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Abstract

Neural language models (LMs) represent facts
about the world described by text. Sometimes
these facts derive from training data (in most LMs,
a representation of the word banana encodes the
fact that bananas are fruits). Sometimes facts de-
rive from input text itself (a representation of the
sentence I poured out the bottle encodes the fact
that the bottle became empty). Tools for inspect-
ing and modifying LM fact representations would
be useful almost everywhere LMs are used: mak-
ing it possible to update them when the world
changes, to localize and remove sources of bias,
and to identify errors in generated text. We de-
scribe REMEDI, an approach for querying and
modifying factual knowledge in LMs. REMEDI
learns a map from textual queries to fact encod-
ings in an LM’s internal representation system.
These encodings can be used as knowledge edi-
tors: by adding them to LM hidden representa-
tions, we can modify downstream generation to
be consistent with new facts. REMEDI encodings
can also be used as model probes: by compar-
ing them to LM representations, we can ascertain
what properties LMs attribute to mentioned enti-
ties, and predict when they will generate outputs
that conflict with background knowledge or in-
put text. REMEDI thus links work on probing,
prompting, and model editing, and offers steps
toward general tools for fine-grained inspection
and control of knowledge in LMs.

1. Introduction
Neural language models (LMs) build implicit, structured
models of the state of the world: their representations en-
code general knowledge (Petroni et al., 2019) and situations
described in input text (Li et al., 2021). Sometimes these
representations contain mistakes: they can be inaccurate
or incoherent, resulting in errors in generated text (Fig. 1).
Even as LMs improve, versions of these problems are likely
to persist: large LM training sets contain erroneous and
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Figure 1. REMEDI can patch errors made by an LM and insert new
facts with or without context provided in the prompt. It can also
help detect errors before generation.

contradictory information, go out of date, and harbor unex-
pected biases (Bender et al., 2021). And even in domains
where LM generation is more reliable, understanding how
model-internal representations relate to generation is crucial
for attribution and controlled generation (Akyürek et al.,
2022; Dai et al., 2022). There is thus a fundamental need for
techniques that can measure and manipulate LMs’ knowl-
edge about the world in general and the world as described
in specific documents.

This paper introduces REMEDI (REpresentation MEDIation),
a technique for doing both. REMEDI discovers directions in
representation space corresponding to encodings of factual
attributes (like is a lawyer in Fig. 1). When these encodings
are added to LMs’ representations of entities (like Anita),
they edit the facts that models attribute to those entities—in
some cases causing LMs to generate output that cannot be
produced with a corresponding textual prompt. Encodings
produced by REMEDI can also be used to interpret LM
representations, making it possible to probe LMs’ factual
knowledge, and to predict when they will generate incorrect
or incoherent output.
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The effectiveness of REMEDI across applications involving
context-specific and general background knowledge shows
that neural LMs represent and integrate information from
these two knowledge sources in a unified manner. REMEDI
offers steps towards tools that can monitor and control lan-
guage generation by interacting with these representations
directly, specifying facts and situations in an LM’s native
encoding scheme. Our code and data are publicly available.1

2. REMEDI

Motivations: control and interpretability Consider the
examples from Fig. 1 (top). In the first example, the LM is
prompted with the text Anita’s law office serves the lower
Eastern Shore. . . , which provides some context about the
entity Anita. However, when the LM generates a contin-
uation of this prompt, it asserts that Anita is a nurse, an
assertion that is incoherent with the preceding context. We
term this incoherence a failure of context mediation: infor-
mation provided in the textual context has failed to mediate
the LM’s predictions. It would be useful to be able to iden-
tify and fix such errors, changing a model’s encoding of
entities like Anita to ensure that she is correctly described
as an attorney. In addition to ensuring discourse coherence,
it is often desirable to modify prior associations in LMs. In
Fig. 1 (middle) the LM strongly associates London Bridge
with the city of London because the most famous London
Bridge is located there. However, there could be (and are2)
other London Bridges, and we might wish to control an LM
to make the lesser-known bridge more salient.

It is sometimes possible to achieve these goals by carefully
prompting models with the right input text. But due to the
non-systematic opaque nature of prompt engineering (Jiang
et al., 2020b), significant manual effort is often required to
find a prompt (if one exists at all) that yields correct behav-
ior and generalizes to different use cases. Fig. 1 (bottom)
highlights one instance of this challenge: though the LM
is prompted with information that Versace headquarters is
located in London, it still generates text consistent with a
headquarters in Milan.3 Techniques for localizing these
failures within LMs’ internal representations would make it
possible to detect them in advance, and guide research aimed
at mechanistic understanding of the relationship between
LMs’ internal representations and their textual outputs.

Overview At a high level, our proposed approach learns

1https://github.com/evandez/REMEDI
2Such as the one in Lake Havasu City, Arizona.
3These issues are not solved with scale: “prompt injection

attacks” that cause LMs to ignore initial instructions (Perez &
Ribeiro, 2022; Greshake et al., 2023) may also be viewed as fail-
ures of context mediation, and might (beyond the scope of this
paper) also be mitigated with better tools for directly manipulating
representations of tasks rather than facts.

how to intervene in an LM’s representation space to modify
the LM’s knowledge about a mentioned entity (like Anita
in Fig. 2). This intervention ultimately updates the LM’s
representation of the entity to encode an attribute (e.g., is
a lawyer) so that the LM will generate text about the entity
consistent with the new attribute. This update operation can
be specified by a single vector, and is applied to the hidden
representation of a single token at a single layer. Repre-
sentation edits produced by REMEDI can not only address
failures of context mediation, but also build entities with
desired properties from scratch (enabling controlled genera-
tion without textual prompts). Additionally, by comparing
edit vectors to unedited representations, REMEDI makes it
possible to inspect representations of entities and attributes
produced during ordinary model operation.

Editing representations Assume we have a language
model pLM(x) that assigns probabilities to strings x con-
sisting of tokens x1:n. In this paper, pLM will always be an
autoregressive transformer (Vaswani et al., 2017) pretrained
on English text, as in the GPT family of models (Radford
et al., 2019; Brown et al., 2020). These models decompose
p(x) into a product of next-token distributions given left
context: pLM(x) =

∏
i pLM(xi | x1:i−1). Our goal is to

insert a hidden state into the model that causes it to generate
desired text about a target entity.

Where and how should we insert this new hidden state?
Prior work suggests that LMs encode factual information in
hidden representations of entity mentions. Attributes such
as entity state (Li et al., 2021), perceptual properties (Abdou
et al., 2021), and other semantic associations (Grand et al.,
2018) have been shown to be linearly decodable from entity
representations. This suggests that, to ensure that an LM
encodes the fact Anita is a lawyer, it should suffice to find
an appropriate transformation of the representation of the
token Anita.

Formally, we denote the transformer’s hidden represen-
tation for token xi in layer ` as h

(`)
i , and we write

pLM(x | h(`)i = z) to mean the output of pLM with h
(`)
i

“hard-coded” to equal z during the forward pass.4 Given
representations of the entity hentity and the target attribute
hattr, REMEDI specifically learns an affine transformation
F that returns a new entity representation z according to:

z = F (hentity, hattr) = hentity +Whattr + b . (1)

such that when z replaces the entity inside the LM, the LM
will generate text consistent with the target attribute.

How should we pick hattr, W and b? Building on the suc-
cess of linear probing approaches (Conneau et al., 2018;
Belinkov & Glass, 2019), it is tempting to begin by training

4Henceforth we will omit the layer index, but the reader should
always assume all operations occur at a single layer.

https://github.com/evandez/REMEDI
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Figure 2. Illustration of REMEDI. Given an prompt (John went to
work at) and a desired attribute (plays the oboe), REMEDI con-
structs an edit to the hidden representation of John that increases
the probability of an appropriate completion (the concert hall).

a classifier for the presence or absence of attributes. For
example, following Li et al. (2021), we could take hattr to be
the LM’s own representation of the text of an attribute (like
plays the oboe; Fig. 2), then optimize W and b to predict
whether an entity representation encodes the attribute:

p(attribute | entity) = σ(h>entityWhattr + b) . (2)

However, even when an LM encodes information in its
representations, this information may not causally influence
subsequent generation (Ravfogel et al., 2020; Elazar et al.,
2021; Ravichander et al., 2021). An effective editor must
specifically identify edits that are causally linked to the
LM’s generations.

Learning effective edits Instead of optimizingW and b to
act as a classifier, REMEDI optimizes directly for their effect
as an intervention to the LM. We assume access to a dataset
of tuples (x1:n−1, ientity, tattr, ttgt), where x1:n−1 is a textual
context (e.g. John went to work at), ientity is the index of an
entity within the context, tattr is the text of the attribute to
be inserted (plays the oboe), and ttgt is a generation target:
a completion that should be assigned high probability if
the attribute is correctly applied to xentity (the concert hall).
Following Li et al. (2021), we obtain a vector representation
hattr by averaging the LM’s encoding of tattr. We then train
the editor F to maximize the probability that pLM assigns to
ttgt after modifying the hidden representation of xentity:

Ltgt(z) = −pLM(xn = ttgt | x1:n−1, hentity = z) . (3)

See Fig. 2 for a visualization.

Learning Non-Destructive Edits When LMs encode
strong prior associations between entities and properties

(e.g., in the London Bridge example; see Hase et al., 2021),
it is necessary to remove these facts while inserting new
ones. To do so, we obtain a target string tprior that the LM
assigns a high pre-edit probability to, and optimize a loss
term that encourages F minimize the probability of that
token:

Lprior(z) = pLM(xn = tprior | x1:n−1, hentity = z) . (4)

Finally, to prevent the degenerate solution in which the
language model always (and only) predicts ttgt, we penalize
the language model for changing its distributions on all
tokens between the entity mention and the time at which it
predicts ttgt:

LKL(z) =

xi 6=xentity∑
xi

DKL

(
pLM(· | x<i, hentity = z)

∥∥∥ pLM(· | x<i)
)
.

(5)
Unlike the distribution over tokens at the end of the prompt,
which should change dramatically under the intervention,
the distribution over these intermediate tokens should not
change significantly. LKL penalizes such changes.

The complete objective function that REMEDI optimizes is:

L(z) = Ltgt(z) + λ1Lprior(z) + λ2LKL(z) , (6)

where λ1 and λ2 are hyper-parameters.

We evaluate REMEDI by studying its ability to control model
output (Section 4) and to interpret and predict model behav-
ior (Section 5).

3. Related Work
Probing factual knowledge Large language models
(LLMs) trained on massive text datasets have been shown
to encode context-agnostic factual knowledge, which can
be queried through a text prompt (Petroni et al., 2019).
Most work on extracting background factual knowledge
from LMs focuses on designing textual queries for differ-
ent sources of knowledge (Richardson & Sabharwal, 2020;
Peng et al., 2022). Indeed, probes may sometimes recover
factual information even in cases when LMs do not generate
truthful outputs with high probability (Burns et al., 2022).

Probing representations of individual situations Neu-
ral LMs have also been shown to build representations
of context-dependent knowledge. Li et al. (2021) show
that they track aspects of entity state over a discourse,
and this state can be extracted from LM representations
of contextualized entity tokens. Furthermore, many LMs
have been (indirectly) evaluated on their ability to track
context-dependent knowledge by having their performance
measured on downstream reading comprehension tasks in
wich the LM is expected to answer questions about facts
within a discourse. Reading comprehension datasets such
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as CoQA (Reddy et al., 2019), RACE (Lai et al., 2017), and
SQuAD (Rajpurkar et al., 2016) are now part of the standard
evaluation suite for new LMs; and most modern LMs per-
form well (Brown et al., 2020). However, generating does
not always imply knowing. Datasets contain spurious corre-
lations (Gururangan et al., 2018), and LMs are sensitive to
the phrasing of prompts and questions (Jiang et al., 2020b).

Editing LLMs In the past, LLMs have been predomi-
nantly adapted to new tasks and knowledge through fine-
tuning (Devlin et al., 2019). Recently, with very large LMs,
new classes of adaptation methods have been introduced,
which generally fall into one of the following two categories:
(1) Prompt design approaches prepend a textual prompt to
each example specifying the adaptation target (Brown et al.,
2020). Though these techniques have generally been ex-
plored in the context of teaching LMs new tasks, they have
also been used to imbue LMs with new knowledge. (2)
Prefix-tuning approaches prepend continuous learned to-
kens ahead of each example. The learned tokens specify a
task for the LM similar to how a textual prompt would (Li &
Liang, 2021; Lester et al., 2021). Control token approaches
similarly use these learned tokens to controls aspects of LM
generations, including sentiment (Dathathri et al., 2020),
style (Keskar et al., 2019), and fine-grained semantics (Ross
et al., 2022). Prompts can be fragile; LMs may fail to gener-
ate text consistent with the prompt, as shown in Fig. 1.

Finally, a large body of work examines how to localize and
edit factual information in the LM’s weight space (Meng
et al., 2022a;b; Mitchell et al., 2022; Dai et al., 2022). For
example, ROME (Meng et al., 2022a) introduces a tech-
nique to localize factual knowledge in LMs to a particular
subset of MLP modules, and edits specific facts in a targeted
way through rank-one modification of MLP weights. Un-
like REMEDI, these approaches operate on models’ weight
matrices rather than representations, meaning they correct
errors in models’ background knowledge but not informa-
tion provided in context.

4. Controlling Generation
We begin by showing that the REMEDI procedure described
in Section 2 is an effective tool for controlling LM output.
Intuitively, if REMEDI succeeds in creating a new entity
representation encoding the desired attribute, text generated
by the LM about the entity should at minimum (a) prefer
generations consistent with the target attribute over poten-
tially contradictory attributes and (b) remain as fluent as the
original generations. Our experiments in this section test
properties (a) and (b), as well as other quality measures, in
two different settings. In the first setting, we use REMEDI
to patch incoherence errors like the Anita example in Fig. 1,
editing the LM to reinforce the information provided in the
context. In the second setting, we use REMEDI to update

factual associations about famous entities (such as the Ver-
sace Headquarters example in Fig. 1). These experiments
show that REMEDI often successfully controls model behav-
ior even when ordinary textual prompting fails. It can thus
serve as a building block for future controlled generation
interfaces that allow users to directly steer model behavior
in representation space.

4.1. Patching Errors

We first use REMEDI to manipulate representations of
generic named individuals, such as Anita or Dennis, about
which the LM should have no prior association (and about
which the LM should acquire all information from the
prompt). We provide a small amount of context about
each person—specifically, a sentence about what they do
at work—and prompt the LM to predict their occupation
from a small set of candidates. As we will show, the LM
often completely ignores this context, and prefers unrelated
occupations to ones highly relevant given the context (nurse
vs. attorney in Fig. 1).

Setup In this and all following experiments, we use GPT-J
as the underlying language model (Wang & Komatsuzaki,
2021). GPT-J is a 6B parameter, decoder-only transformer
pretrained on the Pile (Gao et al., 2020). For the task,
we obtain biographical sentences from the Bias in Bios
Dataset (De-Arteaga et al., 2019). This dataset consists of
≈397k short professional biographies of non-famous people
scraped from the internet. Each biography is paired with
a label for the subject’s occupation. We take one sentence
from each biography (details in Appendix C), replace the
person’s full name with only their first name, and prompt the
LM with the biographical sentence followed by {Person}
has the occupation of. . . . We then look at the relative prob-
abilities of 28 candidate occupations under the language
model, and consider the LM to be correct if the true occupa-
tion is ranked first. Out of the box, GPT-J ranks the correct
occupation higher than all others less than half the time
(47%, In context baseline in Table 1) on this task.5 Table 2
shows that the failure modes are similar those highlight in
Fig. 1, in that the LM ignores or misinterprets the context.

Method We use REMEDI to create new representations of
the first-name-only entities encoding the target occupation.
We take hentity to be the last token of the last entity mention
(right before model predicts the occupation), and we take
hattr to be the average representation of the biographical
sentence after the entity. Note this means we are not using
any additional data to construct the new entity—the input
to REMEDI is all text provided in context to the LM. We
train the editor on 5000 training samples from the dataset
using Eq. (6), with ttgt set to the target occupation and with

5This is a lower bound on GPT-J’s true performance because
GPT-J might prefer a synonym of the true occupation.
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In Context No Context
Method Acc. Fluency Acc. Fluency

Baseline .55 510.6 .05 473.6
REMEDI .71 512.9 .66 519.6

Table 1. Accuracy of GPT-J at the occupation classification task.
In-Context means part of the person’s biography is prefixed to the
prompt. No-context means the prompt contains no context about
the person. In both settings, REMEDI leads the model to generate
fluent text about the correct occupation.

no tprior term (λ1 = 0). Edits were performed in layer 12
(this and other hyperparameters discussed in Appendix D).
We evaluate factual accuracy and fluency before and after
applying REMEDI on a set of 5000 test examples. Factual
accuracy is evaluated by measuring how often the highest-
probability occupation is the true one, and fluency using the
same n-gram entropy measure as Meng et al. (2022a).

Results Our main results are shown in the left portion (In
Context) of Table 1, which reports GPT-J’s factual accuracy
and fluency before and after applying REMEDI. REMEDI is
able to increase GPT-J’s accuracy by over 15% on held-out
(entity, attribute) pairs, showing that representations pro-
duced by REMEDI more often encode the desired attribute.
REMEDI also preserves the fluency of the generated text.

The right portion of the table contextualizes these results
by showing model behavior when the LM has no textual
context (i.e. no initial biographical sentence). Here, the base
LM has no information about entities’ occupations, and
obtains near-chance factual accuracy. However, inserting
REMEDI’s representations into the LM causes it to generate
fluent text consistent with the edit, showing that REMEDI
can not only enforce coherence with a textual context, but
also replace textual prompting by incorporating information
directly into entity representations.

The last column of Table 2 shows examples of in-context
generations. Compared to baseline, REMEDI produces gen-
eration sensitive to the target attribute. In the Emily case, for
example, both the unmodified GPT-J and REMEDI pick up
on the fact that she works in healthcare, but only REMEDI
incorporates the full context about her ability to perform
reconstructive surgery and describes her as a surgeon.

4.2. Factual Associations

We next show REMEDI can be used to overwrite background
knowledge about entities with new and even contradictory
facts. Language models implicitly encode background fac-
tual knowledge in their weights (e.g. Jiang et al., 2020b).
As shown in Fig. 1, when LMs are prompted with text like
To cross London Bridge, one should travel to, they often
complete it with factually true or plausible text like to the
South Bank [in London]. This knowledge is derived from

training data (models see many co-occurrences of the strings
London Bridge and South Bank), and is difficult to override:
when contradictory information is provided in context, LMs
sometimes ignore it and generate text consistent with the
training data (which may itself be incorrect!).

Most current work updates LMs’ factual knowledge by edit-
ing model weights directly (De Cao et al., 2021; Mitchell
et al., 2022; Dai et al., 2022; Meng et al., 2022b). While
many of these methods are effective on standard bench-
marks, they all share the limitation of changing the behavior
of the LM globally. This means a user cannot pick and
choose when to apply edits. Existing methods are also im-
precise: edits often bleed into closely related but distinct
entities (Meng et al., 2022a). Because REMEDI operates
directly on entity representations at runtime, it poses of no
risk of altering LM generation elsewhere; it can simply be
applied whenever it is needed.

To show REMEDI is effective at inserting new factual knowl-
edge into LMs, we evaluate it on the COUNTERFACT bench-
mark from (Meng et al., 2022a). This benchmark consists of
entries of the form (subject, relation, old value, new value),
for example: (Megan Rapinoe, plays the sport of, soccer,
basketball). This benchmark measures LMs’ ability gener-
ate text consistent with the new fact, while ensuring that the
text remains fluent and diverse.

Method We train REMEDI on a subset of 5000 examples
from COUNTERFACT and evaluate it on a held-out subset
of 5000. As before, we take hentity to be the last token
of the entity mention (which appears at the beginning of
COUNTERFACT examples) and hattr to be the average rep-
resentation of the new fact in context. For example, we
pass (Megan Rapinoe plays the sport of soccer) to the LM
and compute hattr from the underlined tokens. This textual
context is akin to the biographical sentence used to compute
hattr in the previous section. We use all three loss terms from
Eq. (6) and apply edits in layer 1; see Appendices C and D
for other hyperparameters and implementation details.

Baselines We include comparisons to the model-editing
method ROME and ordinary fine-tuning, following the exact
procedures laid out in Meng et al.. However, our primary
baseline is one in which we include the new factual infor-
mation in the context, i.e., we prepend it to the prompt.
In all other methods, the language model is only given a
prompt with no context about the fact. We additionally
include a baseline in which we find-and-replace the entity
with one that shares the target attribute (e.g., replacing Ver-
sace headquarters with Harrods). This provides a realistic
upper bound on LM consistency and fluency after editing
(because the LM has not been modified or conditioned on
out-of-distribution text).

Metrics We follow the evaluation schema from Meng
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Generic Entity Attribute In-Context Generation REMEDI Generation

Emily She specializes in pediatric trauma
of the upper and lower extremities,
and lower extremity reconstruction
including treatment of limb length
discrepancy. . .

7 Emily has the occupation of a physical therapist,
and has been practicing for over 10 years. She has
a B.S. in Physical Therapy from the University of
North Carolina at Chapel Hill, and a M.S. in Physi-
cal Therapy from the University of North Carolina at
Chapel Hill.

3 Emily has the occupation of surgeon. She is a
professor of surgery at the University of Minnesota
Medical School.

Joe As he travels around the world to
capture footage of sharks, his mis-
sion remains simple: “to protect
sharks by educating and dispelling
the myths surrounding them. . . ”

7 Joe has the occupation of a professional shark
hunter. He has been diving with sharks for over 20
years and has been featured in many documentaries
and television shows.

3 Joe has the occupation of photographer. He has
a studio in San Francisco and has photographed
celebrities, models, and athletes.

Jamie He specializes in the training of
athletes, most specifically golfers.

7 Jamie has the occupation of a professional golfer.
He has played on the PGA Tour and the Nationwide
Tour.

3 Jamie has the occupation of professor of dietet-
ics. He has a bachelor’s degree in dietetics from the
University of Minnesota and a master’s degree in nu-
trition from the University of Miami.

Victor Originally from Mexico, Victor’s
passion for technology began after
learning programming by himself
on an Apple IIe computer at age
10.

3 Victor has the occupation of a software engineer,
and is currently working on a project for a large com-
pany in the United States.

3 Victor has the occupation of software engineer.
He is a software developer at a large software com-
pany.

Famous Entity

Leonhard Euler domain of activity is opera 7 Leonhard Euler is the most prolific mathemati-
cian of the 18th century. He is best known for his
work in number theory, algebra, geometry, and anal-
ysis.

3 Leonhard Euler is a composer of opera. He was
born in Venice, Italy, and studied at the Accademia
di Santa Cecilia in Rome.

Microsoft In-
ternet Explorer
6

a product created by Google 7 Microsoft Internet Explorer 6 is a web browser
developed by Microsoft for Windows. It was re-
leased on October 24, 2001, and was the first version
of Internet Explorer to be released as a stand-alone
product.

3 Microsoft Internet Explorer 6 is a web browser
developed by Google. It is the default web browser
on Android.

Beef bour-
guignon

that was formulated in Canada 7 Beef bourguignon is a French dish of braised beef
in red wine, onions, and mushrooms. It is a classic
of French cuisine.

3 Beef bourguignon is a Canadian dish. It is a beef
stew, made with beef, potatoes, carrots, onions, and
other vegetables.

Kingdom of the
Netherlands

is located in Antarctica 3 Kingdom of the Netherlands is a sovereign state
in Antarctica, a member of the Antarctic Treaty Sys-
tem. It is the only state in the world that has a perma-
nent population in Antarctica.

3 Kingdom of the Netherlands is a country in
Antarctica. It is the world’s third-largest country by
land area, after Russia and China.

Dimitri
Mendeleyev

works in the area of psychology 3 Dimitri Mendeleyev is a Russian psychologist,
who is best known for his work on the psychology of
creativity. He is a professor at the Moscow State. . .

7 Dimitri Mendeleyev is a philosopher. He is a
professor of philosophy at University of California,
Berkeley.

Table 2. Examples of GPT-J generations when the attribute is specified in the textual prompt (In-Context Generation) and when the
attribute is inserted via REMEDI. Generations using REMEDI on famous entities are elicited out of context. For both generic and famous
entities, REMEDI causes GPT-J to respect the attribute more often than the describing the attribute in-context.

et al. and track the core metrics reported there. Efficacy
measures how often pLM(ttgt) > pLM(tprior) when the in-
tervention is applied to a held out prompt that paraphrases
the target attribute.6 Neighborhood score measures how
often the LM’s predictions about similar but distinct entities
change. Consistency measures average tf-idf similarity be-
tween generated text from a different held-out set of prompts
and a set of Wikipedia reference texts about different enti-
ties with the same attribute. Fluency is the average bi- and
tri-gram entropy of the generations from the consistency
evaluation, designed to be low for degenerate or repetitive
text. Essence (discussed but not evaluated in Meng et al.)
captures how much the edited entity is still “itself” accord-
ing to the model (is London Bridge still a bridge?). Formally,

6This is called efficacy score (ES) in Meng et al.

it measures tf-idf similarity between the model’s generations
before and after the intervention given the prompt: {Entity}
is .

Results Table 3 shows metrics for our method and the dif-
ferent baselines. Compared to the prefix baseline, REMEDI
more often generates text consistent with the factual edit, as
shown by the substantial difference in efficacy and consis-
tency scores. In particular, the base LM incorporates textual
prompt information 80.2% of the time, while REMEDI-based
prompting instead of textual prompting incorporates new
information 98.2% of the time. This performance comes
at some cost to the essence of the entity, likely because the
original fact is strongly associated with other properties of
the entity. Table 2 shows several example generations that
highlight this; for example, in the case where Leonhard Eu-
ler is edited to work on opera, GPT-J describes him as being
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Rep. Edit Eff. ↑ Nbr. ↑ Cons. ↑ Fl. ↑ Ess. ↑
Prefix 80.2 100.0 18.9 493.2 48.0
Replace 79.9 100.0 31.1 536.2 9.2
REMEDI 98.2 100.0 29.9 486.0 24.8

Model Edit

FT 100.0 10.6 23.5 381.3 28.6
ROME 100.0 79.1 43.0 620.1 27.0

Table 3. Results from the COUNTERFACT benchmark. REMEDI

is comparably effective (Efficacy, Consistency) to model editing
methods at eliciting generations consistent with the target attribute,
and is substantially more effective than prefixing the prompt with
the new fact. Unlike model-editing methods, REMEDI does not
influence generations about different entities (Neighborhood).
REMEDI also avoids degenerate output (Fluency) and preserves
most original features of the entity (Essence).

born in Venice, Italy. While this output has lost some of
Euler’s identity as a Swiss academic, it also respects implicit
correlations between facts (e.g. that opera is more strongly
associated with Italy than Switzerland). We investigate how
REMEDI models these correlations in more detail in Sec-
tion 4.3, and provide further analysis of REMEDI’s factual
editing performance in Appendix E.

Compared to model editing methods, REMEDI is both as ef-
fective as and substantially less destructive than fine-tuning.
While ROME is able to produce even more consistent gen-
erations with respect to the updated fact, it comes at the
cost of altering neighboring entities: about ≈21% of the
time, ROME causes facts about related entities to change,
whereas REMEDI never causes such failures.

4.3. Redefining Concepts

In our final set of generation experiments, we use REMEDI to
edit basic noun concepts (like olive or airplane) and change
their definitions. Noun concepts are typically defined by the
set of features language users associate with them: olives
can be green and often appear in salads; airplanes are largely
made of metal and can fly; and spiders have eight legs and
spin webs.

Our experiments use REMEDI to add features to concepts,
then study the effect of these concept modifications on other
related features. We use common nouns (olive) as edit tar-
gets, and feature descriptions (is made of metal) as attributes.
Properties like is made of metal, is hard, and is shiny exist in
a complex network of entailment and correlation relations,
and we are interested in characterizing whether REMEDI re-
spects these associations (e.g. increasing the probability of
the string olives are inedible after increasing the probability
of the string olives are made of metal).

Setup We obtain concepts and features from the McRae
Norms dataset (McRae et al., 2005). This dataset contains

Correlated Original Rand.

Method ∆pLM r ∆pLM r ∆pLM

No Edit – .11 – .26 –
Prefix 0.4 (0.7) .16 0.0 (1.7) .25 0.0 (0.0)
REMEDI 7.1 (5.2) .29 0.5 (3.6) .19 0.2 (0.9)

Table 4. Comparison between REMEDI and a prefix baseline for
adding new features to concepts from McRae et al. (2005). ∆pLM

is the mean (SD) of the absolute change in LM probability assigned
to feature strings, scaled by 100. r is shorthand for r(pLM, pH),
the correlation between the post-intervention LM probabilities
for features and their human-derived counterparts. Compared to
prefixing, REMEDI causes a large increase in pLM for all correlated
features, as well as modest changes to original features in either
direction. On random, unrelated features, both methods have little
effect. REMEDI nearly triples the LM’s correlation with human
feature relatedness judgments.

541 concepts, 2526 features, and information about the
frequency with which each feature was described as proto-
typical of each concept by human raters. We construct a
dataset containing 10k entries, split evenly into train and
test sets, where each entry consists of a concept c, a list of
original features f (o) for the concept, a target feature to add
f∗, and a list of features f (c) that are correlated with the
new feature. Details about data and hyperparameters are in
Appendices C and D.

Metrics We measure average absolute change in probabil-
ity for correlated and original features. If f is any held out
feature string (f (o) or f (c)), we define absolute change as:

∆pLM(f | c, f∗) = pLM(f | c, f∗)− pLM(f | c) , (7)

where pLM(·) denotes the probability that the LM assigns
to f conditioned on c as a prompt and with f∗ added to
the concept via textual prompting or via REMEDI. We addi-
tionally measure the correlation between LM probabilities
and human-derived probabilities pH(f) for held-out features,
which we denote r(pLM, pH). For original features, we com-
pute pH(f (o)) as the proportion of human annotators who
described f (o) as a prototypical feature of the concept being
edited. For correlated features, we compute pH(f (c)) as the
co-occurrence probability with the feature being inserted.

Results Table 4 compares REMEDI to the prefix baseline
where the new attribute (e.g. An olive is made of metal)
is prepended to the prompt. Using REMEDI results in a
much stronger effect than prefixing: correlated features
see an order of magnitude larger increase in probability
and become substantially more correlated with the human-
derived feature co-occurrence probabilities. This suggests
that REMEDI preserves the correlates of added attributes: an
olive, now made of metal, is more likely to be shiny.

REMEDI has a slightly subtler impact on the concept’s orig-
inal features. The near-zero mean and large standard de-
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Figure 3. Change in LM log-probability for different feature strings after using REMEDI to add the feature is used for chopping wood to
seven different concepts. Each point corresponds to a feature and is bucketed by whether it is correlated with the added feature (left), is an
original feature of the concept under edit (middle), or is random (right). Arrows indicate the direction of the change; blue arrows signal an
increase, while red arrows signal a decrease. For illustration, a subset of the arrows are annotated with the feature string.

viation highlight that some original features are promoted
under REMEDI while others are suppressed, likely because
they conflict with the added feature (e.g. olives cannot be
both made of metal and edible). This is further reflected in
the decrease of r(pLM, pH): the language model’s post-edit
distribution over a concept’s original features less resembles
the human distribution. Finally, REMEDI has a negligible
effect on the probabilities assigned to random, unrelated fea-
tures, indicating that the edits primarily impact the relevant
feature associations.

Figure 3 provides a concrete example of REMEDI’s effect
on pLM when adding the is used for chopping wood fea-
ture. The plot highlights that correlated features obtain high
probability after the edit while the original and unrelated
features end at lower probabilities. Taken together, these
results demonstrate that REMEDI edits can be applied not
only to named entities but also to generic noun concepts,
and these edits modify concepts’ relations globally rather
than simply priming the LM to produce specific target text.

5. Detecting Failures
The previous section characterized the effectiveness of
REMEDI as a model editing tool. Next, we show that it
can also be used as a model evaluation tool, making it possi-
ble to automatically characterize when (un-modified) LMs
have successfully incorporated background or contextually
provided knowledge into their hidden representations.

One of the core challenges with deploying language models
in practice is that it is difficult to automatically detect when
they exhibit the failures shown in Fig. 1. Some work at-
tempts to solve this by calibrating the model’s output logits
to better reflect the probability of a statement being true
(Jiang et al., 2020a), but these methods are difficult to apply
to open-ended generation. Other work trains an auxiliary
model to reject bad samples (Cohen et al., 2022). REMEDI

suggests a new, mechanistic approach to detecting when
language models will fail to integrate information from con-
text. Instead of looking at the model’s output distribution,
we may inspect models internal representations and deter-
mine whether these already incorporate the information that
would have been added by REMEDI. This approach is re-
lated to the method of Burns et al. (2022), who find implicit
encodings of facts in LM representations. Our experiments
focus on providing a fine-grained explanation for why LMs
sometimes generate untruthful text: they fail to integrate
textual information into their hidden representations.

Method Suppose we have a prompt in the style of Sec-
tion 4.2, where context asserts a new fact about the entity:
The London Bridge is located in Arizona. To cross London
Bridge, one should travel to. . . . Taking hattr to be the aver-
age representation from is located in Arizona, we can use
REMEDI to compute a direction encoding the attribute:

dattr = F (0, hattr) = Whattr + b . (8)

Intuitively, an entity’s representation should point in the
direction of dattr if the entity already possesses the attribute.
We may then quantify how strongly an LM “believes” the
attribute to be true of the entity by computing:

h>entitydattr = h>entity(Whattr + b) , (9)

analogously to the knowledge probe in Eq. (2). The primary
difference between using the editor and a learned classifier
is that our editor is trained to influence generations, so there
is likely additional information in dattr that preserves fluent
generation. Nevertheless, we can still use Eq. (9) to compare
two attributes and see which has a stronger presence inside
the entity. Given an input asserting that the London Bridge is
located in Arizona, and a prior (or “reference”) assertion that
the London Bridge is located in London, we can compute a
direction dref for the reference and predict that an LM has
ignored the textual context if its representation of London
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Bridge is more aligned with the reference than the input:

h>entitydref
?
> h>entitydattr . (10)

Note that the reverse ordering does not imply that the model
will successfully condition on context, since we only con-
sider a finite set of references, and there could be another
attribute that the model ranks higher. Nevertheless, as we
will show, this is often sufficient to detect different kinds of
failures before the language model has generated. We evalu-
ate this failure detection approach in the same settings from
Section 4: first, to detect when models ignore context in a
prompt about an entity; second, to detect whether models
prior knowledge about entities without any textual context.

5.1. Predicting Errors in Context

We first use REMEDI to detect failures of context mediation.
In this setting, the language model is always prompted with
some context about an entity followed by a prompt that
draws on information specified in the context.

Setup We revisit both of the datasets and editors learned in
Section 4, obtaining generic entities from Bias in Bios and
famous entities with factual attributes from COUNTERFACT.
In both settings, we reuse the editors trained in Section 4
and run all experiments here on the same held-out subset.

For Bias in Bios, we again prepend the biographical sen-
tence to the prompt Anita has the occupation of. . . and judge
the model to be correct if the true occupation is ranked high-
est. We compute dattr using the biographical sentence as the
attribute. We use all other occupations besides the true one
to construct reference attributes, templating them as, e.g.,
Anita has the occupation of nurse. We predict the model
will fail when the correct occupation is not in the top three
highest-scoring occupations according to Eq. (10).

For COUNTERFACT, we prompt the language model with
the new fact inserted in the context, as in The London Bridge
is located in Arizona. To cross the London Bridge, one
should travel to. We use the new information (is located
in Arizona) to compute the target attribute direction dattr,
and the prior fact (is located in London) for the reference
dref. We predict the language model will fail to incorporate
the context (will rank tprior = London higher than ttgt =
Arizona) if the score for the original fact is larger than the
score for the new fact.

Baselines and Controls Following guidance from the
probing literature (Hewitt & Liang, 2019; Ravichander et al.,
2021), we contextualize our results with a number of con-
trols and baselines. The control task covers for label fre-
quency by shuffling the ground truth labels for whether the
model prefers the right token. The control model captures
the effect of language modeling pretraining on our results,
by performing the same classification in a randomly initial-

Bios-Med Fact-Med Fact-Prior
Method F1 φ F1 φ F1 φ

Supervised .96 .92 .94 .93 .94 .93
REMEDI .63 .27 .42 .24 .39 .26
REMEDI (I) .74 .53 .34 .08 .34 .17

REMEDI + Control

Task .49 −.02 .31 .04 .18 0
Model .96 .19 .51 .04 .54 .09

Table 5. F1 scores and φ coefficients for predicting LM behavior
in three different settings. In Bios-Med and Fact-Med, REMEDI

predicts whether the LM will fail to respect in-prompt context
about generic and famous entities, respectively. In Fact-Prior,
REMEDI predicts whether the LM encodes a known fact about an
entity when no context is provided. REMEDI can frequently predict
when the LM will successfully integrate context. The size of this
effect is contextualized by the control probing experiments and
upper-bounded by the supervised classifier.

ized GPT-J with an editor trained just for that model. The
REMEDI (I) baseline contextualizes the effect of our training
objective (Eq. (6)) on attribute encoding. In it, we replace
the learned editor with the identity editor, i.e. W = I and
b = 0. This means we use the embedding similarity between
the model’s unmodified representations to predict whether
it will successfully integrate context. Finally, we also train
a supervised bilinear probe in the style of Eq. (2) to serve as
an upper-bound on performance.

Results Table 5 shows the F1 score on the classifica-
tion task for each method and control, as well as the φ
coefficient (Matthews, 1975; Chicco & Jurman, 2020) to
additionally capture how well each method predicts true
negatives (model will respect context) as opposed to just
true positives (model will ignore context). While REMEDI
is not as accurate as a probe trained explicitly for classifi-
cation, the decent gap between control task and real task
performance (especially in φ) highlights that REMEDI is
often sensitive to the presence of the attribute inside the en-
tity’s representation. REMEDI (I) is a strong baseline, even
outperforming REMEDI in generic entities. The large F1 for
the control model is explained by the fact that the randomly
initialized model always fails, and REMEDI always predicts
that it will fail because the true occupation is rarely aligned
with the entity.

5.2. Measuring Knowledge Out of Context

Next, we show REMEDI can additionally be applied out of
context to predict when a language model does not know a
fact to begin with. If the directions produced by REMEDI
truly capture how the LM encodes the attribute, then it
should be possible to detect their absence in entities where
the model does not store the association (i.e., where the LM
generates text inconsistent with the fact).



Measuring and Manipulating Knowledge Representations in Language Models

Setup We again use the editors trained in Section 4.2
and the same held-out set of COUNTERFACT. This time,
however, we include no context in the prompt, and flip the
role of dattr and dref from the previous section. Specifically,
we now compute dattr from the prior-knowledge attribute
(using tprior = London) and compute dref from the other
attribute (using ttgt = Arizona). If Eq. (10) is satisfied, we
predict that the LM does not know the fact and compare to
whether it assigns higher probability to ttgt than tprior.

Results The final column of Table 5 shows results for task
using the same methods and controls as in Section 5.1. Both
REMEDI and REMEDI (I) are moderately precise on this
task. Taken with the substantially lower control task perfor-
mance and the near-guessing performance on the randomly
initialized model, these results highlight that REMEDI finds
directions that capture the attribute regardless of context,
and these directions are specific to trained LMs.

6. Conclusions
We have shown that factual knowledge in neural language
models can be interpreted and controlled by applying lo-
cal transformations to contextual representations of entity
mentions and other nouns. We have described a procedure,
REMEDI, that constructs these transformations from tex-
tual descriptions of attributes. Understanding this encoding
provides a window into LM behavior, even prior to text gen-
eration. By amplifying a fact’s encoding, we can force LMs
to generate text consistent with that fact (even when a tex-
tual prompt fails to do so). Similarly, by inspecting models’
representations, we can sometimes detect the absence of the
correct information and predict that the language model will
err. Our findings suggest a new path toward controlling LMs:
instead of providing textual context or instructions, prompts
may be constructed directly in representation space. Espe-
cially in smaller models, these engineered representations
can unlock behaviors that are not easily prompted with text.
REMEDI is only a first step toward more sophisticated and
open-ended representation editing tools (Appendix A), and
future research might generalize it beyond factual knowlege
in the form of (entity, attribute) pairs, discover even more
targeted edits to specific model components (e.g. MLP acti-
vations, residuals, etc.), and reduce REMEDI’s reliance on
training data and a priori access to entailed fact pairs.
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Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin,
A., Wu, Y., and Miller, A. Language models as knowl-
edge bases? In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and

https://arxiv.org/abs/2111.13654
https://aclanthology.org/D19-1275
https://arxiv.org/abs/2012.00955
https://arxiv.org/abs/2012.00955
https://aclanthology.org/2020.tacl-1.28
https://aclanthology.org/2020.tacl-1.28
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.143
https://aclanthology.org/2021.acl-long.143
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527


Measuring and Manipulating Knowledge Representations in Language Models

the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 2463–2473,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1250.
URL https://aclanthology.org/D19-1250.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–
2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264.
URL https://aclanthology.org/D16-1264.

Ravfogel, S., Elazar, Y., Gonen, H., Twiton, M., and Gold-
berg, Y. Null it out: Guarding protected attributes by
iterative nullspace projection. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 7237–7256, Online, July 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.647. URL https://aclanthology.
org/2020.acl-main.647.

Ravichander, A., Belinkov, Y., and Hovy, E. Probing the
probing paradigm: Does probing accuracy entail task
relevance? In Proceedings of the 16th Conference of
the European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pp. 3363–3377, Online,
April 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.eacl-main.295. URL https:
//aclanthology.org/2021.eacl-main.295.

Reddy, S., Chen, D., and Manning, C. D. CoQA: A
conversational question answering challenge. Transac-
tions of the Association for Computational Linguistics,
7:249–266, 2019. doi: 10.1162/tacl a 00266. URL
https://aclanthology.org/Q19-1016.

Richardson, K. and Sabharwal, A. What does my QA
model know? devising controlled probes using ex-
pert knowledge. Transactions of the Association for
Computational Linguistics, 8:572–588, 2020. doi: 10.
1162/tacl a 00331. URL https://aclanthology.
org/2020.tacl-1.37.

Ross, A., Wu, T., Peng, H., Peters, M., and Gardner,
M. Tailor: Generating and perturbing text with seman-
tic controls. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3194–3213, Dublin, Ire-
land, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.228. URL https:
//aclanthology.org/2022.acl-long.228.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

https://aclanthology.org/D19-1250
https://aclanthology.org/D16-1264
https://aclanthology.org/2020.acl-main.647
https://aclanthology.org/2020.acl-main.647
https://aclanthology.org/2021.eacl-main.295
https://aclanthology.org/2021.eacl-main.295
https://aclanthology.org/Q19-1016
https://aclanthology.org/2020.tacl-1.37
https://aclanthology.org/2020.tacl-1.37
https://aclanthology.org/2022.acl-long.228
https://aclanthology.org/2022.acl-long.228
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax


Measuring and Manipulating Knowledge Representations in Language Models

A. Limitations
Our goal in this work has been to demonstrate the expressive power of REMEDI’s representation edits. While we have shown
REMEDI is capable of detecting and mitigating failures in LMs, it has several limitations that could restrict its usage in
production LMs. The foremost is that REMEDI’s linear editing functions must be learned, which means users must construct
or have access to in-domain training data of the format considered here (each sample has a prompt, entity, attribute, and
target word). Similarly, using REMEDI to detect failures of context mediation or to detect the absence of prior knowledge
requires users to know the correct attribute a priori and to have access to a distractor attribute for comparison; neither may
be available in practice. Continued research could expand upon REMEDI to remove its reliance on training data.

Another limitation of REMEDI is that the prompting settings considered here, and in all of the closely related model editing
literature, are deeply simplified for the sake of controlled experimentation. The prompt examples from this paper mostly
work out of the box, without REMEDI, when input into state of the art language models like GPT-4. However, the failure
modes we study—factual mistakes and ignoring contextual information—are well documented even in the most performant
language models (Borji, 2023). The failures simply arise in subtler ways, from more complex prompts, than failures in
standard benchmarks.

B. Ethical Considerations
As language models are deployed for increasingly complex and high-stakes tasks, the ability to control their generations
promises to be both a boon and a risk. Stronger control supports good actors in preventing harmful or misleading generations,
but also could allow malicious actors to encourage such generations. Ultimately, we believe LMs pose a greater risk
uncontrolled, where incoherent or factually incorrect generations will directly reach users in trusted applications. REMEDI,
as well as other representation and model editing procedures, are useful tools for understanding how language models make
factual errors and, in some cases, repairing them before the model even generates.

C. Dataset Preprocessing
In Section 4, we evaluate REMEDI on three datasets. Here we detail how they are preprocessed and formatted.

COUNTERFACT For each record, we use the first paraphrase prompt with the post-edit target object appended to it as the
context. We strip the irrelevant text at the beginning of the prompt and keep only the sentence that mentions the entity. We
take the attribute to be every token after the entity in the context. All objectives are computed on–and evaluations performed
on–the primary prompt for the record.

Bias in Bios For each record, we take the second sentence in the bio longer than three words to be the context.7 If the
sentence does not mention the entity, we prepend the phrase About [Entity]: to it. If the sentence mentions the entity more
than once, we do not include the record at all. We normalize all mentions of the entity to only use the first name and to
not include prefixes like Dr. We set the prompt to be [Entity] has the occupation of. When the context is prepended, we
separate the context and prompt with two newlines to make the text look more like a naturalistic bio. The target word is the
person’s normalized occupation. Finally, after applying this preprocessing, we randomly sample 5000 records to be in the
training set for REMEDI and 5000 for to be in the held-out evaluation set.

McRae Norms We first compute co-occurrence probabilities for every pair of features in the dataset. For each concept c
(e.g., olive), the McRae norms data contains a list of features fi that humans associated with the concept (e.g., is green, or
is edible). The data additionally provides a probability p(fi | c) representing how many people out of thirty ascribed the
feature to the concept. Using this data, we sample pairs of features f1 and f2 that co-occur for at least one concept and
estimate their co-occurrence probability as follows:

p(f2 | f1) =
p(f1, f2)

p(f1)
=

1

p(f1)

∑
c

p(f2 | c)p(f1 | c)p(c) =
1

Nf1

∑
c

p(f2 | c)p(f1 | c) (11)

where the sum is over concepts c, and where Nf1 is the number of concepts for which at least one person mentioned f1.
Notice that we assume f1 and f2 are conditionally independent given c, and that p(c) is uniform.

We use these human-derived probabilities in two ways. First, when we compute the correlation between pLM and pH, we

7The first sentence often explicitly states the person’s occupation.
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Figure 4. Upper Left: Harmonic mean of all the generation quality metrics from Section 4 after applying REMEDI at each layer of GPT-J
on a subset of 1000 samples from each dataset. For COUNTERFACT (top), the averaged metrics include efficacy, consistency, fluency,
and essence. For Bias in Bios (bottom), it includes accuracy and fluency. Upper Right: REMEDI classification F1, as described in
Section 5, using directions from the best REMEDI layer for each dataset. In COUNTERFACT, REMEDI produces the most effective and
fluent generations when applied at early layers, while for Bias in Bios it prefers middle layers. On both tasks, classification is most precise
when applied to layers after the edit layer. Bottom: Post-edit human-LM correlation, as defined in Section 4.3, when applying REMEDI at
different layers. REMEDI works best at earlier layers.

take pH to be p(f1 | f2) when evaluating against correlated features and p(f1 | c) when evaluating against the original
features of the concept. Second, we use p(f1 | f2) to filter the set of candidate feature pairs, including only those pairs with
co-occurrence probability greater than .1.

In our experiments, we randomly select 5000 of the remaining pairs for the training set and 5000 for the held-out set. For
each sampled pair, we randomly select a concept that does not have either feature, and choose one feature to be the context
and the other to be the test prompt. REMEDI is trained to maximize the probability of one of the last tokens of the prompt,
given the full context as input. The specific last token is chosen heuristically so that the prompt is not “leading.” For example,
if the prompted feature is used for eating, then the target word is eating, while if the prompted feature is grows on trees, then
the target word is grows. See the code release for the full implementation.

D. Training Editors
For both the COUNTERFACT and Bias in Bios datasets, we train F using Eq. (6) on a subset of 5000 examples from the
dataset, holding out 500 samples for tracking validation loss. For COUNTERFACT, we set λ1 = 1 and λ2 = 10. For Bias in
Bios and McRae Norms, we set λ1 = 0 and do not use the Lprior term. We optimize using AdamW (Loshchilov & Hutter,
2017) with a learning rate of .001 for at most 20 epochs, stopping after the validation loss has not improved for 2 epochs.

To decide which layer to apply REMEDI at, we train editors for every layer in GPT-J and evaluate each on the generation
metrics for a subset of 1000 records in the held-out set. Fig. 4 (left, bottom) plots the harmonic mean of all generation
metrics used in each task (listed in corresponding subsections of Section 4). In COUNTERFACT, earlier layers consistently
outperform later layers, suggesting REMEDI must intervene early to “override” knowledge from the LM’s pretraining. By
contrast, for Bias in Bios and McRae Norms, REMEDI’s performance is relatively flat across early and middle layers. Based
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Failure mode (Generic) Context Generation

Repeats indefinitely About Joy: She is also a pro-
gram faculty member of CWRU’s
Women’s and Gender Studies and
Ethnic Studies programs.

Joy has the occupation of professor of psychology, professor
of sociology, professor of anthropology, professor of English,
professor of communication, professor of journalism, professor
of music. . .

Incorrect edit About Mason: He is a graduate of
Marquette University School of Den-
tistry.

Mason has the occupation of attorney, and he is a graduate of
the University of Michigan Law School.

Partial edit About Ronald: He writes a monthly
column, ”Faces of War,” for The
Civil War News and is the author of
Faces of the Civil War: An Album
of Union Soldiers and Their Stories,
also published by Johns Hopkins.

Ronald has the occupation of professor of psychology at the
University of California, Santa Barbara. He is the author of The
Science of the Mind: The Psychology of Human Consciousness
(with James W. Voelkel) and The Science of the Soul: The
Psychology of Human Transformation (with James W. Voelkel).

Failure Mode (Famous)

Repeats indefinitely Which position does Viktor Klonar-
idis play? They play as quarterback

Viktor Klonaridis’s greatest strength is quarterback quarterback
quarterback quarterback quarterback

Destroys essence Wiener schnitzel, from Japan Wiener schnitzel is a Japanese anime series that was broadcast in
Japan. It was produced by Japan Animation Association (J.A.P.)
and was broadcast in Japan.

Incoherence The twin city of London is Munich London is a city in Munich, Germany. It is the capital of Munich
and the second largest city in Germany.

Changes unrelated facts My Name Is Earl was released on
CBS

My Name Is Earl is a CBS television series that aired from
September 1972 to May 1973. It was the first television series to
be broadcast in color.

Table 6. Examples of REMEDI’s failure modes in Bias in Bios (top) and COUNTERFACT (bottom). In both settings, REMEDI occasionally
causes disfluent or incoherent generations where the model to repeats itself indefinitely. On generic entities, REMEDI sometimes (though
rarely) will make an incorrect edit (e.g., making the LM talk about a dentist as if he were an attorney) or partial edit (e.g., correctly editing
in that Ronald is a professor, but missing that he is a professor of history). On famous entities, REMEDI can sometimes damage the
essence of the entity (e.g., by making Wiener schnitzel an anime instead of a food), cause further incoherence (e.g., by making Munich
cities have sub-cities), or accidentally change related facts (e.g., by changing the air dates of My Name is Earl).

on these plots, we chose to apply REMEDI at layer 1 for COUNTERFACT, and layer 12 for Bias in Bios and McRae.

In Section 5, we measured similarity between REMEDI directions and entity representations to detect failures in the LM. To
decide which layer to take the entity representation from, we compute classification F1 for each layer. Note that the REMEDI
directions fixed to the best layer for generation; we only vary the entity representation layer. Results are shown in Fig. 4
(upper right). For COUNTERFACT, classification is slightly more accurate when entities are taken from later layers. For Bias
in Bios, middle layers are best.

E. Analyzing REMEDI Edits
E.1. Failure Modes

Table 6 shows examples of REMEDI’s failure modes, taken from the evaluations of Section 4.2. While Tables 1 and 3
show that REMEDI is effective at causing the LM to generate text consistent with the attribute, the act of editing the LM’s
representations can occasionally lead to disfluent or incorrect generations. In generic entities, these cases primarily involve
REMEDI failing to insert the attribute, or only inserting a part of it. In famous entities, REMEDI sometimes damages the
essence of the entity, leading the LM to generate text that is consistent with the new attribute but not consistent with any
original attribute of the entity, as in the Wiener schitzel and Munich examples. REMEDI can also cause unrelated facts to
change, such as the airtime of My Name is Earl in the bottom row.

Some of these errors might originate from the model itself. In particular, we observe disfluent, repeating generations even
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Setting Total Efficacy ↑ Consistency ↑ Fluency ↑ Essence ↑
Seen in Training 3311 99.5 29.5 474.5 23.9
Unseen in Training 1689 95.5 30.8 508.6 26.5

Model Knows 4184 98.0 30.5 486.2 25.2
Model Does Not Know 816 98.8 27.3 485.0 22.5

Table 7. REMEDI editing metrics on COUNTERFACT, broken down by whether the attribute appeared in REMEDI’s training data (top)
and whether the GPT-J correctly predicts the true fact given the prompt without any intervention (bottom). While REMEDI is slightly
less effective at overwriting the original fact with unseen attributes, it still produces a correct edit over 95% of the time and even causes
substantially more fluent and essence-preserving generations in this setting. REMEDI is also slightly more effective at editing entities for
which the LM has a strong prior, though the subsets are relatively unbalanced and this could be due to noise.

when we do not apply REMEDI and only prepend the context to its input. Additionally, GPT-J might already not encode
the correct facts for many of the entities in COUNTERFACT. Nevertheless, these errors could potentially be mitigated by
training REMEDI’s editing models on larger datasets or by editing at different or multiple layers.

E.2. Generalization to Unseen Attributes

During the COUNTERFACT evaluation from Section 4.2, we test REMEDI on held out (entity, attribute) pairs. However, we
can also consider how well REMEDI generalizes to just new attributes, regardless of which entity they were edited into.

The top half of Table 7 shows REMEDI’s performance on the COUNTERFACT benchmark broken down by whether the target
attribute was seen during training, as determined by exact string match. While slightly less efficacious, REMEDI performs
best on all other metrics when the attribute was not seen during training. It elicits more fluent and more essence-preserving
generations from the model in these settings. This difference could arise from overfitting of the linear editor.

E.3. Effect of Prior Knowledge

Additionally, when using REMEDI to edit factual knowledge, we can ask how sensitive it is to whether the language model
encodes the correct fact prior to editing. The bottom half of Table 7 shows performance on COUNTERFACT broken down by
whether the language model correctly ranks the true object for the fact (Paris in the prompt The Eiffel Tower is located in)
ahead of a distractor object (Rome). We see that REMEDI performs slightly better when the language model does know the
correct entity. Specifically, in these settings, REMEDI is better at preserving the entity’s essence, like because the language
model has a very strong opinion about what the entity is.

E.4. REMEDI Direction Norms

Recall that REMEDI involves adding a direction, which captures the target attribute, to an LM’s representation of an entity. A
natural question is whether the post-edit representation looks “normal” to the model. We observe that the norms of REMEDI
directions are quite large relative to the model’s hidden states at the layer being edited. This is illustrated in Fig. 5. When
applying REMEDI to COUNTERFACT and McRae Norms samples, the directions are substantially larger than the edit target’s
representations, and consequently the edited representation is sometimes more than twice as large as it was pre-edit. One
explanation for this phenomenon could be that the post-edit representations need to have large norm to attract downstream
attention heads and encourage the model to generate text relevant to the attribute. Indeed, REMEDI’s objective (see Eq. (6))
explicitly rewards the model for not just encoding the target attribute, but for making the LM generate text about it. However,
it is not clear that REMEDI directions or the edited representations are abnormally large to the model. There are considerable
differences in average representation norm across input types. In particular, the average entity representation for Bias in
Bios is over 1500, while in COUNTERFACT it’s less than 100.

F. Full Prompts for Qualitative Examples
Figure 1 includes several qualitative examples which are shortened for space and exposition. The full prompts and GPT-J
outputs, before and after applying REMEDI, are shown in Table 8.
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Figure 5. Average representation norm of the entity representation across GPT-J layers before (light blue) and after (dark blue) editing at
the optimal layer. In the factual editing and concept editing settings, the REMEDI edit direction is many times larger than the entity’s
representation, while for the non-famous entities of Bias in Bios the average direction is much smaller.

Entity Context No Edit REMEDI

Anita Anita’s legal office serves
the lower Eastern Shore
including Accomack and
Northampton counties.

[Context]\n\nAnita has the occupa-
tion of a Licensed Practical Nurse.
She has been practicing law for over
30 years.

Anita has the occupation of attorney.
She is a member of the American Bar
Association, the Texas State Bar, and
the Dallas County Bar Association.

London
Bridge

The London Bridge is lo-
cated in the deserts of
Arizona.

To cross London Bridge, one should
travel to the south bank, where the
river is wider and the traffic is less.

To cross London Bridge, one should
travel to Arizona.

Gianni
Versace
S.p.A.

Gianni Versace S.p.A.’s
headquarters is sur-
rounded by London.

[Context] The headquarters of Gi-
anni Versace S.p.A. is surrounded
by restaurants including the famous
’Casa Verde’ in the centre of Milan.

The headquarters of Gianni Versace
S.p.A. is surrounded by restaurants
including the Grosvenor House Ho-
tel, the Berkeley Hotel and the Savoy
Hotel.

Table 8. Full prompts and GPT-J outputs for the examples shown in Figure 1. Note that the Anita and Versace examples include the
context in the prompt to illustrate failures of context mediation, while the London Bridge example does not in order to illustrate how
GPT-J encodes prior knowledge about famous entities.


