

1 **Differential genetic variation underlying Ammonium and Nitrate responses in *Arabidopsis***
2 ***thaliana***

3

4 Ella Katz¹, Anna Knapp¹, Mariele Lensink^{1,2}, Jordan Stefani¹, Jia-Jie Li¹, Emily Shane¹, Kaelyn
5 Tuermer-Lee¹, Arnold J. Bloom¹, Daniel J. Kliebenstein^{1,3}

6 ¹Department of Plant Sciences, University of California Davis, Davis, CA, USA

7 ²Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA,
8 USA

9 ³DynaMo Center of Excellence, University of Copenhagen, Denmark

10 Corresponding author: kliebenstein@ucdavis.edu

11

12 Author contributions: EK, DJK and AJB designed the research and wrote the paper, EK, AK,
13 ML, JS, JJL, ES, and KTL performed the research and analyzed the data.

14 Short title: The genetic basis of nitrogen acquisition in *Arabidopsis thaliana*.

15 One Sentence Summary: Using a large collection of natural genotypes, and studying both
16 developmental and metabolic responses, we found a large number of genes that are involved in
17 the plants nitrogen response.

18

19

20

21

22 The author(s) responsible for distribution of materials integral to the findings presented in this
23 article in accordance with the policy described in the Instructions for Authors
24 (<https://academic.oup.com/plcell/pages/General-Instructions>) are: Ella Katz
25 (elkatz@ucdavis.edu) and Daniel J. Kliebenstein (kliebenstein@ucdavis.edu).

26 **Abstract**

27 Nitrogen is an essential element required for plant growth and productivity. Understanding the
28 mechanisms and natural genetic variation underlying nitrogen use in plants will facilitate
29 engineering plant nitrogen use to maximize crop productivity while minimizing environmental
30 costs. To understand the scope of natural variation that may influence nitrogen use, we grew
31 1135 *Arabidopsis thaliana* natural genotypes on two nitrogen sources, nitrate and ammonium,
32 and measured both developmental and defense metabolite traits. By using different environments
33 and focused on multiple traits, we identified a wide array of different nitrogen responses. These
34 responses are associated with a large number of genes, most of them not previously associated
35 with nitrogen responses. Only a small portion of these genes appear to be shared between
36 environments or traits while most of the detected genes are predominantly specific to a
37 developmental or defense trait under a specific nitrogen source. Finally, by using a large
38 population we were able to identify unique nitrogen responses, like preferring ammonium or
39 nitrate, that appear to be generated by combinations of loci rather than a few large effect loci.
40 This suggests that it may be possible to obtain novel phenotypes in complex nitrogen responses
41 by manipulating sets of genes with small effects rather than solely focusing on large effect single
42 gene manipulations.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 **Introduction**

58 Nitrogen is an essential element required for plant growth and productivity. Most plants acquire
59 nitrogen from the rhizosphere either in the form of nitrate (NO_3^-) or ammonium (NH_4^+) via root
60 absorption (Bloom, 2015). An individual plant's optimal nitrogen source and concentration range
61 depends on multiple parameters, including plant species, genetics, developmental stage, and the
62 surrounding environment (Britto and Kronzucker, 2002; Fuertes-
63 Mendizábal et al., 2013; Waidmann et al., 2020). Excess application of nitrogen will affect not
64 only the plants growth, but might lead to environmental degradation like groundwater
65 contamination, eutrophication of freshwater, or soil salinization and might accelerate climate
66 change (Zhang et al., 2015). A better understanding of the plant nitrogen acquisition (uptake,
67 assimilation, and regulation thereof) will facilitate adjustments of nitrogen form and
68 concentration to maximize crop productivity yet minimize environmental damage.

69

70 Because nitrate is the predominant nitrogen form in temperate agricultural soils, the
71 preponderance of genetic and physiological studies on plant nitrogen relations focuses on nitrate.
72 This focus is based on most plants preferring nitrate as a nitrogen source due to the tendency of
73 ammonium to become toxic if it accumulates in the plant's cells
74 (Esteban et al., 2016; Liu and von Wirén, 2017; Li et al., 2014; Marino and Moran, 2019).
75 Another potential reason for plant dependence on nitrate is that plants may compete with
76 microorganisms for soil ammonium that microorganisms use as both a nitrogen and energy
77 source (Matson et al., 1998). Nonetheless, preference for nitrate is not ubiquitous and can shift
78 due to genetic variation between and within plants and is sensitive to environmental variation,
79 such as changes in CO_2 levels (Britto and Kronzucker 2002; Marino and Moran 2019; Menz et
80 al. 2018; Bloom et al., 2012). This suggests that the balance between nitrate vs ammonium usage
81 is not fixed within a plant species, and identifying genetic mechanisms that influence this
82 balance would allow reprogramming plants, by breeding or synthetic biology, to achieve a better
83 match with available nitrogen sources.

84 To optimize nitrogen acquisition, plants modify root growth and branching, rapidly responding
85 to changes in nitrogen source or concentration. Any shift in the nitrogen condition will typically
86 lead to alterations in primary and lateral root growth and development that maximize the ability

87 to search for more optimal soil nitrogen conditions (Waidmann et al. 2020; Gruber et al. 2013;
88 Gifford et al. 2013; Tian et al. 2009; Rogato et al. 2010; Liu et al. 2013; Drew 1975; Lima et al.
89 2010; Zhang and Forde 1998; Zhang et al. 1999; Fuertes-Mendizábal et al., 2013;
90 Epstein and Bloom, 2005). Although the mechanisms behind these responses are becoming
91 understood, how many of them are species specific and how many are shared among plants are
92 still unknown.

93
94 Shifts in nitrogen source and concentration, in addition to altering root development, can lead to
95 a global reprogramming of the plant's nutrient uptake, cell metabolic homeostasis, signaling and
96 hormone pathways, defense responses, and responses to elevated CO₂ (Marino and Moran, 2019;
97 Marino et al., 2016; Bloom et al., 2010). One defense response that is highly dependent on
98 nitrogen availability is production of glucosinolates (GSLs), a class of specialized defense
99 metabolites in *Arabidopsis thaliana* and other plants in the order Brassicales. The breakdown
100 products of GSLs are toxic to herbivores and pathogens and thus have a central role in plant
101 defense against attackers (Beekwilder et al., 2008); (Hansen et al., 2008). GSLs display extensive
102 variation across *Arabidopsis* genotypes, and their composition and accumulation depend on
103 genetics, developmental stage, and external cues (Bakker et al., 2008; Benderoth et al., 2006;
104 Brachi et al., 2015; Chan et al., 2010; Daxenbichler et al., 1991; Halkier and Gershenzon, 2006;
105 Kerwin et al., 2015; Kliebenstein et al. 2001; Kliebenstein et al., 2001b;
106 Kliebenstein et al., 2001a; Rodman, 1980; Sønderby et al., 2010; Wright et al., 2002;
107 Katz et al., 2021). Because GSLs are derived from amino acids and contain nitrogen as part of
108 their basic structure, GSL accumulation is positively correlated with nitrogen supply
109 (Marino et al., 2016; Yan and Chen, 2007; Omirou et al., 2009; He et al., 2014). Furthermore,
110 one plant strategy for dealing with excess ammonium and avoiding toxicity is to accumulate and
111 store more GSLs (Marino and Moran, 2019; La, 2013; Marino et al., 2016; Coleto et al., 2017).

112
113 Interestingly, nitrogen and GSLs are bidirectionally coordinated with GSLs influencing nitrogen
114 signaling and/or responses. A metabolic genome-wide association study measuring natural
115 variation in amino acid content within *Arabidopsis* seeds found that two key GSL biosynthetic
116 loci were causally associated with the level of free glutamine in the seed (Slaten et al., 2020).
117 One possible explanation for this GSL to nitrogen connection comes from the observation that

118 specific GSLs can function as growth and development regulators through interactions with
119 different mechanisms including the TOR complex that integrates nitrogen availability into
120 complex signaling networks (Katz et al., 2020; Katz et al., 2015; Malinovsky et al., 2017;
121 Salehin et al., 2019). Similarly MYB29, a GSL transcription factor, can influence root plasticity
122 in response to changes in nitrate levels (Gaudinier et al., 2018). While these studies highlight the
123 involvement of GSLs in nitrogen responses, the mechanisms behind the interplay between
124 nitrogen and defense metabolism are largely unknown.

125

126 To develop a deeper understanding of natural variation in *A. thaliana* responses to different
127 nitrogen sources and concentrations, we phenotyped 1135 *Arabidopsis thaliana* natural
128 genotypes (Kawakatsu et al., 2016; The 1001 Genomes Consortium, 2016). While natural
129 variation in nitrogen responses in *Arabidopsis* has received some study, the majority of the work
130 on nitrogen responses in *Arabidopsis* have focused on the reference Columbia-0 (Col-0)
131 genotype (Menz et al., 2018), and the effectiveness and necessity of using populations with
132 natural variation when querying for disparate responses, i.e. genotypes that prefer ammonium, is
133 under debate (Pigliucci et al., 2006; Waddington, 1953; Pigliucci and Murren, 2003;
134 Schlichting and Pigliucci, 1993). One line of thinking suggests that Col-0 mutants can mimic the
135 entire range of phenotypes available within the species natural variation, as was demonstrated in
136 a study that identified genes involved in nitrogen-mediated root architecture plasticity in 69
137 *Arabidopsis* genotypes. This work suggested that the mechanisms controlling roots plasticity in
138 Col-0 are not different from those of other natural genotypes, and Col-0 mutants can be used to
139 mimic the natural variation in a limited population size (Rosas et al., 2013). Recent genomic
140 analysis of pangenomic variation has shown extensive presence/absence variation in genes
141 including enzymes and regulatory genes suggesting the likelihood that other accessions have
142 mechanisms not present in the Col-0 reference (Menz et al., 2018). Thus, we utilized a larger
143 accession collection to survey for novel nitrogen responses/ behaviors that are not possible
144 within Col-0 or its mutants.

145 To address these questions, we phenotyped growth responses under both nitrate and ammonium
146 to compare if the genetics of natural variation to the two sources are similar or independent. We
147 measured the responses of the genotypes using both developmental phenotyping of the root

148 system architecture and metabolic phenotyping of the defense metabolite GSLs. This allowed us
149 to assess if the two trait classes identify similar or disparate genetic mechanisms and test if the
150 extensive genetic variation in GSLs may contribute to nitrogen responses.
151 To query for rare accessions with novel responses, we utilized a much larger collection of
152 accessions than previous. This analysis identified a large number of genes involved in the
153 nitrogen response that are predominantly specific to a trait class under a specific nitrogen source
154 under different genetic backgrounds. Having a large collection of genotypes allowed us to
155 identify novel behaviors in a polygenic trait like *Arabidopsis* nitrogen responses. These are likely
156 caused by combinations of diverse alleles and as such would be difficult or impossible to observe
157 in smaller populations or a single reference genotype. Using this vast collection of natural
158 genotypes and studying both developmental and metabolic responses expand our understanding
159 of the processes and mechanisms involved in nitrogen responses.

160

161

162 **Results**

163 **Phenotyping platform optimization**

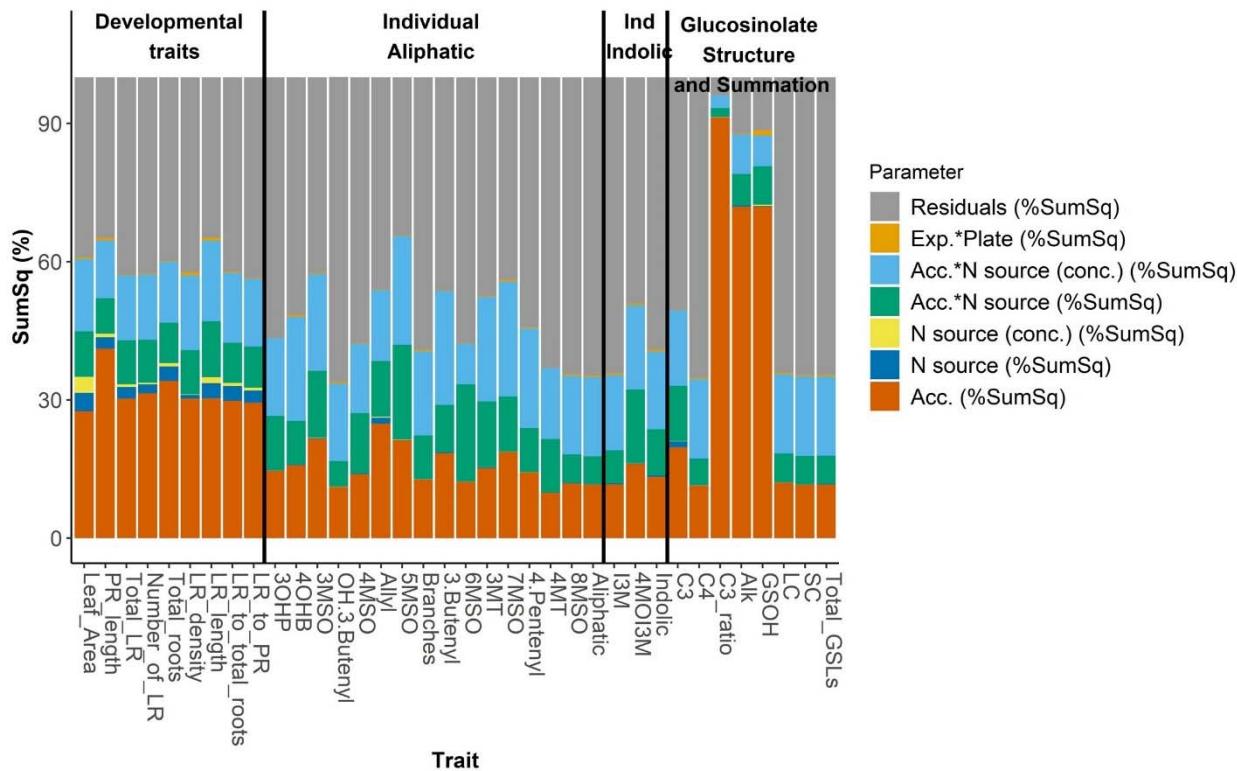
164 To optimize our ability to measure phenotypic diversity across *Arabidopsis* genotypes to
165 variation in nitrogen, both source and concentration, we quantified seedlings growth growing on
166 a range of nitrate and ammonium concentrations. To maximize the potential trait range
167 measurable across the *Arabidopsis* genotypes we found matching concentrations of the two
168 nitrogen sources that elicited substantial trait variation without constraining growth, e.g., neither
169 an oversupply nor an undersupply. We grew the reference *Arabidopsis* Col-0 on media with
170 either nitrate (NO_3^- as KNO_3) or ammonium (NH_4^+ as NH_4HCO_3) as a sole nitrogen source with
171 concentrations ranging from 0.05 mM to 5 mM. After 12 days we measured five developmental
172 traits linked to differential nitrogen responses, including leaf area and root phenotypes (a full list
173 is provided in Figure S1, Tables S1 and S2). As previously reported (Bloom et al. 2012),
174 *Arabidopsis* Col-0 seedlings at ambient CO_2 grows better with nitrate as a nitrogen source than
175 with ammonium under most concentrations, with higher average weight, larger leaf area, and
176 longer primary roots (Figure S1). On ammonium, *Arabidopsis* Col-0 seedlings performed well
177 from 0.1 mM to 1 mM, but the extreme ammonium concentrations (0.05 mM and 5 mM)
178 prevented seed germination or growth (Figure S1). Therefore, 0.1 mM and 1 mM, the widest pair
179 of concentrations that allowed growth under both nitrogen sources, were chosen as the working
180 concentrations for the experiments to assess genetic variation in *Arabidopsis*.

181

182 **Diversity of *Arabidopsis* genotype responses to ammonium and nitrate measured using 183 developmental and biochemical traits**

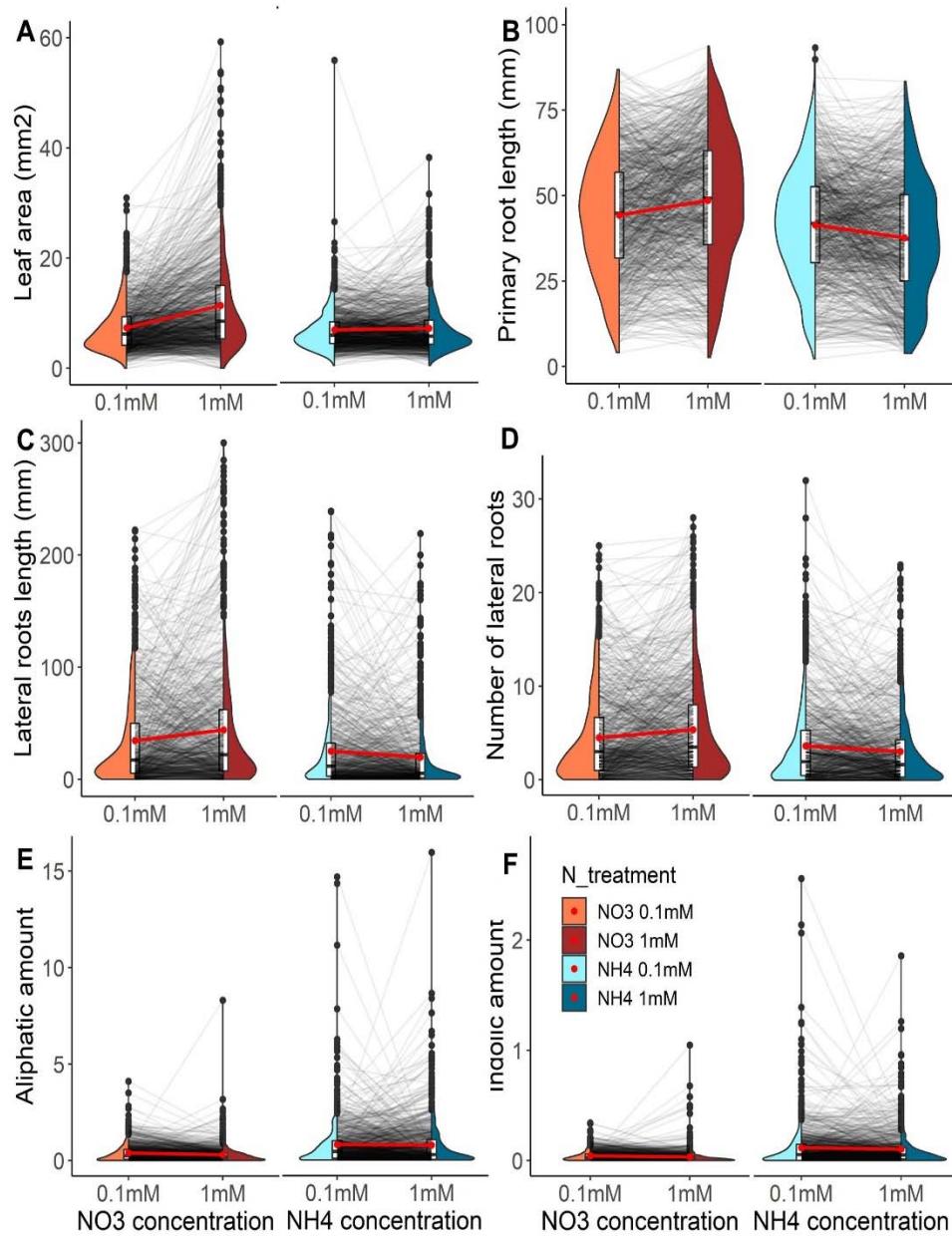
184 To measure natural genetic variation in *Arabidopsis* responses to nitrate and ammonium we
185 assessed developmental and defense metabolite traits for a population of 1135 sequenced natural
186 genotypes collected from geographical locations around the world
187 (The 1001 Genomes Consortium, 2016). We included developmental and defense metabolite
188 traits to test if the genetic variation in nitrogen responses had global effects on the *Arabidopsis*
189 genotypes or if each trait may identify different responses and genes.
190 Each genotype was sown in triplicate on 4 nitrogen conditions: nitrate as a sole nitrogen source
191 in a concentration of 0.1 mM or 1 mM, or ammonium as a sole nitrogen source in a concentration

192 of 0.1mM or 1mM (for more details see methods). Twelve days after planting, each seedling was
193 measured for developmental and defense metabolite traits (for more details see methods, Tables
194 S3 and S4).


195 We used a linear model to parse the influence of genotype (genetic variation amongst the
196 genotypes that is independent of nitrogen), environment (trait variation solely influenced by the
197 nitrogen source, and nitrogen source by concentration), and the interaction of genotype and
198 environment (trait variation where genotype variation alters the response to nitrogen variation)
199 on the variation in the developmental traits (Figure 1, sup. Tables 6,7). The linear model also
200 included terms for random effects of experiment and culture plate (for more details see methods).
201 Across all genotypes and nitrogen conditions, genotype (Accession) influenced the majority of
202 explained developmental trait variation. Nitrogen source and the interaction of nitrogen source
203 and concentration significantly altered developmental traits, but these effects were secondary to
204 the interaction of the nitrogen terms (source or concentration) with genotype (Figure 1). This
205 indicates that for developmental traits such as lateral root formation, primary root length, and
206 leaf area, the difference between ammonium and nitrate at these concentrations is less influential
207 than the interaction between nitrogen source or concentration and the genotype.

208 Using the same linear model, we estimated the level of variation due to each of the indicated
209 parameters for each defense metabolite trait. For all the individual defense metabolite traits the
210 variation was determined equally by genotype, and the interaction of nitrogen and genotype
211 (Figure 1). For some of the GSL summation traits (e.g., the C3 vs. C4 ratio = the number of
212 carbons in the GSL backbone, alkenyl ratio, and GSOH activity), genotype explained most of the
213 variation while the interaction of nitrogen and genotype explained a small portion of the
214 variation. This indicates diverse nitrogen responses across genotypes for both the defense
215 metabolite and developmental traits.

216


217 **Genotype and nitrogen interactions create diverse changes in shoot and root development**

218 The linear models indicated a high level of diversity in the genotype's responses to the four
219 nitrogen conditions. To visualize the potential range of responses across the genotypes, we
220 plotted for the distribution of each trait using each genotype's adjusted mean phenotypes for each
221 nitrogen condition (Figure 2 A-D).

Figure 1: Broad-sense heritability: percentage of variance explained by each variable was estimated for each trait based on a linear model followed by ANOVA with the indicated effects upon the measured trait (Acc= accession, conc=nitrogen concentration, Exp*Plate=experiment block) Ind = individual.

222 On average, the population of *Arabidopsis* genotypes had significantly more leaf area, longer
 223 primary roots, and more lateral roots on nitrate than ammonium (Figure 2 A-D) (post-hoc
 224 TukeyHSD test shown in Table S8). Further, the population average for these traits increased
 225 with additional nitrate and decreased with additional ammonium (Figure 2 A-D). Thus, the
 226 average *Arabidopsis* genotype tends to present extended growth on nitrate than ammonium and
 227 is constrained by nitrate availability, aligning with previous literature (Li et al., 2014;
 228 Britto and Kronzucker, 2002; Jian et al., 2018; Fuertes-Mendizábal et al., 2013;
 229 Marino and Moran, 2019).
 230 As anticipated from the high fraction of variance attributed to the genotype \times nitrogen
 231 interactions, the range in the different genotypes' responses to the nitrogen sources dwarfs the
 232 average population response. This includes genotypes that have very different behaviors than the
 233 average. For example, while most genotypes present enhanced growth on 1 mM than 0.1 mM

Figure 2: Nitrogen conditions affect different traits across natural accessions:
 phenotypes of *Arabidopsis* accessions grown on 4 different nitrogen conditions (nitrate 0.1mM, nitrate 1mM, ammonium 0.1mM, ammonium 1mM). A. Leaf area. B. Primary root length. C. Lateral roots length. D. Number of lateral roots. E. Aliphatic GSLs. F. Indolic GSLs. Grey lines between each pair of nitrogen concentrations connect the means of each individual accession grown under each nitrogen concentration. Red lines between the violins connect the mean phenotype between two concentrations of the same nitrogen source. Aliphatic and indolic GSLs amounts were normalized by total roots length for seedlings grown on NO3 1mM and NH4 1mM (amount units are umol/mm), and by total roots length and leaves area for seedlings grown on NO3 0.1mM and NH4 0.1mM (amount units are umol/mm+mm²).

234 nitrate, there are genotypes, including IP-Con-0, IP-Ses-0 and Ven-1, that perform better on the

235 lower nitrate concentration for most of the developmental traits (Figure 2 and Figure S3). These
236 genotypes also tend to perform better on higher ammonium than on higher nitrate. Thus, there is
237 an extensive range of genetically dependent nitrogen responses present amongst these genotypes,
238 including the potential to perform better with ammonium as a nitrogen source. This allows the
239 identification of genotypes that have novel responses in comparison to the Col-0 reference
240 genotype.

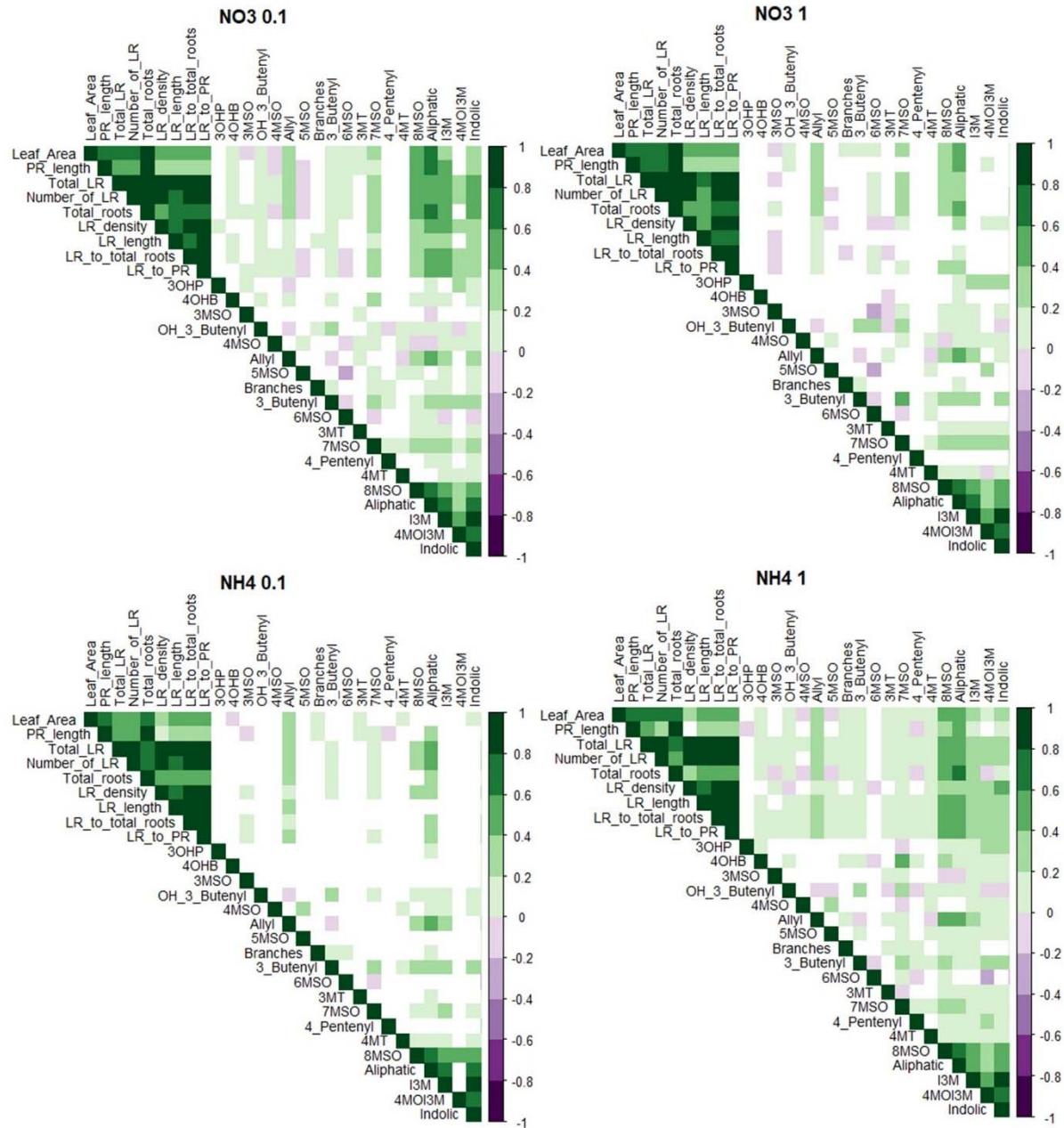
241

242 **Genotype and nitrogen interactions create diverse defense metabolite responses**

243 To evaluate if defense metabolites exhibit a similar diversity in nitrogen responses, we conducted
244 a similar analysis as above. For this we focused on two defense metabolite traits, the sum of all
245 indolic GSLs (GSLs derived from Tryptophane) and the sum of all aliphatic GSLs (GSLs
246 derived from Methionine) in each seedling, because these traits are quantifiable in all the
247 genotypes (Figure 2 E, F). In contrast, most individual aliphatic GSLs have significant
248 presence/absence variation limiting the ability for direct comparison across the whole population.
249 Plotting the genotype's adjusted mean phenotypes showed that GSLs are 10-fold higher under
250 ammonium than under nitrate with no significant change across the different nitrogen
251 concentrations (Table S8 and Fig. 2 E,F). This agrees with previous publications, and was
252 suggested to be a strategy to avoid ammonium toxicity by diverting ammonium to GSL
253 production (Marino and Moran, 2019; La, 2013; Marino et al., 2016; Coleto et al., 2017). This
254 pattern differs from the developmental traits suggesting that GSLs have different nitrogen
255 responses.

256 Defense metabolite traits, like the developmental traits, display a large diversity of genotype by
257 nitrogen interactions (Figure 2 E,F). This is supported by the linear model showing that the
258 genotype by nitrogen interaction explained most of the trait variation. While the average
259 genotype showed minimal response to the different nitrogen concentrations under both nitrogen
260 sources, certain genotypes exhibited enhanced nitrogen sensitivity. Both the IP-Ara-4 and IP-
261 Mah-6 genotypes accumulated significantly higher amounts of both aliphatic and indolic GSLs
262 when grown on the higher concentration of ammonium (Figure S3, Table S9). In contrast, IP-
263 Ara-4 seemed to decrease GSLs (aliphatics and indolics) when grown on higher nitrate. This
264 further demonstrates the potential of this collection of genotypes to identify novel nitrogen
265 responses that differ from the average genotype or from the Col-0 reference genotype.

266

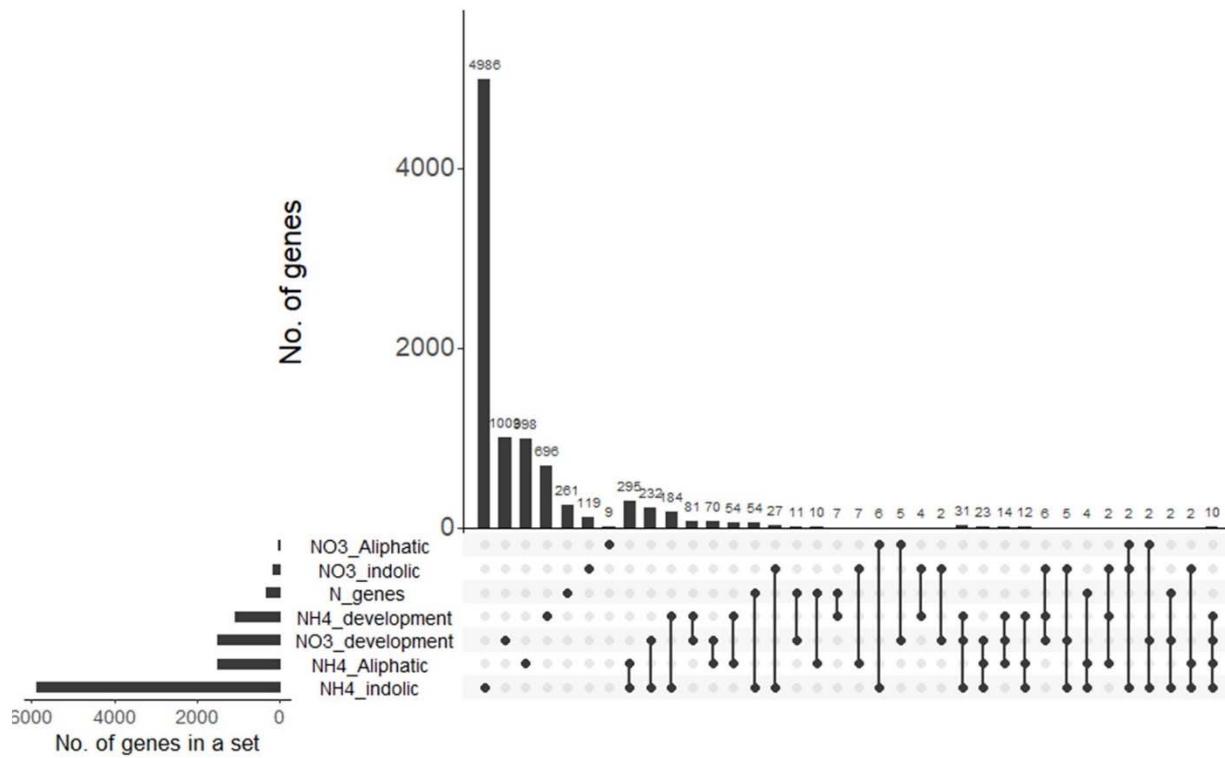

267 **Partial correlation between developmental and metabolic traits**

268 Because mechanistic links connecting nitrogen, development, and defense metabolism are
269 possible, we tested for such links in the population. We calculated genetic correlations between
270 the traits under the assumption that mechanistic links would show up as shared genetic causality
271 and result in correlated trait variation. To minimize the influence of any nitrogen main effect on
272 the analysis we correlated across each nitrogen condition, source or concentration, separately.
273 This showed that all the developmental traits are significantly positively correlated (Figure 3). In
274 contrast, the defense metabolites showed more diversity in their correlations both within and
275 across nitrogen conditions (Figure 3). For example, the amount of indolic GSLs is significantly
276 positively correlated with all the developmental traits when the genotypes were grown on 0.1
277 mM nitrate or 1 mM ammonium. However, this correlation is largely non-existent when the
278 accessions were grown on 1 mM nitrate or 0.1 mM ammonium. In contrast, the aliphatic GSLs
279 amount shows a low correlation to developmental traits when the genotypes were grown on 1
280 mM nitrate or 0.1 mM ammonium, but higher correlation when the genotypes were grown on 0.1
281 mM nitrate or 1 mM ammonium. This suggests that there is some shared genetic causality across
282 the developmental and defense metabolite traits but that it is highly conditional to the specific
283 nitrogen condition.

284 The combination of developmental and defense metabolite traits also allows us to determine if
285 there is modularity amongst the genotypes whereby groups of genotypes show similar responses
286 to the nitrogen conditions. If the *Arabidopsis* genotypes are evolving to a limited range of
287 nitrogen conditions that are distinct from each other, a modular structure might be expected to
288 reflect this structure. The alternative option is that nitrogen responses exist on continuums with
289 no grouping in the genotypes. To test these possibilities, we took the developmental and defense
290 metabolite traits across all four nitrogen conditions and used principal component analysis (PCA)
291 to assess the structure of the phenotypic variation. The PCA showed that there was no readily
292 identifiable genotype grouping and that phenotypic variation in genotypes exist on a multi-
293 dimensional continuum. Further, the PCA largely did not separate by nitrogen conditions
294 supporting the importance of genotype \times nitrogen interactions (Figure S7).

295

296 **Candidate genes associated with nitrogen responses**


Figure 3: Nitrogen conditions present different correlations between the traits:
 correlation matrix between the traits under the different nitrogen conditions. Colors represent the correlation values. White squares represent nonsignificant correlations (method: Spearman, conf.level = .95).

297 To identify loci underlying genetic variation in these nitrogen responses, we performed genome-
 298 wide association studies (GWAS, with EMMAX algorithms) using the dense SNP data available

299 for this genotype collection. We focused on four developmental traits (leaf area, primary root
300 length, lateral roots length, and number of lateral roots) and the two defense metabolite traits
301 (aliphatic and indolic) under each nitrogen condition as traits for GWAS. We also included the
302 log (10) ratio for each trait in each genotype across the two concentrations of the same nitrogen
303 source as additional traits to approximate the nitrogen responsivity (Figure S8). This resulted in
304 36 different GWAS: six traits across four nitrogen conditions and two ratios per the six traits
305 (Figure S9). Each trait yielded a diverse group of significant SNPs (we observed low overlap
306 between SNPs from each GWAS, Figures S10 – S13). Amongst this dataset, no large effect loci
307 were detected which suggested a poly- or oligo-genic architecture.

308 To filter for core genes and other trends, we combined each group of traits (development,
309 aliphatic, and indolic) under each nitrogen source as a set (Figures S10 – 13, all future references
310 of “set” refer to those groups of traits under each nitrogen source). We combined leaf and roots
311 traits into one set of developmental traits because they show a high correlation under all nitrogen
312 conditions (Figure 3), and previous mechanistic work showing that these traits can have a
313 coordinate genetic control; for example SnRK (SNF1-related protein kinase) gene family control
314 both roots and shoots growth through the activation of abscisic acid (Fujii and Zhu, 2009), and
315 TOR (TARGET OF RAPAMYCIN) kinase (McCready et al., 2020). For each of these sets, we
316 identified the genes that have the most consistent effect across all individual GWA within a set
317 using the Multivariate Adaptive Shrinkage (MASH) method. Then the MASH method uses all
318 the SNPs in the set and ranks them based on their shared and consistent effects across the set.
319 This rank is then identified the SNPs with the most consistent effect on traits to shrink the
320 number of SNPs/genes for further interrogation (for details see methods). For example, we took
321 all of the EMMAX output for GWA for all the developmental traits on all the nitrate conditions
322 (12 total trait GWA datasets), combined them to a set, and used MASH to find the shared SNPs
323 that influence development across nitrate conditions. This analysis still found 1281 genes as
324 being at the core of this set of GWAS.

325 Testing for overlap between the six gene lists from the six trait sets from the MASH highlighted
326 candidate genes that were mutual to the nitrogen sources and/or trait types (Figure S16). Overall,
327 around 30% of the genes in each set were found in at least one other set (Table S11). This
328 indicates that most of the genes in most of the sets are specific to one set and are not mutual
329 across other nitrogen sources and/or traits (Figure 4, Table S11). We then tested for an overlap

Figure 4: Overlaps between genes yield from the different mash sets: SNPs with mash score > 0.98 were transformed to genes, and the overlap of these genes between the different sets was analyzed. N genes are a set of *Arabidopsis* genes known to be related to some nitrogen process. Fisher's exact test was performed for each pair of sets (supp. Table 12). Total number of genes = 28496.

330 between genes identified using the GWA on the same trait type across the different nitrogen
331 sources. This test for more shared causality within the developmental traits across nitrate and
332 ammonium. Conducting Fisher's exact test to measure overlap of genes commonly found from
333 different sets shows significant enrichment for common genes influencing developmental traits
334 across nitrate and ammonium (Figure 4). In contrast, both defense metabolite traits had no
335 evidence for enrichment across the two nitrogen sources, suggesting that largely different genetic
336 networks may influence defense metabolism across the nitrogen sources. Next, we shifted the
337 analysis to test for overlap between trait sets on a specific nitrogen source; for example, did
338 ammonium have more commonality across aliphatic and indolic GLS. This showed that there
339 was a significant enrichment in gene overlap in the indolic and aliphatic GLS trait sets under
340 ammonium conditions, but almost none in the sets under nitrate conditions. This suggests that

341 when seedlings are grown on ammonium, shared genes influence variation in both the indolic
342 and aliphatic GLS pathways (Figure 4, and Table S12).

343

344 We then assessed whether the candidate genes we identified were already known to be related to
345 some nitrogen process (assimilation, signaling, transport etc.) or whether inclusion of defense
346 metabolites and ammonium identified new possible nitrogen-associated genes. *Arabidopsis* has a
347 large catalog of genes with previously ascertained mechanistic links to nitrogen, typically
348 derived using root traits and nitrate. Using literature annotation, we created a set of 302 genes
349 that are known in *Arabidopsis* to be related to some nitrogen process
350 (Alvarez et al., 2014; Brooks et al., 2019; Castaings et al., 2009; Cheng et al., 2021; Gaudinier et
351 al., 2018; Gifford et al., 2008; Konishi and Yanagisawa, 2013; Krouk et al., 2010; Medici et al.,
352 2015; Obertello et al., 2010; Rubin et al., 2009; Varala et al., 2018; Vidal et al., 2014; Xu et al., 2
353 016; Zhang and Forde, 1998) (For details see methods, and Table S13). Using this list of known
354 mechanistic genes, we checked for an overlap with the six gene sets from the MASH analysis
355 (Figure 4). Among the genes that appeared in more than one set and that are known to be
356 involved in some nitrogen response are genes involved in development (AT4G18390,
357 TEOSINTE BRANCHED 1), nitrate regulation (AT3G60320) and a nitrate reductase
358 (AT2G15620), and hormone regulation (AT5G51190 is a member of the ERF/AP2 domain
359 transcription family, and AT4G39070; BZS1 that is regulated by brassinosteroids through
360 BZR1). Gene Ontology (GO) analysis with the full list of genes that showed up in 3 sets or more
361 did not yield any enrichment.

362 A test of the scope of overlap between the 6 sets and the known nitrogen genes showed that less
363 than 1% of the genes in each trait set overlapped with the set of known nitrogen genes, regardless
364 of if nitrate or ammonium was the nitrogen source. Fisher's exact test indicates that this overlap
365 is non-significant indicating that known nitrogen associated genes are not enriched (Table S12).
366 Therefore, most of the candidate genes were not previously linked to nitrogen responses in
367 *Arabidopsis*.

368 To obtain insights about the biological processes in which the associated candidate genes are
369 involved, we conducted GO analysis (Figure S16). Analyzing each MASH derived gene list for
370 the six trait sets, showed some high-level GO terms that were enriched, like metabolic processes
371 and defense responses. However, these were only higher-level GO terms with no especially

372 informative connections (Table S15). To test for a more limited gene set common across a few
373 trait sets we used genes that appeared in more than one sets. Using both the developmental and
374 metabolic trait sets, the biological processes that are enriched based on these genes, include both
375 GSL and general nitrogen metabolism, and categories around cell processes (Table S14).

376

377 **Candidate nitrogen-related genes are co-expressed**

378 Previous work has shown that co-expression modules of candidate GWAS genes can identify
379 genes that are more likely to be casually connected to the traits of interest (Chan et al., 2011;
380 Wisecaver et al., 2017). To test if co-expression filtering of the candidate genes may identify
381 more mechanistically insightful gene sets as previously suggested, we developed co-expression
382 gene modules using expression data from seedlings of all the genotypes (Figure S16)
383 (Kawakatsu et al., 2016; Wisecaver et al., 2017). Previous work has shown that co-expression
384 modules do not have to be derived from transcriptomic experiments designed around the specific
385 conditions being tested and that any transcriptomic experiment can provide highly informative
386 module. This extends even to the observation that that informative co-expression modules can be
387 readily obtained from stochastic inter-individual variation within a single genotype
388 (Liu et al., 2021). This analysis resulted in 2864 modules with a median of 7 genes in a co-
389 expression module (range 3 to 257 genes). Of these co-expression modules, 436 had no GWA
390 candidates.

391 Using these co-expression modules, we tested if our GWA candidates clustered into specific co-
392 expression modules. We assigned each gene in each set to a co-expression module(s), thereby
393 creating a list of modules for each set, based on the genes in each set. Candidate genes not
394 assigned to a co-expression module were discarded. By filtering for likely causal genes with
395 these co-expression modules, we found more overlap across gene modules of trait sets than
396 previously found using the original gene lists (Figure S17). Whereas the simple gene lists found
397 little overlap between traits sets, the co-expression modules are highly shared between the trait
398 sets: 90% of the identified co-expression modules were associated with at least 2 different trait
399 sets, and only 10% of the modules were specific to one trait set (Table S11). For example, one
400 co-expression module (module 104) was found to be associated with candidate genes from all
401 trait sets, suggesting that this module of 119 genes may play a common role in nitrogen

402 responses across development and defense. To learn about the biological processes associated
403 with the modules that were associated with at least five of the trait sets (24 modules, Table S16),
404 we used the genes in those modules in a GO enrichment analysis. This showed that these co-
405 expression modules associated with most nitrogen traits are enriched for genes involved in root
406 development and cell division (Table S17). These processes are expected to be involved in
407 altering plant development and metabolism. This means that while most of the candidate genes
408 show specificity to distinct nitrogen responses (a specific set), they appear to relate to a few
409 commonly identified modules, as previously suggested (Gaudinier et al., 2018). This suggests
410 that the natural variation may be functioning through a defined set of modules that can be found
411 using the combined GWA/co-expression approach.

412

413

414 **Discussion**

415 How a plant uses nitrogen is critical to the plant's productivity and fitness, especially in a
416 changing environment. Developing a better understanding of the genetics and mechanisms that
417 govern plant nitrogen use will facilitate engineering or breeding plants to use nitrogen more
418 efficiently. To map the potential diversity of processes involved in plant nitrogen response and
419 use, we grew a large population of *Arabidopsis* genotypes under four different nitrogen
420 environments, and measured a set of developmental traits, and a set of defense metabolite traits.
421 We found that this population presents a diversity of responses to the different nitrogen
422 conditions associated with a large number of genes. While most of those genes are specific to
423 distinct nitrogen conditions (a particular nitrogen source or concentration), it is possible to find
424 genes involved in potentially responding across nitrogen conditions using a combined GWA/co-
425 expression filtering method.

426

427 **Large population size allows the identification of rare and novel nitrogen responses
428 amongst the genotypes**

429 Using a large number of genotypes, we found that the population had a clear average response
430 while individual genotypes had a wide range of responses to nitrogen across the different traits.
431 The large population size allowed us to identify extended phenotypic tails that include previously
432 unobserved responses of *Arabidopsis* to nitrogen. For example, while most of the genotypes
433 presented elevated root and shoot growth on nitrate over ammonium, several genotypes
434 presented the opposite behavior with increased growth when grown on ammonium.
435 Extended phenotypic tails in natural populations can be caused by variation in either a few major
436 loci or multiple small effect loci. Several lines of evidence suggest that we observed mainly
437 variation in small effect genes that blend to create these unique events. First, most of the traits
438 show a unimodal distribution of phenotypes with a long continuous tail of phenotypic variation
439 and lack any evidence of multi-modality or extreme outliers (Schraiber and Landis, 2015). These
440 distributions imply that these traits are controlled by different combinations of small effects
441 alleles.
442 The second line of evidence that mainly small effect genes control these traits in the population
443 comes from the GWAS we conducted using the different traits under the different nitrogen
444 environments. The GWAS did not find evidence of any large-effect loci associated with the

445 responses to nitrogen. Instead, the loci were small effects, suggesting that the unusual phenotypic
446 responses arise from combinations of alleles at a large number of loci. The potential for novel
447 phenotypes to arise by accumulation of alleles at multiple loci within a network was recently
448 presented by a model showing that trait values can be non-linearly created by a network of
449 interactions with different weights (Milocco and Salazar-Ciudad, 2022). To check for potential
450 rare large-effect loci we queried the genotypes at the distribution tails for a preponderance of
451 large-effect natural knockouts in known nitrogen genes but were unable to find any overlap.
452

453 Together these results suggest that using a large population of genotypes with natural variation is
454 a preferable strategy than using a single reference genotype, e.g., Col-0, because it improves the
455 detection of responses that are a result of different combinations of multiple alleles. Therefore,
456 using a vast collection of natural genotypes and combining both genomic and phenotypic
457 techniques can be a good strategy to study complex traits, such as the response to nitrogen
458 conditions. Further, these unique phenotypes (e.g., those that present extensive growth on
459 ammonium than nitrate) may be generated by stacking small effect loci to create a large
460 phenotypic variance.

461

462 **Metabolic and Defense metabolites provide different readouts of the plants' nitrogen 463 response**

464 To test if the genetic basis of nitrogen responses is uniform across a range of traits or may be
465 somewhat trait specific, we analyzed two sets of traits that are associated with nitrogen
466 responses. First, we used classical developmental traits that include shoot and root descriptors
467 associated with nitrogen responses. We also measured the response of defense metabolites that
468 include two families of GSLs, indolic and aliphatic, that depend on amino acid availability for
469 their synthesis. Together we used these two sets of responses to compare the effects of nitrogen
470 on different processes in *Arabidopsis* seedlings. The phenotypic analyses revealed that each set
471 of traits presented different patterns of nitrogen responses and preferences across the population.
472 Further, the GWAS based on these two sets of traits yielded loci that are associated with each set
473 of traits, and a set of loci that is shared between the traits. This demonstrates the importance of
474 studying different types of responses (e.g., metabolic responses) under the same conditions when
475 studying complex responses because each set of traits highlights different aspects in the plants

476 response to nitrogen and can potentially identify different genetic mechanisms involved in
477 nitrogen responses.

478

479 **Nitrate and ammonium induce different responses in plants**

480 To test if there is a universal nitrogen response in *Arabidopsis* or if nitrate and ammonium may
481 identify different genetic mechanisms, we measured trait variation using both nitrate and
482 ammonium as a sole nitrogen source. Conducting GWAS using traits of genotypes that grew on
483 each of these nitrogen sources revealed two sets of loci, each one of which is associated with one
484 of the nitrogen sources, and a set of loci that are shared among the two nitrogen sources. Most of
485 the genes in this analysis are specific to one nitrogen source (68% of the nitrate related genes,
486 and 93% of the ammonium related genes), and only a small portion of the genes is shared across
487 the two sources. Analyzing the correlations between the different traits revealed that while the
488 developmental traits presented strong correlations to each other across all the nitrogen
489 conditions, the GSLs traits presented different patterns of correlations between each other and
490 the developmental traits, depending on the nitrogen condition provided to the plants. Together,
491 these results suggest that while there is a shared set of genes that will influence the plant across
492 all nitrogen sources, there is an additional, potentially larger, set of genes that will be specific to
493 the nitrogen condition (source and concentration) that the plants experience. Therefore, the exact
494 nitrogen condition (source and concentration) has a dramatic effect on the genes and mechanisms
495 used by the plant to optimize its performance.

496

497 **New gene identification**

498 Another benefit of combining multiple traits, multiple environments, and a larger population is
499 the potential to identify a large collection of potential candidate nitrogen response genes.
500 Interestingly, the overwhelming majority of these candidate genes have not been previously
501 associated with nitrogen responses. However, many are associated with expected mechanisms
502 such as root development, cell-cycle regulation, and metabolic processes. The new genes that
503 these analyses identified introduce new players potentially involved in plant response to
504 nitrogen. Future validation efforts of these genes will help to provide a better understanding of
505 the mechanisms shaping a plant's response to a specific nitrogen source. Overall, our experiment
506 suggests that using such a large population of genotypes and analyzing diverse responses under

507 different environments can reveal new genes that are potentially associated with nitrogen
508 responses.

509

510 **Acknowledgements**

511 We thank Dr. Alice MacQueen and Dr. Thomas Juenger (The University of Texas, Austin) for
512 their guidance and discussion on MASH analyses, Dr. Dan Runcie (Department of Plant
513 Sciences, University of California, Davis) for discussion on model development, Dr. Allison
514 Gaudinier (Department of Plant and Microbial Biology, University of California, Berkeley), Elli
515 Pana Cryan (the Department of Plant Sciences and the Department of Evolution and Ecology,
516 University of California, Davis) and Paul Kasemsap (Department of Plant Sciences, University
517 of California Davis, Davis, CA, USA) for critical reading of the manuscript, and Heera Rasheed,
518 Jozanne Berdan, Janine Tsai, and Bryce Gregg for assistance in the experiments. This work was
519 supported by the National Science Foundation, Directorate for Biological Sciences, Division of
520 Molecular and Cellular Biosciences (grant no. MCB 1906486 to DJK) and Division of
521 Integrative Organismal Systems (grant no. IOS 1655810 to DJK and AJB).

522

523

524 **Methods**

525 *Plant material and experimental design:* Seeds for 1135 *Arabidopsis* (*A. thaliana*) genotypes
526 were obtained from the 1001 genomes catalog of *A. thaliana* genetic variation
527 (The 1001 Genomes Consortium, 2016); <https://1001genomes.org/>).

528 Seeds were surface sterilized with 4.125% (v/v) sodium hypochlorite and 0.01% (w/v) Tween 20
529 for 15 min, then rinsed five times with distilled water.

530 The seeds were next cultivated on 13 CM² plastic culture plates containing the following: 0.1
531 mM or 1 mM KNO₃ or NH₄HCO₃, 4 mM MgSO₄, 2 mM KH₂PO₄, 1 mM CaCl₂, 10 mM KCl, 36
532 mg/l FeEDTA, 0.146 g/l 2-morpholinoethane sulfonic acid, 1.43 mg/l H₂BO₃, 0.905 mg/l
533 MnCl₂·4H₂O, 0.055 mg/l Zinc sulfate heptahydrate, 0.025 mg/l copper sulfate, 0.0125
534 Na₂MoO₄·2H₂O, 1% sucrose, 0.8% (w/v) agar, pH 5.7. The plates were placed vertically, and the
535 seedlings were grown at 22°C/24°C (day/night) under long-day conditions (16 hr of light/8 hr of
536 dark). The petri dishes with the seeds were then placed at 4°C in the dark for 3 days. Germination
537 timing was homogenous across the collection, and seedlings were collected 12 days following
538 planting. For the initial concentration selection experiments, additional concentrations of KNO₃
539 and NH₄HCO₃ were analyzed.

540 Each genotype was sowed on all four N conditions with three replicates per condition. The
541 replicates were sowed on separate plates. Each plate contained six different seeds. Each
542 experimental block contained 60 different genotypes and was referred as “Experiment”.

543 *Roots and leaf measurements:* The developmental traits that were measured to describe the
544 plants response to the different nitrogen conditions are leaf area, primary root length, total lateral
545 roots length (the sum of the length of all the lateral roots in a seedling) and the number of lateral
546 roots. Root traits were measured using Rootnav (Pound et al., 2013) or ImageJ software
547 (<https://imagej.nih.gov/ij/>) when the roots were tangled with each other.

548 Leaf area was measured using an automated image processing workflow developed in Python,
549 using functions from OpenCV and PlantCV packages (Gehan et al., 2017), with the following
550 steps: cropping agar plate region, leaf identification, pixel counting, and scale identification.

551 *GSL extractions and analyses:* To compare metabolic and developmental responses, the
552 seedlings were collected and assayed for the presence and amounts of individual glucosinolates
553 (GSLs) from two families based on the amino acid from which they derived: indolic GSLs

554 derived from tryptophan, and aliphatic GSLs derived from methionine. As the individual GSLs
555 are derived from amino acids, the sums of the GSLs provide a sensitive indication of the
556 availability of these amino acids within the plant, and an indication of how they are affected by
557 the nitrogen condition provided to the seedling. We measured 2 individual indolic GSLs, 15
558 individuals aliphatic GSLs, and calculated several traits that derived from those individual GSLs
559 (Table S6, S7). GSLs were measured as previously described
560 (Kliebenstein et al., 2001a; Kliebenstein et al., 2001b; Kliebenstein et al., 2001c). Briefly, each
561 seed was harvested in 200 μ L of 90% methanol. Samples were homogenized for 3 min in a paint
562 shaker, centrifuged, and the supernatants were transferred to a 96-well filter plate with DEAE
563 sephadex. The filter plate with DEAE sephadex was washed with water, 90% methanol and
564 water again. The sephadex-bound GSLs were eluted after an overnight incubation with 110 μ L of
565 sulfatase. Individual desulfo-GSLs within each sample were separated and detected by HPLC-
566 DAD, identified, quantified by comparison to standard curves from purified compounds A list of
567 GSLs and their structure is given in table S5. Raw GSLs data are given in table S3.
568 GSLs ratios were calculated as following: C3 ratio=C3/(C3+C4), Alk=(OH-3-Butenyl+3-
569 Butenyl+Allyl)/(3OHP+3MSO+Allyl+3MT+OH-3-Butenyl+4MSO+3-Butenyl+4MT+4OHB),
570 GSOH=OH-3-Butenyl/(OH-3-Butenyl+3-Butenyl).
571 *GSLs normalization:* GSL amounts were normalized for each nitrogen condition separately,
572 based on leaf area and total roots length. For each nitrogen condition, a linear model was utilized
573 to analyze the effect of leaf area and the total roots length upon the seedlings weight. The
574 Intercept and the slope of leaf area and the total roots length were used to normalize the GSL
575 amounts. This was to provide a common unit of comparison when it was not possible to measure
576 the mass of all the seedlings.
577 For seedlings grown on KNO_3 0.1mM: $9.902\text{e-}06 \times (\text{total roots length}) + 7.706\text{e-}05(\text{leaves area}) + 1.169\text{e-}03$.
578
579 For seedlings grown on KNO_3 1mM: $8.601\text{e-}05 \times (\text{total roots length}) - 1.313\text{e-}03$.
580 For seedlings grown on NH_4HCO_3 0.1mM: $6.352\text{e-}06 \times (\text{total roots length}) + 1.491\text{e-}04(\text{leaves area}) - 1.528\text{e-}04$.
581
582 For seedlings grown on NH_4HCO_3 1mM: $4.768\text{e-}06 \times (\text{roots length}) + 1.124\text{e-}03$.

583 *Statistics, heritability, and data visualization:* Statistical analyses were conducted using R
584 software (<https://www.R-project.org/>) with the RStudio interface (<http://www.rstudio.com/>). For
585 each trait, a linear model followed by ANOVA was utilized to analyze the effect of genotype,
586 nitrogen condition, the experiment, and the culture plate upon the measured trait (Trait ~
587 Accession + N source + (N source/N concentration) + Accession *N source + Accession *(N
588 source/N concentration) + (Experiment/Culture plate)). In these models the nitrogen
589 concentration is nested within the nitrogen source. Models where the nitrogen concentration is
590 not nested within the nitrogen source were analyzed as well and provided similar outcomes.
591 Broad-sense heritability (Table S6) for the different metabolites was estimated from this model
592 by taking the variance due to genotype (Accession) and dividing it by the total variance.
593 Estimated marginal means (emmeans) for each accession were calculated for each trait based on
594 the genotype and nitrogen treatment using the package emmeans (CRAN - Package emmeans)
595 (Table S4). Differences between pairs of treatments were estimated for each trait using a
596 TukeyHSD test. Data analyses and visualization were done using R software with tidyverse
597 (Wickham et al., 2019) and ggplot2 (Kahle and Wickham, 2013) packages. Fisher exact test was
598 calculated using the library “stats”.
599 PCAs were done with FactoMineR and factoextra packages (Abdi and Williams, 2010).
600 Correlations were done using the corrplot package (Wei T, Simko V (2021). R package
601 'corrplot': Visualization of a Correlation Matrix. (Version
602 0.90), <https://github.com/taiyun/corrplot.>), based on Spearman correlation.
603 *Genome-wide association studies:* For each trait, GWA was implemented with the easyGWAS
604 tool (Grimm et al., 2017) using the EMMAX algorithms (Kang et al., 2010) and a minor allele
605 frequency (MAF) cutoff of 5%. The results were visualized as Manhattan plots using the qqman
606 package in R (Turner, 2014).
607 *Multivariate adaptive shrinkage:* To reduce the number of SNPs in each set we chose the
608 strongest 100,000 SNPs in each GWA, which included all the significant SNPs in a GWA, and
609 other SNPs. To combine the GWA analysis, MASH was conducted using the mashr package in
610 R (Urbut et al., 2019). SNP's P-values and standard errors produced by GWAS were used in the
611 MASH analyzes as Bhat and Shat. A subset of 50K SNPs was used as a 'random' set to learn the
612 correlation structure among null tests and to fit the mashr model. The analyzes was done with a
613 subset of the strongest 100K SNPs across each set, that was chosen in two ways: 1. Choosing

614 50K SNPs with the maximum -log10(p-values), by that accounting for strong effects that are
615 specific to traits/ concentration (specific to each GWA). 2. Summing the -log10(p-values) across
616 the set for each SNP and chose the 50K SNPs with the maximum values. SNPs with local false
617 sign rates (lfsr) values higher than 0.98 were chosen to further analyzes.

618 The SNPs were connected to genes using a window of 2,000 bp upstream of the transcription
619 start site to 2,000 bp downstream of the stop codon.

620 *Filtering SNPs from the six sets:* SNPs from GWA analyses were grouped into six sets, based on
621 the traits and the nitrogen source upon which it was grown: 1. Developmental traits grown on
622 nitrate. 2. Developmental traits grown on ammonium. 3. Aliphatic GSLs grown on nitrate. 4.
623 Aliphatic GSLs grown on ammonium. 5. Indolic GSLs grown on nitrate. 6. Indolic GSLs grown
624 on ammonium (Figures S10-13). Each set includes the traits grown under the two nitrate
625 concentrations, and the logged ratio of the concentrations of each trait under the same nitrogen
626 source.

627 To analyze the SNPs in each of the six sets we used multivariate adaptive shrinkage (MASH)
628 method and estimated the effect of SNPs in each set of GWAS. Using this method, we could
629 estimate the effect sizes of both shared and condition-specific effects within each one of our six
630 sets (Urbut et al., 2019). This enabled us to detect genes (based on the detected SNPs) that are
631 associated with specific traits (e.g., developmental/ aliphatic/ indolic), genes that are associated
632 with specific nitrogen source (nitrate or ammonium), and genes that are shared across the
633 different nitrogen conditions and/or traits. For each set we conducted the MASH analyses by
634 considering both specific effects (trait specific and concentration specific) and mutual effects
635 across all the GWAS that are in the same set (for more details, see below). Using this method,
636 we were able to rank the SNPs based of their effect in each set and provide for each SNP a score
637 ranging from 0 to 1, where 1 represents the strongest effect. We used these MASH scores of each
638 SNP from each set to choose SNPs with the highest effect from each set. Here we chose SNPs
639 with MASH score higher than 0.98 (Figure S14). Plotting those SNPs based on their location on
640 the chromosome showed that the chosen SNPs from each set are spread across the genome, and
641 we could not detect specific area/s with high SNPs density (Figure S15). We then transformed
642 those SNPs to genes considering 2K bps before and after the start and end point of each gene.

643 This analyzes yield six sets of genes, each set is associated with a different set of traits under a
644 specific nitrogen source (Table S10) and contain between 22 to 5051 genes.

645 *List of nitrogen related genes in Arabidopsis*: Using several literature sources we created a set of
646 genes that have been reported to be associated with some nitrogen process (Table S13). These
647 processes include nitrogen assimilation, transport, metabolism, signaling, and transcription
648 factors

649 (Alvarez et al., 2014; Brooks et al., 2019; Castaings et al., 2009; Cheng et al., 2021; Gaudinier et
650 al., 2018; Gifford et al., 2008; Konishi and Yanagisawa, 2013; Krouk et al., 2010; Medici et al.,
651 2015; Obertello et al., 2010; Rubin et al., 2009; Varala et al., 2018; Vidal et al., 2014; Xu et al., 2
652 016; Zhang and Forde, 1998).

653 *Gene ontology enrichment*: Gene ontology enrichments were tested using TAIR
654 (https://www.arabidopsis.org/tools/go_term_enrichment.jsp), and with agriGO (Du et al., 2010).

655 *Co-expression modules*: Co-expressed gene sets were identified using the mr2mols program and
656 previous data measuring 874 transcriptomes from natural Arabidopsis genotypes was utilized
657 (Kawakatsu et al., 2016; Wisecaver et al., 2017). Briefly, these packages take the data and
658 creates and all by all Spearman correlation coefficient matrix for the complete transcriptomes.
659 This matrix is then converted into mutual ranks for each transcript pairs. Module groupings are
660 then defined using the mutual ranks as converted to edge weights using an exponential decay
661 function. 8 different exponential decay values ranging from 2 to 100 were evaluated and a decay
662 value of 50 was chosen to maximize average module size.

663

664

665

666

667

668 **Figure legends**

669 **Figure 1: Broad-sense heritability**: percentage of variance explained by each variable was
670 estimated for each trait based on a linear model followed by ANOVA with the indicated effects

671 upon the measured trait (Acc= accession, conc=nitrogen concentration, Exp*Plate=experiment
672 block) Ind = individual.

673 **Figure 2: Nitrogen conditions affect different traits across natural accessions:** phenotypes of
674 Arabidopsis accessions grown on 4 different nitrogen conditions (nitrate 0.1mM, nitrate 1mM,
675 ammonium 0.1mM, ammonium 1mM). A. Leaf area. B. Primary root length. C. Lateral roots
676 length. D. Number of lateral roots. E. Aliphatic GSLs. F. Indolic GSLs. Grey lines between each
677 pair of nitrogen concentrations connect the means of each individual accession grown under each
678 nitrogen concentration. Red lines between the violins connect the mean phenotype between two
679 concentrations of the same nitrogen source. Aliphatic and indolic GSLs amounts were
680 normalized by total roots length for seedlings grown on NO₃ 1mM and NH₄ 1mM (amount units
681 are umol/mm), and by total roots length and leaves area for seedlings grown on NO₃ 0.1mM and
682 NH₄ 0.1mM (amount units are umol/mm+mm²).

683 **Figure 3: Nitrogen conditions present different correlations between the traits:** correlation
684 matrix between the traits under the different nitrogen conditions. Colors represent the correlation
685 values. White squares represent nonsignificant correlations (method: Spearman, conf.level =
686 .95).

687 **Figure 4: Overlaps between genes yield from the different mash sets:** SNPs with mash score
688 > 0.98 were transformed to genes, and the overlap of these genes between the different sets was
689 analyzed. N genes are a set of Arabidopsis genes known to be related to some nitrogen process.
690 Fisher's exact test was performed for each pair of sets (supp. Table 12). Total number of genes =
691 28496.

692

693

Parsed Citations

Abdi, H. and Williams, L. J. (2010). Principal component analysis. WREs Comp Stat 2, 433–459.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Alvarez, J. M., Riveras, E., Vidal, E. A., Gras, D. E., Contreras-López, O., Tamayo, K. P., Aceituno, F., Gómez, I., Ruffel, S., Lejay, L., et al. (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of *Arabidopsis thaliana* roots. Plant J. 80, 1–13.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bakker, E. G., Traw, M. B., Toomajian, C., Kreitman, M. and Bergelson, J. (2008). Low levels of polymorphism in genes that control the activation of defense response in *Arabidopsis thaliana*. Genetics 178, 2031–2043.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Beekwilder, J., van Leeuwen, W., van Dam, N. M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J. W., Schipper, B., et al. (2008). The impact of the absence of aliphatic glucosinolates on insect herbivory in *Arabidopsis*. PLoS ONE 3, e2068.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Benderoth, M., Textor, S., Windsor, A. J., Mitchell-Olds, T., Gershenson, J. and Kroymann, J. (2006). Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci USA 103, 9118–9123.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bloom, A. J. (2015). The increasing importance of distinguishing among plant nitrogen sources. Curr. Opin. Plant Biol. 25, 10–16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bloom, A. J., Burger, M., Rubio Asensio, J. S. and Cousins, A. B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and *Arabidopsis*. Science 328, 899–903.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bloom, A. J., Asensio, J. S. R., Randall, L., Rachmilevitch, S., Cousins, A. B. and Carlisle, E. A. (2012). CO₂ enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93, 355–367.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brachi, B., Meyer, C. G., Villoutreix, R., Platt, A., Morton, T. C., Roux, F. and Bergelson, J. (2015). Coselected genes determine adaptive variation in herbivore resistance throughout the native range of *Arabidopsis thaliana*. Proc Natl Acad Sci USA 112, 4032–4037.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Britto, D. T. and Kronzucker, H. J. (2002). NH₄⁺ toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brooks, M. D., Cirrone, J., Pasquino, A. V., Alvarez, J. M., Swift, J., Mittal, S., Juang, C.-L., Varala, K., Gutiérrez, R. A., Krouk, G., et al. (2019). Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat. Commun. 10, 1569.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet-Mercey, S., Taconnat, L., Renou, J.-P., Daniel-Vedele, F., Fernandez, E., et al. (2009). The nodule inception-like protein 7 modulates nitrate sensing and metabolism in *Arabidopsis*. Plant J. 57, 426–435.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chan, E. K. F., Rowe, H. C. and Kliebenstein, D. J. (2010). Understanding the evolution of defense metabolites in *Arabidopsis thaliana* using genome-wide association mapping. Genetics 185, 991–1007.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chan, E. K. F., Rowe, H. C., Corwin, J. A., Joseph, B. and Kliebenstein, D. J. (2011). Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in *Arabidopsis thaliana*. PLoS Biol. 9, e1001125.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cheng, C.-Y., Li, Y., Varala, K., Bubert, J., Huang, J., Kim, G. J., Halim, J., Arp, J., Shih, H.-J. S., Levinson, G., et al. (2021). Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships. Nat. Commun. 12, 5627.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Coleto, I., de la Peña, M., Rodríguez-Escalante, J., Bejarano, I., Glauser, G., Aparicio-Tejo, P. M., González-Moro, M. B. and Marino, D. (2017). Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (*Brassica napus*). BMC Plant Biol. 17, 157.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Daxenbichler, M. E., Spencer, G. F., Carlson, D. G., Rose, G. B., Brinker, A. M. and Powell, R. G. (1991). Glucosinolate composition of seeds from 297 species of wild plants. *Phytochemistry* 30, 2623–2638.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Du, Z., Zhou, X., Ling, Y., Zhang, Z. and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. *Nucleic Acids Res.* 38, W64–70.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Epstein, E. and Bloom, A. J. (2005). Mineral nutrition of plants: principles and perspectives. (ed. Massachusetts, S. A.).

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Esteban, R., Ariz, I., Cruz, C. and Moran, J. F. (2016). Review: Mechanisms of ammonium toxicity and the quest for tolerance. *Plant Sci.* 248, 92–101.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fuertes-Mendizábal, T., González-Torralba, J., Arregui, L. M., González-Murua, C., González-Moro, M. B. and Estavillo, J. M. (2013). Ammonium as sole N source improves grain quality in wheat. *J. Sci. Food Agric.* 93, 2162–2171.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fujii, H. and Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. *Proc Natl Acad Sci USA* 106, 8380–8385.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gaudinier, A., Rodriguez-Medina, J., Zhang, L., Olson, A., Liseron-Monfils, C., Bågman, A.-M., Foret, J., Abbott, S., Tang, M., Li, B., et al. (2018). Transcriptional regulation of nitrogen-associated metabolism and growth. *Nature* 563, 259–264.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gehan, M. A., Fahlgren, N., Abbasi, A., Berry, J. C., Callen, S. T., Chavez, L., Doust, A. N., Feldman, M. J., Gilbert, K. B., Hodge, J. G., et al. (2017). PlantCV v2: Image analysis software for high-throughput plant phenotyping. *PeerJ* 5, e4088.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M. and Birnbaum, K. D. (2008). Cell-specific nitrogen responses mediate developmental plasticity. *Proc Natl Acad Sci USA* 105, 803–808.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grimm, D. G., Roqueiro, D., Salomé, P. A., Kleeberger, S., Greshake, B., Zhu, W., Liu, C., Lippert, C., Stegle, O., Schölkopf, B., et al. (2017). easyGWAS: A Cloud-Based Platform for Comparing the Results of Genome-Wide Association Studies. *Plant Cell* 29, 5–19.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Halkier, B. A. and Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. *Annu. Rev. Plant Biol.* 57, 303–333.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hansen, B. G., Kerwin, R. E., Ober, J. A., Lambrix, V. M., Mitchell-Olds, T., Gershenzon, J., Halkier, B. A. and Kliebenstein, D. J. (2008). A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in *Arabidopsis*. *Plant Physiol.* 148, 2096–2108.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

He, H., Liang, G., Li, Y., Wang, F. and Yu, D. (2014). Two young MicroRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in *Arabidopsis thaliana*. *Plant Physiol.* 164, 853–865.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jian, S., Liao, Q., Song, H., Liu, Q., Lepo, J. E., Guan, C., Zhang, J., Ismail, A. M. and Zhang, Z. (2018). NRT1.1-Related NH4+ Toxicity Is Associated with a Disturbed Balance between NH4+ Uptake and Assimilation. *Plant Physiol.* 178, 1473–1488.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kahle, D. and Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. *R J.* 5, 144.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.-Y., Freimer, N. B., Sabatti, C. and Eskin, E. (2010). Variance component model to account for sample structure in genome-wide association studies. *Nat. Genet.* 42, 348–354.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katz, E., Nisani, S., Sela, M., Behar, H. and Chamovitz, D. A. (2015). The effect of indole-3-carbinol on PIN1 and PIN2 in *Arabidopsis* roots. *Plant Signal. Behav.* 10, e1062200.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katz, E., Bagchi, R., Jeschke, V., Rasmussen, A. R. M., Hopper, A., Burow, M., Estelle, M. and Kliebenstein, D. J. (2020). Diverse allyl glucosinolate catabolites independently influence root growth and development. *Plant Physiol.* 183, 1376–1390.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katz, E., Li, J.-J., Jaegle, B., Ashkenazy, H., Abrahams, S. R., Bagaza, C., Holden, S., Pires, C. J., Angelovici, R. and Kliebenstein, D. J. (2021). Genetic variation, environment and demography intersect to shape *Arabidopsis* defense metabolite variation across Europe. *eLife* 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kawakatsu, T., Huang, S.-S. C., Jupe, F., Sasaki, E., Schmitz, R. J., Urich, M. A., Castanon, R., Nery, J. R., Barragan, C., He, Y., et al. (2016). Epigenomic Diversity in a Global Collection of *Arabidopsis thaliana* Accessions. *Cell* 166, 492–505.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kerwin, R., Feusier, J., Corwin, J., Rubin, M., Lin, C., Muok, A., Larson, B., Li, B., Joseph, B., Francisco, M., et al. (2015). Natural genetic variation in *Arabidopsis thaliana* defense metabolism genes modulates field fitness. *eLife* 4.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenson, J. and Mitchell-Olds, T. (2001a). Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in *Arabidopsis*. *Plant Cell* 13, 681–693.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenson, J. and Mitchell-Olds, T. (2001b). Genetic control of natural variation in *Arabidopsis* glucosinolate accumulation. *Plant Physiol.* 126, 811–825.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kliebenstein, D. J., Gershenson, J. and Mitchell-Olds, T. (2001c). Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in *Arabidopsis thaliana* leaves and seeds. *Genetics* 159, 359–370.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Konishi, M. and Yanagisawa, S. (2013). *Arabidopsis* NIN-like transcription factors have a central role in nitrate signalling. *Nat. Commun.* 4, 1617.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krouk, G., Mirowski, P., LeCun, Y., Shasha, D. E. and Coruzzi, G. M. (2010). Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. *Genome Biol.* 11, R123.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

La, G.-X. (2013). Effect of NH₄⁺/NO₃⁻ ratios on the growth and bolting stem glucosinolate content of chinese kale ("Brassica alboglabra" L.H. bailey). *Australian Journal of Crop Science* 7, 618–624.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, Y. and von Würén, N. (2017). Ammonium as a signal for physiological and morphological responses in plants. *J. Exp. Bot.* 68, 2581–2592.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, S., Zenda, T., Dong, A., Yang, Y., Wang, N. and Duan, H. (2021). Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize. *Front. Genet.* 12, 645443.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li, B., Li, G., Kronsicker, H. J., Baluška, F. and Shi, W. (2014). Ammonium stress in *Arabidopsis*: signaling, genetic loci, and physiological targets. *Trends Plant Sci.* 19, 107–114.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Malinovsky, F. G., Thomsen, M.-L. F., Nintemann, S. J., Jagd, L. M., Bourgine, B., Burow, M. and Kliebenstein, D. J. (2017). An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. *eLife* 6.,

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marino, D. and Moran, J. F. (2019). Can ammonium stress be positive for plant performance? *Front. Plant Sci.* 10, 1103.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marino, D., Ariz, I., Lasa, B., Santamaría, E., Fernández-Irigoyen, J., González-Murua, C. and Aparicio Tejo, P. M. (2016). Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in *Arabidopsis thaliana* and *Brassica oleracea*. *J. Exp. Bot.* 67, 3313–3323.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Matson, P. A., Naylor, R. and Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic, and economic aspects of fertilizer management. *Science* 280, 112–115.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McCreedy, K., Spencer, V. and Kim, M. (2020). The importance of TOR kinase in plant development. *Front. Plant Sci.* 11, 16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Medici, A., Marshall-Colon, A., Ronzier, E., Szponarski, W., Wang, R., Gojon, A., Crawford, N. M., Ruffel, S., Coruzzi, G. M. and

Krouk, G. (2015). AtNIGT1/HRS1 integrates nitrate and phosphate signals at the *Arabidopsis* root tip. *Nat. Commun.* 6, 6274.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Menz, J., Range, T., Trini, J., Ludewig, U. and Neuhäuser, B. (2018). Molecular basis of differential nitrogen use efficiencies and nitrogen source preferences in contrasting *Arabidopsis* accessions. *Sci. Rep.* 8, 3373.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Milocco, L. and Salazar-Ciudad, I. (2022). Evolution of the G Matrix under Nonlinear Genotype-Phenotype Maps. *Am. Nat.* 199, 420–435.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Obertello, M., Krouk, G., Katari, M. S., Runko, S. J. and Coruzzi, G. M. (2010). Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in *Arabidopsis*. *BMC Syst. Biol.* 4, 111.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Omirou, M. D., Papadopoulou, K. K., Papastylianou, I., Constantinou, M., Karpouzas, D. G., Asimakopoulos, I. and Ehaliotis, C. (2009). Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. *J. Agric. Food Chem.* 57, 9408–9417.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pigliucci, M. and Murren, C. J. (2003). Perspective: Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? *Evolution* 57, 1455–1464.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pigliucci, M., Murren, C. J. and Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. *J. Exp. Biol.* 209, 2362–2367.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pound, M. P., French, A. P., Atkinson, J. A., Wells, D. M., Bennett, M. J. and Pridmore, T. (2013). RootNav: navigating images of complex root architectures. *Plant Physiol.* 162, 1802–1814.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rodman, J. E. (1980). Population variation and hybridization in sea-rockets (cakile, cruciferae): seed glucosinolate characters. *Am. J. Bot.* 67, 1145–1159.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rosas, U., Cibrian-Jaramillo, A., Ristova, D., Banta, J. A., Gifford, M. L., Fan, A. H., Zhou, R. W., Kim, G. J., Krouk, G., Birnbaum, K. D., et al. (2013). Integration of responses within and across *Arabidopsis* natural accessions uncovers loci controlling root systems architecture. *Proc Natl Acad Sci USA* 110, 15133–15138.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rubin, G., Tohge, T., Matsuda, F., Saito, K. and Scheible, W.-R. (2009). Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in *Arabidopsis*. *Plant Cell* 21, 3567–3584.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salehin, M., Li, B., Tang, M., Katz, E., Song, L., Ecker, J. R., Kliebenstein, D. J. and Estelle, M. (2019). Auxin-sensitive Aux/IAA proteins mediate drought tolerance in *Arabidopsis* by regulating glucosinolate levels. *Nat. Commun.* 10, 4021.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schlichting, C. D. and Pigliucci, M. (1993). Control of phenotypic plasticity via regulatory genes. *Am. Nat.* 142, 366–370.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schraiber, J. G. and Landis, M. J. (2015). Sensitivity of quantitative traits to mutational effects and number of loci. *Theor. Popul. Biol.* 102, 85–93.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Slaten, M. L., Yobi, A., Bagaza, C., Chan, Y. O., Shrestha, V., Holden, S., Katz, E., Kanstrup, C., Lipka, A. E., Kliebenstein, D. J., et al. (2020). mGWAS Uncovers Gln-Glucosinolate Seed-Specific Interaction and its Role in Metabolic Homeostasis. *Plant Physiol.* 183, 483–500.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sønderby, I. E., Geu-Flores, F. and Halkier, B. A (2010). Biosynthesis of glucosinolates--gene discovery and beyond. *Trends Plant Sci.* 15, 283–290.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

The 1001 Genomes Consortium (2016). 1,135 Genomes reveal the global pattern of polymorphism in *Arabidopsis thaliana*. *Cell* 166, 481–491.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tian, Q.-Y., Sun, P. and Zhang, W.-H. (2009). Ethylene is involved in nitrate-dependent root growth and branching in *Arabidopsis*

thaliana. New Phytol. 184, 918–931.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. BioRxiv.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Urbut, S. M., Wang, G., Carbonetto, P. and Stephens, M. (2019). Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 51, 187–195.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Varala, K., Marshall-Colón, A., Cirrone, J., Brooks, M. D., Pasquino, A. V., Léran, S., Mittal, S., Rock, T. M., Edwards, M. B., Kim, G. J., et al. (2018). Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci USA 115, 6494–6499.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vidal, E. A., Álvarez, J. M. and Gutiérrez, R. A. (2014). Nitrate regulation of AFB3 and NAC4 gene expression in *Arabidopsis* roots depends on NRT1.1 nitrate transport function. Plant Signal. Behav. 9, e28501.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution 7, 118–126.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waidmann, S., Sarkel, E. and Kleine-Vehn, J. (2020). Same same, but different: growth responses of primary and lateral roots. J. Exp. Bot. 71, 2397–2411.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., et al. (2019). Welcome to the tidyverse. JOSS 4, 1686.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wisecaver, J. H., Borowsky, A. T., Tzin, V., Jander, G., Kliebenstein, D. J. and Rokas, A. (2017). A global coexpression network approach for connecting genes to specialized metabolic pathways in plants. Plant Cell 29, 944–959.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wright, S. I., Lauga, B. and Charlesworth, D. (2002). Rates and patterns of molecular evolution in inbred and outbred *Arabidopsis*. Mol. Biol. Evol. 19, 1407–1420.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, N., Wang, R., Zhao, L., Zhang, C., Li, Z., Lei, Z., Liu, F., Guan, P., Chu, Z., Crawford, N. M., et al. (2016). The *Arabidopsis* NRG2 Protein Mediates Nitrate Signaling and Interacts with and Regulates Key Nitrate Regulators. Plant Cell 28, 485–504.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yan, X. and Chen, S. (2007). Regulation of plant glucosinolate metabolism. Planta 226, 1343–1352.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, H. and Forde, B. G. (1998). An *Arabidopsis* MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P. and Shen, Y. (2015). Managing nitrogen for sustainable development. Nature 528, 51–59.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)