

1 **Microglial STAT1-sufficiency is required for resistance to toxoplasmic encephalitis**

2

3 Cowan, M.N.¹, Kovacs, M.A.¹, Sethi, I.¹, Babcock, I.W.¹, Still, K.¹, Batista, S.J.¹, O'Brien, C.A.¹,

4 Thompson, J.A¹., Sibley, L.A.¹, Labuzan, S. A.¹, and Harris, T.H.¹

5

6 *¹Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia,*

7 *Charlottesville, VA, United States*

8

9 Corresponding Author:

10 Tajie H. Harris

11 Email address: tajieharris@virginia.edu

12

13

14

15

16

17

18 **Abstract**
19

20 *Toxoplasma gondii* is a ubiquitous intracellular protozoan parasite that establishes a life-long
21 chronic infection largely restricted to the central nervous system (CNS). Constant immune
22 pressure, notably IFN- γ -STAT1 signaling, is required for preventing fatal pathology during *T.*
23 *gondii* infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident
24 immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and
25 susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a
26 microglia-specific genetic labeling and targeting system that discriminates microglia from blood-
27 derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous *in*
28 *vitro* reports, microglia do not express inducible nitric-oxide synthase (iNOS) during *T. gondii*
29 infection *in vivo*. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both
30 (i) a transcriptional shift from homeostatic to “disease-associated microglia” (DAM) phenotype
31 conserved across several neuroinflammatory models, including *T. gondii* infection, and (ii) the
32 expression of anti-parasitic cytosolic molecules that are required for eliminating *T. gondii* in a cell-
33 intrinsic manner. Further, genetic deletion of *Stat1* from microglia during *T. gondii* challenge leads
34 to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by
35 brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in
36 the overrepresentation of the highly replicative, lytic tachyzoite form of *T. gondii*, relative to its
37 quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an
38 overall protective role of CNS-resident microglia against *T. gondii* infection, illuminating (i) general
39 mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in
40 regulating a microglial activation phenotype observed across diverse neuroinflammatory disease
41 states.

42

43 **Introduction**

44 *Toxoplasma gondii* is a ubiquitous protozoan parasite that traffics to the brain, where it establishes
45 a chronic, life-long infection in both humans and mice. Infection with *T. gondii* occurs in two
46 phases: (i) an acute infection wherein parasite disseminates widely throughout host tissues and
47 (ii) a subsequent chronic infection largely restricted to the immune-privileged CNS [reviewed in
48 ref. 1]. Protective immunity during both the acute and chronic phases of *T. gondii* infection
49 converge on cellular responses to the pro-inflammatory cytokine, interferon (IFN)- γ , and its
50 downstream signaling through the transcription factor signal transducer and activator of
51 transcription 1 (STAT1) [2,3]. *Stat1*^{-/-} mice phenocopy *Ifng*^{-/-} mice, succumbing to *T. gondii*
52 infection during the acute stage of infection [4]. Similarly, antibody blockade of IFN- γ during
53 chronic *T. gondii* infection leads to animal mortality, illustrating that interferon signaling is critical
54 for immune resistance during both stages of infection [5].

55

56 During both health and disease, microglia, the tissue-resident macrophages of the central nervous
57 system (CNS), play diverse roles in maintaining tissue homeostasis and potentiating inflammation
58 [reviewed in ref. 6]. A large pool of research has focused on studying microglia during
59 neurodevelopmental and neurodegenerative models, yet their functional roles during CNS
60 infection *in vivo* have been less explored. Part of this gap in understanding stems from recent
61 findings that yolk sac-derived microglia are ontogenically, transcriptionally, and functionally
62 distinct from the bone-marrow derived macrophage population that infiltrates the immune-
63 privileged brain during neuroinflammatory states, including CNS infection [7–11]. Microglia have
64 further been shown to rapidly de-differentiate and adopt an inflammatory signature when removed
65 from the brain's unique tissue microenvironment, making *in vitro* approaches inadequate for
66 recapitulating microglial physiology *in vivo* [12,13].

67

68 Several studies utilizing pharmacological depletion of microglia by targeting CSF1R during viral
69 CNS infections have collectively revealed that microglia provide protection in controlling viral
70 burden and against host mortality [14–19]. However, CSF1R antagonism alone also depletes
71 macrophages systemically, with multiple studies also pointing to impaired maturation and function
72 of myeloid populations in circulation and lymphoid organs [17,20,21]. CSF1R antagonism has
73 also been reported to elevate baseline levels of pro-inflammatory cytokines in the brains of treated
74 mice [22]. These local and systemic effects thus serve as confounding variables for cell type-
75 specific functional interpretations.

76

77 Recently, our group utilized a tamoxifen-inducible cre recombinase system commonly used in
78 neuroinflammatory mouse models to label and assay microglia independently of bone marrow-
79 derived cells [11]. These experiments revealed that microglial but not peripheral macrophage-
80 derived IL-1 α is required for brain parasite burden control. We have extended this experimental
81 paradigm to investigate how the microglial response to IFN- γ impacts neuro-immunity by
82 genetically deleting *Stat1* from this cell type. Given that (i) microglia are the primary hematopoietic
83 cell population present in the steady-state brain, and (ii) IFN- γ -STAT1 signaling is essential for
84 anti-parasitic functions across a wide array of cell types, we hypothesized that microglia serve as
85 the brain's first responders in restricting early CNS infection with *T. gondii* via STAT1-mediated
86 signaling.

87

88 Here, we report that despite efficient parasite clearance from peripheral tissues during the acute
89 stage of *T. gondii* infection, mice with microglial-specific *Stat1* deletion succumb to severe
90 toxoplasmic encephalitis following uncontrolled parasite replication within the brain. We also find
91 that, despite this severe pathology observed with microglial genetic targeting, the brain-infiltrating
92 immune compartment displays a robust anti-parasitic activation profile. Our studies thus implicate
93 cell-intrinsic roles for microglia in controlling CNS infection with *T. gondii* and highlight an inability

94 for the peripheral immune system to compensate for STAT1 deficiency in the microglial
95 compartment.

96

97 **Results**

98 ***Microglial activation and recruitment to *T. gondii* foci within the brain.*** Previous studies have
99 revealed that myeloid cell recruitment from the blood to the *T. gondii*-infected brain are required
100 for preventing fatal toxoplasmic encephalitis [23]. Because microglia and monocyte-derived
101 macrophages are difficult to discriminate via immunohistochemistry, which offers spatial
102 resolution of the infected brain, we generated CX3CR1^{CreERT2/+} x ROSA26^{AI6/AI6} (WT) mice to
103 specifically fluorescently label microglia with ZsGreen and discriminate them from monocyte-
104 derived macrophages in the inflamed brain parenchyma [24] (**Fig. 1A**). We opted to use a genetic
105 *in vivo* approach throughout our studies due to multiple studies characterizing rapid microglial de-
106 differentiation and increased activation when removed from the CNS and analyzed *in vitro* [13,25].
107 Immunohistochemical analyses illustrated that following intraperitoneal challenge and
108 progression to chronic *T. gondii* infection, microglia attain a classic “amoeboid” morphology
109 throughout the brain, typical of activation during neuroinflammatory states (**Fig. 1B-C**). We further
110 observed disrupted microglial spatial tiling and increased microglial recruitment to foci of parasite
111 growth (**Fig. 1D-F**). Our fluorescent labeling approach allowed for detection and discrimination of
112 resident microglia from infiltrating macrophages during CNS infection by both confocal
113 microscopy and flow cytometry, permitting the interrogation of microglial functional roles during
114 *T. gondii* challenge (**Fig. 1B-F, Supplementary Fig. 1A-D**).

115

116 In order to identify transcriptional programs activated specifically by microglia during *T. gondii*
117 challenge, we FACS-sorted and performed bulk RNA-sequencing on microglia isolated from naïve
118 and chronically-infected mice using our ZsGreen fluorescent reporter. Differential gene
119 expression analysis revealed an enriched IFN-γ response signature in microglia purified from

120 infected, relative to naïve mice (**Fig. 1G-H**). We identified 2,889 upregulated genes and 2,983
121 downregulated genes in microglia that were significantly differentially expressed during *T. gondii*
122 challenge, relative to uninfected controls. Interestingly, we observed that during infection,
123 microglia displayed a transcriptional activation state suggestive of a disease-associated microglia
124 (DAM) phenotype, which is commonly associated with neurodegeneration and typified by the
125 downregulation of microglial homeostatic genes (including *P2ry12*, *P2ry13*, *Hexb*, *Tmem119*, and
126 *Fcrls*) and concomitant upregulation of microglial disease-associated markers (including *Itgax*,
127 *Apoe*, *Axl*, *Clec7a*) [26,27] (**Fig. 1G**). This phenotype emerged when we compared our list of
128 genes differentially expressed by wild-type microglia isolated from naïve and infected mice
129 against a core list of common genes that are differentially expressed across multiple
130 neurodegenerative conditions, including mouse models for Alzheimer's Disease, multiple
131 sclerosis, amyotrophic lateral sclerosis, and normal aging [28]. As observed in neurodegeneration
132 models [28], we observed that during *T. gondii* challenge, microglia downregulate homeostatic
133 genes (81% of reported genes) and upregulate DAM genes (71% of reported genes). These data
134 illustrate strong concordance between microglial transcriptional state in *T. gondii* infection and the
135 classical DAM phenotype observed in neurodegeneration (**Supplemental Fig. 2A-B**). Given that
136 IFN- γ -STAT1 signaling serves as a dominant pathway driving immune activation and host
137 defense during intracellular parasitic infection [29–32], we focused our efforts on evaluating (i)
138 how microglial *Stat1* deletion impacts host susceptibility to *T. gondii*, (ii) the systems-level effects
139 of this deletion during *T. gondii* challenge, and (iii) a potential role for STAT1 signaling in regulating
140 DAM activation during infection.

141

142 ***Mice with STAT1-deficient microglia succumb to fatal toxoplasmic encephalitis.***

143 Myeloid cells are particularly potent responders to IFN- γ through the production of reactive
144 nitrogen species [33,34] and are capable of serving as antigen-presenting cells during infections
145 [35]. To determine if microglial function during *T. gondii* infection is a similarly essential immune

146 program for defense, we used a *Cx3cr1*-driven tamoxifen (TAM)-inducible system to genetically
147 delete STAT1 from brain-resident microglia, generating MG^{STAT1Δ} mice (**Fig. 2A**).

148

149 Excision of STAT1 from microglia in MG^{STAT1Δ} mice was assessed using multiple approaches,
150 including: (i) ZsGreen reporter expression, (ii) direct quantification of *Stat1* relative mRNA
151 expression, and (iii) quantification of STAT1 functional readouts. On average, 99.5% of
152 CD45^{int}CD11b+ microglia expressed ZsGreen across TAM-treated animals harboring the
153 microglia reporter construct (**Supplemental Fig. 3A-C**). We also observed a 70-85% knockdown
154 in *Stat1* mRNA expression in microglia isolated from naïve tamoxifen-treated (+TAM) compared
155 to corn oil vehicle-treated (No TAM) littermate controls by RT-qPCR (**Supplementary Fig. 3D**).
156 Because STAT1 is a key transcriptional regulator of major histocompatibility proteins [36-38],
157 MHC II expression served as a functional readout of microglial STAT1 excision. We observed that
158 while 98% of WT microglia expressed MHC II at 12 days post-infection (DPI), 18% of microglia
159 from MG^{STAT1Δ} mice were MHC II+ at this time point, allowing us to use MHC II expression in
160 microglia as a reliable readout for STAT1 excision across experiments (**Fig. 2B, Supplemental**
161 **Fig. 1E-F**). In line with previous literature [24,39], these data collectively illustrate that the *Cx3cr1*-
162 driven tamoxifen-inducible system is efficient in targeting brain-resident myeloid cells during CNS
163 infection.

164

165 In comparison to WT reporter controls, which display robust resistance to *T. gondii*, we found that
166 MG^{STAT1Δ} mice succumb to *T. gondii* infection, starting at 17 DPI (**Fig. 2C**). MG^{STAT1Δ} mice also
167 display increased brain parasite burden at 12 and 15 DPI, despite equal brain parasite burden
168 when parasite invades the brain around 8 DPI (**Fig 2D-F**). Quantitative PCR of *T. gondii* genomic
169 DNA indicated that our observed increase in parasite burden was largely restricted to the brain,
170 as parasite burden in lung, liver, and heart tissue revealed no difference in parasite burden at 8
171 DPI, around the peak of the acute peripheral infection (**Supplementary Fig. 4A-C**). Furthermore,

172 lung, liver, and heart parasite burden decreased substantially from 8 to 15 DPI, indicating robust
173 peripheral clearance of parasite despite increased parasite burden in the CNS (**Supplementary**
174 **Fig. 4D-F**). Histological examination of hematoxylin and eosin-stained brain slices prepared from
175 mice at 15 DPI additionally revealed widespread liquefactive necrosis in MG^{STAT1 Δ} mice treated
176 with tamoxifen (but not vehicle-treated littermate controls), a hallmark of parasite replication-
177 induced tissue destruction (**Fig. 2G-H**).

178
179 Given the severe pathology seen in *T. gondii*-infected MG^{STAT1 Δ} mice relative to controls, we
180 analyzed several additional parameters to examine the specificity of our experimental model. We
181 analyzed ZsGreen expression in circulating immune cells in both WT and MG^{STAT1 Δ} mice by flow
182 cytometry to identify potential off-target STAT1 deletion in brain-infiltrating immune cells. In
183 contrast to >99% ZsGreen labeling efficiency of brain-resident microglia (**Supplemental Fig. 3C**),
184 we observed that ~1% of total circulating immune cells were ZsGreen+ at 12 DPI, and we
185 observed low frequencies of ZsGreen expression across myeloid and T cell populations
186 (**Supplemental Fig. 3E**). No differences were observed in T cell or myeloid cell counts in
187 circulation at this time point (**Supplemental Fig. 5A-E**). As an additional parameter for evaluating
188 the CNS tissue-specificity of our model, we analyzed the peritoneal immune response during the
189 acute phase of infection (8 DPI). We observed no changes in the number of myeloid cells, T cells,
190 or their iNOS and interferon- γ production at this time point, indicating that functionally equivalent
191 protective immune responses are able to effectively form at the peripheral site of inoculation
192 (**Supplementary Fig. 5F-J**). To assess the potential for differences in microglial activation due to
193 genetic deletion of STAT1 prior to *T. gondii* challenge, we performed morphometric Sholl analysis
194 of microglia in naïve WT and MG^{STAT1 Δ} mice [40]. We found no statistically significant differences
195 in microglial morphology, suggesting comparable baseline microglial activation (**Supplementary**
196 **Fig. 6A-C**). These findings collectively highlight that STAT1-deletion from a single cell type, brain-

197 resident microglia, results in a CNS-specific loss of parasite restriction following infection with *T.*
198 *gondii*.

199

200 **Brain-infiltrating myeloid cells, but not brain-resident microglia, express iNOS during *T.***
201 ***gondii* challenge.**

202 Nitric oxide is a potent reactive nitrogen molecular species thought to restrict parasite replication
203 by depleting host cell arginine [41] and targeting parasite proteases [42]. Expression of inducible
204 nitric oxide synthase (iNOS) is the primary mechanism by which cells are capable of producing
205 nitric oxide, and the expression of this synthase is regulated by IFN- γ -STAT1 signaling [43].
206 Previous studies have implicated microglia in restricting *T. gondii* replication via nitric oxide
207 production [23,44]. Further, iNOS-deficient mice display pathology during chronic CNS but not
208 acute peripheral infection, typified by a loss of parasite restriction and necrotizing lesions
209 throughout the brain – suggesting that microglial-derived nitric oxide serves as a specialized anti-
210 toxoplasmic resistance mechanism specific to brain tissue [45]. However, flow cytometric
211 quantification of iNOS+ cells with the use of our microglia-specific fluorescent reporter indicated
212 that brain-resident microglia fail to express iNOS *in vivo*, regardless of STAT1-sufficiency (Fig.
213 **3A, E, I**). Instead, we found that > 95% of iNOS expression in the brain is accounted for by the
214 brain-infiltrating myeloid compartment, based on CD45^{hi} CD11b⁺ Ly6C⁺ expression (Fig. 3C,
215 **Supplementary Fig. 1G-I**). These findings underscore that microglia are not producers of this
216 STAT1-driven mechanism despite a shared tissue micro-environment that triggers potent iNOS
217 expression in other myeloid cells. In addition to the absence of microglial iNOS expression, we
218 quantified and detected no significant changes in microglial number from the brains of WT and
219 MG^{STAT1 Δ} mice at 12 or 15 DPI across several experiments (Fig. 3D, H).

220

221 ***Microglial STAT1 deletion does not impair the global CNS immune response to *T. gondii*.***

222 To examine the potential for microglial STAT1 deletion to impair the development of anti-parasitic
223 effector mechanisms in the brain-infiltrating immune compartment of MG^{STAT1 Δ} mice, we
224 immunophenotyped both infiltrating-myeloid and T cell populations. Previous studies have
225 indicated that both monocyte-derived cells and T cells must traffic into the CNS to prevent fatal
226 toxoplasmic encephalitis [5,23]. This concept is clearly illustrated by studies revealing that
227 antibody blockade of CD4+ and CD8+ T cells or monocytic CCR2 results in an inability for these
228 protective immune populations to enter the brain and a subsequent loss of parasite control and
229 animal mortality during chronic CNS infection with *T. gondii* [5,23].

230

231 *Brain-infiltrating myeloid cells.*

232 At 12 DPI, we observed no difference in the number of brain-infiltrating myeloid cells based on
233 CD45^{hi} CD11b⁺ Ly6C⁺ expression, indicating that circulating myeloid cells are able to effectively
234 traffic to the *T. gondii*-infected brain despite microglial STAT1-deletion (**Fig. 3F**). We further found
235 a statistically significant increase in the iNOS expression of these myeloid cells, suggestive of
236 increased, rather than decreased, activation and effector functions of the infiltrating myeloid
237 compartment in MG^{STAT1 Δ} mice relative to WT controls (**Fig. 3G**). At 15 DPI, there was a clear
238 increase in brain-infiltrating myeloid cell recruitment to the brain, with a further potentiation in their
239 ability to express the anti-parasitic effector protein, iNOS (**Fig. 3J-K**).

240

241 *Brain-infiltrating CD4+ and CD8+ T cell activation.*

242 In contrast to most peripheral macrophage populations, only a small subset (< 3%) of brain-
243 resident microglia express the professional antigen presentation molecule, MHC II, at baseline
244 [46]. Because STAT1 is a primary transcriptional regulator of MHC II expression [36–38], we
245 investigated MHC II expression on microglia, along with the expression of additional antigen
246 presentation-related molecules (MHC I, CD80, and CD86) that are required for antigen-specific T
247 cell activation [36,37]. In naïve mice, we find that few microglia express any of these antigen

248 presentation molecules (**Supplementary Fig. 7A**). During *T. gondii* infection, however, the
249 expression of MHC I, MHC II, and CD86 was upregulated by microglia in a STAT1-dependent
250 manner (**Supplementary Fig. 7A-D**). Despite the STAT1-dependency of these antigen
251 presentation molecules, we quantified no impairment in T cell activation at multiple time-points
252 during infection in MG^{STAT1 Δ} mice. At 12 DPI, MG^{STAT1 Δ} mice displayed no statistically significant
253 changes in CD3⁺CD4⁺ or CD3⁺CD8⁺ T cell numbers within the brain, and they showed a two-fold
254 increased frequency of IFN- γ + expression of both T cell sub-types by flow cytometry, relative to
255 WT controls (**Fig. 4A-D, Supplementary Fig. 1J-M**). By 15 DPI, MG^{STAT1 Δ} mice had a three- and
256 two-fold increase in CD3⁺CD4⁺ and CD3⁺CD8⁺ T cell numbers in the brain, respectively, with an
257 increased frequency of CD4+ T cell IFN- γ production (**Fig. 4E-H**). Collectively, analyses of the T
258 cell presence and functional responses in MG^{STAT1 Δ} mice indicate increased, rather than
259 decreased, T cell activation. Further, these results do not suggest that a loss of microglial antigen
260 presentation machinery underpinned the inability to restrict parasite burden in MG^{STAT1 Δ} brains.

261

262 *Whole brain RNA analysis.*

263 We performed RT-qPCR analysis of mRNA isolated from homogenized brain tissue to examine
264 the expression of a larger panel of immune mediators of resistance against *T. gondii*. In addition
265 to increased *Nos2* (iNOS) gene expression at the tissue-level, MG^{STAT1 Δ} mice showed an overall
266 equivalent (12 DPI) or increased (15 DPI) expression of several chemokines (*Ccl2*, *Ccl5*, *Cxcl9*,
267 *Cxcl10*), pro-inflammatory cytokines (*Ifng*, *Il6*, *Tnfa*), and adhesion molecules (*Icam1*, *Vcam1*)
268 identified in previous literature as conferring resistance against *T. gondii* infection [5,11,47–52]
269 (**Supplementary Fig. 8A-B**). Together, these data indicate that a robust set of anti-parasitic
270 immune mediators are present at the tissue-level, and suggest that neither the brain-infiltrating
271 immune compartment nor other brain-resident cell types are able to compensate for a STAT1
272 signaling defect within the brain's microglial compartment. We thus focused further efforts on
273 identifying microglial-intrinsic mechanisms of *T. gondii* restriction.

274

275 ***STAT1-deficient microglia display transcriptionally impaired cell-intrinsic immune***
276 ***activation and effector capacity.***

277 In order to attain an unbiased transcriptional overview of how STAT1 regulates microglial immune
278 effector capacity, we FACS-sorted and performed RNA-sequencing on brain-resident microglia
279 from *T. gondii*-infected WT and MG^{STAT1 Δ} mice. (Fig. 5A-F). Gene ontology (GO) analysis for
280 biological pathways suggested that relative to WT microglia, STAT1-deficient microglia failed to
281 display the transcriptional signatures of immune defense responses, with GO terms including
282 “response to interferon” and “defense response to protozoan” (Fig. 5A). Paired differential gene
283 expression analysis indicated that 1,261 genes were significantly enriched in WT microglia, and
284 831 genes were significantly enriched in STAT1-null microglia (Fig. 5B). Two key themes
285 emerged from our differential gene expression analysis of microglia isolated from *T. gondii*-
286 infected brains: (i) STAT1-null microglia display an impaired ability to acquire a disease-
287 associated microglia (DAM) phenotype observed across several neuroinflammatory disease
288 states [26,27], and (ii) these cells further fail to express key cytosolic genes required for killing
289 intracellular parasite in a cell-intrinsic manner.

290

291 *STAT1-deficient microglia fail to acquire a cell activation phenotype conserved across diverse*
292 *neuroinflammatory states.*

293 Given our observations that microglia in the *T. gondii*-infected brain display strong transcriptional
294 overlap with DAMs observed during neurodegeneration, we sought to determine whether STAT1
295 signaling regulated the DAM phenotype (Fig. 1G, Supplementary Fig. 2). Similarly to our
296 transcriptomic analysis of WT naïve vs. infected microglia, we compared our WT vs MG^{STAT1 Δ}
297 differential gene expression dataset to a dataset of DAM genes shared across several
298 neurodegenerative disease states [26]. Because the DAM phenotype is characterized by both the
299 downregulation of microglial homeostatic genes and the upregulation of unique disease-

300 associated markers during neuroinflammation, we explored both features of the transcriptional
301 signature. We observed during *T. gondii* challenge that relative to wildtype microglia, STAT1-
302 deficient microglia: (i) failed to downregulate 23.5% of all microglial “homeostatic genes”
303 (including *Cx3cr1*, *Tgfb1*, and *Fcrls*) and (ii) failed to upregulate 32% of all DAM-specific genes
304 (including *Itgax*, *Axl*, *Gpnmb*, and *Cybb*) reported in *Krasemann et al. 2017 (Figure 5C-D)*. In
305 addition to highlighting that STAT1-deficient microglia retain a more homeostatic and less
306 inflammatory transcriptional signature relative to controls during *T. gondii* infection, these data
307 point to STAT1 signaling as an integral component of a shared microglial transcriptional profile
308 that is conserved across varying models of neuroinflammation.

309

310 *STAT1-deficient microglia fail to upregulate genes encoding critical anti-parasitic cytosolic*
311 *proteins.*

312 To determine specific STAT1-dependent mechanisms that could explain a functional loss of
313 parasite restriction in MG^{STAT1 Δ} mice, we performed further differential gene expression analysis.
314 We analyzed each of the genes within the Gene Ontology term, “Defense response to protozoan”
315 (GO:0042832) and found that 44% of annotated genes were expressed at significantly lower
316 levels in STAT1-null microglia (**Fig. 5E**). Amongst the most highly differentially expressed genes
317 between WT and MG^{STAT1 Δ} microglia, we observed robust STAT1-dependent expression of
318 several cytosolic anti-parasitic killing genes (**Fig. 5E-F**). These genes included immunity-related
319 GTPases (IRGs) and guanylate-binding proteins (GBPs), both families of which have been
320 implicated in cooperatively contributing to the mechanical killing and intracellular clearance of *T.*
321 *gondii* from both hematopoietic and non-hematopoietic cell types [53–57]. We identified several
322 additional IRGs (*Igtp*, *Irgm1*, *Tgtp1*, *Ifi47*) and *Gbp10* that were expressed in microglia in a STAT1-
323 dependent manner (**Fig 5F**). These data identifying the lack of large families of cell-intrinsic
324 parasite killing genes, in tandem with a lack of observable effects of microglial STAT1 deletion on
325 the global, cell-extrinsic immune response, support the hypothesis that cell-intrinsic parasite killing

326 may serve as a primary mechanism of STAT1-dependent microglial parasite restriction. In the
327 absence of this cytosolic restriction, we hypothesized that microglial STAT1-deficiency would
328 generate a replicative niche in which *T. gondii* can expand.

329

330 ***Microglial STAT1-deficiency results in a skewing of *T. gondii* toward its replicative form.***

331 Consistent with the hypothesis that microglial STAT1 deletion provides a replicative niche for the
332 parasite, we observed increased microglial co-localization with large foci of reactive *T. gondii*
333 lesions in the brains of MG^{STAT1 Δ} mice, which has been previously described as characteristic of
334 the highly-replicative and lytic tachyzoite form of *T. gondii*, rather than its semi-dormant bradyzoite
335 (cystic) form [58] (**Fig. 6A-B**). We then analyzed the prevalence and ratio of these two infectious
336 forms of the parasite in MG^{STAT1 Δ} and WT mice via RT-qPCR. Three primers were designed for *T.*
337 *gondii*-specific genes: (i) *Sag1*, a gene expressed selectively in tachyzoites (replicative form); (ii)
338 *Bag1*, expressed by slowly replicating bradyzoites (quiescent form); and (iii) *Act1*, expressed by
339 both forms of *T. gondii* [59–61]. While WT brains displayed a one-fold increase in *Bag1* to *Act1*
340 ratio relative to MG^{STAT1 Δ} brains, we observed a nearly 150-fold increase in the tachyzoite gene
341 *Sag1* normalized to *Act1* at 15 DPI in MG^{STAT1 Δ} relative to WT brains, and thus a 300-fold increase
342 in the ratio of *Sag1* relative to *Bag1* with STAT1-deficiency (**Fig. 6C-E**). These data confirm that
343 relative to WT controls, MG^{STAT1 Δ} brains are highly skewed toward a replicative and lytic form of
344 *T. gondii*. Further consistent with microglial STAT1-deletion permitting a parasite replicative niche,
345 we were able to identify microglia filled with tachyzoite rosettes via confocal microscopy in the
346 brains of MG^{STAT1 Δ} but not WT mice (**Fig. 6F-G**).

347

348 **Discussion**

349 Here, we find that abrogation of STAT1 signaling in brain-resident microglia results in a severe
350 susceptibility to CNS infection with *T. gondii*, despite robust immune effector functions in the brain-
351 infiltrating immune compartment and efficient parasite clearance in peripheral tissues –

352 highlighting a requirement for microglial-intrinsic parasite control. Importantly, we show that
353 contrary to interpretations from previous literature [44], microglia do not express iNOS during *in*
354 *vivo* *T. gondii* challenge. Instead, transcriptomic analysis suggests that a loss of STAT1-regulated
355 cytosolic killing genes, including those from the IRG and GBP superfamilies, may normally play a
356 role in preventing microglia from serving as a cellular niche in which *T. gondii* can freely replicate.
357 Consistent with this model, we observe that STAT1-deficiency in microglia results in an increased
358 brain parasite burden and a skewing of parasite towards its fast-replicating and lytic tachyzoite
359 form within the brain.

360

361 As with any study, there are caveats and limitations that must be appropriately considered in
362 interpreting the presented data. Importantly, the CX3CR1^{CreERT2} system allows for substantial
363 turnover of short-lived circulating immune cells [24,62] but is expected to additionally target other
364 tissue-resident macrophage populations [62,63]. Experiments were performed to verify effective
365 parasite clearance and immunity in peripheral tissues, but there exists a relatively small but long-
366 lived CX3CR1+ population of border-associated CNS macrophages (BAMs), located along CNS
367 interfaces [63]. We expect that tamoxifen treatment may yield STAT1-deficient BAMs, such as
368 perivascular and choroid plexus macrophages, which may be spatially positioned to encounter *T.*
369 *gondii* before it breaches into the brain parenchyma. While we did not observe increased parasite
370 burden at 8 DPI, when parasite is seeding the brain between MG^{STAT1 Δ} and WT mice, future
371 experiments are necessary to determine whether BAMs play an active role in parasite restriction,
372 and whether these roles are similar to those of microglia.

373

374 Our finding that STAT1-deficiency in microglia leads to a 300-fold increase, relative to WT
375 controls, in the replicative tachyzoite form of *T. gondii*, is well-framed within the context of a
376 previous study that examined the role of STAT1 signaling in astrocytes [64]. We observe multiple
377 similarities between our data and this study: (i) increased animal mortality, (ii) increased brain

378 parasite burden, (iii) liquefactive necrosis throughout the brain, and (iv) a loss of IRG and GBP
379 expression with concomitant susceptibility of the targeted STAT1-deficient cell type to *T. gondii*
380 parasitization. Our study dovetails with this previous publication in illustrating the essential role of
381 STAT1 signaling in both hematopoietic and non-hematopoietic cell types, and suggests that many
382 different cell types may be able to serve as replicative niches for this opportunistic pathogen in
383 the absence of STAT1. However, there are important differences observed between microglial
384 and astrocytic STAT1 deletion during *T. gondii* infection that may be informative in better
385 understanding cell type-parasite interactions.

386

387 First, the animal mortality observed in MG^{STAT1 Δ} mice in our study occurs more rapidly (~17 DPI)
388 than as reported with astrocytic STAT1-deletion (~25 DPI), and with greater penetrance,
389 indicating more severe disease pathology [64]. Second, MG^{STAT1 Δ} mice display potentiated, rather
390 than equivalent, T cell and infiltrating myeloid functional responses [64]. Third, astrocytic STAT1-
391 deletion appears to promote the bradyzoite form of *T. gondii*, whereas MG^{STAT1 Δ} mice show strong
392 bias toward the tachyzoite form of *T. gondii* [64]. Different physiological properties of these two
393 glial populations may offer insights into these key differences in phenotype. Microglia, relative to
394 astrocytes, are highly motile cells with a complex sensome that drives chemotactic responses to
395 tissue damage or disruption [65–68], as is evident in our confocal images of microglia abandoning
396 their evenly-tiled territories and clustering around *T. gondii* tachyzoites at multiple time-points,
397 regardless of STAT1-sufficiency. Rapid migration of STAT1-sufficient microglia to sites of lytic
398 tachyzoite egress may thus position these cells to serve as an immunological “cellular buffer” –
399 becoming actively infected and subsequently clearing intracellular infection via STAT1-dependent
400 cytosolic killing molecules. In the absence of STAT1 signaling, this chemotactic response may
401 contrastingly permit the parasite to be more rapidly passaged through a hospitable cell type that
402 is unable to mount a cell-intrinsic immune response, thus potentially overwhelming brain tissue.
403 Future studies will be needed to understand if the observed skewing of parasite form toward its

404 tachyzoite state reflects an inability for tachyzoites to convert to bradyzoites due to intrinsic
405 properties of microglia, or alternatively reflect an interaction of STAT1 signaling abrogation with
406 unknown biological factors of early-chronic infection (15 DPI).

407

408 Our data also provide multiple insights to a broader understanding of microglial identity and their
409 physiology across disease states. While most macrophages typically display remarkable plasticity
410 attuned to their tissue microenvironments [8,69,70], the observation that microglia do not express
411 iNOS, despite sharing an interferon-primed environment with iNOS+ infiltrating myeloid cells,
412 indicates that these two cell populations provide differential immune effector functions during *T.*
413 *gondii* infection. This differential expression of immune effector mechanisms mirrors previous
414 work from our lab showing that microglia, unlike infiltrating macrophages: (i) express low levels of
415 IL-1 β during chronic infection, and (ii) display a comparatively dampened NF- κ B signature during
416 *T. gondii* challenge [11]. In the present study, we also find that microglia acquire a
417 neurodegenerative-like DAM signature during *T. gondii* infection, and that this signature is partially
418 regulated by STAT1 signaling during parasitic infection. While caution must be exercised in
419 attributing the DAM phenotype to parasite restriction, this gene expression signature highlights
420 an inability of STAT1-deficient microglia to acquire the cell type-specific transcriptional hallmarks
421 of immune activation conserved across other neuroinflammatory models. Future studies targeting
422 genes such as TREM2 or APOE, which have been shown to regulate the microglial transition to
423 DAMs, may be needed to discern whether DAMs are, in themselves, neuroprotective during CNS
424 infection. Similarly, future experiments using MG^{STAT1 Δ} mice in models of neurodegeneration may
425 additionally yield novel insights into how the microglial response to interferon shapes or mitigates
426 disease progression in a wide range of disease models.

427

428 **Materials and Methods**

429 **Mice.** CX3CR1^{CreERT2} (#020940) and ROSA26^{AI6/Ai6} (#007906) mouse lines were originally
430 purchased from Jackson Laboratories and cross-bred to generate CX3CR1^{CreERT2} x ZsGreen^{f1/stop/f1}
431 mice used as controls. These control mice were subsequently cross-bred with STAT1^{f1/f1} mice
432 (provided by Lothar Hennighausen, NIH) to generate STAT1^{f1/f1} x CX3CR1^{CreERT2} x ROSA26^{AI6/Ai6}
433 (MG^{STAT1Δ}) mice. Age- and sex-matched mice were intraperitoneally administered tamoxifen (4
434 mg per 20 g body weight, Sigma-Aldrich) between 4-7 weeks of age for 5 consecutive days to
435 induce STAT1 deletion. Four weeks following tamoxifen treatment, mice were challenged with the
436 type II *T. gondii* strain Me49 or proceeded with naïve experiments. Parasite was passaged
437 through CBA/J and Swiss Webster mice (Jackson Laboratories), and mice used in infection
438 experiments were intraperitoneally challenged with 10 Me49 cysts from CBA/J brain homogenate.
439 *Stat1* excision was confirmed by qPCR, flow cytometry, or immunohistochemistry. All mice were
440 housed in University of Virginia specific pathogen-free facilities with a 12h light/dark cycle, with
441 ambient temperature between 68 and 72 F, and 30-60% humidity. Mice used in experiments were
442 euthanized by CO₂ asphyxiation if they showed weight loss greater than 20% of their baseline,
443 pre-recorded weight. All procedures were approved and conducted in accordance with the
444 University of Virginia Institutional Animal Care and Use Committee approval of protocol 3968.

445
446 **Immunohistochemistry.** PBS-perfused brain hemispheres were fixed in 4% paraformaldehyde
447 (Electron Microscopy Sciences) for 24 hours at 4°C. Brains were then cryopreserved in a 30%
448 sucrose solution for 48 hours at 4°C, flash-frozen in OCT (Sakura), on dry ice, and cryosectioned
449 at a thickness of 50 µm. Free-floating sections were blocked for 1 hour at room temperature in a
450 1x PBS solution containing 0.1% Triton, 0.05% Tween 20, 5% BSA, and 0.1% BSA. Sections
451 were incubated in primary antibodies overnight at 4°C. Sections were washed with a 1x PBS,
452 0.05% Tween solution prior to incubation in primary antibodies for one hour at RT. Following
453 secondary washes, sections were incubated in DAPI (Thermo Fisher Scientific) for 5 minutes and
454 mounted on glass coverslips (Thermo Fisher Scientific) in Aquamount (Lerner Laboratories)

455 mounting media. Dilutions were performed at a 1:200 concentration for primary antibodies and a
456 1:1,000 concentration for secondary antibodies and DAPI staining. All immunohistochemical
457 micrographs were captured using a Leica TCS SP8 Confocal microscope. Images were analyzed
458 using Imaris or ImageJ software. Primary antibodies used in experiments included goat anti-lba1
459 (Abcam), rabbit anti-Me49 (gift from Fausto Araujo), and rat anti-MHC II (Cat. #: 14-5321-82;
460 Thermo Fisher Scientific). Secondary antibodies used in experiments included: Alexa Fluor 594
461 Donkey Anti Rabbit IgG (Cat. #: 711-585-152; Jackson ImmunoResearch), Alexa Fluor 647
462 Donkey Anti-Rabbit IgG (Cat. #: 711-605-152; Jackson ImmunoResearch), Cy3 AffiniPure
463 Donkey Anti Rat IgG (Cat. #: 712-165-153; Jackson ImmunoResearch).

464

465 **Sholl Analysis.** Sholl analysis was used to analyze microglial morphological complexity as a
466 readout for their activation state, in accordance with the protocol published in *Norris et al.*, 2014
467 [40]. In brief, confocal photomicrographs of naive WT and MG^{STAT1 Δ} brains with ZsGreen+
468 microglia were captured and analyzed in Fiji with the Sholl Analysis plugin software. Images were
469 processed in binary pixels, microglia were manually selected, and shells were inserted in 5 μ m
470 concentric circles, starting from 10 μ m outside the center of the soma, and ending at the limit of
471 the longest arborization for each analyzed microglia. The number of dendritic intersection points
472 was plotted for each distance away from the soma, and data was analyzed via 2-way ANOVA
473 with Sidak's multiple comparison test.

474

475 **H&E Tissue staining.** Brains were fixed in formalin, prior to being embedded in formalin,
476 sectioned, and stained with hematoxylin and eosin at the UVA Research Histology Core.
477 Following mounting, sections were imaged on a DM 2000 LED brightfield microscope (Leica
478 Biosystems).

479

480 **Tissue Processing.** Mice were given an overdose of ketamine/xylazine and transcardially
481 perfused with 30 mL of ice-cold 1X PBS. Brains and spleen were collected and placed in cold
482 complete RPMI media (cRPMI) (10% FBS, 1% sodium pyruvate, 1% non-essential amino acids,
483 1% penicillin/streptomycin, and 0.1% 2-ME). Brains were minced with a razor blade, passed
484 through an 18G needle, and enzymatically digested with 0.227 mg/mL collagenase/dispase and
485 50U/mL DNase (Roche) for 45 minutes at 37C. If brain samples were used to quantify parasite
486 burden or for gene expression analysis, aliquots were removed and frozen for downstream
487 analysis prior to addition of digestion enzymes. If brain cells were being used for downstream
488 RNA sequencing for WT vs. MG^{STAT1 Δ} analysis, Actinomycin D (Sigma-Aldrich) was added to the
489 digestion buffer at a concentration of 45 μ m during incubation and 3 μ m during washes to inhibit
490 upregulation of immediate early activation genes associated with subsequent FACs sorting. All
491 brain samples were resuspended in 20 mL of 40% percoll and spun for 25 minutes at 650 xg to
492 remove myelin. Following myelin removal, samples were washed with and subsequently
493 resuspended in cold cRPMI. Blood collected for flow cytometric analysis was isolated from the
494 heart prior to transcardial perfusion and transferred into 1x PBS + EDTA (Thermo Fisher
495 Scientific). Blood was then processed with RBC lysis and resuspended in cold cRPMI prior to
496 staining and fixation for flow cytometry. For peritoneal lavage experiments, 5 mL of cold 1X PBS
497 was injected through the membrane encasing the peritoneal cavity via a 26G needle and
498 withdrawn with a 22G needle. Lavage fluid was washed and suspended in cRPMI.

499

500 **Flow cytometry.** Following generation of a single-cell suspension, cells were plated in a 96-well
501 plate and incubated for 10 minutes in 50 μ L Fc block (1 μ g/mL 2.4G2 Ab (BioXCell), 0.1% rat γ -
502 globulin (Jackson ImmunoResearch) at room temperature. Cells were incubated in primary
503 antibodies at a concentration of 1:200, and AF-780 viability dye (eBioscience) at a concentration
504 of 1:800 for 30 minutes at 4°C. Antibody clones used for experiments included: MHC II
505 (M5/114.15.2), CD11b (M1/70), Ly6C (HK1.4), iNOS (CXNFT), CD45 (30-F11), CD3e (145-

506 2C11), CD4 (GK1.5), CD8a (53-6.7), and IFN- γ (XMG1.2) (Thermo Fisher Scientific). After
507 staining for surface markers, cells were washed and fixed overnight in 2% PFA at 4°C, before
508 being washed and intracellularly stained, if quantifying cytosolic protein. For intracellular cytokine
509 staining (IFN- γ), initial single cell suspensions were incubated with Brefeldin A (Selleckchem) for
510 5 hours at 37°C prior to blocking and staining. For intracellular staining, cells were permeabilized
511 with Permeabilization Buffer (eBioscience) and stained for 30 minutes at room temperature. Cells
512 were washed with FACS buffer and transferred into 5 mL FACS tubes, then were analyzed on a
513 Gallios flow cytometer (Beckman-Coulter). Flow cytometry data was analyzed using FlowJo.

514

515

516 **Cell Sorting / Enrichment.** For RNA sequencing and analysis of microglial *Stat1* relative
517 expression to validate excision, brains were processed into a single cell suspension, as described
518 above. Cells were then magnetically labeled with CD11b-conjugated beads diluted in MACS
519 buffer for 15 minutes, per manufacturer's instructions. Following a wash with 2 mL of MACS buffer,
520 samples were spun at 1500 RPM for 5 minutes and resuspended in 600 μ L of MACS buffer.
521 Myeloid cells were then positively selected for using anti-CD11b-conjugated magnetic beads
522 enrichment (Miltenyi). Cells were resuspended and lysed in Trizol for RT-qPCR analysis, or
523 incubated for 10 minutes in 50 μ L Fc block (1 μ g/mL 2.4G2 Ab (BioXCell), 0.1% rat γ globulin
524 (Jackson ImmunoResearch) at room temperature for RNA-sequencing. Cells were stained with
525 the following antibodies (Thermo Fisher Scientific) for 30 minutes at 4°C: CD11b-Percp Cy5.5
526 (Cat. #45-0112-82), MHCII-eFluor 450 (Cat. # 48-5321-82), CD45-APC (Cat. #17-0451-81),
527 Ly6C-PE Cy7 (Cat. #12-5932-80), CD3e-PE Cy7 (Cat. #25-0031-81), NK1.1-PE Cy7 (Cat. #25-
528 5941-81), CD19-PE Cy7 (Cat. #25-0193-81). Live cells were analyzed and sorted using a BD Aria
529 flow cytometer at the University of Virginia Flow Cytometry Core facility. Cells were sorted based
530 on ZsGreen and dump gating (CD3e $^{-}$ NK1.1 $^{-}$ CD19 $^{-}$ Ly6C $^{-}$) directly into Trizol (Invitrogen) for RNA

531 extraction and RNA sequencing. For MG^{STAT1 Δ} mice, MHC II^{neg} microglia were gated in order to
532 positively select for STAT1-deficient cells.

533

534 **Quantitative RT-PCR.** For tissue-level analysis, one-fourth of a mouse brain was placed in 1 mL
535 Trizol (Ambion), mechanically homogenized using 1 mm zirconia/silica beads (Biospec) for 30
536 seconds using a Mini-BeadBeater 16 (BioSpec). For gene expression analysis of magnetically-
537 enriched cells, cells were homogenized in Trizol by pipetting. RNA was extracted from Trizol
538 according to manufacturer's instructions (Invitrogen). High Capacity Reverse Transcription Kit
539 (Applied Biosystems) was used to generate cDNA. Quantitative PCR was performed using 2X
540 Taq-based Master Mix (Bioline) and TaqMan gene expression assays (Applied Biosystems), or
541 custom primers (Integrated DNA Technologies), run on a CFX384 Real-Time System
542 thermocycler (Bio-Rad Laboratories). Murine *Hprt* and *T. gondii* *Act1* were used for normalization
543 for analyzing host and parasite gene expression, respectively, and relative expression is reported
544 as $2^{(-\Delta\Delta CT)}$. The following Thermo Fisher mouse gene probes were used: *Stat1*
545 (Mm00439518_m1), *Hprt* (Mm00446968_m1), *Ifng* (Mm01168134_m1), *Nos2*
546 (Mm00440502_m1), *Il6* (Mm00446190_m1), *Icam1* (Mm00516023_m1), *Vcam1*
547 (Mm01320970_m1), *Tnfa* (Mm00443258_m1), *Ccl2* (Mm00441242_m1), *Ccl5*
548 (Mm01302427_m1), *Cxcl9* (Mm00434946_m1), *Cxcl10* (Mm00445235_m1). Custom primers for
549 used for analyzing *T. gondii* genomic DNA and gene expression were used and are provided in
550 **Supplementary Table 1.**

551

552 **RNA sequencing analysis.** RNA reads from FASTQ files were trimmed and filtered using
553 Trimmomatic (v0.39) paired-end set to phred 33 quality scoring. Adapters were trimmed, and
554 reads with a minimum quality score of 15, leading and trailing quality scores of 3, and minimum
555 fragment length of 36 were used for analysis. FastQC (v0.11.9) was used to verify quality of
556 sample reads. Trimmed and filtered reads were aligned to the GENCODE M13 reference

557 genome using Salmon (v0.8.2) and output as .sam files. Transcript abundance files were imported
558 into R (v4.1.1) and converted to gene abundances using Tximport (v1.24.0). The R Bioconductor
559 package, DESeq2 (v1.36.0), was used to perform differential expression analysis. DESeq2-
560 normalized data was visualized using the following R packages: EnhancedVolcano (v1.14.0),
561 pHeatmap (v1.0.12), and ggplot2 (v3.3.6). Gene names were converted from mouse ENSEMBL
562 gene identifiers to gene symbols using the Bioconductor BiomaRT (v2.52.0) database. Labeled
563 genes were manually selected from significantly differentially expressed genes from the DESeq2
564 results data frame. All genes with a Benjamini-Hochberg (BH) adjusted p-value below 0.05 were
565 considered significantly upregulated if they had a $\log_{2}FC > 0$, and downregulated if they had a
566 $\log_{2}FC < 0$. In order to determine Gene Ontology (GO) enrichment analysis for biological
567 processes was performed by running a list of significantly differentially expressed genes and their
568 p-values through TopGO (v2.48.0). Enrichment score is reported as the $-\log_{10}$ of enrichment p
569 value, based on Kolmogorov-Smirnov (KS) analysis. Significantly enriched GO Terms were
570 selected and plotted based on biological interest. For analysis of the DAM signature, the full list
571 of common genes upregulated (disease-associated microglia genes) and downregulated by
572 microglia (homeostatic genes) across disease conditions in *Krasemann et al., 2017* was analyzed
573 in our dataset, and significantly differentially expressed genes from this list were plotted. For
574 targeted analysis of anti-parasitic genes, the full list of unique annotated genes in the GO:0042832
575 Term (“Defense Response to Protozoan”) was analyzed within our dataset, and all significantly
576 differentially expressed genes were plotted.

577
578 **Statistics.** Data from multiple experiments within a given time-point were aggregated to reflect
579 biological variability from different infections. When data from multiple infection cohorts were
580 compiled, a randomized block ANOVA test (two-way) was performed in R. This statistical test was
581 selected to evaluate the effect of treatment group, while controlling for infection date as a variable
582 that was statistically modeled as a random effect contained in our datasets. Data from Kaplan-

583 Meier curves, flow cytometric analyses, and qPCR results were graphed using GraphPad Prism,
584 and data related to transcriptomic analysis were graphed using R. Error bars indicate standard
585 error of the mean (SEM). Statistical tests used for each reported experiment are detailed within
586 figure legends. Normal distributions for each population are assumed for statistical testing.

587

588 **Data availability.** RNA sequencing data have been deposited in GEO under the accession codes:
589 GSE204751, GSE146680, and GSE203655. For graphs that visualize compiled experimental
590 group means (**Fig. 3D-K, Fig. 4A-H, and Supplementary Fig. 5**), data points for individual mice
591 are available on Dryad: doi:10.5061/dryad.fttdz08w2.

592

593 **Acknowledgements**

594 The authors would like to thank members of the Harris Lab, Center for Brain Immunology and
595 Glia (BIG), Carter Immunology Center (CIC), and Neuroscience Graduate Program at the
596 University of Virginia for their input in the development of this work. We also would like to thank
597 Will Rosenow, Marieke Jones, PhD, and Christopher Overall, PhD for their assistance with the
598 computational analysis of RNA-sequencing data, as well as the UVA Flow Cytometry Core,
599 Research Histology Core, Health Sciences Library, and Research Computing for methodological
600 assistance. We thank Lothar Hennighausen (NIH) for gifting us STAT1^{fl/fl} mice that were used to
601 generate experimental mice, and Fausto Araujo (Palo Alto Medical Foundation) for gifting us the
602 anti-Me49 antibody used in experiments. Parts of Figure 1 and 2 were created with
603 Biorender.com. This work was funded by National Institutes of Health grants R01NS112516 and
604 R56NS106028 to T.H.H., T32AI007496 to M.N.C., T32AI007496, T32GM007267, and
605 F30AI154740 to M.A.K., T32AI007046 to S.J.B., T32GM008328 to K.M.S., T32AI007496 to
606 C.A.O., T32AI007496 to I.W.B., and by the UVA Double Hoo Award to M.N.C. and I.S.

607

608 **References**

- 609 1. Matta SK, Rinkenberger N, Dunay IR, Sibley LD. *Toxoplasma gondii* infection and its
610 implications within the central nervous system. *Nat Rev Microbiol.* 2021;19: 467–480.
611 doi:10.1038/s41579-021-00518-7
- 612 2. Suzuki Y, Remington JS. The effect of anti-IFN-gamma antibody on the protective effect
613 of Lyt-2+ immune T cells against toxoplasmosis in mice. *J Immunol.* 1990;144: 1954 LP –
614 1956. Available: <http://www.jimmunol.org/content/144/5/1954.abstract>
- 615 3. Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A. Synergistic role of CD4+ and
616 CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an
617 attenuated *Toxoplasma gondii* vaccine. *J Immunol.* 1991;146: 286 LP – 292. Available:
618 <http://www.jimmunol.org/content/146/1/286.abstract>
- 619 4. Lieberman LA, Banica M, Reiner SL, Hunter CA. STAT1 Plays a Critical Role in the
620 Regulation of Antimicrobial Effector Mechanisms, but Not in the Development of Th1-
621 Type Responses during Toxoplasmosis. *J Immunol.* 2004;172: 457–463.
622 doi:10.4049/jimmunol.172.1.457
- 623 5. Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. Simultaneous depletion of CD4+ and
624 CD8+ T lymphocytes is required to reactivate chronic infection with *Toxoplasma gondii*. *J*
625 *Immunol.* 1992;149: 175–180.
- 626 6. Prinz M, Jung S, Priller J. Microglia Biology: One Century of Evolving Concepts. *Cell.*
627 2019;179: 292–311. doi:10.1016/j.cell.2019.08.053
- 628 7. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping
629 analysis reveals that adult microglia derive from primitive macrophages. *Science* (80-).
630 2010. doi:10.1126/science.1194637
- 631 8. Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Hayden Gephart M, et al.
632 A Combination of Ontogeny and CNS Environment Establishes Microglial Identity.
633 *Neuron.* 2018;98: 1170-1183.e8. doi:10.1016/j.neuron.2018.05.014

634 9. Shemer A, Grozovski J, Tay TL, Tao J, Volaski A, Süß P, et al. Engrafted parenchymal
635 brain macrophages differ from microglia in transcriptome, chromatin landscape and
636 response to challenge. *Nat Commun.* 2018;9: 5206. doi:10.1038/s41467-018-07548-5

637 10. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, et al. Peripherally derived
638 macrophages can engraft the brain independent of irradiation and maintain an identity
639 distinct from microglia. *J Exp Med.* 2018;215: 1627–1647. doi:10.1084/jem.20180247

640 11. Batista SJ, Still KM, Johanson D, Thompson JA, O'Brien CA, Lukens JR, et al.
641 Gasdermin-D-dependent IL-1 α release from microglia promotes protective immunity
642 during chronic *Toxoplasma gondii* infection. *Nat Commun.* 2020;11: 3687.
643 doi:10.1038/s41467-020-17491-z

644 12. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Langer AJ, Gabriely G, et al.
645 Identification of a unique TGF- β -dependent molecular and functional signature in
646 microglia. *Nat Neurosci.* 2013;17: 131–143. doi:10.1038/nn.3599

647 13. Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse
648 Requirements for Microglial Survival, Specification, and Function Revealed by Defined-
649 Medium Cultures. *Neuron.* 2017;94: 759-773.e8. doi:10.1016/j.neuron.2017.04.043

650 14. Waltl I, Käufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, et al. Microglia have a
651 protective role in viral encephalitis-induced seizure development and hippocampal
652 damage. *Brain Behav Immun.* 2018;74: 186–204. doi:10.1016/j.bbi.2018.09.006

653 15. Fekete R, Cserép C, Lénárt N, Tóth K, Orsolits B, Martinecz B, et al. Microglia control the
654 spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through
655 P2Y12-independent mechanisms. *Acta Neuropathol.* 2018;136: 461–482.
656 doi:10.1007/s00401-018-1885-0

657 16. Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection
658 against lethal coronavirus encephalitis in mice. *J Clin Invest.* 2018;128: 931–943.
659 doi:10.1172/JCI97229

660 17. Funk KE, Klein RS. CSF1R antagonism limits local restimulation of antiviral CD8+ T cells
661 during viral encephalitis. *J Neuroinflammation*. 2019;16: 22. doi:10.1186/s12974-019-
662 1397-4

663 18. Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yukanovich LT, Malo CS, et al.
664 Microglia and Perivascular Macrophages Act as Antigen Presenting Cells to Promote
665 CD8 T Cell Infiltration of the Brain. *Front Immunol*. 2021;12.
666 doi:10.3389/fimmu.2021.726421

667 19. Mangale V, Syage AR, Ekiz HA, Skinner DD, Cheng Y, Stone CL, et al. Microglia
668 influence host defense, disease, and repair following murine coronavirus infection of the
669 central nervous system. *Glia*. 2020. doi:10.1002/glia.23844

670 20. Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L, et al. Inhibition of CSF-1 receptor
671 improves the antitumor efficacy of adoptive cell transfer immunotherapy. *Cancer Res*.
672 2014;74: 153–161. doi:10.1158/0008-5472.CAN-13-1816

673 21. Tagliani E, Shi C, Nancy P, Tay C-S, Pamer EG, Erlebacher A. Coordinate regulation of
674 tissue macrophage and dendritic cell population dynamics by CSF-1. *J Exp Med*.
675 2011;208: 1901–1916. doi:10.1084/jem.20110866

676 22. Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic Cell
677 Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central
678 Nervous System. *Immunity*. 2015;43: 92–106. doi:10.1016/j.jimmuni.2015.06.012

679 23. Biswas A, Bruder D, Wolf SA, Jeron A, Mack M, Heimesaat MM, et al. Ly6C high
680 Monocytes Control Cerebral Toxoplasmosis. *J Immunol*. 2015;194: 3223–3235.
681 doi:10.4049/jimmunol.1402037

682 24. Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, et al. A new type of
683 microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. *Nat
684 Neurosci*. 2013;16: 1618–1626. doi:10.1038/nn.3531

685 25. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al.

686 Identification of a unique TGF- β -dependent molecular and functional signature in
687 microglia. *Nat Neurosci.* 2014;17: 131–43. doi:10.1038/nn.3599

688 26. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The
689 TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia
690 in Neurodegenerative Diseases. *Immunity.* 2017;47: 566-581.e9.
691 doi:10.1016/j.jimmuni.2017.08.008

692 27. Keren-shaul H, Spinrad A, Weiner A, Colonna M, Schwartz M, Amit I, et al. Article A
693 Unique Microglia Type Associated with Restricting Development of Alzheimer 's Disease
694 Article A Unique Microglia Type Associated with Restricting Development of Alzheimer 's
695 Disease. 2017; 1276–1290. doi:10.1016/j.cell.2017.05.018

696 28. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The
697 TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia
698 in Neurodegenerative Diseases. *Immunity.* 2017;47: 566-581.e9.
699 doi:10.1016/j.jimmuni.2017.08.008

700 29. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the
701 lymphokine that activates human macrophage oxidative metabolism and antimicrobial
702 activity. *J Exp Med.* 1983;158: 670–689. doi:10.1084/jem.158.3.670

703 30. Murray HW, Spitalny GL, Nathan CF. Activation of mouse peritoneal macrophages in
704 vitro and in vivo by interferon-gamma. *J Immunol.* 1985;134: 1619 LP – 1622. Available:
705 <http://www.jimmunol.org/content/134/3/1619.abstract>

706 31. Pfefferkorn ER. Interferon gamma blocks the growth of *Toxoplasma gondii* in human
707 fibroblasts by inducing the host cells to degrade tryptophan. *Proc Natl Acad Sci.* 1984;81:
708 908–912. doi:10.1073/pnas.81.3.908

709 32. Strack A, Asensio V, Campbell I, Schlüter D, Deckert M. Chemokines are differentially
710 expressed by astrocytes, microglia and inflammatory leukocytes in *Toxoplasma*
711 encephalitis and critically regulated by interferon- γ . *Acta Neuropathol.* 2002;103: 458–

712 468. doi:10.1007/s00401-001-0491-7

713 33. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, et al.

714 Requirement for Transcription Factor IRF-1 in NO Synthase Induction in Macrophages.

715 Science (80-). 1994;263: 1612–1615. doi:10.1126/science.7510419

716 34. Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ. An Interferon- γ -activated Site

717 (GAS) Is Necessary for Full Expression of the Mouse iNOS Gene in Response to

718 Interferon- γ and Lipopolysaccharide. J Biol Chem. 1997;272: 1226–1230.

719 doi:10.1074/jbc.272.2.1226

720 35. Roche PA, Cresswell P. Antigen Processing and Presentation Mechanisms in Myeloid

721 Cells. Myeloid Cells in Health and Disease. Washington, DC, USA: ASM Press; 2017. pp.

722 209–223. doi:10.1128/9781555819194.ch11

723 36. Lee YJ, Benveniste EN. Stat1 alpha expression is involved in IFN-gamma induction of the

724 class II transactivator and class II MHC genes. J Immunol. 1996;157: 1559 LP – 1568.

725 Available: <http://www.jimmunol.org/content/157/4/1559.abstract>

726 37. Christova R, Jones T, Wu P-J, Bolzer A, Costa-Pereira AP, Watling D, et al. P -STAT1

727 mediates higher-order chromatin remodelling of the human MHC in response to IFN γ . J

728 Cell Sci. 2007;120: 3262–3270. doi:10.1242/jcs.012328

729 38. Muhlethaler-Mottet A, Di Bernardino W, Otten LA, Mach B. Activation of the MHC Class II

730 Transactivator CIITA by Interferon- γ Requires Cooperative Interaction between Stat1 and

731 USF-1. Immunity. 1998;8: 157–166. doi:10.1016/S1074-7613(00)80468-9

732 39. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate Mapping Reveals

733 Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis.

734 Immunity. 2013;38: 79–91. doi:10.1016/j.immuni.2012.12.001

735 40. Norris G, Derecki N, Kipnis J. Microglial Sholl Analysis. Protoc Exch. 2014.

736 doi:10.1038/protex.2014.029

737 41. Fox BA, Gigley JP, Bzik DJ. Toxoplasma gondii lacks the enzymes required for de novo

738 arginine biosynthesis and arginine starvation triggers cyst formation. *Int J Parasitol.*
739 2004;34: 323–331. doi:10.1016/j.ijpara.2003.12.001

740 42. Colasanti M, Salvati L, Venturini G, Ascenzi P, Gradoni L. Cysteine protease as a target
741 for nitric oxide in parasitic organisms. *Trends Parasitol.* 2001;17: 575.
742 doi:10.1016/S1471-4922(01)02191-2

743 43. Xu W, Comhair SAA, Zheng S, Chu SC, Marks-Konczalik J, Moss J, et al. STAT-1 and c-
744 Fos interaction in nitric oxide synthase-2 gene activation. *Am J Physiol Cell Mol Physiol.*
745 2003;285: L137–L148. doi:10.1152/ajplung.00441.2002

746 44. Chao, C. C., Anderson, R., Hu, S., Genker, G., Martella, A. and Peterson PK. Activated
747 microglia inhibit multiplication of *Toxoplasma gondii* via a nitric oxide mechanism. *Clinical
748 Immunology and Immunopathology. Clin Immunol Immunopathol.* 1993; 178–183.

749 45. Scharton-Kersten TM, Yap G, Magram J, Sher A. Inducible Nitric Oxide Is Essential for
750 Host Control of Persistent but Not Acute Infection with the Intracellular Pathogen
751 *Toxoplasma gondii*. *J Exp Med.* 1997;185: 1261–1274. doi:10.1084/jem.185.7.1261

752 46. Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B. Conventional DCs sample
753 and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to
754 initiate neuroinflammation. *Sci Immunol.* 2019. doi:10.1126/sciimmunol.aau8380

755 47. Suzuki Y, Sa Q, Gehman M, Ochiai E. Interferon-gamma- and perforin-mediated immune
756 responses for resistance against *Toxoplasma gondii* in the brain. *Expert Rev Mol Med.*
757 2011;13: e31. doi:10.1017/S1462399411002018

758 48. Ochiai E, Sa Q, Brogli M, Kudo T, Wang X, Dubey JP, et al. CXCL9 is important for
759 recruiting immune T cells into the brain and inducing an accumulation of the T cells to the
760 areas of tachyzoite proliferation to prevent reactivation of chronic cerebral infection with
761 *Toxoplasma gondii*. *Am J Pathol.* 2014;185: 314–324. doi:10.1016/j.ajpath.2014.10.003

762 49. Harris TH, Banigan EJ, Christian DA, Konradt C, Wojno EDT, Norose K, et al.
763 Generalized Lévy walks and the role of chemokines in migration of effector CD8 + T cells.

764 Nature. 2012;486: 545–548. doi:10.1038/nature11098

765 50. Jebbari, H., Roberts, C.W., Ferguson D.J., Bluethmann, H., Alexander J. A protective role

766 for IL-6 during early infection with *Toxoplasma gondii*. Parasite Immunol. 1998;20: 231–

767 239. doi:10.1046/j.1365-3024.1998.00152.x

768 51. Chang HR, Grau GE, Pechère JC. Role of TNF and IL-1 in infections with *Toxoplasma*

769 *gondii*. Immunology. 1990;69: 33–7. Available:

770 <http://www.ncbi.nlm.nih.gov/pubmed/2107144>

771 52. Wang X, Michie SA, Xu B, Suzuki Y. Importance of IFN- γ -Mediated Expression of

772 Endothelial VCAM-1 on Recruitment of CD8 + T Cells into the Brain During Chronic

773 Infection with *Toxoplasma gondii*. J Interf Cytokine Res. 2007;27: 329–338.

774 doi:10.1089/jir.2006.0154

775 53. Taylor GA, Collazo CM, Yap GS, Nguyen K, Gregorio TA, Taylor LS, et al. Pathogen-

776 specific loss of host resistance in mice lacking the IFN- γ -inducible gene IGTP. Proc Natl

777 Acad Sci. 2000;97: 751–755. doi:10.1073/pnas.97.2.751

778 54. Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the *Toxoplasma gondii*

779 parasitophorous vacuole by IFNy-inducible immunity-related GTPases (IRG proteins)

780 triggers necrotic cell death. PLoS Pathog. 2009;5. doi:10.1371/journal.ppat.1000288

781 55. Selleck EM, Fentress SJ, Beatty WL, Degrandi D, Pfeffer K, Virgin HW, et al. Guanylate-

782 binding Protein 1 (Gbp1) Contributes to Cell-autonomous Immunity against *Toxoplasma*

783 *gondii*. Yap GS, editor. PLoS Pathog. 2013;9: e1003320.

784 doi:10.1371/journal.ppat.1003320

785 56. Degrandi D, Kravets E, Konermann C, Beuter-Gunia C, Klumpers V, Lahme S, et al.

786 Murine Guanylate Binding Protein 2 (mGBP2) controls *Toxoplasma gondii* replication.

787 Proc Natl Acad Sci. 2013;110: 294–299. doi:10.1073/pnas.1205635110

788 57. Johnston AC, Piro A, Clough B, Siew M, Virreira Winter S, Coers J, et al. Human GBP1

789 does not localize to pathogen vacuoles but restricts *Toxoplasma gondii*. Cell Microbiol.

790 2016;18: 1056–1064. doi:10.1111/cmi.12579

791 58. Ferguson DJ, Graham DI, Hutchison WM. Pathological changes in the brains of mice
792 infected with *Toxoplasma gondii*: a histological, immunocytochemical and ultrastructural
793 study. *Int J Exp Pathol.* 1991;72: 463–74. Available:
794 <http://www.ncbi.nlm.nih.gov/pubmed/1883744>

795 59. Soête M, Dubremetz JF. *Toxoplasma gondii: Kinetics of Stage-Specific Protein*
796 *Expression During Tachyzoite-Bradyzoite Conversion in Vitro.* *Toxoplasma gondii.* Berlin,
797 Heidelberg: Springer Berlin Heidelberg; 1996. pp. 75–80. doi:10.1007/978-3-642-51014-
798 4_8

799 60. Mahittikorn A, Wickert H, Sukthana Y. *Toxoplasma gondii: Simple duplex RT-PCR assay*
800 *for detecting SAG1 and BAG1 genes during stage conversion in immunosuppressed*
801 *mice.* *Exp Parasitol.* 2010;124: 225–231. doi:10.1016/j.exppara.2009.10.003

802 61. Abdelbaset AE, Fox BA, Karram MH, Abd Ellah MR, Bzik DJ, Igarashi M. Lactate
803 dehydrogenase in *Toxoplasma gondii* controls virulence, bradyzoite differentiation, and
804 chronic infection. Hakimi MA, editor. *PLoS One.* 2017;12: e0173745.
805 doi:10.1371/journal.pone.0173745

806 62. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. *Fate Mapping Reveals*
807 *Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis.*
808 *Immunity.* 2013;38: 79–91. doi:10.1016/j.jimmuni.2012.12.001

809 63. Goldmann T, Wieghofer P, Jordão MJC, Prutek F, Hagemeyer N, Frenzel K, et al. *Origin,*
810 *fate and dynamics of macrophages at central nervous system interfaces.* *Nat Immunol.*
811 2016;17: 797–805. doi:10.1038/ni.3423

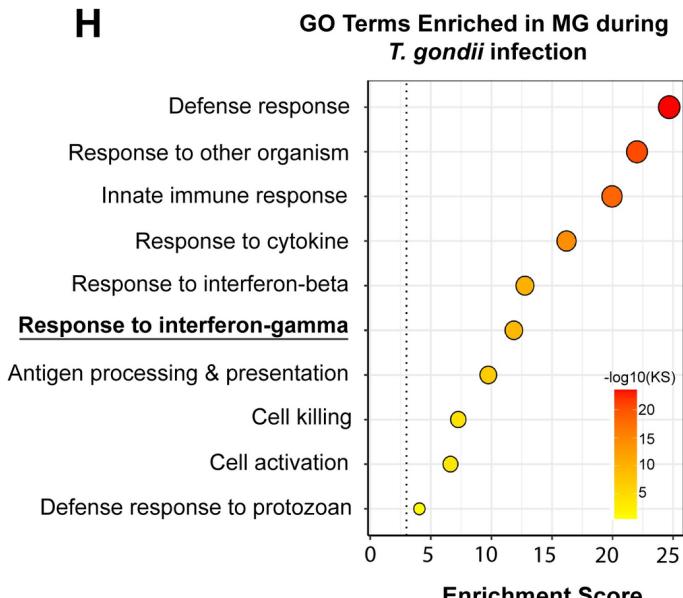
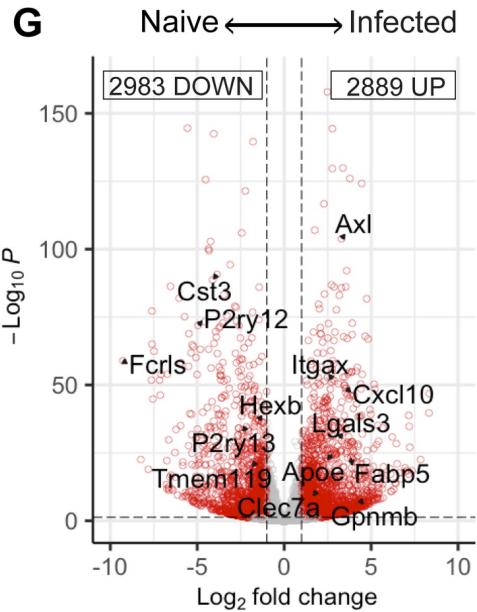
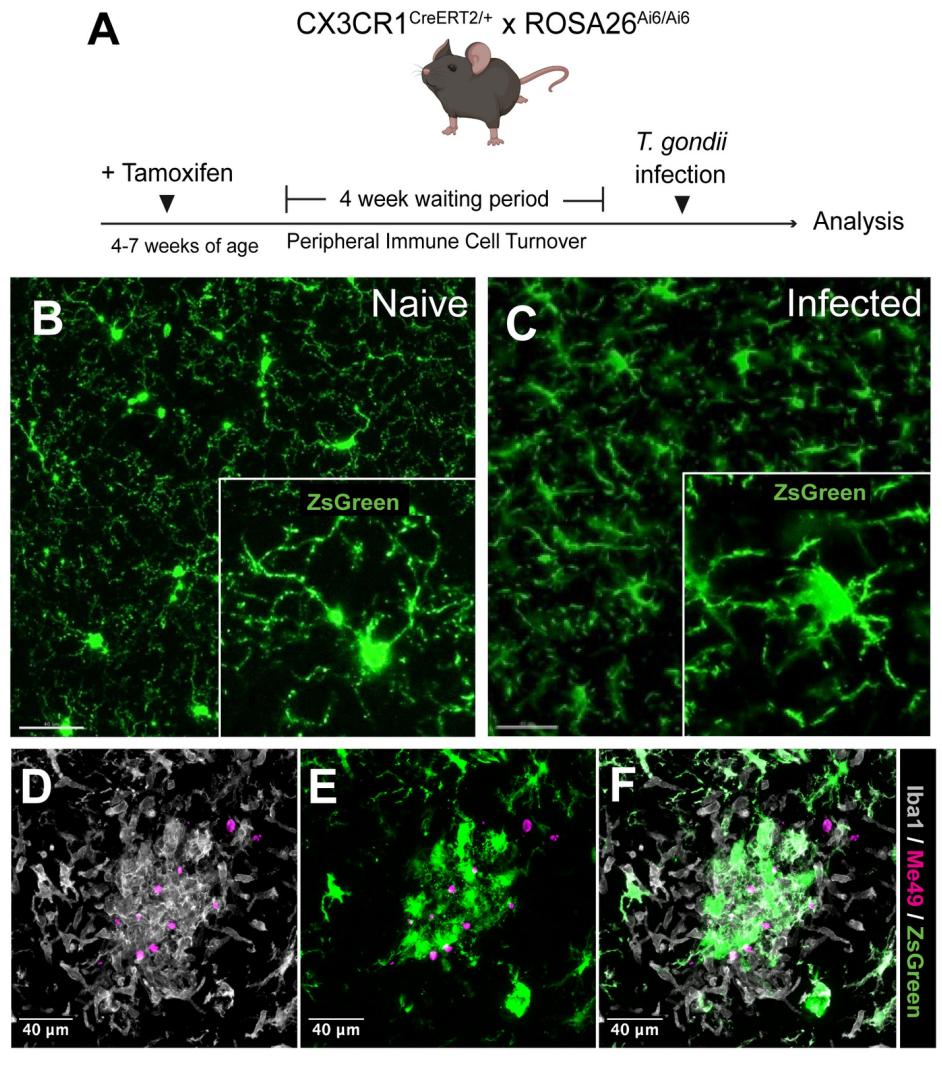
812 64. Hidano S, Randall LM, Dawson L, Dietrich HK, Konradt C, Klover PJ, et al. *STAT1*
813 *signaling in astrocytes is essential for control of infection in the central nervous system.*
814 *MBio.* 2016;7: 1–15. doi:10.1128/mBio.01881-16

815 65. Davalos D, Grutzendler J, Yang G, Kim J V., Zuo Y, Jung S, et al. *ATP mediates rapid*

816 microglial response to local brain injury *in vivo*. *Nat Neurosci*. 2005;8: 752–758.

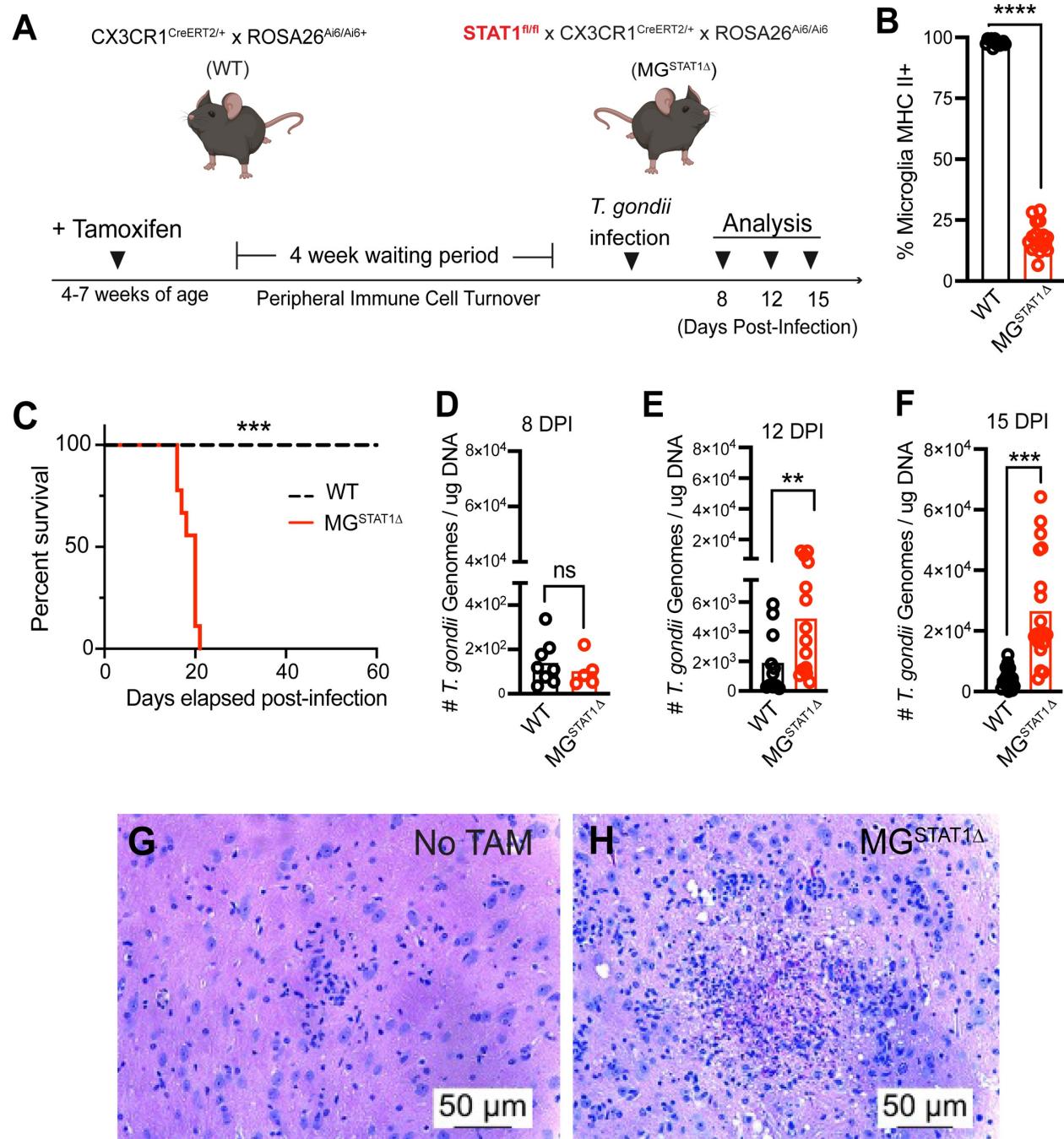
817 doi:10.1038/nn1472

818 66. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang L, Means TK, et al. The
819 microglial sensome revealed by direct RNA sequencing. *Nat Neurosci*. 2013;16: 1896.
820 Available: <https://doi.org/10.1038/nn.3554>




821 67. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial
822 amelioration of inflammation and cell death after brain injury. *Nature*. 2014;505: 223–228.
823 doi:10.1038/nature12808

824 68. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M. Purinergic receptor
825 P2RY12-dependent microglial closure of the injured blood–brain barrier. *Proc Natl Acad
826 Sci*. 2016;113: 1074–1079. doi:10.1073/pnas.1520398113

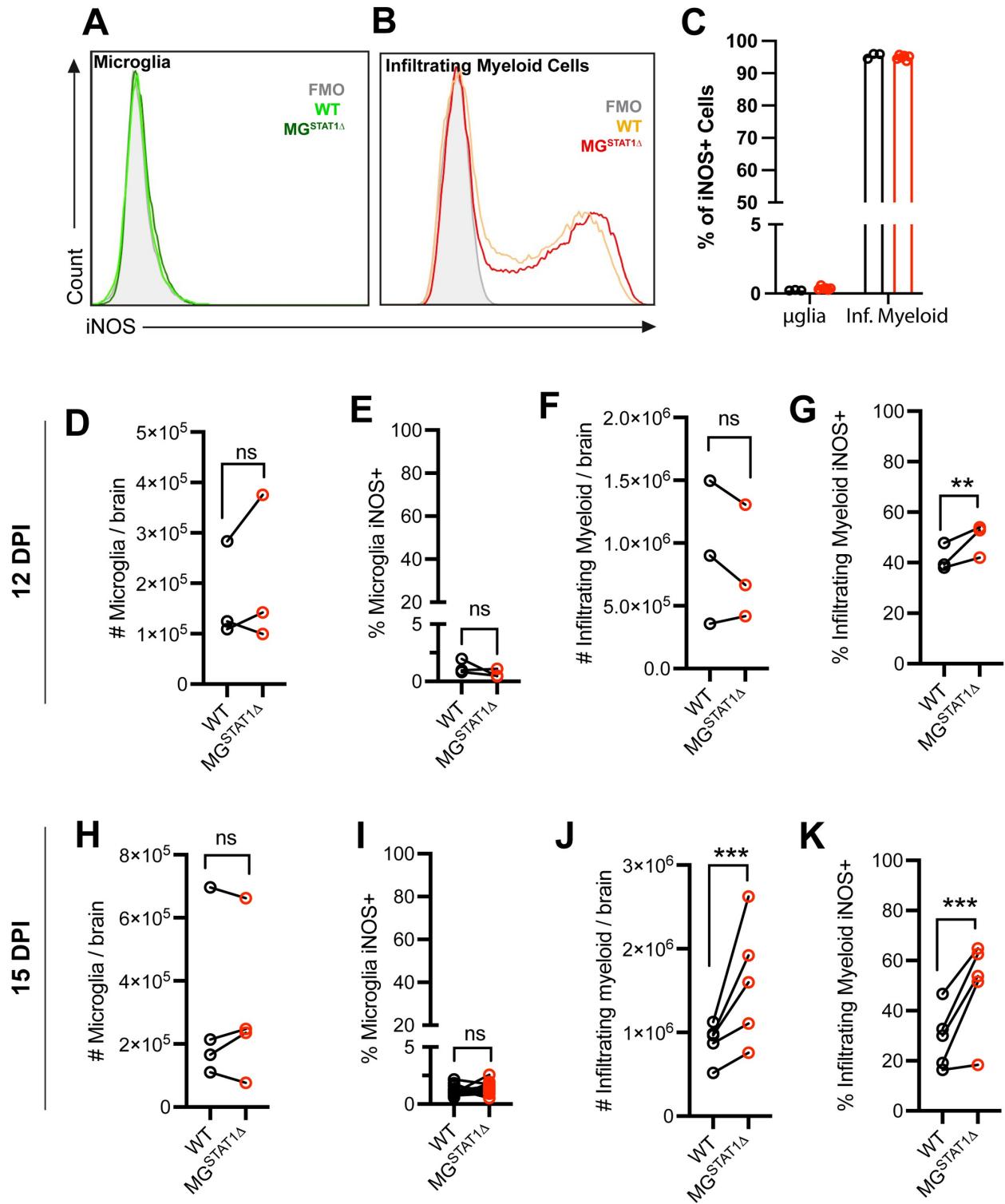
827 69. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-
828 resident macrophage enhancer landscapes are shaped by the local microenvironment.
829 *Cell*. 2014;159: 1312–1326. doi:10.1016/j.cell.2014.11.018


830 70. van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G, et al. Yolk
831 Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and
832 Develop into Functional Tissue-Resident Macrophages. *Immunity*. 2016;44: 755–768.
833 doi:10.1016/j.jimmuni.2016.02.017

834

836 **Fig. 1 Microglial activation and recruitment to *T. gondii* foci within the brain.** WT microglia
837 reporter mice were infected with 10 cysts of the Me49 strain of *T. gondii* and were analyzed
838 against naïve controls using IHC and bulk RNA-sequencing. **(A)** Schematic outline for generating
839 microglia reporter mice. **(B, C)** Representative confocal micrographs with zoomed insets of
840 ZsGreen+ microglia (green) in naïve mice **(B)** and at 15 DPI **(C)**, illustrating transition to amoeboid
841 morphology. **(D – F)** Representative confocal micrograph of microglial / macrophage clustering in
842 *T. gondii* foci. Brain sections were immuno-stained for Iba1 (gray) and Me49 (magenta). **(G)** Gene
843 ontology terms for biological processes statistically over-represented in microglia at 28 DPI,
844 relative to naïve state. GO terms were selected based on interest and plotted with enrichment
845 scores that indicate the $-\log_{10}$ of enrichment *p* value, based on Kolmogorov-Smirnov (KS)
846 analysis. Scale bars indicate 20 μm **(B – C)** or 40 μm **(D-F)**.

847

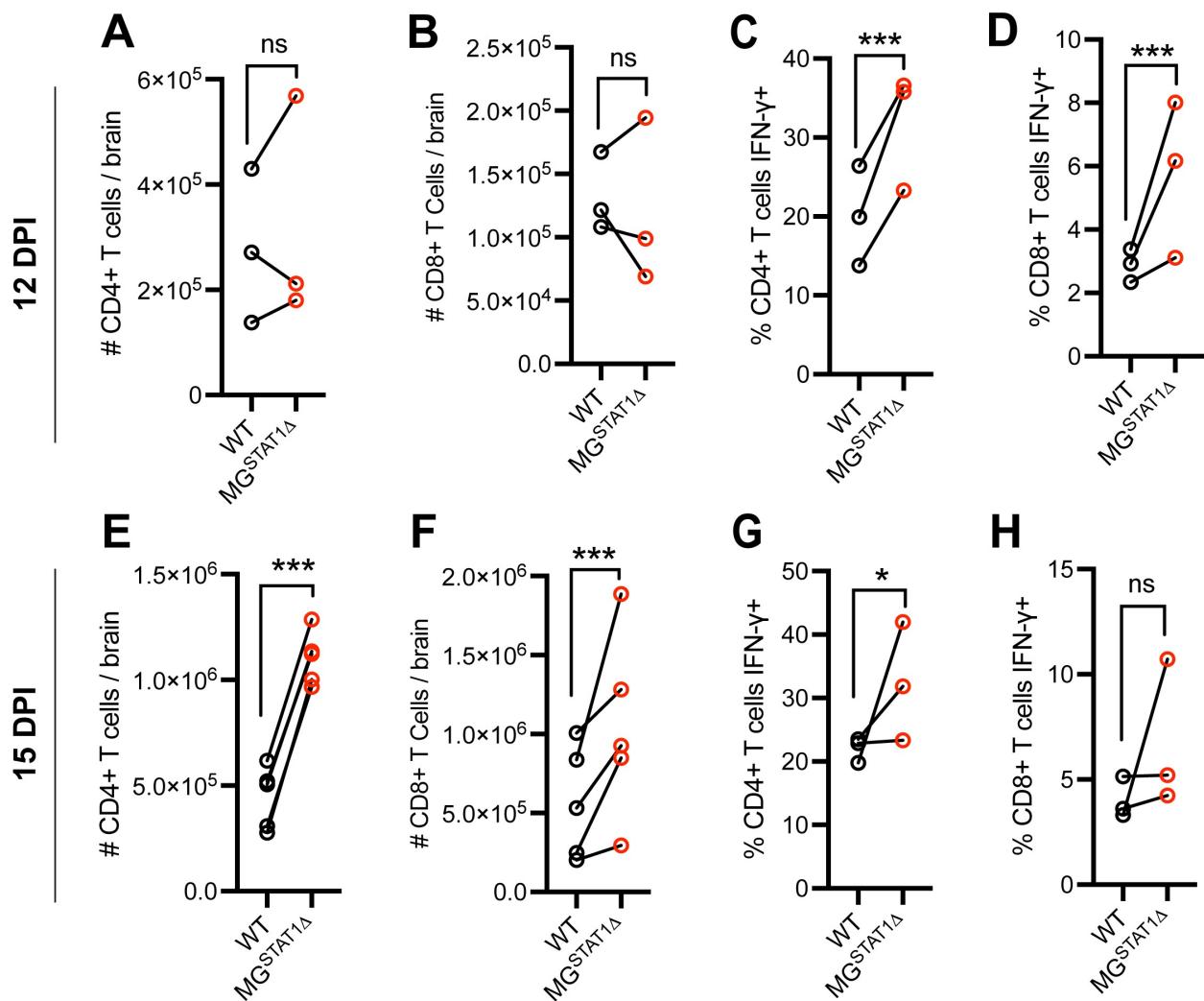

848

849 **Fig. 2 Mice with STAT1-deficient microglia succumb to fatal toxoplasmic encephalitis. (A-F)** Tamoxifen-treated $\text{CX3CR1}^{\text{CreERT2/+}} \times \text{ROSA26}^{\text{Ai6/Ai6}}$ (WT) and $\text{STAT1}^{\text{fl/fl}} \times \text{CX3CR1}^{\text{CreERT2/+}} \times \text{ROSA26}^{\text{Ai6/Ai6}}$ ($\text{MG}^{\text{STAT1}\Delta}$) mice were intraperitoneally infected with 10 cysts of the Me49 strain of $T. gondii$ and analyzed at 8, 12, and 15 DPI. **(A)** Schematic for generating WT and $\text{MG}^{\text{STAT1}\Delta}$ mice. **(B)** Flow cytometric quantification of microglial MHC II expression, as a functional readout for

854 STAT1 excision. **(C)** Animal survival curve of WT and MG^{STAT1 Δ} following *T. gondii* challenge. **(D**
855 – **F**) qPCR analysis of *T. gondii* brain parasite burden quantified by qPCR analysis of
856 homogenized brain tissue at 8- **(D)**, 12- **(E)**, and 15- **(F)** DPI. **(G, H)** Representative brain
857 histopathology observed via H&E staining in litter-mate vehicle **(G)** or tamoxifen-treated MG^{STAT1 Δ}
858 mice at 15 DPI. ns = not significant, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 10^{-4}$. Statistical
859 significance was determined by two-way randomized block ANOVA **(B, D-F)** or Kaplan-Meier
860 analysis with total n = 26 from 4 pooled experiments **(B)**, n = 13 from 2 experiments **(C)** n = 15
861 from 2 experiments, **(E)**, n = 26 from 3 experiments **(F)**, and n = 38 from 4 experiments. Scale bar
862 = 50 um.

863

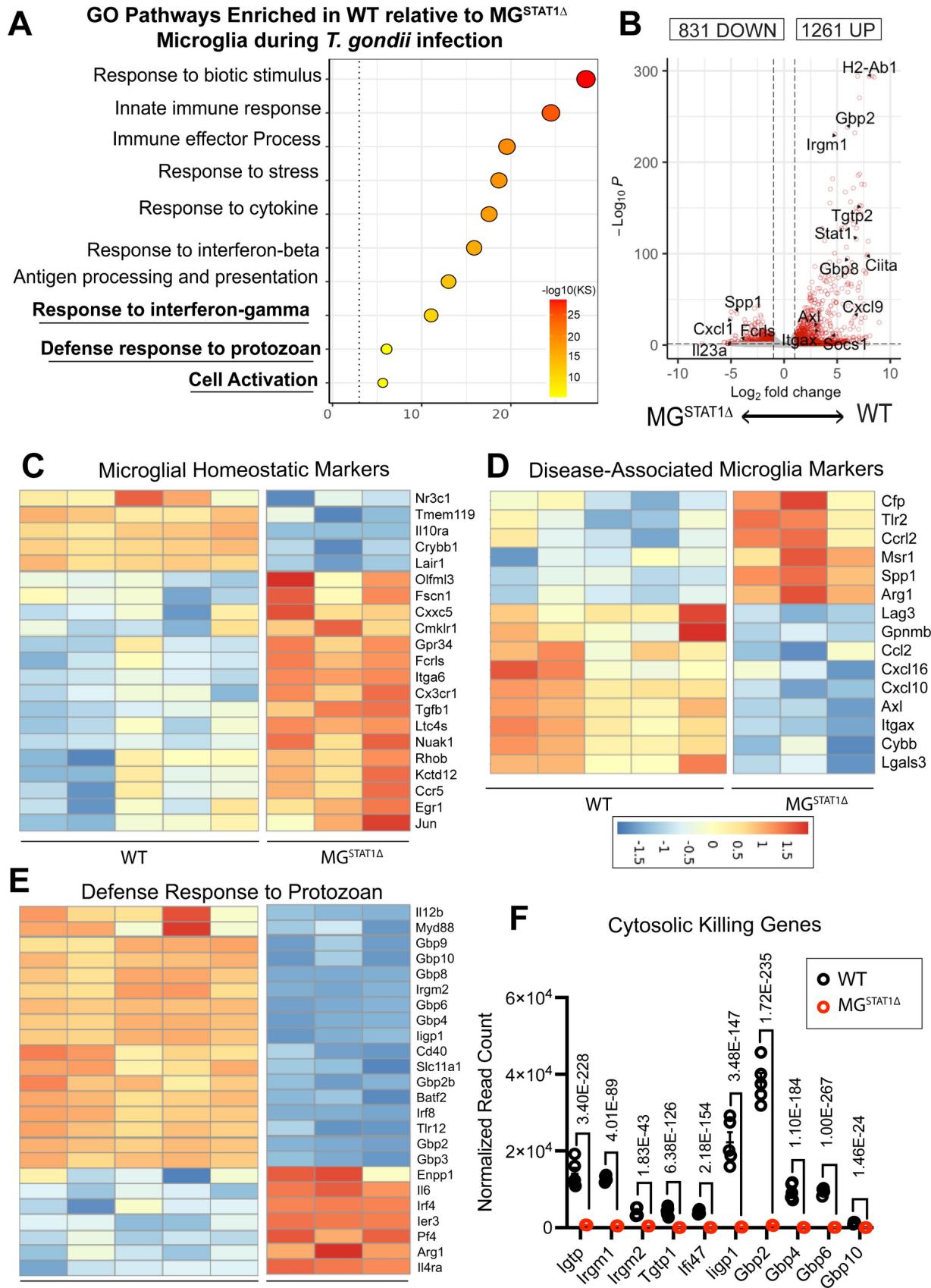
864



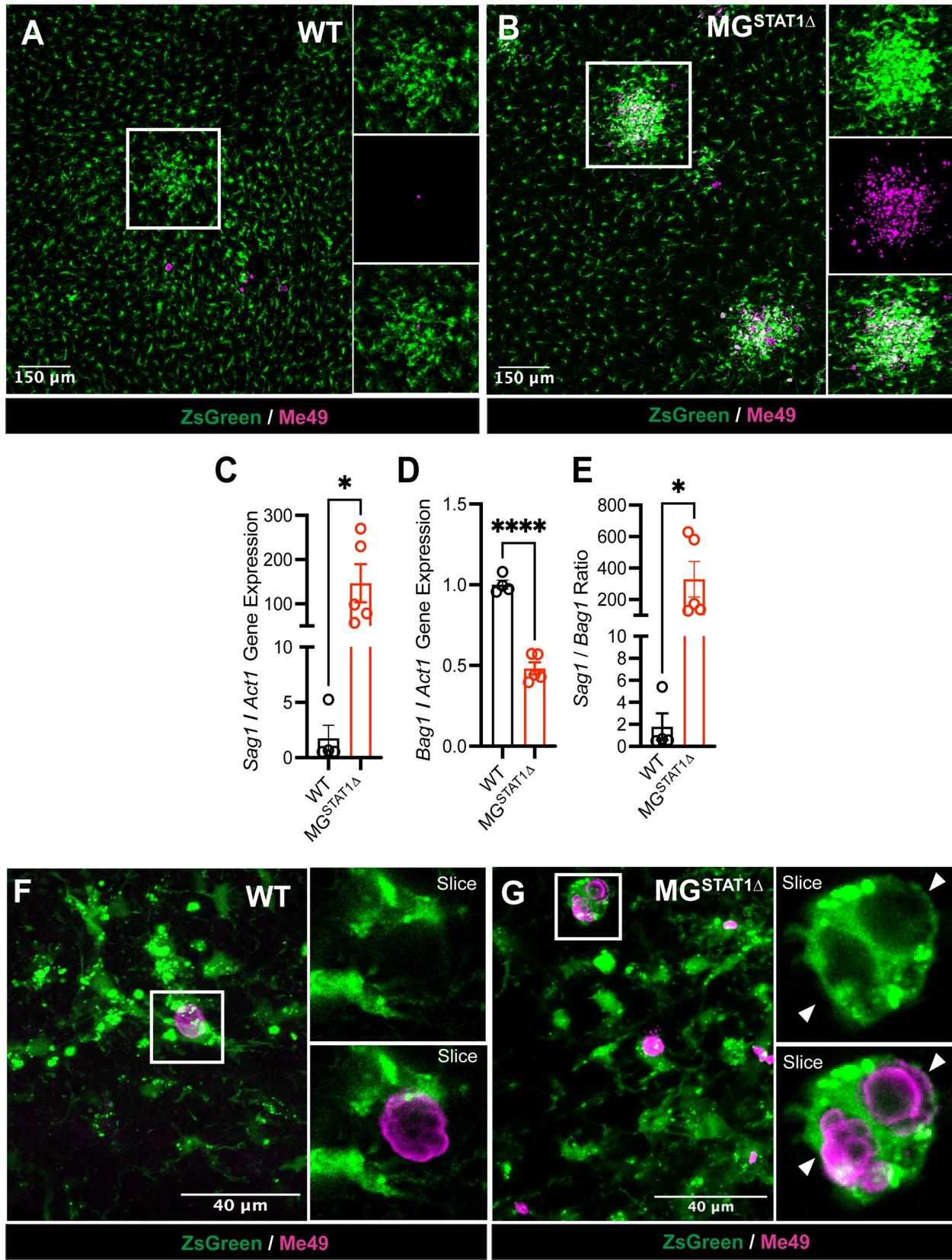
865

866 **Fig. 3 Brain-infiltrating myeloid cells, but not brain-resident microglia, express iNOS during**
867 ***T. gondii* challenge.** WT and $MG^{STAT1\Delta}$ mice were intraperitoneally infected with 10 cysts of the
868 Me49 strain of *T. gondii* and brains were analyzed by flow cytometry. Representative histograms

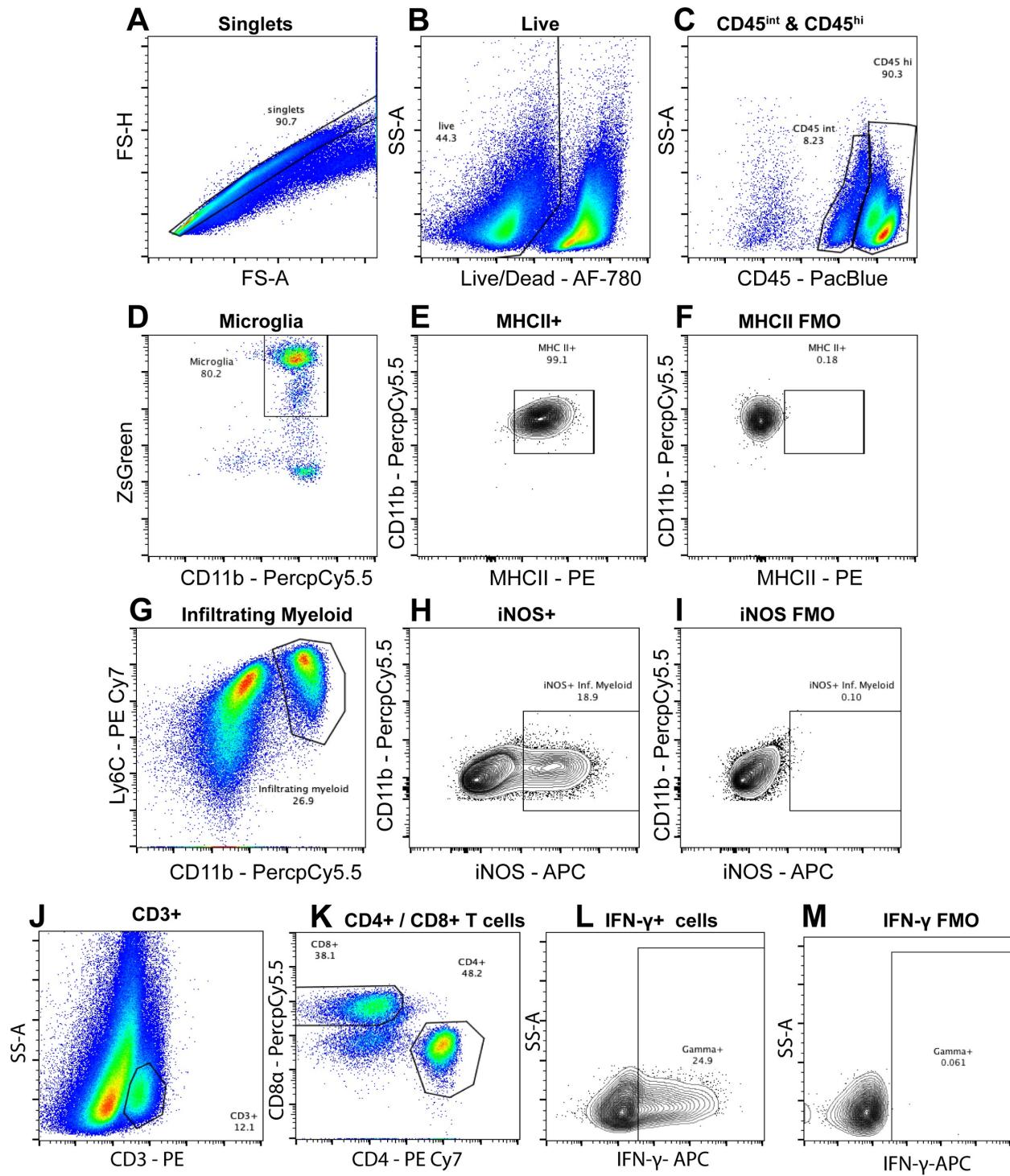
869 indicating iNOS expression in ZsGreen+ CD11b+ CD45int brain-resident microglia (**A**) and
870 CD11b+ CD45hi Ly6C+ infiltrating myeloid cells (**B**) at 12 DPI. (**C**) Flow cytometric quantification
871 of the total brain iNOS+ cells by myeloid population at 12 DPI. 12 DPI analysis of total number of
872 microglia isolated per brain (**D**), microglial iNOS frequency (**E**), number of infiltrating myeloid cells
873 isolated per brain (**F**), and infiltrating myeloid iNOS frequency (**G**). 15 DPI quantification of total
874 number of microglia isolated per brain (**H**), microglial iNOS frequency (**I**), number of infiltrating
875 myeloid cells isolated per brain (**J**), and infiltrating myeloid iNOS frequency (**K**). ns = not
876 significant, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 10^{-4}$. Statistical significance was determined
877 by two-way randomized block ANOVA (**D-K**). $n = 3-5$ per group (**C**), and total $n = 19$ (**D-F**), total
878 $n = 22$ (**E-G**), $n = 31$ (**H-I**), and $n = 38$ (**J-K**). (**B-K**) Biological replicates are individual mice, with
879 group means from individual experiments plotted as open circles with black lines connecting
880 experimental and control groups. Data are pooled from 3 experiments (**D-G**), 4 experiments (**H-**
881 **I**), or 5 experiments (**J-K**). Source data (**D-K**) are provided in a source data file.
882


883

884


885 **Fig. 4 Brain T cell responses are potentiated in MG^{STAT1Δ} mice relative to WT controls.** WT
886 and MG^{STAT1Δ} mice were intraperitoneally infected with 10 cysts of the Me49 strain of *T. gondii*
887 and brains were analyzed by flow cytometry at 12 and 15 DPI. (A-B) CD3+CD4+ and CD3+CD8+
888 cell count enumerated for whole brain and (C-D) IFN- γ protein expression at 12 DPI. (E-F)
889 CD3+CD4+ and CD3+CD8+ cell count enumerated for whole brain and (G-H) IFN- γ protein
890 expression at 15 DPI. ns = not significant, and *** = p < 0.001. Statistical significance was
891 determined by two-way randomized block ANOVA. Data are pooled from 3 (A-D & G-H), or 4 (E-
892 F) separate experiments, with total n = 19 (A-B), n = 24 (C-D), n = 28 (E-F), and n = 21 (G-H).
893 Biological replicates are individual mice, with group means from individual experiments plotted as

894 open circles with black lines connecting experimental and control groups. Source data (**A-H**) are
895 provided in a source data file.

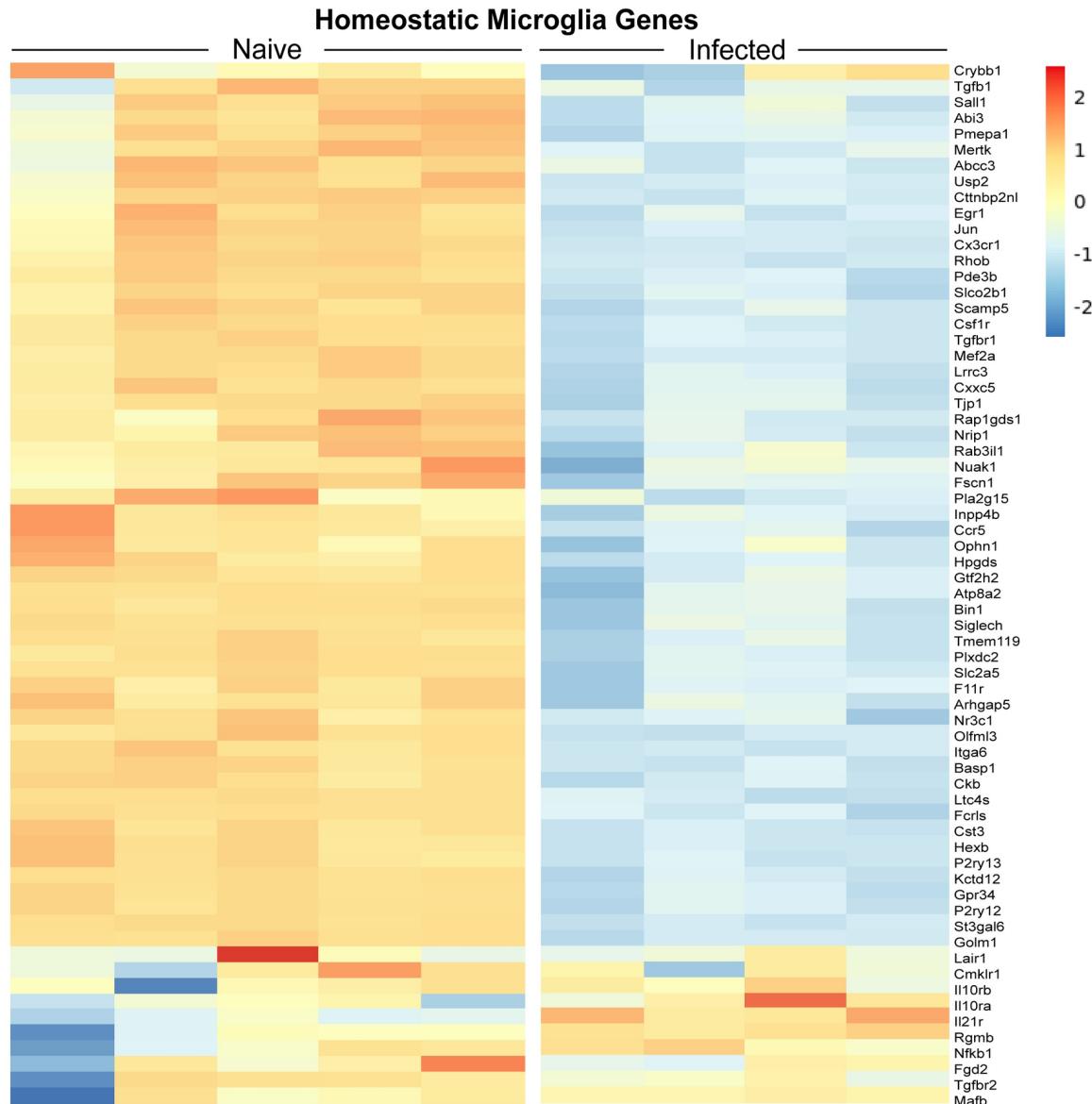

897 **Fig. 5 STAT1-deficient microglia fail to upregulate genes encoding critical anti-parasitic**
898 **cytosolic proteins.** WT and MG^{STAT1 Δ} mice were intraperitoneally infected with 10 cysts of the
899 Me49 strain of *T. gondii*, and brain-resident microglia were FACS-sorted and RNA-sequenced at
900 12 DPI. **(A)** Gene ontology (GO) terms statistically enriched in WT relative to MG^{STAT1 Δ} microglia.
901 GO terms were selected based on interest and plotted enrichment scores indicate the $-\log_{10}$ of
902 enrichment p value, based on Kolmogorov-Smirnov (KS) analysis. **(B)** Volcano plot. **(C-D)** Heat
903 maps displaying VST-normalized, hierarchically-clustered significantly differentially expressed
904 microglial homeostatic genes **(C)** and disease-associated microglia genes **(D)** previously reported
905 as markers of disease-associated microglia (DAM) across neuroinflammatory conditions. **(E)**
906 Heatmap displaying genes from the GO Term “Defense response to protozoan” (GO:0042832) in
907 WT vs. MG^{STAT1 Δ} mice. **(F)** Normalized read count of IRG- and GBP-family proteins expressed by
908 microglia and differentially regulated by STAT1, with p values indicating BH-adjusted p -values
909 from the full gene expression analysis in DESeq2.

910

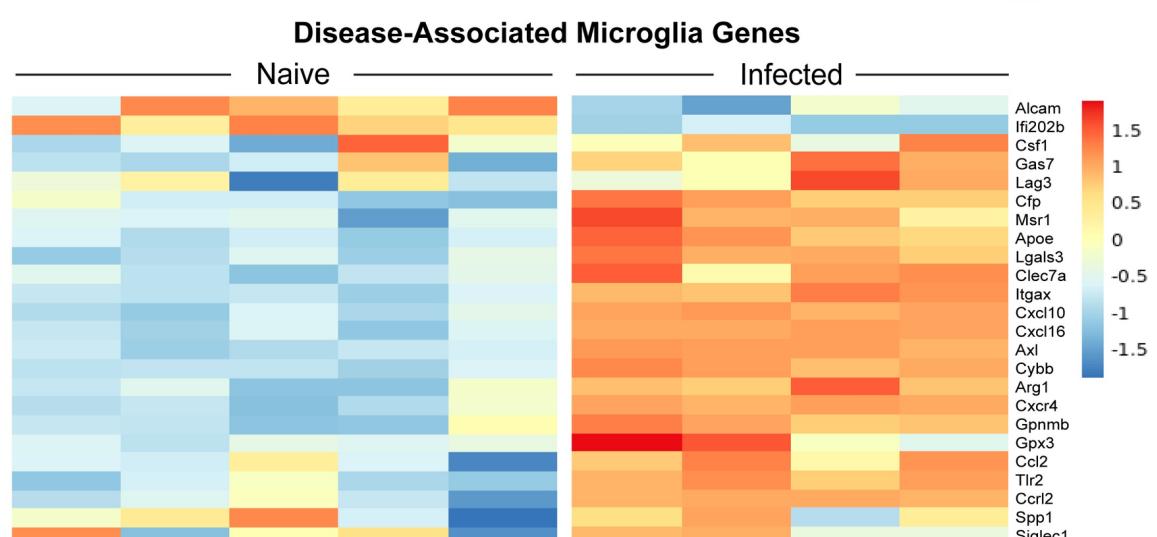
913 **Fig. 6 Microglial STAT1-deficiency results in a skewing of *T. gondii* toward its replicative**
914 **form.** WT and MG^{STAT1 Δ} mice were intraperitoneally infected with 10 cysts of the Me49 strain of
915 *T. gondii* and brains were analyzed by confocal microscopy and RT-qPCR at 15 DPI. **(A-B)**
916 Representative 10x immunofluorescent confocal Z-stack images of *T. gondii* inflammatory foci in
917 infected brains. White square indicates example foci, with insets providing zoomed detail. **(C-E)**
918 RT-qPCR analysis of *T. gondii* relative gene expression of *Sag1* (tachyzoite-specific gene), *Bag1*
919 (bradyzoite-specific gene), and *Act1* (non-stage-specific gene) analyzed using *t* tests. **(F-G)**
920 Representative 40x Immunofluorescent images of microglial-parasite interactions in infected
921 brains. White square indicates *T. gondii* vacuole(s) in maximum projection view, with insets
922 providing zoomed detail in single-plane view (Slice). **(A-B)** and **(F-G)** ZsGreen is indicated green,
923 and anti-Me49 staining is indicated in magenta. Scale bar = 150 μ m **(A-B)** and 40 μ m **(F-G)**. n =
924 3-4 mice per group **(C-E)**. ns = not significant, * = $p < 0.05$, *** = $p < 0.001$.

925

926


927 **Supplementary Figure 1 | Example gating strategy for brain immune cells.** Myeloid and T
928 cells isolated from mice with ZsGreen+ microglia were analyzed via flow cytometry. (A-C) For all
929 panels, cells were pre-gated on singlets (A), then live cells using a viability dye (B). (C) Cells were
930 gated to identify CD45 hi (brain-infiltrating) and CD45 int (brain-resident) immune cells. (D)

931 Microglia were gated based on CD45 intermediate expression, ZsGreen and CD11b expression,
932 and (E-F) MHC II positivity was assessed using FMO. (G) Infiltrating myeloid cells were gated
933 based on CD45 hi expression, and the expression of both CD11b and Ly6C. (H-I) iNOS
934 expression was determined via FMO gating. (J-K) T cells were gated based on the expression of
935 CD3 and CD4 or CD8. (L-M) IFN- γ expression on CD3+CD4+ and CD3+CD8+ cells was
936 determined based on FMO positivity.


937

938

A

B

940

941 **Supplemental Figure 2 | RNA sequencing analysis of naïve vs. *T. gondii*-infected WT**

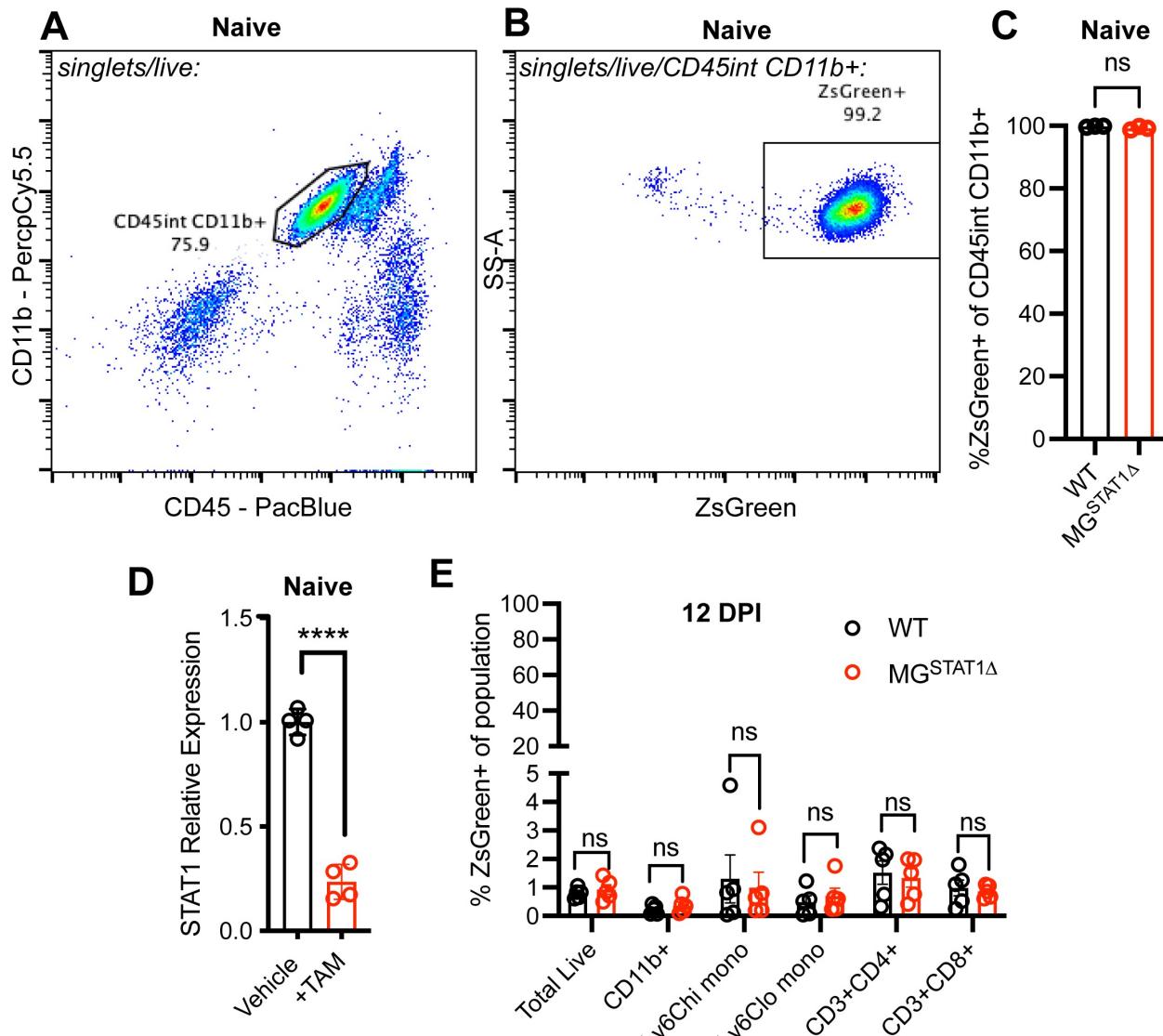
942 **microglia.** Microglia from wild-type naïve or wild-type mice infected with *T. gondii* for 4 weeks

943 were FACS-sorted and RNA-sequenced at 4 weeks post-infection. **(A-B)** Heat maps displaying

944 hierarchically-clustered gene expression from regularized log transformed gene abundance

945 counts. Heatmap data display the full set of significantly differentially expressed microglial

946 homeostatic genes **(A)**, or disease-associated microglia genes **(B)**, shared across


947 neurodegenerative models investigated in *Krasemann et al.*, 2017 and reflected in the naïve vs.

948 *T. gondii*-infected DESeq2 dataset. Statistical significance was defined in the differential gene

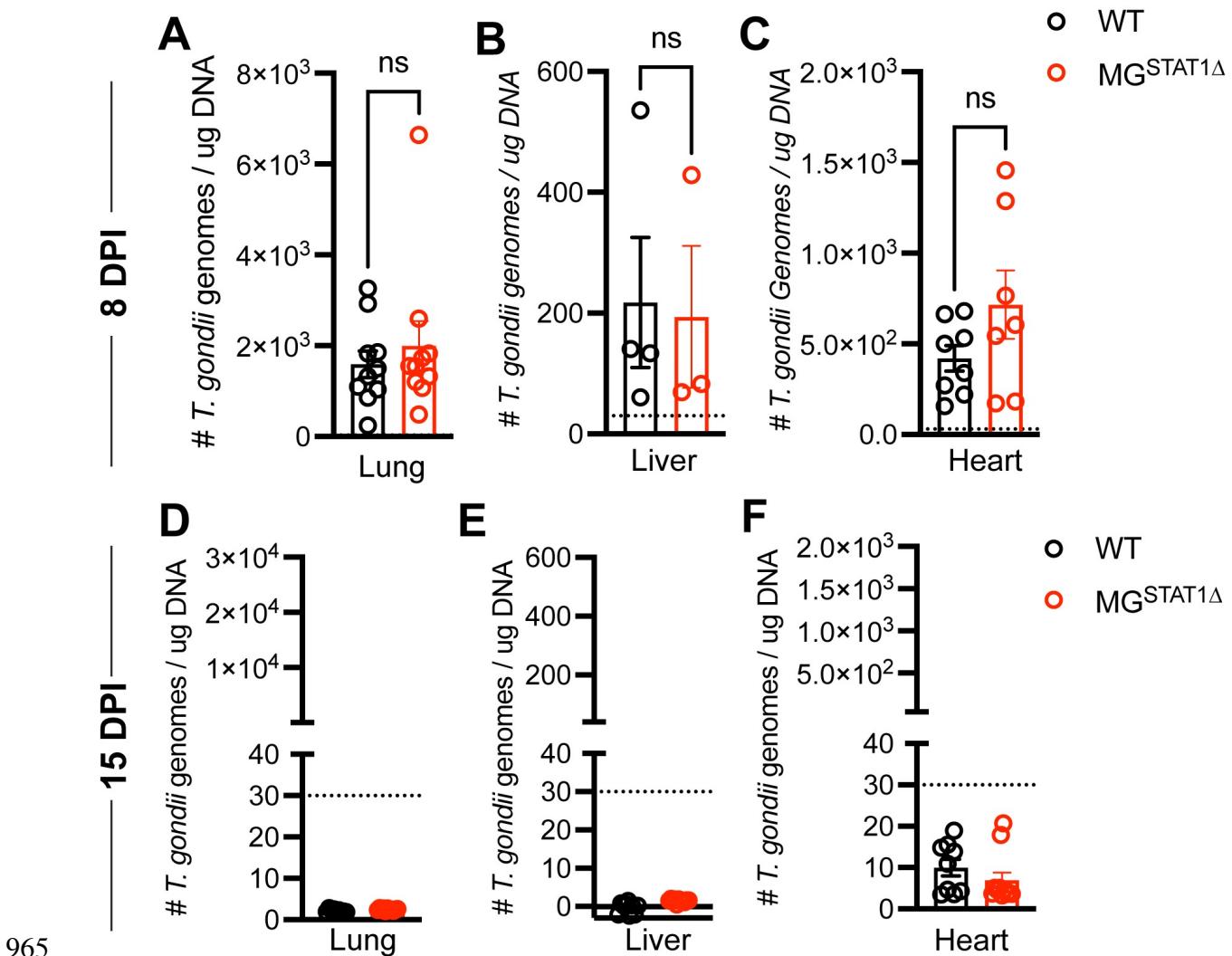
949 expression analysis as a BH adjusted *p* value < 0.05. *n* = 4-5 mice per group.

950

951

952

953 **Supplemental Figure 3 | Validation of cre activity and STAT1 excision in MG^{STAT1Δ} mice.**


954 Naïve microglia and microglia isolated from brains at 12 DPI were analyzed by flow cytometry or
955 RT-qPCR for relative gene expression. (A-B) Representative FACS plots indicating gating
956 strategy for validating microglial ZsGreen expression in naïve mice. (C) Flow cytometric
957 quantification of ZsGreen expression in total CD45^{int} CD11b+ cells in naïve WT or MG^{STAT1Δ} mice.
958 (D) RT-qPCR quantification of *Stat1* relative expression in microglia that were magnetically
959 enriched from naïve vehicle or tamoxifen (TAM)-treated MG^{STAT1Δ} mice. (E) Flow cytometric
960 quantification of ZsGreen expression in various immune populations isolated from blood at 12

961 DPI, in WT or MG^{STAT1 Δ} mice. Statistical significance was determined via unpaired *t* test (**C-E**),

962 with $n = 3-5$ mice per group (**C-E**). ns = not significant; **** = $p < 10^{-4}$.

963

964

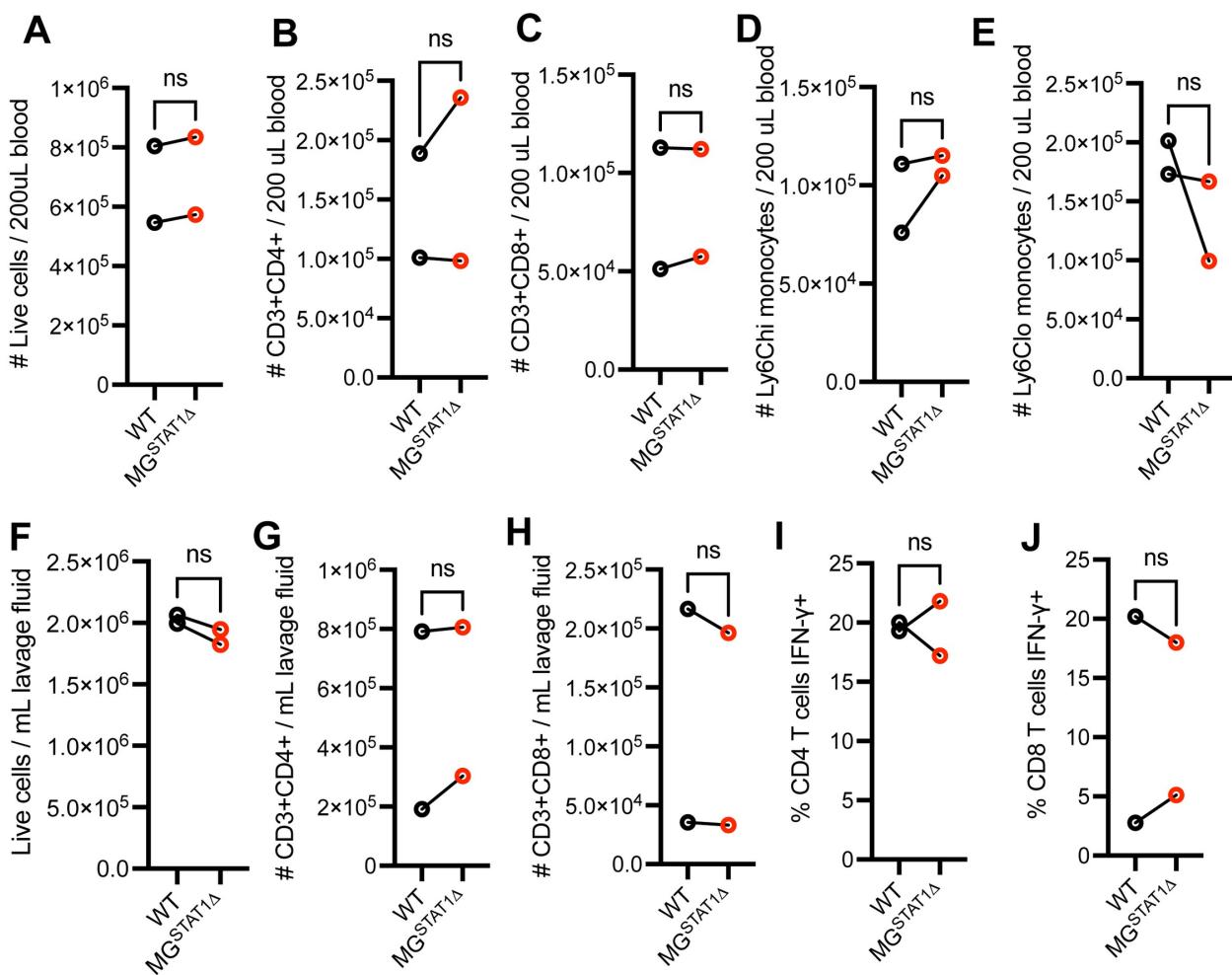
965 **Supplemental Figure 4 | *T. gondii* burden in peripheral tissues in WT and $\text{MG}^{\text{STAT1}\Delta}$ mice.**

966 WT and $\text{MG}^{\text{STAT1}\Delta}$ mice were intraperitoneally infected with 10 cysts of the Me49 strain of *T. gondii*,

967 and peripheral tissues were harvested and analyzed by qPCR for parasite genomic DNA, relative

968 to total tissue DNA. Parasite burden was quantified at 8 DPI in lung (A), liver (B), and heart (C)

969 tissue. Parasite burden was quantified at 15 DPI in lung (D), liver (E), and heart (F) tissue. (A-C)

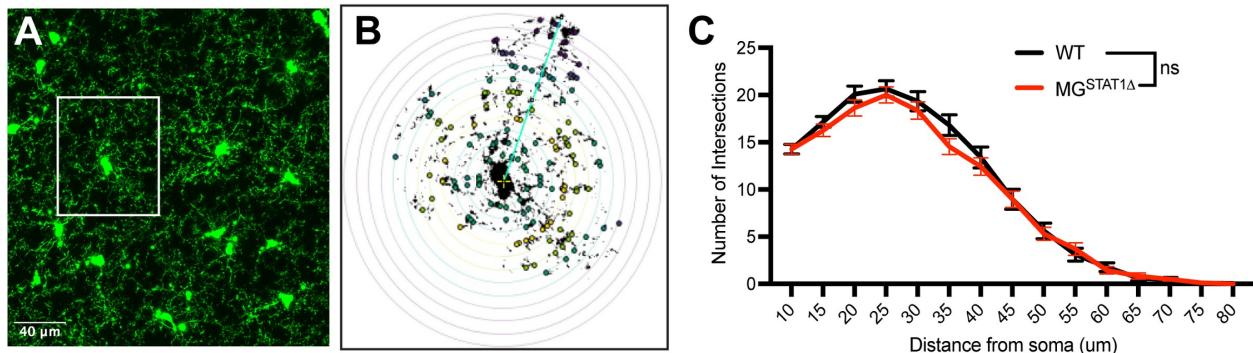

970 Statistical significance was determined using randomized block ANOVA using compiled data from

971 2-3 experiments with total $n = 20$ (A) and total $n = 15$ (C), or via unpaired t test with $n = 3-4$ mice

972 per group (B). Dotted line on y axis denotes assay limit of detection, based on standard curve. ns

973 = not significant.

975



976

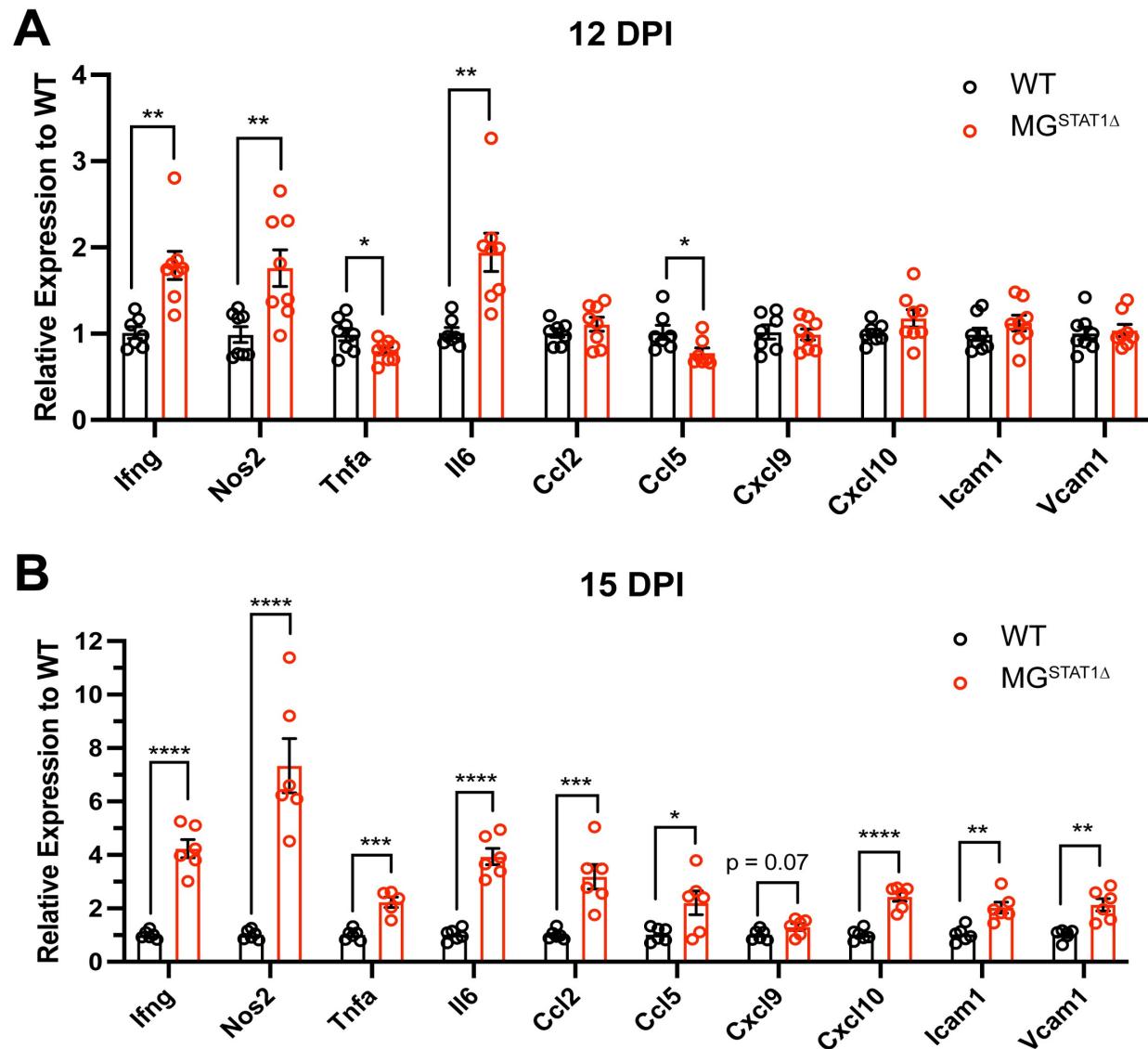
977 **Supplemental Figure 5 | WT and MG^{STAT1 Δ} mice display equivalent immune activation in**
978 **peripheral tissues during *T. gondii* challenge.** WT and MG^{STAT1 Δ} mice were intraperitoneally
979 infected with 10 cysts of the Me49 strain of *T. gondii*, and immune cells from blood and peritoneal
980 fluid were analyzed by flow cytometry. (A-E) Flow cytometric quantification of total live immune
981 cells (A), CD3+CD4+ T cell count (B), CD3+CD8+ T cell count (C), CD11b+Ly6Chi monocytes
982 (D), and CD11b+Ly6Clo monocytes (E), calculated from blood. (F-J) Quantification of total live
983 cells (F), number of CD3+CD4+ T cells, (G) number of CD3+CD8+ T cells (H), and CD4+ or CD8+
984 T cell expression of IFN- γ (I-J) isolated from the peritoneal cavity at 8 DPI. Statistical significance
985 was determined by two-way randomized block ANOVA (A-J). ns = not significant, total n = 22

986 from two pooled experiments (**A-E**), or total $n = 16$ from two pooled experiments (**F-J**). Biological
987 replicates are individual mice, with group means from individual experiments plotted as open
988 circles with black lines connecting experimental and control groups. Source data (**A-H**) are
989 provided in a source data file.

990

991
992
993
994
995
996
997
998
999
1000

1001


Supplementary Figure 6 | Morphometric analysis of WT and STAT1-deficient microglia.
To analyze microglial activation, Sholl analysis was performed on microglia from the somato-motor cortex of naïve WT and MG^{STAT1Δ} mice. (A) ZsGreen+ microglia were imaged using a confocal microscope, and images were processed into a maximum projection using Fiji. (B) Images were made binary, microglia were manually isolated to determine cell process continuity, and the Sholl analysis Fiji plugin was executed to record intersections at varying soma distances. (C) Quantification of Sholl data via two-way ANOVA with Sidak's multiple comparisons test, $n = 64-67$ microglia from 3 mice per group. (A) Scale bar = 40 μ m.

1003 **Supplemental Figure 7 | Microglial antigen presentation machinery is regulated by STAT1**
1004 **during *T. gondii* infection.** Microglia were isolated from naïve or 12 DPI infected WT or MG^{STAT1 Δ}
1005 mouse brains and analyzed by flow cytometry and confocal microscopy. Flow cytometric analysis
1006 of microglial major histocompatibility complex and co-stimulatory molecules in (A) naïve brains,
1007 and (B) 12 DPI brains. (C-D) Immunohistochemical analysis of MHC II positivity by confocal
1008 microscopy; scale bar = 40 um, blue indicates MHC II, and green indicates ZsGreen fluorescence.
1009 *n* = 2-3 per group (A-B). ns = not significant, ** = *p* <0.01, *** = *p* < 0.001.

1010

1011
1012
1013

1024
1025
1026
1027

Supplementary Table 1

Reagent	Sequence
Toxo 529bp RE Forward Primer	5'-CAG TCC TGA TAT CTC TCC TCC AAG A-3'
Toxo 529bp RE Reverse Primer	5'- CAC AGA AGG GAC AGA AGT CGA A-3'
Toxo 529bp RE Probe	5'-/56-FAM/CTA CAG +A+CG+A+TGC C/3IABkFQ/-3'
Toxo Sag1 Forward Primer	5'-GGA TCG CCT GAG AAG CAT-3'
Toxo Sag1 Primer Reverse Primer	5'-ATG GAA ACG TGA CTG GCT-3'
Toxo Sag1 Probe	5'-/56-FAM/CT GTA CCG T/Zen/G CAA CTG GAG TTT GC/3IABkFQ/-3'
Toxo Bag1 Forward Primer	5'-CGT GGA GTT CGA CAG CAA-3'
Toxo Bag1 Reverse Primer	5'-ATA ACG ATG GCT CCG TTG TC-3'
Toxo Bag1 Probe	5'-/56-FAM/TT TGG CTG A/Zen/C TTG CCA GGT CTT CA/3IABkFQ/-3'
Toxo Act1 Forward Primer	5'-CGT GAG AGA ATG ACC CAG ATT AT-3'
Toxo Act1 Reverse Primer	5'-ACC GGA GGA GTA CAG AGA AA-3'
Toxo Act1 Probe	5'-/56-FAM/TC GAA ACC T/Zen/T TAA CGT CCC TGC CA/3IABkFQ/-3'

1028