

1 Light-dependent modulation of protein localization 2 and function in living bacteria cells

3 Ryan McQuillen* (ORCID 0000-0002-0399-5248), Xinxing Yang (ORCID 0000-0002-
4 2101-9881), Christopher H. Bohrer, Joshua W. McCausland (ORCID 0000-0001-6585-
5 0506), & Jie Xiao[†] (ORCID 0000-0003-1433-5437)

6 *Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University
7 School of Medicine, Baltimore, MD, USA.*

8 *Current address: ryan.mcquillen@jhuapl.edu

9 [†]Correspondence should be addressed to xiao@jhmi.edu

10

11

Abstract

12 Most bacteria lack membrane-enclosed organelles to compartmentalize cellular
13 processes. In lieu of physical compartments, bacterial proteins are often recruited to
14 macromolecular scaffolds at specific subcellular locations to carry out their functions.
15 Consequently, the ability to modulate a protein's subcellular location with high precision
16 and speed bears the potential to manipulate its corresponding cellular functions. Here
17 we demonstrate that the CRY2/CIB1 system from *Arabidopsis thaliana* can be used to
18 rapidly direct proteins to different subcellular locations inside live *E. coli* cells including
19 the nucleoid, the cell pole, membrane, and the midcell division plane. We further show
20 that such light-induced re-localization can be used to rapidly inhibit cytokinesis in
21 actively dividing *E. coli* cells. Finally, we demonstrate that the CRY2/CIBN binding

22 kinetics can be modulated by green light, adding a new dimension of control to the
23 system.

24 **INTRODUCTION**

25 Compartmentalizing biological processes at specific subcellular locations for specialized
26 functions is a general strategy employed by cells across all domains of life. Eukaryotic
27 cells often achieve subcellular localization using membrane-enclosed organelles.
28 Bacteria cells generally lack membranous organelles, but can also achieve subcellular
29 localization by directing molecules to different scaffolds made of protein, DNA, RNA, or
30 the plasma membrane to form stable assemblies and/or phase-separated
31 condensates¹. These subcellular scaffolds underlie a number of fundamental cellular
32 processes including partitioning of cellular content, chromosome organization and
33 segregation, cell elongation and division, as well as appendage growth and receptor
34 clustering^{1,2}. Controlling the recruitment of proteins to subcellular scaffolds and/or
35 modulating scaffolds' assembly states has proven to be a useful tool to probe and
36 manipulate their functions³.

37
38 Previously, chemically induced protein dimerization platforms such as rapamycin-based
39 FKBP⁴, coumermycin-based GyrB⁵ and gibberellin-based⁶ systems have been
40 employed to manipulate subcellular localizations of various proteins in both bacteria⁷
41 and eukaryotic⁸ cells. While relatively fast and robust, these methods lack the precise
42 spatial targeting ability and are often irreversible on fast timescales⁴. In contrast,
43 optogenetic-based systems use light-modulated binding of a photoreceptor either with
44 itself or with its associated protein ligand and is reversible^{9,10}; the application of light

45 activation can be precisely defined in space to target specific cell subpopulations and
46 even within a single cell's volume¹¹⁻¹⁶. Currently available light-induced protein-protein
47 interaction systems have been extensively characterized in mammalian cell systems³
48 and have kinetic rates on timescales ranging from milliseconds to hours¹⁷. Despite the
49 widespread use of optogenetic systems in eukaryotic cells, their use in bacteria is only
50 beginning to emerge³. The major difficulty of their implementation resides in the bacteria
51 cell's 1000-fold smaller cellular volume compared to that of a mammalian cell¹⁸. Such a
52 small cytoplasmic volume imposes strict requirements on the concentration and kinetic
53 ranges of the optogenetic systems in order to achieve a high signal contrast and spatial
54 resolution^{18,19}.

55
56 One particular system, the CRY2/CIB1 system from *Arabidopsis thaliana*, can be
57 induced by a low dose of blue light (peak activation wavelength at 468 nm) and exhibits
58 rapid heterodimerization kinetics with tight²⁰, but reversible¹⁹, binding. These properties
59 make it an attractive candidate for use in model bacterial systems. The system is
60 composed of the N-terminal domain (amino acids 1-170) of AtCIB1 (CIBN) and the
61 photolyase homology region²¹ (amino acids 1-498) of AtCRY2 (CRY2)^{19,22}. Here we
62 show that this optogenetic system can be used to rapidly target proteins to major
63 subcellular compartments in living *Escherichia coli* cells (**Fig. 1a**, left). We further
64 demonstrate that such an optogenetically controlled system can be used to inhibit
65 cytokinesis in living *E. coli* cells. Finally, we show that the association and dissociation
66 kinetics of the system can be modulated by green light, adding a new dimension of
67 control to suit different synthetic biological systems.

68

69

70

71 **RESULTS**

72 **General considerations for using the CRY2/CIBN system in *Escherichia coli* cells**

73 Previous studies have shown that CIBN can be tagged at either its N- or C-terminus
74 without impeding its binding to CRY2, whereas CRY2 functions the best with its N-
75 terminus free²³. Therefore, in the following experiments, we fused CIBN at its N- or C-
76 terminus to an array of proteins that localize to a subcellular compartment of interest to
77 serve as the bait for the recruitment platform and fused a fluorescent reporter, mCherry,
78 to the C-terminus of CRY2 to serve as a universal prey (**Fig. 1a**, right). The use of the
79 same CRY2-mCherry reporter to a variety of subcellular recruitment platforms allows us
80 to compare recruitment kinetics between different systems.

81 Next, to attain the desired control of CRY2/CIBN expression levels inside small bacterial
82 cells in a variety of experimental scenarios, we exogenously expressed the CRY2/CIBN
83 fusion proteins either co-transcriptionally from a single plasmid where the two fusions
84 were coupled under the control of a *lac*-inducible promotor, or independently from a
85 two-plasmid system where the CRY2 and CIBN fusions were under the control of
86 arabinose- and *lac*-inducible promoters, respectively (**Fig. 1b**). Whether the one- or two-
87 plasmid expression system was employed depended on specific considerations for
88 each experiment outlined below. We found that the flexibility in modulating the
89 expression levels of the CRY2 and CIBN fusion proteins is important for minimizing

90 light-independent background interaction¹⁹ while maintaining a fast light-dependent
91 recruitment speed (discussed below).

92 **Rapid, reversible and light-dependent recruitment of cytoplasmic protein to**
93 **chromosomal DNA**

94 In bacterial cells, the nucleoid is the major subcellular location for all DNA-related
95 processes. The ability to optically control chromosomal DNA topology (e.g., the
96 formation of DNA loops or topological domains) or the binding of transcription factors on
97 specific DNA sequences has proven useful to study transcription dynamics and gene
98 expression^{19,24,25} in mammalian and bacterial cells^{24,26-29}. Therefore, we chose the
99 chromosomal DNA as the first platform to develop a light-dependent recruitment assay
100 of cytoplasmic proteins.

101 To visualize the light-dependent chromosomal recruitment process, we used an *E. coli*
102 strain harboring a 240X *tetO* array sequence inserted near *oriC* in its chromosome³⁰
103 (**Fig. 2a**). The presence of tandem *tetO* arrays enhances the mCherry signal strength
104 and facilitates the characterization of the recruitment kinetics. We then fused CIBN to
105 the C-terminus of TetR, the tetracycline repressor that binds tightly to its cognate *tetO*
106 operator sequence³¹ and co-transcriptionally expressed the TetR-CIBN and CRY2-
107 mCherry reporter fusions exogenously from a single plasmid (**Fig. 1c**, left). The use of
108 the coupled expression system helps to maintain a low and near equimolar expression
109 of the two fusions proteins to best accommodate the 1:1 binding ratio of TetR-CIBN and
110 CRY2-mCherry, effectively minimizing the background signal that would arise from
111 excess CRY2-mCherry reporter. In the absence of the blue (488 nm) activation light,

112 CRY2-mCherry remained homogenously distributed in the cytoplasm as expected for
113 freely diffusing CRY2-mCherry in its unbound state (**Fig. 2b**, left). Upon exposure to 488
114 nm activation light pulses (30 ms pulses at 84.6 W/cm² delivered every 5 s over a 200 s
115 period), we observed rapid formation of CRY2-mCherry foci at locations representative
116 of individual *oriC* sites in almost all cells in the view field (96 ± 1.3 %, $\mu \pm$ s.e.m., mean ±
117 standard error of the mean, $N = 3$ independent experiments of 1359 cells in total, **Fig.**
118 **2b**, right, **Fig. 2c**, top, **Supplementary Video 1**) across a large range of CRY2-mCherry
119 expression levels in individual cells. Notably, the cytoplasmic distribution of CRY2-
120 mCherry remained unchanged in control cells exposed to the 488 nm light but that did
121 not contain the 240X *tetO* array (**Fig. 2c**, middle panel, **Supplementary Video 2**), or in
122 cells that contained the *tetO* array but not exposed to the 488 nm activation light (**Fig.**
123 **2c**, bottom panel, **Supplementary Video 3**). Quantification of the CRY2-mCherry signal
124 (percentage of fluorescence increase compared to that before activation) at foci
125 positions over time showed that 90% recruitment was reached within 85 s ($\tau_{0.9} = 85 \pm 9$
126 s, $\mu \pm$ s.e.m., $N = 3$ independent experiments of 442 cells in total, $\tau_{0.9}$ was used to show
127 the extent of reaction completion as the curve was not well described by an exponential
128 function, **Fig. 2d**). These results demonstrate that the formation of CRY2-mCherry foci
129 is rapid and both light- and target-dependent.

130 In addition to its rapid association kinetics, the CRY2/CIBN system is also reversible in
131 the absence of blue light¹⁹. When we allowed the CRY2/CIBN system to relax in the
132 absence of blue light following the complete localization of CRY2-mCherry to *oriC* foci
133 (**Fig. 2e**, first blue shaded region), we observed an almost complete reversion of CRY2-
134 mCherry foci back to a uniform cytoplasmic distribution after ~ 40 minutes (**Fig. 2e**,

135 **Supplementary Figure 1**). The decay curve was well described by an exponential
136 function with a relaxation time constant of ~ 9 minutes ($\tau_{\text{rev}} = 9 \pm 5 \text{ min}$, $\mu \pm \text{s.e.m.}$, $N = 3$
137 independent experiments of 150 cells, **Fig. 2e**, shaded grey region). This relaxation time
138 scale is consistent with the reversion times measured previously in mammalian cells^{17,19}.
139 Additionally, relaxed cells could be activated once again^{17,19} to re-form the same *oriC*
140 foci with the same recruitment rate and final plateau (**Fig. 2e**, second blue shaded
141 region and **Supplementary Video 4**). In summary, these results clearly demonstrate
142 that the CRY2/CIBN system can be used to induce reversible recruitment of a
143 cytoplasmic protein to chromosomal DNAs rapidly and efficiently in live *E. coli* cells.

144 **Rapid, light-dependent recruitment of cytoplasmic protein to cell pole**

145 In bacteria, asymmetric cell division is often achieved by partitioning proteins to each
146 incipient daughter cell *via* cell pole localized protein scaffolds³². In symmetrically dividing
147 bacteria such as *E. coli*, the two poles are also differentiated in age, and proteins can be
148 targeted specifically to the old cell pole to produce a dimorphic cell population^{33,34}.
149 Furthermore, the cell pole can be engineered into an optically controlled apical protein
150 sink to present an inert space away from the cytoplasmic environment³⁵.

151 To develop a light-triggered cell pole recruitment platform, we took advantage of a
152 protein called PopZ from *Caulobacter crescentus*. PopZ forms a stable, liquid droplet-
153 like matrix enriched at the old cell pole when heterologously expressed in *E. coli* cells³⁶⁻
154 ³⁸ (**Fig. 2f**). To visualize the cell pole localization of PopZ, we fused CIBN-GFP to the N
155 terminus of PopZ and placed the fusion gene under a *lac*-inducible promoter on a
156 plasmid (**Fig. 1b**, right). After optimizing the expression of the PopZ fusion, we observed

157 large, stable CIBN-GFP-PopZ foci at the cell poles of nearly every cell (**Supplementary**
158 **Fig. 2**). We then expressed the CRY2-mCherry fusion under the control of an
159 arabinose-inducible promoter from a separate vector (**Fig. 1b**, right). Here we used the
160 two-plasmid system for independent expression control of the two fusion proteins,
161 because the liquid droplet nature of the PopZ foci can accommodate a very high
162 expression level of CIBN-GFP-PopZ, which ensures a stable cell pole localization and
163 to provide a sufficient number of binding sites for CRY2-mCherry.

164 As shown in **Fig. 2g** and **Supplementary Video 5**, following a single 100 ms blue light
165 activation pulse ($P_{488} = 8.5 \text{ W/cm}^2$), we observed rapid formation of CRY2-mCherry foci
166 at the cell poles. Importantly, in cells exposed to blue light only expressing GFP-PopZ,
167 but not CIBN-GFP-PopZ (**Fig. 2h**, middle panel and **Supplementary Video 6**), or in
168 cells without blue light activation (**Fig. 2h**, bottom panel and **Supplementary Video 7**),
169 we observed unchanged, homogenous distribution of CRY2-mCherry signal in the
170 cytoplasm throughout the time course of the experiment. Quantification of the percent
171 increase in CRY2-mCherry signal at the cell poles revealed that 90% recruitment was
172 achieved within $\sim 8 \text{ s}$ ($\tau_{0.9} = 8.3 \pm 0.9 \text{ s}$, $\mu \pm \text{s.e.m.}$, $N = 3$ repeats of 315 cells in total,
173 **Fig. 2i**). Note that in this system, the recruitment of cytoplasmic CRY2-mCherry was
174 sped up to ~ 10 -fold compared to that in the DNA recruitment assay. The faster kinetics
175 are most likely driven by the higher expression levels of both CIBN-GFP-PopZ and
176 CRY2-mCherry in the system.

177 **Recruiting protein cargo to the inner membrane using CRY2/CIBN**

178 In many cell types, the inner membrane (IM) is the site where a diverse array of signaling
179 pathways begin. In bacteria, the IM also serves as the site of assembly for a number of
180 macromolecular structures including the divisome³⁹, the flagellum⁴⁰, and chemotaxis receptor
181 clusters⁴¹. In mammalian cells, synthetic activation of membrane-based signaling cascades be
182 achieved using cytoplasmic CRY2-tagged proteins that are recruited to the plasma membrane
183 by membrane-anchored CIBN^{16,19,23,42,43}. To develop a light-dependent membrane
184 recruitment assay in bacteria, we fused CIBN-GFP to an amphipathic helix from *Bacillus*
185 *subtilis* (*BsMTS*)⁴⁴ and expressed it from a *lac*-inducible promotor independently from
186 the arabinose-inducible CRY2-mCherry on a second plasmid. Here we used an
187 exogenous membrane anchor to avoid potential interference with endogenous *E. coli*
188 membrane proteins. *BsMTS*-GFP-CIBN showed uniform membrane localization as
189 expected (**Supplementary Fig. 3a**, left). Upon blue light activation (50 ms pulses at
190 84.6 W/cm² delivered every 5 s), we observed the formation of dynamic CRY2-mCherry
191 puncta that co-localized with CIBN-GFP-*BsMTS* puncta along the IM (**Supplementary**
192 **Fig. 3b**, & **Supplementary Video 8**). The distributions of these puncta were distinct
193 from the near- uniform distribution of CIBN-GFP-*BsMTS* along the IM surface prior to
194 activation with blue light (**Supplementary Fig. 3a**, left), or that of directly membrane-
195 targeted CRY2-GFP-*BsMTS* (**Supplementary Fig. 3a**, right). We reason that the
196 puncta formation along the IM of *BsMTS*-CIBN-GFP and CRY2-mCherry upon light
197 activation is likely indicative of the formation of individual membrane-tethered CIBN-
198 CRY2 hetero clusters as previously predicated^{12,23,45}. Interestingly, despite a large
199 number of strategies employed (**Supplementary Table 1**, reference ⁴⁶), we did not
200 observe uniform co-localization of CRY2 and CIBN on the IM of *E. coli* cells in contrast

201 to what was observed previously in mammalian cells^{12,19}. Further experiments are
202 required to investigate this phenomenon.

203

204 **Rapid, light-dependent recruitment of cytoplasmic proteins to the midcell**

205 In almost all bacteria studied to date, the essential process of cytokinesis is mediated by
206 the formation of a large macromolecular complex, termed the divisome, at the future
207 division plane of the cell⁴⁷. In *E. coli*, the divisome is comprised of more than 30 different
208 proteins, which are recruited to the midcell by the essential tubulin homologue, FtsZ^{39,48}.
209 FtsZ polymerizes at the midcell to assemble into a ring-like structure, and new data
210 suggests that the dynamics of the Z-ring are essential to coordinate the action of the
211 divisome for cell wall constriction and septum morphogenesis during cell division⁴⁹⁻⁵¹.
212 Achieving a means to rapidly and reversibly deliver proteins to the divisome and/or
213 modulate the assembly of the divisome at different cell division stages would provide a
214 new way to probe the dependence of different divisome proteins and their functions on
215 the assembly state of the divisome specifically at the division site⁵².

216 To achieve optically controlled delivery of proteins to the cell division plane, we first
217 tested the ability to recruit CRY2-mCherry to the Z-ring by creating a C-terminal fusion
218 of CIBN to ZapA (**Fig. 3a**). ZapA is a conserved Z-ring-associated protein, which has
219 served as a faithful Z-ring marker in previous studies⁵³⁻⁵⁶. Similar to the pole-recruitment
220 platform, we expressed the ZapA-CIBN fusion independently from the CRY2-mCherry
221 reporter using the two-plasmid expression system so that their expression levels could

222 be optimized separately. Upon exposing cells to a single 100 ms pulse of 488 nm
223 activation light ($P_{488} = 8.5 \text{ W/cm}^2$), we observed rapid midcell localization of CRY2-
224 mCherry fluorescence ($\tau_{0.9} = 9.3 \pm 0.15 \text{ s}$, $\mu \pm \text{s.e.m.}$, $N = 3$ repeats of 443 cells in total,
225 **Fig. 3b-d, Supplementary Video 9**). Similar to what was observed in the chromosomal
226 DNA and cell pole recruitment assays, the midcell localization of CRY2-mCherry was
227 dependent on the blue activation light (**Fig. 3c**). These results demonstrate that
228 cytoplasmic proteins can be recruited to the Z-ring at the midcell rapidly and specifically
229 using the CRY2/CIBN system.

230 **Light-dependent destabilization of the Z-ring and inhibition of cell division**

231 We next used the midcell recruitment platform to develop a Light-induced Inhibition of
232 Cytokinesis (LInC) assay in live *E. coli* cells (**Fig. 3e**). In the LInC assay, we kept the
233 same ZapA-CIBN fusion as the bait, but fused a Z-ring antagonist, MinC, to CRY2 to
234 generate a CRY2-MinC fusion. MinC inhibits FtsZ polymerization *in vitro* and prevents
235 Z-ring assembly at the cell poles by forming a high to low concentration gradient from
236 the cell pole to the midcell with its membrane binding partner ATPase MinD⁵⁷. When
237 highly overexpressed by itself, MinC antagonizes Z-ring assembly at the midcell as
238 well⁵⁷⁻⁵⁹. We verified that the CRY2-MinC fusion is fully functional as it complemented a
239 *minC* deletion background (**Supplementary Fig. 4**). Therefore, by recruiting CRY2-
240 MinC to FtsZ-associated ZapA-CIBN, we expect to increase the local concentration of
241 MinC at the Z-ring, which may result in the destabilization of the Z-ring and subsequent
242 inhibition of cell division (**Fig. 3e**). To visualize the progress of Z-ring destabilization in

243 the LInC assay, we tagged the endogenous chromosomal copy of ZapA with mCherry
244 as the Z-ring marker^{53,54}.

245 We first established a growth and expression conditions under which cells ectopically
246 expressing the LInC system (ZapA-CIBN and CRY2-MinC) exhibited a near-WT midcell
247 Z-ring morphology and underwent successful cell division cycles in the absence of blue
248 light (**Supplementary Note 1**). Notably, these cells were moderately longer than
249 uninduced cells due to the presence of higher than WT CRY2-MinC concentrations ($L =$
250 $3.04 \pm 0.17 \mu\text{m}$, $\mu \pm \text{s.e.m.}$, $N = 3$ repeats of 638 cells in total compared to $L = 2.45 \pm$
251 $0.024 \mu\text{m}$, $\mu \pm \text{s.e.m.}$, $N = 3$ repeats of 223 cells in total for uninduced cells). We then
252 imaged the Z-ring morphology of these cells before and after exposing them to 100 ms
253 blue light pulses ($P_{488} = 84.6 \text{ W/cm}^2$) every 10 seconds for a period of 5 minutes (**Fig.**
254 **3f**). Before the activation light exposure, we quantified that on average $\sim 46\%$ of all the
255 cells harbored clear ZapA-mCherry localization at midcell, consistent with previous
256 reports that the Z-ring only assembles after a significant portion of the chromosome is
257 segregated⁶⁰. About 52% of these cells ($51.9 \pm 0.4\%$, $\mu \pm \text{s.e.m.}$, $N = 1658$ cells)
258 exhibited significantly broader and more diffuse ZapA-mCherry midcell fluorescence
259 upon exposure to blue light compared to that prior to light exposure (**Fig. 3f & g**),
260 indicating the destabilization of the Z-ring. In control cells with only the CRY2-MinC
261 fusion or without blue light activation, we observed significantly lower, $\sim 37\%$ ($36.5 \pm$
262 0.8% , $\mu \pm \text{s.e.m.}$, $N = 379$ cells) or $\sim 44\%$, ($43.8 \pm 0.4\%$, $\mu \pm \text{s.e.m.}$, $N = 1465$ cells),
263 cells exhibiting diminished ZapA-mCherry midcell fluorescence after a 5 min period,
264 indicative of the natural disassembly process of the Z-ring during cell division.
265 Interestingly, the extend of the Z-ring destabilization appeared to be dependent on the

266 cell division stage (**Fig. 3h, Supplementary Table 2**). We observed that after Z-ring
267 assembly, cells of relatively short lengths (indicative of earlier cell division stages)
268 showed significant destabilization of the Z-ring (**Fig. 3h**, blue) compared to cells of
269 longer lengths, or cell of similar lengths but without the activation light (**Fig. 3h**, grey).
270 Previous studies have shown that when the divisome matures and cell wall constriction
271 initiates, the Z-ring becomes denser and denser until it finally and rapidly disassembles
272 toward the end of the cell cycle^{61,62}. Therefore, it is possible that the LInC assay
273 destabilizes the Z-ring effectively only before the Z-ring becomes too dense to be
274 effectively depolymerized by MinC.

275 While we were able to achieve efficient and rapid Z-ring destabilization in cells judged
276 by their widened Z-ring morphology and the reduction in the midcell localization
277 percentage of FtsZ, it remained unclear whether these destabilized Z-rings were indeed
278 defective in cell division. To address this, we monitored cell division for a long period of
279 time in cells harboring the LInC system after induction of the system with blue light. As
280 shown in **Fig. 3i**, when we subjected LInC cells to 100 ms pulses of 488-nm activation
281 light ($P_{488} = 8.5 \text{ W/cm}^2$) and 561-nm imaging light ($P_{561} = 8.7 \text{ W/cm}^2$) every 5 minutes
282 for a twelve-hour period, we observed that the majority of these cells ceased division
283 and grew into long filaments instead. On average, ~ 76% ($N = 33$ cells) were unable to
284 divide during the 12-h period. Additionally, the average division time ($\tau_{\text{LInC}} = 355 \pm 120$
285 min, $\mu \pm \text{s.e.m.}$, $N = 3$ repeats of 33 cells in total) of the remaining ~ 24% cells that were
286 able to divide eventually was nearly 1.5 times longer than the mean division time of the
287 control group where the ZapA-CIBN bait fusion was absent ($\tau_{\text{control}} = 232 \pm 54$ min, $\mu \pm$
288 s.e.m. , $N = 3$ repeats of 31 cells in total). These observations indicated significant

289 deficiency of LInC cells in division. The inhibited cell division also correlated with
290 significantly destabilized Z-rings—in all long, filamentous cells, the midcell fluorescence
291 of ZapA-mCherry exhibited a wider spread, in contrast to the sharp midcell localization
292 prior to light exposure (**Fig. 3j**). Note that the inhibition of cell division in these cells was
293 not caused by photodamage due to the continuous illumination of the 488-nm activation
294 light and the 561-nm imaging light, because cells under the same induction and
295 illumination condition but ectopically expressing only CRY2-MinC grew and divided as
296 wild type cells (**Fig. 3i**, top row rightmost panel). Furthermore, the inhibition was 488-nm
297 light-dependent because cells expressing both CRY2-MinC and ZapA-CIBN in the
298 absence of the blue light grew normally as WT cells (**Fig. 3i**, bottom row rightmost
299 panel). Taken together, these results show that the CRY2/CIBN system can be used to
300 destabilize the Z-ring rapidly and inhibit cell division in living *E. coli* cells in a light-
301 dependent manner.

302 **CRY2/CIBN complex dissociation and activated CRY2 concentration are sensitive
303 to green light**

304 Previous studies have shown that the light sensitivity of CRY2 is imparted by its flavin
305 adenine dinucleotide (FAD) cofactor through a photocycle^{52,53} (**Fig. 4a**). In this cycle,
306 the redox state of CRY2's FAD is thought to mediate a conformational change in CRY2
307 to form a signaling-active state that is competent to bind CIB⁶³. Briefly, the fully oxidized
308 FAD^{ox} cofactor is in the resting inactive state. Following photoexcitation by blue light,
309 FAD^{ox} accepts an electron from a nearby tryptophan followed by protonation from an
310 aspartic acid to become the semi-reduced, stable semiquinone radical (FADH^o). This
311 redox state is thought to trigger a conformational change in CRY2 (denoted as CRY2^{*})

312 that allows for its binding to CIB^{64,65}. To complete the photocycle, semi-reduced FADH⁰
313 is reduced slowly to become FADH⁻, reversing the conformation change, after which it is
314 oxidized rapidly back to its fully-oxidized resting state (FAD^{OX}). Previous studies have
315 indicated that the semiquinone form FADH⁰ is the only green-absorbing species in
316 FAD's photocycle and that green light can deplete FADH⁰ *in vitro*⁶⁵. In short-day
317 entrained plants, green light leads to a delay in flowering, likely due to the increased
318 reduction of FADH⁰ to FADH⁻ under green light exposure^{54,55}. However, previous
319 characterization of CRY2/CIBN complex formation *in vivo* in heterologous expression
320 systems showed no sensitivity to green light¹⁹.

321 We reason that if the association/dissociation kinetics of the CRY2/CIBN are indeed
322 sensitive to green light, we could use green light (561 nm) in combination with blue
323 activation light to fine tune the kinetic behavior of the CRY2/CIBN system. To
324 investigate this possibility, we swapped the mCherry reporter with Halo⁶⁶, which can be
325 covalently labeled with a bright, photostable far-red organic dye⁶⁷ (JF646), allowing us to
326 avoid using green light to image the reporter. We verified that the extent of CRY2/CIBN
327 association indicated by the percentage increase in cells expressing the Halo-labeled
328 system exhibited a blue-light activation dose dependence (**Fig. 4b**) as expected¹⁹, and
329 that the final association plateau could be further increased using subsequent multiple
330 pulses of activation to recruit additional CRY2-Halo to the pole (**Supplementary Fig. 5**).
331 These results indicate that CRY2-Halo can be activated in a similar manner as CRY2-
332 mCherry by a 100 ms blue pulse, and that the final pole-enrichment of CRY2 is
333 dependent on the available level of activated CRY2, which can be modulated by the
334 intensity of the activation pulse.

335 Next, to investigate the influence of green light on CRY2/CIBN association, we
336 monitored CRY2/CIBN complex formation at the cell poles following a single 100 ms
337 pulse of 8.5 W/cm^2 blue activation light followed by a continuous pulse of green light of
338 different intensities (561 nm, from 8.71 to 970 W/cm^2) accompanying the imaging 647
339 nm light (50 ms exposure for 15 seconds). We found that while the time constant $\tau_{0.9}$
340 values did not appear to change significantly, the amount of CRY2 recruited to the cell
341 pole decreased significantly with increasing green light intensity (**Fig. 4c, right and left**
342 *panels* respectively, **Supplementary Fig. 6, Supplementary Table 3**). At the highest
343 green light intensity (970 W/cm^2), the pole-recruited CRY2 fraction was reduced to ~
344 50% compared to that in the absence of the green light. These observations indicate
345 that green light can potentially drive activated CRY2* back to the inactivated state even
346 before it forms a complex with CIBN, hence modulating the level of activated CRY2*
347 and subsequently the amount of CRY2*-CIBN complex formation in live *E. coli* cells.

348
349 To investigate whether green light also modulates CRY2/CIBN dissociation kinetics, we
350 light-induced CRY2-CIBN complex formation using blue light and then monitored the
351 dissociation kinetics of the complex in the presence or absence of green light (100 ms
352 pulses at 561 nm light 473 W/cm^2 delivered every 3 min). We found that the time
353 constant of the dissociation reaction decreased ~ 30%, from $18.3 \pm 8.18 \text{ min}$ ($N = 4$
354 repeats with 91 cells in total) to $12.7 \pm 5.70 \text{ min}$ ($\mu \pm \text{s.e.m.}$, $N = 4$ repeats with 62 cells
355 in total) in the presence of the green light, while the final plateau did not change
356 dramatically (**Fig. 4d, left and right panel** respectively, **Supplementary Fig. 7,**
357 **Supplementary Table 3**). This observation suggests that the green light can also act

358 upon activated CRY2* in complex with CIBN to drive it back to the inactivated form,
359 effectively speeding up the dissociation of the CRY2*-CIBN complex, likely through the
360 photoreduction of FADH⁰ within the CRY2*-CIBN complex.

361 **Discussion (<200 words)**

362 The landscape of optogenetic systems to induce protein-protein interactions inside living
363 cells is constantly growing^{3,68}. Optogenetic systems are especially useful for live-cell
364 imaging studies due to their rapid induction, reversible binding and spatial precision^{69,70}.
365 Here we demonstrate that the *Arabidopsis thaliana* CRY2/CIBN system (**Fig. 1a**), used
366 extensively in mammalian cell systems, can be applied in living *E. coli* cells to target a
367 protein cargo to different subcellular structures including the chromosomal DNA, cell
368 pole, inner membrane and the division plane at the midcell (**Fig. 1b**). We found that the
369 expression levels of CRY2/CIBN system in bacteria cells can be varied to achieve
370 recruitment halftimes ranging from the seconds to minutes timescales similar to those
371 observed in mammalian cells^{19,23}. We then demonstrate that the CRY2/CIBN system
372 can also be implemented to rapidly destabilize the cytokinetic ring and inhibit cell
373 division in *E. coli* (**Fig. 3**), providing a rapid and spatially specific tool to manipulation
374 bacterial cell division.

375 During our characterization of the CRY2/CIBN system, we found that both the
376 association and dissociation of CRY2 with CIBN can be modulated by green light (**Fig.**
377 **4c**). This effect not only enables another layer of system tuning akin to the blue light
378 dose-dependent activation behavior (**Fig. 4b**) that we and others^{19,25} have observed, but
379 also provides direct evidence that green light inactivates CRY2 likely by acting on the

380 semi-reduced FADH⁰ cofactor directly to reverse the active conformation of CRY2,
381 hence lowering the amount of CRY2* available for complex formation and also speeding
382 up the dissociation kinetics of previously formed CRY2*-CIBN complex. These results
383 are consistent with previous experiments where green light exposure was found to
384 rapidly convert CRY2's cofactor from FADH⁰ to FAD_{ox} *in vitro* and inhibit CRY2/CIB1
385 activity *in vivo*⁶⁵.

386 In mammalian cells the CRY2/CIBN system has already been employed to
387 optogenetically control cellular pathways including Cre recombination⁷¹, Raf/MEK/Erk²³,
388 TGF- β ⁷², NF- κ B¹⁵, Wnt/ β -catenin¹¹, and RhoA¹¹. Most of these systems involve the
389 binding of two proteins to initiate a signaling cascade. In bacteria, we envision that the
390 CRY2/CIBN system can be similarly applied to a large number of processes to enable
391 optogenetic control. For example, most of the two-component signaling (TCS) systems⁷³
392 in bacteria employ a histidine kinase that, upon stimulation, will recruit and
393 phosphorylate its cognate response regulator resulting in the activation of downstream
394 signaling⁷³. These protein pairs could be tagged and controlled in a similar manner as
395 done in eukaryotes to allow for the pathway regulation in real-time. Furthermore, a
396 number of pre-existing chemically inducible systems could be transformed into
397 optogenetic systems by modifying their dimerization platforms. Potential candidate
398 systems could include split ClpXP adaptors for optical control of protein degradation⁷,
399 split T7 RNAP for optical control of gene expression²⁴ and split Cas9 for optical control
400 of gene editing⁷¹.

401
402

403 **METHODS**

404 **Bacterial strains, plasmids and growth conditions**

405 All *E. coli* strains used for the cell pole recruitment, Z-ring recruitment, and cytokinesis
406 inhibition experiments were derivatives of BW25113 (CGSC #7636) strain and were
407 grown in M9+ Glucose minimal media (recipe is provided in **Supplementary Table 4**).
408 The DNA recruitment background strain was previously constructed by the Sherratt
409 Lab³⁰ (CGSC #12294) and was grown in EZ Rich Defined Media (EZRDM, Teknova
410 Bio.) as described in **Supplementary Table 4**. Antibiotic requirements are specified in
411 **Supplementary Table 4** and the corresponding concentrations for each were
412 chloramphenicol (150µg/mL), streptomycin (50µg/mL) and gentamycin (5µg/mL).
413 Inducer concentrations for respective strains and plasmid combinations are outlined in
414 **Supplementary Table 4** and described in more detail below. All bacterial cultures were
415 grown in tubes covered in foil to minimize contact with ambient light. Plasmids
416 expressing exogenous CRY2/CIBN fusion proteins with their associated sequences are
417 described in **Supplementary Table 4**.

418 **Recruitment of CRY2-mCherry to the DNA via TetR-CIBN**

419 Cultures were started from a single colony of the strain RM187 and grown in 6mL EZ
420 Rich Defined Medium (EZRDM, Teknova Bio.) containing chloramphenicol and
421 gentamycin at 25°C with shaking until the cells entered early log-phase (OD600
422 between 0.1 and 0.2, approx. 19 hours). When the culture entered early log-phase the
423 cells were induced with 60µM IPTG and supplemented with 240nM anhydrous-
424 tetracycline (ATC) to avoid a replication block induced by binding of TetR-CIBN similarly

425 as previously described. The cells were induced for 2 hours at 25°C with shaking. At the
426 end of the induction period the cells were centrifuged for 10 minutes at 4110k rpm and
427 the pellet was resuspended in 6mL of EZRDM containing chloramphenicol and 240nM
428 ATC and grown for an additional 30 minutes at 25°C while shaking after which it was,
429 again, centrifuged for 10 minutes at 4110k rpm and resuspended in 6mL EZRDM
430 containing chloramphenicol and gentamycin and allowed to grow an additional 2.5
431 hours at 25°C while shaking to allow the mCherry fluorophore to mature. Following the
432 outgrowth period, the cells were prepared for imaging by centrifuging 1mL of the culture
433 at 13k rpm for 1 minute and then resuspending the pellet in 50uL of fresh EZRDM.
434 Following this, 0.5uL of the resuspension was then placed on a gel pad and the pad and
435 prepared for imaging as specified in the “Live cell imaging” section below.

436 **Recruitment of CRY2-mCherry to the cell pole *via* CIBN-GFP-PopZ and the Z-ring**
437 ***via* ZapA-CIBN**

438 Cultures were started from a single colony of the strain of interest and grown in M9+
439 Glucose minimal medium containing chloramphenicol and streptomycin at 37°C
440 overnight until the cells reached stationary phase. The overnight culture was then
441 diluted 1:100 in fresh of M9+ Glucose containing chloramphenicol and streptomycin and
442 was allowed to grow at 37°C until it reached log-phase (OD600 between 0.1 and 0.2,
443 approx. 3 hours) at which point the culture was induced with 0.4% arabinose and either
444 40μM IPTG (ZapA fusion) or 100μM IPTG (PopZ fusion). Following a 1-hour induction
445 at 37°C the cells were prepared for imaging by centrifuging 1mL of the culture at 13k
446 rpm for 1 minute and then resuspending the pellet in 70uL of fresh M9+ Glucose.
447 Following this, 0.5uL of the resuspension was then placed on a gel pad and the pad and

448 prepared for imaging as specified in the “Live cell imaging” section below. The cells on
449 the gel pad were then assembled into the imaging chamber and allowed to equilibrate
450 on the microscope in the dark for 2 hours at ambient room temperature (RT).

451 **Recruitment of CRY2-HaloTag to the cell pole *via* CIBN-GFP-PopZ using variable
452 green (561nm) light**

453 Cultures were started from a single colony of the strain of interest and grown in M9+
454 Glucose minimal medium containing chloramphenicol and streptomycin at 37°C
455 overnight until the cells reached stationary phase. The overnight culture was then
456 diluted 1:100 in fresh of M9+ Glucose containing chloramphenicol and streptomycin and
457 was allowed to grow at 37°C until it reached log-phase (OD600 between 0.1 and 0.2,
458 approx. 3 hours) at which point the culture was induced. Following a 1-hour induction at
459 37°C the cells were prepared for imaging by centrifuging 1mL of the culture at 13k rpm
460 for 1 minute and then resuspending the pellet in 100uL of fresh M9+ Glucose with 1uM
461 Janelia Fluor® 646 HaloTag® ligand (Promega Corp.) and allowed to incubate at RT for
462 2 hours covered in foil. Following this, 0.5uL of the resuspension was then placed on a
463 gel pad and the pad and prepared for imaging as specified in the “Live cell imaging”
464 section below.

465 **Rapid Z-ring decondensation experiments**

466 Cultures of strain RM077 and RM078 were started from a single colony and grown in LB
467 at 37°C overnight until the cells reached stationary phase. The overnight LB culture was
468 then diluted 1:200 in 3mL of M9+ Glucose and grown overnight at room temperature
469 (RT, 25°C) until they reached log-phase (OD600 between 0.1 and 0.2) at which point

470 the culture was induced with 10uM IPTG and 0.2% arabinose. Following a 2-hour
471 induction at RT. Cells were prepared for imaging by centrifuging 1mL of the culture at
472 13k rpm for 1 minute and then resuspending the pellet in 100uL of fresh M9+ Glucose.
473 Following resuspension, 0.5uL of the resuspension was transferred to a 3% M9+
474 Glucose agarose gel pad containing 10uM IPTG and 0.2% arabinose for imaging.

475 **Light induced inhibition of cytokinesis experiments**

476 Cultures were started from a single colony of the strain of interest (see **Supplementary**
477 **Table 4**) and grown in LB containing chloramphenicol and/or streptomycin (depending
478 on the strain background, see **Supplementary Table 4**) at 37°C overnight until the cells
479 reached stationary phase. The overnight culture was then diluted 1:100 in fresh of M9+
480 Glucose containing chloramphenicol and streptomycin and was grown overnight at 25°C
481 until it reached log-phase (OD600 between 0.1 and 0.2) at which point the culture was
482 induced. Following a 2-hour induction at 25°C the cells were washed into fresh M9+
483 Glucose media lacking inducer and allowed to outgrow at 24°C for 2 hours. After the
484 outgrowth, the cells were prepared for imaging by centrifuging 1mL of the culture at 13k
485 rpm for 1 minute and then resuspending the pellet in 40uL of fresh M9+ Glucose.
486 Following this, 0.5uL of the resuspension was then placed on a gel pad and the pad and
487 prepared for imaging as specified in the “Live cell imaging” section below. Control cells
488 were placed in a chamber, wrapped in foil, left at RT in next to microscope for the
489 duration of the experiment and imaged after the experiment ended.

490 **Live cell imaging**

491 Live cell imaging was performed on a custom-built optical setup routed to an Olympus
492 IX71 inverted microscope with a 100X 1.49 NA oil-immersion objective (Olympus Inc.).
493 The light was focused onto the chip of an EMCCD camera (iXon Ultra 897, Andor
494 Technology) with a final pixel size of 160 x 160 nm. The imaging focal plane was
495 controlled by a piezo-driven stage (ASI, Eugene, OR). The EMCCD camera, lasers and
496 shutters were controlled by MetamorphTM software (Molecular Devices).

497 Excitation light was provided by solid state 488nm (Coherent OBIS), 561 (Toptica
498 Photonics) or 647nm (Coherent OBIS) lasers. The fluorescence emission signal was
499 collected using either a ZET 488/561nm (Chroma Technology) or ZET 488/561/647nm
500 (Chroma Technology) dual-band dichroic depending on the imaging conditions used.
501 For two-color experiments, the emission light from the RFP and GFP channels were
502 split using a 525/50 (Chroma Technology) and 650/50 (Chroma Technology) filter set
503 mounted inside of an Optosplit II beam-splitter system (Cairn Research) prior to
504 focusing on the EMCCD camera chip. The 488nm laser power used to activate the
505 CRY2/CIBN system was the same as what was used to image GFP fusions 8.08 W/cm²
506 measured 1cm from the objective for PopZ and ZapA experiments and 80.8 W/cm²
507 measured 1cm from the objective for the TetR experiments measured using a Thor
508 Labs Inc. Power Meter). The 561nm laser power used to image the mCherry fusions
509 was 8.71 W/cm² measured 1 cm from the objective for the PopZ and ZapA experiments
510 and 93.3 W/cm² measured 1 cm from the objective for the TetR experiments unless
511 otherwise noted in the text.

512 For two-color experiments using the 647nm laser, the emission light from the RFP and
513 GFP channels were split using a 556nm long-pass filter (T556lpxr, Chroma Technology)

514 in the Optosplitter followed by 700/75 (Chroma Technology) filter for the RFP emission
515 light prior to focusing on the EMCCD camera chip.

516 To avoid activation of the CRY2/CIBN system by the LED bright-field lamp (LDB100F
517 System, Prior Scientific Inc.), we placed a 715nm long-pass filter (RG715, Thor Labs
518 Inc.) or a 665nm long-pass filter (ET665lp, Chroma Technology) filter after the
519 condenser and the BF lamp intensity was adjusted such that the measured 488 nm light
520 after the filter was measured to be ~200nW at 1cm from the sample plane.

521 Gel pads used to support the living bacteria cells were prepared by melting 3% w/v
522 solution of agarose powder (SeaPlaqueTM GTGTM, Lonza Scientific) and either ERDM or
523 M9+ Glucose for 0.5-1 hour at 70°C. The melted gel was then transferred to a gasketed,
524 cover-glass (FCS2, Bioptrechs Inc.) and allowed to polymerize while sandwiched
525 between the cover-glass and a cleaned coverslip (40 CIR-1, VWR Inc.) for 4 hours at
526 25°C (room temperature). 0.5µL of the cells to be imaged were placed on the gel pad
527 and allowed to dry (~3 minutes) before a fresh coverslip was placed on top and the
528 imaging chamber (FCS2, Bioptrechs) was assembled.

529 For the DNA recruitment experiments, the cells were irradiated with 30 ms pulses of 488
530 nm and 561 nm light delivered consecutively every 5 seconds using a 30 ms exposure
531 time for each.

532 For the cell pole and Z-ring recruitment experiments the cells were first imaged for 2.5
533 seconds with 561 nm light after which they were irradiated with 488nm light for 100ms
534 and then imaged with 56 nm light by streaming for 15 seconds using a 50ms exposure
535 time.

536 For the cell pole recruitment experiments where the green (561 nm) light was varied:
537 the cells were first imaged for 2.5 seconds with both 647 nm and 561 nm light after
538 which they were irradiated with 488 nm light for 100 ms and then imaged with 647 nm
539 and 561 nm light by streaming for 15 seconds using a 50 ms exposure time.

540 For the fast Z-ring decondensation experiments, cells were initially imaged with 561nm
541 light after which they were irradiated with 50ms pulses of 488nm light delivered
542 consecutively every 10 seconds for a 5- minute period. The cells were then imaged
543 again with 561nm light at the end of the 5-minute period.

544 For the Light-induced Inhibition of Cytokinesis (LInC) experiments, cells were irradiated
545 with alternating 100ms pulses of 488nm and 561nm every five minutes for a period of
546 12 hours.

547

548 **Quantifying the RFP and/or GFP signal in cell pole and Z-ring recruitment
549 experiments**

550 A variation on a previously published custom MATLAB script⁷² used to quantify FRAP
551 data was created to measure the GFP and RFP signals in the live-cell recruitment
552 experiments. Briefly, cells were manually selected and cropped using a maximum
553 intensity projection image of the entire recruitment stream (created in ImageJ) to avoid
554 any selection bias. The max intensity image was also used to manually crop both the
555 total cell area as well as the recruitment site area (either Z-ring or cell pole). For the Z-
556 ring experiments the selected area was cropped manually cropped using a rectangular

557 selection. For the cell pole experiments the PopZ region was cropped using a fixed
558 circle with a 2-pixel radius.

559 We noticed that our experimental setup introduced a slight variation in the time between
560 activation with blue light and acquisition with either green or far-red light. To accurately
561 account for this delay, we created a custom MATLAB script that determined the true
562 time delay between activation and acquisition frames using the imaging metadata
563 obtained by Metamorph and then properly accounted for the delay when aggregating
564 data and/or making measurements.

565 **Quantifying the percentage increase in the DNA recruitment experiments**

566 To quantitatively characterize the accumulation of CRY2-mCherry at chromosomal
567 sites, we calculated the increase in the Weber contrast⁷³ of single cells. We noticed that
568 the DNA spots were able to diffuse in both the lateral and azimuthal directions (relative
569 to the z-axis of our objective). This type of movement made it difficult to track individual
570 spots and accurately estimate their intensities using the method we applied to our cell
571 pole and midcell platforms (see above). Since the accumulation of CRY2-mCherry from
572 a uniform distribution to a single concentrated location inside the cell body is equivalent
573 to an increase in the Weber Contrast of a single cell image, we estimated the
574 accumulation using the following method. First, we segmented the cells with observable
575 spots in the last frame of the time lapse movie. There are normally 1 or 2 spots in a
576 segmented cell region. Then we subtracted the background intensity of each image
577 using ImageJ⁷⁴. Finally, the normalized contrast for a single cell, j , in frame i is defined
578 as:

$$C_{norm}(i,j) = \frac{I_{\max i,j} - I_{\min i,j}}{\langle I_{i,j} \rangle - I_{\min i,j}}$$

579 Where $C_{norm}(i,j)$ reflects the extended accumulation of CRY2-mCherry in the DNA spot
580 and $I_{\max i,j}$ and $I_{\min i,j}$ are the intensity of the brightest and darkest pixels in the cells,
581 respectively. The contrast is normalized by the mean intensity, $\langle I_{i,j} \rangle$, of all the pixels in
582 this region considering cell-to-cell variations in expression levels.

583 The enrichment curve is obtained by averaging all the cells in the same frame and
584 dividing by the initial value to obtain the fold-increase. The value of 1 is subtracted from
585 the fold-increase and that value is multiplied by 100 to obtain the percent increase. The
586 error bars indicate the standard error of the mean. The curve is then fit by a single
587 exponential function to calculate the average accumulation time.

588 **Quantifying the Halo signal in cell pole dissociation experiments**

589 Individual well-isolated cells were cropped from whole field of view time-course image
590 stacks starting 5 minutes after CRY2/CIBN association was activated using blue light.
591 The individual cell image stacks were then registered in x-y space using the ImageJ
592 StackReg⁷⁵ plug-in to minimize the shifting of the cells over long timescales due to
593 growth. The depletion of cell pole foci was then measured using the Weber contrast-
594 based methodology employed for the TetR recruitment platform described above. The
595 resulting traces for individual cells were averaged together and the exponential decay
596 curve was fit to

$$f(t) = Ae^{-\left(\frac{1}{\tau_{off}}\right)(t-5)} + C$$

597 to extract the dissociation time constant (τ_{off}).

598 **Quantification of Z-ring decondensation**

599 Cells were segmented using the MiSiC deep learning-based cell segmentation
600 algorithm⁷⁶. After segmentation, the resulting cell masks were fed into MicrobeJ⁷⁷ to
601 quantify the mean ZapA-mCherry intensity at across the long axis of the cell and cell
602 lengths. All cells were visually inspected to remove any cells that lacked a Z-ring at the
603 start of the experiment. The midcell localization fraction of the Z-ring was measured by
604 dividing the integrated ZapA-mCherry fluorescence intensity within a 3-pixel window
605 (480 nm width) about the midcell maximum (approximate Z-ring position) by the total
606 integrated ZapA-mCherry fluorescence intensity of the whole cell both before and after
607 a 5-minute blue light induction. The change in the midcell localization fraction before
608 and after blue light induction was calculated, normalized by the midcell fraction before
609 induction and multiplied by a factor of 100 to obtain the percent change in Z-ring
610 intensity at midcell. The percentage of cells that both harbored a Z-ring prior to induction
611 with blue light and showed a reduction in the midcell fraction of ZapA-mCherry intensity
612 at midcell greater than 4% were deemed as “decondensed”. This decondensation
613 threshold was applied to every cell in each experimental population to determine the
614 fraction of cell that underwent significant decondensation in each experimental
615 condition. Bootstrapping was employed to estimate the standard error of the mean.
616 Briefly, a subpopulation of cells (500 for the induced cells and 300 for the uninduced
617 cells) were randomly sampled and used to calculate the percentage of cells that
618 underwent decondensation. This calculation was repeated 100 times to obtain the
619 standard error of the mean.

620 **Quantification of inhibition of cytokinesis**

621 Cells were manually tracked throughout the duration of the experiment to determine if
622 and when a successful division occurred. Cells were cropped and the average midcell
623 intensity across the long-axis of the cells (long-axis projection) was calculated using a
624 custom MATLAB script.

625 **Quantification of maximal enrichment and reduction of CRY2-mCherry and CRY2-
626 HaloTag**

627 In order to reduce the effects of noise on the maximal fold enrichment and maximal fold
628 reduction of CRY2-HaloTag signal at the cell poles (*i.e.*, estimation of the plateau
629 value), the final plateau value was calculated by taking the mean of the last ten
630 datapoints of individual cell trajectories.

631 **SUPPLEMENTARY MATERIAL**

632 **ACKNOWLEDGMENTS**

633 We would like to thank T. Bernhardt and J. Buss for the BW25113 (*zapA-mCherry*)
634 strain. We would also like to thank E. D. Goley for providing the *CcPopZ*, *CcFtsZCTL*,
635 *AtuFtsZCTL* sequences and for providing valuable input during discussions about this
636 work. Additionally, we would like to thank N. Yehya for helpful insight and discussions.
637 This work was supported by NIH R01 GM086447, NIH R35 GM136436 (to J.X.) and
638 NIH T32 GM008403 to (R.M.).

639 **AUTHOR CONTRIBUTIONS**

640 R.M. constructed and characterized all the strains and fusions and proposed and
641 carried out all experiments as well as quantified and interpreted all data unless
642 otherwise noted. C.H.B. assisted in developing methodologies for fold enrichment
643 calculations with R.M. and J.X and assisted in analysis of CRY2/CIBN green light
644 effects. X.Y. developed the Normalized Contrast method used to analyze the DNA
645 localization data and performed the data analysis using this method. J.W.M., together
646 with R.M., designed strains for the light induced inhibition of cytokinesis assay. J.X.
647 planned and directed the project and, together with R.M., designed experiments,
648 interpreted the data and wrote the manuscript.

649 **COMPETING FINANCIAL INTERESTS**

650 The authors declare no competing financial interests.

651 **REFERENCES**

652
653

- 654 1. Surovtsev, I. V. & Jacobs-Wagner, C. Subcellular Organization: A Critical Feature of
655 Bacterial Cell Replication. *Cell* **172**, 1271–1293 (2018).
- 656 2. Thanbichler, M. & Shapiro, L. Getting organized — how bacterial cells move proteins and
657 DNA. *Nat Rev Microbiol* **6**, 28–40 (2008).
- 658 3. Kolar, K., Knobloch, C., Stork, H., Žnidarič, M. & Weber, W. OptoBase: A Web Platform for
659 Molecular Optogenetics. *Acs Synth Biol* **7**, 1825–1828 (2018).
- 660 4. Inobe, T. & Nukina, N. Rapamycin-induced oligomer formation system of FRB–FKBP fusion
661 proteins. *J Biosci Bioeng* **122**, 40–46 (2016).
- 662 5. Farrar, M. A., Olson, S. H. & Perlmuter, R. M. [31] Coumermycin-induced dimerization of
663 GyrB-containing fusion proteins. *Methods Enzymol* **327**, 421-INS (2000).
- 664 6. Miyamoto, T. *et al.* Rapid and orthogonal logic gating with a gibberellin-induced dimerization
665 system. *Nat Chem Biol* **8**, 465–470 (2012).

666 7. Davis, J. H., Baker, T. A. & Sauer, R. T. Small-molecule control of protein degradation using
667 split adaptors. *Acs Chem Biol* **6**, 1205–13 (2011).

668 8. Voß, S., Klewer, L. & Wu, Y.-W. Chemically induced dimerization: reversible and
669 spatiotemporal control of protein function in cells. *Curr Opin Chem Biol* **28**, 194–201 (2015).

670 9. Losi, A., Gardner, K. H. & Möglich, A. Blue-Light Receptors for Optogenetics. *Chem Rev*
671 **118**, 10659–10709 (2018).

672 10. Goglia, A. G. & Toettcher, J. E. A bright future: optogenetics to dissect the spatiotemporal
673 control of cell behavior. *Curr Opin Chem Biol* **48**, 106–113 (2018).

674 11. Bugaj, L. J., Choksi, A. T., Mesuda, C. K., Kane, R. S. & Schaffer, D. V. Optogenetic
675 protein clustering and signaling activation in mammalian cells. *Nat Methods* **10**, 249–252 (2013).

676 12. Taslimi, A. *et al.* An optimized optogenetic clustering tool for probing protein interaction and
677 function. *Nat Commun* **5**, 4925 (2014).

678 13. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches
679 for optogenetic control of cellular proteins. *Nat Commun* **6**, 6256 (2015).

680 14. Guntas, G. *et al.* Engineering an improved light-induced dimer (iLID) for controlling the
681 localization and activity of signaling proteins. *Proc National Acad Sci* **112**, 112–117 (2015).

682 15. DeFelice, M. M. *et al.* NF-κB signaling dynamics is controlled by a dose-sensing
683 autoregulatory loop. *Sci Signal* **12**, eaau3568 (2019).

684 16. Benedetti, L. *et al.* Light-activated protein interaction with high spatial subcellular
685 confinement. *Proc National Acad Sci* **115**, 201713845 (2018).

686 17. Hallett, R. A., Zimmerman, S. P., Yumerefendi, H., Bear, J. E. & Kuhlman, B. Correlating in
687 Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide. *Acs
688 Synth Biol* **5**, 53–64 (2016).

689 18. Xiao, J. & Dufrêne, Y. F. Optical and force nanoscopy in microbiology. *Nat Microbiol* **1**,
690 16186 (2016).

691 19. Kennedy, M. J. *et al.* Rapid blue-light-mediated induction of protein interactions in living
692 cells. *Nat Methods* **7**, 973–975 (2010).

693 20. Shao, K. *et al.* The oligomeric structures of plant cryptochromes. *Nat Struct Mol Biol* **27**,
694 480–488 (2020).

695 21. Sancar, A. Structure and Function of DNA Photolyase and Cryptochrome Blue-Light
696 Photoreceptors. *Chem Rev* **103**, 2203–2238 (2003).

697 22. Liu, H. *et al.* Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral
698 Initiation in Arabidopsis. *Science* **322**, 1535–1539 (2008).

699 23. Duan, L. *et al.* Understanding CRY2 interactions for optical control of intracellular signaling.
700 *Nat Commun* **8**, 547 (2017).

701 24. Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA polymerase as a
702 versatile biosensor platform. *Nat Chem Biol* **13**, 432–438 (2017).

703 25. Yamada, M., Suzuki, Y., Nagasaki, S. C., Okuno, H. & Imayoshi, I. Light Control of the Tet
704 Gene Expression System in Mammalian Cells. *Cell Reports* **25**, 487–500.e6 (2018).

705 26. Castillo-Hair, S. M., Baerman, E. A., Fujita, M., Igoshin, O. A. & Tabor, J. J. Optogenetic
706 control of *Bacillus subtilis* gene expression. *Nat Commun* **10**, 3099 (2019).

707 27. Jayaraman, P. *et al.* Blue light-mediated transcriptional activation and repression of gene
708 expression in bacteria. *Nucleic Acids Res* **44**, 6994–7005 (2016).

709 28. Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R. & Tabor, J. J. Characterizing
710 bacterial gene circuit dynamics with optically programmed gene expression signals. *Nat Methods*
711 **11**, 449–455 (2014).

712 29. Hensel, Z., Weng, X., Lagda, A. C. & Xiao, J. Transcription-Factor-Mediated DNA Looping
713 Probed by High-Resolution, Single-Molecule Imaging in Live *E. coli* Cells. *Plos Biol* **11**,
714 e1001591 (2013).

715 30. Lau, I. F. *et al.* Spatial and temporal organization of replicating *Escherichia coli*
716 chromosomes. *Mol Microbiol* **49**, 731–743 (2003).

717 31. Ramos, J. L. *et al.* The TetR Family of Transcriptional Repressors. *Microbiol Mol Biol R* **69**,
718 326–356 (2005).

719 32. Lasker, K. *et al.* Selective sequestration of signalling proteins in a membraneless organelle
720 reinforces the spatial regulation of asymmetry in *Caulobacter crescentus*. *Nat Microbiol* 1–12
721 (2020) doi:10.1038/s41564-019-0647-7.

722 33. Molinari, S. *et al.* A synthetic system for asymmetric cell division in *Escherichia coli*. *Nat
723 Chem Biol* **15**, 917–924 (2019).

724 34. Mushnikov, N. V., Fomicheva, A., Gomelsky, M. & Bowman, G. R. Inducible asymmetric
725 cell division and cell differentiation in a bacterium. *Nat Chem Biol* **15**, 925–931 (2019).

726 35. Lim, H. C. & Bernhardt, T. G. A PopZ \square linked apical recruitment assay for studying protein–
727 protein interactions in the bacterial cell envelope. *Mol Microbiol* **112**, 1757–1768 (2019).

728 36. Laloux, G. & Jacobs-Wagner, C. Spatiotemporal control of PopZ localization through cell
729 cycle-coupled multimerization. *J Cell Biology* **201**, 827–841 (2013).

730 37. Bowman, G. R. *et al.* A Polymeric Protein Anchors the Chromosomal Origin/ParB Complex
731 at a Bacterial Cell Pole. *Cell* **134**, 945–955 (2008).

732 38. Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. A Self-Associating Protein
733 Critical for Chromosome Attachment, Division, and Polar Organization in Caulobacter. *Cell* **134**,
734 956–968 (2008).

735 39. McQuillen, R. & Xiao, J. Insights into the Structure, Function, and Dynamics of the Bacterial
736 Cytokinetic FtsZ-Ring. *Annu Rev Biophys* **49**, 1–33 (2020).

737 40. Macnab, R. M. How Bacteria Assemble Flagella. *Annu Rev Microbiol* **57**, 77–100 (2003).

738 41. Sourjik, V. Receptor clustering and signal processing in *E. coli* chemotaxis. *Trends
739 Microbiol* **12**, 569–576 (2004).

740 42. Katsura, Y. *et al.* An optogenetic system for interrogating the temporal dynamics of Akt. *Sci
741 Rep-uk* **5**, 14589 (2015).

742 43. Mühlhäuser, W. W. D., Hörner, M., Weber, W. & Radziwill, G. Light-Regulated Protein
743 Kinases Based on the CRY2-CIB1 System. *Methods Mol Biology Clifton NJ* **1596**, 257–270
744 (2017).

745 44. Szeto, T. H., Rowland, S. L., Habrukowich, C. L. & King, G. F. The MinD membrane
746 targeting sequence is a transplantable lipid-binding helix. *J Biol Chem* **278**, 40050–40056
747 (2003).

748 45. Che, D. L., Duan, L., Zhang, K. & Cui, B. The Dual Characteristics of Light-Induced
749 Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation
750 in Mammalian Cells. *Acs Synth Biol* **4**, 1124–1135 (2015).

751 46. McQuillen, R. J. Optogenetic Control of Protein Organization in Living *Escherichia coli*
752 Cells. (2022).

753 47. Goehring, N. W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell
754 division machinery. *Curr Biol* **15**, R514-26 (2005).

755 48. Lutkenhaus, J. & Du, S. *E. coli* Cell Cycle Machinery. in *Prokaryotic Cytoskeletons* vol. 84
756 27–65 (Springer, Cham, 2013).

757 49. Yang, X. *et al.* FtsW exhibits distinct processive movements driven by either septal cell wall
758 synthesis or FtsZ treadmilling in *E. coli*. *Biorxiv* 850073 (2019) doi:10.1101/850073.

759 50. McCausland, J. W. *et al.* Treadmilling FtsZ polymers drive the directional movement of
760 sPG-synthesis enzymes via a Brownian ratchet mechanism. *Biorxiv* 857813 (2019)
761 doi:10.1101/857813.

762 51. McQuillen, R. & Xiao, J. Insights into the Structure, Function, and Dynamics of the Bacterial
763 Cytokinetic FtsZ-Ring. *Annu Rev Biophys* **49**, 309–341 (2020).

764 52. Goehring, N. W., Gueiros-Filho, F. & Beckwith, J. Premature targeting of a cell division
765 protein to midcell allows dissection of divisome assembly in *Escherichia coli*. *Gene Dev* **19**,
766 127–137 (2005).

767 53. Galli, E. & Gerdes, K. FtsZ-ZapA-ZapB Interactome of *Escherichia coli*. *J Bacteriol* **194**,
768 292–302 (2012).

769 54. Buss, J. *et al.* In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by
770 quantitative super-resolution microscopy. *Mol Microbiol* **89**, 1099–1120 (2013).

771 55. Fu, G. *et al.* In Vivo Structure of the *E. coli* FtsZ-ring Revealed by Photoactivated
772 Localization Microscopy (PALM). *Plos One* **5**, e12680 (2010).

773 56. Buss, J. *et al.* A Multi-layered Protein Network Stabilizes the *Escherichia coli* FtsZ-ring and
774 Modulates Constriction Dynamics. *Plos Genet* **11**, e1005128 (2015).

775 57. Rowlett, V. W. & Margolin, W. The bacterial Min system. *Curr Biol* **23**, R553–R556 (2013).

776 58. Hu, Z. & Lutkenhaus, J. Analysis of MinC Reveals Two Independent Domains Involved in
777 Interaction with MinD and FtsZ. *J Bacteriol* **182**, 3965–3971 (2000).

778 59. Justice, S. S., García-Lara, J. & Rothfield, L. I. Cell division inhibitors SulA and
779 MinC/MinD block septum formation at different steps in the assembly of the *Escherichia coli*
780 division machinery. *Mol Microbiol* **37**, 410–423 (2000).

781 60. Romberg, L. & Levin, P. A. Assembly Dynamics of the Bacterial Cell Division Protein FtsZ:
782 Poised at the Edge of Stability. *Annu Rev Microbiol* **57**, 125–154 (2003).

783 61. Coltharp, C., Buss, J., Plumer, T. M. & Xiao, J. Defining the rate-limiting processes of
784 bacterial cytokinesis. *Proc National Acad Sci* **113**, E1044–E1053 (2016).

785 62. Lan, G., Daniels, B. R., Dobrowsky, T. M., Wirtz, D. & Sun, S. X. Condensation of FtsZ
786 filaments can drive bacterial cell division. *Proc National Acad Sci* **106**, 121–126 (2009).

787 63. Liu, B., Liu, H., Zhong, D. & Lin, C. Searching for a photocycle of the cryptochrome
788 photoreceptors. *Curr Opin Plant Biol* **13**, 578–586 (2010).

789 64. Bouly, J.-P. *et al.* Cryptochrome Blue Light Photoreceptors Are Activated through
790 Interconversion of Flavin Redox States. *J Biol Chem* **282**, 9383–9391 (2007).

791 65. Banerjee, R. *et al.* The Signaling State of Arabidopsis Cryptochrome 2 Contains Flavin
792 Semiquinone. *J Biol Chem* **282**, 14916–14922 (2007).

793 66. Los, G. V. *et al.* HaloTag: A Novel Protein Labeling Technology for Cell Imaging and
794 Protein Analysis. *AcS Chem Biol* **3**, 373–82 (2008).

795 67. Grimm, J. B., Brown, T. A., English, B. P., Lionnet, T. & Lavis, L. D. Synthesis of Janelia
796 Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments. in vol.
797 1663 179–188 (2017).

798 68. Lindner, F. & Diepold, A. Optogenetics in bacteria – applications and opportunities. *Fems*
799 *Microbiol Rev* **46**, fuab055 (2021).

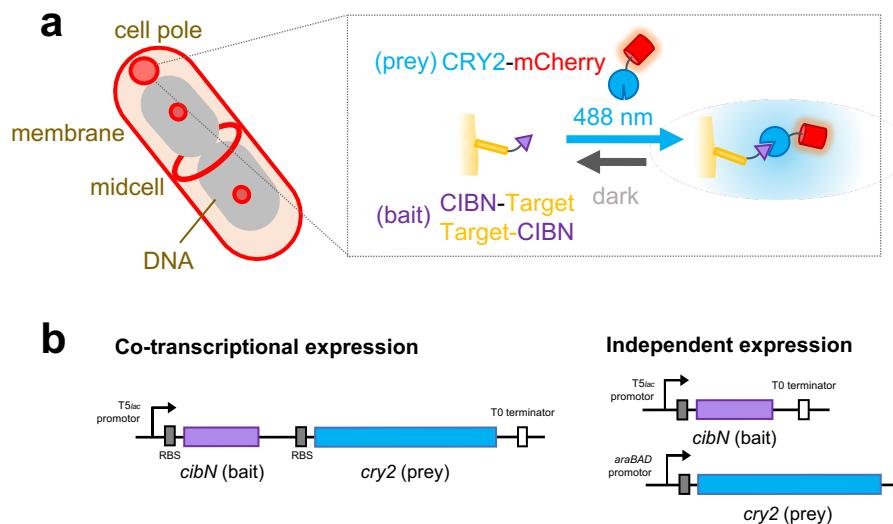
800 69. Repina, N. A., Rosenbloom, A., Mukherjee, A., Schaffer, D. V. & Kane, R. S. At Light
801 Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. *Annu Rev*
802 *Chem Biomol* **8**, 13–39 (2017).

803 70. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. *Nat Rev Mol*
804 *Cell Bio* **15**, 551–558 (2014).

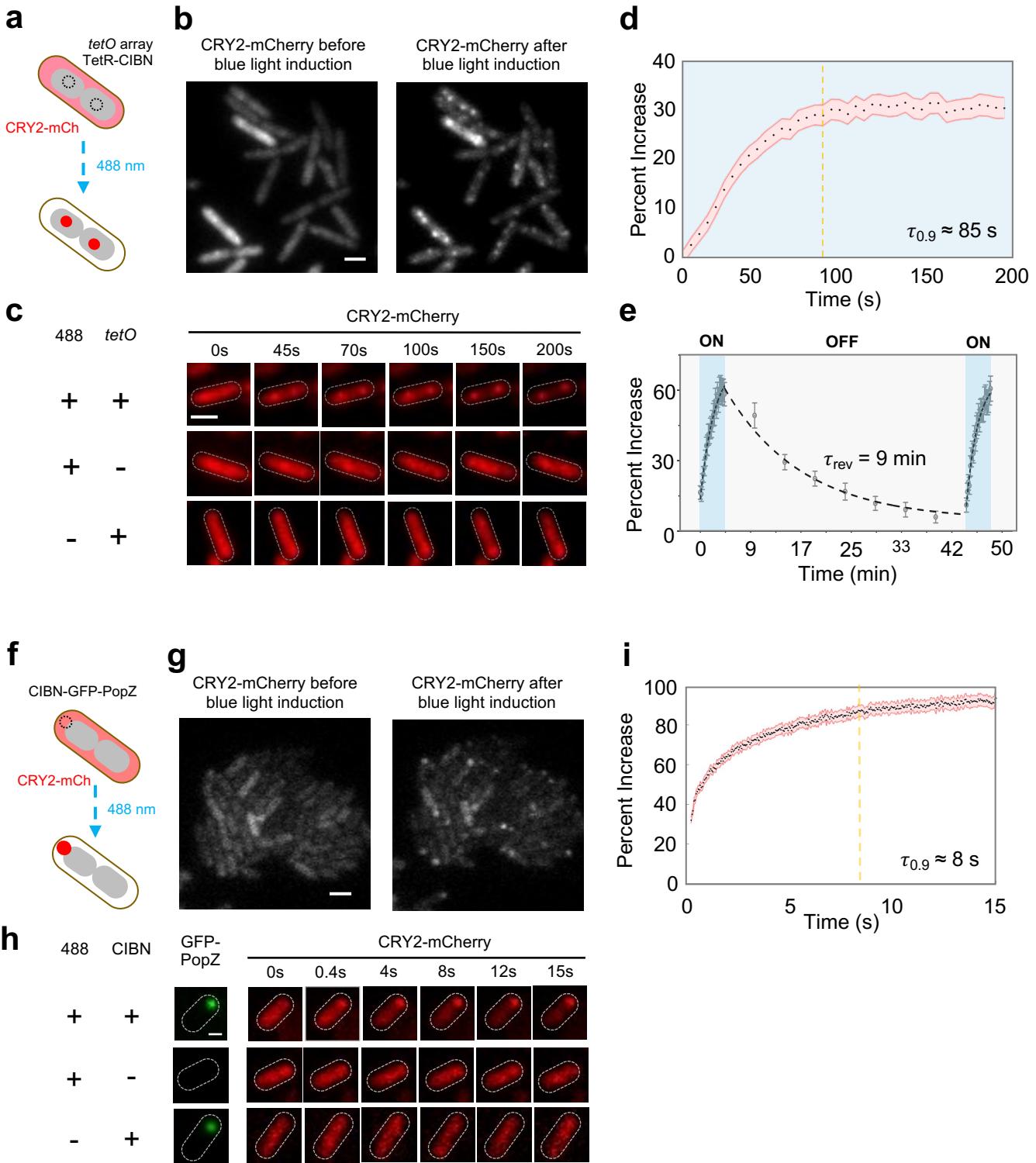
805 71. Boekel, J. *et al.* A split-Cas9 architecture for inducible genome editing and transcription
806 modulation. *Nat Biotechnol* **33**, 139–142 (2015).

807 72. Yang, X. *et al.* GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes
808 septal cell wall synthesis. *Science* **355**, 744–747 (2017).

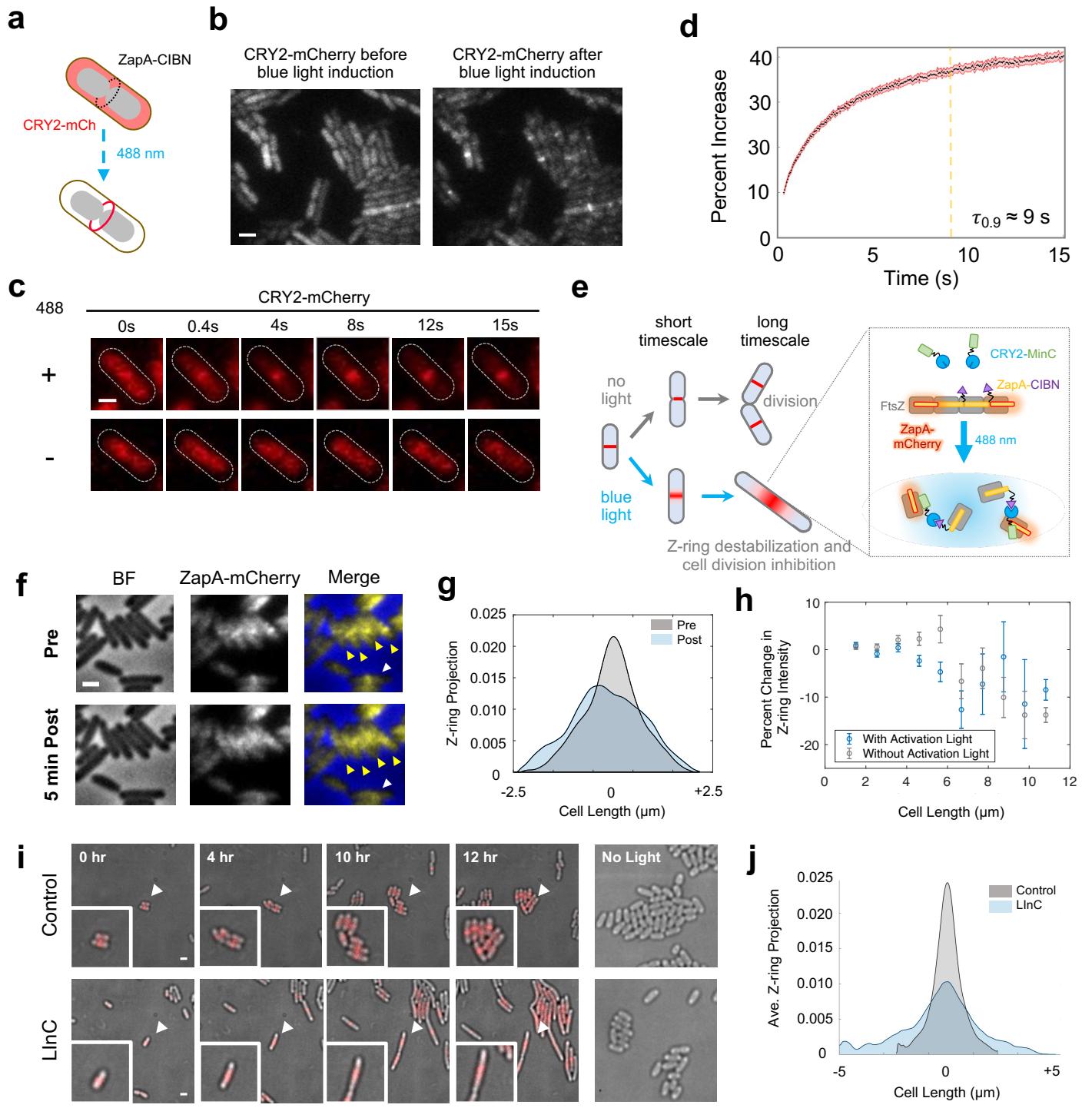
809 73. Pelli, D. G. & Bex, P. Measuring contrast sensitivity. *Vision Res* **90**, 10–14 (2013).


810 74. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods*
811 **9**, 676–682 (2012).

812 75. Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration
813 based on intensity. *Ieee T Image Process* **7**, 27–41 (2021).


814 76. Panigrahi, S. *et al.* MiSiC, a general deep learning-based method for the high-throughput cell
815 segmentation of complex bacterial communities. *Biorxiv* 2020.10.07.328666 (2020)
816 doi:10.1101/2020.10.07.328666.

817 77. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial
818 cell detection and quantitative analysis. *Nat Microbiol* **1**, 16077 (2016).


819

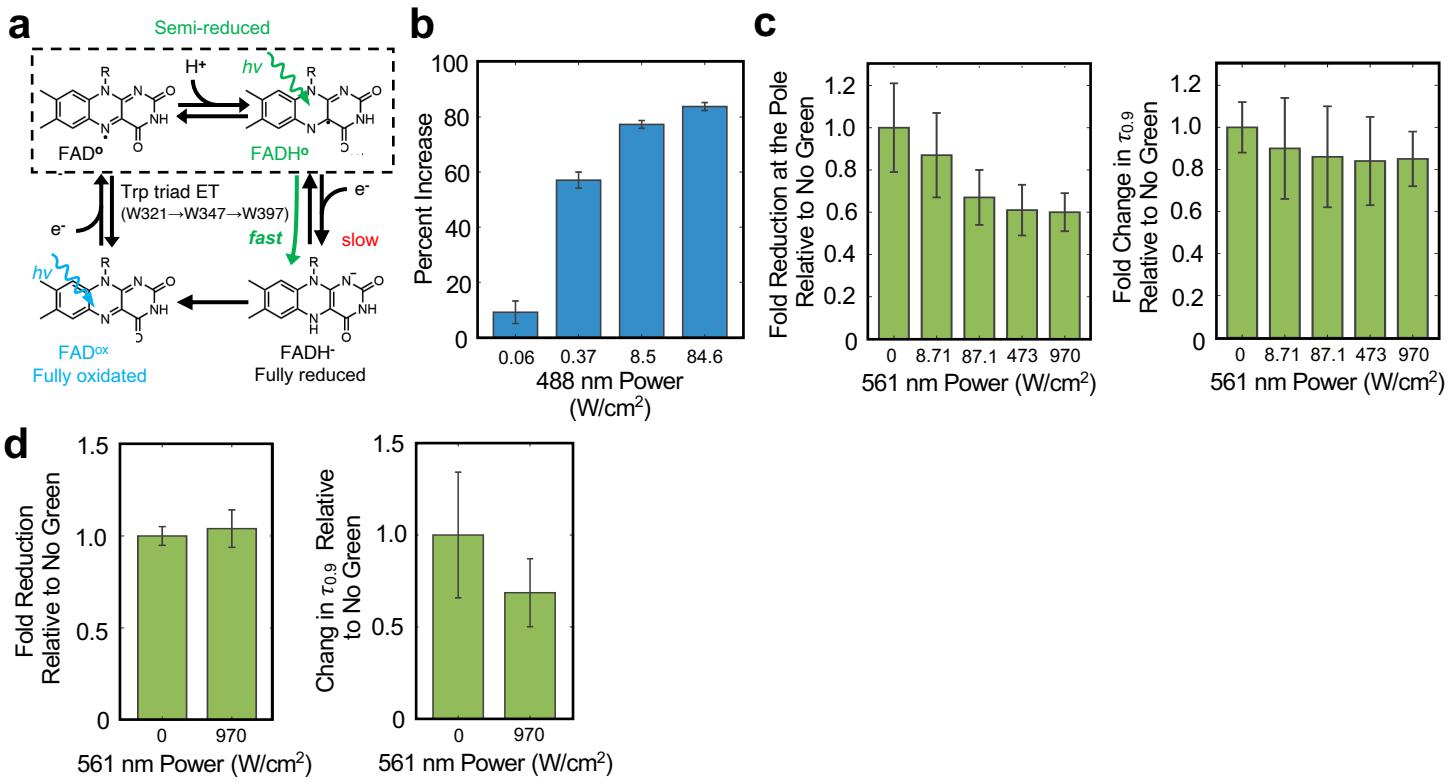

Fig. 1 | Light-induced recruitment scheme using CRY2 and CIBN. (a) CRY2 is targeted to different subcellular localizations in live *E. coli* cells: the chromosomal DNA, cell pole, inner membrane, and the midcell division plane. At each subcellular location, CIBN is fused to a bait protein at the C or N terminus, and CRY2 is fused to the N terminus of mCherry as a universal prey reporter for CIBN's light (488 nm)-dependent association with CIBN-Target (inset box). The association is reversible in dark. (b) CIBN and CRY2 fusion proteins can be expressed co-transcriptionally (left) or independently (right) to suit different experimental needs.

Fig. 2 | Rapid and reversible recruitment of cytoplasmic proteins to chromosomal DNA and Cell Pole. (a), Schematic depicting the relocalization of cytoplasmic CRY2-mCherry to TetR-CIBN bound *tetO* sites near *OriC* to form foci after activation with blue light. (b), CRY2-mCherry is uniformly distributed throughout the cell prior to blue light exposure (*left panel*). After blue light exposure CRY2-mCherry rapidly relocates to form foci (*right panel*). (c), Single cell time course images demonstrating that the recruitment of CRY2-mCherry to DNA foci occurs only when blue light and the *tetO* array are both present (*top row*) but not in the absence of the *tetO* target (*middle row*) or blue light activation (*bottom row*). (d), Averaged percent increase of CRY2-mCherry signal at DNA foci ($N = 1359$ cells) demonstrating that 90% recruitment is reached within 85 seconds. (e), Averaged percentage increase of CRY2-mCherry signal at DNA foci after activation with blue light (*first blue section*), relaxation in the dark (*middle grey section*), and after a second activation sequence (*second blue region*) demonstrating that CRY2/CIBN disassociation at DNA foci is reversible with a time constant of ~ 9 minutes. (f), Schematic depicting the relocalization of cytoplasmic CRY2-mCherry to CIBN-GFP-PopZ foci at the cell pole after blue light activation. (g), CRY2-mCherry is uniformly distributed throughout the cell prior to blue light exposure (*left panel*). After blue light exposure, CRY2-mCherry rapidly relocates to the cell poles and form foci (*right panel*). (h) Single cell time course images demonstrating that the recruitment of CRY2-mCherry to the cell pole occurs only when both blue light and the CIBN are present (*top row*) but not in the absence of the CIBN target (*middle row*) or blue light (*bottom row*). (i), Averaged percent increase of CRY2-mCherry signal at cell pole foci ($N = 315$ cells) demonstrating that 90% recruitment is reached within ~ 8 seconds.

Fig. 3 | Recruitment of cytoplasmic protein to cell division plane and a Light-induced Inhibition of Cytokinesis (LInC) Assay. (a), Schematic depicting the relocalization of cytoplasmic CRY2-mCherry to the ZapA-CIBN ring present at midcell after induction of CRY2/CIBN binding with blue light. (b), An example image of cells showing CRY2-mCherry's diffusive cytoplasmic localization before blue light activation (*left*) and midcell localization after blue light activation (*right*). (c), Single cell time course images demonstrating that CRY2-mCherry recruitment to midcell occurs only after activation with blue light. (d), Averaged percent increase of CRY2-mCherry signal at midcell demonstrating that 90% recruitment is reached within 9 seconds ($N = 443$ cells). (e), Schematic depicting the LInC assay on both short and long time scales. Recruitment of CRY2-MinC to Z-rings via ZapA-CIBN by blue light activation results in instant destabilization of the Z-ring at a short time scale and cell division inhibition at a long time scale. In the absence of blue light cells grow and divide like WT cells. (f), **Short timescale LInC Assay.** Cells harboring the LInC system exhibited diffusive Z-rings (arrow heads) after blue light activation delivered every 10 s for 5 min. The projected fluorescence intensity of ZapA-mCherry (Z-ring) along the cell long-axis before (grey) and after a 5-minute blue light induction (blue) for the cell labeled with a white arrow in **f** is plotted in **(g)** to demonstrate the decondensation of the Z-ring. (h), Short timescale Z-ring destabilization by the LInC system is dependent on cell length. The percent reduction of ZapA-mCherry intensity ($\mu \pm \text{s.e.m.}$, **Supplementary Table 2**) at midcell in cells expressing the LInC system before and after a 5-minute period of blue light activation (blue datapoints) or darkness (grey datapoints) plotted as a function of cell length. (i), **Long timescale LInC assay.** Time-lapse imaging shows that cells ectopically expressing CRY2-MinC only (Control, *top row*) grew and divided normally while cells expressing both CRY2-MinC and ZapA-CIBN (LInC, *bottom row*) filamented when both were exposed to 100 ms pulses of blue and green light every 5 minutes for a 12-hour period. Cells harboring only CRY2-MinC (right panel, *top*) or both CRY2-MinC and ZapA-CIBN (right panel, *bottom*) but were not exposed to blue light divided normally during the same period (right most panel). White arrows indicate the position of cells that are enlarged in the insets. (j), Smoothed and averaged long axis projections of the Z-ring intensity measured by ZapA-mCherry at the 12-hour timepoint after blue light activation demonstrated significant widening of Z-ring in cells harboring the LInC system (FWHM = 221 nm, $N = 16$ cells) compared with those in the Control cells (FWHM = 102 nm, $N = 33$ cells).

Fig. 4 | Green (561 nm) modulates the association and dissociation of CRY2-CIBN complex. (a), Schematic of CRY2 photoactivation pathway highlighting the redox states of its flavin (FAD) cofactor along the path. Briefly, the fully oxidized FAD^{ox} is photoexcited by a blue light photon and accepts an electron from the nearby tryptophan (Trp397) to form a stable, semi-reduced neutral FAD^0 . This formation induces a conformational change in CRY2, which allows it to bind to CIBN. In the absence of green light, the semi-reduced FAD^0 slowly decays to a fully reduced state (FADH^-). As FADH^0 is the only species in the cycle that can absorb green light, it is likely that green light speeds up the further reduction of FADH^0 to FADH^- , which prevents CRY2 to associate or remain associated with CIBN. (b), The percent enrichment of cell pole-recruited CRY2-Halo shows a stepwise dependence on the intensity of the 100ms blue (488 nm) light pulse used to trigger CRY2/CIBN complex formation. (error bars = s.d.) (c), The maximal fold enrichment of cell pole-recruited CRY2-Halo under varying green light intensities relative to that in the absence of green light shows a green light dependent reduction in a green-light dependent manner (left, error bars = s.d.), while the 90% recruitment time ($\tau_{0.9}$) under varying green light intensities relative to that in the absence of green light was not significantly altered (right, error bars = s.d.) indicating that green light can modulate the levels of activated CRY2 available for complex formation with CIBN. (d), The change in the final fold reduction of cell pole-recruited CRY2-Halo dissociation under green light exposure relative to that in the absence of green light showed little change (left, error bars = s.d.), while the 90% recruitment time ($\tau_{0.9}$) under green light exposure relative to that in the absence of green light showed a green light dependent reduction (right, error bars = s.d.) indicating that green light can modulate the dissociation rate of the CRY2/CIBN complex.