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SUMMARY

Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA).
Our study shows evidence that there might be multiple “clocks” within the whole-body system: systemic
aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data,
including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical
fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver,
kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse.
People’s aging patterns are different. We also demonstrate several applications of organs/systems BA
in two independent datasets. Mortality predictions are compared among organs’ BA in the dataset of
the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs
constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of

becoming centenarian.

INTRODUCTION

The aging process is the major risk factor for disease and death
(Harman, 1991). The aging rate varies for different people at the
same chronological age (CA); thus, biological age (BA) was
developed to assess the true aging rate (Franceschi et al.,
2018). The concept of BA has been investigated since the
1970s (Comfort, 1969). Multiple methods were developed later,
including multiple linear regression (Bae et al., 2008; Cho et al.,
2010; Dubina et al., 1984; Hollingsworth et al., 1965; Krgll and
Saxtrup, 2000), principal component analysis (Hofecker et al.,
1980; Nakamura and Miyao, 2007; Nakamura et al., 1988), and
the Klemera and Doubal method (KMD) (Klemera and Doubal,
2006). The major difference among these methods is the role
of CA. In the earlier multiple linear regression studies (Bae
etal., 2008; Kroll and Saxtrup, 2000), CA was predicted from bio-
markers. It was believed that the higher the correlation between
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biomarker and CA, the greater the reliability of BA estimation.
The later algorithm used reverse regression and treated CA
also as a marker of aging (Klemera and Doubal, 2006). Both stra-
tegies have been applied in multiple datasets, where KDM was
shown to have better performances in mortality (Levine, 2013)
and health status predictions (Cho et al., 2010).

Another key factor for estimating BA is selection of age-related
biomarkers. Over the last half century, electronic medical re-
cords, DNA methylation (Horvath et al., 2015; Horvath and Raj,
2018), transcriptome (Stegeman and Weake, 2017), and prote-
ome signatures (Lehallier et al., 2019) have been used for
estimating BA, whereby DNA methylation has been shown to
be a robust biomarker of aging in humans (Chen et al., 2016).
However, DNA methylation is tissue/organ specific (Horvath
et al., 2015). For a live person, DNA methylation-based BA could
only be obtained from blood or saliva samples (Horvath et al.,
2016). Many aspects of the human body would not be covered.
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Figure 1. Multi-omics data were collected through different technologies and classified into groups of organs and systems
Multi-omics data from blood sample, stool sample, physical fithess examinations, and clinical images. In total, 403 features for each individual were measured.
These were classified into nine categories, namely cardiovascular related, renal related, liver related, sex hormone, facial skin features, nutrition metabolism

features, immune related, physical fitness related, and gut microbiome.

Recently, the concept of “deep phenotyping,” which aims to
gather more specific details for the health status evaluation of
precise medical areas, has emerged (Delude, 2015). The multi-
omics approach provides such detailed information and offers
the opportunity to explore multiple systems. Therefore, in the
present study we established a cohort of young adults with
multi-omics data, including gut microbiome, immune repertoire,
metabolomics, blood chemicals, body composition, and phone-
mics (e.g., physical fitness test, facial skin scan). We used KDM
to construct BAs of different organ/systems to investigate their
commonalities and differences in terms of aging rates. We also
demonstrated several applications of BAs, including utilizing
BAs as phenotypes in genome-wide association studies
(GWASSs) and constructing polygenic risk scores (PRSs) of the
aging rates of organs and systems in a dataset with 2,178 cente-
narians and 2,299 middle-aged individuals from the Chinese
Longitudinal Healthy Longevity Survey (CLHLS) cohort.

RESULTS

Biological age of organs or systems constructed from
multi-omics data

A total of 4,066 volunteers (48% males) aged between 20 and 45
years from the Shenzhen local area were recruited. Written
informed consent was obtained from each individual. Multi-
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omics level data were generated from blood sample, stool
sample, physical fitness examination, and facial skin images
(Figure 1). In total 403 features were measured, including 74 me-
tabolomic features, 34 clinical biochemistry features, 36 immune
repertoire features, 15 body composition features, 8 physical
fitness features, 10 electroencephalography (EGG) features, 16
facial skin features, and 210 gut microbiome features (listed in
Table S1). These were classified into nine categories, namely
cardiovascular related, renal related, liver related, sex hormones,
facial skin features, nutrition/metabolism features, immune
related, physical fitness related, and gut microbiome.

After classification, the relationship with sex and age for each
feature was examined. As we discovered that a large proportion
of features had sex-specific effects (Figures 2A and 2B; Table
S2), the following construction of BAs was conducted for male
and female groups separately. Each feature was regressed into
CA and only features significantly correlated with age (p <
0.05) were utilized for the generation of BAs. Moreover, features
with redundant information were filtered out (see STAR
methods). Finally nine BAs of different organs and systems
were generated, and distinct patterns of correlations with chro-
nological ages are shown in Figure 3. The cardiovascular age
has the least variance among subjects while the variation in liver
ages is quite large, indicating potential differences of aging ef-
fects for organs and systems.
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viduals in the cluster above are generally
aging faster than the individuals in the
Biological ages of different organs/systems show cluster below with regard to all organs and systems. Within
diverse correlations each cluster, subclusters were formed by the patterns of aging

To deeply study the characteristics of the aging processes of rates of different organs and systems. The subcluster at the
different organs and systems, we constructed anagingrateindex, bottom showed even more blue color, indicating that these
which took the difference between BA and CA and divided it by  people may have much slower aging rates. When comparing
CA. This aging index represented the relative aging acceleration  the clustering information with body mass index (BMI) (Fig-
or deceleration per year. The pairwise correlations among multi-  ure 4B), it was found that overweight people (indicated by or-
ple aging rate indexes were then assessed. The physical fitness ange color in the right bar) were classified into different clusters
age had generally high correlations with all other systems (Fig- representing different aging patterns. The two subclusters indi-
ure 4A). The BAs of the renal and sex hormone systems were cated by square right brackets in Figure 4B include relatively
the most correlated (r = 0.53). Sex hormone age was correlated  denser overweight people than others. These two subclusters
with that of the renal (r = 0.53) and immune (r = 0.44) systems. are very different in terms of aging patterns, with the bottom
Interestingly, the aging rate of the renal system was negatively = one having much younger liver ages but older physical fitness
correlated with that of gut microbiome (r = —0.07). The gut micro-  ages. This may indicate that excess weight or obesity have
biota influences the actions of a range of xenobiotics in both  different causes among individuals.

beneficial and potentially harmful ways (Clarke et al., 2019), and Determining BAs of different organs and systems may permit
it has been reported that the accumulation of microbiota-derived  detailed evaluations of the source of specifically accelerated ag-
metabolites was associated with chronic kidney diseases (Joos- ing components in each individual. For instance, some over-
sens et al., 2019). The negative correlation could be causedbyan  weight individuals have a faster aging rate in physical fitness
increased diversity of conditional pathogenic bacteria leadingto  and the nutrition metabolism system, while others have a faster
accumulation of toxic metabolites, thereby giving riseto disorders  aging rate for liver. This detailed information could potentially
oftherenal system (Wang et al., 2020). The positive counterpartof  identify intervention targets for improving health status as well
this situation is that the gut microbiome of centenarians and semi-  as slowing down the aging process.

supercentenarians who have escaped renal diseases is particu-

larly suited for xenobiotic degradation (Rampelli et al., 2019).  Specific biological age measures predict diseases or
The diverse directions of correlations were consistent withthe ex-  phenotypes of corresponding organs

istence of multiple “clocks” throughout the whole body. One of the ultimate objectives of constructing BA clocks is

predicting abnormalities, disorders, and even mortality. To eval-
Individuals can be clustered according to uate the predictive efficiency of BAs, we used the aging rate
characteristics of multiple biological ages indexes to predict non-alcoholic fatty liver, which was the

For each subject, the BAs of multiple organs and systems were  most common abnormality in our study sample. Logistic regres-
constructed. Due to missing variables among individuals only  sions were used for predictions. The results are shown in
481 individuals had complete records, and nine biological aging  Figure 5. The severity of non-alcoholic fatty liver disease was
rate indexes for these subjects were used for clustering analysis  associated with the liver aging index, which is consistent with
with the aim of identifying different aging patterns within the  our expectation that BAs could predict diseases or phenotypes
study population. The clustering result is shown in Figure 4B, of corresponding organs.

with the color gradient representing the aging rates. Red indi-

cates faster and blue indicates slower aging rates. The faster Evaluating biological ages of different organs/systems
and slower rates are relative to the person’s CA; for instance in the NHANES

if the BA is larger than the CA, the person is aging faster. Inter- We have used the same approach to classifying features into
estingly, individuals could be initially separated into two clus- organs and systems for the dataset from the United States
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Figure 3. Relationships between biological ages and chronological age and their linear regression lines
Cardiovascular age has the highest explanation for chronological age. Gut microbiome age explained the least. Liver age and sex hormone age have high
variations. The R-squared was the coefficient of determination calculated from linear regression model.

National Health and Nutrition Examination Survey (NHANES)
between 1999 and 2012. Mortality follow-up was based on
linked data from records taken from the National Death Index
through 2016. After excluding individuals younger than 18
years, people died from infectious diseases and accidents as
well as entries with missing features. Three BAs, namely cardio-
vascular age, liver age, and renal age, were calculated in 3,868
individuals. Among these, 625 individuals were deceased,
among whom 128 subjects died of heart disease. The features

4 Cell Reports 38, 110459, March 8, 2022

we used for constructing the BAs are listed in Table S3. We then
used Cox proportional hazard models to investigate which ones
have more predictive power for mortality. The models were
adjusted for sex and CA. First, we compared the predicting po-
wer between BA and single features. Total cholesterol, blood
glucose, lipoprotein, blood pressure, and CA significantly pre-
dicted mortality caused by heart disease. By combining these
markers and constructing a BA of the cardiovascular system,
the prediction power was significantly boosted (Figure 6A).
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This suggested that individual markers had independent
contributing effects to cardiovascular diseases. Second, we
compared the predictive power of the BA of different organs.
The predictive power for mortality in the biological aging index
was significantly higher than that of CA (Figures 6B and 2C).
When predicting death caused by heart disease, the cardiovas-
cular aging rate performed better than liver and renal aging in-
dexes (Figure 6C). This result suggested that classifying fea-
tures to construct organ/system-specific BA could gain more
specific power in terms of predicting organ-related disease
mortality. If the cause of death is not specified, combining all
features together for an integrated BA would be an improve-
ment (Figure 6B).

plained by genetic factors. We compared
0 the genetic architectures of the aging rate
= indexes of multiple systems. Using these

i aging rate indexes as phenotypes,

GWASSs were performed.
After standard GWAS quality control
7 Sub-clusters with processes, 7,236,472 common SNPs
]SZQZE gl were identified. The results suggest
differet patterns . g . .
distinct genetic architectures among
these systems. Additionally, we summa-
rized the GWAS signal densities for
each association, with the number of sig-
nals (p < 0.05) per 10-Mbp window on the
genome calculated and plotted (Fig-
ure 7A.). Interestingly, the signal densities
of each system or organ are versatile (Fig-
ure 7A), but one region was identified to
be correlated with aging in all organs/sys-
tems. This region harbors the major histo-
compatibility complex on chromosome 6, indicating the poten-
tial importance of the immune system in aging processes. The
Manhattan plots for GWAS are shown in Figures S1-S9.

To further investigate biological functions associated with
biological aging rate indexes and improve the power
of genetic studies by reducing the number of statistical tests,
we employed pathway-based association (see STAR
methods). The identified (p < 0.05) pathways are shown in Fig-
ure 7B. The nucleotide excision repair (NER) pathway was
identified in five systems. Another two pathways related to
DNA repair, base excision repair, and non-homologous end-
joining pathways were also identified in aging of the cardio-
vascular system. Many studies have reported that a defective
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Figure 5. Predicting non-alcoholic fatty liver using biological age
Older liver age is associated with non-alcoholic fatty liver. The pseudo-R-
squared was calculated from logistic regression using McFadden’s method.

NER gene would cause instability of DNA and thereby accel-
erate aging (Chen et al.,, 2020; Marteijn et al., 2014; Nie-
dernhofer et al., 2018). Several signaling pathways correlated
with aging were also identified, including p53, Hedgehog,
PPAR, insulin, VEGF, and Notch signaling pathways. It is
believed that changes and damage occurring at the cellular
level play a causative role in aging (Tabibzadeh, 2021). These
signaling pathways participated in maintaining cellular ho-
meostasis and health. All pathways significantly associated
with biological aging rates are listed in Table S4.

Polygenic scores of biological ages can predict
longevity

Another application of BAs is forecasting an individual’s mortal-
ity. Using the effects of SNPs as a bridge, we have constructed
PRSs (see STAR methods) of different organs and systems in the
CLHLS cohort, including 2,178 centenarians and 2,299 middle-
aged controls (Zeng et al., 2016). The polygenic scores were
used, individually and jointly, to classify centenarians and mid-
dle-aged individuals. The PRS for skin aging index significantly
predicted longevity after correction for multiple testing (p =
9.3 x 1074, p < 0.05/9). Other PRSs predicted longevity at a
nominally significant level (p < 0.05) (Figure 7C). While incorpo-
rating all the aging polygenic scores to predict whether a person
could be centenarian, we also achieved significant prediction
(area under the curve 95% confidence interval [0.514, 0.586]).
However, this was not an exceptional prediction. The possible
reasons could be (1) that there is missing heritability of longevity
which has not been identified by current GWAS, or (2) that many
environmental factors, lifestyles, and the gene-environment in-
teractions are influencing longevity. Therefore, using only PRS
for longevity prediction was able to obtain only limited prediction
efficiency.

DISCUSSION

Our study revealed evidence that there might be multiple
“clocks” within the whole-body system. We have utilized multi-

6 Cell Reports 38, 110459, March 8, 2022
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omics data, including clinical tests, metabolomes, proteomes,
microbiomes, physical fithess examinations, and facial skin ex-
aminations, to estimate the BAs of different organs (e.g., liver
and kidney) and systems (e.g., immune systems and metabolic
system). The results showed distinctions of the aging rates of
organs and systems. These BAs could be applied for clustering
individuals and identifying the sources of age-related dysfunc-
tion. In addition, we have performed GWASSs using each respec-
tive biological aging index and have compared the differences in
genetic architectures among different organs and systems.
Pathways-based association analyses demonstrated relevance
between biological functions and aging. Last but not least, we
utilized the GWAS results of BAs to construct PRSs in the CLHLS
cohort to enable evaluation of the genetic correlations between
systems’ aging and longevity.

Although aging is a lifelong process (Kuh et al., 2014), most
human aging studies were conducted in older populations or
cohorts with a high incidence of chronic diseases. Some studies
reported that age-related changes could be detected from the
early 20s (Akima et al., 2001), and the aging process in young
healthy adults is still largely unknown. In addition, the organs
of young adults are not yet heavily damaged, offering the possi-
bility to prevent age-related diseases. Accordingly, we have cho-
sen to establish a young cohort aged between 20 and 45 years
with the aim of studying the early changes of aging.

The biomarker selection process is essential for BA construc-
tion, and many approaches have been implemented. Our study
utilizes a very large number of biomarkers that comprehensively
cover most systems of the human body in the same dataset for
studying multi-system BAs. We have collected as many bio-
markers as possible from multi-omics approaches and have per-
formed systematic evaluations of each measurement. Statistical
analyses were used to calculate the aging effects of every
biomarker, and redundant biomarkers were excluded. The infor-
mative markers were then classified into organs and systems ac-
cording to existing biological knowledge.

On the whole, the results of our approach suggest that
there might be systemic aging drivers/clocks overlaid with
organ/tissue-specific counterparts. The pairwise correlations
among multiple BAs showed that the physical fithess age has
a generally high correlation with all other systems, and the corre-
lation directions are diverse. These distinctions of aging rates
appear to have a genetic basis. The overall p value distribution
of GWASs across the genome was different between the renal
system and hormonal as well as nutrition/metabolic systems.
Pathway-based associations revealed different correlated path-
ways. Most identified pathways were functionally related to the
corresponding organ.

At variance with existing studies which integrated multiple bio-
markers into one BA (in turn correlated with disease status and
behaviors) without considering differences between organs
and systems (Wilmanski et al., 2019), our study provides a
more detailed evaluation of aging for different functional sys-
tems. Identifying abnormalities of one particular organ or system
may lead to a specifically targeted treatment. Our liver age pre-
dicts the clinically diagnosed severity of fatty liver disease. The
biomarkers we used to construct liver age are all from blood
samples, and the use of liver age to scan the population would
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While constructing biological ages in NHANES data, cardiovascular age, liver age, and renal age could predict mortality.
(A) Results of Cox proportional hazard model comparing single features and biological age.

(B) Results of Cox proportional hazard model predicting all causes of mortality.

(C) Results of Cox proportional hazard model predicting mortality caused by heart diseases.

HR, hazard ratio. The error bar represents a 95% confidence interval of HR.

be cost-effective and could identify liver abnormalities at an early
stage.

A recent multi-omics study has mentioned the concept of
“ageotypes” while using 608 multi-omics features for clustering
analyses. The results showed that those features were enriched
into four aging-related types, nhamely immunity, metabolic, liver
dysregulation, and kidney dysregulation (Ahadi et al., 2020).

Their data showed hints at organs and systems differences in
terms of aging; however, their analyses only included 106 indi-
viduals and many aspects of human body function were not eval-
uated. In this regard, our study covers more aspects, such as the
cardiovascular system, skin, and sex hormones, in a much larger
cohort. Moreover, in the present study we also provided genetic
evidence of the existence of “ageotypes.” There are studies that
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have developed DNA methylation ages for multiple tissues (Hor-
vath, 2013), supporting the multiple “clocks” hypothesis. How-
ever, from a translational perspective, DNA methylation data of
multiple tissues will be very difficult to obtain in a live person.
Furthermore, tissues and organs/systems are quite different.
Tissues usually consist of homogeneous cell types, and the var-
iations within a tissue are usually small, whereas organs consist
of multiple tissues, for example muscle and fibrous tissues in the
heart.

One possible explanation for these different aging rates could
be that the aging process occurs in every cell of the whole body,
and the different composition of cell types within the organs will
lead to distinct aging rates. Moreover, cell type differentiation is
decided by genetics, especially by the pattern of transcription
factor expression (Almalki and Agrawal, 2016). Therefore, there
might be one centralized driver/clock controlling the aging of
the cell, the basic functional unit of the body. Meanwhile, the
organizations of cell populations drive the aging process of
different organs and systems. The physical fithess age, con-
structed using mostly muscle and fat tissue quantifications, as
well as the power and strength of muscles, is an example of
how we addressed the complexity of the underpinning biology
of such a complex trait. Muscle tissue is involved in almost all or-
gans (Jaslove and Nelson, 2018) and, hence, the BA of physical
fitness is correlated with most other BAs. This result is consistent
with available knowledge, the physical fitness assessment being
the most widely used general evaluation of health and aging sta-
tus. A single measure of BMI could provide information about a
person’s health and aging status (Lee et al., 2017), but this single
measurement is lacking in resolution as it only provides a general
qualitative evaluation.

At present, to a person who is aging faster than average, one
can hardly tell which part of the body is abnormal and how to
improve it. Our comprehensive evaluations of the aging rates us-
ing multi-omics biomarkers could provide more detailed infor-
mation, not only on which part of the body is dysfunctional but
also to specifically suggest gene- or pathway-targeted interven-
tions/drugs. For single interventions shown to affect lifespan and
healthspan, it is unlikely that a single intervention will work in
every individual even if the median lifespan of the population is
affected. In these cases, there may be relationships between
the response of an individual and the rate of aging of different
“clocks,” allowing for better prediction of responders and non-
responders.

We have used our BAs to predict disease status as well as
longevity. Most previous studies have used BAs to predict mor-
tality (Hastings et al., 2019; Jee, 2019). Since our BAs improved
resolution at organ and system levels, we have found that
certain BAs could predict tissue-related disease better than
other BAs. For instance, cardiovascular age could predict mor-
tality caused by heart disease better than liver and renal ages in

¢ CellP’ress

an independent NHANES dataset. On the other hand, we have
constructed PRSs using the SNP effects estimated in our data-
sets from the CLHLS (Zeng et al., 2016), which includes 2,178
centenarians and 2,299 middle-aged controls. The results
showed that some PRSs could significantly predict longevity,
proving the existence of a genetic correlation between aging
processes and longevity and suggesting that a biological aging
index can be used as phenotype for the genetic studies of
longevity. We predict that by using the organs’ BAs coupled
to genetic studies of longevity, resolution could also be
improved at the whole-body level as well as within biological
units/organs/systems.

Our approaches to estimating BAs for organs and systems
could be easily used in clinical practice or health management
for elderly people. It is noteworthy that the biomarkers we used
for constructing BAs were mostly gained from routine physical
checkups or blood sample tests, which are easy to scale up
for health management of larger populations.

Limitations of the study

Some limitations of the current study need to be acknowledged.
First, this study is based on a cross-sectional dataset in which
we can only identify associations rather than causalities. Future
follow-up studies are required to validate our findings. Second,
the multi-omics features were classified manually according to
their clinical interpretations or data types, and overlapping was
avoided between classes to study the differences of organs
and systems. This method ignored the interactions among
organs and systems. Future studies using unsupervised
approaches for classifying the features and studying the interac-
tions between systems are required. Third, the relatively small
sample size limited the power of the GWAS. We only gained sug-
gestive signals from variant-based association. We utilized
pathway-based association to improve GWAS power by
leveraging on biological knowledge. Finally, the aging process
is complex, being influenced by genetics, environment, and their
interactions. This might be the reason why we only gained limited
efficiency while using PRSs to predict longevity phenotypes.
Gene-environment interactions are important avenues to be
studied.
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(C) Prediction efficiencies of polygenic risk scores of biological ages predicting longevity in CLHLS data. The p values were calculated from a logistic regression

model.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

EDTA-plasma and PBMCs prepared from This paper N/A

intravenous whole blood collection

Fresh stool samples This paper N/A

Deposited data

Summary statistics of associations between This paper Mendeley Data: https://doi.org/10.6084/
biomarkers and age m9.figshare.19085156
National Health and Nutrition Examination Survey public data NHANES, RRID:SCR_013201
(NHANES) between 1999 and 2012

Genetic data of Centenarians and young controls Zeng et al., 2016; N/A

zengyi@nsd.pku.edu.cn

Software and algorithms

Klemera and Doudal algorithm Klemera and Doubal, 2006 https://doi.org/10.1016/j.mad.2005.10.004
Picard/BWA/GATK pipeline Li and Durbin, 2009; GATK, RRID:SCR_001876
McKenna et al., 2010
MetaHIT protocol Metagenomics of the Human https://cordis.europa.eu/project/id/
Intestinal Tract (MetHIT) project 201052/reporting
IMonitor:Pipeline for TCR and BCR Repertoire Analysis Zhang et al., 2015 https://pubmed.ncbi.nim.nih.gov/26297338/
PRSice-2: Polygenic Risk Score software Choi and O’Reilly, 2019 PRSice, RRID:SCR_017057
R scripts we used for calculating biological ages This paper Database:https://doi.org/10.5281/
and performing statistical analyses zenodo.6002321

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Xun Xu
(xuxun@genomics.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® The summary statistics that support the findings of this study, including the associations between biomarkers and age are pub-
licly available. DOls are listed in the key resources table. Individual-level data including genetic variants and clinical data will be
shared by the lead contact upon request. Access to individual-level data is subject to the policies and approvals from the Hu-
man Genetic Resource Administration, Ministry of Science and Technology of the People’s Republic of China.

® All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key
resources table.

® Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study has been approved and monitored by the Institutional Review Board at BGI-Shenzhen in conformance with WMA Decla-
ration of Helsinki (2013). The approval number was BGI-IRB-20048. Posters and emails that advertising this study were posted at
Yantian district, Shenzhen. Han Chinese volunteers, who have no major diseases that have occurred (such as acute infarction,
end-stage renal edema, disability after stroke, cancer, paralysis) and no major transplantation and hematopoietic stem cell transplan-
tation experience, aged from 20-45 years were recruited. The written form of consents was signed by each individual. Blood sample,
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stool sample, physical fithess examinations as well as facial skin images were taken. The biological samples were taken by medical
professionals in a local clinic. The sample dataset used in current study includes 4,066 individuals’ records with mean age 29.42,
ranging from age 20.49 to age 44.93. Among them, 1,957 (48%) are males and 2,109 (52%) are females. To ensure the safety of
the volunteers’ privacy, the data and samples were de-identified using a digital ID. The clinic stored the correspondence between
patients’ name and the digital ID. While the data analysts could only access the data with ID.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analysis relevant to biological age constructions and applications in this article were performed in R. The p values for
spearman correlation tests in Figures 2 and 4A were calculated using student t-test. The R-squared in Figure 3 was the coefficient of
determination calculated from linear regression model. The pseudo R-squared in Figure 5 was calculated from logistic regression
using McFadden’s method (McFadden, 1979). The hazard ratio (HR) in Figure 6 were calculated from cox proportional hazards
regression model, and its mean and 95% confidence interval were shown in the figure. The results of genetics association study
shown in Figure 7 was performed in PLINK (Chang et al., 2015) and FASTBAT (Bakshi et al., 2016). The p values for Figure 7A
were calculated by PLINK from linear regression model. The p values for Figures 7B and Table S4 were calculated by FASTBAT
from %2 distribution. The p-values for Figure 7C were calculated from logistic regression model. There were no any methods that
were used to check the distribution of our data, because we have selected non-parametric approaches for the data analyses,
such as spearman correlation. The sample sizes for different omics data were diverse since many of the tests were optional to par-
ticipants during sample collection. The sample sizes and features of each category are listed in Table S5.

METHOD DETAILS

Routine medical examination

Routine medical examinations were carried out for everybody. A total of one urine tube and four blood tubes were collected. The
blood tubes consisted of Na-Heparin Trace Element tubes, Serum Separator Tubes (SST), EDTA purple top tubes, and NMR
black-top Lippitude. First morning void urine was collected in the yellow-top tube by participants the morning of their blood draw.
In addition to biochemical tests, blood pressure, electrocardiogram, ultrasound examinations were performed. All clinical laboratory
tests measured using Quest and Genova are listed in Table S1.

Physical fitness assessment

Both health- and skill-related test components were included in the physical fitness assessment. The body compensations, including
Body water, proteins, minerals, and body fat, were measured in InBody system utilizing bioelectrical impedance analysis. The car-
diovascular endurance was measured through step tests and vital capacity. The muscular strength and endurances were assessed
by pull-up for males and sit-up for females. For flexibility examinations, sit and reach test were conducted. High jump and hand grip
test were conducted to measure the muscular strength of limbs. For skill related test, choice reaction time was examined.

Facial skin assessment

The skin features were measured using the VISIA® Complexion Analysis System. The photographic images were captured with stan-
dard, cross-polarized, parallel polarized, and ultraviolet light. Images were taken in two different close-up views (front and left lateral
37°) for each subject to quantify the scores for spots, wrinkles, pores, texture, and erythema.

Quantitative measurement of blood metabolites using mass spectrometry

The metabolites in blood were targeted and quantified using liquid chromatography coupled with triple quadrupole mass spectrom-
etry (LC MS/MS), including ACQUITY UPLC I-Class (Waters) mounted with C18 column, Triple Quad 5500 (Sciex) and Xevo TQ-S
(Waters). The MS/MS spectra corresponding to metabolites were acquired at positive ion mode with multiple reaction monitoring
scans. The metal elements were measured by inductively coupled plasma mass spectrometry (ICP MS/MS), i.e. 7700x ICP-MS
(Agilent). The mass spectra acquired were processed with MultiQuant (V. 3.0.2, Sciex) for amino acids, hormones and FSV,
MassLynx (V. 4.1, Waters) for WSV and MassHunter (V. B.01.03, Agilent) for metal elements. The calibration curves were imple-
mented with stable isotope-labeled compounds as internal standards. The accuracy of quality controls (QCs) with isotope-labeled
IS was managed approximately every 15 samples to ensure the inter-batch stability. A total of the 81 out of the 84 metabolites were
investigated for each individual.

Whole genome sequencing sample recruitment and data processing

The whole blood drawn from the participant vein was stored in the EDTA anticoagulant tubes to avoid hemolysis, while the plasma
was obtained by centrifugation (3000 rpm, 10 min) and was preserved at —80°C until assay. The while cells were isolated for geno-
mics DNA extraction. Whole-genome sequencing (WGS) to 30x were conducted for 1,553 subjects (Female N = 642, Male N = 911)
from DNA in white cells using BGl-seq500. WGS data were aligned and variants called by the Picard/BWA (Li and Durbin, 2009)/
GATK (McKenna et al., 2010) pipeline. SNPs with mapping quality greater than 40, sequencing depth greater than 4, variant quality
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greater than 2.0, Phred score of Fisher’s test p value for stand bias smaller than 60.0, Haplotype score smaller than 13.0 and distance
of alternative allele from the end of reads greater than 8.0 were kept for following analyses. We removed SNPs deviating from Hardy-
Weinberg (p < 1 x 107°), markers with more than 1% missing genotype data and variants with smaller than 1% minor allele fre-
quencies. Individuals with heterozygosity greater than their standard deviations were excluded. One individual among relatives within
3rd degree of relationship was randomly selected to keep in the clean data set.

PCA were performed to investigate population stratification. No clear sub-cluster was observed. Typical north to south Grandaunt
was demonstrated by the first principal component. Linear regression adding individual sex and top two principal components as
covariates was performed for each SNP.

Metagenomics sequencing

Fresh stool samples were collected from recruited volunteers for metagenomics sequencing. The fecal DNA extractions were pro-
cessed following the MetaHIT protocol, then Single-end metagenomics sequencing were performed using BGISEQ-500 platform.
The low-quality reads were discarded, and the host DNA were removed based on human genome reference (hg38) by SOAP2 (Li
et al., 2009) (version 2.22; identity > 0.9). Taxonomic analysis was performed using MetaPhlan2 (Truong et al., 2015) following
removal of human reads. The relative abundances of species were used in the current study. Meanwhile, the quality-controlled reads
were mapped to integrated gene catalogue (IGC) (Li et al., 2014) by SOAP 2.22 (identity > 0.95) to produce gene relative abundant
profiles. Then, the abundances of genes within each KEGG pathway were aggregated to generate relative abundance profiles for
functional modules.

Immune repertoire sequencing (IR-SEQ)

For human immune system, the enormous diversity of the T-cell receptor (TCR) and B cell receptor (BCR) repertoire is a good indi-
cator forimmune health status. We have performed deep targeted single-end sequencing for T-cell receptor (TCR) genes extracted
from white cells and evaluated the immunes status for each individual. Sequence data were analyzed using our previously developed
pipeline, IMonitor (Zhang et al., 2015). Briefly, the reads were BLAST alignment onto V, D, J germline genes and alleles after basic
quality control. Subsequently, a realignment for each result was performed with the aim of construct best gene sequences. Mean-
while, the base quality scores were recalibrated. Thirdly, the gene sequences were translated into amino acid to construct peptide
sequences after a filtration of low abundance sequences (less than 5 supporting reads). Finally, the statistics of TCR of IGH data such
as V-J pairing, V/J usage, CDR3 sequence frequency and CDRS3 length distribution, were calculated.

Data quality control and biological ages constructions

Feature in which more than 100 samples had the zero values in microbiome data were excluded. As we identified a great proportion of
features have sex different effects Figure 2A. The construction of biological ages was performed in male and female groups
separately.

All the features were classified into organs and systems according to either clinical interpretations or data types. Features from
clinical lab tests were classified according to the interpretation of blood chemical test (Wallach, 2007). The amino acids measures
from the metabolic panel were classified into liver. The vitamin and microelements measures from metabolic panel were classified
into nutrition metabolomic system. The microbiome features measured from stool sample were classified into gut. The facial imaging
features were classified into skin. The T cell receptor gene features together with the blood cell count measures were classified into
immune system. Features selected for each organ and system were listed in Table S1. As a result, 9 categories were classified.

The data quality control processes were performed in R 3.5.1. The multicollinearity of the features was further assessed using vari-
ance inflation factor (VIF). One of those features have redundant information (VIF >5) was kept for the construction of biological ages.
As we also identified a great proportion of features have sex different effects. The construction of biological ages was performed in
male and female groups separately.

The Euclidean distance (Liberti et al., 2014) and Mahalanobis distance (De Maesschalck et al., 2000) were used for outlier remove-
ments within each category. If the sample size is greater than number of biomarkers, we use Manalanobis distance, otherwise, we use
Euclidean distance. Individual data with either large Euclidean distance or large Mahalanobis distance ranking at top 5% were removed.

Each feature was regressed with age to evaluate their age effects using Im() function in R 3.5.1. Features significantly associated
with age (p < 0.05) were kept for following study. The summary statistics of linear regression were listed in Table S2

Klemera and Doudal algorithm (Klemera and Doubal, 2006) was used for the construction of biological ages. Briefly, the KD method
was consisted of two steps to convert those biomarkers into aging rate and making them comparable. The first step is regressing
every biomarker to chronological age. By doing this, we gained the estimated age as well as its standard error using a particular
biomarker. Every biomarker was processed and all the estimated ages have the unit ‘year’ which is the same as chronological
age. We consider the regression step as a normalization process that make different markers comparable in terms of unit. The sec-
ond step is aggregating the age estimates of each biomarker as well as chronological age and construct biological ages.

The statistical analyses of biological ages were performed in R 3.5.1. Pairwise spearman correlations were calculated by cor()
function, correlation heatmap were generated by corrplot() function. The biological ages were normalized using inverse rank normal
transformation method in RNOmni() function, and then unsupervised clustering were performed by K-means method and heatmap
were generated by pheatmap() function.
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Biological age calculation and cox regression analysis in National Health and Nutrition Examination Survey (NHANES)
We have matched features we used in the dataset from the National Health and Nutrition Examination Survey (NHANES) between
1999 and 2012. Mortality follow-up was based on linked data from records taken from the National Death Index through 2016. Those
individuals younger than 18, people died from infectious diseases and accidents as well as samples with missing features were
excluded. Three biological ages, including cardiovascular age, liver age, and renal age, were calculated Then, we used cox propor-
tional hazard models to investigate which one have more predictive power for mortality in R4.0.2 by coxph() function. The models
were adjusted for sex and chronological age.

Single variant-based association

When phenotypes and genotypes have passed all the quality control processes, the basic analysis of genome-wide association were
conducted. The single-locus statistical tests examined each SNP independently for association with the phenotypes (Balding, 2006;
Chang et al., 2015). The types of statistical tests utilized mostly depends on the types of phenotypes. We have converted all
constructed biological ages into normal distribution using inversed normal transformation in R 3.3.61. For continuous phenotype,
linear regression is the most widely used method. All the association analyses were performed in PLINK1.9 (Chang et al., 2015). After
association analyses, the coefficients of each SNPs for biological ages were gained. Pairwise Wilcoxson tests were used to test
whether the distributions of SNP coefficients are different among biological ages.

Set-based association
The standard analysis of genome-wide association study uses single SNP marker as the test unit. However, due to small sample size,
the complex LD structures and ethnic differences among different populations, many replication studies have failed. To improve
GWAS power, the set-based association has been proposed during the initial development of GWAS (Neale and Sham, 2004).
The set-based analysis combined the summary statistics of all variants within a putative biologically functional unit (coding region
and possible regulatory region, genes within one pathway) to obtain a single p value that represents the significance of disease as-
sociation of the gene. There are several benefits of using set-based association. Firstly, the gene is the functional unit of the human
genome. Compared to genetic variants that have different allele frequencies, LD structure, and heterogeneity across diverse human
populations, genes, and pathways are a highly conserved elements among different individuals. Therefore, set-based association
analyses would lead to more consistent results across different ethnic populations.

For current study, FASTBAT was used for set-based association test. The test combined the p values of SNPs within one pathway
(for each gene within the pathway, an extension of 10kb on each side as considering the regulatory region for the gene).

Polygenic score risk prediction

The validation in centenarian dataset were conducted through polygenic risk predictions. After genome-wide association analyses,
each SNP would have effect (coefficients from linear regressions) on a particular biological age. Using these effects as weights to sum
genotypes in centenarian dataset, a summed score will be formed for each individual (Choi and O’Reilly, 2019). This polygenic risk
score has the biological meaning that it is the genetic components of one organ’s/system’s aging. Then each polygenic score of one
organ/system was used as independent variables to predict whether a person is centenarian of not in generalized linear model using
glm() function in R 3.6.1. In addition, all the polygenic scores of different organs/systems were aggregated in the same model to
classify longevity groups using lasso regression.
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