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SUMMARY
Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA).
Our study shows evidence that there might be multiple ‘‘clocks’’ within the whole-body system: systemic
aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data,
including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical
fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver,
kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse.
People’s aging patterns are different. We also demonstrate several applications of organs/systems BA
in two independent datasets. Mortality predictions are compared among organs’ BA in the dataset of
the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs
constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of
becoming centenarian.
INTRODUCTION

The aging process is the major risk factor for disease and death

(Harman, 1991). The aging rate varies for different people at the

same chronological age (CA); thus, biological age (BA) was

developed to assess the true aging rate (Franceschi et al.,

2018). The concept of BA has been investigated since the

1970s (Comfort, 1969). Multiple methods were developed later,

including multiple linear regression (Bae et al., 2008; Cho et al.,

2010; Dubina et al., 1984; Hollingsworth et al., 1965; Krøll and

Saxtrup, 2000), principal component analysis (Hofecker et al.,

1980; Nakamura and Miyao, 2007; Nakamura et al., 1988), and

the Klemera and Doubal method (KMD) (Klemera and Doubal,

2006). The major difference among these methods is the role

of CA. In the earlier multiple linear regression studies (Bae

et al., 2008; Krøll and Saxtrup, 2000), CAwas predicted from bio-

markers. It was believed that the higher the correlation between
This is an open access article under the CC BY-N
biomarker and CA, the greater the reliability of BA estimation.

The later algorithm used reverse regression and treated CA

also as a marker of aging (Klemera and Doubal, 2006). Both stra-

tegies have been applied in multiple datasets, where KDM was

shown to have better performances in mortality (Levine, 2013)

and health status predictions (Cho et al., 2010).

Another key factor for estimating BA is selection of age-related

biomarkers. Over the last half century, electronic medical re-

cords, DNA methylation (Horvath et al., 2015; Horvath and Raj,

2018), transcriptome (Stegeman and Weake, 2017), and prote-

ome signatures (Lehallier et al., 2019) have been used for

estimating BA, whereby DNA methylation has been shown to

be a robust biomarker of aging in humans (Chen et al., 2016).

However, DNA methylation is tissue/organ specific (Horvath

et al., 2015). For a live person, DNA methylation-based BA could

only be obtained from blood or saliva samples (Horvath et al.,

2016). Many aspects of the human body would not be covered.
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Figure 1. Multi-omics data were collected through different technologies and classified into groups of organs and systems

Multi-omics data from blood sample, stool sample, physical fitness examinations, and clinical images. In total, 403 features for each individual were measured.

These were classified into nine categories, namely cardiovascular related, renal related, liver related, sex hormone, facial skin features, nutrition metabolism

features, immune related, physical fitness related, and gut microbiome.
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Recently, the concept of ‘‘deep phenotyping,’’ which aims to

gather more specific details for the health status evaluation of

precise medical areas, has emerged (Delude, 2015). The multi-

omics approach provides such detailed information and offers

the opportunity to explore multiple systems. Therefore, in the

present study we established a cohort of young adults with

multi-omics data, including gut microbiome, immune repertoire,

metabolomics, blood chemicals, body composition, and phone-

mics (e.g., physical fitness test, facial skin scan). We used KDM

to construct BAs of different organ/systems to investigate their

commonalities and differences in terms of aging rates. We also

demonstrated several applications of BAs, including utilizing

BAs as phenotypes in genome-wide association studies

(GWASs) and constructing polygenic risk scores (PRSs) of the

aging rates of organs and systems in a dataset with 2,178 cente-

narians and 2,299 middle-aged individuals from the Chinese

Longitudinal Healthy Longevity Survey (CLHLS) cohort.

RESULTS

Biological age of organs or systems constructed from
multi-omics data
A total of 4,066 volunteers (48%males) aged between 20 and 45

years from the Shenzhen local area were recruited. Written

informed consent was obtained from each individual. Multi-
2 Cell Reports 38, 110459, March 8, 2022
omics level data were generated from blood sample, stool

sample, physical fitness examination, and facial skin images

(Figure 1). In total 403 features were measured, including 74 me-

tabolomic features, 34 clinical biochemistry features, 36 immune

repertoire features, 15 body composition features, 8 physical

fitness features, 10 electroencephalography (EGG) features, 16

facial skin features, and 210 gut microbiome features (listed in

Table S1). These were classified into nine categories, namely

cardiovascular related, renal related, liver related, sex hormones,

facial skin features, nutrition/metabolism features, immune

related, physical fitness related, and gut microbiome.

After classification, the relationship with sex and age for each

feature was examined. As we discovered that a large proportion

of features had sex-specific effects (Figures 2A and 2B; Table

S2), the following construction of BAs was conducted for male

and female groups separately. Each feature was regressed into

CA and only features significantly correlated with age (p <

0.05) were utilized for the generation of BAs. Moreover, features

with redundant information were filtered out (see STAR

methods). Finally nine BAs of different organs and systems

were generated, and distinct patterns of correlations with chro-

nological ages are shown in Figure 3. The cardiovascular age

has the least variance among subjects while the variation in liver

ages is quite large, indicating potential differences of aging ef-

fects for organs and systems.



Figure 2. Changes in multi-omics features

(A and B) Volcano plots representing changes in

multi-omics features (n = 403) regarding sex (A) and

age (B). Each feature from multi-omics tests was

correlated with age and sex; the -log10 scale p-

values from spearman correlation analysis were

shown in the figure. We observed that a large

proportion of features had sex-specific effects,

therefore the constructions of biological ages were

conducted for male and female groups separately.
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Biological ages of different organs/systems show
diverse correlations
To deeply study the characteristics of the aging processes of

different organsandsystems,weconstructedanaging rate index,

which took the difference between BA and CA and divided it by

CA. This aging index represented the relative aging acceleration

or deceleration per year. The pairwise correlations among multi-

ple aging rate indexes were then assessed. The physical fitness

age had generally high correlations with all other systems (Fig-

ure 4A). The BAs of the renal and sex hormone systems were

the most correlated (r = 0.53). Sex hormone age was correlated

with that of the renal (r = 0.53) and immune (r = 0.44) systems.

Interestingly, the aging rate of the renal system was negatively

correlated with that of gut microbiome (r =�0.07). The gut micro-

biota influences the actions of a range of xenobiotics in both

beneficial and potentially harmful ways (Clarke et al., 2019), and

it has been reported that the accumulation of microbiota-derived

metabolites was associated with chronic kidney diseases (Joos-

sens et al., 2019). The negative correlation could be caused by an

increased diversity of conditional pathogenic bacteria leading to

accumulationof toxicmetabolites, therebygiving rise todisorders

of the renal system (Wanget al., 2020). Thepositive counterpart of

this situation is that the gutmicrobiomeof centenarians and semi-

supercentenarians who have escaped renal diseases is particu-

larly suited for xenobiotic degradation (Rampelli et al., 2019).

Thediverse directions of correlationswere consistentwith the ex-

istence of multiple ‘‘clocks’’ throughout the whole body.

Individuals can be clustered according to
characteristics of multiple biological ages
For each subject, the BAs of multiple organs and systems were

constructed. Due to missing variables among individuals only

481 individuals had complete records, and nine biological aging

rate indexes for these subjects were used for clustering analysis

with the aim of identifying different aging patterns within the

study population. The clustering result is shown in Figure 4B,

with the color gradient representing the aging rates. Red indi-

cates faster and blue indicates slower aging rates. The faster

and slower rates are relative to the person’s CA; for instance

if the BA is larger than the CA, the person is aging faster. Inter-

estingly, individuals could be initially separated into two clus-
ters. The cluster above has an overall

redder color while the cluster below

shows relatively more blue colors; indi-

viduals in the cluster above are generally

aging faster than the individuals in the
cluster below with regard to all organs and systems. Within

each cluster, subclusters were formed by the patterns of aging

rates of different organs and systems. The subcluster at the

bottom showed even more blue color, indicating that these

people may have much slower aging rates. When comparing

the clustering information with body mass index (BMI) (Fig-

ure 4B), it was found that overweight people (indicated by or-

ange color in the right bar) were classified into different clusters

representing different aging patterns. The two subclusters indi-

cated by square right brackets in Figure 4B include relatively

denser overweight people than others. These two subclusters

are very different in terms of aging patterns, with the bottom

one having much younger liver ages but older physical fitness

ages. This may indicate that excess weight or obesity have

different causes among individuals.

Determining BAs of different organs and systems may permit

detailed evaluations of the source of specifically accelerated ag-

ing components in each individual. For instance, some over-

weight individuals have a faster aging rate in physical fitness

and the nutrition metabolism system, while others have a faster

aging rate for liver. This detailed information could potentially

identify intervention targets for improving health status as well

as slowing down the aging process.

Specific biological age measures predict diseases or
phenotypes of corresponding organs
One of the ultimate objectives of constructing BA clocks is

predicting abnormalities, disorders, and even mortality. To eval-

uate the predictive efficiency of BAs, we used the aging rate

indexes to predict non-alcoholic fatty liver, which was the

most common abnormality in our study sample. Logistic regres-

sions were used for predictions. The results are shown in

Figure 5. The severity of non-alcoholic fatty liver disease was

associated with the liver aging index, which is consistent with

our expectation that BAs could predict diseases or phenotypes

of corresponding organs.

Evaluating biological ages of different organs/systems
in the NHANES
We have used the same approach to classifying features into

organs and systems for the dataset from the United States
Cell Reports 38, 110459, March 8, 2022 3



Figure 3. Relationships between biological ages and chronological age and their linear regression lines

Cardiovascular age has the highest explanation for chronological age. Gut microbiome age explained the least. Liver age and sex hormone age have high

variations. The R-squared was the coefficient of determination calculated from linear regression model.
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National Health and Nutrition Examination Survey (NHANES)

between 1999 and 2012. Mortality follow-up was based on

linked data from records taken from the National Death Index

through 2016. After excluding individuals younger than 18

years, people died from infectious diseases and accidents as

well as entries with missing features. Three BAs, namely cardio-

vascular age, liver age, and renal age, were calculated in 3,868

individuals. Among these, 625 individuals were deceased,

among whom 128 subjects died of heart disease. The features
4 Cell Reports 38, 110459, March 8, 2022
we used for constructing the BAs are listed in Table S3. We then

used Cox proportional hazard models to investigate which ones

have more predictive power for mortality. The models were

adjusted for sex and CA. First, we compared the predicting po-

wer between BA and single features. Total cholesterol, blood

glucose, lipoprotein, blood pressure, and CA significantly pre-

dicted mortality caused by heart disease. By combining these

markers and constructing a BA of the cardiovascular system,

the prediction power was significantly boosted (Figure 6A).



Figure 4. Clustering individuals using bio-

logical ages identified different patterns of

being overweight

(A) Heatmap of pairwise correlations among aging

indexes of multiple organs and systems. The color

gradient represents the correlation coefficients

from a Spearman correlation. Blue indicates pos-

itive correlations and red indicates negative cor-

relations.

(B) Clustering heatmap of 481 individuals ac-

cording to different biological ages. The color

gradient represents the aging rates. Red indicates

faster and blue indicates slower aging rates.

Faster and slower are relative to the person’s

chronological age; for instance, if the biological

age is larger than his chronological age, the person

is aging faster.
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This suggested that individual markers had independent

contributing effects to cardiovascular diseases. Second, we

compared the predictive power of the BA of different organs.

The predictive power for mortality in the biological aging index

was significantly higher than that of CA (Figures 6B and 2C).

When predicting death caused by heart disease, the cardiovas-

cular aging rate performed better than liver and renal aging in-

dexes (Figure 6C). This result suggested that classifying fea-

tures to construct organ/system-specific BA could gain more

specific power in terms of predicting organ-related disease

mortality. If the cause of death is not specified, combining all

features together for an integrated BA would be an improve-

ment (Figure 6B).
Distinct genetic architectures of
multiple organs’ and systems’
aging rates
Using a multi-omics dataset, we have as-

sessed the aging rates of different organs

or systems, identifying their similarities

and differences. Next, we determined

whether the differences could be ex-

plained by genetic factors. We compared

the genetic architectures of the aging rate

indexes of multiple systems. Using these

aging rate indexes as phenotypes,

GWASs were performed.

After standard GWAS quality control

processes, 7,236,472 common SNPs

were identified. The results suggest

distinct genetic architectures among

these systems. Additionally, we summa-

rized the GWAS signal densities for

each association, with the number of sig-

nals (p < 0.05) per 10-Mbp window on the

genome calculated and plotted (Fig-

ure 7A.). Interestingly, the signal densities

of each system or organ are versatile (Fig-

ure 7A), but one region was identified to

be correlated with aging in all organs/sys-

tems. This region harbors themajor histo-
compatibility complex on chromosome 6, indicating the poten-

tial importance of the immune system in aging processes. The

Manhattan plots for GWAS are shown in Figures S1–S9.

To further investigate biological functions associated with

biological aging rate indexes and improve the power

of genetic studies by reducing the number of statistical tests,

we employed pathway-based association (see STAR

methods). The identified (p < 0.05) pathways are shown in Fig-

ure 7B. The nucleotide excision repair (NER) pathway was

identified in five systems. Another two pathways related to

DNA repair, base excision repair, and non-homologous end-

joining pathways were also identified in aging of the cardio-

vascular system. Many studies have reported that a defective
Cell Reports 38, 110459, March 8, 2022 5



Figure 5. Predicting non-alcoholic fatty liver using biological age

Older liver age is associated with non-alcoholic fatty liver. The pseudo-R-

squared was calculated from logistic regression using McFadden’s method.
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NER gene would cause instability of DNA and thereby accel-

erate aging (Chen et al., 2020; Marteijn et al., 2014; Nie-

dernhofer et al., 2018). Several signaling pathways correlated

with aging were also identified, including p53, Hedgehog,

PPAR, insulin, VEGF, and Notch signaling pathways. It is

believed that changes and damage occurring at the cellular

level play a causative role in aging (Tabibzadeh, 2021). These

signaling pathways participated in maintaining cellular ho-

meostasis and health. All pathways significantly associated

with biological aging rates are listed in Table S4.

Polygenic scores of biological ages can predict
longevity
Another application of BAs is forecasting an individual’s mortal-

ity. Using the effects of SNPs as a bridge, we have constructed

PRSs (see STARmethods) of different organs and systems in the

CLHLS cohort, including 2,178 centenarians and 2,299 middle-

aged controls (Zeng et al., 2016). The polygenic scores were

used, individually and jointly, to classify centenarians and mid-

dle-aged individuals. The PRS for skin aging index significantly

predicted longevity after correction for multiple testing (p =

9.3 3 10�4, p < 0.05/9). Other PRSs predicted longevity at a

nominally significant level (p < 0.05) (Figure 7C). While incorpo-

rating all the aging polygenic scores to predict whether a person

could be centenarian, we also achieved significant prediction

(area under the curve 95% confidence interval [0.514, 0.586]).

However, this was not an exceptional prediction. The possible

reasons could be (1) that there is missing heritability of longevity

which has not been identified by current GWAS, or (2) that many

environmental factors, lifestyles, and the gene-environment in-

teractions are influencing longevity. Therefore, using only PRS

for longevity prediction was able to obtain only limited prediction

efficiency.

DISCUSSION

Our study revealed evidence that there might be multiple

‘‘clocks’’ within the whole-body system. We have utilized multi-
6 Cell Reports 38, 110459, March 8, 2022
omics data, including clinical tests, metabolomes, proteomes,

microbiomes, physical fitness examinations, and facial skin ex-

aminations, to estimate the BAs of different organs (e.g., liver

and kidney) and systems (e.g., immune systems and metabolic

system). The results showed distinctions of the aging rates of

organs and systems. These BAs could be applied for clustering

individuals and identifying the sources of age-related dysfunc-

tion. In addition, we have performed GWASs using each respec-

tive biological aging index and have compared the differences in

genetic architectures among different organs and systems.

Pathways-based association analyses demonstrated relevance

between biological functions and aging. Last but not least, we

utilized theGWAS results of BAs to construct PRSs in the CLHLS

cohort to enable evaluation of the genetic correlations between

systems’ aging and longevity.

Although aging is a lifelong process (Kuh et al., 2014), most

human aging studies were conducted in older populations or

cohorts with a high incidence of chronic diseases. Some studies

reported that age-related changes could be detected from the

early 20s (Akima et al., 2001), and the aging process in young

healthy adults is still largely unknown. In addition, the organs

of young adults are not yet heavily damaged, offering the possi-

bility to prevent age-related diseases. Accordingly, we have cho-

sen to establish a young cohort aged between 20 and 45 years

with the aim of studying the early changes of aging.

The biomarker selection process is essential for BA construc-

tion, and many approaches have been implemented. Our study

utilizes a very large number of biomarkers that comprehensively

cover most systems of the human body in the same dataset for

studying multi-system BAs. We have collected as many bio-

markers as possible frommulti-omics approaches and have per-

formed systematic evaluations of each measurement. Statistical

analyses were used to calculate the aging effects of every

biomarker, and redundant biomarkers were excluded. The infor-

mativemarkers were then classified into organs and systems ac-

cording to existing biological knowledge.

On the whole, the results of our approach suggest that

there might be systemic aging drivers/clocks overlaid with

organ/tissue-specific counterparts. The pairwise correlations

among multiple BAs showed that the physical fitness age has

a generally high correlation with all other systems, and the corre-

lation directions are diverse. These distinctions of aging rates

appear to have a genetic basis. The overall p value distribution

of GWASs across the genome was different between the renal

system and hormonal as well as nutrition/metabolic systems.

Pathway-based associations revealed different correlated path-

ways. Most identified pathways were functionally related to the

corresponding organ.

At variance with existing studies which integratedmultiple bio-

markers into one BA (in turn correlated with disease status and

behaviors) without considering differences between organs

and systems (Wilmanski et al., 2019), our study provides a

more detailed evaluation of aging for different functional sys-

tems. Identifying abnormalities of one particular organ or system

may lead to a specifically targeted treatment. Our liver age pre-

dicts the clinically diagnosed severity of fatty liver disease. The

biomarkers we used to construct liver age are all from blood

samples, and the use of liver age to scan the population would



Figure 6. Predicting mortality in NHANES data

While constructing biological ages in NHANES data, cardiovascular age, liver age, and renal age could predict mortality.

(A) Results of Cox proportional hazard model comparing single features and biological age.

(B) Results of Cox proportional hazard model predicting all causes of mortality.

(C) Results of Cox proportional hazard model predicting mortality caused by heart diseases.

HR, hazard ratio. The error bar represents a 95% confidence interval of HR.
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be cost-effective and could identify liver abnormalities at an early

stage.

A recent multi-omics study has mentioned the concept of

‘‘ageotypes’’ while using 608 multi-omics features for clustering

analyses. The results showed that those features were enriched

into four aging-related types, namely immunity, metabolic, liver

dysregulation, and kidney dysregulation (Ahadi et al., 2020).
Their data showed hints at organs and systems differences in

terms of aging; however, their analyses only included 106 indi-

viduals andmany aspects of human body function were not eval-

uated. In this regard, our study covers more aspects, such as the

cardiovascular system, skin, and sex hormones, in amuch larger

cohort. Moreover, in the present study we also provided genetic

evidence of the existence of ‘‘ageotypes.’’ There are studies that
Cell Reports 38, 110459, March 8, 2022 7
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have developed DNA methylation ages for multiple tissues (Hor-

vath, 2013), supporting the multiple ‘‘clocks’’ hypothesis. How-

ever, from a translational perspective, DNA methylation data of

multiple tissues will be very difficult to obtain in a live person.

Furthermore, tissues and organs/systems are quite different.

Tissues usually consist of homogeneous cell types, and the var-

iations within a tissue are usually small, whereas organs consist

of multiple tissues, for example muscle and fibrous tissues in the

heart.

One possible explanation for these different aging rates could

be that the aging process occurs in every cell of the whole body,

and the different composition of cell types within the organs will

lead to distinct aging rates. Moreover, cell type differentiation is

decided by genetics, especially by the pattern of transcription

factor expression (Almalki and Agrawal, 2016). Therefore, there

might be one centralized driver/clock controlling the aging of

the cell, the basic functional unit of the body. Meanwhile, the

organizations of cell populations drive the aging process of

different organs and systems. The physical fitness age, con-

structed using mostly muscle and fat tissue quantifications, as

well as the power and strength of muscles, is an example of

how we addressed the complexity of the underpinning biology

of such a complex trait. Muscle tissue is involved in almost all or-

gans (Jaslove and Nelson, 2018) and, hence, the BA of physical

fitness is correlated withmost other BAs. This result is consistent

with available knowledge, the physical fitness assessment being

the most widely used general evaluation of health and aging sta-

tus. A single measure of BMI could provide information about a

person’s health and aging status (Lee et al., 2017), but this single

measurement is lacking in resolution as it only provides a general

qualitative evaluation.

At present, to a person who is aging faster than average, one

can hardly tell which part of the body is abnormal and how to

improve it. Our comprehensive evaluations of the aging rates us-

ing multi-omics biomarkers could provide more detailed infor-

mation, not only on which part of the body is dysfunctional but

also to specifically suggest gene- or pathway-targeted interven-

tions/drugs. For single interventions shown to affect lifespan and

healthspan, it is unlikely that a single intervention will work in

every individual even if the median lifespan of the population is

affected. In these cases, there may be relationships between

the response of an individual and the rate of aging of different

‘‘clocks,’’ allowing for better prediction of responders and non-

responders.

We have used our BAs to predict disease status as well as

longevity. Most previous studies have used BAs to predict mor-

tality (Hastings et al., 2019; Jee, 2019). Since our BAs improved

resolution at organ and system levels, we have found that

certain BAs could predict tissue-related disease better than

other BAs. For instance, cardiovascular age could predict mor-

tality caused by heart disease better than liver and renal ages in
Figure 7. Distinct genetic architectures of different biological ages

(A) GWAS signal densities for each association. The number of signals (p < 0.05) p

calculated by PLINK from linear regression model; -log10 scale p values were us

(B) Pathways associated with different biological ages. The p values were calcul

(C) Prediction efficiencies of polygenic risk scores of biological ages predicting lo

model.
an independent NHANES dataset. On the other hand, we have

constructed PRSs using the SNP effects estimated in our data-

sets from the CLHLS (Zeng et al., 2016), which includes 2,178

centenarians and 2,299 middle-aged controls. The results

showed that some PRSs could significantly predict longevity,

proving the existence of a genetic correlation between aging

processes and longevity and suggesting that a biological aging

index can be used as phenotype for the genetic studies of

longevity. We predict that by using the organs’ BAs coupled

to genetic studies of longevity, resolution could also be

improved at the whole-body level as well as within biological

units/organs/systems.

Our approaches to estimating BAs for organs and systems

could be easily used in clinical practice or health management

for elderly people. It is noteworthy that the biomarkers we used

for constructing BAs were mostly gained from routine physical

checkups or blood sample tests, which are easy to scale up

for health management of larger populations.

Limitations of the study
Some limitations of the current study need to be acknowledged.

First, this study is based on a cross-sectional dataset in which

we can only identify associations rather than causalities. Future

follow-up studies are required to validate our findings. Second,

the multi-omics features were classified manually according to

their clinical interpretations or data types, and overlapping was

avoided between classes to study the differences of organs

and systems. This method ignored the interactions among

organs and systems. Future studies using unsupervised

approaches for classifying the features and studying the interac-

tions between systems are required. Third, the relatively small

sample size limited the power of the GWAS.We only gained sug-

gestive signals from variant-based association. We utilized

pathway-based association to improve GWAS power by

leveraging on biological knowledge. Finally, the aging process

is complex, being influenced by genetics, environment, and their

interactions. Thismight be the reasonwhywe only gained limited

efficiency while using PRSs to predict longevity phenotypes.

Gene-environment interactions are important avenues to be

studied.
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Data and code availability
d The summary statistics that support the findings of this study, including the associations between biomarkers and age are pub-

licly available. DOIs are listed in the key resources table. Individual-level data including genetic variants and clinical data will be

shared by the lead contact upon request. Access to individual-level data is subject to the policies and approvals from the Hu-

man Genetic Resource Administration, Ministry of Science and Technology of the People’s Republic of China.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study has been approved and monitored by the Institutional Review Board at BGI-Shenzhen in conformance with WMA Decla-

ration of Helsinki (2013). The approval number was BGI-IRB-20048. Posters and emails that advertising this study were posted at

Yantian district, Shenzhen. Han Chinese volunteers, who have no major diseases that have occurred (such as acute infarction,

end-stage renal edema, disability after stroke, cancer, paralysis) and nomajor transplantation and hematopoietic stem cell transplan-

tation experience, aged from 20–45 years were recruited. The written form of consents was signed by each individual. Blood sample,
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stool sample, physical fitness examinations as well as facial skin images were taken. The biological samples were taken by medical

professionals in a local clinic. The sample dataset used in current study includes 4,066 individuals’ records with mean age 29.42,

ranging from age 20.49 to age 44.93. Among them, 1,957 (48%) are males and 2,109 (52%) are females. To ensure the safety of

the volunteers’ privacy, the data and samples were de-identified using a digital ID. The clinic stored the correspondence between

patients’ name and the digital ID. While the data analysts could only access the data with ID.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analysis relevant to biological age constructions and applications in this article were performed in R. The p values for

spearman correlation tests in Figures 2 and 4A were calculated using student t-test. The R-squared in Figure 3 was the coefficient of

determination calculated from linear regression model. The pseudo R-squared in Figure 5 was calculated from logistic regression

using McFadden’s method (McFadden, 1979). The hazard ratio (HR) in Figure 6 were calculated from cox proportional hazards

regression model, and its mean and 95% confidence interval were shown in the figure. The results of genetics association study

shown in Figure 7 was performed in PLINK (Chang et al., 2015) and FASTBAT (Bakshi et al., 2016). The p values for Figure 7A

were calculated by PLINK from linear regression model. The p values for Figures 7B and Table S4 were calculated by FASTBAT

from c2 distribution. The p-values for Figure 7C were calculated from logistic regression model. There were no any methods that

were used to check the distribution of our data, because we have selected non-parametric approaches for the data analyses,

such as spearman correlation. The sample sizes for different omics data were diverse since many of the tests were optional to par-

ticipants during sample collection. The sample sizes and features of each category are listed in Table S5.

METHOD DETAILS

Routine medical examination
Routine medical examinations were carried out for everybody. A total of one urine tube and four blood tubes were collected. The

blood tubes consisted of Na-Heparin Trace Element tubes, Serum Separator Tubes (SST), EDTA purple top tubes, and NMR

black-top Lippitude. First morning void urine was collected in the yellow-top tube by participants the morning of their blood draw.

In addition to biochemical tests, blood pressure, electrocardiogram, ultrasound examinations were performed. All clinical laboratory

tests measured using Quest and Genova are listed in Table S1.

Physical fitness assessment
Both health- and skill-related test components were included in the physical fitness assessment. The body compensations, including

Body water, proteins, minerals, and body fat, were measured in InBody system utilizing bioelectrical impedance analysis. The car-

diovascular endurance was measured through step tests and vital capacity. The muscular strength and endurances were assessed

by pull-up for males and sit-up for females. For flexibility examinations, sit and reach test were conducted. High jump and hand grip

test were conducted to measure the muscular strength of limbs. For skill related test, choice reaction time was examined.

Facial skin assessment
The skin features weremeasured using the VISIA�Complexion Analysis System. The photographic images were captured with stan-

dard, cross-polarized, parallel polarized, and ultraviolet light. Images were taken in two different close-up views (front and left lateral

37�) for each subject to quantify the scores for spots, wrinkles, pores, texture, and erythema.

Quantitative measurement of blood metabolites using mass spectrometry
The metabolites in blood were targeted and quantified using liquid chromatography coupled with triple quadrupole mass spectrom-

etry (LC MS/MS), including ACQUITY UPLC I-Class (Waters) mounted with C18 column, Triple Quad 5500 (Sciex) and Xevo TQ-S

(Waters). The MS/MS spectra corresponding to metabolites were acquired at positive ion mode with multiple reaction monitoring

scans. The metal elements were measured by inductively coupled plasma mass spectrometry (ICP MS/MS), i.e. 7700x ICP-MS

(Agilent). The mass spectra acquired were processed with MultiQuant (V. 3.0.2, Sciex) for amino acids, hormones and FSV,

MassLynx (V. 4.1, Waters) for WSV and MassHunter (V. B.01.03, Agilent) for metal elements. The calibration curves were imple-

mented with stable isotope-labeled compounds as internal standards. The accuracy of quality controls (QCs) with isotope-labeled

IS was managed approximately every 15 samples to ensure the inter-batch stability. A total of the 81 out of the 84 metabolites were

investigated for each individual.

Whole genome sequencing sample recruitment and data processing
The whole blood drawn from the participant vein was stored in the EDTA anticoagulant tubes to avoid hemolysis, while the plasma

was obtained by centrifugation (3000 rpm, 10 min) and was preserved at �80�C until assay. The while cells were isolated for geno-

mics DNA extraction. Whole-genome sequencing (WGS) to 303 were conducted for 1,553 subjects (Female N = 642, Male N = 911)

from DNA in white cells using BGI-seq500. WGS data were aligned and variants called by the Picard/BWA (Li and Durbin, 2009)/

GATK (McKenna et al., 2010) pipeline. SNPs with mapping quality greater than 40, sequencing depth greater than 4, variant quality
Cell Reports 38, 110459, March 8, 2022 e2
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greater than 2.0, Phred score of Fisher’s test p value for stand bias smaller than 60.0, Haplotype score smaller than 13.0 and distance

of alternative allele from the end of reads greater than 8.0 were kept for following analyses. We removed SNPs deviating from Hardy-

Weinberg (p < 1 3 10–5), markers with more than 1% missing genotype data and variants with smaller than 1% minor allele fre-

quencies. Individuals with heterozygosity greater than their standard deviations were excluded. One individual among relatives within

3rd degree of relationship was randomly selected to keep in the clean data set.

PCA were performed to investigate population stratification. No clear sub-cluster was observed. Typical north to south Grandaunt

was demonstrated by the first principal component. Linear regression adding individual sex and top two principal components as

covariates was performed for each SNP.

Metagenomics sequencing
Fresh stool samples were collected from recruited volunteers for metagenomics sequencing. The fecal DNA extractions were pro-

cessed following the MetaHIT protocol, then Single-end metagenomics sequencing were performed using BGISEQ-500 platform.

The low-quality reads were discarded, and the host DNA were removed based on human genome reference (hg38) by SOAP2 (Li

et al., 2009) (version 2.22; identity R 0.9). Taxonomic analysis was performed using MetaPhlan2 (Truong et al., 2015) following

removal of human reads. The relative abundances of species were used in the current study. Meanwhile, the quality-controlled reads

were mapped to integrated gene catalogue (IGC) (Li et al., 2014) by SOAP 2.22 (identity R 0.95) to produce gene relative abundant

profiles. Then, the abundances of genes within each KEGG pathway were aggregated to generate relative abundance profiles for

functional modules.

Immune repertoire sequencing (IR-SEQ)
For human immune system, the enormous diversity of the T-cell receptor (TCR) and B cell receptor (BCR) repertoire is a good indi-

cator for immune health status. We have performed deep targeted single-end sequencing for T-cell receptor (TCR) genes extracted

fromwhite cells and evaluated the immunes status for each individual. Sequence data were analyzed using our previously developed

pipeline, IMonitor (Zhang et al., 2015). Briefly, the reads were BLAST alignment onto V, D, J germline genes and alleles after basic

quality control. Subsequently, a realignment for each result was performed with the aim of construct best gene sequences. Mean-

while, the base quality scores were recalibrated. Thirdly, the gene sequences were translated into amino acid to construct peptide

sequences after a filtration of low abundance sequences (less than 5 supporting reads). Finally, the statistics of TCR of IGH data such

as V-J pairing, V/J usage, CDR3 sequence frequency and CDR3 length distribution, were calculated.

Data quality control and biological ages constructions
Feature inwhichmore than 100 samples had the zero values inmicrobiome datawere excluded. Aswe identified a great proportion of

features have sex different effects Figure 2A. The construction of biological ages was performed in male and female groups

separately.

All the features were classified into organs and systems according to either clinical interpretations or data types. Features from

clinical lab tests were classified according to the interpretation of blood chemical test (Wallach, 2007). The amino acids measures

from the metabolic panel were classified into liver. The vitamin and microelements measures from metabolic panel were classified

into nutrition metabolomic system. Themicrobiome features measured from stool sample were classified into gut. The facial imaging

features were classified into skin. The T cell receptor gene features together with the blood cell count measures were classified into

immune system. Features selected for each organ and system were listed in Table S1. As a result, 9 categories were classified.

The data quality control processes were performed in R 3.5.1. The multicollinearity of the features was further assessed using vari-

ance inflation factor (VIF). One of those features have redundant information (VIF >5) was kept for the construction of biological ages.

As we also identified a great proportion of features have sex different effects. The construction of biological ages was performed in

male and female groups separately.

The Euclidean distance (Liberti et al., 2014) and Mahalanobis distance (De Maesschalck et al., 2000) were used for outlier remove-

ments within each category. If the sample size is greater than number of biomarkers, we useManalanobis distance, otherwise, we use

Euclideandistance. Individual datawith either largeEuclideandistanceor largeMahalanobisdistance rankingat top5%were removed.

Each feature was regressed with age to evaluate their age effects using lm() function in R 3.5.1. Features significantly associated

with age (p < 0.05) were kept for following study. The summary statistics of linear regression were listed in Table S2

Klemera andDoudal algorithm (Klemera andDoubal, 2006) was used for the construction of biological ages. Briefly, the KDmethod

was consisted of two steps to convert those biomarkers into aging rate and making them comparable. The first step is regressing

every biomarker to chronological age. By doing this, we gained the estimated age as well as its standard error using a particular

biomarker. Every biomarker was processed and all the estimated ages have the unit ‘year’ which is the same as chronological

age. We consider the regression step as a normalization process that make different markers comparable in terms of unit. The sec-

ond step is aggregating the age estimates of each biomarker as well as chronological age and construct biological ages.

The statistical analyses of biological ages were performed in R 3.5.1. Pairwise spearman correlations were calculated by cor()

function, correlation heatmap were generated by corrplot() function. The biological ages were normalized using inverse rank normal

transformation method in RNOmni() function, and then unsupervised clustering were performed by K-means method and heatmap

were generated by pheatmap() function.
e3 Cell Reports 38, 110459, March 8, 2022
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Biological age calculation and cox regression analysis in National Health and Nutrition Examination Survey (NHANES)
We have matched features we used in the dataset from the National Health and Nutrition Examination Survey (NHANES) between

1999 and 2012. Mortality follow-up was based on linked data from records taken from the National Death Index through 2016. Those

individuals younger than 18, people died from infectious diseases and accidents as well as samples with missing features were

excluded. Three biological ages, including cardiovascular age, liver age, and renal age, were calculated Then, we used cox propor-

tional hazard models to investigate which one have more predictive power for mortality in R4.0.2 by coxph() function. The models

were adjusted for sex and chronological age.

Single variant-based association
When phenotypes and genotypes have passed all the quality control processes, the basic analysis of genome-wide association were

conducted. The single-locus statistical tests examined each SNP independently for association with the phenotypes (Balding, 2006;

Chang et al., 2015). The types of statistical tests utilized mostly depends on the types of phenotypes. We have converted all

constructed biological ages into normal distribution using inversed normal transformation in R 3.3.61. For continuous phenotype,

linear regression is the most widely usedmethod. All the association analyses were performed in PLINK1.9 (Chang et al., 2015). After

association analyses, the coefficients of each SNPs for biological ages were gained. Pairwise Wilcoxson tests were used to test

whether the distributions of SNP coefficients are different among biological ages.

Set-based association
The standard analysis of genome-wide association study uses single SNPmarker as the test unit. However, due to small sample size,

the complex LD structures and ethnic differences among different populations, many replication studies have failed. To improve

GWAS power, the set-based association has been proposed during the initial development of GWAS (Neale and Sham, 2004).

The set-based analysis combined the summary statistics of all variants within a putative biologically functional unit (coding region

and possible regulatory region, genes within one pathway) to obtain a single p value that represents the significance of disease as-

sociation of the gene. There are several benefits of using set-based association. Firstly, the gene is the functional unit of the human

genome. Compared to genetic variants that have different allele frequencies, LD structure, and heterogeneity across diverse human

populations, genes, and pathways are a highly conserved elements among different individuals. Therefore, set-based association

analyses would lead to more consistent results across different ethnic populations.

For current study, FASTBAT was used for set-based association test. The test combined the p values of SNPs within one pathway

(for each gene within the pathway, an extension of 10kb on each side as considering the regulatory region for the gene).

Polygenic score risk prediction
The validation in centenarian dataset were conducted through polygenic risk predictions. After genome-wide association analyses,

each SNPwould have effect (coefficients from linear regressions) on a particular biological age. Using these effects asweights to sum

genotypes in centenarian dataset, a summed score will be formed for each individual (Choi and O’Reilly, 2019). This polygenic risk

score has the biological meaning that it is the genetic components of one organ’s/system’s aging. Then each polygenic score of one

organ/system was used as independent variables to predict whether a person is centenarian of not in generalized linear model using

glm() function in R 3.6.1. In addition, all the polygenic scores of different organs/systems were aggregated in the same model to

classify longevity groups using lasso regression.
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