Shapley values would be (Fig 1. C). Intuitively, the
conductor is expected to have a large Shaley value since, without him, the whole
orchestra could lose its synchrony and produce many errors. Additionally, individual
players in the string section are expected to have relatively smaller values, since the
effect of removing one string player is usually covered by the others. However, note that
the sum of their Shapley values can be large, since removing the string ensemble could
also greatly impact the orchestra's performance (Fig 1. A). Lastly, unprofessional players
that introduce errors are expected to receive negative Shapley values, since removing
them improves the performance. Therefore, the Shapley value represents the

proportional causal contribution of each member to the produced piece.

As a substantial constraint, however, the Shapley value is not time-resolved and, as the
name suggests, provides a scalar value describing each player's contribution to the

entire performance (28, 29). Thus, the value is insensitive to the temporal pattern in
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which the players contribute to the piece. For example, a cello player who is a part of
the ensemble might play an outstanding short solo piece (Fig 1. D). Yet, the Shapley
value assigned to her might still be mediocre overall, since other cello players in the
ensemble are playing the same notes, making her role redundant for most of the
performance. Moreover, the conductor's absence could tremendously impact the
orchestra at first but resolve after a while. Thus, the large initial disorganization might
inflate his Shapley value. Consequently, capturing these temporal nuances provides a
broader picture of effective contributions in the system, here, the orchestra. To
summarize, although Shapley values represent the causal contribution of elements in a
group to its outcome, they are presently static and do not provide information on the

temporal profile of an element's contribution.
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Figure 2. Schematic outline of the current work. In this study, we first introduced a game-theoretical
framework (MSA, see Fig. 4 for more information) to precisely characterize time-varying causal
contributions of elements in a given system. We then trained an ANN on a chaotic time-series
prediction task and compared the nodes’ causal contributions to the network’s outcome with the nodes’
activity profiles. We found considerable differences between these two metrics, which indicates the

limitations of inferring causal contributions from neural activity.
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In the present study, we first formalize a systematic perturbation framework to provide
the objective description of which element is doing what, i.e, their Shapley values, at
each time point. Put differently, our method accurately captures the time-varying causal
contribution of an element to the outcome of the coalition. Having an objective way of
quantifying causal contributions of each element at each time point, we aimed to tackle
the question presented above: To what extent are neural activity patterns causally
informative? We first use intuitive toy examples to show how downstream nonlinear
transformations applied to elements' activity profiles can obscure their causal
contributions. We then capitalize on the experimental accessibility of ANNs to perform
an extensive and systematic manipulation of every combination of nodes, capturing
their causal contributions (Fig. 2). Our results reveal considerable differences between
nodes’ recorded activities, i.e., what they represent by their activity, versus their actual
causal contributions, i.e., what they contribute to the produced behavior. Lastly, as with
the toy examples, we show that the downstream operations applied to these neural
activities could be a potential mechanism for the observed dissociation between a
node’s activity pattern and its causal contribution. Altogether, this paper provides a
framework for understanding when and how knowledge of neural activity may be

causally irrelevant.

Results

When activity patterns are causally uninformative

In this section, we aim to provide a tangible way of differentiating what a node
represents by its activity pattern and what it causally contributes to the produced
outcome. To do so, it helps to first introduce an important property called ‘efficiency’
that is uniquely satisfied by Shapley value compared to other game theoretical solution
concepts for allocating contributions (25). A solution, i.e.,, a framework to assign causal
contributions, is efficient, if the sum of contributions equals the value of the grand
coalition (3®). In other words, if the solution is efficient, then it is possible to formulate
the problem starting from the outcome and consider the process as a decomposition of
the outcome to its constituting building blocks. Assume three friends paid thirty dollars

for a shared expense, then the efficient allocation of expenses should necessarily


https://doi.org/10.1101/2023.06.06.543895
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.06.543895; this version posted June 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

assign contributions that sum up to thirty dollars. Reformulating this example, the thirty

dollars should be divided among the three friends such that no surplus or deficit is left.

To summarize the point, the causal role of a player can be defined as its effective
contribution to the outcome, such that the outcome is decomposable to these
constituting contributions without any leftover surplus or deficit. If the sum of the
contributions results in a different outcome, then probably the decomposition process
missed unaccounted contributions from unseen players. Moreover, note that what is
meant by causal contribution depends on what is measured. For instance, we can adjust
the orchestral example above by aiming to uncover which member played what instead
of how much they contributed to the previously mentioned objective metric. In this
case, the performed orchestral piece is decomposable to its constituting individual
instruments, since it is made of nothing else but these individual instruments. Thus, it
is possible to define contribution to arbitrary metrics, e.g., to the ‘goodness of
performance’ or the piece itself. The implications of this aspect will be further explored

in the Discussion.

For the intuitive toy examples, we started by generating 30 sine-waves with various
frequencies and amplitudes as independent inputs to a hypothetical neuron (Fig. 3. A).
For the first example, the neuron simply summed these input activities to produce its
outcome (Fig. 3. B). We then utilized multi-perturbation Shapley value analysis (MSA;
Fig. 4) to derive the causal contribution of each input to the produced output signal
(Fig. 3. C). Expectedly, we recovered the provided input signals simply because, in this

example, the output signal was a linear summation over the inputs.

In the second example, however, the neuron is modeled to first sum the inputs, as
before, but then multiply the combined input by a factor of two (Fig. 3. D). In this case, a
downstream transformation was applied to the combined inputs to produce the
outcome. MSA captured the transformation, and the amplitude of the contributions was
twice as large as the input signals (Fig. 3. E). Here, summing the given input resulted in
the first example’s outcome, while summing the contributions resulted in the second’s
(the gray thicker line in Fig. 3. B and D, respectively). The downstream multiplication
applied to the input activities introduced the difference here. Note that the

contributions still correlate perfectly with the input signals since each value is just
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doubled, and the global structure of the new outcomes remains intact. Said differently,
the causal contribution of each input node to the produced outcome is not equal to the
activity patterns they have produced, ie., the sine waves. The hypothetical neuron
multiplied each input activity by a factor of two to produce the outcome, thus, the

effective contribution to the outcome is doubled at each time point.
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Figure 3. Difference between causal contributions and activity profiles in three toy examples. A)
We first produced 30 sinusoidal waves with various frequencies and amplitudes. We called these time
series building blocks. B) For the first example, we summed the building blocks that resulted in a new
time series that we called the combined time series (teal). C) Employing MSA showed that the causal
contributions (red) and the activity profiles (the building blocks; deep blue) are indistinguishable.
Summing the contributions resulted in the combined time series (gray) since no downstream
transformation was applied. D) For the second example, we multiplied the combined time series by a
factor of two, which generated a new time series with a larger amplitude. E) Using MSA, we uncovered
the causal contributions and found them to be twice as large as the building blocks, yet retaining a
perfect linear relationship (purple), since the structure of the time series remained unchanged. Here,
summing contributions resulted in the combined time series with a larger amplitude due to the
downstream multiplication operation. F) For the last example, we passed the combined time series
through a nonlinear function that resulted in a warped signal. G) with MSA, we found the causal
contributions to be also warped. Consequently, the trajectory in the contribution-activity space is more

complex. In this case, summing the contributions reconstructed the warped time series.
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These two examples were intuitive, and it was easy to imagine the outcomes. To explore
a non-obvious case, the third example depicts a conventional ANN neuron that
combines the input and passes the result through a nonlinear hyperbolic tangent (tanh)
function. In this case, the output is warped to fit within a range of -1 and 1 (Fig. 3. F).
Applying MSA revealed that the contributions were also warped, and the relationship
between the input and the contributions did not remain as trivial as in the previous
cases. Note that the contributions were not warped as if they were separately passed
through the nonlinear activation function. In other words, the order of operations
matters. The transformation was applied to the combined input as a downstream
operation, where, as observers, we have lost track of what happened to the individual
input. MSA uncovered the impact of the downstream transformation on each input
signal. Put simply, individual contributions were warped to produce the warped
outcome. This conclusion is derived from the fact that the framework is efficient, and

summing all contributions reconstructed the warped outcome (Fig. 3. F; gray line).

To summarize the results from this section, we first generated several sinusoidal waves
as inputs to a hypothetical neuron. We showed that the only case where the input
directly and fully contributed to the outcome of the hypothetical neuron was when they
were simply summed to produce the outcome. We then introduced an example where a
downstream transformation was applied by the neuron, here, multiplying the combined
input to produce the outcome. We found that the causal contribution of each input to
the output was also multiplied by a factor of two. Lastly, we introduced the common
scenario in which the neuron combined the input and passed the results through a
nonlinear function (tanh). We found an unintuitive impact of such downstream nonlinear
transformations on the individual input signals. In the next section, we investigate how
such nonlinear transformations result in warped causal contributions of neurons to the

outcome of an ANN.

Comparing representations and causal contributions in a neural network

We used a compact echo state network (ESN), that is, a class of recurrent neural
networks in which the hidden layer remains unaltered during the training. We trained
the network on a chaotic time series prediction task. Briefly, in this generative mode of

the ESN, the network was presented with a teacher signal and had to learn a black-box
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model of the chaotic time-series generator. After disconnecting the teacher, the model
had to produce future values of the teacher sequence (Fig. 4). Each neuron in the ESN
produced representations that exhibit unique variations of the teacher signal. These
representations were used by the readout mechanism to perform the task and produce
the output time series (i.e, the outcome of the game from a game-theoretical
standpoint). Exploiting this plain model, we could investigate the impact of the
transformation applied by units to other units and by the output layer to all of them. The
question was posited before: do nodes’ activity patterns readily provide causally
relevant information regarding the produced output? We hypothesized that a node’s
causal contribution is a deformed version of its recorded activity, as in the nonlinear toy
example. Therefore, we expected the recorded activity to be dissociated from, but still a

good indicator of, causal contributions.
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Figure 4. Visual abstract of the MSA algorithm and the experiment. The experimental setup is
depicted on the top. The ESN was trained on a time series prediction task in which a chaotic time series
was fed into the network, and a readout layer was trained on the produced representations (deep blue)
of the hidden layer. After the training, the teacher sequence was disconnected, and the network was
expected to generate the future time steps of the time series (teal). Note that in ESNs, the hidden layer
remains unaltered during the training session. The rest of the figure depicts the MSA algorithm that was
employed to compute the causal contribution of each neuron in the hidden layer. MSA samples the
space of all possible combinations of node groupings to estimate nodes’ causal contributions (red). To
do so, it first permutes the players and expands each permutation configuration to dictate which
combinations should be perturbed. In this schematic example, to acquire the outcome produced by
BCA, the example player D was removed from the game. Then to have the outcome of BC, nodes D and
A were perturbed. Therefore, MSA produces a multi-site perturbation dataset that contains the outcome

produced by potentially tens of thousands of unique node groupings. To then isolate the contribution of
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individual nodes to each of these groupings, MSA contrasts two cases where the target node was
perturbed and where it was not. The causal contribution of each node to the network's outcome is then
the average of the node’s contributions to all groupings. Algorithm 1 (see Multi-perturbation Shapley

value Analysis in Materials and Methods) describes the MSA computational pipeline.

Employing MSA and comparing causal contributions with neural activity patterns
confirmed the first part of our hypothesis, i.e, the dissociation of the recorded activity
from the effective causal contribution. However, as (Fig. 4. B and C) depict, the causal
contribution of each node had a stark difference from its recorded activity. In other
words, what a node did for the produced output signal was not trivially apparent from its
activity pattern. For example, while node #32 had a faintly fluctuating activity profile, its
effective contribution to the produced time series was considerably large. This means
that the almost negligible activity of this node was highly transformed by downstream
operations. Additionally, as with the toy examples, summing all causal contributions
reconstructed the output signal (the thicker gray line in Fig. 5. A), indicating that MSA
allocated the contributions correctly. As a sanity check, we ran the same analysis
without perturbing the network and hypothesized the contributions to be zero at each
time point. The rationale behind our hypothesis was the following: to compute the
contributions, MSA systematically perturbs combinations of nodes and contrasts the
setting where a target node was perturbed versus where it was not (Fig. 4). The
difference is then assigned to be the node’s contribution to that particular group of
intact nodes. If during this contrasting step, no node is removed, then the contributions
of nodes are not isolated. In other words, the contrast will be between two groupings of
the same configuration with no difference. The results have validated our hypothesis,
and none of the nodes had any contribution to the produced output. (Supplementary

Fig. 3).
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Figure 5. Difference between causal contributions and representations in the ESN. A) The line in
teal shows the produced outcome (time series) by the network. Summing the uncovered causal
contributions (red in panel B) perfectly reconstructs this outcome. B) Activity profiles (deep blue) of
three exemplar nodes and their corresponding causal contributions are plotted for comparison. Note
that node #32 is not completely silent but has a small range of [-0.0003, 8.007] that, relative to its
causal contribution, is visually negligible. Due to the large downstream operations applied by other
nodes and the readout layer, the relationship between causal contributions and neural representations
(purple) is far less trivial compared to our linear toy examples (see the same plot in Fig. 4). C)
Histogram of the Pearson’s correlation coefficient between every node'’s activity profile and its causal
contribution. On the right side, three examples with the largest positive, largest negative, and no
correlation are plotted. Note that the activity profiles are very similar across these three nodes, while

their contributions are far more diverse.

So far, we have shown a dissociation between the nodes’ activity profiles and their
causal contributions to the produced outcome signal. With the toy examples, we
showed that the downstream nonlinear operations were responsible for this observed
dissociation. Our ESN example also has a downstream transformation function, i.e,, the

readout layer. The readout layer is a regression model with a weight assigned to each
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neuron of the hidden layer. To see if the assigned weight can explain the observed
relationship between nodes’ recorded representations and their causal contributions,
we plotted this relationship for three cases: the smallest absolute readout weight, the
largest absolute weight, and one in between (the median of the weight distribution). As
depicted in Fig. 5, the activity pattern of the node with the largest readout weight (node
#22; in red) had a relatively small range, while its causal contribution had a large
variation, forming a stretched point cloud laying on the y-axis. Interestingly, this
relationship had the opposite trend for the node with the smallest weight (node #12;
deep blue). The point cloud was stretched on the x-axis since, relative to node #22, its
contributions had a smaller variation while its activity profile had a larger variation.
Lastly, the node with a weight in between also had a round and comparatively less
stretched point cloud between these two extremes. We confirmed the robustness of this
finding by running the analysis 50 times with different random seeds, which resulted in
the same pattern (Supplementary Fig. 1). This finding suggests a relationship between
the weights assigned to the readout layer (trained by fitting a linear regression model)
and the casual contribution of each node to the output, such that large weights had
scaled the representations more. Note that this finding can be seen as a mixture of the
second and third toy examples. In the second example, the contribution was stretched
due to a scaling operation (here, by the readout weights), and in the third, they were

warped by the tanh operation (here, by interactions with other nodes; Fig 3. E, G).
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Figure 6. The relationship between readout weights and the transformation of representations.

13


https://doi.org/10.1101/2023.06.06.543895
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.06.543895; this version posted June 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

The trajectory of three nodes in the contribution-activity space is plotted with respect to their assigned
readout weights. The node with the largest weight is plotted in red, and the one with the smallest is
plotted in dark blue. The light blue depicts the same relationship for a node that was assigned the
median value of the weight distribution. Note that the primary axis of variation is switched from causal

contributions for the red to activity for the dark blue, while the light blue is comparatively more circular.

To summarize this section, we trained a compact ESN on a time series prediction task,
having a recurrent network that produced a time series while receiving no input. We
then applied MSA to uncover the causal contribution of each node to the output
sequence and compared them with their corresponding recorded activity. We found that
the activities were heavily deformed, and what was recorded from each node did not
correspond to what the node did for producing the outcome time series, ie, the
behavior. Lastly, we investigated the role of the output layer and found that, as with the
toy examples, the downstream operation applied to these recorded activities could be
the mechanism behind the observed dissociation. Next, we discuss our findings and

their implications for neuroscience.

Discussion

In this study, we investigated a fundamental question: to what extent are recorded
neural patterns causally informative of a produced behavior? To do so, we utilized a
game theoretical framework, MSA, that derives the players’ fair causal contributions
from their added contributions to all possible combinations of which players form
coalitions. We then used three simple toy examples to build an intuition for when and
how the effective causal contribution of a player may dissociate from its recorded
activity. We showed that the downstream operations applied to these activity patterns
are the source of the observed dissociation, with nonlinear operations having the

largest impact.

Next, we applied the same pipeline to a neural network trained for solving a chaotic
time series prediction task. We found that the recorded representations from neurons
of the hidden layer differed considerably from their effective causal contributions to the
produced output. Lastly, we were interested to see if the strengths of the readout

weights in the trained network could explain the observed trajectory in the
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contribution-activity space. We found that the node with the largest weight also had a
relatively large variation in its contribution profile, even with a faintly fluctuating activity
profile. We also found the opposite trend for the node with the smallest assigned
weight. It fluctuated greatly in the activity domain, but not with its causal contribution.
Put together, we showed that what neurons did for the behavior (i.e., their causal
contributions) was not necessarily apparent from what they did in the network (i.e., their
recorded activities). To elaborate, the network's output, which is simply obtained from
multiplying the readout weights by the activity traces of the reservoir neurons, can also
be reconstructed by summing up the contributions of all neurons to the behavior, here,
the generated time-series. The difference between the activity and contribution of
individual nodes, therefore, derives from the change in nonlinear interactions between

reservoir nodes after perturbing neuronal ensembles containing a given target node.

Our work demonstrated that having access to the output (i.e.,, the network behavior) and
the recorded activities in a simple neural network without knowing the downstream
operation that produces the output does not suffice to quantify the contribution of each
neuron to the behavior. As argued by Barack and Krakauer “The transformations of
representations are essential for understanding cognition but are often overlooked [...]
To explain how behaviour is generated, [...] the transformations must be identified and
their neural realizations described.” (31) Therefore, ignoring downstream
transformations could potentially hinder one’s attempts to understand who is doing
what in artificial neural networks and, to an ever greater extent, in brains. It is important
to emphasize the role of transformation here. The fact that units in artificial and
biological neural networks transform information is well established (32-34). Such
systems can solve complicated tasks, probably because of their ability to harness the
encoded representations to their advantage. For example, synergistic and
non-redundant information is shown to be more dominant in higher-order cortical
regions in the human brain, such as the prefrontal cortex (35), and in the deeper layers
of a multi-layer neural network (36). In other words, higher-order regions and deeper
layers of ANNs have unique and synergistic contributions to the outcome that can be
due to the transformation of information along the computational chain. In ESNs, it is
shown that the performance benefits from a reasonably diverse set of representations

of the external stimuli (37). Thus, even though the prominent role of transformations in
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neural computations is well accepted, it is often neglected or downplayed when

connecting neural activity to behavior (38, 39).

It is also important to emphasize the role of the quantified metric. As briefly mentioned
in the Introduction, one can measure the contribution of the elements of a system to
some function that quantifies an aspect of the system’s output, for instance, the
performance score (28), or the energy of the output signal (48). We also noted that we
could quantify the contribution of the elements to the output itself, thus bypassing the
intermediate descriptive function. This is what we did in this study by computing the
contribution of each node to the produced output signal itself. The difference is subtle
but crucial since one is a direct deconstruction of the produced outcome while the
other is a deconstruction of the description. Employing MSA on the performance score
would then provide a ranking of nodes, in which the more a node contributes to the
performance, the higher the value it acquires (29). In that case, the contributions would
sum up to the performance of the intact network, thus deconstructing the performance
score and not the outcome itself. We believe that none of these approaches is
necessarily better than the other, but they are complementary, and their advantages
depend on the scientific question. One could expand our work, for instance, by ranking
nodes based on their contribution to the outcome and comparing the ranking with their
contributions to a metric that is based on the outcome, e.g., performance. Are those
nodes that contribute largely to the outcome and those that contribute largely to the
given metric the same? How do different metrics capture various aspects of a node’s
role in the network? For example, a study could be formulated to capture the
contribution of each node in an ANN to its performance, the stability of its internal
dynamics, the produced outcome itself, and the global efficiency of communication in
the network. Comparing nodes’ contributions to many facets of a network would then

provide a far more comprehensive picture of which node is doing what and how.

ANNs aside, neuroscience relies heavily on activity patterns to infer the functional
significance of some neuronal elements for the measured behavior (47, 42). These
datasets are becoming steadily larger and more detailed, but many are yet to capture
the whole brain (43). Our work suggests that in such cases where the downstream
operations are hidden, the functional inference should be treated with caution since it

is unclear if the recorded activity remains causally relevant. Even in cases where the
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entire brain is under scrutiny, we believe the inference could be drawn without causal
claims, since a proper causal understanding of a system requires systematic and
extensive multi-site manipulations of the involved units (28, 44). Our method, MSA,
attempts to provide such a causal understanding by performing the required extensive
manipulation at the expense of a relatively high computational cost. Moreover, it is
unclear how causal contributions relate to the latent population manifold, uncovered by
applying dimensionality reduction techniques on large-scale neural data (74). This
relationship requires further detailed analysis, but it is a central question that needs to
be addressed since it can lead to computationally cheaper estimations of causal

contributions.

Here we emphasized on one network and one task for simplicity. However, we explored
a separate network solving a frequency generator task where, in contrast with the main
network, the exact unfolding of the target time-series is irrelevant. Our objective was to
design a tunable frequency generator that utilizes the amplitude of a step function in
the input to enforce the desired frequency in the output. That is, the output of the
network consists of a single sinusoidal wave, with its frequency varying across different
intervals. In this network too, we observed a dissociation between units’ activity profiles
and their causal contributions (supplementary Fig. 4). However, to maintain a concise
work and communicate a singular message, we made multiple exploratory analyses,
including the differences in frequency components between the two signal sets,
available in the accompanying Jupyter Notebook. Further investigation is necessary to
systematically examine the relationship between the causal contributions of nodes and
their activity profiles in both the frequency domain and time-frequency domain.

Additionally, in this work, both for our toy examples and the ESN experiments, we only
applied one transformation to the recorded activities. It would be interesting to expand
the current work by incorporating more complicated networks with deep architectures
and tracking the amount of which the encoded representations transform as they
propagate through a chain of nonlinear operations. Based on our findings in this paper,
we hypothesize that the connection between representation and contribution becomes
weaker with each layer until it reaches a point where the difference is maximal and
roughly stable. It would be interesting to then investigate at which point each unit
reaches its saturation point and why. Additionally, one can expand the current work by

applying MSA on a network that solves multiple tasks and captures the contribution of
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nodes to each task. In this way, it is possible to disentangle when nodes are engaged in
which tasks or if there are nodes that contribute dominantly to a specific task. Lastly,
our network produced a vector (time-series) as its behavior, which resulted in a vector
for the causal contribution of each node. It would be exciting to expand the
contributions to higher dimensions. For example, what would be the causal contribution
of a node in a generative network that produces a picture? In that case, each
contribution will also be a two-dimensional image that, when summed up with other
contributions, reconstructs the network's output image. Would then nodes contribute to
specific features of the image, such as the ears of the produced cat image, or would
their contributions be something similar to eigenfaces, encoding a general scheme of

the produced image?

To conclude, our work suggests that what neurons in an ANN represent might not
necessarily and trivially map to what they causally contribute to the network’s functional
output. Moreover, we provide a possible mechanism for when and how neural activity
could become causally irrelevant. Lastly, we introduce a rigorous framework to capture

precisely what neurons contribute to behavior, in a time-resolved manner.

Materials and Methods:

In this work, we mainly used two Python libraries. Echoes to implement our ESN (45)
and MSApy, which is the Python implementation of the MSA framework (46). The code
to reproduce the experiment and the supplementary analyses can be found in the
GitHub repository below:

https://github.com/kuffmode/contribution-modes

Intuitive toy examples

To conduct our intuitive toy example, we initially generated a set of 30 inputs with the

b= T

general form of z(t) = Acos(wt + @) Al signals have a similar phase, 2. The

amplitude, A, and frequencies, w are, respectively, sampled from
A=1{02, 0.6, 1, 1.4, 1.8} and W= {1, 2.5, 4, 5.5, 7, 8-5}. Given this small
dataset (see Fig. 2), we considered three linear and nonlinear output functions as

i (t) = B2y 2:(t), v2(t) = 251(t), ana ys(t) = tanh(yi(t)),
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The echo state networks and the experimental setups

Echo state network is a multilayered artificial neural network originally proposed for
learning black-box models of nonlinear systems (37). The core component of this model
is a recurrently connected hidden layer (known as the reservoir) that receives external
stimuli from an input feed-forward layer. If the connectivity profile within the reservoir
is sparse, and the reservoir weight matrix fulfills certain algebraic properties in terms of
singular values, internal units of this dynamical system work as the so-called “echo
functions” and display unique variations of the input sequence with substantial memory
contents (47). The echo signals are subsequently used to train a feed-forward readout
layer that is the only trained part of the network. In contrast to traditional RNN training
methods, where the recurrent weights in the hidden layer are gradually adapted to tune
the network toward the target system, the ESN principle suggests leaving
input-to-reservoir and the recurrent reservoir-to-reservoir weights unchanged after a
random initialization and only optimizing the reservoir-to-output weights during
training. Depending on the task, randomly generated fixed feedback connections

(output-to-reservoir) may also be included in the architecture.

Given an ESN with N: leaky-integrator neurons driven by a multidimensional input

Nu . . .
signal u(t) e R , the network state update equation is described by Eq. 1,

x(t) = (1 —a)x(t — 1) + fF(WPu(t) + Wx(t — 1) + WPy (t —1)), (1)

No . . . .
where x(t) eR is the time-dependent Nz -dimensional reservoir state and a > 0

c RNxXNu

denotes the reservoir neurons' leakage rate. The W € RY=xNz yyin and

WP e RN*Nu indicate internal (reservoir-to-reservoir), input-to-reservoir, and

feedback (output-to-reservoir) weight matrices, respectively (48).

The internal states are updated via the nonlinear function, f and the output

y(t) € R™ is obtained by

y(t) = g (W [x(t); u(t)]) 2)
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X (Ng+Ny,)

where § denotes an output activation function and W?“ ¢ R is the

trainable readout weight matrix. In this equation, the extended system state,

z(t) = [x(t);u(?)] is computed by the vertical vector concatenation, [-5-], of the

reservoir states and external input vectors.

In this study, we conducted the ESN approach on a task of chaotic time series
prediction (37). The objective is to learn a black-box model of the Mackey-Glass
generating system that can forecast some future values of the sequence. We designed
an ESN with a single neuron in input and output layers and a reservoir with a
small-world topology. During the training, a fixed, low-amplitude DC signal was fed to
the input as bias, and the teacher signal generated by the Mackey-Glass time-delay

differential equation (Eq. 3) was presented to the output neuron.

dr 0.2r(t — 1)
dt — (1+r(t—71)0—0.1r(2)) 3)

The reservoir neurons are excited by this teacher signal through the output feedback
connections and, after a short transient period, start to exhibit unique nonlinear
transformations of the teacher sequence. The read-out weights were computed through
linear regression of the target output on these internal activation traces to minimize the
least square error between the desired outputs and the network’s output signal. After
training, the ESN was disconnected from the teacher and left running freely. For testing,
a 500-step continuation of the original Mackey-Glass signal was computed for
reference, and the mean square error between the target outputs and the network’s
output was reported. Following the literature, we set the time delay 7 = 17 and
simulated Eq. 3 using the dde2 solver for delay differential equations from the
commercial toolbox MATLAB.

We used a 2500-step Mackey-Glass sequence for training and validation. The spectral
radius of the internal weight matrix, £, and the neurons' leakage rate, a, were optimized
by performing an extensive grid search on 50 independently created 36-unit ESNs with

the same small-world topology. We applied the hyperbolic tangent function,

f)= tanh(.), for the reservoir neurons and an identity function for the readout node.
Lastly, the trained network had a Mean Squared Error (MSE) of 8.8049, and the optimal

spectral radius was found to be 0.66.
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We conducted additional experiments on a second echo state network that was trained
to perform a tunable frequency generator task. The input signal, U(”), was a slowly

varying frequency setting, while the desired output, y(n), was a sine-wave of the
frequency determined by the input. The input was a slow random step function, ranging
from 1/25 to 1/5 Hz, and the ESN was trained on this data to produce sine-wave outputs
for slow test input signals. We utilized a 2100-step input sequence for training and

validation. To prevent any leakage from the previous time-point, we set the neurons'

leakage rate, a, to 1 (see Eq. 1). The hyperbolic tangent function, f() = tanh(‘), was
applied to both the reservoir neurons and the readout node. We performed an extensive
grid search on 50 independently created 100-unit ESNs with random topology to
optimize the spectral radius of the internal weight matrix, finding the optimal value to
be 0.26. The length of the test signal was 900 steps and the trained network achieved
an average MSE of 0.198 with a standard deviation of 8.836 over 500 trials. Notably,
despite the differences in amplitude between the target signal and network predictions,

the frequency was generated accurately at all intervals.

Multi-perturbation Shapley value Analysis

MSA builds upon the Shapley values. The Shapley value is an axiomatic game
theoretical concept that derives the fair and thus stable allocation of contributions
among players of a coalition given the produced outcome by the coalition (25). In other
words, the Shapley value of a player is its fair share of the outcome, proportional to its
contribution to producing the outcome. Thus, players who contribute more will be
allocated larger Shapley values, while those who do not contribute receive zero.
Moreover, players who hinder the outcome receive negative values, which means that
by removing them from the coalition, the outcome was increased. Theoretically, Shapley
values are calculated by adding a player to all possible groupings (coalitions) of other
players and tracking the outcome (26, 29). That is, given a coalition set, S, the player, 1,
and the game, (&, with the outcome v, the contribution of the player to the coalition is

computed as

A(S) = v(S U {i}) — v(S). (4)
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In a game with N players, there exists ! possible orderings, R, with length N.
Therefore, the collective contribution of the player ¢, is defined as the average of its

contribution over the set of all possible orderings, R, in all the coalitions to which the

player is included (i.e., Si))

Yi(N,v) = ]\1,, > A (Si(R)), (5)

"RER

In practice, however, reaching an analytical solution to Shapley value in large sets is
computationally prohibitive. Therefore, following the literature (26, 27), our
implementation of MSA employs an unbiased estimator that randomly samples
orderings from the space of N! possible combinations. Throughout this study, we used
a sample size of m < N! that reduces the nhumber of perturbations to N x m unique
combinations for each player and N? x m in total. The MSA iterates over the produced
combinations and removes the rest of the coalition to isolate the target grouping. Next,
it extracts the outcome of each target grouping by playing the game. Lastly, it
calculates the contribution of individual players to each of the groupings by contrasting
the case where the player was in the grouping and where it was taken out alongside the
rest of the removed players. After this step, the contribution of each element to each of
these groupings is available. The Shapley value of each player is then its average
contribution to all the sampled orderings, R. Algorithm 1 and Fig. 3 provide the
pseudocode and a visual explanation of the MSA method.

Depending on the game, the outcome, v/, can be either a scalar value or a vector. In

this study, we simply defined the outcome as the temporal activation trace of a

predefined target node in a given network, zi(t). To be more clear, in our toy example
on N temporal sequences, we implemented a perturbation by simply omitting
activation of the contributing input from the sum operation that produced the

combined time series (see section Intuitive toy examples below). Formally, in the intact
— N . . Y7 f— N .
case, y(t) = Ej:lmﬂ(t), whereas for the i-perturbed case, gt) = Xy (1),

Therefore, applying Eq. 4, A; = y(t) - Q(t)

In our ESN experiments, we trained the intact network on the reservoir neuronal

. Nz .. .
activities X(t) € R™ and stored the activity traces and readout weights for further

22


https://www.codecogs.com/eqnedit.php?latex=N#0
https://www.codecogs.com/eqnedit.php?latex=N!#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=N#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cmathcal%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=S_%7Bi%7D))%3A%20%20#0
https://www.codecogs.com/eqnedit.php?latex=N!#0
https://www.codecogs.com/eqnedit.php?latex=m%20%3C%20N!#0
https://www.codecogs.com/eqnedit.php?latex=N%20%5Ctimes%20m#0
https://www.codecogs.com/eqnedit.php?latex=%20N%5E%7B2%7D%20%5Ctimes%20m%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cmathcal%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=x_%7Bi%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=N#0
https://www.codecogs.com/eqnedit.php?latex=%20y(t)%20%3D%20%5CSigma_%7Bj%3D1%7D%5E%7BN%7D%20x_%7Bj%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7By%7D(t)%20%3D%20%5CSigma_%7Bj%3D1%2C%20j%20%5Cneq%20i%7D%5E%7BN%7D%20x_%7Bj%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta_%7Bi%7D%20%3D%20y(t)%20-%20%5Chat%7By%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bx%7D(t)%20%5Cin%20%5Cmathbb%7BR%7D%5E%7BN_%7Bx%7D%7D#0
https://doi.org/10.1101/2023.06.06.543895
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.06.543895; this version posted June 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

analysis. We then conducted our MSA algorithm to calculate the contributions of each
node to the output signal (behavior) of the intact network and to create a

contribution-activity phase space as follows:

z;i(t) = F(x(t —1), W, u(t)) i
%(N7 v, t) = GR(F(X(t - 1)7 W?“(t))7 R)

In this equation F' represents the nonlinear operations that govern the ESN dynamics

and G denotes running the ESN algorithm on the network instances with perturbed

nodes. Here, W stands for reservoir weight matrix after perturbing a given node, ¢, by
setting its incoming and outgoing connection weights to zero. The game, G, is played
as many times as the number of all the sampled orderings, R. To keep the network
stable after perturbations, we permitted the readout layer to be retrained after each
perturbation. This allowed the network to adjust itself with the perturbed dynamics of
the hidden layer as far as possible and remain functional as long as the perturbation
was not severe. See the supplementary Fig. 3 for the case where this fine-tuning step
was omitted. Note that the fine-tuning of the readout layer did not impact the pattern
depicted in Fig. 5 since repeating the analysis with 50 different random seeds yielded

the same results (Supplementary Fig. 1).
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Algorithm 1 Multi-perturbation Shapley analysis

Input: Number of players N, the game, G

Generate an ordering set, R, with m samples including N players
for each ordering R € R do
Generate 2V coalitions, S(R)
for each coalition s € S do
Lesion the players absent in the s
Play the game, GG, with players present in the s
Record the outcome of the game, v/
end for
end for
for each player i € 1,..., N do
for each ordering R € R do
Compute contribution of the player: A;(S;(R)) = v(S:;(R) U {i}) —v(Si(R))
end for
Compute average of the contributions of the player to all ordering:
YN, v) = 7 2 A (Si(R))
end for
Return contribution of all players v(N,v)
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Supplementary Figures:

Supplementary Figure 1: Testing with 50 different MSA random initialization. Colors and axes
follow Fig. 5 with median weight plotted in black for clarity.
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Supplementary Figure 2: Playing games without perturbation. Activity profiles and causal
contributions of the same three example nodes as in Fig.4 are plotted for comparison. Note that the
contributions are all zero.
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Supplementary Figure 3: Playing without retraining the readout layer. Causal contributions of all
36 nodes in the hidden layer. On the left, the fine-tuning step was omitted, and thus the network
became dysfunctional given any small perturbations (note the y-axis). In right, the readout weights were
allowed to adjust to the disrupted dynamics, and thus, the network could still generate a reasonable
output signal.
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Supplementary Figure 4: Contributions and activity profiles of a separate network solving a
frequency generator task. Activity profiles and causal contributions of three example nodes in a
separate network are plotted for comparison. As with the main network, the relationship between a
node’s contribution and its activity profile is nontrivial.
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