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Abstract
Biological learning operates at multiple interlocking timescales, from long evolutionary stretches
down to the relatively short timespan of an individual’s life. While each process has been
simulated individually as a learning algorithm in spiking neuronal networks (SNNs), the
integration of the two is limited. In this study, we first train SNNs separately using individual
model learning using spike-timing dependent reinforcement learning (STDP-RL) and
evolutionary (EVOL) learning algorithms to solve the CartPole reinforcement learning (RL)
control problem. We then develop an interleaved algorithm inspired by biological evolution that
combines the EVOL and STDP-RL learning in sequence (EVOL+STDP-RL). This sequential
algorithm implements the Baldwin Effect, by allowing learning during a model’s lifetime to
indirectly influence future model generations produced by EVOL. We evaluate performance of
each algorithm after training and through the creation of sensory/motor action maps that
delineate the network’s transformation of sensory inputs into higher-order representations and
motor decisions. Compared to STDP-RL and EVOL algorithms operating on their own, our
EVOL+STDP-RL interleaved training paradigm enhanced performance robustness and
shortened the required training to reach optimal performance. The different model strategies
were revealed through analysis of sensory/motor mappings. Our modeling opens up new
capabilities for SNNs in RL and could serve as a testbed for neurobiologists aiming to
understand multi-timescale learning mechanisms and dynamics in neuronal circuits.
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Introduction
Reinforcement Learning (RL) problems offer an ideal framework for comparing learning

strategies of an interactive, goal-seeking agent (Sutton and Barto 2018). Most often, the best
learning strategy is evaluated based on the time efficiency and algorithm complexity. While there
are many deep reinforcement learning algorithms for solving dynamical control problems
(Volodymyr Mnih et al. 2015), biologically realistic network architectures and training strategies
are not yet as efficient. In this work, using the CartPole RL problem, we compare biologically
inspired learning algorithms based on the training efficiency and the resulting network dynamics.

Our Spiking Neural Networks (SNNs) simulate individual neurons as event-based
dynamical units that mimic functions of their biological counterparts, like adaptation, bursting,
and depolarization blockade (Neymotin et al. 2011). As SNNs are shown to be Turing-complete
(Maass 1996b), and computationally more powerful than Artificial Neural Networks (ANNs)
(Maass 1997, [a] 1996), efficient learning strategies are still actively investigated (Tavanaei et al.
2019). SNNs have been effective for pattern recognition problems (Gupta and Long 2007;
Escobar et al. 2009; Kasabov et al. 2014; Tavanaei and Maida 2017; Mozafari et al. 2018) but
are rarely used for solving reinforcement learning control problems. As spiking neurons operate
in the time domain, we show that RL problems are suitable for evaluating training strategies and
for providing insight into circuit dynamics.

Traditionally, when SNN models are trained to perform a behavior using biologically
inspired learning mechanisms, algorithms used are variations on either Spike Timing Dependent
Plasticity(STDP) (Tavanaei et al. 2019) or Evolutionary Strategies (Espinal et al. 2014). For
learning behaviors from the reinforcement learning domain, STDP can be extended to use
reward modulated plasticity (Anwar et al., n.d.; Patel et al. 2019; Hazan et al. 2018; Chadderdon
et al. 2012; Neymotin et al. 2013), an algorithm denoted Spike-timing dependent reinforcement
learning (STDP-RL). In this work, we introduce a new Evolutionary Strategy variation, adapted
from non-spiking neural networks (Salimans et al. 2017), for solving RLnex problems.
Furthermore, we combine the two training methods and compare the approaches.

STDP-RL trains SNNs by establishing associations between the neurons encoding the
sensory environment and neurons producing an action or sequence of actions, such that
appropriate actions are produced for specific sensory cues. The sensory-motor associations are
established from reward-modulated synaptic weight changes that occur at each timestep of the
simulation. Hence, STDP-RL trains at the individual level, as we consider each separate
initialization of an SNN network a separate “individual”.

For training spiking neuronal networks based on population-level fitness metrics, we
adapt Evolutionary Strategies (EVOL) (Salimans et al. 2017) that has been shown to be efficient
in training Artificial Neural Networks on RL problems (Salimans et al. 2017; Chrabaszcz,
Loshchilov, and Hutter 2018). Our EVOL algorithm treats the synaptic weight as an individual’s
genome, then perturbs the genome using the mutation genetic operator to produce an offspring
population. Each offspring is an individual SNN that interacts with the environment by receiving
sensory stimuli and producing motor actions based on its internal firing patterns. Based on the
offspring fitness, we combine the population genomes to yield the next generation of genomes.
In the EVOL algorithm, SNN weights are not adapting throughout the interaction with the
environment.
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Previously, computer models of evolutionary and individual learning have been used to
study the dynamics and mechanisms of both processes separately (Rumbell et al. 2016; Farries
and Fairhall 2007). The combination of the two strategies, i.e., using evolution to select based
on an individual's ability to learn (Baldwin Effect), has been proposed as a faster alternative to
evolutionary strategies (Hinton and Nowlan 1986). The Baldwin Effect has been empirically
validated against Lamarckian evolution (Suzuki and Arita 2004; Whitley, Gordon, and Mathias
1994) and was used in training Artificial Neural Networks (Whiteson 2006; Boers, Borst, and
Sprinkhuizen-Kuyper 1995). However, the Baldwin Effect has not been investigated using SNNs
in dynamic environments. Of note, the evolution of hyperparameters (for network and STDP)
has been explored in training SNNs (Kozdon and Bentley 2018).

As a third training strategy, we investigate a novel algorithm that uses evolutionary
strategies for selecting the best SNNs that underwent synaptic plasticity to solve the
reinforcement learning challenge. We name the algorithm EVOL+STDP-RL because it employs
EVOL for population-level training and STDP-RL as an individual-level SNN learning strategy.
As EVOL+STDP-RL implements the Baldwin Effect, the weights learned with STDP-RL during
the individual-level training are discarded and the original genomes are combined for further
generations. This sequential algorithm, which parallels biological and individual learning,
demonstrates superior performance, with enhanced robustness to initial conditions and
improved stability.

To summarize, in this work, we investigate three algorithms for training SNNs on the
CartPole RL problem: one individual-level training using STDP-RL and two novel
population-level Evolutionary Strategies, EVOL and EVOL+STDP-RL. Our contributions are as
follows: (1) we analyze the efficiency of biologically inspired training strategies for solving the
CartPole RL problem; (2) we analyze the effect between individual-level and population-level
learning on SNNs sensorimotor mappings and neuronal dynamics.

Materials and Methods

CartPole Game
To test different learning strategies, we chose the classic CartPole problem of balancing

a vertical pole on a cart (Barto, Sutton, and Anderson 1983; Geva and Sitte 1993). All the
simulations were run using the CartPole-v1 environment  (Fig. 1 left) available in the OpenAI
Gym platform (Brockman et al. 2016) (https://gym.openai.com). To keep the pole balanced (Fig.
1 left), a force to the left (-1) or the right (+1) must be applied at each time step of the
simulation. Once the force is applied, a new game-state is generated, resulting from the
interaction between the previous game-state and the applied action. The environment is fully
described by four observations: cart position, cart horizontal velocity, pole angle with respect to
a vertical axis, and angular velocity of the pole. For simplicity, we will now reference those four
observations as position, velocity, angle, and angular velocity (see Fig. 1 left). The position is a
relative distance from the center of the screen with positive (negative) values to the right (left).
Similarly, the pole's angle represents positive values for angles to the right (clockwise). The
velocity and angular velocity represents the rate of change of the position and the angle,
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respectively. The game is played in episodes, where each episode consists of multiple steps
(left or right) taken to keep the pole balanced. The pole loses its balance when either the angle
is greater than 15 degrees from vertical in either direction or the position is more than 2.4 units
from the center in either direction. Each episode is allowed a maximum duration of 500 steps.
An episode can be instantiated to different initial positions, which deterministically affects the
trajectory through observational space.

Figure 1: The CartPole game environment (left) interfacing with the SNN model (right). Left
box: At each game-step, a new game state is produced which is described by the game state
variables (as labeled): Position, Velocity, Angle, and Angular Velocity. Arrow “state”: The
values of these variables are used to activate a unique quadruple of neurons in the “ES”
neuronal population (1 for each state variable). Right box: The neuronal network is represented
as a diagram, as each dot represents one neuron, and arrows (light gray and light red)
represent connectivity between populations of neurons. The light gray and light red arrows
represent excitatory and inhibitory synapses between neuronal populations respectively. There
are four excitatory neuronal populations: “ES” with 80 neurons (black-bordered box); “EA” with
40 neurons (green-bordered box); “EM-L” with 20 neurons (brown-bordered box); and “EM-R”
with 20 neurons (cyan-bordered box). There are four inhibitory neuronal populations: “IA” with
10 neurons; “IAL” with 10 neurons; “IM” with 10 neurons; and “IML” with 10 neurons (each within
a red-bordered box). Excitatory neuronal populations have outgoing excitatory connections
while inhibitory neuronal populations have outgoing inhibitory connections. The connections
marked with a “+/-” sign represent the connections that undergo synaptic plasticity: the
connections between populations: “ES” to “EA”, “EA” to “EM-L”, and “EA” to “EM-R”. Arrow
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“action”: The activity within the “EM-L” and “EM-R” neuronal populations determines the action
performed by the agent. Higher activity within either neuronal population will determine the
agent to make a move to the left or to the right as exemplified by the large red arrows in the left
box. Green arrow “reward”: for the Reinforcement Learning training strategy, the state of the
environment is used to dictate the reward (or punishment) administered to the network for a
correct (or incorrect) move.

Simulations
We used the NEURON simulation environment (N. T. Carnevale and Hines 2006) with

NetPyNE package (Salvador Dura-Bernal et al. 2019) for all modeling. NEURON simulates the
firing of individual neurons based on the integration of input activation. Neurons are assembled
into populations and into a connected network using the NetPyNE package that further
coordinates the network simulation environment. The integration of the CartPole environment
and the NetPyNE network was implemented in Python. The CartPole environment and the
network simulation (the agent) is synchronized every time step T (50ms) in the following way:
- at the beginning of the time step, the environment is translated into neural activity in the input
population (ES);
- for the duration of the time T, neurons are spiking based on induced activity;
- at the end of the time step (after 50ms), higher relative activation in the motor populations
(EM-L, EM-R) determines the agent’s action.

In the following sections, we will present the setup of the pre-plasticity simulation: the
excitatory/inhibitory neurons, the network inputs, the movement generation, and the weights
initialization.

Constructing a spiking neuronal network model to play CartPole
Our SNN model was adapted from one of our recent models (Anwar et al., n.d.). To allow

the SNN model to capture the game-state space reliably, we included 80 neurons in the sensory
area (ES) with four subpopulations (20 neurons each), each to independently encode position,
velocity, angle, and angular velocity (Fig. 1 right box, “ES”). Each neuron was assigned to
encode a different receptive field. Since the game’s goal was to balance the pole, that would
require more precision in encoding sensory information near balanced states, around the
absolute value of 0. To capture higher sensory precision utilizing smaller receptive fields around
the balanced state and less precision utilizing larger receptive fields at peripheries, we assigned
receptive fields to each neuron based on percentiles of a Gaussian distribution with a peak
value of 0 centered around the 11th neuron. As such, lower indices neurons (neurons 1-10)
encode negative values of the state-variables in decreasing order. Similarly, higher indices
neurons (neurons 11-20) encode positive values of the state-variables in increasing order. All
four ES populations were assigned receptive fields using Gaussian distributions with each input
state’s expected mean and variance.

At each game-step, 4 ES neurons, one from each subpopulation, were activated,
informing the SNN model about the game-state. To allow association between individual
state-variable representing a game-state, we included 40 neurons in the association area “EA”
(Fig. 1 right box, “EA”), which received inputs from the ES neuronal population. Each neuron
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in EA was connected to motor areas EM-L and EM-R generating Right- and Left-actions (Fig. 1
“action” arrow) by comparing the number of spikes in those populations (winner-takes-all). If
both subpopulations have the same number of spikes, then a random move is performed.

To prevent hyperexcitability and depolarization-block (Anwar et al., n.d.; Chadderdon et
al. 2012; Neymotin et al. 2013), we included inhibitory neuronal populations (10 IA, 10 IAL, 10
IM, and 10 IML).

Integrate-and-Fire neuron
Individual neurons were modeled as event-driven, rule-based dynamical units with many

of the key features found in real neurons, including adaptation, bursting, depolarization
blockade, and voltage-sensitive NMDA conductance (Lytton et al. 2008; Lytton and Stewart
2006; Neymotin et al. 2011; Lytton and Omurtag 2007). Event-driven processing provides a
faster alternative to network integration: a presynaptic spike is an event that arrives after a delay
at a postsynaptic neuron; this arrival is then a subsequent event that triggers further processing
in the postsynaptic neurons. Neurons were parameterized (Table 1) as excitatory (E),
fast-spiking inhibitory (I), and low threshold activated inhibitory (IL). Each neuron had a
membrane voltage state variable (Vm), with a baseline value determined by a resting membrane
potential parameter (Vrest). After synaptic input events, if Vm crossed the spiking threshold
(Vthresh), the cell would fire an action potential and enter an absolute refractory period, lasting 𝜏AR

ms. After an action potential, an after-hyperpolarization voltage state variable (VAHP) was
increased by a fixed amount ΔVAHP, and then VAHP was subtracted from Vm. Then VAHP decayed
exponentially (with the time constant 𝜏AHP) to 0. To simulate depolarization blockade, a neuron
could not fire if Vm surpassed the blockade voltage (Vblock). Relative refractory period was
simulated after an action potential by increasing the firing threshold Vthresh by WRR(Vblock-Vthresh),
where WRR was a unitless weight parameter. Vthresh then decayed exponentially to its baseline
value with a time constant 𝜏RR.

Table 1: Parameters of the neuron model for each type.

Cell type Vrest

(mV)
Vthresh

(mV)
Vblock

(mV)
𝜏AR

(ms)
WRR 𝜏RR

(ms)
ΔVAHP

(mV)
𝜏AHP (ms)

Excitatory
(E)

-65 -40 -25 5 0.75 8 1 400

Inhibitory
(I)

-63 -40 -10 2.5 0.25 1.5 0.5 50

Low-thresh
old
Inhibitory
(IL)

-65 -47 -10 2.5 0.25 1.5 0.5 50
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Vrest=resting membrane potential; Vthresh=spiking threshold, Vblock=depolarization blockade
voltage, 𝜏AR=absolute refractory time constant, WRR=relative refractory weight, 𝜏RR=relative
refractory time constant, ΔVAHP=after-hyperpolarization increment in voltage,
𝜏AHP=after-hyperpolarization time constant.

Synaptic mechanisms
In addition to the intrinsic membrane voltage state variable, each cell had four additional

voltage state variables Vsyn, corresponding to the synaptic inputs. These represent AMPA (AM2),
NMDA (NM2), and somatic and dendritic GABAA (GA and GA2) synapses. At the time of input
events, synaptic weights were updated by step-wise changes in Vsyn, which were then added to
the cell’s overall membrane voltage Vm. To allow for dependence on Vm, synaptic inputs
changed Vsyn by dV=Wsyn(1-Vm/Esyn), where Wsyn is the synaptic weight, and Esyn is the reversal
potential relative to Vrest. The following values were used for the reversal potential Esyn: AMPA, 0
mV; NMDA, 0 mV; and GABAA, –80 mV. After synaptic input events, the synapse voltages Vsyn

decayed exponentially toward 0 with time constants 𝜏syn. The following values were used for 𝜏syn:
AMPA, 20 ms; NMDA, 300 ms; somatic GABAA, 10 ms; and dendritic GABAA, 20 ms. The
delays between inputs to dendritic synapses (dendritic GABAA) and their effects on somatic
voltage were selected from a uniform distribution ranging between 3–12 ms, while the delays for
somatic synapses (AMPA, NMDA, somatic GABAA) were selected from a uniform distribution
ranging from 1.8–2.2 ms. Synaptic weights were fixed between a given set of populations
except for those involved in learning (see the “+/-” sign in Fig. 1 right box and plasticity “on” in
Table 2).

The Neuronal Weights
The neurons are organized into three overall layers: Sensory, Association, and Motor

(Fig. 1 right box). The sensory layer consists of the excitatory sensory neuronal population
(ES) which contains a total of 80 excitatory neurons. The association layer consists of 40
excitatory neurons in the excitatory association neuronal population (EA), 10 fast-spiking
inhibitory neurons in the inhibitory association neuronal population (IA), and 10 low threshold
activated inhibitory neurons in the “low” inhibitory association neuronal population (IAL).
Similarly, the motor layer consists of 40 excitatory neurons in the excitatory motor neuronal
population (EM), 10 fast-spiking inhibitory neurons in the inhibitory motor neuronal population
(IM), and 10 low threshold activated inhibitory neurons in the “low” inhibitory association
neuronal population (IML). Furthermore, the EM neuronal population is split into 20 neurons
associated with left movements (EM-L) and 20 neurons associated with right movements
(EM-R).

The weights between populations were adjusted to allow reliable transmission of spiking
activity across different layers/areas of the SNN model. Each row in Table 2 describes the
synaptic connectivity between two different neuronal populations (no self connectivity) and
follows the same diagram of neuronal connectivity described in Figure 1. Neurons belonging to
the pre-synaptic population have axons that project to neurons in the post-synaptic population.
Each neuron projects to a fixed number of post-synaptic neurons, a constant defined as the
connection convergence (Table 2). The individual neuronal connections are picked randomly at
the initialization process and different random seed values generate different connections,
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hence different networks. The excitatory neuron have both AMPA (AM2) and NMDA (NM2)
synaptic connections, while the inhibitory neurons either have somatic GABAA synapses (GA)
for fast-spiking inhibitory neurons or have the dendritic GABAA synapses (GA2) for low
threshold activated inhibitory neurons. The synaptic weight Wsyn for each neuronal connection
was picked based on previous studies and fine-tuned on this network to start with a biologically
reasonable spiking pattern (2-20 Hz).

Some of the synapse weights can be changed throughout the course of the training
simulation as they undergo synaptic plasticity. For this work, we limited synaptic plasticity to
AMPA synapses between excitatory populations (Table 2: Plasticity column). We found that
this limitation is not hindering the network’s ability to learn the dynamical behavior of the
CartPole problem, and it rather simplifies the network analysis. To have a consistent
examination between different training strategies, we used the same initialization methods and
plastic synapses as defined in above and in Table 2.

Table 2: Initial connection weights

Pre-synaptic
population

Post-synaptic
population

Connection
Convergence

Synapse
Type

Synaptic
Weight: Wsyn

Plasticity
(empty for Off)

ES EA 25 AM2 10.0 On

NM2 0.196

EA IA 15 AM2 5.85

NM2 0.0585

EA IAL 15 AM2 5.94

NM2 0.294

EA EM (EM-L +
EM-R)

20 AM2 6.5 On

NM2 0.1

IA EA 4 GA 18.0

IA IA 1 GA 4.5

IA IAL 2 GA 4.5

IAL EA 4 GA2 5.0
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IAL IA 2 GA2 2.25

IAL IAL 1 GA2 5.5

EM (EM-L +
EM-R)

IM 16 AM2 5.85

NM2 0.0585

EM (EM-L +
EM-R)

IML 16 AM2 2.94

NM2 0.294

IM EM (EM-L +
EM-R)

4 GA 18.0

IM IM 1 GA 4.5

IM IML 2 GA 4.5

IML EM 4 GA2 5.0

IML IM 2 GA2 2.25

IML IML 1 GA2 5.5

Training strategies

Spike-timing dependent Reinforcement Learning (STDP-RL)
To train the neuronal networks, we used an existing STDP-RL mechanism, developed

based on the distal reward learning paradigm proposed by Izhikevich (Izhikevich 2007), with
variations used in spiking neuronal network models (Neymotin et al. 2013; Chadderdon et al.
2012; Salvador Dura-Bernal et al. 2016; Chadderdon and Sporns 2006; Anwar et al., n.d.). Our
version of STDP-RL (Fig. 2A) uses a spike-time-dependent plasticity mechanism together with
a reward or punishment signal for potentiation or depression of the targeted synapses. When a
postsynaptic spike occurred within a few milliseconds of the presynaptic spike, the synaptic
connection between this pair of neurons became eligible for STDP-RL and was tagged with an
exponentially decaying eligibility trace. An exponentially decaying eligibility trace was included
to assign temporally distal credits to the relevant synaptic connections. Later, when a reward or
a punishment was delivered before the eligibility trace decayed to zero, the weight of the tagged
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synaptic connection was increased or decreased, depending on the ‘critic’ value and sign, i.e.,
increase for reward or decrease for punishment. Furthermore, the change in synaptic strength
was proportional to the eligibility trace value at the time of the critic’s delivery.

Figure 2: Training SNN using STDP-RL and EVOL strategies. A) In STDP-RL, when a
postsynaptic neuron produced a spike within a short-time interval of a presynaptic spike, the
synapse between the pair of neurons was tagged with a decaying eligibility trace. The tagged
synapse was strengthened or weakened proportional to the value of eligibility trace for a reward
or punishment, respectively. B) Schematic showing the steps of evolutionary strategies training
algorithm (EVOL). C) Schematic showing the steps of evolutionary strategies combined with
STDP-RL. Using the interleaved EVOL+STDP-RL algorithm, the fitness is evaluated after
STDP-RL training instead of running the model with weights fixed.
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Traditionally, when using STDP-RL for learning behavior, all plastic synaptic connections
in the neuronal network model are treated equally (non-targeted STDP-RL). This strategy
considers that the underlying causality between pre and postsynaptic neurons and the
associated reinforcement automatically changes only relevant synaptic connections. On top of
the traditional STDP-RL approach, we used two recently developed versions of targeted
reinforcement by selectively delivering reward and punishment to different subpopulations of the
Motor population (EM) (Anwar et al., n.d.). In the first variation (targeted RL main), we delivered
reward or punishment only to the neuronal subpopulation that generated the action (EM-LEFT
or EM-RIGHT). In the second variation (targeted RL both), we additionally delivered opposite
and attenuated reinforcement to the opposite-action neuronal subpopulation. Both targeted
methods ensured that the learning was specific to the part of the circuit which generated the
action. Moreover, we explored delivering (attenuated) ‘critic’ values to the neuronal populations
one synapse away from those directly generating motor actions (EA population). We used and
evaluated all six STDP-RL mechanisms (three targeted RL versions X two nonMotor RL
versions) for learning performance during hyperparameter search (see below for details). In all
cases, although there is evidence of plasticity involving inhibitory interneurons in vivo(Anwar et
al. 2017; Vogels et al. 2011), for the sake of simplicity STDP-RL was only applied between
excitatory neurons.

Critic
For STDP-RL, the model relies on a critic to provide essential feedback to the model's

actions (Fig. 2A). For CartPole, we picked a critic that responds positively to movements that
bring the vertical pole closer to a balanced position. We computed a loss for each position,
determined by the absolute values of the angle and the angular velocity input states. The critic’s
returned value will be the difference between the loss of the previous state and the loss of the
current state. If the loss between the following states increases due to the agent's move, then
the critic will return a negative value, corresponding to a punishment. Similarly, a decrease in
loss will return a positive critic value, corresponding to a reward. If the agent could not decide on
a motor move due to identical spiking activity in both subpopulations, then a constant negative
punishment is returned. Additionally, as the critic is dominated by punishment at the beginning
of training, to avoid the weights decreasing to zero, the model needs an associated boost in
positive rewards ( ). The critic is finally capped at a minimum and maximum value toη

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

keep rewards within the interval: .[− 𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑,  𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑]

𝑙𝑜𝑠𝑠(𝑡) =  𝑎𝑛𝑔(𝑡) 2 + η
𝑎𝑛𝑔𝑣𝑒𝑙

* 𝑎𝑛𝑔𝑣𝑒𝑙(𝑡)2                                                                   (1)

𝑟𝑒𝑤𝑎𝑟𝑑(𝑡) =  0                                        𝑖𝑓 𝑙𝑜𝑠𝑠(𝑡 − 1) < 10−2                                       (2) 
                     −𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑

η
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

                          𝑖𝑓 𝑛𝑜_𝑚𝑜𝑣𝑒(𝑡) 

                     𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑
η

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                            𝑖𝑓 𝑙𝑜𝑠𝑠(𝑡) < 10−2 

                     𝑙𝑜𝑠𝑠(𝑡 − 1) − 𝑙𝑜𝑠𝑠(𝑡)           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑓(𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡) =  𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 *  η
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

             𝑖𝑓 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 >  0             (3)

                                 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐𝑟𝑖𝑡𝑖𝑐(𝑡) =  𝑚𝑎𝑥(− 𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑,  𝑚𝑖𝑛( 𝑓(𝑟𝑒𝑤𝑎𝑟𝑑(𝑡)) *  𝑔𝑎𝑖𝑛,  𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑) )               (4)

Where:
- and represent the input states at time step t;𝑎𝑛𝑔(𝑡) 𝑎𝑛𝑔𝑣𝑒𝑙(𝑡)
- represents the angular velocity bias, used to balance the dominance of each input state;η

𝑎𝑛𝑔𝑣𝑒𝑙

- represents the positivity bias to reinforce rewarding behavior;η
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

- is the maximum reward used, fixed at throughout the whole experiment;𝑚𝑎𝑥_𝑟𝑒𝑤𝑎𝑟𝑑 1. 0
- represents a final multiplier that increases the absolute reward value.𝑔𝑎𝑖𝑛

The critic was implemented as a crude reinforcer of synaptic plasticity, working in
conjunction with STDP events. As we found in the HyperParameter search (described below),
most of the hyperparameters of the critic have little influence over the final performance of the
model, and we believe that many different critic functions would have been suitable for our
analysis. More importantly, for synaptic weight normalization, the critic values are further
modulated by output gain and homeostatic gain control, as described below.

Hyperparameter Search
We first trained our SNN model using the STDP-RL parameters’ values as used in

earlier studies (S. Dura-Bernal et al. 2017) and found that the model did not perform very well
since it could not learn to balance the CartPole for 50 steps per episode (averaged over 100
episodes). The low performance indicated that these parameters might not be optimal for
training with STDP-RL. To find an optimal training strategy, we perturbed parameters of our
STDP-RL training setup. We identified nine hyperparameters to optimize(Supplementary Table
1), related specifically to the STDP-RL mechanism that are somewhat independent of each
other. Out of the nine: three parameters influence the timing and weight update of the
STPD-modulated AMPA synapse(AMPA-RLwindhebb, AMPA-RLlenhebb, AMPA-RLhebbwt);
four parameters determine the area of effect of STDP (Targeted_RL_Type, Non_Motor_RL,
Targeted_RL_Opp_EM, Targeted_RL_Non_Motor); and two parameters influence the
reinforcement derived from the critic(Critic Positivity Bias , Critic Angv Bias ). Toη

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
η

𝑎𝑛𝑔𝑣𝑒𝑙

identify the best combination of the hyperparameters for training the network, we ran multiple
random hyperparameter searches on those nine hyperparameters (Supplementary Table 1).

For the first hyperparameter search, we evaluated the nine parameters above by training
networks with random choices of those hyperparameters. From the 7200 possible combinations,
we sampled 50 combinations and trained randomly-initialized models using STDP-RL for 500
seconds in simulation time. We evaluated the performance of those models based on the
average steps per episode over 100 episodes during training(Supplementary Fig. 1). Only the
Targeted_RL_Type hyperparameter performance distributions showed a significant deviation
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from the mean performance (ANOVA p-value < 10-5), but it failed the homogeneity of variance
assumption test.

For the second step of the hyperparameter search, we continued training from the best
four models from the previous step, and continued evaluating the nine parameters. For this
step, we had 6912 combinations from which we sampled 54 combinations that we trained for
2000 seconds in simulation time. Similarly, we evaluated the performance of those models
based on the average steps per episode over 100 episodes during training(Supplementary Fig.
2). The initialization model choice displayed a significant contribution to the final model
performance (ANOVA p-value = 0.00012). Moreover, the hyperparameter defining the maximum
time between pre- and postsynaptic spike (AMPA-RLwindhebb), also showed a minimal
deviation from the mean performance (ANOVA p-value = 0.027).

For the third step of the hyperparameter search, we continued training from the best four
models from the previous step, and continued evaluating the nine parameters. For this step, we
had 1728 combinations from which we sampled 56 combinations that we trained for 2000
seconds in simulation time. Similarly, we evaluated the performance of those models based on
the average steps per episode over 100 episodes during training(Supplementary Fig. 3). The
initialization model choice displayed a significant contribution to the final model performance
(ANOVA p-value = 0.00023). Moreover, the hyperparameter defining the choice of delivering
reinforcement to non-motor populations (Non_Motor_RL), showed a minimal deviation from the
mean performance (ANOVA p-value = 0.005).

Most of the hyperparameters had a minimal effect on the final training performance for
the STDP-RL model as there is no significant difference between the performance of models
with different hyperparameter values. Interestingly, the hyperparameter search revealed better
preference when using the “targeted RL both” paradigm. These findings suggest that targeted
plasticity of specific motor areas could enhance the learning ability of the model, consistent with
earlier findings((Anwar et al., n.d.; Patel et al. 2019; Hazan et al. 2018; Chadderdon et al.
2012)).

Training Protocol for the STDP-RL model
Since we couldn’t establish a best choice for each of the hyperparameters, we used the

training protocol of the best model resulting from the third hyperparameter step. Hence, we
trained our STDP-RL models with a sequence of the hyperparameter values for different
durations (500s, 2000s, 2000s). Continuing training after the 4500s mark, we used the
hyperparameters of the third configuration. The exact hyperparameter values used are
highlighted in bold in Supplementary Table 1.

Evolutionary Strategies
The Evolutionary Strategies (EVOL) algorithm has been shown to be an effective

gradient-free method for training ANNs in reinforcement learning control problems (Salimans et
al. 2017). Here we adapt this learning technique to SNNs to solve the CartPole problem by
procedurally adapting the plastic weights of the SNN. Our method progressively adapts only the
weights and not the delays as it was used in previous Evolutionary Strategies for SNNs
(Altamirano et al. 2015​​). It should be noted that in the ANN implementation of EVOL weights are
allowed to be unrestricted in value, so additive weights were used. As SNNs don’t have
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negative weights, we instead use a multiplicative noise, i.e. we increase or decrease the
weights by a randomly selected percentage. In this way we are able to restrict the SNN weights
to valid positive values while still effectively searching all possible parameterizations.

Formally our EVOL algorithm (Fig. 2B) consists of the following steps to change the
weight for each synapse, performed in parallel for the whole model: (1) at iteration i, keep track
of current best synapse weight: wi; (2) sample a population(P) of weight perturbations ϵ1..P from
the normal distribution; (3) for each weight perturbation (ϵj), evaluate the whole network weights
(wi * (1 + σ * ϵj)) on the CartPole environment for a fixed number of episodes (X); (4) measure
the fitness (Fj) as the average count of steps achieved during the X episodes; (5) Normalize
population fitness values (Nj) by subtracting the population mean fitness and dividing by the
population mean standard deviation (6) modulate the weight perturbations based on the
normalized fitness and derive a new best synapse weight:

𝑤
𝑖+1

 =  𝑤
𝑖
 *  (1 +  α *  σ *  ϵ *  𝑁 / 𝑃)                                       (5)

Where α is the learning rate, σ is the noise variance, and ϵ and N are the vector
representations of the weight perturbations for each synapse and the normalized fitness,
respectively. We only update the weights that undergo synaptic plasticity (Table 2). The weights
are initialized (w0) as the same initial weights we used for the STDP-RL model. In this case,
STDP was fully deactivated and the EVOL training procedure updated the synaptic weights
every iteration.

We trained using the EVOL algorithm multiple models for 1500 iterations and a
population of P=10 with synapse weight perturbations of σ=0.1 variance. We used a learning
rate of α=1.0. We used 1 and 5 episodes (value X above) during fitness evaluation. The model
weights were initialized based on the best and worst models trained with STDP-RL.

Interleaved EVOL with STDP-RL
Our interleaved EVOL+STDP-RL algorithm was the same as the EVOL algorithm

applied above, with one modification: rather than use the fitness from step (4), we ran an
additional STDP-RL training for each member of the population to simulate individual learning.
Afterward, the fitnesses from these models were re-assessed and used to update the best
weights for the next iteration. Note that we did not use the post-STDP-RL learned weights since
synaptic learning during a lifetime is not typically transferred to offspring. Instead, the
pre-STDP-RL weights were used with the post-STDP-RL fitness to produce the next best
weights. Due to the heavy computational load, we used 1 and 5 episodes of STDP-RL(value of
X) to evaluate the fitness value. When using 10 episodes for fitness evaluation, performance
was qualitatively similar and improved even more quickly (Results not shown).

Synaptic weight normalization
Training the model with STDP-RL, the synaptic weights tend to increase without bound,

leading to epileptic activity (M. S. Rowan, Neymotin, and Lytton 2014). To avoid this behavior,
we incorporated biologically-realistic normalization methods (Sanda, Skorheim, and Bazhenov
2017; M. Rowan and Neymotin 2013). Apart from the inhibition mechanisms described earlier,
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we used the following techniques: balancing of synaptic input, output balancing, homeostatic
gain control.

To balance the combined synaptic input to each neuron, the total reception weight
(defined as the sum of synaptic weights onto each postsynaptic neuron from multiple
presynaptic neurons) is normalized to initial values every 25 time steps. As this procedure
keeps neuronal inputs constant, it either decreases the weights of specific unused synapses or
promotes beneficial synapses, creating synaptic competition.

To prevent synapses from overwhelming the network with ever-increasing rewards, each
synapse's reinforcement is modulated by the change in the neuron's total transmission weight
(defined as  the sum of synaptic weights from a  presynaptic neuron onto multiple postsynaptic
neurons). Hence, a neuron with a high transmission weight compared to initialization will not
increase the synapse strength as much from a rewarding event but will decrease severely from
a punishment event. The modulation is capped at a factor of 0.1 minimum and 2.0 maximum.

Homeostatic gain control is a method to bring a neuronal population to a target spiking
rate by changing the target transmission rate during output balancing. Each neuron firing rate is
measured every 75 steps, over 500 steps. If the firing rate is different from the target firing rate,
then the target transmission rate increases or decreases by 0.0001. This procedure has the
effect of reducing high neuronal activity and promoting baseline activity.

Validation, Testing, and All-Inputs datasets
For testing the trained models, we used two separate datasets, the validation dataset for

selecting the best model timepoint and the testing dataset for reporting the final model
performance. For those two datasets, we set a seed value for the OpenAI gym environment in
order to fix the episodes to consistently get the same episode initialization. This environment
seed should not be confused with the model seed that we use to randomly initialize the neuronal
connections. The episodes are fixed for our datasets when they have the same initial starting
conditions for all four environment parameters (position, velocity, angle, angular velocity). While
training the models, the episodes are not fixed and are randomly selected for each new training
instantiation. To select the best saved timepoint of a trained model, we evaluate the model with
weights different timepoints throughout training using a validation dataset with 100 fixed
episodes. Once the best timepoint of a model is picked, we evaluate and report the performance
on the testing dataset which contains another 100 fixed episodes. For analysis, we selected
some of the fixed episodes for further evaluation.

As each input parameter space is discretized into activation of twenty individual neurons,
the total possible combinations of inputs is 204. We tested the models on all the possible
combinations, the All-Inputs dataset, by activating each input combination at a time and then
allowing enough time for all spiking activity to subside before giving the next input combination.

Software
All modeling and analysis source code is available on github at the following repository location
https://github.com/NathanKlineInstitute/netpyne-STDP .
Results
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To test the effect of different training strategies on the Spiking Neuronal Network, we
fixed the initialized synapticl connection weights and inter area connections (see Methods, “The
Neuronal Weights”) and evaluated the efficiency of training using STDP-RL, evolutionary
strategies(EVOL), and a combined method that runs evolutionary strategies on the fitness
derived while learning (EVOL+STDP-RL).

Training the SNN model to play CartPole using STDP-RL
To train the SNN using STDP-RL, we used the same training protocol as used in the

hyperparameter search to find the best performing model. To assess the performance (which is
determined by the duration for which the pole is kept balanced), we trained 20 randomly
initialized models, with the same synaptic weights and connections, until the performance
converged or started decreasing. Training all models for 25000 seconds in simulation time
showed enhanced yet variable performance (Fig3A). When we evaluated the performance
during training based on steps per episode, averaged over 100 episodes (Fig 3A),he maximum
performances of the models range from 75 to 157, with a mean of 118 steps per episode (Fig
3B).

Figure 3: Performance of the SNN models when training with STDP-RL. (A) Training
performance (defined as the length of time the model could keep the pole balanced) of the 20
randomly initialized models. All models trained for the same amount of simulated time. Out of
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the tested models, the seed-3 model was the worst performer(green line of left plot), while the
seed-6 model was the best performer(brown line of left plot). (B) The box plot represents the
distribution of maximum averages over 100 steps of the models. Each dot of the scatter plot
represents the maximum average over 100 steps of one of the randomly initialized models.
(C,D) Detailed training performance of the seed-6 (best) and seed-3 (worst) models. Each blue
dot represents the steps for that episode during training. The green and orange lines represent
the averages and the median performances respectively. (E) The distribution of performance
(steps per episode) calculated before and after training, on the testing dataset, using fixed
weights of the seed-6 (best) and seed-3 (worst) models. The 5-star (*****) denotes p < 10-10

when comparing the two distributions with a one-way ANOVA.

Out of the twenty models we trained using STDP-RL, we further evaluated two different
models based on their performance during training; the best performing model (seed-6 in Fig.
3C) and the worst performing model (seed-3 model, Fig. 3D). The selected models were
evaluated using the testing dataset consisting of 100 episodes, and further compared to the
model before training and to a random choice null model (Fig. 3E). Both models improved their
performance throughout STDP-RL training as we see an increase from 19 to 130 median steps
per episode for the Seed-6(best) model, and from 19 to 53 median steps per episode for the
Seed-3(worst) model. One-way ANOVA on the logarithm of the model performances before and
after training resulted in p < 10-10.

Training the SNN model to play CartPole using EVOL
While the STDP-RL training performance plateaued before reaching an average of 200

steps per episode, the EVOL training strategy was able to solve the game perfectly (an average
of 500 steps per episode). To evaluate the EVOL strategy, we started training ten models with
the same random initializations which we used for training STDP-RL (seed-1 to seed-10 in Fig.
3B left). All the models rapidly learned the task and achieved high performance (>400 steps per
episode) in roughly 250-500 iterations (Fig. 4A). Though evolved variably, at some point all
models reached peak average performance for 500 steps per episode. (Fig. 4B). During each
iteration, EVOL generated P perturbations (each has a performance value) and running E
episodes for each perturbation, for a total of P * E episodes. We display the performance
minimum, average, and maximum for each iteration for the model with the Seed-3 random
initialization (Fig. 4C).
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Figure 4: Performance of the SNN model when training with EVOL. (A) Training
performance (defined as the length of time the model could keep the pole balanced) of 10
randomly initialized models. All models trained for the same number of iterations as opposed to
the same amount of simulated time. (B) The box plot represents the distribution of maximum
averages over 100 steps of the models. Each dot of the scatter plot represents the maximum
average over 100 steps of one of the randomly initialized models. (C) Detailed training
performance for the seed-3 model. For each iteration step, we plot three points depending on
the evaluated fitness while training: the maximum fitness (blue), the average fitness (orange),
the minimum fitness (green) of each iteration. To better visualize the average fitness trend over
training, we also plot an average over 100 iterations of the average fitness (red line).

Compared with the STDP-RL training strategy that reached an average of 118 steps per
episode (over 3931 episodes on average), the EVOL models used on average 145 iterations
(for a total of 7250 training episodes) to reach the same performance level. While STDP-RL
training was provided with frequent rewards from a hand-tuned critic, the EVOL training only
used episodic fitness, a much sparser form of reinforcement. Although the STDP-RL models
achieved a modest yet sustained performance, we found EVOL strategy to be better suited for
solving the CartPole problem.

Comparing the performance of models trained using STDP-RL and EVOL

To demonstrate that the model learned the behavior and did not forget it, we earlier
compared two different STDP-RL models (with different seeds) with the random action
generating and untrained models (Fig. 3E) and found variable yet sustained learning. Less
variable performance was observed for models trained using EVOL. This performance variability
could be related to the initialization of synaptic weights or the presence/absence of synaptic
connections between specific pairs of neurons. We first compared the performance of the EVOL
model with the same seeds as used for STDP-RL model. On the testing dataset, both seed-6
and seed-3 EVOL models perfectly solved the CartPole problem with an average of around 499
steps per episode (Table 3, Figure 5). Another source of variability could be intrinsic noise in
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the model due to temporal and spatial crosstalk driven by imprecisely timed sensory inputs and
heavily connected network areas or on the initial game-state (note that we reset the
game-states at the end of each episode). To test the latter possibility, we handpicked nine
unique initial game-states based on the performance of each model on the initial evaluation. For
each initial game-state, we repeatedly simulated each trained model over 25 episodes (Fig. 5;
note that at the end of each repeated episode, only the game-state was reset to the associated
initial game-state, and the model was not reset). In Fig 5, Performance is shown only for
STDP-RL models because EVOL models after training performed almost perfectly i.e 500 steps
per episode. As indicated earlier in Fig. 3E, the STDP-RL model performance did not only
depend on the model seed but also the game initial state. Altogether the EVOL model clearly
showed perfect performance independent of  model as well as game initialization, whereas
STDP-RL models performance greatly depended on the seed as well as the game initial state.

Table 3: Performance comparison of training strategies on the testing dataset
Model Average on Test

Dataset
Median on Test
Dataset

Trained Episodes Iterations Population

Seed-6 after initialization 23.38 19.5 0

Seed-6 after STDP-RL training 144.67 130.5 4226 -

Seed-6 after EVOL training 499.42 500.0 80000 1600 10

Seed-3 after initialization 23.04 19.0 0

Seed-3 after STDP-RL training 64.14 53.0 8577 -

Seed-3 after EVOL training 499.09 500.0 80000 1600 10

Figure 5: SNN STDP-RL trained models on different episodes. Simulations for nine different
episodes (Sr1-Sr9) were repeated 25 times each, using STDP-RL Seed-6 (best-performing) and
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Seed-3 (worst-performing) models. Note that each episode had a unique initial game-state
which was identical across repeats of the same episode.

Training SNNs through combined EVOL and STDP-RL strategy

We then compared training progress between EVOL and our combined EVOL+STDP-RL
algorithm, both evaluated using the same number of episodes (n=20). As shown in Fig. 6, the
initial untrained models display low performance levels slightly above zero. Afterwards, both
display rapid improvements in performance through learning, with a rapid rise for the
EVOL+STDP-RL model around generation 100. As a result, while both models reach similar
high performance levels (400-500), the EVOL+STDP-RL model reaches close to its peak
performance earlier after ~200 generations, compared to EVOL which reaches similar levels
after ~300 generations. Overall, this shows the two individual algorithms (EVOL and STDP-RL)
complement each other together within the EVOL+STDP-RL hybrid algorithm, enabling more
rapid performance gains, as a function of generations.

Figure 6: SNN models learned to play CartPole, using EVOL, and EVOL+STDP-RL strategies
starting from initial at-chance performance, and reaching optimal performance levels of 400-500
after training. (blue trace shows the time course of performance using the standalone EVOL
strategy, orange trace shows the time course of the SNN performance during the STDP-RL
learning phase, green trace shows the performance of the SNN evaluated after further
STDP-RL has been disabled; shaded lines show standard deviation of performance evaluations
(n=20)).
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Figure 7: Learning produces specific preferences for right vs left actions, depending on
sensory inputs. These sensory-motor activation maps show the sensory-input parameters
parsed during repeated episodes of Sr1 and Sr9 together with the probability of dominant action
executed for each activated sensory-input neuron. Each episode of Sr1 and Sr9 was repeated
25 times, and the models’ performances (shown on the left side of corresponding four panels)
were evaluated using STDP-RL, EVOL, and EVOL+STDP-RL models. Red arrows/lines
highlight similarities between specific sensory-motor activation maps across algorithms.

Comparing the learned SNN circuit activations and dynamics

Next, we compared the sensory-motor activation maps of all three models with initial
game-states Sr1 and Sr9 (Fig. 7). For each repetition of the episode, we counted the number of
Left- and Right-actions generated for each activated sensory neuron and marked the respective
sensory neuron with the probability of the produced action. For clarity, we marked the probability
of left (right) actions with positive (negative) values. When a sensory neuron was not evoked
during a repeat, no action was associated with that sensory neuron and therefore was left
unmarked in the heatmap. We sorted the y-axis of the heatmaps representing the repeats of the
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episode in ascending order of performance to see if any specific sensory-motor mapping
resulted in better performance or vice versa. The sensory-motor activation maps for STDP-RL
and EVOL+STDP-RL were more similar for Sr1 and Sr9 as well as across repeats within
each condition (seen as similar horizontal color patterns from top to bottom of each
colormap). Individual features with similar action-space are marked in Fig. 7 for
comparison. Comparing sensory-motor heatmaps of the EVOL model for Sr1 and Sr9 in
terms of Angle and Angular velocity, we found that the heatmaps for Sr9 were substantially
more fragmented and sometimes overlapped in activations than those for Sr1, which
indicated that either the model was undecided or was making inconsistent moves for the
same inputs. We also noted that in the STDP-RL model, the cart moved through a full range
of positions in both directions (left or right from the center position - 0), indicating that most
of the time, the cart ran out of the game frame. With the EVOL and EVOL+STDP-RL based
model, the cart remained around the center of the frame. Interestingly, the STDP-RL model
showed a preference for Left-actions, whereas the EVOL and EVOL+STDP-RL models
showed a more balanced preference for both actions. Angle and Angular Velocity
sensory-motor heatmaps for Sr1 and Sr9 were largely conserved across the EVOL and
EVOL+STDP-RL algorithms, though with less similarity for Sr9.

Despite the similar best performance of the models, the sensory-motor activation maps
shaped by those strategies showed some notable differences (Fig. 7). Note that the range of
activated sensory neurons was different across episodes when contrasted by different models,
because of the closed-loop setup of the simulations. This analysis might not reveal the
properties of the circuit to the full extent and might be biased by the activated receptive fields
across the repeats. To further uncover the response properties of the network model, we
simulated the already trained models by sequentially activating 204 unique quadruplets (20
neurons to encode each of the 4 sensory parameters) without interacting with the game and
recorded the responses of all neurons in the SNN model. Each heatmap in Fig. 8 shows the
number of times neurons in the SNN model were active when a sensory-input neuron was
stimulated (each sensory neuron was stimulated 8000 times for all combinations of the other 3
sensory inputs).

To highlight the evolved characteristics of the trained model using different learning
strategies, we compared the input-response properties from before and after training. Most of
the association neurons (EA neurons marked with ID 80-119) were sparsely active before
training (Fig. 8A) without showing any distinct feature at the population level.

After STDP-RL based training, the overall activity of EA neurons increased with some
EA neurons robustly responsive to specific inputs representing velocity (see Activated ES
Neuron IDs 20-39; Fig. 8B) and angular velocity (see Activated ES Neuron IDs 60-79; Fig. 8B)
suggesting robust learning for those parameters. For the velocity, the responsiveness was
sparse and scattered but for the angular velocity, we found two sets of angular velocity inputs,
one set for which many of the EA neurons responded strongly and the other set for which many
of the EA neurons responded weaker than before learning (see high-value pixels clustered in
the center of the band for ES Neuron IDs 60-79 and the surrounding areas in Fig. 8B). The
responsiveness of EA neurons in the EVOL and EVOL+STDP-RL models (Fig. 8C-D) was
sparse and scattered, which might indicate preference of neurons for multiple parameter sets
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instead of individual sensory features. Other excitatory neurons (EM-L: Neuron IDs 140-159 and
EM-R: Neuron IDs 160-179) in each model showed similar characteristics as its EA neurons,
except that well-defined vertical lines for some neurons in EVOL and EVOL+STDP-RL models
(Fig. 8C-D) indicates responsiveness to broader parameter ranges. Alternatively, one might
think this is attributed to the non-selective responsiveness of neurons to individual sensory-input
features. However, that is not the case, as we observed more fragmented vertical lines when
the input-response properties were characterized using pairwise input parameters
(Supplementary Fig. 3). Interestingly, the EVOL+STDP-RL model showed sparser activity than
the EVOL model (Fig. 8C-D), with significantly improved performance (Fig. 4A).
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Figure 8. Learning induces changes in network responses to specific sensory inputs,
with distinct representations produced by the different training algorithms. The plot
represents the number of spikes generated by each neuron in the model in response to
stimulating sensory input neurons in ES. Each sensory input neuron was stimulated 8000 times
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with combinations of 3 other sensory input neurons, and each stimulation generated 3 spikes in
ES neurons. The neuronal responses of the model before training (A), after training using
STDP-RL (B), EVOL (C), and EVOL+STDP-RL(D).
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Figure 9: Sensory-Motor mappings show differential participation of neurons in the
network in action generation. In response to a particular sensory input, each neuron was
considered to contribute to Move-left or Move-right actions and then labeled with the frequency
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of the number of times it was activated relative to the frequency of those actions (with positive
sign indicating activations relative to number of moves left, and negative sign indicating
activations relative to moves right). A) INITIAL, B) STDP-RL, C) EVOL, and D)
EVOL+STDP-RL. Note that propensity towards an action is defined as the number of times a
neuron is active during a particular action choice. For example, if out of 8000 sensory inputs,
6000 times the action was Move left and 2000 times the action was Move Right, for each of
those sets of conditions we compute how many times each neuron was active. If the neuron
was active 3000 out of the 6000 moves left, then the participation value is 0.5. If the same
neuron gets activated 2000 times to move right, then its participation value is -1 (negative sign
is for move right, positive for move left).

Comparing the emergent Input-Output mappings after training with STDP-RL, EVOL, and
EVOL+STDP-RL strategies.

Activation of each sensory neuron led to the activation of many neurons at multiple
postsynaptic levels, pushing the model towards making a certain decision (Move Left or Right).
Since the decisions were always based on the population level activity of motor areas, it was
nontrivial to establish causality. Instead, we compared the representations of different
sensory-motor mappings throughout the circuit by computing the probability of each motor
action (Left, Right, and Stay) over multiple instances when a neuron is active in response to
each sensory input. In the colormaps (Fig. 9), we only included the most frequent action
associated with the input and that particular neuron in the circuit. Before training (Fig. 9A), all
the neurons in the circuit were minimally biased towards each action as all probabilities shown
in the colormap are 0 (stay), or marginally greater than 0.5 (for left action) or smaller than -0.5
(for right action). After training (Fig. 9B-D), the decisiveness of some neurons improved towards
a single action as the range of colors in the map expanded towards +1 (for left action) and -1(for
right action). As we saw differences in the activations of neurons earlier in Fig. 8 for STDP-RL
and EVOL models, we observed similar trends in these sensory-motor mappings (Fig. 9B-D). In
the STDP-RL model (Fig. 9B), most of the excitatory motor neurons in the circuit developed a
non-overlapping association between positive angular velocity (ES neuron IDs 70-79) and
move-right action, and negative angular velocity (ES neuron IDs 60-69) and move-left action.
i.e., a subset of neurons in EM-L was robustly activated only when the game-state had a
negative angular velocity, and a subset of neurons in EM-R was robustly activated only when
the game-state had a positive angular velocity. We observed similar neurons in EVOL and
EVOL+STDP-RL models (Fig. 9C-D), but those were only a few with less robust activation. In
contrast to the EVOL model, where some EM-L and EM-R neurons dominantly participated in
the generation of opposite action (EM-L for positive angular velocity and EM-R for negative
angular velocity), the EVOL+STDP-RL model did not show any subpopulation with such
characteristics (Fig. 9C-D). In addition to angular velocity, we found that some scattered motor
neurons in the STDP-RL model also formed associations with some velocity values of the
game-state (Fig. 9B). For most of the other game-state parameters, neurons were marginally
biased towards one or the other action. In the EVOL and EVOL+STDP-RL models, we found a
few more scattered sensory-input associated neurons (Fig. 9C-D).

Plotting the activity levels of neurons during specific actions in response to each pair of
sensory-inputs could diffuse the learned sensory-motor associations, especially since the model
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learned not about individual sensory parameters but a full game-state consisting of four sensory
parameters at each game-step. Therefore, we next computed sensory-motor maps for pairs of
sensory input parameters (Fig. 10). Before training, for only a few pairs of sensory input
parameters, the model had weak preference either to move left, right, or stay (Fig. 10A). After
training using STDP-RL, the model developed modest action preference for a single value of
position (see the horizontal yellow line at Position: “10” in Fig. 10B) and some values of velocity
(see horizontal yellow lines at Velocity: “10” and “13” for “Move Left” and “7”, “15” and “17” for
“Move Right” heatmaps in Fig. 10B) but very strong action preference for broader bands of
positive and negative values of Angular velocity around “10” (indicating 0 angular velocity; Fig.
10B). Surprisingly, we did not find any learned action preference for any value of the angle in
the STDP-RL model. In contrast, we found quite a few input-output associations (Position: “2”,
“14” and “18” for “Move Left” and “11” for “Move Right” heatmaps; Velocity: “18” for “Move
Left” and “4” for “Move Right” heatmaps; Angle: “4” and “8” for “Move Left” and “13” for
“Move Right” heatmaps; Angular velocity: “3”, “4” for “Move Left” and “11-14” and “18” for
“Move Right” heatmaps in Fig. 10C) in the EVOL model, indicating distributed learned
associations between actions and some values of all sensory input parameters. Surprisingly,
much stronger associations were found for the input parameter values of angular velocity in the
EVOL+STDP-RL model (Fig. 10D), somewhat similar to the STDP-RL model (Fig. 10B),
despite very different network dynamics revealed by activation maps (Fig. 8). In addition to a
few associations for Position and Velocity, broader associations emerged for the parameter
Angle as indicated by wide yellow bands in Fig. 10D.
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Figure 10: Sensory-Motor mappings show different behaviorally-relevant input-action
associations learned using STDP-RL, EVOL, and EVOL+STDP-RL strategies. Probability of
“Move Left” (left panel), “Stay” and “Move Right” for all pairs of sensory input parameters for the
model before training (A), after training using STDP-RL (B), after training using EVOL (C), and
after training using EVOL+STDP-RL (D).

To summarize sensory-motor mappings, we computed the total number of left-, right-
and stay-actions for each sensory receptive field (Fig. 11), showing that the changes in synaptic
weights in the STDP-RL model primarily encoded the associations between the actions and the
angular velocity, followed by some weaker associations of actions with velocity and position. In
contrast, relatively weaker associations were found between the actions and sparsely
distributed receptive fields related to the game-state parameters in the EVOL and
EVOL+STDP-RL models. However, even in the EVOL, EVOL+STDP-RL models, there was still
a clear association between actions and Angular Velocity, and between actions and Angle.
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Figure 11: Occurrence of Left-, Right- and Stay-actions for all receptive fields associated with
the position, velocity, angle, and angular velocity. Heatmaps are shown to highlight the
differences between the INITIAL model (A) before training and models trained using STDP-RL
(B), EVOL (C), and EVOL+STDP-RL (D) strategies.

Discussion
In this work, we developed and trained an SNN using biologically inspired STDP-RL and

evolutionary search (EVOL) based algorithms. One of our goals was to investigate
biologically-plausible learning algorithms that operate at different timescales, and determine
their strengths and weaknesses, to enable offering insights into biological processes.
Comparing the performance of our SNN model trained using STDP-RL, EVOL, and
EVOL+STDP-RL algorithms (Fig. 3E, 5, 6 and Table 3), we demonstrated that all of our
strategies could be used for training our SNNs to play CartPole. Our hybrid EVOL+STDP-RL
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algorithm also converged to optimal performance levels at earlier generations compared to the
standalone EVOL algorithm.

There were also noticeable differences in resulting neuronal dynamics and behavior
(Fig. 8-11). EVOL and EVOL+STDP-RL strategies showed excellent performance training our
SNNs to play CartPole (Fig. 4 and 6), however, EVOL+STDP-RL showed faster training
compared to EVOL alone. When using the EVOL strategy, the algorithm tries to improve the
network performance by adjusting the weights that lead to maximum performance. However,
when using the EVOL+STDP-RL strategy, it seems that the algorithm maximizes the
performance of the STDP change and not only the weights of the network. In a way, EVOL
bootstraps the STDP changes and maximizes the overall performance by improving the STDP
training.

It is interesting to see how training our models using different strategies produced similar
sensory-motor associations without explicitly training the models to execute those specific motor
actions for a given game-state. Regardless of the training algorithm, all models learned to
associate actions dominantly to specific values of Angular velocity (Fig. 8-11). Analyzing the
single input-action mappings (Fig. 9), we did not find clearly strong or broad associations
between the Position, Angle, and Velocity with actions, which appeared in analyzing the
pairwise input-action mappings (Fig. 10). It is possible that the associations between sensory
inputs and motor actions for other parameters were not fully revealed because the SNN was
trained using all four parameter values, and some weak associations between parameters other
than Angular velocity may be broadly present, but did not appear in analysis which was limited
to pairwise inputs. Another reason for limited tuning for some parameters could be that during
training the receptive fields for those parameters were not parsed, and therefore the model
could not learn any specific associations for those inputs. This is indicated in the receptive fields
parsed during the episodes of the game played after training (FIg. 7).

Our modeling underlines the benefits to training from a set of multiple initial network
configurations, achieved through varying synaptic connection weights or network architectures
(Stanley and Miikkulainen 2002; Neymotin et al. 2013), and testing the populations’
performance. The best performing model can then be used for longer-term training. An
alternative is to use multiple models from the populatio, and ideally promote model diversity. We
highlight these issues by means of the training strategies used in this work. In our STDP-RL
model, we first selected a set of hyperparameters suitable for optimizing learning and then
tuned for initial synaptic weights using the fixed optimal hyperparameter values. Thus, the initial
weights and the learning parameter values differed from those at the beginning of the
hyperparameter search. In our EVOL strategy, without using any explicit synaptic learning
mechanism, we evaluated the model’s performance with different synaptic weights and found
synaptic weight distributions showing good performance. Comparing the distributions of
synaptic weights in the model trained using STDP-RL and EVOL, we showed that multiple
network configurations and synaptic weight patterns can lead to similar performance in
CartPole.

The standard EVOL algorithm we used creates populations of models, evaluates them,
and then applies a mutation based on each model’s fitness to create a new generation for
evaluation (see Materials and Methods). Our results show that using EVOL and STDP-RL
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strategies interleaved enhances the training capabilities and produces network models with
diverse synaptic weights. This interleaved EVOL+STDP-RL algorithm was inspired by the fact
that in addition to genetic modifications occurring during evolution, learning takes place during
an animal’s lifetime. Successful learning from evolution leads to more fit offspring, providing
favorable initial conditions for the STDP-RL algorithm to learn better from experience during the
model’s lifetime. In this setup, the EVOL algorithm creates a set of conditions that optimize an
individual model’s STDP-RL learning. In EVOL+STDP-RL, the fitness score of the trained model
alone influences the creation of the new generation, and the synaptic weights changed using
STDP-RL are not directly transferred to succeeding generations. However, there is evidence
that learning during an animal’s lifetime could enable changes to its phenotype to transfer to
offspring through epigenetic modifications (Harper 2005). These epigenetic modifications are
impermanent and do not involve direct modification of the genetic sequence (Berger et al.
2009). Future extensions to our algorithm could draw inspiration from this process to allow
transfer of STDP-RL weights across generations. We also plan to explore optimization of
network architecture including the numbers of neurons, numbers of layers, and the inclusion of
structural plasticity rules (Stanley et al. 2019; Martin and Pilly 2019; Kolouri et al. 2019; Parisi et
al. 2019; Whitelam et al. 2021). These types of enhancements could further improve
performance and offer additional insights into biological processes.

In the past, the use of evolutionary algorithms in neurobiological models has mainly
been limited to optimizing individual neurons (Werner Van Geit, Achard, and De Schutter 2007;
W. Van Geit, De Schutter, and Achard 2008; Rumbell et al. 2016; Neymotin et al. 2017), or
neuronal networks through hyperparameter tuning (S. Dura-Bernal et al. 2017). Although more
recent work makes changes to network architectures (Stanley et al. 2019), modifications of
synaptic weight matrices in spiking or biophysical neuronal networks have rarely been
performed, partly due to the large computational costs associated with searching through the
high dimensional space. Here we have demonstrated that evolutionary algorithms operating on
synaptic weight matrices are an effective strategy to train SNNs to perform behaviors in a
dynamic environment.

We previously used the STDP-RL learning rules to train a visual/motor cortex model to
play Pong (Anwar et al., n.d.). That model required additional complexity for encoding the visual
scene (object location, motion direction). This complexity made it more challenging to decipher
the role of different components/parameters of the learning algorithms and how to optimize
them. In the present SNN model, the lack of visual cortex was a simplification that allowed us to
perform a more extensive hyperparameter search to increase the chances for STDP-RL to
succeed. After hyperparameter optimization, the STDP-RL algorithm was effective in producing
excellent performance in CartPole. Furthermore, the use of CartPole and the simpler
sensory/motor cortex model also allowed us to test long optimizations using EVOL in parallel on
supercomputers. Our individual STDP-RL and EVOL training results also led to the interleaved
EVOL+STDP-RL algorithm, which displayed superior performance. In the future, with the
knowledge gained here, we will test our new algorithms using more complex models, tasks, and
environments.

Comparison between artificial and biological neural networks
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Despite the progress made by the artificial intelligence (AI) community in creating ANNs
able to solve complex sensory-motor tasks with super-human performance (Volodymyr Mnih et
al. 2015), biological intelligence remains only an inspiration for incorporating continual and
efficient learning in neural network models. A well-known AI success is the deep reinforcement
learning algorithms (e.g., deep Q network), which can train ANNs to play Atari games (V. Mnih
et al. 2013; Volodymyr Mnih et al. 2015). This line of research was recently extended to solve
more complex tasks including the game of Go (Silver et al. 2016), although the strategy relied
on non-biological data structures (trees) and search procedures, which limit the applicability of
using the algorithms for understanding neurobiology. As with all algorithms, DL’s performance
also depends on the computational resources and training data available. DL is often
considered data and power hungry (Thompson et al. 2020), typically requiring training over
many iterations and high computer memory to store vast sets of training weights that scale with
task and network architecture complexity. Since the goal in DL models is to optimize
input/output relationships, training for multiple types of datasets or complex behaviors can
increase computational and memory requirements beyond a typical laptop’s processing power.
Although there is no proof yet that the more biologically-faithful SNNs can perform these more
difficult tasks with less computational resources, our inspiration to build SNN models tests the
hypothesis that brain-like architectures and biological learning mechanisms can be
computationally and energy-efficient despite imperfect performance. The human brain
demonstrates particularly energy-efficient computation (Beaulieu-Laroche et al. 2021), although
it developed after a long process of evolution, which incurred a high cost. Using inspiration from
the human brain’s dynamics and architecture should inform future SNN designs.

The recent successes in deep RL to train ANNs to solve control problems robustly has
inspired the scientific community to devote additional efforts towards developing algorithms to
address issues like adaptation to rapidly changing environments, continual learning, and
generalization to solve novel problems (Parisi et al. 2019). These efforts sometimes derive
inspiration from biology, yet little effort is devoted towards developing biologically plausible
SNNs trained to solve complex tasks. Limited effort in this direction is partly due to inefficient
learning and suboptimal performance of existing SNN models. Lack of interest in building
biologically detailed models is also attributed to the scarcity of biological data needed to
constrain model parameters. With increasing availability of neurobiological data and access to
efficient computational resources and modeling tools (Salvador Dura-Bernal et al. 2019; Hazan
et al. 2018; Neymotin et al. 2020; N. T. Carnevale and Hines 2006; T. Carnevale et al. 2014), it
is becoming feasible to develop biologically detailed neural network models with biologically
realistic learning algorithms (Anwar et al., n.d.; Calderon, Verguts, and Frank 2022; Sanda,
Skorheim, and Bazhenov 2017).

A question is often asked by the machine learning community: why do we need
biologically detailed neuronal networks when we already have effective ANNs? One rationale for
building biologically detailed models is to understand the mechanisms of learning, which are
difficult to dissect in behaving subjects due to the complexity of the brain’s circuits, and the lack
of noninvasive recording technologies offering high spatiotemporal resolution. Also it is desirable
to explore the untapped potential of biological learning and intelligence that emerges from
nonlinear interactions between microcircuit, neuronal, and synaptic elements. Including
biological learning mechanisms and circuit details have already improved the efficiency and
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robustness of ANNs (Serre, Oliva, and Poggio 2007). We expect similar advances in biologically
detailed neuronal networks by incorporating biologically inspired learning mechanisms. Even
simplistic SNNs are useful, and have been shown to be Turing-complete (Maass 1996b), and
more powerful than ANNs (Maass 1997, [a] 1996). Developing more advanced learning SNNs
will also be useful in neuromorphic hardware because of its low energy use (van Albada et al.
2018).

Timescales of learning algorithms
Despite the substantial differences between ANNs and SNNs, learning in both is

primarily realized by adjusting the weights of connections or synaptic strengths among
interconnected neurons. In ANNs, this usually occurs through the following sequence, repeated
many times: 1) inputs are sampled, 2) corresponding outputs are evaluated, and 3) weights are
adjusted to minimize the output error via back-propagation through hidden network layers
(Schmidhuber 2015). In SNNs, the weights are often adjusted using hebbian or spike-timing
dependent plasticity (STDP) rules (Dan and Poo 2004, 2006; Izhikevich 2007; Farries and
Fairhall 2007; Caporale and Dan 2008). These strategies are useful when there is a temporally
proximate relationship between inputs and outputs and there is no feedback involved.

Sensory-motor RL is a more difficult problem to solve because behaviors require
evaluation of many sub-actions, and are associated with different environmental cues integrated
over time. Moreover, the reward/punishment feedback is delivered later, which makes it difficult
to attribute reward/punishment only to relevant actions and neuron groups producing those
actions (Izhikevich 2007). Recent ANNs have taken advantage of a replay and update strategy
to re-sample previous experiences and shape the action policy for given sensory cues
maximizing the cumulative reward (Hayes et al. 2021). In SNNs using STDP-RL, eligibility
traces can be used to associate reward/punishment to corresponding actions and neuronal
assemblies backwards in time, as we have implemented in our work here: when a postsynaptic
neuron fires within a few milliseconds of presynaptic neurons firing, a synaptic eligibility trace is
activated, allowing the synapse to undergo potentiation or depression during the following 1-5
seconds (Anwar et al., n.d.; Patel et al. 2019; Hazan et al. 2018; Chadderdon et al. 2012).
STDP-RL trains SNNs by establishing associations between the neurons encoding the sensory
environment and neurons producing actions or sequence of actions, such that appropriate
actions are produced for specific sensory cues. The sensory-motor associations are established
from reward-modulated synaptic weight changes that occur at each timestep of the simulation.
STDP-RL trains at the individual model level, as we consider each separate initialization of an
SNN network a separate “individual”.

In contrast to individual-based algorithms such as STDP-RL, evolutionary algorithms
operate at vastly different timescales, and typically use populations of models (Feldman, Aoki,
and Kumm 1996; Parisi et al. 2019). Evolution is successful when individuals who are fit enough
to produce offspring pass their genes to the next generation (Garrett 2012). While individual
learning is restricted to an animal’s lifespan, it still confers powerful competitive advantages.
This, in turn, feeds into the evolutionary process: animals that learn the idiosyncrasies of their
environment, including its threats and rewards, are more likely to survive and propagate. The
obvious genomic storage limitations prevent the encoding of all important environmental
information within an animal’s genome (Zador 2019; Koulakov, Shuvaev, and Zador 2021),
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underlining how individual learning must complement evolution. As noted by James Mark
Baldwin, learning on an individual level drives the evolutionary process (“A NEW FACTOR IN
EVOLUTION” 1896). To simulate this process, our EVO+STDP-RL strategy implicitly chose the
next generation’s weights and connectivity patterns that provided advantages in learning,
thereby accelerating population-level fitness improvements. This is consistent with the
accelerated learning of models when deploying the Baldwin effect, as has been recently
demonstrated in embodied intelligence tasks (Gupta et al. 2021). The extent to which these
strategies translate to more complex tasks and circuit architectures could offer further insights
into multi-scale neurobiological learning.
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Contribution to the field statement
Biological learning operates at multiple interlocking timescales, over long evolutionary stretches,
down to an individual’s life’s relatively short time span. While each process has been simulated
individually as a basic learning algorithm in the context of spiking neuronal networks (SNNs),
the integration of the two has remained limited. In this study, we first train SNNs to play the
CartPole game using: 1) learning during a model’s lifetime and 2) simulated evolutionary
learning processes. We then develop an integrated algorithm that combines these types of
learning in sequence, more closely mimicking actual evolutionary processes. We evaluate the
performance of each algorithm after training and through the creation of sensory/motor action
maps that delineate the network’s transformation of sensory inputs into higher-order
representations and eventual motor decisions. Our algorithms produced SNNs capable of
moving the cart left and right and keeping the pole vertical. Our interleaved training paradigm
produced the most robust learning performance. Analysis of synaptic weight matrices also
showed different weight patterns that influenced neuronal dynamics. Our modeling opens up
new capabilities for SNNs in reinforcement learning and could serve as a testbed for
neurobiologists aiming to understand multi-timescale learning mechanisms and dynamics in the
brain.
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Supplementary Figures

Supplementary Figure 1: Performance distribution of the first hyperparameter search for
training using STDP-RL (displaying averages over 100 episodes during training). In each
panel, the y-axis shows the performance, and the x-axis indicates the parameter values used in
the evaluation. The number of models run with the specific parameter value is presented in
parentheses, with 107 tested hyperparameter combinations.
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Supplementary Figure 2: Performance distribution of hyperparameters for training using
STDP-RL evaluated in the second step (using averages over 100 episodes).
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Supplementary Figure 3: Performance distribution of hyperparameters for training using
STDP-RL evaluated in the third step (using averages over 100 episodes).
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Supplementary Figure 4: Number of spikes generated by each neuron in the model in
response to stimulating pairs of sensory input neurons in ES. Each pair of sensory input
neurons was stimulated 400 times with combinations of 2 other sensory input neurons. The
neuronal responses of the model before training (top row), for after training using STDP-RL
(middle row) and EVOL(bottom row).
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Supplementary Figure 5: STDP-RL and EVOL differentially modulate the synaptic weights
of the SNN model during training. (A-B) Adjacency matrices showing the weights of synaptic
connections between ES-EA and EA-EM populations in STDP-RL model (A), EVOL model (B).
Note that the adjacency matrices have different scales as EVOL model has weights reaching
300. (C) Total Transmission Weight: Sum of synaptic weights from a  presynaptic neuron onto
multiple postsynaptic neurons. (D) Total Reception Weight: Sum of synaptic weights onto each
postsynaptic neuron from multiple presynaptic neurons. (E) As each model changed the weights
from the original initialization, each dot represents a synaptic connection weight after training
with STDP-RL (x-axis) and EVOL (y-axis) with a Spearman correlation of -0.09 (p-value =
0.0001).

Supplementary Table 1: STDP-RL parameters obtained through hyperparameter search.
Values tested that are bolded are the hyperparameters picked for our model.

Parameter Hyperparameter
Search Step 1

Hyperparameter
Search Step 2

Hyperparameter
Search Step 3

Description

Duration (s)
(not varying) 500 2000 2000+

Duration in seconds that
was trained using each. A
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step was performed in
50ms

AMPA-RLwindhebb
(ms)

(2, 3, 5, 10, 25) (3, 5, 10) 5

Maximum time between
presynaptic and
postsynaptic spike times
for considering plasticity.

AMPA-RLlenhebb
(ms)

(50, 100, 200, 250,
400) 250 250

The decay time constant of
the exponentially
decreasing eligibility trace.

AMPA-RLhebbwt

(0.005, 0.01, 0.02)
(0.0001, 0.0005,
0.001, 0.005)

(0.0005, 0.001,
0.005, 0.01)

Max synaptic weight
adjustments based on
reward or punishing signal.

Targeted_RL_Type (non-targeted RL,
targeted RL main,
targeted RL both) targeted RL both targeted RL both

The Targeted RL paradigm
chosen

Non_Motor_RL
(False, True) (False, True) (False, True)

Delivering RL to non EM
population: EA

Targeted_RL_Opp_
EM

(0.8, 1.0) (0.8, 0.9, 1.0) (0.8, 0.9, 1.0)

Attenuation factor for the
opposite subpopulation
receiving reinforcement

Targeted_RL_Non_
Motor

1.0 (0.5, 0.8, 1.0) (0.5, 0.8, 1.0)

Attenuation factor for the
non motor subpopulation
receiving reinforcement

Critic Positivity Bias

(1.5, 2.5, 2.8) (1.5, 2.0, 2.5) (1.5, 2.0, 2.5)

: used in criticη
𝑎𝑛𝑔𝑣𝑒𝑙

(equation 1)

Critic Angv Bias

(0.4, 0.5, 0.7, 1.0) (0.5, 0.7, 0.8, 1.0) (0.7, 1.0, 1.2)

: defined for criticη
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

evaluation (equations 2-3)
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