

1 Liver stage fate determination in *Plasmodium vivax* parasites: characterization of schizont growth
2 and hypnozoite fating from patient isolates

3

4 Short title: Hypnozoite fating in *Plasmodium vivax*

5

6 Amélie Vantaux^{1*}, Julie Péneau¹, Caitlin A. Cooper², Dennis E. Kyle², Benoit Witkowski¹, Steven
7 P. Maher²

8

9 ¹Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO
10 Box 983, Phnom Penh, 120 210, Cambodia

11 ²Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr
12 Suite 370, Athens, GA 30602, USA

13

14 *Corresponding author

15 E-mail: amelie.vantaux@gmail.com

16

17 Abstract

18 *Plasmodium vivax*, one species parasite causing human malaria, forms a dormant liver stage,
19 termed the hypnozoite, which activate weeks, months or years after the primary infection,
20 causing relapse episodes. Relapses significantly contribute to the vivax malaria burden and are
21 only killed with drugs of the 8-aminoquinolone class, which are contraindicated in many
22 vulnerable populations. Development of new therapies targeting hypnozoites is hindered, in
23 part, by the lack of robust methods to continuously culture and characterize this parasite. As a
24 result, the determinants of relapse periodicity and the molecular processes that drive hypnozoite
25 formation, persistence, and activation are largely unknown. While previous reports have
26 described vastly different liver stage growth metrics attributable to which hepatocyte donor lot
27 is used to initiate culture, a comprehensive assessment of how different *P. vivax* patient isolates
28 behave in the same donors at the same time is logically challenging. Using our primary human
29 hepatocyte-based *P. vivax* liver stage culture platform, we aimed to simultaneously test the
30 effects of how hepatocyte donor and *P. vivax* patient isolate influence the fate of sporozoites and
31 growth of liver schizonts. We found that, while environmental factors such as hepatocyte donor
32 can modulate hypnozoite formation rate, the *P. vivax* case is also an important determinant of
33 the proportion of hypnozoites observed in culture. In addition, we found schizont growth to be
34 mostly influenced by hepatocyte donor. These results suggest that, while host hepatocytes
35 harbor characteristics making them more- or less-supportive of a quiescent versus growing
36 intracellular parasite, sporozoite fating towards hypnozoites is isolate-specific. Future studies
37 involving these host-parasite interactions, including characterization of individual *P. vivax* strains,

38 should consider the impact of culture conditions on hypnozoite formation, in order to better
39 understand this important part of the parasite's lifecycle.

40

41

42 **Author summary**

43 Malaria is caused by protozoan parasites of the genus *Plasmodium*. One species, *Plasmodium*
44 *vivax*, is more difficult to control in comparison to other species because infection results in
45 dormant forms in the liver, called hypnozoites. Hypnozoites are considered an invaluable
46 therapeutic target to control malaria, but how hypnozoites form and reactive to cause malaria
47 relapses is unknown. Herein we describe that both nature and nurture influence the fate of
48 newly-established parasites in the liver, resulting in either a quiescent hypnozoite or growing
49 schizont. Using parasites generated from patient isolates, we show the hypnozoite formation is
50 likely inherited but also modulated by environmental factors, including which lot of human
51 hepatocytes the parasites infect. Additionally, we show schizont growth is strongly influenced by
52 the host hepatocyte lot. As liver stage experiments include several dependent variables which
53 are difficult to control, herein we present an experimental approach designed to remove many
54 of these variables and provide a clearer picture of what factors influence the formation and
55 growth of liver stage parasites. Our findings serve as a foundation for future work to understand
56 hypnozoite biology, with the ultimate goal of identifying new therapeutic targets.

57

58 **Introduction**

59 Malaria remains a major public health challenge with an estimated 241 million cases estimated
60 in 2021 [1]. Among the parasite species responsible for human malaria, *Plasmodium vivax* is the
61 most widely dispersed as well as the most resistant to elimination programs. This resilience is
62 attributed to several features unique to *P. vivax*, including its ability to develop over a wider range
63 of temperatures and, in particular, at lower thermal limits than *Plasmodium falciparum*.
64 Additionally, *P. vivax* forms transmissible gametocytes faster, and has a shorter incubation period
65 in the mosquito vector, than *P. falciparum* [2-5]. Critically, *P. vivax* parasites persist in the human
66 host liver as hypnozoites (a dormant parasite liver stage) which activate weeks, months or years
67 after the primary infection, causing relapse episodes [6]. Hypnozoites are insensitive to most
68 antimalarials except 8-aminoquinolines, which are contraindicated in large sections of the
69 population including pregnant women, younger children, and patients with glucose-6-phosphate
70 dehydrogenase deficiency [7]. Because *in vitro* culture of the liver-stages is dependent on limited
71 access to *P. vivax* infected mosquitoes, our understanding of *P. vivax* liver-stages has considerably
72 lagged in comparison to other *Plasmodium* species. Consequently, the determinants of relapse
73 periodicity and the molecular processes that drive hypnozoite formation, persistence, and
74 activation are still largely unknown.

75 Transmission occurs when sporozoites are injected into a new host by the bite of an infected
76 *Anopheles* mosquito. Individual sporozoites migrate to the liver, invade a hepatocyte and form
77 either a liver-schizont or hypnozoite. Schizonts mature within 9-12 days and release merozoites
78 into the bloodstream, thereby initiating the primary blood stage infection, while hypnozoites are

79 small, non-dividing forms that remain quiescent for various periods of time [8]. Frequencies of
80 *P.vivax* relapses are highly variable, from 3-4 weeks in the tropics to 8-10 months in temperate
81 regions, and it remains unknown if the frequencies observed are determined by genetic or
82 environmental factors [6, 8-10]. Several factors influencing relapses frequencies have been
83 proposed such as sporozoites inoculum size, acquired immunity of the host, primary drug
84 treatment regimens, co-infections, fever, hemolysis, seasonality, mosquito bites, and epigenetic
85 control [6, 9, 11-13]. However, a constant activation rate without external stimuli could also
86 explain the frequencies observed [10]. Yet, the prevalence of hypnozoite formation is rarely
87 considered and difficult to directly ascertain in living systems [14, 15].

88 The cellular interactions governing migration and invasion of sporozoites into hepatocytes are
89 species-specific and only partially understood, rendering generalizations difficult [16, 17].
90 Comparisons of infection rates in several human hepatocyte donors show that some donors are
91 not supportive of either *P. vivax* or *P. falciparum* parasites, which could be a product of natural
92 variation in hepatic surface receptors necessary to malaria parasite entry [17]. Alternatively, the
93 process for manufacturing cryo-plateable lots of primary hepatocytes could affect cell
94 phenotypes, including the aforementioned surface receptors, and alter hepatocyte
95 permissiveness [18, 19]. Host cell permissiveness is likely also modulated by host cell
96 environment as sufficient glycolytic and respiratory activities are needed to sustain the energy
97 demands of an intracellular parasite [20-22]. As such, liver lobules perform different metabolic
98 functions and have recently been shown to influence *P. falciparum* parasite preferences and
99 growth in the host cell [22]. Interestingly, a recent single-cell transcriptomic study of *P. vivax* liver
100 stages did not show a clear pattern of infection in different hepatocyte subpopulations, although,

101 it is unknown if zonally-differentiated hepatocytes remain fully differentiated *ex vivo* [23]. Thus,
102 human host hepatocyte characteristics are likely important factors in parasite development as
103 well as potential determinants of the schizont or hypnozoite fate remaining to be discovered.

104 The density of individuals within a shared environment has a strong impact on individual fitness.
105 For parasites such as *Plasmodium* spp., fitness depends on interactions with several organisms
106 during their life cycle, including but not limited to, the human host, the mosquito vector, and co-
107 infecting malaria parasites. The host represent ecological niches for co –infecting malaria
108 parasites, which often consist of more than one parasite genotype [24, 25]. Therefore, individual
109 parasites are in direct competition for resources, in indirect competition with shared exposure
110 to immune responses, and potentially in direct interference between parasites, which can all
111 affect virulence and transmission [24-27]. Although much work has been carried out on asexual
112 stages due to the availability of culture and analyses, these bottom-up and top-down
113 mechanisms could also affect sporozoite fate akin to how crowding and inbreeding rate, among
114 other factors, influence gametocyte fate and infectivity [5, 28, 29]. Thus, during transmission
115 from the vector to the human host, parasite competition could favor the production of
116 hypnozoite-fated sporozoites to decrease future competition in the human host and increase the
117 likelihood of relapse during the next high-transmission season.

118 Using our recently-developed primary human hepatocytes (PHH)-based 384-well *P. vivax* liver
119 stage culture platform [18, 19], we aimed at testing the effects of hepatocyte donors and *P. vivax*
120 cases on liver-stage parasites. While we have previously reported how sporozoites behave when
121 infected into different donors in this system, due to logistical challenges these studies relied on
122 historical comparisons of sporozoites from only a single *P. vivax* isolate for each experimental run

123 [18]. This original approach cannot account for factors which are known to or likely affect parasite
124 viability and phenotypes, such as the effect of an international shipment needed to send infected
125 mosquitoes from an endemic area to a research laboratory, the health and genetic drift of a
126 mosquito colony over time, the variation of different seedings of each lot of hepatocytes, specific
127 lots of reagents like culture media, the conditions of the laboratory environment and equipment,
128 and which human operators perform dissection, infection, and media replacement during
129 culture. To effectively remove or better control for these factors, this assessment relied on an
130 experimental design in which the same four human donor lots, which were pre-validated to
131 support *P. vivax* infection, were seeded into different wells of the same microtiter plates on the
132 same day and infected with the same inoculum of sporozoites from three different *P. vivax*
133 patient isolates. We used this design to confirm that hepatocyte donors influence the total
134 number of parasites and investigating if hepatocyte donors affected schizont growth and the
135 proportion of hypnozoites observed. Additionally, to characterize other factors critical for
136 establishing *in vitro* culture, we factored into our design an assessment of how the sporozoite
137 inoculum size and *P. vivax* case impacted these three aspects (total number of parasites, schizont
138 size and proportion of hypnozoites).

139

140 **Material and methods**

141

142 **Clinical isolates & collection of *P. vivax* sporozoites**

143 Blood samples were collected from symptomatic *P. vivax* patients at local health facilities in
144 Mondulkiri province (eastern Cambodia) from 2018-2021. Clinical isolate collection and research
145 procedures were reviewed and approved by the Cambodian National Ethics Committee for
146 Health Research (approval number: 100NECHR, 113 NECHR, 104 NECHR). The protocols conform
147 to the Helsinki Declaration on ethical principles for medical research involving human subjects
148 (version 2002) and informed written consent was obtained for all volunteers, or their parent or
149 legal guardian for participant under 18 years old. Patients presenting signs of severe malaria,
150 infected with non-vivax malaria parasites, under 5 years of age, pregnant, or lactating were
151 excluded from the collection. Following informed consent from eligible study participants,
152 venous blood samples were collected by venipuncture into heparin-containing tubes.
153 Immediately after collection, treatment was provided by local health staff according to Cambodia
154 National Malaria Treatment Guidelines. Clinical isolates were immediately prepared for feeding
155 to *Anopheles dirus* mosquitoes in a secure insectary as previously described [19]. Following a *P.*
156 *vivax* gametocyte-containing bloodmeal, *An. dirus* mosquitoes were maintained on a 10%
157 sucrose+0.05% para-aminobenzoic solution. Mosquitoes found positive for *P. vivax* oocysts at
158 six-days post feeding were transported to the IPC facility in Phnom Penh, Cambodia where
159 salivary glands were aseptically dissected into RPMI without sodium bicarbonate on 16-21 days
160 post-infection (dpi).

161

162 **Liver stage infection**

163 Primary human hepatocytes (PHH) were seeded 2 days prior to infection (except for experiment
164 1 for which they were seeded on the same day) and cultured as previously described [19].
165 Infection was performed by diluting freshly-dissected sporozoites into culture media with
166 antibiotics, adding 20 μ L sporozoite-media mixture to each well, and centrifugation of the 384-
167 well plate at 200 RCF for 5 min at room temperature. Media was changed with fresh culture
168 media containing antibiotics the day after infection and every 2-3 days thereafter. At 8 or 12 dpi
169 (depending on the experiment protocol, see below) cultures were fixed for 15 min at room
170 temperature with 4% paraformaldehyde in PBS. Fixed cultures were stained with recombinant
171 mouse anti-*P. vivax* Upregulated in Infectious Sporozoites-4 antibody [30] diluted 25,000-fold
172 followed by rabbit anti-mouse Alexfluor488-conjugated antibody diluted 1:1000. Cultures were
173 then counterstained with 10 μ g/mL Hoechst 33342 to detect parasite and host cell nuclear DNA.
174 Automated High Content Imaging was carried out with a 20x objective on a ImageXpress Confocal
175 Micro (Molecular Devices) or 4x objective on a Lionheart (Bioteck). Liver stage parasite were
176 quantified for number and growth area per well and per parasite using built-in cellular analysis
177 and quantification software (MetaXpress for ImageXpress or Gen5 for Lionheart). Hypnozoites
178 were defined as brightly UIS4-stained round forms (ratio of maximum and minimum widths of
179 each form > 0.6) with under 150 μm^2 total area and a bright prominence in the PVM. Schizonts
180 were defined as brightly-UIS4-stained forms with greater than 150 μm^2 total area.

181 **Experiment 1: testing simultaneously different PHH donors, *P. vivax***
182 **cases and sporozoite inoculum sizes.**

183 Four PHH lots, UBV, BGW, HHR and OTW, were infected with three different *P. vivax* cases (C1 to
184 C3) at 8 sporozoite densities ranging from 3×10^3 to 30×10^3 per well in 3×10^3 increments (S1
185 Fig). Six technical replicate wells per condition were used. Cultures were fixed at 8 dpi.

186

187 **Experiment 2: comparison of eight PHH donors and influence of
188 sporozoite inoculum size.**

189 Eight PHH lots, BGW, BPB, ERR, HDS, HLY, IRZ, ZPE, were infected with one *P. vivax* case at 6
190 sporozoite densities ranging from 5×10^3 to 30×10^3 per well in 5×10^3 increments. Four technical
191 replicate wells per conditions were used. Cultures were fixed at 8 dpi.

192

193 **Experiment 3: comparison of 51 *P. vivax* cases using one PHH donor.**

194 Negative control wells containing 0.1% v/v DMSO from our large *P. vivax* liver stage drug
195 screening database were used to compare results from 51 *P. vivax* cases used to infect 132 assay
196 plates seeded with PHH lot BGW and comprising 106 plates with and 26 plates without 1-
197 aminobenzotriazole (ABT) treatment, a protocol condition used to limit phase I hepatic
198 metabolism of unoptimized test compounds [19]. The number of hypnozoites and schizonts were
199 averaged over 16 or 24 wells DMSO control wells depending on the plate map. The majority of
200 cultures were seeded with PHHs two days prior to infection with sporozoites, although for some
201 infections cultures were initiated one or three days prior to infection due to logistical constraints.
202 All cultures were fixed at 12 dpi.

203

204

205 **Statistical Analyses**

206 **Experiment 1: testing different PHH donors, *P. vivax* cases and sporozoite
207 inoculum sizes.**

208 The total number of parasites was analyzed using Generalized Linear Mixed Model (GLMM) with
209 a zero-truncated negative binomial error structure. In this GLMM, hepatocyte donors (4 levels:
210 BGW, HHR, OTW and UBV), *P. vivax* case (3 levels: C1, C2 and C3) and sporozoite inoculum sizes
211 (12×10^3 , 15×10^3 , 17×10^3 , 19×10^3 , 21×10^3 , 24×10^3 , 27×10^3 and 30×10^3) were coded as
212 fixed categorical factors, the log of number of nuclei was coded as an offset to account for the
213 number of hepatocyte per well, and well nested in plate were coded as random factors to account
214 for repeated measurements of the same infection conditions and plate effects. The proportion
215 of hypnozoites were analyzed using a similar GLMM with a binomial error structure and individual
216 well ID was added as a random factor to improve model fit.

217

218 The schizont size (individual measurement of all schizonts present in the well) was Box-Cox
219 transformed and analyzed using a GLMM with a Gaussian distribution. In this model, hepatocyte
220 donors, *P. vivax* case, sporozoite inoculum size and all two-ways interactions were coded as fixed
221 categorical factors and well nested in plate were coded as random factors.

222

223 **Experiment 2: comparison of eight PHH donors and influence of sporozoite
224 inoculum size or seed density.**

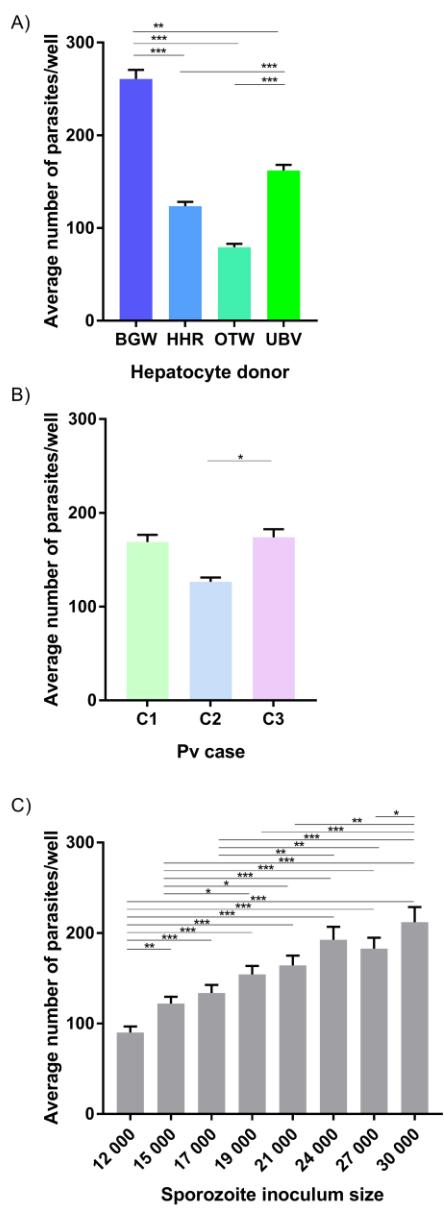
225 The total number of parasites and proportion of hypnozoites were analyzed using GLMMs with a
226 zero-truncated negative binomial error structure and a binomial error structure respectively. In
227 these GLMMs, hepatocyte donors and sporozoite inoculum size were coded as fixed categorical
228 factors, the log of number of nuclei was coded as an offset to account for the number of
229 hepatocytes per well, and replicate wells were coded as random factors to account for repeated
230 measurements of the same infection conditions.

231

232 **Experiment 3: comparison of 51 *P. vivax* cases using one PHH donor**

233 The total number of parasites and proportion of hypnozoites were analyzed using univariate
234 GLMMs with a zero-truncated negative binomial error structure and a binomial error structure
235 respectively. In these GLMMs, the log of the average number of nuclei was coded as an offset to
236 account for the number of hepatocytes per well, and *P. vivax* case was coded as random factor
237 to account for measurements of assay plates infected with the same *P. vivax*. We investigated
238 the effects of sporozoite inoculum size, hepatocyte age at infection, assay version, season and
239 patient sex. In addition, a data subset of 37 plates for which the visit count was known (that is,
240 the number of times the same patient visited the clinic, which was either 2, 3, 5 or 6 visits) was
241 used to investigate the effect of multiple visits on the proportion of hypnozoites using a
242 univariate GLMM with a binomial structure.

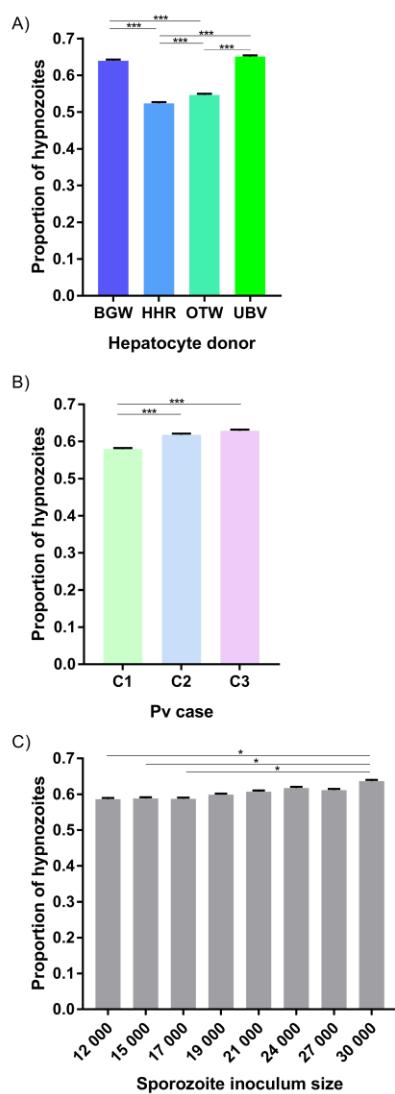
243


244 Model selection was used with the stepwise removal of terms, followed by likelihood ratio tests
245 (LRT). Term removals that significantly reduced explanatory power ($P < 0.05$) were retained in the

246 minimal adequate model [31]. All analyses were performed in R v. 4.0.3 [32]. Results are
247 presented as mean \pm standard error (SE) and proportion \pm confidence interval (CI).

248 **Results**

249 **Experiment 1: testing different PHH donors, *P. vivax* cases and
250 sporozoite inoculum sizes.**

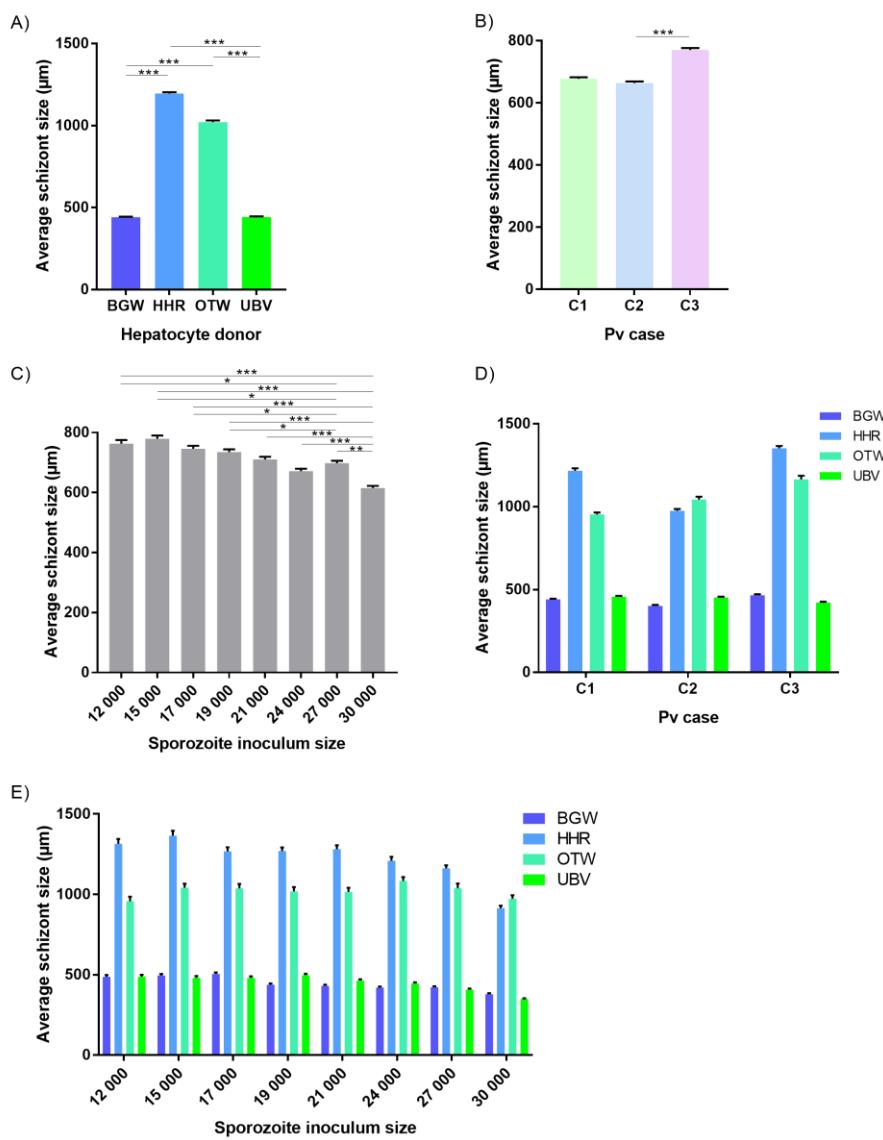

251 The average number of parasites per well was significantly influenced by the PHH lot ($X^2_3 =$
252 1023.78, $P < 0.0001$; Fig 1A), with BGW supporting the highest mean parasite per well ($260.85 \pm$
253 9.64) followed by UBV (162.12 ± 6.09), HHR (123.48 ± 4.74) and OTW (79.28 ± 3.65). The number
254 of parasites was also influenced by the *P. vivax* case ($X^2_2 = 13.67$, $P = 0.001$; Fig 1B) with *P. vivax*
255 case 3 having the highest number of parasites per well (173.95 ± 8.68), followed by *P. vivax* case
256 1 (168.98 ± 7.64) and *P. vivax* case 2 (126.36 ± 4.77). As expected, the average number of
257 parasites per well increased with the sporozoite inoculum size ($X^2_7 = 228.37$, $P < 0.0001$; Fig 1C),
258 increasing from 89.97 ± 6.76 parasites per well when 12×10^3 sporozoite were inoculated to
259 211.94 ± 16.66 parasites per well with 30×10^3 sporozoites.

260
261 **Fig 1. The average number of *P. vivax* parasites per well.** Data include all parasites quantified
262 from Experiment 1 and are shown categorized by A) PHH lot, B) *P. vivax* isolate, and C) sporozoite
263 inoculum size. Asterisks indicate significant differences (Post hoc Tukey's pairwise comparisons,
264 *** P<0.0001, ** P<0.001, * P<0.05). Bars represent ± SE.

265

266 The proportion of hypnozoites per well was significantly influenced by the PHH lot ($\chi^2_3 = 589.50$,
267 $P < 0.0001$; Fig 2A) with UBV supporting the highest proportion ($65.11 \pm 0.31\%$) followed by BGW
268 ($63.97 \pm 0.31\%$), OTW ($54.37 \pm 0.32\%$) and HHR ($52.36 \pm 0.33\%$). The three *P. vivax* cases
269 investigated had significantly different proportion of hypnozoites from $57.9 \pm 0.32\%$ in *P. vivax*
270 case 1, to $61.8 \pm 0.32\%$ in *P. vivax* case 2 and $62.89 \pm 0.31\%$ in *P. vivax* case 3 ($\chi^2_2 = 50.73$, P
271 < 0.0001 ; Fig 2B). The proportion of hypnozoites also showed a small increase as the sporozoite
272 inoculum size increased, from $58.6 \pm 0.32\%$ when 12×10^3 sporozoite were inoculated to $63.68 \pm$
273 0.31% with 30×10^3 sporozoites ($\chi^2_7 = 20.09$, $P = 0.005$; Fig 2C).

274


275 **Fig 2. The average proportion of *P. vivax* hypnozoites per well.** Data include all parasites
276 quantified from Experiment 1 and are shown categorized by A) PHH lot, B) *P. vivax* isolate, and
277 C) sporozoite inoculum size. Asterisks indicate significant differences (Post hoc Tukey's pairwise
278 comparisons, *** P<0.0001, ** P<0.001, * P<0.05). Bars represent ± 95% CI.

279

280 The schizont size was significantly affected by the PHH lot ($X^2_3 = 4369.66$, P <0.0001; Fig 3A) with
281 an average schizont size of $1195.46 \pm 8.25 \mu\text{m}^2$ for HHR, followed by OTW ($1021.61 \pm 9.16 \mu\text{m}^2$),

282 UBV ($443.49 \pm 2.94 \mu\text{m}^2$) and BGW ($441.85 \pm 2.83 \mu\text{m}^2$). Schizonts were on average larger in the
283 infection from *P. vivax* case 3 ($770.31 \pm 6.41 \mu\text{m}^2$) followed by *P. vivax* case 1 ($678.02 \pm 4.81 \mu\text{m}^2$)
284 and *P. vivax* case 2 ($663.75 \pm 5.39 \mu\text{m}^2$; $\chi^2_2 = 28.63$, $P < 0.0001$; Fig 3B). The average size of
285 schizonts was negatively correlated to the sporozoite inoculum size ($\chi^2_7 = 119.15$, $P < 0.0001$; Fig
286 3C). There was a significant interaction of *P. vivax* case and PHH lot ($\chi^2_6 = 71.60$, $P < 0.0001$; Fig
287 3D) such that PHH lots providing the largest or smallest average schizont size were not always
288 the same across infections with the three *P. vivax* cases.

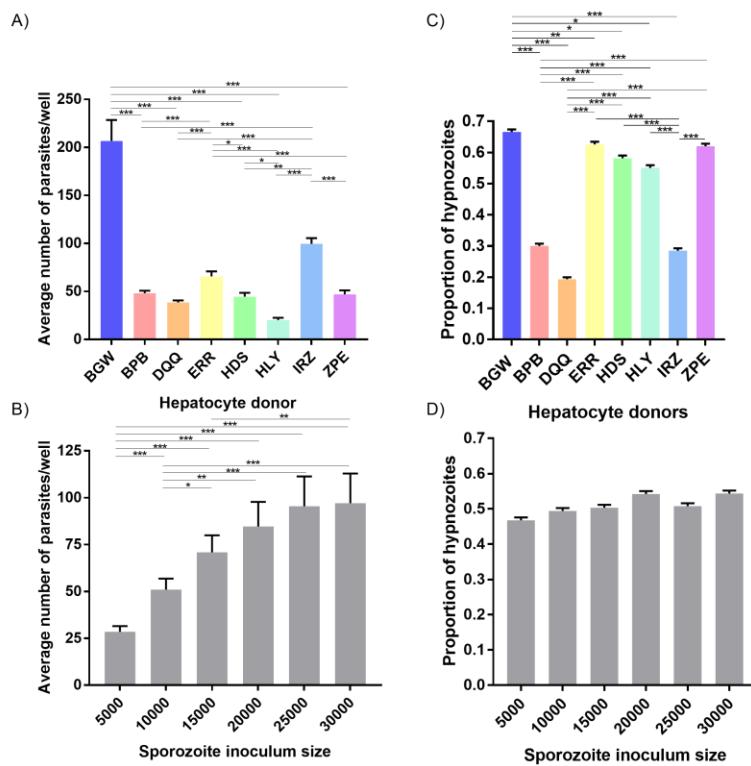
289

290

291 **Fig 3. The average size of *P. vivax* schizonts by PHH lot and *P. vivax* case.** Data include all
292 parasites from Experiment 1 and are categorized by A) PHH lot, B) *P. vivax* isolate, C) sporozoite
293 inoculum size, D) *P. vivax* isolate and PHH lot and E) sporozoite inoculum size and PHH lot.
294 Asterisks indicate significant differences (Post hoc Tukey's pairwise comparisons, *** $P<0.0001$,
295 ** $P<0.001$, * $P<0.05$). Bars represent \pm SE.

296

297


298 The differences in average schizont sizes between PHH lots tended to decrease as the sporozoite
299 inoculum size increased; this effect was most apparent between lots HHR and OTW, which
300 produced the largest schizonts of the four lots (PHH lots - sporozoite inoculum size interaction :
301 $\chi^2_{21} = 42.84$, $P = 0.0033$; Fig 3E). The interaction between *P. vivax* case and sporozoite inoculum
302 size was not significant ($\chi^2_{14} = 19.42$, $P = 0.15$). Overall, UBV and BGW harbored a large proportion
303 of small schizonts whereas HHR and OTW harbored similar proportions of schizonts of different
304 size classes (S2 Fig). We did not investigate further a correlation between the total number of
305 parasites in the well and the average schizont sizes as the data were segregated with UBV and
306 BGW forming one group and OTW and HHR forming another group (S3 Fig).

307

308 **Experiment 2: comparisons of eight PHH donors and influence of
309 sporozoite inoculum size.**

310 Eight different PHH lots were seeded and infected with 6 different sporozoite inoculums from a
311 single *P. vivax* case. The average number of parasites per well was significantly influenced by the
312 PHH lot ($\chi^2_7 = 196.01$, $P < 0.0001$; Fig 4A) and the sporozoite inoculum size ($\chi^2_5 = 192.24$, P
313 < 0.0001 ; Fig 4B). The proportion of hypnozoites was significantly influenced by the PHH lot ($\chi^2_7 =$
314 413.37 , $P < 0.0001$; Fig 4C) but not by the sporozoite inoculum size ($\chi^2_5 = 11.026$, $P = 0.051$; Fig
315 4D).

316

317

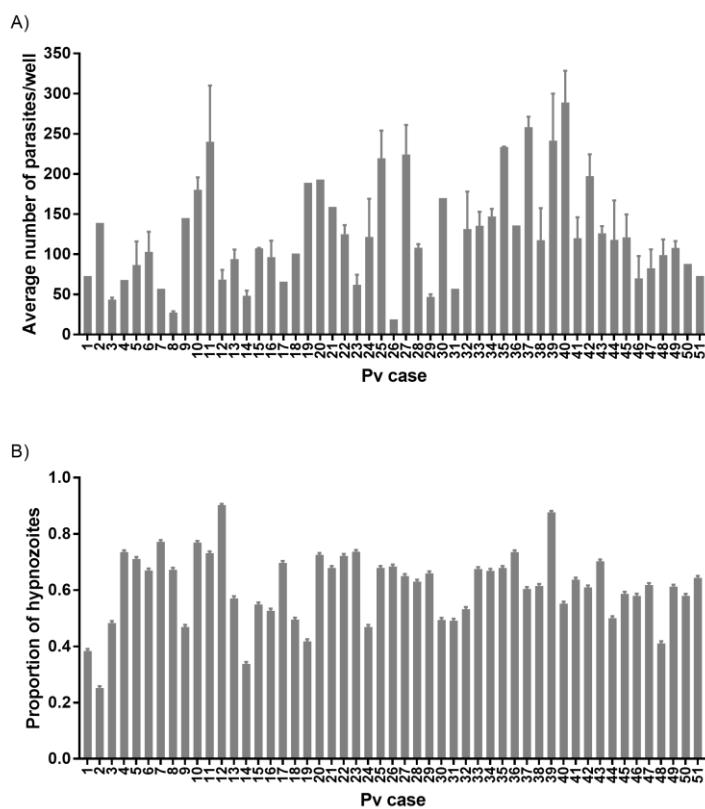
318 **Fig 4. Growth metrics of liver stage parasites following infection of 8 PHH lots with one *P. vivax***

319 **case.** Data include all parasites quantified from Experiment 2. The average number *P. vivax*

320 parasites per well is shown categorized by A) PHH lot and B) sporozoite inoculum size. The

321 average proportion of *P. vivax* hypnozoites per well is shown categorized by C) PHH lots and D)

322 sporozoite inoculum size. Asterisks indicate significant differences (Post hoc Tukey's pairwise


323 comparisons, *** P<0.0001, ** P<0.001, * P<0.05). Bars represent ± SE (A,B) or ± 95% CI (C,D).

324

325

326 **Experiment 3: comparison of 51 *P. vivax* cases using one PHH donor**

327 The total number of parasites per well was influenced by the *P. vivax* case ($X^2_{50} = 137.5$, $P < 0.0001$;
328 Fig 5A) but not by the sporozoite inoculum size ($X^2_1 = 3.40$, $P = 0.065$). The average total number of
329 parasites per well was influenced by the hepatocyte age at infection ($X^2_2 = 11.954$, $P = 0.002$).
330 However, post-hoc comparisons showed only a significantly lower total number of parasites in
331 hepatocytes infected at day 1 compared to day 2 post-seeding (81.83 ± 9.62 vs. 136.24 ± 7.12
332 respectively; Tukey's post-hoc test: $P = 0.001$, all other comparisons being non-significant). The
333 average total number of parasites per well was not influenced by the presence of ABT ($X^2_1 = 0.14$,
334 $P = 0.71$), the season ($X^2_1 = 0.41$, $P = 0.52$) nor the patient sex ($X^2_1 = 0.02$, $P = 0.88$). The proportion of
335 hypnozoites was influenced by the *P. vivax* case ($X^2_{50} = 197.58$, $P < 0.0001$; Fig 5B) but not by the
336 sporozoite inoculum size ($X^2_1 = 0.69$, $P = 0.40$). The proportion of hypnozoites was also influenced
337 by the hepatocyte age at infection ($X^2_2 = 9.92$, $P = 0.007$). However post-hoc comparisons showed
338 only a significantly lower proportion of hypnozoites in hepatocytes infected at day 3 compared
339 to day 1 post-seeding ($57.3 \pm 0.7\%$ vs. $63.3 \pm 0.7\%$; Tukey's post-hoc test: $P = 0.006$, all other
340 comparisons being non-significant). The proportion of hypnozoites was not affect by the
341 sporozoite inoculum size ($X^2_1 = 0.69$, $P = 0.40$), the presence of ABT ($X^2_1 = 2.99$, $P = 0.08$), the season
342 (dry: $60.1 \pm 0.7\%$ vs. rainy: $66.6 \pm 0.7\%$; $X^2_1 = 3.5$, $P = 0.06$) nor the patient sex ($X^2_1 = 0.10$, $P = 0.75$).
343 The proportion of hypnozoites was not influenced by the number of visits to the clinic a patient
344 already experienced ($X^2_1 = 1.36$, $P = 0.24$).

345

346 **Fig 5. Growth metric of *P. vivax* liver stage parasites from 51 cases.** A) Average number of
347 parasites per well and B) proportion of hypnozoites. Asterisks indicate significant differences (Post
348 hoc Tukey's pairwise comparisons, *** P<0.0001, ** P<0.001, * P<0.05). Bars represent ± 95%
349 CI.

350

351

352 **Discussion**

353

354 The determinants of relapse periodicity and the molecular processes that drive hypnozoite
355 formation, persistence and activation are still largely unknown. Three non-mutually exclusive

356 hypotheses have been proposed regarding the determinants of hypnozoite formation:
357 predetermination during the sporozoite development in the mosquito, fate determination as
358 sporozoites progress from mosquito salivary glands to the hepatocytes, and fate determination
359 after infecting the host hepatocyte [reviewed in 33]. We found that both the PHH donor lot and
360 the *P. vivax* case influenced the proportion of hypnozoites observed (Figs 2, 4). This suggests that
361 the proportion of hypnozoites is strain-dependent as previously shown in a humanized mouse
362 model [15]. Although laboratory conditions have some variability, the large differences in
363 hypnozoite proportions observed with infections from 51 *P. vivax* cases using one hepatocyte
364 donor over time further support this hypothesis. Interestingly, a recent report suggests
365 sporozoites found in mosquito salivary glands do not seem to present two distinct transcriptional
366 signatures corresponding to future hypnozoites and schizonts[34], further suggesting that
367 transcriptional changes responsible for the fate of sporozoites could occur in the host hepatocyte
368 or be epigenetically-controlled [33].

369 The different hepatocyte donors we tested showed large variation in both the quantity and
370 ratio of hypnozoites to schizonts after infection. We performed two experiments comparing
371 multiple donors; one with four donors previously identified as highly supportive of *P. vivax*
372 infection (Fig 1A), and another with seven donors supporting various levels of *P. vivax* infection
373 in comparison to the highly-supportive lot BGW (Fig 4A). These results suggest host hepatocytes
374 harbor characteristics making them more- or less-supportive of a quiescent versus growing
375 intracellular parasite. Indeed, recent studies have shown that liver stage parasites must form and
376 maintain a delicate interface with the host hepatocyte's lysosomes, with failure leading to
377 parasite death [35]. This survivability factor is one example of many possible host-parasite

378 interactions that could explain both the net parasite and ratio differences we noted across
379 donors. Another explanation for the infection rate differences is that, while sporozoites are
380 traversing hepatocytes, there may sense the suitability of a particular hepatocyte prior to
381 switching from traversal to invasion, which is distinctly marked by formation of a parasitophorous
382 vacuole membrane (reviewed in [36]). Such a tropism has been described for *P. yoelii* and *P.*
383 *falciparum* sporozoites preferentially infecting polyploid hepatocytes [37]. Regarding the fate of
384 sporozoites in these different donor lots, it has been shown that *P. vivax* hypnozoites are
385 susceptible to several antimalarials for the first few days post-hepatocyte infection [38, 39].
386 During this time, the parasite's cytoplasmic compartment and membranes grow to several times
387 the volume of a sporozoite and begin to incorporate host proteins such as aquaporin 3, indicating
388 sporozoites must establish quiescence, and are not immediately quiescent, following infection
389 [39]. Likewise, recent reports of the earliest known markers of liver schizogony, including DNA
390 synthesis, division of the parasite nucleus, and expression of liver-specific protein 2 at 3 days
391 post-hepatocyte infection, suggest that commitment to schizogony may not occur immediately
392 after hepatocyte infection [15, 40, 41]. As there seems to be ample time for a cell-cycle
393 checkpoint to prevent DNA synthesis as liver forms are established, we speculate that, over the
394 first 24-48 hours post-infection, sporozoites may be able to sense, or at least be influenced by,
395 the intracellular environment of the hepatocyte, and then respond to specific conditions or
396 stimuli by forming either a hypnozoite or schizont. Yet another possible explanation for the
397 different infection rate and hypnozoite ratio noted across donors could be the composition of
398 hepatocytes in each lot as from either zone 1, 2, or 3 of the liver lobule. Liver lobules perform
399 specific metabolic functions and display different levels of glycolysis and cellular respiration [20-
21].

400 22]. Recently, a study of primary hepatocytes infected with *P. falciparum* demonstrated cultured
401 primary human hepatocytes are comprised of different ratios of cells from each zone and zonal
402 differentiation as important for liver stage development. In our recent report of single-cell RNA-
403 sequencing of *P. vivax* liver stages and host hepatocytes, we did look for an infection and fating
404 preference for sporozoites infected into a culture of various hepatocyte subpopulations, however
405 we found no clear infection pattern or preference [23]. Further deciphering the components of
406 the host cell environment as allowing or favoring hypnozoites versus schizont formation would
407 help better understand the mechanisms of dormancy.

408 In Cambodia, vivax malaria is less-frequently transmitted during the dry season, when the
409 population of the Anopheline vector is at its lowest level. During this time, it would be
410 advantageous for any vivax parasites that do transmit to form hypnozoites, such that the blood
411 stage infections resulting from transmission would occur after the end of the dry season. Such a
412 mechanism has been described for strains of long-latency vivax malaria such as those formerly
413 prevalent in northern latitudes [42]. However, seasonal variation in Cambodia might not be
414 strong enough to select for long-latency strains. It has also been shown that, for some strains,
415 once relapses begin after a period of latency, they are frequent, indicating cessation of latency is
416 also be programmed [6]. In this study, we had the unique opportunity to quantify the formation
417 of hypnozoites and schizonts of *P. vivax* isolates from patients during the dry season as well as
418 from the same patients visiting the clinic for malaria therapies multiple times. While we did not
419 find an apparent effect of the same patient recurrently visiting the clinic nor of the season on the
420 proportion of hypnozoites, we did find that some of the 51 cases exhibited remarkably high
421 hypnozoite ratios, indicating genotypes encoding for hypnozoite formation do persist in the

422 population and likely factor into latency and ongoing transmission. As we were not able to collect
423 enough parasite material for DNA or RNA sequencing to further characterize these unique cases,
424 future studies could combine donor panels with a multi-omics approach to better understand
425 these genotype-phenotype relationships.

426 A crowding effect could influence sporozoites to become hypnozoites to avoid competition
427 and increase the chance of transmission by opportunistically causing a relapse after the primary
428 blood infection and subsequent immune response. To look for such a crowding effect on
429 sporozoite fating we performed two experiments with an inoculum gradient culminating with a
430 highest inoculum of 30×10^3 sporozoites per well, or a relatively large multiplicity of infection of
431 >2 sporozoites for each primary hepatocyte. As expected, the number of parasites increased
432 positively with the sporozoite inoculum size in these two first experiments, resulting in an
433 apparent plateau representing saturation (Fig 1C, Fig 4B), However, we observed only a small
434 influence of the sporozoite inoculum size on the proportion of hypnozoites in only one
435 experiment out of three which suggest that this factor is not likely a strong determinant of
436 sporozoite fating. In our third experiment we further analyzed the effect of inoculum size and
437 found it did not influence the infection rate of 51 *P. vivax* cases used for a routine drug screening
438 program. Thus, the sporozoite inoculum size influences the infection rate with some
439 modulations, which could be due to an intrinsic *P. vivax* case difference in infectivity or to the
440 sporozoite development status. Indeed, salivary gland dissections result in the collection of all
441 sporozoite available, not only the mature sporozoites which would have migrated within the
442 saliva during a natural mosquito-bite infection. Therefore, developmental heterogeneity of
443 sporozoites could explain the different infection rates observed across the *P. vivax* cases used

444 [34, 43]. Comparing hypnozoite ratios in hepatocyte infections resulting from dissections of one
445 batch of infected mosquitoes over several days would help resolve an effect of sporozoite loiter
446 time in vector.

447 We found that schizont growth was strongly influenced by the hepatocyte donor.
448 Interestingly, two patterns were observed in *P. vivax* infections independent from a parasite
449 density effect: hepatocyte donors supporting a large proportion of small schizonts and few large
450 schizonts versus hepatocyte donors supporting a homogenous distribution of schizont sizes.
451 Comparing the net production of merozoites would be interesting to determine if the two
452 different strategies results in different parasite loads. Similarly, comparing the individual cell
453 metabolic activities of these two types of donor would help our understanding of the factors
454 driving schizont development.

455 In conclusion, elegant studies have shown the first relapses in life are genetically homologous
456 and that the parasites causing relapses in a vivax malaria patient were likely caused by
457 hypnozoites from meiotic sibling sporozoites from the oocyst phase of the lifecycle [14, 44].
458 These studies suggest genetic crosses could be used to further investigate the determinates of
459 sporozoite fating under controlled laboratory conditions. Such studies would be remarkably
460 informative if methods are ever established for *in vitro* propagation and experimental
461 transmission of *P. vivax* strains. In lieu of such an experimental system, *P. vivax* strains with
462 distinct relapse phenotypes can be propagated and transmitted from experimental infections of
463 nonhuman primates [reviewed in 45], or perhaps humanized mice [46]. These systems would
464 allow interrogation of *P. vivax* sporozoite fating with either wild-type or transgenic parasites
465 strains and do so with experimental replication with parasites of the same genetic background.

466 This report utilizes a well-controlled experimental design to identify and measure the relative
467 effect of factors influencing sporozoite invasion and development in a hepatocyte culture system
468 and, having used patient isolates to generate sporozoites, serves as a natural reference point as
469 investigators focus on understanding hypnozoite biology using these alternative model systems.

470

471 **Acknowledgments**

472 We thank the patients of Mondulkiri Province, Cambodia, for participating in this study. High
473 content imaging data was obtain in the Biomedical Microscopy Core at the University of Georgia,
474 supported by the Georgia Research Alliance.

475 **Author contributions**

476 Conceptualization: A.V., J.P., S.M.; Data curation, formal analysis, visualization: A. V.; Funding
477 Acquisition, Project Administration and Resources : A.V., B. W., S. M., D. K.; Investigation: J.P.,
478 C.C., A.V., S.M.; Writing of original draft and preparation: A.V. and S.M. All co-authors reviewed,
479 edited and approved the manuscript.

480 **Data availability**

481 All data files will be available from the Dryad database.

482

483 **References**

484 1. Wolrd Health Organization. World Malaria Report. 2021.

485 2. MacDonald G. The epidemiology and control of malaria. London: Oxford University

486 Press; 1957.

487 3. World HO. WHO Manual on Practical Entomology in Malaria, Part II. Geneva,

488 Switzerland: 1975.

489 4. Thomas S, Ravishankaran S, Justin N, Asokan A, Kalsingh TMJ, Mathai MT, et al.

490 Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic

491 incubation period of *Plasmodium vivax* and *Plasmodium falciparum*: a study from a malaria-

492 endemic urban setting, Chennai in India. *Malar J*. 2018;17:201. Epub 2018/05/18. PubMed

493 PMID: 29769075; PubMed Central PMCID: Pmc5956829.

494 5. Bousema T, Drakeley C. Epidemiology and infectivity of *Plasmodium falciparum* and

495 *Plasmodium vivax* gametocytes in relation to malaria control and elimination. *Clin Microbiol*

496 Rev. 2011;24:377-410. PubMed PMID: 21482730; PubMed Central PMCID: PMC3122489.

497 6. White NJ. Determinants of relapse periodicity in *Plasmodium vivax* malaria. *Malar J*.

498 2011;10:297.

499 7. Baird JK, Battle KE, Howes RE. Primaquine ineligibility in anti-relapse therapy of

500 *Plasmodium vivax* malaria: the problem of G6PD deficiency and cytochrome P-450 2D6

501 polymorphisms. *Malar J*. 2018;17:42.

502 8. Mueller I, Galinski MR, Baird JK, Carlton JM, Kocher DK, Alonso PL, et al. Key gaps in the

503 knowledge of *Plasmodium vivax*, a neglected human malaria parasite. *The Lancet Infectious*

504 diseases. 2009;9:555-66. Epub 2009/08/22. PubMed PMID: 19695492.

505 9. Hulden L, Hulden L. Activation of the hypnozoite: a part of *Plasmodium vivax* life cycle
506 and survival. *Malar J.* 2011;10:90.

507 10. White MT, Karl S, Battle KE, Hay SI, Mueller I, Ghani AC. Modelling the contribution of
508 the hypnozoite reservoir to *Plasmodium vivax* transmission. *eLife.* 2014;3:e04692.

509 11. Dembele L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CH, et al. Persistence
510 and activation of malaria hypnozoites in long-term primary hepatocyte cultures. *Nature Med.*
511 2014;20:307-12. Epub 2014/02/11. PubMed PMID: 24509527.

512 12. Commons RJ, Simpson JA, Thriemer K, Hossain MS, Douglas NM, Humphreys GS, et al.
513 Risk of *Plasmodium vivax* parasitaemia after *Plasmodium falciparum* infection: a systematic
514 review and meta-analysis. *Lancet Infect Dis.* 2019;19:91-101. PubMed PMID: 30587297;
515 PubMed Central PMCID: PMC6300482.

516 13. Shanks GD, White NJ. The activation of vivax malaria hypnozoites by infectious diseases.
517 *Lancet Infect Dis.* 2013;13:900-6. Epub 20130626. PubMed PMID: 23809889.

518 14. Bright AT, Manary MJ, Tewhey R, Arango EM, Wang T, Schork NJ, et al. A high resolution
519 case study of a patient with recurrent *Plasmodium vivax* infections shows that relapses were
520 caused by meiotic siblings. *PLoS neglect trop dis.* 2014;8:e2882. Epub 20140605. PubMed
521 PMID: 24901334; PubMed Central PMCID: PMC4046966.

522 15. Mikolajczak SA, Vaughan AM, Kangwanrangsang N, Roobsoong W, Fishbaugher M,
523 Yimamnuaychok N, et al. *Plasmodium vivax* liver stage development and hypnozoite
524 persistence in human liver-chimeric mice. *Cell host microb.* 2015;17:526-35. Epub 2015/03/25.
525 PubMed PMID: 25800544; PubMed Central PMCID: Pmc5299596.

526 16. Dundas K, Shears MJ, Sinnis P, Wright GJ. Important Extracellular Interactions between
527 *Plasmodium* Sporozoites and Host Cells Required for Infection. *Trends Parasitol.* 2019;35:129-
528 39.

529 17. Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, et al. *Plasmodium* P36
530 determines host cell receptor usage during sporozoite invasion. *eLife.* 2017;6:e25903.

531 18. Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, et al. A
532 comprehensive model for assessment of liver stage therapies targeting *Plasmodium vivax* and
533 *Plasmodium falciparum*. *Nat Commun.* 2018;9:1837. Epub 2018/05/11. PubMed PMID:
534 29743474; PubMed Central PMCID: Pmc5943321.

535 19. Maher SP, Vantaux A, Cooper CA, Chasen NM, Cheng WT, Joyner CJ, et al. A Phenotypic
536 Screen for the Liver Stages of *Plasmodium vivax*. *Bio-protocol.* 2021;11:e4253.

537 20. Kaushansky A, Metzger PG, Douglass AN, Mikolajczak SA, Lakshmanan V, Kain HS, et al.
538 Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated
539 apoptosis. *Cell Death Dis.* 2013;4:e762-e.

540 21. Kaushansky A, Kappe SH. Selection and refinement: the malaria parasite's infection and
541 exploitation of host hepatocytes. *Curr Opin Microbiol.* 2015;26:71-8. Epub 2015/06/24.
542 PubMed PMID: 26102161; PubMed Central PMCID: Pmc4577369.

543 22. Yang ASP, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert G-JA, Graumans
544 W, de Wilt JHW, et al. Zonal human hepatocytes are differentially permissive to *Plasmodium*
545 *falciparum* malaria parasites. *EMBO J.* 2021;n/a:e106583.

546 23. Ruberto AA, Maher SP, Vantaux A, Joyner CJ, Bourke C, Balan B, et al. Single-cell RNA
547 profiling of *Plasmodium vivax* liver stages reveals parasite- and host- specific transcriptomic
548 signatures and drug targets. *bioRxiv*. 2022:2022.02.01.478648.

549 24. Bruce MC, Day KP. Cross-species regulation of malaria parasitaemia in the human host.
550 *Curr Opin Microbiol*. 2002;5:431-7.

551 25. Read AF, Taylor LH. The ecology of genetically diverse infections. *Science*.
552 2001;292:1099-102. PubMed PMID: WOS:000168609200041.

553 26. Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF. The role of immune-
554 mediated apparent competition in genetically diverse malaria infections. *Am Nat*. 2006;168:41-
555 53. Epub 2006/07/29. PubMed PMID: 16874614.

556 27. Metcalf CJ, Graham AL, Huijben S, Barclay VC, Long GH, Grenfell BT, et al. Partitioning
557 regulatory mechanisms of within-host malaria dynamics using the effective propagation
558 number. *Science*. 2011;333:984-8. PubMed PMID: WOS:000294000400047.

559 28. Taylor LH, Walliker D, Read AF. Mixed-genotype infections of the rodent malaria
560 *Plasmodium chabaudi* are more infectious to mosquitoes than single-genotype infections.
561 *Parasitology*. 1997;115:121-32.

562 29. Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria
563 parasites. *Nature*. 2008;453:609-U1. PubMed PMID: WOS:000256185200034.

564 30. Schafer C, Dambrauskas N, Steel RW, Carbonetti S, Chuenchob V, Flannery EL, et al. A
565 recombinant antibody against *Plasmodium vivax* UIS4 for distinguishing replicating from
566 dormant liver stages. *Malar J*. 2018;17:370. Epub 2018/10/17. PubMed PMID: 30333026;
567 PubMed Central PMCID: PMC6192329.

568 31. Crawley MJ. *The R book*. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons Ltd; 2007.

570 32. R Core Team. *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing; 2020.

572 33. Schäfer C, Zanghi G, Vaughan AM, Kappe SH. *Plasmodium vivax* latent liver stage infection and relapse: biological insights and new experimental tools. *Annu Rev Microbiol*. 574 2021;75:87-106.

575 34. Ruberto AA, Bourke C, Vantaux A, Maher SP, Jex A, Witkowski B, et al. Single-cell RNA 576 sequencing of *Plasmodium vivax* sporozoites reveals stage- and species-specific transcriptomic 577 signatures. *bioRxiv*. 2021:2021.11.24.469176.

578 35. Niklaus L, Agop-Nersesian C, Schmuckli-Maurer J, Wacker R, Grünig V, Heussler VT. 579 Deciphering host lysosome-mediated elimination of *Plasmodium berghei* liver stage parasites. 580 *Sci rep*. 2019;9:7967. Epub 20190528. PubMed PMID: 31138850; PubMed Central PMCID: 581 PMC6538699.

582 36. Sinnis P, Coppi A. A long and winding road: the *Plasmodium* sporozoite's journey in the 583 mammalian host. *Parasitol Int*. 2007;56:171-8. PubMed PMID: 17513164; PubMed Central 584 PMCID: PMC1995443.

585 37. Austin LS, Kaushansky A, Kappe SH. Susceptibility to *Plasmodium* liver stage infection is 586 altered by hepatocyte ploidy. *Cell Microbiol*. 2014;16:784-95. PubMed PMID: 24612025; 587 PubMed Central PMCID: PMC4008336.

588 38. Gural N, Mancio-Silva L, Miller AB, Galstian A, Butty VL, Levine SS, et al. In Vitro Culture,
589 Drug Sensitivity, and Transcriptome of *Plasmodium Vivax* Hypnozoites. *Cell Host Microb.*
590 2018;23:395-406.e4. Epub 2018/02/22. PubMed PMID: 29478773.

591 39. Postfai D, Maher SP, Roesch C, Vantaux A, Sylvester K, Péneau J, et al. *Plasmodium vivax*
592 Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. *Cell Chem*
593 *Biol.* 2020;27:719-27.e5. Epub 2020/04/23. PubMed PMID: 32330444; PubMed Central PMCID:
594 PMC7303948.

595 40. Gupta DK, Dembele L, Voorberg-van der Wel A, Roma G, Yip A, Chuenchob V, et al. The
596 *Plasmodium* liver-specific protein 2 (LISP2) is an early marker of liver stage development. *eLife.*
597 2019;8. Epub 20190516. PubMed PMID: 31094679; PubMed Central PMCID: PMC6542585.

598 41. Botnar A, Lawrence G, Maher SP, Vantaux A, Witkowski B, Shiao JC, et al. Alkyne
599 modified purines for assessment of activation of *Plasmodium vivax* hypnozoites and growth of
600 pre-erythrocytic and erythrocytic stages in *Plasmodium* spp. *Int J Parasitol.*
601 2022;10.1016/j.ijpara.2022.03.003.

602 42. Hulden L, Heliövaara K. Natural relapses in vivax malaria induced by *Anopheles*
603 mosquitoes. *Malar J.* 2008;7:64. Epub 20080422. PubMed PMID: 18430203; PubMed Central
604 PMCID: PMC2374798.

605 43. Ruberto AA, Bourke C, Merienne N, Obadia T, Amino R, Mueller I. Single-cell RNA
606 sequencing reveals developmental heterogeneity among *Plasmodium berghei* sporozoites. *Sci*
607 *rep.* 2021;11:4127.

608 44. Imwong M, Boel ME, Pagornrat W, Pimanpanarak M, McGready R, Day NP, et al. The
609 first *Plasmodium vivax* relapses of life are usually genetically homologous. *J Infect Dis.*

610 2012;205:680-3. Epub 20111222. PubMed PMID: 22194628; PubMed Central PMCID:
611 PMC3266132.

612 45. Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model
613 systems are key to understanding *Plasmodium vivax* liver-stage biology, hypnozoites, and
614 relapses. *Frontiers microbiol.* 2015;6:145. Epub 20150326. PubMed PMID: 25859242; PubMed
615 Central PMCID: PMC4374475.

616 46. Schäfer C, Roobsoong W, Kangwanrangs N, Bardelli M, Rawlinson TA, Dambrauskas N,
617 et al. A Humanized Mouse Model for *Plasmodium vivax* to Test Interventions that Block Liver
618 Stage to Blood Stage Transition and Blood Stage Infection. *iScience.* 2020;23:101381. Epub
619 20200718. PubMed PMID: 32739836; PubMed Central PMCID: PMC7399188.

620

621

622

623 **Supporting Information**

624 **S1 Fig. Plate map of *P. vivax* experiment 1.**

625 **S2 Fig. Proportion of schizonts in each size class for each PHH lot, *P. vivax* case, and**

626 **sporozoite inoculum size.**

627 **S3 Fig. Plot of the averaged schizont size by the number of parasites per well.**