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Abstract:

Neuroscientists rely on distributed spatio-temporal patterns of neural activity to

understand how neural units contribute to cognitive functions and behavior. However,

the extent to which neural activity reliably indicates a unit's causal contribution to the

behavior is not well understood. To address this issue, we provide a systematic

multi-site perturbation framework that captures time-varying causal contributions of

elements to a collectively produced outcome. Applying our framework to intuitive toy

examples and artificial neuronal networks revealed that recorded activity patterns of

neural elements may not be generally informative of their causal contribution due to

activity transformations within a network. Overall, our findings emphasize the

limitations of inferring causal mechanisms from neural activities and offer a rigorous

lesioning framework for elucidating causal neural contributions.
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Introduction:

The brain is a complex network of distributed computational units whose activity

profiles are assumed to reflect task-related variables, such as stimuli, or behavioral

responses, such as decision variables. Decades of neuroscientific research points

towards the abundance of task-relevant information in multiple spatial scales, from the

coordinated activity of large-scale brain networks (1, 2) to the firing pattern of individual

neurons (3, 4). For example, a line of research that started by the seminal work of Hubel

and Wiesel probing into the first regions in the cat’s visual cortex (5) suggests that

neuronal activity in the visual cortex adheres to a hierarchical organization (6). The

firing rate of neurons in the early visual cortices was found to be higher when simple

features, e.g., direction and movement, were presented in stimuli, while higher-order

regions are more engaged in increasingly complicated stimulus aspects such as faces

and objects (7). Moreover, recent studies with deep artificial neural networks (ANNs)

trained on images indicate a similar functional hierarchy, in which early layers encode

simpler features of the input image compared to the deeper layers (8). These findings,

supplemented by similar results from other sensory modalities such as the auditory

system (9, 10) further provide evidence that neural networks represent features of the

input in their activity profiles. An emerging line of work develops statistical and

machine learning methods to reconstruct the presented input using these encoded

representations (11).

In addition to this input-oriented view, which focuses on the relationship between the

given input and the neural activity, one can study the behavior-related representations.

In this case, the relationship between the activity pattern and the behavior is of interest

for finding units that represent variables related to the produced behavior (12). To name

one, the time point when a subject voluntarily moves her finger is decodable from the

single cell firing pattern of neurons in the cortical supplementary motor area (13). Just

as with the input-oriented view, emerging work develops algorithms to harness such

representations, providing accurate and fast Brain Machine Interfaces (14). Put

together, detailed analysis of neural activity patterns has proven fruitful in tackling a

fundamental question of how neural networks, be they artificial or biological, encode

and further use representations to produce relevant behaviors (15). Answering this

question, however, is challenging since there is yet to be a consensus to be derived on
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the meaning of representation (16). More relevant to this work, it is unclear whether and

to what extent recorded neural representations serve as a reliable indicator of which

unit is causally involved in the generated behavior (17–19). For instance, work by Schalk

and colleagues showed that the decodable information in the fusiform face area is

causally irrelevant to behavior (18). Additionally, a recent study by Tremblay et al. found

prevalent decodable task-related representations in causally irrelevant brain regions of

macaque monkeys (19). These findings imply a dissociation between what a region

represents and what it causally contributes to a given function. Said differently, it is not

yet clear to what extent recorded neural representations are informative for uncovering

which neural elements are causally contributing to a given function.

Other disciplines such as law (20, 21), economics (22), political, and military sciences

(23, 24), are similarly challenged by objectively quantifying to what extent members of

a coalition are effectively contributing to a commonly produced outcome. A game

theoretical solution known as the Shapley value was proposed by Lloyd Shapley that

addresses this issue (25). Defined simply, the Shapley value of a coalition member

represents the member’s fair share of the outcome produced by the whole coalition.

This value is calculated by adding the member to all possible combinations of other

members and averaging the value it adds to each grouping across all these

combinations (26, 27). To build an intuition of what the Shapley value represents,

assume an orchestra in which some members contribute similarly by forming sections

of similar instruments, e.g., strings, while others make distinct contributions by playing

solo instruments or by coordinating others, i.e., the conductor (Fig 1. B). Assume that we

can rearrange the orchestra by adding and removing all possible combinations of

players and using an objective metric to evaluate the performed piece for every

arrangement.

3

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543895doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.06.543895
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Intuition behind the notion of causal contribution. A) The hypothetical performance score
given multiple arrangements of the orchestra. The intact network has the highest value while removing
the conductor produces the largest deficit. B) The hypothetical orchestra in which some members have
similar contributions, e.g., the string ensemble while others have distinct contributions given their role
in the performed piece. C) Hypothetical assignment of contributions to each member given
counterfactual scenarios where they were excluded from the orchestra. D) The hypothetical scenario
where a member could have a significant contribution during a limited time period, e.g., by performing a
short solo piece. The isometric orchestra of the panel B is adopted from the asset designed by
macrovector and is available on:
freepik.com/free-vector/orchestra-isometric-composition_5967228.htm

A higher value indicates a flawless performance, while a low value indicates an

unsatisfactory and erroneous performance (Fig 1. A). The Shapley value of each band

member is their effective or causal contribution to this measured metric, given their

contribution to every arrangement, such that the more they contribute to the

performance, the larger their Shapley values would be (Fig 1. C). Intuitively, the

conductor is expected to have a large Shaley value since, without him, the whole

orchestra could lose its synchrony and produce many errors. Additionally, individual

players in the string section are expected to have relatively smaller values, since the

effect of removing one string player is usually covered by the others. However, note that

the sum of their Shapley values can be large, since removing the string ensemble could

also greatly impact the orchestra's performance (Fig 1. A). Lastly, unprofessional players

that introduce errors are expected to receive negative Shapley values, since removing

them improves the performance. Therefore, the Shapley value represents the

proportional causal contribution of each member to the produced piece.

As a substantial constraint, however, the Shapley value is not time-resolved and, as the

name suggests, provides a scalar value describing each player's contribution to the

entire performance (28, 29). Thus, the value is insensitive to the temporal pattern in
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which the players contribute to the piece. For example, a cello player who is a part of

the ensemble might play an outstanding short solo piece (Fig 1. D). Yet, the Shapley

value assigned to her might still be mediocre overall, since other cello players in the

ensemble are playing the same notes, making her role redundant for most of the

performance. Moreover, the conductor’s absence could tremendously impact the

orchestra at first but resolve after a while. Thus, the large initial disorganization might

inflate his Shapley value. Consequently, capturing these temporal nuances provides a

broader picture of effective contributions in the system, here, the orchestra. To

summarize, although Shapley values represent the causal contribution of elements in a

group to its outcome, they are presently static and do not provide information on the

temporal profile of an element's contribution.

Figure 2. Schematic outline of the current work. In this study, we first introduced a game-theoretical

framework (MSA, see Fig. 4 for more information) to precisely characterize time-varying causal

contributions of elements in a given system. We then trained an ANN on a chaotic time-series

prediction task and compared the nodes’ causal contributions to the network’s outcome with the nodes’

activity profiles. We found considerable differences between these two metrics, which indicates the

limitations of inferring causal contributions from neural activity.
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In the present study, we first formalize a systematic perturbation framework to provide

the objective description of which element is doing what, i.e., their Shapley values, at

each time point. Put differently, our method accurately captures the time-varying causal

contribution of an element to the outcome of the coalition. Having an objective way of

quantifying causal contributions of each element at each time point, we aimed to tackle

the question presented above: To what extent are neural activity patterns causally

informative? We first use intuitive toy examples to show how downstream nonlinear

transformations applied to elements' activity profiles can obscure their causal

contributions. We then capitalize on the experimental accessibility of ANNs to perform

an extensive and systematic manipulation of every combination of nodes, capturing

their causal contributions (Fig. 2). Our results reveal considerable differences between

nodes’ recorded activities, i.e., what they represent by their activity, versus their actual

causal contributions, i.e., what they contribute to the produced behavior. Lastly, as with

the toy examples, we show that the downstream operations applied to these neural

activities could be a potential mechanism for the observed dissociation between a

node’s activity pattern and its causal contribution. Altogether, this paper provides a

framework for understanding when and how knowledge of neural activity may be

causally irrelevant.

Results

When activity patterns are causally uninformative

In this section, we aim to provide a tangible way of differentiating what a node

represents by its activity pattern and what it causally contributes to the produced

outcome. To do so, it helps to first introduce an important property called ‘efficiency’

that is uniquely satisfied by Shapley value compared to other game theoretical solution

concepts for allocating contributions (25). A solution, i.e., a framework to assign causal

contributions, is efficient, if the sum of contributions equals the value of the grand

coalition (30). In other words, if the solution is efficient, then it is possible to formulate

the problem starting from the outcome and consider the process as a decomposition of

the outcome to its constituting building blocks. Assume three friends paid thirty dollars

for a shared expense, then the efficient allocation of expenses should necessarily
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assign contributions that sum up to thirty dollars. Reformulating this example, the thirty

dollars should be divided among the three friends such that no surplus or deficit is left.

To summarize the point, the causal role of a player can be defined as its effective

contribution to the outcome, such that the outcome is decomposable to these

constituting contributions without any leftover surplus or deficit. If the sum of the

contributions results in a different outcome, then probably the decomposition process

missed unaccounted contributions from unseen players. Moreover, note that what is

meant by causal contribution depends on what is measured. For instance, we can adjust

the orchestral example above by aiming to uncover which member played what instead

of how much they contributed to the previously mentioned objective metric. In this

case, the performed orchestral piece is decomposable to its constituting individual

instruments, since it is made of nothing else but these individual instruments. Thus, it

is possible to define contribution to arbitrary metrics, e.g., to the ‘goodness of

performance’ or the piece itself. The implications of this aspect will be further explored

in the Discussion.

For the intuitive toy examples, we started by generating 30 sine-waves with various

frequencies and amplitudes as independent inputs to a hypothetical neuron (Fig. 3. A).

For the first example, the neuron simply summed these input activities to produce its

outcome (Fig. 3. B). We then utilized multi-perturbation Shapley value analysis (MSA;

Fig. 4) to derive the causal contribution of each input to the produced output signal

(Fig. 3. C). Expectedly, we recovered the provided input signals simply because, in this

example, the output signal was a linear summation over the inputs.

In the second example, however, the neuron is modeled to first sum the inputs, as

before, but then multiply the combined input by a factor of two (Fig. 3. D). In this case, a

downstream transformation was applied to the combined inputs to produce the

outcome. MSA captured the transformation, and the amplitude of the contributions was

twice as large as the input signals (Fig. 3. E). Here, summing the given input resulted in

the first example’s outcome, while summing the contributions resulted in the second’s

(the gray thicker line in Fig. 3. B and D, respectively). The downstream multiplication

applied to the input activities introduced the difference here. Note that the

contributions still correlate perfectly with the input signals since each value is just
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doubled, and the global structure of the new outcomes remains intact. Said differently,

the causal contribution of each input node to the produced outcome is not equal to the

activity patterns they have produced, i.e., the sine waves. The hypothetical neuron

multiplied each input activity by a factor of two to produce the outcome, thus, the

effective contribution to the outcome is doubled at each time point.

Figure 3. Difference between causal contributions and activity profiles in three toy examples. A)

We first produced 30 sinusoidal waves with various frequencies and amplitudes. We called these time

series building blocks. B) For the first example, we summed the building blocks that resulted in a new

time series that we called the combined time series (teal). C) Employing MSA showed that the causal

contributions (red) and the activity profiles (the building blocks; deep blue) are indistinguishable.

Summing the contributions resulted in the combined time series (gray) since no downstream

transformation was applied. D) For the second example, we multiplied the combined time series by a

factor of two, which generated a new time series with a larger amplitude. E) Using MSA, we uncovered

the causal contributions and found them to be twice as large as the building blocks, yet retaining a

perfect linear relationship (purple), since the structure of the time series remained unchanged. Here,

summing contributions resulted in the combined time series with a larger amplitude due to the

downstream multiplication operation. F) For the last example, we passed the combined time series

through a nonlinear function that resulted in a warped signal. G) with MSA, we found the causal

contributions to be also warped. Consequently, the trajectory in the contribution-activity space is more

complex. In this case, summing the contributions reconstructed the warped time series.
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These two examples were intuitive, and it was easy to imagine the outcomes. To explore

a non-obvious case, the third example depicts a conventional ANN neuron that

combines the input and passes the result through a nonlinear hyperbolic tangent (tanh)

function. In this case, the output is warped to fit within a range of -1 and 1 (Fig. 3. F).

Applying MSA revealed that the contributions were also warped, and the relationship

between the input and the contributions did not remain as trivial as in the previous

cases. Note that the contributions were not warped as if they were separately passed

through the nonlinear activation function. In other words, the order of operations

matters. The transformation was applied to the combined input as a downstream

operation, where, as observers, we have lost track of what happened to the individual

input. MSA uncovered the impact of the downstream transformation on each input

signal. Put simply, individual contributions were warped to produce the warped

outcome. This conclusion is derived from the fact that the framework is efficient, and

summing all contributions reconstructed the warped outcome (Fig. 3. F; gray line).

To summarize the results from this section, we first generated several sinusoidal waves

as inputs to a hypothetical neuron. We showed that the only case where the input

directly and fully contributed to the outcome of the hypothetical neuron was when they

were simply summed to produce the outcome. We then introduced an example where a

downstream transformation was applied by the neuron, here, multiplying the combined

input to produce the outcome. We found that the causal contribution of each input to

the output was also multiplied by a factor of two. Lastly, we introduced the common

scenario in which the neuron combined the input and passed the results through a

nonlinear function (tanh). We found an unintuitive impact of such downstream nonlinear

transformations on the individual input signals. In the next section, we investigate how

such nonlinear transformations result in warped causal contributions of neurons to the

outcome of an ANN.

Comparing representations and causal contributions in a neural network

We used a compact echo state network (ESN), that is, a class of recurrent neural

networks in which the hidden layer remains unaltered during the training. We trained

the network on a chaotic time series prediction task. Briefly, in this generative mode of

the ESN, the network was presented with a teacher signal and had to learn a black-box
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model of the chaotic time-series generator. After disconnecting the teacher, the model

had to produce future values of the teacher sequence (Fig. 4). Each neuron in the ESN

produced representations that exhibit unique variations of the teacher signal. These

representations were used by the readout mechanism to perform the task and produce

the output time series (i.e., the outcome of the game from a game-theoretical

standpoint). Exploiting this plain model, we could investigate the impact of the

transformation applied by units to other units and by the output layer to all of them. The

question was posited before: do nodes’ activity patterns readily provide causally

relevant information regarding the produced output? We hypothesized that a node’s

causal contribution is a deformed version of its recorded activity, as in the nonlinear toy

example. Therefore, we expected the recorded activity to be dissociated from, but still a

good indicator of, causal contributions.

Figure 4. Visual abstract of the MSA algorithm and the experiment. The experimental setup is

depicted on the top. The ESN was trained on a time series prediction task in which a chaotic time series

was fed into the network, and a readout layer was trained on the produced representations (deep blue)

of the hidden layer. After the training, the teacher sequence was disconnected, and the network was

expected to generate the future time steps of the time series (teal). Note that in ESNs, the hidden layer

remains unaltered during the training session. The rest of the figure depicts the MSA algorithm that was

employed to compute the causal contribution of each neuron in the hidden layer. MSA samples the

space of all possible combinations of node groupings to estimate nodes’ causal contributions (red). To

do so, it first permutes the players and expands each permutation configuration to dictate which

combinations should be perturbed. In this schematic example, to acquire the outcome produced by

BCA, the example player D was removed from the game. Then to have the outcome of BC, nodes D and

A were perturbed. Therefore, MSA produces a multi-site perturbation dataset that contains the outcome

produced by potentially tens of thousands of unique node groupings. To then isolate the contribution of
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individual nodes to each of these groupings, MSA contrasts two cases where the target node was

perturbed and where it was not. The causal contribution of each node to the network's outcome is then

the average of the node’s contributions to all groupings. Algorithm 1 (see Multi-perturbation Shapley

value Analysis in Materials and Methods) describes the MSA computational pipeline.

Employing MSA and comparing causal contributions with neural activity patterns

confirmed the first part of our hypothesis, i.e., the dissociation of the recorded activity

from the effective causal contribution. However, as (Fig. 4. B and C) depict, the causal

contribution of each node had a stark difference from its recorded activity. In other

words, what a node did for the produced output signal was not trivially apparent from its

activity pattern. For example, while node #32 had a faintly fluctuating activity profile, its

effective contribution to the produced time series was considerably large. This means

that the almost negligible activity of this node was highly transformed by downstream

operations. Additionally, as with the toy examples, summing all causal contributions

reconstructed the output signal (the thicker gray line in Fig. 5. A), indicating that MSA

allocated the contributions correctly. As a sanity check, we ran the same analysis

without perturbing the network and hypothesized the contributions to be zero at each

time point. The rationale behind our hypothesis was the following: to compute the

contributions, MSA systematically perturbs combinations of nodes and contrasts the

setting where a target node was perturbed versus where it was not (Fig. 4). The

difference is then assigned to be the node’s contribution to that particular group of

intact nodes. If during this contrasting step, no node is removed, then the contributions

of nodes are not isolated. In other words, the contrast will be between two groupings of

the same configuration with no difference. The results have validated our hypothesis,

and none of the nodes had any contribution to the produced output. (Supplementary

Fig. 3).
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Figure 5. Difference between causal contributions and representations in the ESN. A) The line in

teal shows the produced outcome (time series) by the network. Summing the uncovered causal

contributions (red in panel B) perfectly reconstructs this outcome. B) Activity profiles (deep blue) of

three exemplar nodes and their corresponding causal contributions are plotted for comparison. Note

that node #32 is not completely silent but has a small range of [-0.0003, 0.007] that, relative to its

causal contribution, is visually negligible. Due to the large downstream operations applied by other

nodes and the readout layer, the relationship between causal contributions and neural representations

(purple) is far less trivial compared to our linear toy examples (see the same plot in Fig. 4). C)

Histogram of the Pearson’s correlation coefficient between every node’s activity profile and its causal

contribution. On the right side, three examples with the largest positive, largest negative, and no

correlation are plotted. Note that the activity profiles are very similar across these three nodes, while

their contributions are far more diverse.

So far, we have shown a dissociation between the nodes’ activity profiles and their

causal contributions to the produced outcome signal. With the toy examples, we

showed that the downstream nonlinear operations were responsible for this observed

dissociation. Our ESN example also has a downstream transformation function, i.e., the

readout layer. The readout layer is a regression model with a weight assigned to each
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neuron of the hidden layer. To see if the assigned weight can explain the observed

relationship between nodes’ recorded representations and their causal contributions,

we plotted this relationship for three cases: the smallest absolute readout weight, the

largest absolute weight, and one in between (the median of the weight distribution). As

depicted in Fig. 5, the activity pattern of the node with the largest readout weight (node

#22; in red) had a relatively small range, while its causal contribution had a large

variation, forming a stretched point cloud laying on the y-axis. Interestingly, this

relationship had the opposite trend for the node with the smallest weight (node #12;

deep blue). The point cloud was stretched on the x-axis since, relative to node #22, its

contributions had a smaller variation while its activity profile had a larger variation.

Lastly, the node with a weight in between also had a round and comparatively less

stretched point cloud between these two extremes. We confirmed the robustness of this

finding by running the analysis 50 times with different random seeds, which resulted in

the same pattern (Supplementary Fig. 1). This finding suggests a relationship between

the weights assigned to the readout layer (trained by fitting a linear regression model)

and the casual contribution of each node to the output, such that large weights had

scaled the representations more. Note that this finding can be seen as a mixture of the

second and third toy examples. In the second example, the contribution was stretched

due to a scaling operation (here, by the readout weights), and in the third, they were

warped by the tanh operation (here, by interactions with other nodes; Fig 3. E, G).

Figure 6. The relationship between readout weights and the transformation of representations.
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The trajectory of three nodes in the contribution-activity space is plotted with respect to their assigned

readout weights. The node with the largest weight is plotted in red, and the one with the smallest is

plotted in dark blue. The light blue depicts the same relationship for a node that was assigned the

median value of the weight distribution. Note that the primary axis of variation is switched from causal

contributions for the red to activity for the dark blue, while the light blue is comparatively more circular.

To summarize this section, we trained a compact ESN on a time series prediction task,

having a recurrent network that produced a time series while receiving no input. We

then applied MSA to uncover the causal contribution of each node to the output

sequence and compared them with their corresponding recorded activity. We found that

the activities were heavily deformed, and what was recorded from each node did not

correspond to what the node did for producing the outcome time series, i.e., the

behavior. Lastly, we investigated the role of the output layer and found that, as with the

toy examples, the downstream operation applied to these recorded activities could be

the mechanism behind the observed dissociation. Next, we discuss our findings and

their implications for neuroscience.

Discussion

In this study, we investigated a fundamental question: to what extent are recorded

neural patterns causally informative of a produced behavior? To do so, we utilized a

game theoretical framework, MSA, that derives the players’ fair causal contributions

from their added contributions to all possible combinations of which players form

coalitions. We then used three simple toy examples to build an intuition for when and

how the effective causal contribution of a player may dissociate from its recorded

activity. We showed that the downstream operations applied to these activity patterns

are the source of the observed dissociation, with nonlinear operations having the

largest impact.

Next, we applied the same pipeline to a neural network trained for solving a chaotic

time series prediction task. We found that the recorded representations from neurons

of the hidden layer differed considerably from their effective causal contributions to the

produced output. Lastly, we were interested to see if the strengths of the readout

weights in the trained network could explain the observed trajectory in the
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contribution-activity space. We found that the node with the largest weight also had a

relatively large variation in its contribution profile, even with a faintly fluctuating activity

profile. We also found the opposite trend for the node with the smallest assigned

weight. It fluctuated greatly in the activity domain, but not with its causal contribution.

Put together, we showed that what neurons did for the behavior (i.e., their causal

contributions) was not necessarily apparent from what they did in the network (i.e., their

recorded activities). To elaborate, the network's output, which is simply obtained from

multiplying the readout weights by the activity traces of the reservoir neurons, can also

be reconstructed by summing up the contributions of all neurons to the behavior, here,

the generated time-series. The difference between the activity and contribution of

individual nodes, therefore, derives from the change in nonlinear interactions between

reservoir nodes after perturbing neuronal ensembles containing a given target node.

Our work demonstrated that having access to the output (i.e., the network behavior) and

the recorded activities in a simple neural network without knowing the downstream

operation that produces the output does not suffice to quantify the contribution of each

neuron to the behavior. As argued by Barack and Krakauer “The transformations of

representations are essential for understanding cognition but are often overlooked [...]

To explain how behaviour is generated, [...] the transformations must be identified and

their neural realizations described.” (31) Therefore, ignoring downstream

transformations could potentially hinder one’s attempts to understand who is doing

what in artificial neural networks and, to an ever greater extent, in brains. It is important

to emphasize the role of transformation here. The fact that units in artificial and

biological neural networks transform information is well established (32–34). Such

systems can solve complicated tasks, probably because of their ability to harness the

encoded representations to their advantage. For example, synergistic and

non-redundant information is shown to be more dominant in higher-order cortical

regions in the human brain, such as the prefrontal cortex (35), and in the deeper layers

of a multi-layer neural network (36). In other words, higher-order regions and deeper

layers of ANNs have unique and synergistic contributions to the outcome that can be

due to the transformation of information along the computational chain. In ESNs, it is

shown that the performance benefits from a reasonably diverse set of representations

of the external stimuli (37). Thus, even though the prominent role of transformations in
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neural computations is well accepted, it is often neglected or downplayed when

connecting neural activity to behavior (38, 39).

It is also important to emphasize the role of the quantified metric. As briefly mentioned

in the Introduction, one can measure the contribution of the elements of a system to

some function that quantifies an aspect of the system’s output, for instance, the

performance score (28), or the energy of the output signal (40). We also noted that we

could quantify the contribution of the elements to the output itself, thus bypassing the

intermediate descriptive function. This is what we did in this study by computing the

contribution of each node to the produced output signal itself. The difference is subtle

but crucial since one is a direct deconstruction of the produced outcome while the

other is a deconstruction of the description. Employing MSA on the performance score

would then provide a ranking of nodes, in which the more a node contributes to the

performance, the higher the value it acquires (29). In that case, the contributions would

sum up to the performance of the intact network, thus deconstructing the performance

score and not the outcome itself. We believe that none of these approaches is

necessarily better than the other, but they are complementary, and their advantages

depend on the scientific question. One could expand our work, for instance, by ranking

nodes based on their contribution to the outcome and comparing the ranking with their

contributions to a metric that is based on the outcome, e.g., performance. Are those

nodes that contribute largely to the outcome and those that contribute largely to the

given metric the same? How do different metrics capture various aspects of a node’s

role in the network? For example, a study could be formulated to capture the

contribution of each node in an ANN to its performance, the stability of its internal

dynamics, the produced outcome itself, and the global efficiency of communication in

the network. Comparing nodes’ contributions to many facets of a network would then

provide a far more comprehensive picture of which node is doing what and how.

ANNs aside, neuroscience relies heavily on activity patterns to infer the functional

significance of some neuronal elements for the measured behavior (41, 42). These

datasets are becoming steadily larger and more detailed, but many are yet to capture

the whole brain (43). Our work suggests that in such cases where the downstream

operations are hidden, the functional inference should be treated with caution since it

is unclear if the recorded activity remains causally relevant. Even in cases where the
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entire brain is under scrutiny, we believe the inference could be drawn without causal

claims, since a proper causal understanding of a system requires systematic and

extensive multi-site manipulations of the involved units (28, 44). Our method, MSA,

attempts to provide such a causal understanding by performing the required extensive

manipulation at the expense of a relatively high computational cost. Moreover, it is

unclear how causal contributions relate to the latent population manifold, uncovered by

applying dimensionality reduction techniques on large-scale neural data (14). This

relationship requires further detailed analysis, but it is a central question that needs to

be addressed since it can lead to computationally cheaper estimations of causal

contributions.

Here we emphasized on one network and one task for simplicity. However, we explored

a separate network solving a frequency generator task where, in contrast with the main

network, the exact unfolding of the target time-series is irrelevant. Our objective was to

design a tunable frequency generator that utilizes the amplitude of a step function in

the input to enforce the desired frequency in the output. That is, the output of the

network consists of a single sinusoidal wave, with its frequency varying across different

intervals. In this network too, we observed a dissociation between units’ activity profiles

and their causal contributions (supplementary Fig. 4). However, to maintain a concise

work and communicate a singular message, we made multiple exploratory analyses,

including the differences in frequency components between the two signal sets,

available in the accompanying Jupyter Notebook. Further investigation is necessary to

systematically examine the relationship between the causal contributions of nodes and

their activity profiles in both the frequency domain and time-frequency domain.

Additionally, in this work, both for our toy examples and the ESN experiments, we only

applied one transformation to the recorded activities. It would be interesting to expand

the current work by incorporating more complicated networks with deep architectures

and tracking the amount of which the encoded representations transform as they

propagate through a chain of nonlinear operations. Based on our findings in this paper,

we hypothesize that the connection between representation and contribution becomes

weaker with each layer until it reaches a point where the difference is maximal and

roughly stable. It would be interesting to then investigate at which point each unit

reaches its saturation point and why. Additionally, one can expand the current work by

applying MSA on a network that solves multiple tasks and captures the contribution of
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nodes to each task. In this way, it is possible to disentangle when nodes are engaged in

which tasks or if there are nodes that contribute dominantly to a specific task. Lastly,

our network produced a vector (time-series) as its behavior, which resulted in a vector

for the causal contribution of each node. It would be exciting to expand the

contributions to higher dimensions. For example, what would be the causal contribution

of a node in a generative network that produces a picture? In that case, each

contribution will also be a two-dimensional image that, when summed up with other

contributions, reconstructs the network's output image. Would then nodes contribute to

specific features of the image, such as the ears of the produced cat image, or would

their contributions be something similar to eigenfaces, encoding a general scheme of

the produced image?

To conclude, our work suggests that what neurons in an ANN represent might not

necessarily and trivially map to what they causally contribute to the network’s functional

output. Moreover, we provide a possible mechanism for when and how neural activity

could become causally irrelevant. Lastly, we introduce a rigorous framework to capture

precisely what neurons contribute to behavior, in a time-resolved manner.

Materials and Methods:

In this work, we mainly used two Python libraries. Echoes to implement our ESN (45)

and MSApy, which is the Python implementation of the MSA framework (46). The code

to reproduce the experiment and the supplementary analyses can be found in the

GitHub repository below:

https://github.com/kuffmode/contribution-modes

Intuitive toy examples

To conduct our intuitive toy example, we initially generated a set of 30 inputs with the

general form of . All signals have a similar phase, . The

amplitude, , and frequencies, are, respectively, sampled from

and . Given this small

dataset (see Fig. 2), we considered three linear and nonlinear output functions as

, , and .
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The echo state networks and the experimental setups

Echo state network is a multilayered artificial neural network originally proposed for

learning black-box models of nonlinear systems (37). The core component of this model

is a recurrently connected hidden layer (known as the reservoir) that receives external

stimuli from an input feed-forward layer. If the connectivity profile within the reservoir

is sparse, and the reservoir weight matrix fulfills certain algebraic properties in terms of

singular values, internal units of this dynamical system work as the so-called “echo

functions” and display unique variations of the input sequence with substantial memory

contents (47). The echo signals are subsequently used to train a feed-forward readout

layer that is the only trained part of the network. In contrast to traditional RNN training

methods, where the recurrent weights in the hidden layer are gradually adapted to tune

the network toward the target system, the ESN principle suggests leaving

input-to-reservoir and the recurrent reservoir-to-reservoir weights unchanged after a

random initialization and only optimizing the reservoir-to-output weights during

training. Depending on the task, randomly generated fixed feedback connections

(output-to-reservoir) may also be included in the architecture.

Given an ESN with leaky-integrator neurons driven by a multidimensional input

signal , the network state update equation is described by Eq. 1,

(1)

where is the time-dependent -dimensional reservoir state and

denotes the reservoir neurons' leakage rate. The , , and

indicate internal (reservoir-to-reservoir), input-to-reservoir, and

feedback (output-to-reservoir) weight matrices, respectively (48).

The internal states are updated via the nonlinear function, , and the output

is obtained by

(2)
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where denotes an output activation function and is the

trainable readout weight matrix. In this equation, the extended system state,

is computed by the vertical vector concatenation, , of the

reservoir states and external input vectors.

In this study, we conducted the ESN approach on a task of chaotic time series

prediction (37). The objective is to learn a black-box model of the Mackey-Glass

generating system that can forecast some future values of the sequence. We designed

an ESN with a single neuron in input and output layers and a reservoir with a

small-world topology. During the training, a fixed, low-amplitude DC signal was fed to

the input as bias, and the teacher signal generated by the Mackey-Glass time-delay

differential equation (Eq. 3) was presented to the output neuron.

(3)

The reservoir neurons are excited by this teacher signal through the output feedback

connections and, after a short transient period, start to exhibit unique nonlinear

transformations of the teacher sequence. The read-out weights were computed through

linear regression of the target output on these internal activation traces to minimize the

least square error between the desired outputs and the network’s output signal. After

training, the ESN was disconnected from the teacher and left running freely. For testing,

a 500-step continuation of the original Mackey-Glass signal was computed for

reference, and the mean square error between the target outputs and the network’s

output was reported. Following the literature, we set the time delay and

simulated Eq. 3 using the dde2 solver for delay differential equations from the

commercial toolbox MATLAB.

We used a 2500-step Mackey-Glass sequence for training and validation. The spectral

radius of the internal weight matrix, , and the neurons' leakage rate, , were optimized

by performing an extensive grid search on 50 independently created 36-unit ESNs with

the same small-world topology. We applied the hyperbolic tangent function,

, for the reservoir neurons and an identity function for the readout node.

Lastly, the trained network had a Mean Squared Error (MSE) of 0.0049, and the optimal

spectral radius was found to be 0.66.
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We conducted additional experiments on a second echo state network that was trained

to perform a tunable frequency generator task. The input signal, , was a slowly

varying frequency setting, while the desired output, , was a sine-wave of the

frequency determined by the input. The input was a slow random step function, ranging

from 1/25 to 1/5 Hz, and the ESN was trained on this data to produce sine-wave outputs

for slow test input signals. We utilized a 2100-step input sequence for training and

validation. To prevent any leakage from the previous time-point, we set the neurons'

leakage rate, a, to 1 (see Eq. 1). The hyperbolic tangent function, , was

applied to both the reservoir neurons and the readout node. We performed an extensive

grid search on 50 independently created 100-unit ESNs with random topology to

optimize the spectral radius of the internal weight matrix, finding the optimal value to

be 0.26. The length of the test signal was 900 steps and the trained network achieved

an average MSE of 0.198 with a standard deviation of 0.036 over 500 trials. Notably,

despite the differences in amplitude between the target signal and network predictions,

the frequency was generated accurately at all intervals.

Multi-perturbation Shapley value Analysis

MSA builds upon the Shapley values. The Shapley value is an axiomatic game

theoretical concept that derives the fair and thus stable allocation of contributions

among players of a coalition given the produced outcome by the coalition (25). In other

words, the Shapley value of a player is its fair share of the outcome, proportional to its

contribution to producing the outcome. Thus, players who contribute more will be

allocated larger Shapley values, while those who do not contribute receive zero.

Moreover, players who hinder the outcome receive negative values, which means that

by removing them from the coalition, the outcome was increased. Theoretically, Shapley

values are calculated by adding a player to all possible groupings (coalitions) of other

players and tracking the outcome (26, 29). That is, given a coalition set, , the player, ,

and the game, , with the outcome , the contribution of the player to the coalition is

computed as

(4)
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In a game with players, there exists possible orderings, , with length .

Therefore, the collective contribution of the player , is defined as the average of its

contribution over the set of all possible orderings, , in all the coalitions to which the

player is included (i.e.,

(5)

In practice, however, reaching an analytical solution to Shapley value in large sets is

computationally prohibitive. Therefore, following the literature (26, 27), our

implementation of MSA employs an unbiased estimator that randomly samples

orderings from the space of possible combinations. Throughout this study, we used

a sample size of that reduces the number of perturbations to unique

combinations for each player and in total. The MSA iterates over the produced

combinations and removes the rest of the coalition to isolate the target grouping. Next,

it extracts the outcome of each target grouping by playing the game. Lastly, it

calculates the contribution of individual players to each of the groupings by contrasting

the case where the player was in the grouping and where it was taken out alongside the

rest of the removed players. After this step, the contribution of each element to each of

these groupings is available. The Shapley value of each player is then its average

contribution to all the sampled orderings, . Algorithm 1 and Fig. 3 provide the

pseudocode and a visual explanation of the MSA method.

Depending on the game, the outcome, , can be either a scalar value or a vector. In

this study, we simply defined the outcome as the temporal activation trace of a

predefined target node in a given network, . To be more clear, in our toy example

on temporal sequences, we implemented a perturbation by simply omitting

activation of the contributing input from the sum operation that produced the

combined time series (see section Intuitive toy examples below). Formally, in the intact

case, , whereas for the -perturbed case, .

Therefore, applying Eq. 4, .

In our ESN experiments, we trained the intact network on the reservoir neuronal

activities and stored the activity traces and readout weights for further
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analysis. We then conducted our MSA algorithm to calculate the contributions of each

node to the output signal (behavior) of the intact network and to create a

contribution-activity phase space as follows:

(6)

In this equation represents the nonlinear operations that govern the ESN dynamics

and G denotes running the ESN algorithm on the network instances with perturbed

nodes. Here, stands for reservoir weight matrix after perturbing a given node, , by

setting its incoming and outgoing connection weights to zero. The game, G, is played

as many times as the number of all the sampled orderings, . To keep the network

stable after perturbations, we permitted the readout layer to be retrained after each

perturbation. This allowed the network to adjust itself with the perturbed dynamics of

the hidden layer as far as possible and remain functional as long as the perturbation

was not severe. See the supplementary Fig. 3 for the case where this fine-tuning step

was omitted. Note that the fine-tuning of the readout layer did not impact the pattern

depicted in Fig. 5 since repeating the analysis with 50 different random seeds yielded

the same results (Supplementary Fig. 1).
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Supplementary Figures:

Supplementary Figure 1: Testing with 50 different MSA random initialization. Colors and axes
follow Fig. 5 with median weight plotted in black for clarity.
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Supplementary Figure 2: Playing games without perturbation. Activity profiles and causal
contributions of the same three example nodes as in Fig.4 are plotted for comparison. Note that the
contributions are all zero.

Supplementary Figure 3: Playing without retraining the readout layer. Causal contributions of all
36 nodes in the hidden layer. On the left, the fine-tuning step was omitted, and thus the network
became dysfunctional given any small perturbations (note the y-axis). In right, the readout weights were
allowed to adjust to the disrupted dynamics, and thus, the network could still generate a reasonable
output signal.
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Supplementary Figure 4: Contributions and activity profiles of a separate network solving a
frequency generator task. Activity profiles and causal contributions of three example nodes in a
separate network are plotted for comparison. As with the main network, the relationship between a
node’s contribution and its activity profile is nontrivial.
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