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with immune checkpoint inhibitor response
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The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI)
treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICls. We
performed shotgun metagenomic sequencing of stool samples collected before ICl initiation from five observational cohorts
recruiting ICl-naive patients with advanced cutaneous melanoma (n=165). Integrating the dataset with 147 metagenomic
samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, associa-
tion with the response to IClIs. A machine learning analysis confirmed the link between the microbiome and overall response
rates (ORRs) and progression-free survival (PFS) with ICls but also revealed limited reproducibility of microbiome-based
signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and
Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully con-
sistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than
previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders.
Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut
microbiome over the treatment course.

treated with a combination of PD-1 and CTLA-4 blockade are

grammed death-ligand 1, programmed cell death protein 1
(PD-1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) with ICIs has revolutionized the treatment of advanced
melanoma. Several landmark randomized controlled trials have
shown notable and durable survival benefits, resulting in changes
to standard of care internationally’. Presently, over 50% of patients

| herapeutic targeting of immune checkpoints such as pro-

alive after five years'. Despite these advances, fewer than half of
the patients who receive a single-agent ICI respond to it, whereas a
higher response to combined targeting of PD-1 and CTLA-4 is asso-
ciated with frequent toxicity with immune-related adverse events™*.

The discovery of a link between the gut microbiome and
response to ICIs, in melanoma and other tumors, highlighted the
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gut microbiome as a potential biomarker of response** as well as a
therapeutic target”®. Although there is compelling evidence for spe-
cific gut microbial features associated with beneficial responses in
mouse studies™'’, little consensus exists on which microbiome char-
acteristics are associated with treatment responses in the human set-
ting. In one of the largest metagenomic studies to date, Routy et al."
found responders to harbor significantly higher relative abundances
of Akkermansia muciniphila, Alistipes and generally more Firmicutes
compared to nonresponders'', whereas Gopalakrishnan et al.’
found a higher relative abundance of Faecalibacterium prausnitzii
in responders compared with nonresponders. In addition, Matson
et al.” found that responsiveness to PD-1 therapy was defined by
an increased relative abundance of a group of eight species driven
by Bifidobacterium longum. Frankel et al. reported that micro-
biota differed by ICI regimen but that enrichment of Bacteroides
caccae was common in responders treated with any ICI regimen'”.
Several confounding factors may have contributed to this lack
of consensus, such as collection and DNA extraction protocols,
dietary and medication-use differences among countries, issues of
sample size and statistical power, variability in microbiome signa-
tures among responders and microbial signals that are functionally
related but intrinsic to each cohort. Cohort effects ranging from
population-specific characteristics to methodological choices in
sample processing and analysis are important problems in microbi-
ome studies'>'*. Thus, larger and diverse cohorts with metagenomic
data and standardized metadata are needed to better elucidate the
microbiome determinants of response to immunotherapy.

The Predicting Response to Immunotherapy for Melanona
with Gut Microbiome and Metabolomics (PRIMM) studies are
two separate prospective observational cohort studies recruiting
subjects in parallel in the United Kingdom (PRIMM-UK) and the
Netherlands (PRIMM-NL) since 2018. These cohorts of previously
ICI-naive patients with advanced melanoma provide extensive bio-
samples, including stool, serum and peripheral blood mononuclear
cells, before and during ICI treatment, with detailed clinical and
dietary data collected at regular intervals longitudinally. To study
the role of the gut microbiome in ICI response, we performed shot-
gun metagenomic sequencing of baseline stool samples from the
PRIMM cohorts, as well as three additional cohorts of ICI-naive
patients with advanced cutaneous melanoma (originating from
Barcelona, Leeds and Manchester). A total of 165 microbiome
samples sequenced from the patients enrolled in this study were
analyzed together with 147 samples from smaller publicly available
datasets. This method provided the largest assessment of the poten-
tial of the gut microbiome as a biomarker of response to ICI and
allowed for investigation of specific microbial species or functions
associated with response.

Results

In total, we recruited 175 patients from five distinct cohorts across
the United Kingdom, the Netherlands and Spain with unresectable
stage III and stage IV cutaneous melanoma who received ICI treat-
ment after collecting stool samples (Table 1). We initially focused on
the two single prospectively recruited PRIMM cohorts with more
than 50 samples each, both of which exceed the sample size of all
previously published datasets. In these cohorts, comprehensive clin-
ical data, standardized radiological response assessments (RECIST
v1.1) and biological specimens were collected before treatment and
longitudinally at each cycle of treatment. There were statistically rel-
evant clinical differences between these two cohorts, including the
proportion of subjects who had received previous systemic targeted
therapy (40% within PRIMM-NL and 20% within PRIMM-UK,
P=0.03, Fisher’s exact test), the proportion with BRAF-mutated
tumors (55% within PRIMM-NL and 31% within PRIMM-UK,
P=0.02, Fishers exact test), the proportion of patients receiv-
ing combination ICI (ipilimumab and nivolumab) (22% within

PRIMM-NL and 53% within PRIMM-UK, P=0.003, Fisher’s exact
test, Supplementary Table 1) and the proportion of patients with
M1d disease (36% within PRIMM-NL and 9% within PRIMM-UK,
P=0.0005, Fisher’s exact test). For these reasons, we decided to
analyze the cohorts separately. All samples were subjected to shot-
gun metagenomic sequencing at an average sequencing depth of
7.74 Gb, and the 165 samples that passed strict quality control
were analyzed at the taxonomic and functional potential levels
using bioBakery 3 (ref. ).

Linking the gut microbiome with response in the PRIMM
cohorts. First, we assessed the quantitative taxonomic composi-
tion of the microbiome in relation to ORR, defined as a complete/
partial response or disease stability as assessed by RECIST v1.1 6
months following initiation of ICI treatment and consistent with the
response definition from previous microbiome-ICI studies'"'>'°.
Using this definition, we found a borderline statistically significant
difference in the microbiome composition of responders compared
to nonresponders in the PRIMM-UK cohort (permutational mul-
tivariate analysis of variance (PERMANOVA) P=0.05, Fig. la),
but not in PRIMM-NL (P=0.61, Fig. 1a). Progression-free survival
at 12 months (PFS12), defined as duration of a complete/partial
response or disease stability as assessed by RECIST v1.1 12 months
following initiation of ICI treatment, was available for all patients in
PRIMM-NL and 98% of patients in PRIMM-UK and showed simi-
lar association patterns (Fig. 1a). Anthropometric factors (e.g., body
mass index (BMI), age and gender), information on previous non-
immunotherapy treatments, previous drug therapies (e.g., antibiot-
ics, proton pump inhibitors (PPIs) and steroids) and dietary patterns
from food frequency questionnaires (FFQs), which we converted
into dietary indices (i.e., the modified Mediterranean diet score and
plant-based diet index; Supplementary Table 2) were collected in
these cohorts for the majority of patients and thus considered in
a multivariate analysis (Fig. 1b). Consistently with the univariate
analysis, we found that in the PRIMM-UK cohort, ORR and PFS12
were the two variables explaining the largest variance (P=0.09 and
P=0.018, respectively), whereas in PRIMM-NL, we found the use
of PPIs, gender, Eastern Cooperative Oncology Group performance
status and previous antitumor therapy to significantly explain the
variance (PERMANOVA P<0.05) potentially hiding any PFS12-
and ORR-associated signatures. Alpha diversity was generally not
associated with response to ICIs, with only ORR in PRIMM-NL
reaching statistically higher Shannon diversity in responders, but
not richness, after accounting for confounding factors (Extended
Data Fig. 1). We thus noticed cohort-dependent variability in the
association between microbiome composition and population char-
acteristics, including differences in dietary patterns (Supplementary
Fig. 1), that could in part explain the difference in the link between
the microbiome and ORR/PFS12 in the two PRIMM cohorts.
Response-associated microbiome features may not be reflected
at the whole-microbiome level by common beta diversity summary
metrics. We thus used a Lasso-based machine learning frame-
work'" to estimate the prediction ability of the combination of
taxonomic and functional features of the microbiome to segregate
responders and nonresponders (cross-validation setting with nested
cross-validation for feature selection; Methods and Fig. 1c). When
exploring the relative abundance of each detected microbial species
in this framework, we found substantial microbiome prediction
capability in PRIMM-NL when using PFS12 as the endpoint (area
under the receiver operating characteristic curve (AUC-ROC) 0.64)
and in PRIMM-UK when using ORR (AUC-ROC 0.78), but ORR
in PRIMM-NL and PFS12 in PRIMM-UK achieved much lower
prediction levels (0.53 and 0.57, respectively). We then looked at
the predicted functional potential of the microbiome by estimat-
ing the presence and relative abundance of microbial gene families
(specifically Kyoto Encyclopedia of Genes and Genomes (KEGG)
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Table 1| Patient characteristics at study entry, treatment details and outcomes by RECIST v1.1

PRIMM-UK PRIMM-NL Manchester Leeds (n=18) Barcelona All cohorts
(n=55) (n=55) (n=25) (n=12) (n=165)
Gender, n (%)

Male 36 (65%) 31(56%) 16 (64%) 1 (61%) 6 (50%) 100 (61%)
Female 19 (35%) 24 (44%) 9 (36%) 7 (39%) 6 (50%) 65 (39%)
Age (yr) at stage |V diagnosis, 65 (19-94) 61(25-85) 66 (36-87) 60 (35-88) 64 (37-88) 63 (19-94)

median (range)
Metastatic stage
Stage 3 unresectable 5(9%) 1(2%) 0 (0%) 1(6%) 0 (0%) 7 (4%)
M1a 13 (24%) 7 (13%) 5(20%) 3 (17%) 4 (33%) 32 (20%)
M1b 12 (22%) 9 (16%) 6 (24%) 5(27%) 5 (42%) 37 (22%)
Mic 20 (36%) 18 (33%) 11 (44%) 6 (33%) 3(25%) 58 (35%)
M1d 5(9%) 20 (36%) 3 (12%) 3 (17%) 0 (0%) 31(19%)
BRAF mutant, n (%) 17 (31%) 30 (55%) 3 (12%) 8 (44%) 3(25%) 61(37%)
Previous systemic antimelanoma 11 (20%) 22 (40%) 7 (28%) 0 (0%) 1(8%) 41(25%)
therapy, n (%)
Performance status
0 17 (31%) 36 (65%) 15 (60%) 16 (89%) 7 (58%) 91 (55%)
1 32 (58%) 12 (22%) 9 (36%) 2 (11%) 1(8%) 56 (34%)
2 5(9%) 4 (7%) 0 (0%) 0 (0%) 0 (0%) 9 (5%)
3 1(2%) 1(2%) 1(4%) 0 (0%) 0 (0%) 3(2%)
Unknown 0 (0%) 2 (4%) 0 (0%) 0 (0%) 4 (34%) 6 (4%)
BMI (kg m=2), mean (range) 28.7(18.8-47.7) 27.3(18.8-40.7) 26.9 (19.0-35.8) 30.2 (21.6-38.6) 27.1(21.0-36.1)  28(18.8-47.7)
Antibiotic use within 3 months of 9 (16%) 11 (20%) 4 (16%) 2 (M%) 0 (0%) 26 (16%)
ICI, n (%)
PPl use within 3 months of ICI, 14 (25%) 20 (36%) 4 (16%) 5(28%) 1(8%) 44 (27%)
n (%)
Treatment details
ICl used
Ipilimumab and nivolumab 29 (53%) 12 22%) 2 (8%) 10 (56%) 1(8%) 54 (32%)
Pembrolizumab 18 (33%) 10 (18%) 13 (52%) 3(17%) 9 (75%) 53 (37%)
Nivolumab 8 (14%) 32 (58%) 0 (0%) 5(27%) 2 (17%) 48 (24%)
Ipilimumab 0 (0%) 1(2%) 10 (40%) 0 (0%) 0 (0%) 1 (7%)
Outcomes following ICI
RECIST v1.1 response at 6 months
Complete response 8 (15%) 6 (11%) 4 (16%) 2 (12%) 2 (17%) 22 (13%)
Partial response 16 (29%) 16 (29%) 6 (24%) 4 (22%) 1(8%) 43 (26%)
Stable disease 9 (16%) 11(20%) 3(52%) 4(22%) 2 (17%) 29 (18%)
Progressive disease 22 (40%) 22 (40%) 12 (48%) 8 (44%) 7 (58%) 71 (43%)
PFS12, n (%) 28 (51%) 30 (55%) 13 (52%) 8 (44%) 7 (58%) 86 (52%)

BMI, body mass index; PFS12, PFS at 12 months; PPI, proton pump inhibitor.

ortholog families; Fig. 1c). Here, the AUC-ROC exceeded 0.59 for
both datasets and endpoints (ORR and PFS12). When we only con-
sidered patients who did not progress between 6 and 12 months
(Fig. 1c), the prediction capabilities were more consistent across
cohorts (0.62 for PRIMM-NL and 0.71 for PRIMM-UK when
using species; 0.68 for PRIMM-NL and 0.72 for PRIMM-UK when
using gene families). Clinical metadata fields were not predictive
for response when considered alone and did not provide any clear
improvements over microbiome features (Extended Data Figs. 2
and 3), suggesting these associations are not substantially influ-
enced by potential confounding factors. These findings show that
the gut microbiome does have a relevant association with response
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to ICIs but appears to be cohort dependent and is likely due to fea-
tures of the microbial community that are not responsible for large
shifts in the global microbiome composition.

Limited reproducibility of response predictions across cohorts.
We next performed an integrated and cross-cohort analysis of the
PRIMM cohorts together with three additional smaller cohorts
from Barcelona, Leeds and Manchester, as well as five publicly
available cohorts with consistent metagenomic and immunotherapy
response data. The three cohorts we provide here in addition
to PRIMM-UK and PRIMM-NL consist of a total of 55 samples
(Table 1) and include patients who also collected stool samples and
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Fig. 1] Association between the gut microbiome and response in the PRIMM-NL and PRIMM-UK cohorts. a, Response evaluated by ORR (Methods)
is associated with the overall microbiome structure for PRIMM-UK (P=0.05), but not for PRIMM-NL or PFS12, as represented visually using
principal-component analysis (PCA) of species-level centered log-ratio-transformed relative abundances. P values were calculated using adonis and
999 permutations (Extended Data Figs. 2 and 3 show additional beta diversity analysis). Dim1, dimension 1; Dim2, dimension 2. b, Multivariate analysis
showing the amount of inferred variance explained (R?, blue vertical bars) by each identified covariate and their respective P value (orange vertical bars)
as determined by PERMANOVA on species-level centered log-ratio-transformed relative abundances. ¢, Machine learning association analysis between
taxonomic (species abundance) and functional profiles (KEGG ortholog abundances) of the microbiome and response showed consistent associations
with both response types (ORR or PFS12). The ‘concordant’ label includes only patients who did not progress between 6 and 12 months. AUC-ROC
curves are computed using Lasso models trained using 100-repeated fivefold-stratified cross-validations. Shaded areas represent AUC-ROCs from each
individual machine learning model. ICl indicates the use of a combination of ipilimumab and nivolumab or single agent. AUC, area under the curve; CV,
cross-validation; hPDI, healthy plant-based diet index; PDI, plant-based diet index; uPDI, unhealthy plant-based diet index; mMMED, modified Mediterranean

diet score.

have metadata available as for the PRIMM cohorts. In this analysis,
we also included four previously published cohorts with available
metagenomic sequencing data and with ORR endpoints avail-
able>®'>1% and two with PFS12 endpoints available'®'®. As expected,
the different datasets exhibited strong cohort-dependent effects
in the microbial population, with ‘cohort’ explaining nearly ten
times more variance than any other variable (Fig. 2a). Restricting
the analysis to the datasets we sequenced, the batch effects were
less strong, but even when batch-correction adjustment using an
empirical Bayes framework on centered log-ratio-transformed
species-level relative abundances was applied, ORR and PFS12 still
only explained a limited fraction of the total variation in the micro-
biome (Fig. 2a) and were not associated with increased or decreased
alpha diversity (Extended Data Fig. 1b,c).

Next, we assessed whether and how a microbiome-based machine
learning model can predict ICI response in samples or whole cohorts
not considered in the training of the classification model'*'**
(Fig. 2b). We confirmed some single datasets had ORR-prediction
levels higher than PRIMM-UK (e.g., Barcelona AUC-ROC 0.76) and
PFS12-prediction levels higher than PRIMM-NL (WindTT_2020
AUC-ROC 0.90), but the higher AUC-ROC values usually corre-
sponded to small cohorts on which the estimations are more vari-
able when assessing cross-validation, and overall, the AUC-ROC
values for the additional cohorts only occasionally exceeded 0.6
(Fig. 2b). The same sample-size limitations may also explain the
AUC-ROC values obtained when a response-specific microbi-
ome model was fitted on one cohort and then tested on a different
one; such values reached 0.7 in only two cases and exceeded 0.6 in
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around one-third of the cases (31.4%), with large variability among
predictions. Interestingly, more consistent results, albeit still limited
in their absolute values, were obtained when the model was fit on all
but one cohort and applied on the left-out one (Fig. 2b). In this set-
ting, which tried to alleviate cohort-specific effects by considering
all but one cohort in the same model, we produced prediction val-
ues averaging 0.59 and 0.60 across the ORR and PFS12 endpoints,
respectively, encompassing largely overlapping datasets. Functional
characteristics of the microbiome profiled via classifications such as
the enzyme category system”' or KEGG orthology (KO)** achieved
higher predictions of response compared to species relative abun-
dances in several cases (Fig. 2c and Extended Data Fig. 4) but with
higher variability and thus less cross-cohort consistency. These tax-
onomic and functional predictions (even when combined; Fig. 2c)
were not dependent on the specific machine learning approach, as
adopting random forest instead of Lasso produced similar results
(Extended Data Fig. 5), and overall, they do not point to substantial
cross-cohort reproducible links between the microbiome and ICI
response. Nevertheless, they still highlight that profiling the micro-
biome at the species and gene-family levels in consistent cohorts can
provide relevant indications of tumor response to ICIs.

Few reproducible biomarkers of response across cohorts. We then
looked for microbial taxa or functions consistently associated with
response to ICIs across the available cohorts in relation to ORR and
PFS12 (Fig. 3, Extended Data Fig. 6 and Supplementary Tables 3
and 4). This analysis revealed two uncultivated Roseburia species
associated with response; Roseburia sp. CAG:182 (also associated
with response when using PFS12) and Roseburia sp. CAG:471
increased on average in responders consistently across all datasets
with ORR endpoints available. Of note, Roseburia sp. CAG:182 was
found to be in the panel of the five bacterial species most associated
with favorable nutritional and cardiometabolic health markers in
a recent large metagenomic population-based study”’, with a par-
ticularly strong inverse correlation with the inflammatory surro-
gate glycoprotein acetyl®’. With respect to those patients for whom
PFS12 data were available, Phascolarctobacterium succinatutens and
Lactobacillus vaginalis were both enriched in responders across
all seven datasets, and each was detected as significant by three
of the eight meta-analysis approaches using the same significance
thresholds. A. muciniphila and Dorea formicigenerans were two spe-
cies with high overall prevalence (65.8% and 85.9%, respectively)
associated with ORR and PFS12 (by three and six meta-analysis
methods, respectively). Bacteroides clarus instead exhibited higher
relative abundances in nonresponders, both for ORR and PFS12,
for all the seven datasets in which it can be detected and was
significantly associated with nonresponders in PRIMM-NL after
covariate adjustment (Fig. 3d). No single bacterium was a fully

consistent biomarker of response across all datasets; however, apply-
ing the same meta-analysis methods in the context of colorectal
cancer as a methodological control confirmed strong and consistent
biomarkers across cohorts, reinforcing previous meta-analyses'*'*
(Extended Data Fig. 7 and Supplementary Table 5). We then focused
on the panel of species associated with responders by at least three
meta-analysis methods, which showed a high concordance with
results from a Bayesian framework for compositional sequencing
data (Pibble models; Supplementary Fig. 2). This panel contains taxa
generally associated with healthy host conditions, including spe-
cies with probiotic potential (Bifidobacterium pseudocatenulatum,
Lactobacillus ruminis and Turicibacter sanguinis), as well as species
involved in butyrate production (Roseburia spp., Eubacterium hallii
and Butyricimonas synergistica). A. muciniphila also belonged to
this group, with significant association also in the PRIMM-NL
study, supporting previous findings on its role in immunotherapy"!,
whereas the presence of Ruminococcus gnavus as a biomarker of
nonresponders in PRIMM-UK is in line with multiple reports of
its association with poor cardiometabolic health”® and several dis-
eases’ . Expanding our analysis to gut microbiome members
beyond bacteria and archaea, we found no association between
response and the presence of Blastocystis (8.9% of individuals were
Blastocystis positive, the highest prevalence of eukaryotic organisms
found; Supplementary Table 6) or viruses (Supplementary Fig. 3).

When assessing treatment response with the predicted func-
tional potential of the gut microbiome, we identified a number
of KOs increased in responders (Supplementary Tables 7 and 8).
These included a glycosyltransferase (eps/) known to be essen-
tial for pellicle formation”, with abundance contributions from
Intestinimonas butyriciproducens, Bifidobacterium angulatum and
Bifidobacterium pseudoangulatum and significant in six of the
eight meta-analysis approaches used (Fig. 3c). We also detected an
increased abundance of DNA adenine methylases, which are part
of restriction-modification systems and can influence the expres-
sion of virulence genes®, in responders using both ORR (Fig. 3¢)
and PFS12 (Extended Data Fig. 8), with contributions mostly from
I butyriciproducens. We also found a gluconate symporter to be
increased in nonresponders, with abundance contributions mostly
from Rumminococcus torques, Escherichia coli and Klebsiella pneu-
moniae. Gluconate is an important part of mucin 2 and is involved
in binding of flagella®.

Clinical parameters linked to the microbiome. Patients with
unresectable advanced melanoma have potential clinical confound-
ing factors that can affect both the microbiome and might obfus-
cate the association between the pre-ICI microbiome composition
and clinical response. A consistent panel of clinical information
within our cohorts, ranging from PPI usage before treatment to

>
>

Fig. 2 | Integrated analysis of newly sequenced and publicly available datasets for cross-cohort response-microbiome association. a, Contribution of
variables to the overall microbial community composition highlights the heterogeneity of the microbiome structure across cohorts that has a substantially
higher effect than both anthropometric and clinical parameters. We either used all available cohorts or newly sequenced cohorts for which additional
metadata were available. Batch-correction methods were applied to species-level abundances prior to distance calculations. The plot on the left uses
ORR as the outcome variable, whereas the plot on the right adopts PFS12. b, Prediction matrix for microbiome-based prediction of response assessed
via ORR (left matrix) and PFS12 (right matrix) within each cohort (values on the diagonal), across pairs of cohorts (one cohort used to train the model
and the other for testing) and in the leave-one-cohort-out setting (training the model on all but one cohort and testing on the left-out cohort). We report
the AUC-ROC values obtained from Lasso models on species-level relative abundances. Values on the diagonal refer to the median AUC-ROC values of
100-repeated fivefold-stratified cross-validations. Off-diagonal values refer to AUC-ROC values obtained by training the classifier on the cohort of the
corresponding row and applying it to the cohort of the corresponding column. The leave-one-out row refers to the performances obtained by training the
model using all but the cohort of the corresponding column and applying it to the cohort of the corresponding column. The same prediction matrix using
functional microbiome profiles are available in Extended Data Fig. 4. ¢, ORR (n=284) cross-validation AUC-ROC values obtained from Lasso models
trained using 100-repeated fivefold-stratified cross-validations (boxplots) and leave-one-dataset-out AUC-ROC values from Lasso models obtained by
training the model using species-level relative abundances and all but the corresponding (circles). The lower and upper hinges of boxplots correspond to
the 25th and 75th percentiles, respectively. The midline is the median. The upper and lower whiskers extend from the hinges to the largest (or smallest)
value no further than 1.5x interquartile range from the hinge, defined as the distance between the 25th and 75th percentiles. EC, enzyme category.
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performance status and toxicity, allowed us to test whether and
how such parameters were connected with microbiome composi-
tion and the microbiome signatures of response to ICIs. In line with
previous reports®**-*?, we found that PPIs had the strongest link with
the microbiome in both PRIMM-NL and PRIMM-UK (Fig. 4a);
however, PPI use was not associated with response or PFS12
(Extended Data Fig. 9) and so is not per se a factor biasing the
microbiome-response associations. Moreover, ORR in PRIMM-UK
reached the same level of prediction based on the taxonomic-based

NATURE MEDICINE

microbiome model, which confirmed that the response-microbi-
ome signature is independent of that of PPI use given the limited
overlap in nonresponding patients who reported PPI use before ICI
treatment (P=1, Fisher’s exact test). When looking at the functional
potential, we also found that PPI use was the covariate best pre-
dicted by the gut microbiome in a leave-one-dataset-out setting for
both PRIMM cohorts (Extended Data Fig. 9).

Performance status was also quite well inferred from
the microbiome in PRIMM-UK and also in PRIMM-NL when
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Fig. 3 | A panel of potential taxonomic and function microbiome biomarkers for response across cohorts. a, Species associated with ORR identified by
a meta-analysis using different differential abundance methods. Species shown have random-effects model P values < 0.05 in at least three methods.
Values inside the cells refer to unadjusted P values < 0.05 obtained by two-tailed Wilcoxon tests on differences in the relative abundance of responders
and nonresponders. The color of the cell was determined by comparing the mean relative abundance in responders to nonresponders; if the mean

was higher in responders, then the cells were colored red; if it was higher in nonresponders, then it was colored blue. b, Species associated with PFS12
identified by a meta-analysis using different differential abundance methods. Species shown have random-effects model P values < 0.05 in at least three
methods. Values inside the cells refer to unadjusted P values < 0.05 obtained by two-tailed Wilcoxon tests on differences in the relative abundance of
responders and nonresponders. ¢, KOs associated with response status identified by a meta-analysis using different differential abundance methods. The
KEGG orthologues shown have random-effects model P values < 0.05 in at least six methods. Values inside the cells refer to unadjusted P values < 0.05
obtained by two-tailed Wilcoxon tests on differences in the relative abundance of responders and nonresponders. d, Species associated with ORR in the
two PRIMM cohorts (PRIMM-NL (n=47) and PRIMM-UK (n=53)) before and after adjusting for covariates that included PPI, antibiotic and steroid use;
gender, performance status; previous therapy; age; and ICls. Species shown have covariate-adjusted multiple hypothesis testing-corrected g <0.2 in one of
the cohorts identified by ANCOM-BC. Symbols (circles and triangles) show the ANCOM-BC beta coefficient, and error bars represent standard error. Adj,
adjusted; NR, nonresponders; R, responders; SMD, standardized mean differences.

considering the leave-one-dataset-out strategy (Fig.

and Extended Data Fig. 9). ICI-induced toxicity and colitis, for
which preliminary immunological, genomic and microbiology
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biomarkers are available™, were less associated with the micro-
biome in our study, in which 43% and 36% of individuals expe-
rienced grade 3 or higher immune-related adverse events in
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Fig. 4 | Covariate associations with the gut microbiome from the PRIMM cohorts. a, Cross-validation AUC-ROC values obtained from Lasso models
trained using 100-repeated fivefold-stratified cross-validations (boxplots) and leave-one-dataset-out AUC-ROC values from Lasso models obtained

by training the model using species-level relative abundances and all but the corresponding PRIMM cohort (circles). The lower and upper hinges

of boxplots correspond to the 25th and 75th percentiles, respectively. The midline is the median. The upper and lower whiskers extend from the

hinges to the largest (or smallest) value no further than 1.5x interquartile range from the hinge, defined as the distance between the 25th and 75th
percentiles (PRIMM-NL, n=55; PRIMM-UK, n=55). b-d, Species associated with PP| use (<3 months after the start of ICI), toxicity and colitis
identified by ANCOM-BC with and without covariate adjustment (PRIMM-NL, n=47; PRIMM-UK, n=53). Covariates included in all models were ORR,
performance status, previous therapy, age, ICls (combination of ipilimumab and nivolumab or single agent), gender and antibiotic and steroid use. PPI
use was also included as a covariate when analyzing colitis and toxicity. Species shown have covariate-adjusted multiple hypothesis testing-corrected
q<0.2 in one of the cohorts identified by ANCOM-BC. Symbols (circles and triangles) show the ANCOM-BC beta coefficient, and error bars represent

standard error.

PRIMM-UK and PRIMM-NL, respectively (Methods). Within
PRIMM-NL, E. hallii and Anaerostipes hadrus were both found
to be significantly associated with the absence of colitis before
ICI treatment, whereas no significant species emerged from the
analyses of PRIMM-UK samples. Bacteroides clarus was signifi-
cantly associated with the development of ICI-induced toxicity
within PRIMM-UK and was also associated with nonresponse in

PRIMM-NL and the meta-analysis. Eubacterium rectale was signif-
icantly associated with the absence of toxicity in PRIMM-NL (and
nonsignificantly in PRIMM-UK) and was associated with response
when using PFS12 (Extended Data Fig. 8) in both PRIMM-UK and
PRIMM-NL. Overall, several clinical parameters were found to be
linked with the composition of the gut microbiome, but such asso-
ciations appeared to be rather independent of ICI response.
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Discussion

In this study, we present the largest metagenomic study to date to
identify gut microbiome associations with ICI response by integrat-
ing published melanoma cohorts (n=147) with five new cohorts
(n=165). This large set of real-world cohorts was meta-analyzed
extending previous attempts™ to verify whether the partially con-
flicting biomarkers of response to ICI found in single small datas-
ets>'"12161% could be reconciled. Using ORR and PFS12 by RECIST
v1.1 at 6 and 12 months, respectively, as endpoints, we confirmed
both the presence of cohort-specific biomarkers and the absence
of taxonomic or functional microbiome biomarkers that are con-
sistent across all datasets. The lack of solid cross-study reproduc-
ible microbial biomarkers of ICI response is not attributable to
analytical choices, as applying the same meta-analysis methods in
the context of colorectal cancer confirmed the strong and consistent
biomarkers across cohorts described elsewhere'*'". The variability
of the microbiome link to tumor response to ICIs was confirmed by
machine learning analysis, which suggested that the microbiome is
predictive of the response in some, but not all, cohorts. Importantly,
the task of cross-cohort prediction to identify ICI responders and
nonresponders in cohorts different from those used to develop the
machine learning model clarified that it is still very difficult to over-
come the limitations of population and microbiome heterogeneity
to predict response reliably. Although we confirmed that the micro-
biome holds the potential to support the clinical practice for the
treatment of patients with melanoma, as shown via fecal microbiota
transplantation pilots™®, several limitations need to be overcome
before we find robust microbial biomarkers.

There are multiple limitations of linking ICI and the gut micro-
biome. The rather small sample sizes of each individual cohort,
despite the new additions in this work, are certainly one aspect,
but it is inherently difficult to collect very large, properly anno-
tated sample sizes in this clinical setting. Our work also high-
lighted previously overlooked limitations in defining response (as
seen by differences in microbiome links to ORR and PFS12 in the
same cohorts) and the vast number of potentially confounding
factors for which it is difficult to adjust for. Moreover, the gen-
erally strong cohort microbiome effects even within multicenter
studies appear to be much stronger in the analyzed melanoma ICI
treatment trials than in other clinical settings. Current methodol-
ogy to profile the gut microbiome can survey in-depth taxonomic
and functional aspects of the microbial communities but gener-
ally lacks the ability to characterize the microbiome features at the
immunological interface.

It is unclear why PFS12 was seen to have substantially higher
microbiome prediction capability in PRIMM-NL, whereas ORR
performed substantailly better within the PRIMM-UK cohort.
Nevertheless, aside from the large sample size of the combined
cohorts, our study has multiple strengths; samples for this study
came from three European countries and a number of publicly
available datasets, representing a diverse and heterogeneous cohort
of real-world patients, and we account for a variety of important
confounders and prognostic factors that are often overlooked.

The gut microbiome has an important role to play in ICI
response”®, as we also confirmed here, but this role appears likely to
be more complex than previously reported in initial studies, extend-
ing beyond differential microbial abundances and encompassing
complex interactions of the gut microbiome with clinical predic-
tors and biological factors that may be specific to geographies in
patients who benefit from treatment with ICIs. The gut microbi-
ome is unique in each individual, even when considering identical
twins®>”, and a large fraction of this uniqueness is encoded at the
level of single strains**~*. Therefore, analytical methods are needed
for deeper exploration of such individual-specific microbial diver-
sity, but such resolution would also require sample sizes in the order
of several thousand individuals to deal with the substantial increase
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in the number of relevant microbial features. Understanding the
functional output of the gut microbiota, immunological relations
that exist between specific microbiota and the host at the strain level
or even perhaps examination of the gut mucosa as distinct from
stool will allow us further insight into the mechanisms by which
the gut microbiome impacts treatment with ICIs. Links between
the gut microbiome and ICI response can also be partially cancer
specific and influenced by many factors that are inherently diffi-
cult to account for, and it will thus be important to extend analyses
and meta-analysis beyond the cutaneous subtype of melanoma to
include the uveal and mucosal subtypes, as well as other cancers
for which ICI treatments are available. Even within the same can-
cer (sub)type, it is unlikely that the same microbiome features can
reflect the uniqueness of the genetic and immune characteristics of
each tumor, meaning that expectations on the existence of a univer-
sal, very accurate and highly reproducible link between the human
microbiome and ICI response should be lowered. Continued efforts
should thus be put into performing metagenomic investigations at
substantially larger scales with improved representation of distinct
populations while controlling for clinical covariates and ensuring
that samples are collected and processed in the same manner and
using the same techniques. This study improves the current under-
standing of the link between the gut microbiome and ICI response
and sheds light on the complexities of microbiome science in
human disease.
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Methods

The prospective PRIMM cohorts and the other enrolled cohorts.

We prospectively collected fecal samples from patients receiving ICIs between
August 2015 and January 2020 for patients with advanced cutaneous melanoma
treated in the United Kingdom (PRIMM-UK study) and the Netherlands
(PRIMM-NL study, made up of eligible patients from the COLIPI, POINTING and
OncolLifeS studies). For the present study, we analyzed stool samples collected prior
to treatment with ICIs (at baseline). PRIMM-UK (NCT03643289) is sponsored by
East and North Hertfordshire NHS Trust with ethical approval from King’s College
London. OncoLifeS (Medisch Ethische Toetsingsingscommissie (METc) 2010/109),
COLIPI (METc 2012/085, NCT02600143) and POINTING (METc 2018/350,
NCT04193956) have all been approved by the METc of the University Medical
Center Groningen in the Netherlands. OncoLifeS information is available on the
Netherlands Trial Register (https://www.trialregister.nl/trial/7839). Patient samples
within the Manchester cohort were collected with written full-informed patient
consent under Manchester Cancer Research Centre Biobank ethics application
07/H1003/161 + 5 (updated in 18/NW/0092) and approval for the work under
Manchester Cancer Research Centre Biobank Access Committee application
13_RIMA_01. Barcelona cohort samples were subjected to the ethical committee of
Hospital Clinic of Barcelona approval (registry HCB/2015/1032). Data and samples
from Leeds were collected in a study named “Developing a blood test of immunity
in illness: a study examining the peripheral blood transcriptome in patients with
cancer, autoimmune disease, immunodeficiency or iatrogenic immune suppression”
(Research Ethics Committee (REC) reference 15/NW/0933). Informed written
consent was obtained for collection of samples and data, sharing anonymized data
and working with collaborators whether academic or commercial.

Samples collected within the three external cohorts of Barcelona,
Manchester and Leeds were subject to similar ethical approvals. Patients who
fulfilled the following criteria were eligible for these analyses: (i) histologically
or cytologically confirmed nonresectable advanced (stage III or IV) cutaneous
melanoma, (ii) treatment with ICIs (nivolumab, pembrolizumab or ipilimumab
or a combination of ipilimumab and nivolumab) at the recommended dose
as a first-line ICI and (iii) 18 years of age or older. Written informed consent
was obtained from all patients. High-quality fecal samples were collected from
these patients before initiation of ICI treatment (1 =55 for the UK cohort and
n=55 for the Dutch cohort). Additional patients were enrolled from cohorts
outside the setting a prospective clinical trial and performed in Leeds (n=19),
Barcelona (n=12) and Manchester (n=30) between March 2015 and November
2019 but from whom fecal samples were collected at time points similar to
those used in our included prospective studies. Written informed consent was
obtained from all patients.

Sample and data collection. Baseline demographics, including sex, age, BMI,
Eastern Cooperative Oncology Group performance status and medication use,
were collected, along with tumor staging and previous anticancer therapy data.
Demographic and dietary data were collected as part of a screening visit up to 14
days before ICI treatment began. All baseline antibiotic or PPI use within 3 months
of commencing ICI treatment was documented. Tumor staging took place up to 1
month before the start of treatment. Routine blood hematology and biochemistry
data, including white cell subsets, platelet count, lactate dehydrogenase and
albumin, were recorded at baseline and with each treatment cycle. All baseline
antibiotic or PPI use within 3 months of commencing ICI was documented.

Patients received oral and written instructions regarding the stool collection
procedure. Patients within PRIMM-UK and PRIMM-NL were requested to collect
approximately 3-5 ml plain feces using a collection kit that could be used at home
and then store the sample in their freezer directly after collection. PRIMM-NL
samples were transported to the hospital in a frozen, insulated cooling bag to
prevent thawing. Due to the geographic disbursal of PRIMM-UK patients, samples
were collected and placed in Thermo Fisher Scientific kits and sent by special post
to the laboratory at King’s College London. After arrival in the hospital, the samples
were directly stored at —80 °C. Plain stool samples from the Manchester cohort
were either collected on site at the hospital and stored directly at —80 °C within
4-6h of collection or collected into sample containers and sent by special post to
the laboratories of CRUK Manchester Institute and stored directly at —80 °C upon
arrival. Patients within the Barcelona cohort used the OMNIgene GUT collection
kit (DNA Genotek). Fecal DNA was extracted from 1 to 14 days after sample
collection using the PowerFecal DNA Isolation Kit (previously Mo Bio, currently
Qiagen) and kept frozen until needed. Patients from Leeds also collected stool at
home using the OMNIgene GUT collection kit (DNA Genotek), and samples were
returned to the research nurse.

Radiological evaluation, consisting of a computed tomography (CT) scan of
the thorax, abdomen and pelvis and magnetic resonance imaging of the brain,
was performed at baseline (i.e., before the first dose of immunotherapy). A
small number of patients had positron emission tomography scans with a CT
component. Follow-up radiological evaluation was performed every 10-14 weeks
as long as the patient received systemic therapy. Additional CT and/or magnetic
resonance imaging scans were performed when there was suspicion of progression.
If the first radiological evaluation after start of therapy was inconclusive, then a
confirmatory scan was performed 4-12 weeks later.
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Definition of response to therapy. Response to ICI was classified according

to RECIST vl1.1 criteria. On the basis of radiographic response, patients were
classified as responders (CR, PR or SD) or nonresponders (PD). Clinical endpoints
were defined as overall response rate and PFS (defined as the time from the first
dose of an ICI to the first event; i.e., disease progression or death from any cause).
All patients had toxicity during or after ICI treatment, as documented by Common
Terminology Criteria for Adverse Events v5. Toxicity was deemed present at or
above Common Terminology Criteria for Adverse Events grade 1, as was the

case with colitis. In order to include late responders in our analysis, patients with
progressive disease (PD) on the first radiological evaluation but a response at the
second radiological evaluation compared to baseline were also labeled responders.
Patients with PD on the first radiological evaluation that was confirmed on the
next follow-up scan, or patients with PD on the first radiological evaluation who
were unable to complete a confirmation scan due to clinical progression or death,
were labelled nonresponders.

Dietary data collection. In 93 of the 110 (84.5%) prospectively recruited patients,
dietary data were collected before treatment and within 14 days of commencing
ICIs. Dietary intake was assessed through two different FFQs: the Dutch Healthy
Diet-FFQ™ and the EPIC-Norfolk FFQ**'. Food items were mapped to create one
dataset. Four food-based scores were calculated to address relative dietary quality
as confounder in the microbiome-response analysis: the modified Mediterranean
diet score®, original plant-based diet index”, healthy plant-based diet index* and
unhealthy plant-based diet index*. The composition of scores by food groups in
the UK and Dutch cohorts is given in Supplementary Table 2.

DNA extraction and sequencing. DNA was isolated at King’s College London
using the Max Core protocol. Samples with a high-quality DNA profile were
further processed. Sequencing libraries were prepared using the Illumina Nextera
DNA Flex Library Prep Kit according to the manufacturer’s protocols. Libraries
were multiplexed using dual indexing and sequenced for 300-bp paired-end
reads using the Illumina NovaSeq6000 platform according to the manufacturer’s
protocols. We obtained a total of 1,283 Gb with an average of 53,919,210 reads
per sample before quality control and preprocessing.

The publicly available datasets considered. We download metagenomic data
from four publicly available datasets (PetersBA_2020, GopalakrishnanV_2018,
MatsonV_2018 and FrankelAE_2017) through the Sequence Read Archive using
the accession numbers SRP197281 (ref. ¥), ERP104610 (ref. ©), SRP116709 (ref. °)
and SRP115355 (ref. '*). Metagenomic data and metadata from WindTT_2020
(ref. '°) were provided by the authors of the study. These publicly available
cohorts are shown in Supplementary Table 11. We excluded any samples taken
after the start of ICI therapy, nonmetagenomic samples, nonfecal samples and
samples with low sequencing depth (less than one million reads). We classified
patients into responder and nonresponder groups according to RECIST 1.1
criteria; patients with complete or partial response, as well as stable disease at first
evaluation, were classified as responders, whereas patients with PD were classified
as nonresponders.

Metagenome quality control and preprocessing. Shotgun metagenomic
sequencing was performed at the NGS Core Facility at University of Trento. The
quality of all sequenced metagenomes was controlled using the preprocessing
pipeline implemented in https://github.com/SegataLab/preprocessing. This
preprocessing pipeline consists of three main stages: (1) initial quality control

by removing low-quality reads (quality score <Q20), fragmented short reads
(<75bp) and reads with more than two ambiguous nucleotides; (2) contaminant
DNA removal using Bowtie 2 (ref. **) and the sensitive local parameter, removing
both the phiX174 Illumina spike-in and human-associated reads (hg19); and (3)
sorting and splitting for the creation of standard forward, reverse and unpaired
reads output files for each metagenome. Of 190 baseline samples collected across
the five observational cohorts, 25 samples failed the metagenomic sequencing
and preprocessing pipeline and resulted in metagenomes with <1 Gb pairs. The
remaining 165 samples passed strict quality control and were processed into
taxonomic and predicted pathway abundances.

Microbiome taxonomic and functional potential profiling. The metagenomic
analysis was performed following the general guidelines” and relying on the
bioBakery 3 environment'**. bioBakery 3 is a set of integrated and improved
methods for taxonomic (MetaPhlAn 3.0), strain-level (StrainPhlAn 3.0 and
PanPhlAn 3.0), functional (HUMAnNN 3.0) and phylogenetic (PhyloPhlAn 3.0)
profiling of metagenomes. bioBakery 3 leverages a set of 99,200 high-quality and

fully annotated reference microbial genomes spanning 16,800 species and the

87.3 million UniRef90 functional annotations available in UniProt as of January 2019.
The taxonomic profiling and quantification of organisms’ relative abundances of

all metagenomic samples were quantified using MetaPhlAn 3.0 (ref. ') with default
parameters. Functional potential analysis of the metagenomic samples was performed
using HUMANN 3.0 (ref. *) with default parameters. In total, we identified 608
species, 510 pathways, 6,131 distinct KOs and 2,558 enzyme categories in 165 samples
from the five different cohorts. Detection of Blastocystis in gut metagenomes was
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performed as previously described®. For viral profiling, we used 699 bacteriophages
from Viral RefSeq™ that were found in more than 20 samples within the unbinned
fraction of the metagenomic assembled genomes described by Pasolli et al.” and from
a set of 255 highly enriched viromes selected with the ViromeQC tool*'. Sequences
were clustered at 70% identity and further joined into ‘viral groups’ if they shared at
least 90% similarity across clusters. In total, 128 groups of known viral bacteriophages
were constructed. To calculate the depth of coverage of each viral group, we

first mapped the raw reads of each sample against a nonredundant collection

of representative sequences for each viral group. Then, a second mapping was
performed on the best-matching sequence for each group and each sample. Depth of
coverage was calculated with CMSeq (https://github.com/SegataLab/cmseq).

Statistical analysis. Multivariate survival analyses were performed using Cox
regression models to determine hazard ratios and 95% confidence intervals for
PFS and adjusting for other clinicopathologic features using the coxph function
from the R survival package (v3.2-7). We conducted PERMANOVA using the
function adonis from the vegan R package (v2.5-7) with the Atchinson distance on
centered log ratios using both species and KO relative abundances. The P and R?
values were determined by 10,000 permutations using all variables in the model.
Batch correction was applied to centered log ratios using the combat function
available in the Surrogate Variable Analysis (v3.38) R package. Univariate analysis
was performed using both two-tailed Wilcoxon tests comparing differences in
relative abundances (values inside the heatmap cells in Fig. 3a-c) and ANCOM-BC
(v.1.0.1)** with default parameters, a library size cutoff of 1,000 reads and no
structural zero detection. Multivariate analysis was performed using ANCOM-BC,
including the covariates of interest in the model formula. P values were corrected
for multiple hypothesis testing using the Benjamin-Hochberg procedure, and a
false discovery rate < 0.2 was defined as the significance threshold. In addition,

we also implemented a Bayesian multinomial logistic-normal linear regression
model called Pibble from the R package fido™, which allows for linking covariates
to compositional overdispersed count data. We transformed the taxonomic
relative abundances into count values for Pibble via logistic-normal distribution
modeling™. In Pibble, the regression coefficients are ranked to determine which
microbial features change the most between conditions and are identical to the
rankings of absolute differentials™.

Meta-analysis. An ensemble of differential abundance methods and normalizations
(eight in total) were used to estimate fold changes with their respective confidence
intervals between responders and nonresponders and supplied to a random-effects
model via the rem_mv function in the MetaVolcanoR R package (v.1.4.0) using

the restricted maximum-likelihood estimator model. Random-effects P values
obtained from each of these methods were corrected for multiple hypothesis testing
using the Benjamin-Hochberg procedure. For methods requiring count data (i-v
and vii), absolute raw counts were estimated from species-level MetaPhlAn 3
relative abundances by multiplying these values by the total number of reads for
each sample. The following methods were based on an assessment of statistical
methods to detect differentially abundant features in microbiome data*™ and are
available at https://github.com/mcalgaro93/sc2meta:

i.  DESeq2 (v.1.30.0)”” with the poscounts estimator (DESeq2_poscounts);

ii.  DESeq2 with the poscounts estimator and a zero-inflated negative binomial
model (DESeq2_poscounts_zb), and observational weights were computed
using the zinbwave package (v.1.12.0)*" and supplied to the DESeqDataSet
class object to account for zero inflation;

iii. DESeq2 with trimmed mean of M values (TMM; DESeq2_TMM), where
normalization factors were calculated using TMM normalization, and a nega-
tive binomial generalized log-linear model was fit to the read counts of each
feature using the glmFit function and the edgeR (v.3.32.0)*” package;

iv.  limma (v3.46.0)* with TMM values (limma_voom_TMM) (the limma pack-
age includes a voom function that transforms previously normalized counts
to log counts per million, estimates a mean—-variance relationship and uses
this to compute appropriate observational-level weights); and

v.  limma with TMM values and a zero-inflated negative binomial model
(limma_voom_TMM_zb) (to adapt the limma-voom framework to zero
inflation, zinbwave weights were multiplied by voom weights);

Other methods not originally considered in this assessment were also in-
cluded in the meta-analysis:

vi. standardized mean differences (relative abundances were arcsine-square root
transformed and followed the same procedure as in Thomas et al.'*);

vii. ANCOM-BC (v.1.0.1)"*, which uses a linear regression framework in log
scale and accounts for sampling fraction by introducing a sample-specific
bias correction that is estimated from the observed data (we used the same
parameters as described in the univariate/multivariate analysis); and

viii. Maaslin2 (v.1.4.0)°', where logit-transformed relative abundances were nor-
malized with total-sum scaling and supplied to the maaslin2 function using
the variable of interest as a fixed effect.

Machine learning analysis. Data preprocessing, model building and model
evaluation were performed using the SIAMCAT® R package (v.1.6.0). Species

relative abundances were filtered to remove markers with low overall abundance

(1 X 10~ maximum abundance cutoff), log,,-transformed (after adding a
pseudocount of 1 X 10—° to avoid nonfinite values) and standardized as z-scores.
Functional profiles, such as KEGG orthologous and level 4 enzyme category
abundance profiles were preprocessed similarly but using 1 X 107¢ as the maximum
abundance cutoff and 1 X 10—° as a pseudocount during log transformation.

Cross-validation. A nested cross-validation procedure was applied to calculate
within-cohort accuracy (cells on the diagonal in Fig. 2b) by splitting data into
training and test sets for 100-times repeated, fivefold-stratified cross-validation
(balancing class proportions across folds). For each split, an L1-regularized
(Lasso) logistic regression model was trained on the training set, which was then
used to predict the test set. The lambda parameter was selected for each model to
maximize the AUC-ROC under the constraint that the model contained at least
five nonzero coefficients.

Cross-study validation. Metagenomic classifiers were trained on a single cohort and
their performance was externally assessed on all other cohorts (off-diagonal cells in
Fig. 2b), which were normalized for comparability in the same way as the training
dataset. All 500 models derived from the cross-validation on the training dataset
(100-times-repeated fivefold cross-validation) were applied to the hold-out dataset,
and median predictions were taken from all models.

Leave one dataset out. Data from one cohort were set aside as an external validation
set, whereas data from the remaining cohorts were pooled as a single training set
on which we implemented the same procedure as above for 100-times-repeated
fivefold-stratified cross-validation.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The metagenomes and main metadata relevant to the analyses are deposited in
the European Nucleotide Archive under accession number PRJEB43119. The
four publicly available datasets were downloaded through the Sequence Read
Archive using the accession numbers SRP197281, ERP104610, SRP116709 and
SRP115355. All MetaPhlAn 3 and HUMANN 3 profiles are available within the
latest version of curatedMetagenomicData (https://bioconductor.org/packages/
curatedMetagenomicData/).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Machine learning association analysis of the microbiome and response in PRIMM-NL. (a-e) Machine learning association
analysis of the microbiome and response using either metadata alone or in combination with taxonomic (species abundance) and functional profiles
(KEGG orthologs’ abundances) in PRIMM-NL. AUC-ROC curves are computed using LASSO models trained using 100-repeated fivefold-stratified cross-
validations. Metadata used in the models included: age, gender, performance status, PPl use, antibiotic use, steroid use, ICl and previous therapy. Shaded
areas represent AUC-ROCs from each individual machine learning model. (f) Multivariate analysis showing the amount of inferred variance explained
(R2, blue vertical bars) by each identified covariate and their respective p value (orange vertical bars) as determined by PERMANOVA on KEGG clr-
transformed relative abundances.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Machine learning association analysis of the microbiome and response in PRIMM-UK. (a-e) Machine learning association
analysis of the microbiome and response using either metadata alone or in combination with taxonomic (species abundance) and functional profiles
(KEGG orthologs’ abundances) in PRIMM-UK. AUC-ROC curves are computed using LASSO models trained using 100-repeated fivefold stratified cross-
validations. Metadata used in the models included: age, gender, performance status, PPl use, antibiotic use, steroid use, ICl and previous therapy. Shaded
areas represent AUC-ROCs from each individual machine learning model. (f) Multivariate analysis showing the amount of inferred variance explained
(R2, blue vertical bars) by each identified covariate and their respective p value (orange vertical bars) as determined by PERMANOVA on KEGG clr-
transformed relative abundances.
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Extended Data Fig. 4 | Cross-cohort response-microbiome associations at the functional level. (a) Contribution of variables to the overall microbial
community composition. Batch-correction methods were applied to KEGG abundances prior to distance calculations. The plot on the left uses ORR as the
outcome variable, whereas the plot on the right adopts PFS12. (b) Prediction matrix for microbiome-based prediction of response assessed via ORR (left
matrix) and PFS12 (right matrix) within each single cohort (values on the diagonal), across pairs of cohorts (one cohort used to train the model and the other
for testing), and in leave-one-cohort-out setting (training the model on all but one cohort and testing on the left-out cohort). We report the AUC-ROC values
obtained from LASSO models on KEGG relative abundances (top) and level 4 enzyme categories (bottom). Values on the diagonal refer to the median
AUC-ROC values of 100-repeated fivefold stratified cross-validations. Off-diagonal values refer to AUC-ROC values obtained by training the classifier on the
cohort of the corresponding row and applying it to the cohort of the corresponding column. The leave-one-out row refers to the performances obtained by
training the model using all but the cohort of the corresponding column and applying it to the cohort of the corresponding column.
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Extended Data Fig. 5 | Machine learning association analysis using random forest. (a) Prediction matrix for microbiome-based prediction of response
assessed via ORR (left matrix) and PFS12 (right matrix) within each single cohort (values on the diagonal), across pairs of cohorts (one cohort used to
train the model and the other for testing), and in leave-one-cohort-out setting (training the model on all but one cohort and testing on the left-out cohort).
We report the AUC-ROC values obtained from Random Forest models on species-level relative abundances. Values on the diagonal refer to the median
AUC-ROC values of 100-repeated fivefold stratified cross-validations. Off-diagonal values refer to AUC-ROC values obtained by training the classifier

on the cohort of the corresponding row and applying it to the cohort of the corresponding column. The leave-one-out row refers to the performances
obtained by training the model using all but the cohort of the corresponding column and applying it to the cohort of the corresponding column. (b)
Cross-validation AUC-ROC values obtained from Random Forest models trained using 100-repeated fivefold stratified cross-validations (boxplots) and
leave-one-dataset-out AUC-ROC values from Random Forest models obtained by training the model using species-level relative abundances and all but
the corresponding PRIMM cohort (circles). PRIMM-NL (n=55) and PRIMM-UK (n=55). The lower and upper hinges of boxplots correspond to the 25th
and 75th percentiles, respectively. The midline is the median. The upper and lower whiskers extend from the hinges to the largest (or smallest) value no
further than x1.5 interquartile range from the hinge, defined as the distance between the 25th and 75th percentiles.
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Extended Data Fig. 6 | Taxonomic overview of species associations with response. Cladogram showing species associated with Responders (red) and
nonresponders (blue) using ORR and identified by a minimum of 2 meta-analysis methods. The height of the outer bar plots reflects the number of

meta-analysis methods supporting the association.

NATURE MEDICINE | www.nature.com/naturemedicine


http://www.nature.com/naturemedicine

NATURE MEDICINE ARTICLES

o Prevalence (%)

T
0.004 . Eubacterium eligens

Bifidobacterium adolescentis

Roseburia faecis

0.002 Streptococcus salivarius

0.004 0.003 _Hoseburia intestinalis

0.036 Streptococcus thermophilus

Control

z

0.000 0.000 0.001 Faecalibacterium prausnitzii

0.013 Agathobaculum butyriciproducens

_ Bifidobacterium bifidum

Peptoniphilus harei

Actinomyces cardiffensis
Fusobacterium sp oral taxon 370

Anaerococcus vaginalis

Slackia exigua

Gemella bergeri
Pseudoflavonifractor sp An184
Ruthenibacterium lactatiformans
Porphyromonas uenonis
Peptostreptococcus stomatis
Dialister pneumosintes

Porphyromonas asaccharolytica
Clostridium symbiosum
Solobacterium moorei

Gemella morbillorum
Fusobacterium nucleatum
Parvimonas micra
Butyricimonas virosa
Akkermansia muciniphila
Escherichia coli

Intestinimonas butyriciproducens
Morganella morganii

2V HE T S T T T T S S T S S S S S S S S T S S S S W S -

TV T S T S— S T T S S T S S S S S T S S S S— 1

ANCOMBC C— i S, S S S S S S S S S S W W —— )

29595000 )
& %_i < ‘é@ 3,'7 (‘?‘3’ § 53 § Random effects meta-analysis
s o s{? 1% o §9 ¢’ [IlHigher mean in CRC
e S IS 9 Ry . .

] Ez & S S@"’ o) S & [ JHigher mean in controls
g8 N S § [ JAbsent

g < S

[p>0.05 p<0.05 Badjp<0.2

Extended Data Fig. 7 | Reproducible biomarkers for colorectal cancer across cohorts. Species associated with CRC identified by a meta-analysis using
different differential abundance methods. Species shown have random-effects model p values < 0.05 in at least 6 methods out of 8 methods. Values
inside the cells refer to unadjusted p values < 0.05 obtained by two-tailed Wilcoxon tests on differences in the relative abundance of patients with CRC
and controls.
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Extended Data Fig. 8 | Microbiome biomarkers of response across cohorts. (a) KEGG orthologues associated with PFS12 identified by a meta-analysis
using different differential abundance methods. KEGGs shown have random-effects model p values < 0.05 in at least 6 methods out of 8 methods. Values
inside the cells refer to unadjusted p values < 0.05 obtained by two-tailed Wilcoxon tests on differences in the relative abundance of responders and
nonresponders. (b) Level 4 enzyme categories associated with PFS12 identified by a meta-analysis using different differential abundance methods. ECs
shown have random-effects model p values < 0.05 in at least 6 methods out of 8 methods. Values inside the cells refer to unadjusted p values < 0.05
obtained by two-tailed Wilcoxon tests on differences in the relative abundance of responders and nonresponders. (c) Species associated with PFS12 in the
two PRIMM cohorts before and after adjusting for confounders that included PPI, antibiotic and steroid use, gender, performance status, previous therapy,
age and ICl. PRIMM-NL (n=47) and PRIMM-UK (n=52). Species shown have covariate-adjusted multiple hypothesis testing-corrected q < 0.2 in one

of the cohorts identified by ANCOM-BC. Symbols (circles and triangles) show the ANCOM-BC beta coefficient and error lines represent the standard
error. (d) Level 4 enzyme categories associated with ORR identified by a meta-analysis using different differential abundance methods. ECs shown have
random-effects model p values < 0.05 in at least 6 methods out of 8 methods. Values inside the cells refer to unadjusted p values < 0.05 obtained by
two-tailed Wilcoxon tests on differences in the relative abundance of responders and nonresponders.
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Extended Data Fig. 9 | Clinical parameters associated with response and the microbiome. (a) Forest plot showing Cox logistic regression multivariate
analysis of progression-free survival. Error lines represent the 95% confidence interval of the hazard ratio. (b) Cross-validation AUC-ROC values obtained
from LASSO models trained using 100-repeated fivefold stratified cross-validations (boxplots) and leave-one-dataset-out AUC-ROC values from LASSO
models obtained by training the model using KEGG relative abundances and all but the corresponding PRIMM cohort (circles). PRIMM-NL (n=55) and
PRIMM-UK (n=55). The lower and upper hinges of boxplots correspond to the 25th and 75th percentiles, respectively. The midline is the median. The
upper and lower whiskers extend from the hinges to the largest (or smallest) value no further than x1.5 interquartile range from the hinge, defined as the
distance between the 25th and 75th percentiles.
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The metagenomes and main metadata relevant to the analyses are deposited in the European Nucleotide Archive under accession no. PRIEB43119. The 4 publicly
available datasets were downloaded through the Sequence Read Archive using the accession numbers SRP197281, ERP104610, SRP116709 and SRP115355. All
MetaPhlAn 3 and HUMANN 3 profiles are available within the latest version of curatedMetagenomicData (https://bioconductor.org/packages/
curatedMetagenomicData/).
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Sample size The PRIMM studies are two separate prospective observational cohort studies recruiting subjects in parallel in the U.K. (PRIMM-UK) and
Netherlands (PRIMM-NL) since 2018. To study the role of the gut microbiome in ICI response, we performed shotgun metagenomic
sequencing of baseline stool samples from the PRIMM cohorts, as well as three additional cohorts of ICl-naive patients with advanced
cutaneous melanoma (originating from Barcelona, Leeds, and Manchester). A total of 165 microbiome samples sequenced from the patients
enrolled in this study, were analyzed together with 147 samples from smaller publicly-available datasets. This provided the largest possible
assessment of the potential of the gut microbiome as a biomarker of response to ICl, and allowed identification of specific microbial species or
functions associated with response.

Data exclusions  We excluded samples of participants with non-metastasized and resectable Stage Ill melanoma who received ICl's as adjuvant treatment.
Moreover patients who were not immunotherapy-naive were excluded.

Replication We performed a cross-cohort meta-analysis, adding three smaller cohorts and five previously published datasets with consistent
metagenomic and response data to the PRIMM cohorts. The analyses showed limited reproducibility of microbiome-based response
predictions across these cohorts as outlined in detail in the results and discussion (page 6 ff; page 15 ff). The limited reproducibility may in
part result from heterogeneity across studies as we found a strong cohort-dependent effect in the microbial population. It is likely not
attributable to analytical choices, as applying the same meta-analysis methods in the context of colorectal cancer confirmed the strong and
consistent biomarkers across cohorts (Thomas et al. Nat. Med. 2019). Our study shows that the role of the gut microbiome for ICl-response is
more complex than previously thought and extends beyond absence or presence of microbial species or functions in responders versus non-
responders.

Randomization n/a

Blinding There was no control or placebo arm therefore blinding was not applicable
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Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Covariates adjusted for in the analyses included PPI, antibiotic and steroid use, gender, performance status, previous therapy,
age, ICl agent (combination Ipilimumab/Nivolumab or single-agent). There were two statistically relevant clinical differences
between the 2 prospective PRIMM-cohorts: the proportion of subjects who had received previous systemic targeted therapy
(40% within PRIMM-NL and 20% within PRIMM-UK, P=0.03, Fisher’s exact test) and the proportion with BRAF-mutated
tumors (55% within PRIMM-NL and 31% within PRIMM-UK, P=0.02, Fisher’s exact test, Table 1).

The PRIMM studies are two separate prospective observational cohort studies recruiting subjects in parallel in the U.K.
(PRIMM-UK) and Netherlands (PRIMM-NL) since 2018. Patients who fulfilled the following criteria were eligible for the
analyses: (i) histologically or cytologically confirmed non resectable advanced (stage Ill or IV) cutaneous melanoma (ii)
treatment with ICl (nivolumab, pembrolizumab, ipilimumab or a combination of ipilimumab and nivolumab) at recommended
dose as first-line ICl, (iii) 18 year of age or older. High quality fecal samples were collected from these patients before
initiation of ICl (n=55 for UK cohort, n=55 for Dutch cohort). Additional patients were enrolled from cohorts outside the
setting of a prospective clinical trial and performed in Leeds (n=19), Barcelona (n=12) and in Manchester (n=30) between
March 2015 and November 2019, but from whom fecal samples were collected at similar timepoints to those collected in our
included prospective studies. Written informed consent was obtained from all patients.

King’s College London (KCL); Medical Ethical Committee of the University Medical Center Groningen (METc UMCG);
Manchester Cancer Research Centre (MCRC) Biobank Ethics and MCRC Biobank Access Committee; Ethical committee of
Hospital Clinic of Barcelona.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

Study protocol

Data collection

Outcomes

NCT03643289; NCT04193956; https://www.trialregister.nl/trial/7839; MCRC 07/H1003/161+5 and MCRC 13_RIMA_01;
HCB/2015/1032; REC Ref 15/NW/0933.

https://www.clinicaltrials.gov

The PRIMM studies are two separate prospective observational cohort studies recruiting subjects in parallel in the U.K. (PRIMM-UK)
and Netherlands (PRIMM-NL) since 2018. Additional patients were enrolled from cohorts outside the setting of a prospective clinical
trial and performed in Leeds (n=19), Barcelona (n=12) and in Manchester (n=30) between March 2015 and November 2019, but from
whom fecal samples were collected at similar time points to those collected in our included prospective studies.

Clinical endpoints were defined as objective response rate (ORR) and progression free survival (PFS) at 6 and 12 months.

Response to ICl was classified according to RECIST v1.1 criteria. On the basis of radiographic response, patients were classified as
Responders (CR, PR, or SD) or Non-responders (PD). In order to include late responders in our analysis, patients with progressive
disease (PD) on the first radiological evaluation but a response at the second radiological evaluation compared to baseline were also
labelled responders. Patients with PD on the first radiological evaluation that was confirmed on the next follow-up scan, or patients
with PD on the first radiological evaluation that were unable to complete a confirmation scan due to clinical progression or death
were labelled non-responders.

PFS was defined as the time from first dose of ICl to first event i.e. disease progression or death from any cause.
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